
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Control Engineering

Master’s Thesis

Diagnostic tools for car control
units

Bc. Jakub Jíra
Open informatics – Computer engeneering

January 2024
Supervisor: Ing. Michal Sojka, Ph.D.

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

483779 Personal ID number: Jíra Jakub Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Measurement

Open Informatics Study program:

Computer Engineering Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

Diagnostic tools for automotive ECUs

Master’s thesis title in Czech:

Diagnostické nástroje pro řídicí jednotky aut

Guidelines:

1. Familiarize yourself with the UDS and ISO-TP protocols. Learn about the existing tool called "diag".
2. Implement a library for the UDS protocol communication in the Rust programming language. The library should offer
an async/await API.
3. Port the "diag" application for diagnosis of PDC/PLA electronic control units from C to Rust using the developed library.
4. Create a usable user interface for the application and enable command line functionality.
5. Extend the developed application to allow diagnostics of multiple control units by loading a so-called PDX file containing
information about the control unit in question. Test the result on both PDC/PLA unit and on the TSI 1.5 engine control unit.
6. Publish the resulting application as an open-source project.

Bibliography / sources:

VW80124_EN.pdf
https://udsoncan.readthedocs.io/
https://crates.io/crates/socketcan-isotp

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Name and workplace of master’s thesis supervisor:

Ing. Michal Sojka, Ph.D. Embedded Systems CIIRC

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 09.01.2024 Date of master’s thesis assignment: 29.06.2023

Assignment valid until:
by the end of winter semester 2024/2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Michal Sojka, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Acknowledgement / Declaration

I would like to express my sincere
gratitude to my supervisor, Ing. Michal
Sojka, Ph.D., for his invaluable guid-
ance, support, feedback, and kindness
throughout the completion of this the-
sis.

I would also like to thank my won-
derful fiancee Anna for her unwavering
support, understanding, and love.

Lastly, I would like to thank my fam-
ily, Kittens, and other friends, for their
support and shared beers and laughs.

I declare that the presented work
was developed independently and that
I have listed all sources of the infor-
mation used within it in accordance
with the Methodical Instructions for
Observing the Ethical Principles in the
Preparation of University Theses.

In Prague, January 9, 2024

. .

v

Abstrakt / Abstract

Vývoj automobilových aplikací vyža-
duje přístup k diagnostickým údajům ří-
dicích jednotek (ECU). Zatímco existuje
mnoho komerčních aplikací, které tuto
funkci poskytují, nabídka řešení s ote-
vřeným zdrojovým kódem je mnohem
menší a často má omezenou funkčnost.

Tato diplomová práce se tuto situaci
pokouší zlepšit. Představuje návrh a
implementaci tří knihoven potřebných
pro vývoj diagnostické aplikace na-
psanou v programovacím jazyce Rust.
Problémy, které knihovny řeší, jsou
asynchronní komunikace přes protokol
ISO-TP, asynchronní komunikace přes
UDS a parsování databází popsaných
standardem ODX.

Jsou uvedeny dvě ukázkové aplikace
využívající vyvinuté knihovny. Aplikace
pro příkazový řádek, která umožňuje
provádět základní diagnostické služby
a číst data uložená v připojené řídicí
jednotce. A aplikace zobrazující pro-
ces převodu přijatých dat na reálné
hodnoty.

Klíčová slova: Rust, asynchronní,
ISO-TP, UDS, ODX

Development of automotive applica-
tion requires access to diagnostic data of
the engine control units (ECUs). While
there are many commercial applications
providing that functionality, the offer of
an open-source solution is much smaller
and often of limited functionality.

This diploma theses attempts to
improve that. It presents the design
and implementation of three libraries
required for an automotive diagnostic
application written in the Rust pro-
gramming language. The problems
solved by the libraries are asynchronous
communication over ISO-TP proto-
col, asynchronous communication over
UDS, and parsing of the ODX database.

Two example applications using the
developed libraries are presented. The
command line application that allows
the execution of basic diagnostic ser-
vices and the reading of the data stored
in the connected ECU. And the applica-
tion showing the process of translating
the received data into real-world values.

Keywords: Rust, asynchronous,
ISO-TP, UDS, ODX

vi

/ Contents

1 Introduction 1

2 Background 3
2.1 Communication protocols 3

2.1.1 UDS 3
2.1.2 ISO-TP 7
2.1.3 CAN 8

2.2 Used programming technologies . 8
2.2.1 Rust 8
2.2.2 Async/Await 9
2.2.3 Asynchronous runtime 9

2.3 ODX 10
2.4 Current drivers and imple-

mentations 11
2.4.1 Linux driver 11
2.4.2 socketcan-isotp 11
2.4.3 tokio-socketcan 11
2.4.4 python-udsoncan 11

2.5 Custom vehicle diagnostic
tools 12

2.5.1 OpenVehicleDiag 12
2.5.2 odxtools 12

3 Design 13
3.1 Overview 13
3.2 Async Rust ISO-TP library . . 14
3.3 Async Rust UDS library 14
3.4 ODX Parser library 15
3.5 Application design 16

4 Implementation 18
4.1 tokio-socketcan-isotp 18
4.2 uds-rs 20
4.3 odx-parser 22

4.3.1 Deserialization 23
4.3.2 Resolving ODX references . 24

5 Evaluation 27
5.1 Testing the functionality of

the libraries 27
5.2 Creating sample application . . 27

5.2.1 Basic CLI UDS application 27
5.2.2 Interpreting ECU re-

sponse using an odx-parser 29
6 Conclusion 31

6.1 Future work 31
References 32

A Abbreviations 37

vii

Tables / Figures

2.1 UDS request .4
2.2 UDS positive response4
2.3 UDS negative response.4
2.4 ReadDataByIdentifier request . . .5
2.5 ReadDataByIdentifier posi-

tive response. .5
2.6 ReadDTCInformation request . . .5
2.7 ISO-TP Frame types7

1.1 TSI 1.5 simulator1
1.2 Bosch Parking ECU.2
2.1 UDS sessions .6
3.1 Application architecture 13
3.2 Application architecture with

API calls . 17
4.1 Folder structure of uds-rs 21
5.1 CLI Appplication help 28
5.2 CLI Appplication command

help . 28
5.3 CLI Appplication ECU re-

sponse . 29

viii

Chapter 1
Introduction

In the world of the modern automotive industry, electronic control unit (ECU) technol-
ogy is becoming more complex; as automakers strive to meet increasing demands on the
safety standards, fuel consumption, emmitions, and enhances in the driving experience,
this complexity is only going to increase. And the current trend of software-defined
vehicles is not going to make the ECUs any simpler.

In this world of complex ECUs, diagnostic software is essential for the development
and testing of these convoluted systems. Most of the software used today in the industry
is proprietary, expensive, and cannot be easily modified.

The topic for this thesis arises from different work: Simulator of the TSI 1.5 com-
bustion engine [1]. The proprietary tools for developing the simulator are sufficient but
not ideal.

Figure 1.1. Photo of TSI 1.5 combustion engine simulator created by Jan Vojnar

This thesis aims to design and implement software libraries that would be required
for a diagnostic application written in the Rust programming language.

Chapter 2 of this thesis covers the theoretical background of automotive communica-
tion protocols used for diagnostic, the Rust programming language and the async/await
programming style, the Open Diagnostic data exchange format and current implemen-
tations of communication standards and open-source diagnostic applications. Chapter 3
describes the design of the libraries needed for a diagnostic application. Chapter 4 de-
scribes the implementation process of the libraries and the challenges encountered when

1

1. Introduction .

Figure 1.2. Photo of Bosch PDU Parking ECU, on which most of the tests were carried
out

implementing them. Chapter 5 describes how tests were carried out and presents ex-
ample applications. The last part of the thesis is Chapter 6 where the main results are
described.

2

Chapter 2
Background

This chapter provides a comprehensive view of the technologies that are used by the
project or have had an influence in another way. This chapter serves as a basis for
subsequent chapters and provides readers with the necessary knowledge to understand
the design and implementation of the project.

The first half of the chapter describes used communication protocols and standards.
The second half goes through the current state-of-the-art and introduces current im-
plementations of standards and even whole applications.

This chapter is not exhaustive and only covers topics relevant to the scope of the
project. For more information, please refer to the cited standards and documentation.

2.1 Communication protocols
Current cars are large distributed systems full of various communication interfaces,
ranging from simple passing of analog signals to fast, real-time networks. As the goal
of this project is car diagnostics, this section of the document focuses on diagnostic
communication stack.

After reading this section, the reader will be familiar with the communication pro-
tocols used by the project, namely UDS, ISO-TP, and CAN.

2.1.1 UDS

UDS or Unified Diagnostic Services, standardized by ISO in ISO 14229-1 [2], is a appli-
cation layer protocol widely used in automotive to provide diagnostic communication
between the ECU and a tester. This project is based on ISO 14229-1:2013, which is
an older version of the standard, and the newer ISO 14229-1:2022 is the current ver-
sion. The project is also designed to be compatible with VW80124 [3] – proprietary
VolksWagen standard, which is mostly similar to the UDS.

In addition to the application layer, the UDS also standardizes session layer services
in ISO 14299-2. Lower layers are standardized for each physical layer separately. UDS
can work in any modern automotive communication stack. For example, ISO 14229-3
specifies the so-called UDSonCAN – UDS diagnostic over CAN. But UDS standard is
also defined for FlexRey, Ethernet, LIN, and K-Line.

For this project, the diagnostic over CAN is the most relevant.
The UDS communication structure is based on client-server communication, where

the diagnostic application is a client and the ECU is the server. The UDS defines
diagnostic services that serve to test, monitor, or diagnose the server.

Typically, communication follows a request-response pattern, but this is not an abso-
lute rule. Some services allow to suppress the positive response. There are also services
in which communication is subscription-based.

The base structure of the UDS request is displayed in table 2.1. In all tables in the
current section, n stands for the length of the message.

3

2. Background .

byte 0 bytes 1..n-1
SID Parameters and/or Data

Table 2.1. UDS request

The service identification (SID) is a byte value that specifies the service, followed by
additional data that are service-specific.

The request is sent to the server that responds with either positive or negative re-
sponse.

The positive response has the same structure with the difference that the SID in-
creases by 0x40 2.2.

byte 0 bytes 1..n-1
SID+0x40 Parameters and/or Data

Table 2.2. UDS positive response

Note that the Parameters and/or Data is different for request and response.
The negative response, shown in table 2.3 is sent when the request cannot be exe-

cuted, when, for example, the service is not supported or the server is busy.

byte 0 byte 1 byte 2
0x79 Rejected SID NRC

Table 2.3. UDS negative response

In the first byte, 0x79 represents the SID of the negative response. Second, what SID
was rejected, and third negative response code (NRC). The NRC stores the information
about the error that resulted in a negative response. The list of NRCs and their meaning
can be found in Table A.1 in [2].

UDS introduces functional blocks into which services are divided. These are:

Diagnostis and Communication Management functional unit
Data Transmission functional unit
Stored Data Transmission functional unit
IntputOutput Control functional unit
Routine functional unit
Upload Download functional unit

For this project, the important function units are the Data Transmission and Stored
Data Transmission functional units.

Data Transmission functional unit contains services that allow reading the ECU data,
as well as writing based on an address or special identifier called the Data Identifier
(DID). For this project, the most prominent service of this functional unit is the
ReadDataByIdentifier service. The request of ReadDataByIdentifier is described in
table 2.4

The 0x22 is the SID of the ReadDataByIdentifier service, and that is followed by at
least one Data identifier. The Data identifier is a 16-bit value associated with a certain
value stored in the ECU.

4

. 2.1 Communication protocols

Parameter
byte 0 SID = 0x22
byte 1

DID#1
byte 2

: :
byte n-2

DID#m
byte n-1

Table 2.4. ReadDataByIdentifier request

Parameter
byte 0 SID = 0x62
byte 1

DID#1
byte 2
byte 3

Data#1:
byte (k-1)+3

: :
byte (n-1)-(l-1)-2

DID#m
byte (n-1)-(l-1)-1
byte (n-1)-(l-1)

Data#m:
byte n-1

Table 2.5. ReadDataByIdentifier positive response

The positive response for ReadDataByIdentifier is described in table 2.5. The k
represents the length of Data#1, and l represents the length of Data#m.

The structure of the response is similar to the request, with the difference that each
DID is followed by the corresponding Data.

Stored Data Transmission functional unit contains only two services. ClearDiagnos-
ticInformation and ReadDTCInformation.

The ReadDTCInformation allows the client to read the Diagnostic Troube Code
(DTC) information from the server. This service provides 27 functions.

The ReadDTCInformation is able to provide all these functionalities due to the usage
of a sub-function byte. Usage is shown in the table 2.6. Each sub-function has its own
specific byte defined in Table 269 in [2].

byte 0 byte 1 byte 2..n-1
0x19 sub-function Parameters and/or Data

Table 2.6. ReadDTCInformation request

5

2. Background .
Some of the provided sub-functions are:
- 0x01 – Retrive the number of DTCs matching a client defined DTC status mask.
- 0x02 – Retrive the list of DTCs matching a client-defined DTC status mask.
- 0x04 – Retrieve DTCSnapshot data, containing specific data records associated with
a DTC stored upon detection of system malfunction.

- 0x06 – Retrieve DTCExtendedData associated with a client-defined DTC and status
mask combination out from the DTC memory. DTCExtendedData adds more data
for the failed DTC.

- 0x0E – Retrieve the most recently failed DTC within the server.
For complete list refer to the Chapter 11.3 of [2].

An example of how the VW80124 standard differs from the ISO norm is in the
definition of ReadDTCInformation. While the UDS provides 27 sub-functions, the
VW80124 provides only 5. Sub-functions supported by both the VW80124 and ISO
14229-1 are the examples provided above.

Another feature that needs to be mentioned is the UDS Sessions. The current session
defines what diagnostic services are allowed for the connected tester. The UDS defines
four types of sessions:
- defaultSession – Enables the default diagnostic functions to the client. This session
is active after the device is started.

- ProgrammingSession – Enables all diagnostic services required to support the mem-
ory programming of the server.

- extendedDiagnosticSession – Enables all diagnostic services required to support the
adjustment of functions.

- safetySystemDiagnosticSession – Enables diagnostic services to support safety system
related functions.
Vehicle manufacturers can decide which sessions they will support and if they will

add some manufacturer-specific ones, the only exception being the default session. But
they can also decide which services will be available while in the default session.

The session switching is visually described in 2.1

Default session Non-default sessionTimeout

Tester
present

Request same or
other non-default

session

Request default
session

Request non-default
session

Request default
session

Power ON

Figure 2.1. Diagram of UDS session switching

6

. 2.1 Communication protocols

After the device is started, the default session is active. The tester can swich the
current active session by using DiagnosticSessionControl service.

To remain in the non-default session, the tester needs to periodically send a Tester-
Present request. If the tester fails to send the TesterPresent in time, the server returns
to the Default session. The timeout is manufacturer-specific. The VW80124 standard
defines this value as 5 000ms.

2.1.2 ISO-TP
ISO-TP (ISO 15765-2) [4] is a standard for transmitting data over a CAN bus. It was
first published in 2004 by the International Organization for Standardization (ISO)
as part of the ISO 15765 series of standards for vehicle networks. The standard was
developed to address the growing need to transmit large amounts of data over a CAN
bus.

ISO-TP is based on the existing CAN protocol. ISO-TP was designed to be compat-
ible with existing CAN systems and provides a way to send messages longer than the
8-byte maximum payload size allowed by the standard CAN protocol. The maximum
length of a message sent via the ISO-TP protocol is 4095 bytes. The 2016 implemen-
tation pushes this length to the theoretical maximum of 4GB.

From the perspective of the OSI model, ISO-TP serves the purpose of transport and
network protocol layers.

While the CAN bus describes its messages as frames, ISO-TP messages are generally
called packets.

Since ISO-TP is built on top of the CAN bus, the messages need to be parsed into
CAN frames and sent fragmented. Also, the CAN bus is built without addressation
in mind. Every message is broadcasted, and only the transmitter’s address is known.
ISO-TP allows six types of addressing. Addressing directly affects frame composition
and payload size in each frame. One of these addressing methods is based on identifiers
provided by the CAN bus, called normal addressing. In the following examples, normal
addressing is used.

ISO-TP defines four types of CAN frames that are used to transmit the information.
Those are Single frame, First frame, Consecutive frame and Flow control frame. The
overview of these frames is shown in the following table.

Byte 0 Byte 1 Byte 2 Byte 3..7
Frame type Bits 7..4 Bits 3..0

Single Frame type Payload size Data
First Frame type Payload size Data

Consecutive Frame type Index Data
Flow Control Frame type Flow status Block size Separation time

Table 2.7. ISO-TP Frame types

Single frame is sent when the message is less than seven bytes.
- Frate type is 0.
- Payload size represents the number of data bytes.

First frame is sent when the message is more than seven bytes.
- Frame type is 1.
- Payload size represents number of Data bytes in current and consecutive frames.

7

2. Background .
Consecutive frame is sent after the First frame.
- Frame type is 2.
- Index is a four-bit counter, incremented with each sent frame.

Flow control frame is used by the receiver to inform the transmitter about the trans-
mission of consecutive frames.
- Frame type is 3
- Flow status is 0 for continue, 1 for wait, and 2 for overflow/abort
- Block size represents the number of frames the transmitter is allowed to send before
receiving another Flow control frame. If set to 0, the whole packet will be sent
without awaiting another Flow control frame.

- Separation time specifies the minimal delay the transmitter needs to wait after send-
ing any frame.
These four frame types are the basis for ISO-TP data transmission.
If the payload is smaller than seven bytes, a Single frame is used. After receiving a

Single frame, the receiver does not send any Control flow frames.
In case of larger payloads, the transmitter will send the First frame and wait for the

Flow control frame. After receiving Flow control frame, Consecutive frames are sent
based on the received directives.

2.1.3 CAN
The controller area network (CAN bus) is a vehicle network designed by Bosch and later
standardized by the ISO 11898 standard. CAN specifies the function of the physical
and data-link layers [5]. The physical layer is described by ISO 11898-1, whereas ISO
11898-2 describes the physical layer. This project is based on CAN 2.0A and although
there are newer standard CAN buses such as CAN-FD the CAN 2.0 is still the standard
in the vehicle industry [6].

The basics of communication are that each message, called frame, has, among others,
a unique ID and a data payload. The messages are broadcast to the entire network,
and each node decides, based on the ID, whether to receive the message or ignore it.
The ID also determines the priority of the message. During the transmission of the ID,
the process called arbitration takes place.

Each node listens to the bus state while transmitting, and if the bus contains a
different symbol than the one its transmitting, the transmition is stopped. This is
possible due to the design of the physical layer of CAN, where the representation of bit
0 is dominant over the representation of bit 1.

The arbitration is won by the message with the lowest ID, and then the data is sent.
This ensures that the highest priority message is transmitted first, without additional
delay [5].

The main benefits of the CAN bus are low cost, high reliability, robustness, and data
consistency across the network.

2.2 Used programming technologies

2.2.1 Rust
Rust is a programming language that was first developed at Mozilla Research in 2006
by Graydon Hoare. It was created to address the shortcomings of existing systems
programming languages such as C and C++. Since its initial release, Rust has grown in
popularity and is now a popular language for creating highly efficient, safe, and reliable

8

. 2.2 Used programming technologies

software. Rust enforces its safety with robust rules and mechanisms that prevent most
of the behaviors that could end with a non-defined or not expected outcome [7].

This safety enforcement is carried out through a combination of multiple mechanisms,
the main being ownership, borrowing, and lifetimes [8].

Ownership is a concept where each value has a variable that is its owner, and there
can only be one owner at a time. When the owner goes out of the scope, the value is
dropped. Ownership can be moved to another variable. This transfer is called move.

When we do not want to take the ownership, Rust allows us to borrow a value,
creating a reference to the value, without transferring ownership. At one time, there
can be either one mutable reference or multiple non-mutable ones.

These conditions of ownership and borrowing are checked during compile time by a
core rust compiler functionality called the borrow checker. The lifetime of a reference
is also checked during compile time, preventing the interaction with any out-of-scope
data.

Rust also has a strong type system that helps prevent unintended data manipulation
and type-related errors. Does not have garbage collection, but instead follows the RAII
(resource acquisition is initialization) convention [9].

All these safety compliances are checked during compile time, which keeps Rust pro-
grams fast and safe simultaneously, making it suitable even for embedded applications.

Another valuable feature of Rust is its ecosystem. Apart from the compiler and
standard library, Rust also consists of other utilities, all managed by rustup – a toolchain
developed by the Rust project. The most notable is Cargo, Rust’s build tool and
package manager. Libraries or packages managed by Cargo are called crates and are
typically distributed via crates.io, the official Rust package registry.

The newest version of Rust that this project was tested on is 1.74.1

2.2.2 Async/Await

Async/Await is a way to write code that allows for asynchronous execution but, from
the perspective of the developer, looks and behaves as synchronous. This method was
first introduced in C# in 2011 [10] and, since then, has been adopted by most modern
concurrent programming languages. Rust programming language added support for
async/await in 2019 in version 1.39 [11].

Async functions are unique in the way that they can be “paused”, return the control
to runtime, and then resumed at the same spot to continue the execution. For our
implementation, the pause part is when our application waits for the I/O event on the
ISO-TP socket.

Rust’s approach to executing asynchronous routines is lazy [12]. When calling the
async function, the future is created. Futures start execution only when the await or
other function with a resolving effect is called on them. This approach allows users to
easily separate the setup phase of creating asynchronous jobs and actually executing
them.

To work properly, Futures require runtime that will correctly poll, schedule, and
execute them. Rust does not provide native executors and reactors. However, the
community-provided crates are designed to provide the desired functionality.

2.2.3 Asynchronous runtime

Asynchronous runtimes serve as libraries designed for the execution of asynchronous
applications. Typically, these runtimes include a reactor paired with one or more ex-
ecutors. Reactors provide subscription mechanisms for external events, such as asyn-

9

2. Background .
chronous I/O, interprocess communication, and timers. Within an asynchronous run-
time, subscribers commonly take the form of futures that represent low-level I/O oper-
ations. Executors manage the scheduling and execution of tasks. They are responsible
for monitoring active and paused tasks, continuously polling futures until completion,
and awakening tasks when there is an opportunity for progress [13].

As the Rust language evolved, several asynchronous runtimes were created. Currently
the most prominent are Tokio [14], async_std [15] and smol [16].

The async_std is a runtime that tries to mimic as closely as possible the standard
library of Rust while providing the async alternatives. Although the project is not
“dead” [17], the developement is curently stagnating and majority of developers moved
to smol or other projects.

The smol and async_std currently represent more niche runtimes. Smol focuses on
a small and fast runtime independent from Mio(basis of Tokio), containing only safe
code.

Tokio is by far the most widely used and is the de facto industry standard. It is based
on Mio[18] (Metal IO), a low-level I/O library providing non-blocking APIs and event
notifications. Tokio provides multi-threaded runtime with work-stealing scheduler, and
asynchronous version of the standard library and a large ecosystem of libraries.

2.3 ODX
ODX is the abbreviation for Open Diagnostic data Exchange, and is standardized in
ISO 22901 and ASAM MCD-2D. This project and all the information about ODX is
based on ODX version 2.0.1.

The purpose of ODX is to provide a data format for the exchange of diagnostic
specification of ECU diagnostic and programming data between the system suplier, the
vehicle manufacturer, and service dealership [19].

The foundation of the ODX is the data model described in UML. Once the specifi-
cation is completed, the data is mapped to the XML file.

The main blocks of the ODX database are:

. DIAG-LAYER-CONTAINER – Contains one or a set of DIAG-LAYER structures.
These structures provide a description of diagnostic services with all the necessary
data. The DIAG-LAYER structures are:
. ECU-SHARED-DATA – provides a library-like mechanism, allowing data sharing
across multiple ECUs.

. PROTOCOL – generic services, e.g. UDS.

. FUNCTIONAL-GROUP – generic diagnostic services of the same category

. BASE-VARIANT – specific diagnostic services of specialized ECU

. ECU-VARIANT – expanded or modified services of the BASE-VARIANT. COMPARAM-SPEC – defines the standard parametrization of the communication
protocols, e.g. timings.. VEHICLE-INFO-SPEC – defines how can tester connect to the ECU.. FLASH – definition of methods and parameters for flashing the ECU.. MULTIPLE-ECU-JOB-SPEC – definition of diagnostic jobs that deal with quasi-
parallel communication with several ECUs.

Each of the ODX files contains exactly one of the blocks.
The most relevant element in the above-mentioned list for this project is the DIAG-

LAYER-CONTAINER. Here, the DIAG-SERVICE element specifies the REQUEST,

10

. 2.4 Current drivers and implementations

POS-RESPONSE, NEG-RESPONSE of certain service and DATA-DICTIONARY-
SPEC contains all the needed data to create and parse the communication messages.

2.4 Current drivers and implementations
The described communication protocols and standards are widely used and there are
numerous instances of existing implementations. This section introduces a few of these
implementations closely related to the topic of the project.

2.4.1 Linux driver
SocketCAN is an open-source implementation of the CAN protocol stack for Linux.
Provides a set of socket-based programming interfaces for working with CAN networks
on Linux systems. SocketCAN enables developers to interact with CAN devices and
networks using standard socket programming techniques, making it easier to integrate
CAN communication into applications running on Linux platforms [20]

Since Linux kernel version 5.10 the ISO-TP communication is also part of the main-
line SocketCAN driver [21]. The Linux community also developed SocketCAN-based
utilities that are widely used and can serve as a basic diagnostic tool, when creating a
CAN device [22]

SocketCAN is standard on all devices running Linux, ranging from embedded sys-
tems, automotive applications, and industrial automation. And is ideal to use as a base
of this project.

2.4.2 socketcan-isotp
Socketcan-isotp [23] is a Rust library based on the mentioned Linux driver 2.4.1. The
library API provides blocking I/O operations and a complete socket-creation process.

This library is created without the Async/Await communication in mind; however,
this library allows the socket to be made unblocking, which is enough for using it as
barebone communication and creating an asynchronous API on top of it.

2.4.3 tokio-socketcan
Tokio-socketcan[24] is a library based on Tokio runtime and adds an asynchronous layer
on top of the socketcan-rs[25] crate. Since socketcan-rs version 3.0 the code from tokio-
socketcan library was merged into the socketcan-rs and providing the Async/Await
communication to not only tokio, but also async_std and smol.

Since both of those libraries only provide the CAN API and not ISO-TP these li-
braries are not suitable for our goal.

However, implementation of this library can give us a clear vision of how a Tokio
library can be created on top of an existing one using AsyncFd, which will be helpful
in our implementation.

2.4.4 python-udsoncan
The python-udsoncan [26] library is arguably the most feature-complete, open-source
implementation of the UDS protocol. It is written in Python and provides most of
the services through the API. Since the client is synchronous, it does not support
asynchronous services such as ResponseOnEvent or ReadDataByPeriodicIdentifier.

Even though the code is unuseable by our Rust implementation, it can serve as an
inspiration for the project.

11

2. Background .

2.5 Custom vehicle diagnostic tools
Diagnostic software working on the UDS communication protocol is not a new idea.
There are various projects solving this problem, since our assignment specifies program-
ming language, our options are far more limited.

Automotive software is heavily dominated by proprietary tools. This is true even for
the diagnostic software. The most prominent is Vector Group, whose tools like CANoe,
CANdelaStudio, or ODXStudio are the industry standard [27].

2.5.1 OpenVehicleDiag
The OpenVehicleDiag [28] is designed to diagnose cars without the need for expensive
specialized software and hardware. As impressive as this software is, it is aimed mainly
at enthusiasts to diagnose their cars and reverse engineers.

Also, the implementation of UDS lacks some crucial services like ReadDataByIden-
tifier.

The communication backend of this app is available as Rust crate [29], allowing it
to be used in other projects. But even though the communication uses unblocking
sockets, the whole communication process is done by passing the function to the thread
and letting the thread do all the communicating. Since we are targeting acync/await
communication, this would need to be reworked.

2.5.2 odxtools
The odxtools [30] is Python application by Mercedes-Benz that contains set of utilities
to interact with the ODX data format.

The main functionality provided by odxtools is parsing and interpreting ODX diag-
nostic database files, as well as decoding and encoding the data of diagnostic requests
and responses. It also provides API for basic communication with the ECU.

The main disadvantage is that the application only supports ODX 2.2.0. The imple-
mentation is also very memory inefficient, allowing only a small project to be loaded
on my hardware1.

1 Valve Steam Deck running SteamOS 3.5.7

12

Chapter 3
Design

This chapter provides a high-level overview of the developed libraries and APIs, as well
as the architecture of the final application.

3.1 Overview
The conclusion of the chapter 2 is that there are some publicly available libraries and
applications that could be used as the basis for our diagnostic application.

The targeted application needs to be able to communicate with the UDS library
through the Async/Await API, and needs to be able to read the data from ODX files,
if the files are provided.

In order to write an Async/Await UDS library, it is required to have ISO-TP library,
which would provide communication with the ECU through the Linux driver.

The visual representation is presented in the Figure 3.1

API API

Diagnostic
application

API

Async Rust UDS
library

Load file

ODX file parser
library

API

Async Rust ISO-TP
library

Linux ISO-TP driver CAN ECU

Hardware device

ODX package

File

Figure 3.1. Application architecture

13

3. Design .
The Linux SocketCAN driver is ideal for low-level communication over CAN.
However, there is no Rust ISO-TP library that supports the async/await program-

ming style. The existing library socketcan-isotp[23] is a suitable candidate to be the
cornerstone of an asynchronous library.

The Async Rust UDS library is also missing and will need to be developed, as well
as the ODX file parser library.

3.2 Async Rust ISO-TP library
The main function of the Async ISO-TP library is to provide wrapper around standard
file descriptor and allow usage in the async context. I call this socket wrapper an
AsyncSocket.

The creation of AsyncSocket should also provide all the settings for creating the
socket as the socketcan-isotp library. Either by implementing the wrapper around
existing functionalities, or transparently providing all the settings in the socketcan-
isotp library.

The primary design choice involves an asynchronous runtime. That determines the
features available which can help when designing and implementing the API that will
be made available to the developer using the library.

As we discussed in the background section Asynchronous runtime 2.2.3, there is
currently one major runtime environment for async rust – tokio [14]. Since we do not
need any niche features, that the async_std or smol provide the tokio is a easy choice.

There are two standard approaches to designing an async API for the library.
One approach implements standard write and read methods for AsyncSocket which

will return the type, which implements Future trait. Allows the calling method poll on
that type, thus resolving the future.

Another approach is to use one of the traits provided by the futures-rs or tokio. The
futures-rs provide stream and sink traits, hiding the futures behind this abstraction and
providing poll_next and start_send methods, respectively[31–32]. The tokio provides
AsyncRead and AsyncWrite traits[33–34].

Both approaches have their advantages and disadvantages; however, for this project,
I have chosen to implement communication using the read and write methods, as it
provides both greater control to the end user and to the developer for how to poll the
Futures. The other means of interaction, as the traits mentioned, can be added in the
future in the form of feature.

This approach is also independent of any third-party libraries, using only native Rust
features. If the runtime should change in the future, the API could remain the same.

3.3 Async Rust UDS library
The main goal of the UDS layer is to provide basic UDS functionality through the
async API. While allowing easy implementation of the new services and allowing for
more complex UDS functions to be implemented in the future.

The UDS library should be independent on the back-end communication and should
allow to receive UDS messages through other means, than iso-tp socket.

In addition to that, the UDS library should, if possible, be independent of the asyn-
chronous runtime, utilizing whichever runtime the underlying communication layer is
using.

14

. 3.4 ODX Parser library

The proposed architecture uses the UdsClient structure as the main source of API
interaction, providing abstraction over the lower-level communication and providing
methods for each implemented UDS service.

The UDS services can be implemented by creating a method for each service returning
structure representing the corresponding expected response.

The UdsClient also provides more user settings, such as timeout for the message, or
retry count, when the client receives a negative response – busy, try again.

To achieve independence on the background communication, the library should pro-
vide some abstraction over the used communication protocol, either through custom
trait, or trough some wrapping layer.

Independence on runtime is achieved by using the asynchronous functionalities
present in the Rust language, the async and await keywords, and the contents of
module std::future. It is also possible to not use these functionalities at all and
solve the asynchronous aspect only in the wrapping of the underlying layer, using
bridging [35]. It would make it easier to use the library in a synchronous context, but
since we specifically target the asynchronous Rust, the pure asynchronous approach is
preferred.

3.4 ODX Parser library
One of the core functionalities of the application should be the ability to interpret
received UDS data using the provided ODX file. To carry out the translation, several
functionalities need to be implemented.

The basis is to provide some structure to which the XML code of the ODX file would
be deserialized. Once parsed, the library should provide user with the entirety of the
ODX file and let user decide what to do with parsed data.

One of the key features of the ODX format is that, in order to avoid repetition,
certain sections of an ODX document can be referenced and, therefore, reused multiple
times. ODX specifies two kinds or references. References via odx-link, and references
via short-name.

The more complex of these two is the element ODXLINK which references the XML
element by its attribute ID. This ID is unique in all ODX documents. The ODXLINK
element contains attribure ID-REF, which contains the ID of the referenced element;
odx-link provides three other optional attributes for cross-document references. When
only the ID-REF attribute is provided, it signals that ID is stored in the current doc-
ument.

The optional attributes DOCREF and DOCTYPE together specify the document in
which the ID can be found. The documents to which can be referred in this way also
follow a specified pattern. DOCREF specifies the SHORT-NAME of the target, and
DOCTYPE specifies what the type of the target is.

The referenced documents can be one of the following:
1) Document specified in the IMPORT-REFS element.
2) Documents that are being inherited by the PARENT-REFS element.
3) Documents that inherit from the same direct parent as the current document.

All the references are recursive, so not only the direct parent is a possible target for
reference, but also a parent’s parent, and so on.

The point number 3 is especially problematic; since it is not possible to resolve the
reference only from curent document and its direct references, one needs to parse the
whole PDX folder in order to get the possible reference targets.

15

3. Design .
The other reference SNREF that references an XML element by its SHORT-NAME

does not allow cross-document references and, therefore, is simpler. However, contrary
to the ID, SHORT-NAME is not unique across the document but only in the specified
boundary. These boudaries are element-specific (can be found in Table 12 in [36]).

There are many features in ODX, however, none is as prominent as the referencing.
Other functionalities can be implemented on the per-app basis, but resolving ODX
references needs to be as part of the basic library.

The basic API should take the ODX folder with specified ODX file as input and
return the deserialized structure, as well as resolve all the references. Either statically
importing them, or providing mechanism to lazily load them during run-time.

3.5 Application design
The libraries designed fill the missing pieces for the creation of diagnostic applications.
An example of a rough usage can be found in Figure 3.2.

The figure expands upon the Figure 3.1 by not using generic names, but instead uses
the names of the real implemented structures, methods and libraries.

Please note that the figure is not exhaustive and highly simplified. For complete
documentation, refer to the Implementation 4 chapter, or the documentation of the
corresponding modules.

Due to the simplification, return types are also simplified, omitting errors by not
returning Results and Options which are in the implemented software.

The architecture consists of three libraries presented in the previous sections. The
tokio-socketcan-isotp library is the wrapper around CAN communication with the ECU.
Providing the strucutre IsoTpSocket with the read_packet and write_packet methods.
The returned types of IsoTpReadFuture and IsoTpWriteFuture are custom types that
implement the future trait.

The UdsClient in the uds-rs library uses the IsoTpSocket to communicate with the
ECU and provide the end user with methods that correspond to UDS services. Due
to the simplification of the figure, only two services are shown. Both of these services
return an enum EcuResponse, which unifies all the possible responses.

The odx-parser loads the ODX package and deserializes its contents into the struct
ODX. In order to keep the schema simple, the tree structure of odx is left out, and only
odx_element represents its existence.

OdxStructure holds the Odx tree, as well as the HashMap of all imported and par-
ent refs. Providing user with the contents of ODX package as well as methods like
resolve_odx_link(..) that returns reference to the searched element.

16

. 3.5 Application design

API

 socketcan-isotp CAN ECULinux - socketcan

tokio-socketcan-isotp

struct IsoTpSocket
public fields:

public methods:

fn new(ifname: &str, src: CanID, dst: CanID) -> IsoTpSocket
fn read_packet(&self) -> IsoTpReadFuture
fn write_packet(&self, message: &[u8]) -> IsoTpWriteFuture
...

API

Load File

ODX package

odx-parser

public interface

struct Odx

public interface

struct OdxStructure
public fields:

my_data: Odx
import_refs: HashMap<String, Odx>
parent_refs: HashMap<String, OdxStructure>

public fields:
odx_elements: ...
public methods:

public methods:

fn new(package_path: &str) -> OdxStructure
fn resolve_odx_link(odxlink: &Odxlink) -> &Target
...

uds-rs

public interface

struct UdsClient
public fields:

public methods:

fn new_from_socket(socket: IsoTpSocket) -> UdsClient
async fn read_data_by_identifier(&self, dids: &[u16]) -> EcuResponse
async fn report_dtc_by_status_mask(&self, dtc_mask: u8) -> EcuResponse
...

APIDiagnostic application

File

Hardware device

Figure 3.2. Application architecture with API calls

17

Chapter 4
Implementation

This chapter provides a deep dive into the implementation of libraries. Documents not
only the implementation decisions and challenges, but could also be used as documen-
tation for developers using the libraries.

4.1 tokio-socketcan-isotp
The code discussed in this section is freely available on crates.io [37].

The chosen runtime tokio provides the AsyncFd [38] feature which simplifies calling
async operations on the unix file descriptor. Using this feature, the definition of the
IsoTpSocket is following:

1 pub struct IsoTpSocket(AsyncFd<socketcan_isotp::IsotpSocket>);

Now we can call poll_write_ready() and poll_read_ready() on the file descriptor.
To create this structure, the same methods as in socketcan_isotp are implemented,

with all the necessary structures available to the user. Resolving into the exact same
socket-creating experience as the socketcan_isotp [23] has.

To implement the read_packet() and write_packet() methods, we need to define
Futures these methods return. Those will be IsoTpWriteFuture and IsoTpReadFuture

1 pub struct IsoTpWriteFuture<'a> {
2 socket: &'a IsoTpSocket,
3 packet: &'a [u8],
4 }
5

6 pub struct IsoTpReadFuture<'a> {
7 socket: &'a IsoTpSocket,
8 }

By implementing the Future trait on these structures, they are ready to be used in
the Async/Await context.

The current implementation uses different polling mechanisms for write and for read.
The read implementation uses the try_io method on the ready_guard, which is the
standard way of implementing the poll method.

The try_io method can be seen on lines 9-10 of the following code snippet.

1 impl Future for IsoTpReadFuture<'_> {
2 type Output = io::Result<Vec<u8>>;
3

4 fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>)
5 -> Poll<Self::Output> {
6 loop {
7 let mut ready_guard =

18

. 4.1 tokio-socketcan-isotp

8 ready!(self.socket.0.poll_read_ready(cx))?;
9 match ready_guard.try_io(

10 |inner| inner.get_ref().read_to_vec()) {
11 Ok(result) => return Poll::Ready(result),
12 Err(_would_block) => continue,
13 }
14 }
15 }
16 }

The write method uses a more bare-bone implementation, by calling write and then,
if the write is blocking, interacting with the ready_guard manually.

The interaction with the ready_guard is done on line 11 of the following code.

1 impl Future for IsoTpWriteFuture<'_> {
2 type Output = io::Result<()>;
3

4 fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>)
5 -> Poll<Self::Output> {
6 loop {
7 let mut ready_guard =
8 ready!(self.socket.0.poll_write_ready(cx))?;
9 match self.socket.0.get_ref().write(self.packet) {

10 Err(err) if err.kind() == io::ErrorKind::WouldBlock => {
11 ready_guard.clear_ready();
12 continue;
13 }
14 Ok(_) => return Poll::Ready(Ok(())),
15 Err(err) => return Poll::Ready(Err(err)),
16 }
17 }
18 }
19 }

This difference is caused by the error that occurred when calling two consecutive
writes, one of which ended with EAGAIN – signaling that the socket is busy and the
write would be blocking. The expected behavior is that the execution of the write will
resume once the socket is ready to be written into again. However, such behavior did
not occur, resulting in a nonresponsive program.

After going through the tokio documentation and looking at the implementation of
other async sockets, without finding any solution, I went to the maintainers of the tokio
for help [39].

I was directed to look into the behavior of the epoll. And found that the exact same
behavior happens when calling the epoll. This resulted in the opening of two bugs for
Linux kernel.

First patch [40] created by my supervisor, correcting the behavior of poll, and Second
patch [41] repairing the behavour of epoll.

These two patches resolved in the correct behavior not only of my library, but also
of the Linux kernel driver.

Since the patch was not yet shipped by the maintainer of the distribution that I am
using, I kept the old implementation in place, which works better with the unpatched

19

4. Implementation .
Linux kernel. Once the patch is more prominent, the write implementation will also be
done using the try_io mechanism.

Apart from the file lib.rs, where the async API is located, the library also contains
the socketcan_isotp.rs with the slightly changed API.

The Futures, created with the async read or write method, need a reference to the
Async IsoTpSocket to execute the I/O operations. If the unchanged socketcan_isotp
library were used, the WriteFuture would stay the same, however, the ReadFuture
would need to have a mutable reference to the socket.

The reason for that being that the method read in the socketcan_isotp library takes
mutable reference to the self as the argument. When we look into the implementation,
the reason for that is obvious:

1 pub struct IsoTpSocket {
2 fd: c_int,
3 recv_buffer: [u8; RECV_BUFFER_SIZE],
4 }
5 ...
6 impl IsoTpSocket {
7 ...
8 pub fn read(&mut self) -> io::Result<&[u8]> {
9 let buffer_ptr = &mut self.recv_buffer as *mut _ as *mut c_void;

10

11 let read_rv = unsafe {
12 read(self.fd, buffer_ptr, RECV_BUFFER_SIZE)
13 };
14

15 if read_rv < 0 {
16 return Err(io::Error::last_os_error());
17 }
18

19 Ok(&self.recv_buffer[0..read_rv.try_into().unwrap()])
20 }
21 ...
22 }

The received message is stored in the internal buffer of the IsoToSocket structure. It
could be useful when creating a safety-critical application, since it would avoid allocat-
ing memory on the heap. However, in our application, the approach with non-mutable
reference is preferable, resulting in modifying the function to return the owned variable
in the form of Vec<u8> instead of just borrowed slice.

4.2 uds-rs

The code discussed in this section is freely available on crates.io [37].
The uds-rs library provides some UDS services to the user. The current project

structure can be seen in the Figure 4.1. The library was written primarily to be used
with ISO-14229-1 [2] but also supports VW80124 [3]

20

. .4.2 uds-rs

Figure 4.1. Tree view of the uds-rs folder structure

The mandatory lib.rs file is just a wrapper around the uds module, where all the
code is located. In the uds.rs file, the UdsClient structure is located, which provides
the interface for the user. It also holds the private method send_and_receive with the
communication backend.

As previewed in Background 2.1.1 chapter the basis of UDS is the request-response
communication. This is true for the basics, but there are more advanced functionalities,
or manufacturer modifications, that expand on this basis. Some services can have
subscription-based model, others can suppress positive response, only reporting the
negative one. The current implementation adheres strictly to the request response
schema, the only deviation being that one transaction can consume multiple negative
responses, if they are of type RequestCorrectlyReceivedResponsePending.

This approach is easy to implement and is sufficient for the current implementation.
However, if the library would support the above-mentioned advanced functionalities,
the internal architecture would need to be rewritten.

Each implemented service is placed in its own module with the same design principle.
Implement the corresponding service as a method for UdsClient, taking all the necessary
data to create the request message as arguments. The return type for all services is
EcuResponseResult described in the following code snippet. The code is shortened and
slightly modified for better readability.

1 pub type EcuResponseResult = Result<UdsResponse, UdsError>;
2

3 pub enum UdsResponse {
4 EcuReset(DataFormat<EcuResetResponse>),
5 ReadDataByIdentifier(DataFormat<ReadDataByIdentifierResponse>),
6 ...
7 }
8

9 pub enum DataFormat<T> {

21

4. Implementation .
10 Parsed(T),
11 Raw(Vec<u8>),
12 }
13

14 pub enum UdsError {
15 NRC { nrc: NrcData },
16 UnknownNRC { rejected_sid: u8, unknown_nrc: u8 },
17 UnsupportedSubfunction { unsupported_subfunction: u8 },
18 ...
19 }

As we can see, the EcuResponseResult is just a wrapper containing either the Ud-
sResponse or UdsError. UdsError groups all errors that could occur during UDS com-
munication. Please note that NRC is handeled as an error. UdsResponse is an enum
containing all the implemented services as its variants, each of which then contains the
returned data by the ECU.

As we can see in the snippet, the returned data can be either Parsed or Raw. Some
services, such as ReadDataByIdentifier can result in responses that are impossible to
parse, with the knowledge of the UDS protocol alone. That is why there is an ability
to return the correct, but unparsed, message. If parsed correctly, the corresponding
structure containing all the data is placed in variant Parsed.

The service implementation comprises of composing the data from provided argu-
ments sending and receiving the data and parsing the data to the response structure.
This approach is the same for all services.

There are two modules, communication and uds_definitions, which do not represent
uds services. Uds_definitions, as the name suggests, definitions, and other constants,
such as NRC codes or service identifiers. Module communication contains the underly-
ing ISO-TP communication.

One of the design requirements of the uds-rs is that it be usable with other commu-
nication protocols, other than ISO-TP. The structure UdsSocket in the module commu-
nication serves just that purpose, creating a layer between the uds-rs and underlying
communication.

I considered using trait UdsSocket that would provide async API. The low-level com-
munication struct would be able to implement this trait, and the rest of the uds-rs
would use generic impl UdsSocket for the interaction.

This approach was scratched, since Rust did not natively support async functions in
traits. This changed only recently with the rust 1.75 [42] meaning the future of uds-rs
could go in this direction.

4.3 odx-parser

The odx-parser library serves the purpose of deserializing the ODX files from XML to
Rust structures. It also provides some essential functions such as resolving odxlinks
to enable browsing of the data stored in the ODX file. The library is rather barebone
as of the current iteration, not providing any higher-level logic provided by the ODX
standard.

Because of the rather unfinished state, it is not yet available as a freely available
crate.

22

. 4.3 odx-parser

4.3.1 Deserialization
There are three main approaches to storing the deserialized data. Either deserialize it
into map types, like HashMap, recreate the xml tree using Structures and Enums or
combination of those two.

I decided to use Structures and Enums as my approach. The deserialisation into
HashMaps would be easier, but implementing additional features would be tedious and
error-prone.

It is arguably better for the user of the library, too, since all features of the rust
language such as pattern mathing can be used.

To deserialize into structures, the corresponding structures need to be provided. The
standard provides the XML format structure in the form of an odx.xsd file. Some
reaserch showed that the community support for the XML language in Rust is limited.
The most complete library is xgen [43]. However, the code generated by this library is
not correct.

For example, the xsd definition:

1 <xsd:complexType name="DOP-BASE">
2 <xsd:sequence>
3 <xsd:group ref="ELEMENT-ID"/>
4 <xsd:element maxOccurs="1"␣minOccurs="0"␣type="A"␣name="A"/>
5 </xsd:sequence>
6 <xsd:attribute use="required"␣type="xsd:ID"␣name="ID"/>
7 <xsd:attribute use="optional"␣type="xsd:string"␣name="OID"/>
8 </xsd:complexType>

Resolves into the following rust code:

1 // DOPBASE ...
2 #[derive(Debug, Deserialize, Serialize, PartialEq)]
3 pub struct DOPBASE {
4 #[serde(rename = "ID")]
5 pub id: String,
6 #[serde(rename = "OID")]
7 pub oid: Option<String>,
8 #[serde(rename = "ELEMENT-ID")]
9 pub elementid: ELEMENTID,

10 #[serde(rename = "ADMIN-DATA")]
11 pub a: A,
12 }

Here, the existence of minOccurs=0 maxOccurs=1 is not interpreted as an option
and resolves into run-time error when the element A will not be encountered. This is
just one example of many 1, which have made me scratch this approach. In addition,
the deprecated library serde_xml_rs [44] is used for the deserialization.

I used the generated code as a very light inspiration and rewritten odx.xsd to rust
manually. If faced with the same decision today, I would probably try to implement a
working generator, rather than manually rewriting structures.

The quick-xml [45] library is used for the deserialization. In contrast to the
serde_xml_rs, is in active development and is supported.
1 Other errors are: not working xsd:choice, using #[serde(flatten)] on structs, that cant be flattened,

ignoring default values and incorrectly handling xsd:extension

23

4. Implementation .
Some workarounds are needed to provide a correct deserialization of the ODX format.
The greatest limiting factor of using Rust to deserialize ODX file is that ODX uses

inheritance, which is not implemented for Rust. Serde provides the flatten functionality
that can be used to complement the inheritance. However, this functionality is partly
broken for deserializing the XML code. And only structures containing attributes can
be flattened. It is a known issue referenced even in quick-xml documentation [46] which
is dependant on the serde issues [47–48].

This bug can be solved by implementing the flattened structure directly into the
parent element. Resolving into inelegant, but working code.

Another issue with deserialization is the deserialization of HTML text, since ODX
allows HTML code to be used in some places. However, the complex structure of HTML
is not really suitable to be deserialized. I wanted to implement this behavior to take
the HTML code and put it in the String variable, but due to the bug [49] in quick-xml
it is not supported. It could be done by implementing a custom deserializer for the
elements containing HTML code, but for now it is just ignored.

With these workarounds, the deserialization of the ODX file works. Few elements
are currently not supported, meaning they are ignored when encountered, but most of
the ODX elements are correctly deserialized.

4.3.2 Resolving ODX references

With the ODX structure deserialized, a database of all elements containing ID is needed
to resolve the ODXLINKs.

The process is described on IDs, but the same was applied for the SHORT-NAMEs.
Currently, the different scopes defined for SNREFs are ignored. This trivialization is
allowed by the fact that the important elements referenced via SHORT-NAME in the
provided PDX data are uniqe. However, this needs to be resolved in a later iteration
of the library.

The structure of the Database struct looks as follows:

1 pub enum IdSnReference {
2 VehicleInfoSpec(Arc<VehicleInfoSpec>),
3 InfoComponent(Arc<InfoComponent>),
4 ComparamSpec(Arc<ComparamSpec>),
5 ...
6 }
7 pub struct OdxStructure {
8 my_data: Odx,
9 import_data: HashMap<String, Odx>,

10 parent_refs: HashMap<String, OdxStructure>,
11 database: Database,
12 }
13

14 pub struct Database {
15 id_database: HashMap<String, IdSnReference>,
16 sn_database: HashMap<String, IdSnReference>,
17 }

OdxStructure owns all the data, adding additional references lazily as they are en-
countered during run-time. This approach is made possible by the usage of smart
pointers. The smart pointer used is Arc [50] (Asynchronous reference counter).

24

. .4.3 odx-parser

Smart pointers have performance overhead over the regular references, but make
working with the references and especially lifetimes of the objects much easier.

This also means that at least each element with ID in the Odx tree of objects needs
to be encapsulated in Arc<T>. Currently, only structures containing ID or SHORT-
NAME are encapsulated in Arc.

To create the Database the odx-parser library provides GetDatabase derive macro.
This macro, when used on an object, implements a custom trait GetDatabase. The
GetDatabase trait is described in the following code snippet:

1 trait GetDatabase {
2 fn get_database(&self) -> Database;
3 fn get_id(&self) -> Option<String>;
4 fn get_sn(&self) -> Option<String>;
5 }

The most important is the get_database function. The get_id and get_sn are just
helper methods for the get_database method.

The macro implements the GetDatabase trait in the following matter:

1) Create two HashMaps, sn_hashmap and id_hashmap. One for elements with
ID and one for elements with SN.

2) Go through the fields of structure, or variants of enum. Skip children-less2 types
and call get_id and get_sn on the rest. If the method returns Some(x), add the x as
the key and the reference to the object as the value to the corresponding HashMap.

3) Create Database d from the sn_hashmap and id_hashmap.
4) Go through the fields of structure, or variant of enum once again, calling

get_database on potential parent3 types. Merge the returned Database with d.
5) Return d

The GetDatabase can be implemented for:

1) Structs with named fields. Allowed types are primitives and types that imple-
ment the GetDatabase trait. These types can be encapsulated in Vec, Option, or
Arc.

2) Enums with variants that have either no data associated or one unnamed tuple
struct value. The value can be encapsulated in Arc.

The GetDatabase macro does not currently support namespace paths in the type
definitions.

Note that the object we call the get_database on does not add itself to the returned
database. This is due to the fact that we call get_database on T.get_database() and
not on Arc<T>.get_database(). And we need Arc<T> in order to create a reference
for the database.

As mentioned in chapter 3.4 the ODXLINK refers to other files through the attributes
DOCREF and DOCTYPE. The DOCTYPE specifies the top element of the ODX file
and the DOCREF specifies the SHORT-NAME of the element. These two attributes
need to be translated into the filename so that it can be deserialized. For this purpose,
the OdxPackage structure is created:

2 children-less type is a primitive. Primitive in this context is not just primitive from the Rust point of
view, but also other types that are not ODX types, like Strings
3 Parent is the oppsite of children-less type.

25

4. Implementation .
1 struct OdxFolder {
2 layer_ref: HashMap<String, std::path::PathBuf>,
3 comparam_ref: HashMap<String, std::path::PathBuf>,
4 }

When created, OdxFolder searches the provided folder path, parses all *.odx files,
and creates the entry of SHORT-NAME and std::path::PathBuf in the correspond-
ing HashMap. The DOCTYPE supports five variants, but in the OdxPackage pro-
vided, only LAYER and COMPARAM (referencing DIAG-LAYER-CONTAINER and
COMPARAM-SPEC respectively discussed in 2.4) variants are used. That is why only
the layer_ref and comparam_ref fields are currently implemented.

Since the creation of the OdxFolder is time consuming, the ability to store and load
data to a json folder is implemented.

The library is not yet ready for the public release; even tho the bare bones are
working, the final application should also provide API calls that provide a more user-
friendly way of interaction. Examples could be as follows; list all the possible diagnostic
communications, or automatically parse provided data.

The current implementation provides only essentials that can be used as a building
block when implementing more complex features.

26

Chapter 5
Evaluation

This chapter provides example usage of the libraries presented as well as conditions
under which they were tested.

5.1 Testing the functionality of the libraries
Essential testing of the tokio-socketcan-isotp library was carried out using an echo
server similar to the application in the tokio-isotp-echo [51] repository. Testing using
the echo server was performed on both the CAN and Virtual CAN interfaces. The
bus monitoring and responses were provide trough can-utils [22] applications, primarily
candump, isotpsend and isotprecv.

Most of the real-world tests were carried out on the Bosch 3Q0919283 parking ECU.
Communication was also successfully tested on the TSI 1.5 motor control unit.

The functionality of the uds-rs library was tested on the same ECUs. In addition to
the communication testing, the test modules are added primarily to confirm the correct
deserialization from method arguments to packets and serialization from packets to the
return types of these methods.

All communication tests were performed on the machine running the Linux kernel
6.6.5.

The odx-parser library is tested both on artificial data and the provided real-world
ODX database. Artificial data are more directed towards checking the correctness of
the individual ODX tree structures and their correct deserialization. The real-world
data were used more to test the correct integration of the individual structures.

The artificial data can be found in test modules and in separate files in the odx-
files folder. The real-world data are under NDA and therefore they are not published
together with this work.

5.2 Creating sample application
To demonstrate the functionality of libraries. I created two simple programs. One for
the UDS and the other for the ODX.

5.2.1 Basic CLI UDS application

To show the basic functionality and usage of the uds-rs library, I created a very basic
application with command line interface (CLI). The application can be found in the
diag-cli folder of the included application. The CLI of the application was created using
clap [52] library.

The application provides four UDS services through its interface, ReadDTC,
ClearDTC, ReadDataByIdentifier, and ECUReset. The user interface supports the

27

5. Evaluation .

Figure 5.1. ./diag-cli --help

Figure 5.2. ./diag-cli read-data-by-identifier --help

option --help to list all the possible commnads. Result of that listing is in the
Figure 5.1.

We can also get more information about specific commands by calling:
./diag-cli read-data-by-identifier --help.
The result of that call is in the Figure 5.2
The presented interfrace can be used to, for example, extract the name of the ECU

connected using following command:
./diag-cli -s 0x74 -d 0x7A can0 read-data-by-identifier --did 0xf197
CAN IDs are fictional, but DID 0xf197 is defined by the UDS standard and can be

used to retrieve the name of the ECU. This DID is called systemNameOrEngineType-

28

. 5.2 Creating sample application

Figure 5.3. ./diag-cli -s 0x74 -d 0x7A can0 read-data-by-identifier --did 0xf197

DataIdentifier and can be found in Table C.1 in [2]. After executing the program with
the Bosch parking ECU connected, we get the message show in the figure 5.3

From the listing, we can see that the message was properly parsed and contains the
requested data. If we translated the data received into ASCII characters, we would get:
“PDC 4 Kanal ”.

Since calling of the service is quite verbose, the diag-cli contains Makefile, where all
the variables, like can interface, can be predefined.

5.2.2 Interpreting ECU response using an odx-parser

The second example application is aimed more as a proof of concept than a real world
application. But it can give the reader an idea of how this library could be built to
provide more advanced operations on the ODX files.

The application consists of the example_parse_input_data.rs source code file
located in odx-parser/examples/ and two ODX files, located in odx-parser/odx-
files/example-odx-folder. The ODX files are purely fictional, not representing any
real-world vehicle, only providing the bare minimum for us to demonstrate the func-
tionality of the library. The root ODX file is ecu.odx where the ECU named BLOB is
located.

29

5. Evaluation .
The BLOB provides a single diagnostic service ReadMesurementData, which is a

simplified modification of the ReadDataByIdentifier service. This service can return
data for two DIDs: 0x100 and 0x200. The DID 0x100 provides the temperature in
Celsius, and the DID 0x200 provides the voltage in miliVolts.

Units are stored in a separate file data_library.odx. This library symbolizes the
shared ECU data module of the ODX and serves primarily as a demonstration, how
the odx-parser handles references to different files, than root file.

The program assumes that some communication already took place and starts with
the ecu_response variable, which represents ReadDataByIdentifierResponse, identical
to the one previously mentioned CLI application could return.

The following bullet points depict the code behavior:

1. Deserialize the ecu.odx file and go through the files in the folder, record what the ID
of the DIAGNOSTIC-LAYER stored in those files is for potential future references.

2. Go through the positive responses of the BLOB ECU and find the one that matches
0x62 – the SID of the ReadDatabyIdentifier response.

3. Translate the DID into the Structure element, which describes how the data are
structured. The translation takes Table referenced by the positive response, trans-
lates the DID into Key, which can then select the corresponding Table row where the
Structure is referenced.

4. Take Data Object Property (DOP) referenced by the Structure and use Computation
category, nominators and denominators to compute the real value of the received
Data.

5. Take Unit referenced by the DOP, identify to which file the reference points, and
deserialize the file. Resolve the reference and take the Unit representation.

6. Display the computed value with the unit.

Using the described code, the data on the following code snippet:

1 ReadDataByIdentifierResponse {
2 data_records: vec![
3 DataRecord {
4 data_identifier: 0x100,
5 data: vec![0x91],
6 }
7],
8 };

Can be translated into the value 22.5°C. If we changed the data_identifier to be
0x200, the second DID supported by the ECU, the result of the process would be
1450mV.

Despite the fact that the described ODX files are quite trivial, the code of this
example is quite long and can be hard to follow. Proving that this would not be
sufficient approach of the final application, however, this example can give us a good
notion of how the more advanced features of the odx-parser could be implemented.

30

Chapter 6
Conclusion

As a result of this thesis, three software libraries were created:

. tokio-socketcan-isotp library that provides asynchronous ISO-TP communication.. uds-rs library implementing some UDS services also asynchronously.. odx-parser library capable of parsing ODX files and providing some interactions with
the ODX database.

The first two are already available to the public as open-source projects12, while the
odx-parser library is in the working state with some missing features.

Also provided are simple applications showing the functionality of the implemented
libraries and examples of usage.

The goal of this project, the creation of the full graphical diagnostic application, was
not achieved, and only the command-line version is available. Even such an applica-
tion already simplifies some tasks in various development projects. The implemented
libraries should greatly simplify the process of creating the final diagnostic application.

6.1 Future work
In the future work, I will improve the odx-parser to be complete enough to be published
along the other two libraries as an open-sourse project. The other two libraries, although
published, can still be improved upon. The tokio-socketcan-isotp could provide other
APIs as discussed in 3.2. There are also additional services that could be implemented
for the uds-rs library.

1 https://crates.io/crates/tokio-socketcan-isotp
2 https://crates.io/crates/uds-rs

31

References

[1] Jan Vojnar. Simulator of TSI 1.5 combustion engine. Accesssed: Jan. 7, 2024
|Online|.
https://dspace.cvut.cz/bitstream/handle/10467/111218/F3-DP-2023-
Vojnar-Jan-diploma_thesis_vojnar_jan.pdf?sequence=-1&isAllowed=y.

[2] ISO. 14229-1:2013 Road vehicles — Unified diagnostic services (UDS) — Part
1: Specifiaction and requirements. International Organization for Standardization.
2013.
https://www.iso.org/standard/55283.html.

[3] Volkswagen Group. VW 80124 issue 2010-06, Unified Diagnostic Services Proto-
col, Application Layer & Implementation. Standards Department of a Volkswagen
Group.

[4] ISO. 15765-2:2016 Road vehicles — Diagnostic communication over Controller
Area Network (DoCAN) — Part 2: Transport protocol and network layer services.
International Organization for Standardization. 2016.
https://www.iso.org/standard/66574.html.

[5] CAN Specification. Bosch. Robert Bosch GmbH, Postfach. Accesssed: Jan. 4, 2024
|Online|, 50 15.

[6] CAN Bus Explained - A Simple Intro [2023. CAN in Automation. Accesssed: Jan.
4, 2024 |Online|.
https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial.

[7] William Bugden, and Ayman Alahmar. Rust: The Programming Language for
Safety and Performance 2022. Accesssed: Jan. 4, 2024 |Online|.
https://arxiv.org/abs/2206.05503.

[8] The Rust Project Developers. The Rust Programming Language. Accesssed: Jan.
4, 2024 |Online|.
https://doc.rust-lang.org/1.67.1/book/.

[9] RAII . Accesssed: Jan. 4, 2024 |Online|.
https://en.cppreference.com/w/cpp/language/raii.

[10] Eric Lippert. Asynchronous Programming - Easier Asynchronous Programming
with the New Visual Studio Async CTP. Accesssed: Jan. 4, 2024 |Online|.
https://learn.microsoft.com/en-us/archive/msdn-magazine/2011/octo
ber/asynchronous-programming-easier-asynchronous-programming-with-
the-new-visual-studio-async-ctp.

[11] The Rust Release Team. Announcing Rust 1.39.0. Accesssed: Jan. 4, 2024 |On-
line|.
https://blog.rust-lang.org/2019/11/07/Rust-1.39.0.html.

[12] Niko Matsakis. Async-await on stable Rust! Accesssed: Jan. 4, 2024 |Online|.
https://blog.rust-lang.org/2019/11/07/Async-await-stable.html.

32

https://dspace.cvut.cz/bitstream/handle/10467/111218/F3-DP-2023-Vojnar-Jan-diploma_thesis_vojnar_jan.pdf?sequence=-1&isAllowed=y
https://dspace.cvut.cz/bitstream/handle/10467/111218/F3-DP-2023-Vojnar-Jan-diploma_thesis_vojnar_jan.pdf?sequence=-1&isAllowed=y
https://www.iso.org/standard/55283.html
https://www.iso.org/standard/66574.html
https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
https://arxiv.org/abs/2206.05503
https://doc.rust-lang.org/1.67.1/book/
https://en.cppreference.com/w/cpp/language/raii
https://learn.microsoft.com/en-us/archive/msdn-magazine/2011/october/asynchronous-programming-easier-asynchronous-programming-with-the-new-visual-studio-async-ctp
https://learn.microsoft.com/en-us/archive/msdn-magazine/2011/october/asynchronous-programming-easier-asynchronous-programming-with-the-new-visual-studio-async-ctp
https://learn.microsoft.com/en-us/archive/msdn-magazine/2011/october/asynchronous-programming-easier-asynchronous-programming-with-the-new-visual-studio-async-ctp
https://blog.rust-lang.org/2019/11/07/Rust-1.39.0.html
https://blog.rust-lang.org/2019/11/07/Async-await-stable.html

. .
[13] Asynchronous Programming in Rust – The Async Ecosystem. Accesssed: Jan. 4,

2024 |Online|.
https://rust-lang.github.io/async-book/08_ecosystem/00_chapter.html.

[14] Tokio. Asynchronous runtime for the Rust programming language. Accesssed: Jan.
4, 2024 |Online|.
https://tokio.rs/.

[15] async-std. Asynchronous runtime for the Rust programming language. Accesssed:
Jan. 4, 2024 |Online|.
https://async.rs/.

[16] smol-rs. A small and fast async runtime. Accesssed: Jan. 4, 2024 |Online|.
https://github.com/smol-rs/smol.

[17] yoshuawuyts. Asynchronous runtime for the Rust programming language.
Accesssed: Jan. 4, 2024 |Online|.
https://github.com/async-rs/async-std/issues/992#issuecomment-
1035223559.

[18] Documentation on Mio. Accesssed: Jan. 4, 2024 |Online|.
https://tokio-rs.github.io/mio/doc/mio/.

[19] Dietmar Natterer, Thomas Strobele, and Franz Krauss. ODX process from the
perspective of an automotive supplier 2014. In: Accesssed: Jan. 4, 2024 |Online|.
https://api.semanticscholar.org/CorpusID:6612764.

[20] SocketCAN - Controller Area Network. The Linkx Kernel. Accesssed: Jan. 4, 2024
|Online|.
https://www.kernel.org/doc/html/latest/networking/can.html.

[21] Oliver Hartkopp. can-isotp. Accesssed: Jan. 4, 2024 |Online|.
https://github.com/hartkopp/can-isotp.

[22] Oliver Hartkopp, and Marc Kleine-Budde. SocketCAN userspace utilities and tools.
Accesssed: Jan. 4, 2024 |Online|.
https://github.com/linux-can/can-utils.

[23] Marcel Buesing. Marcelbuesing/Socketcan-ISOTP: ISO-TP Socketcan Library for
rust. Accesssed: Jan. 4, 2024 |Online|.
https://github.com/marcelbuesing/socketcan-isotp.

[24] Terry Kerr. Oefd/Tokio-socketcan: Asynchronous linux SOCKETCAN sockets with
Tokio. Accesssed: Jan. 4, 2024 |Online|.
https://github.com/oefd/tokio-socketcan.

[25] Socketcan-Rs. Socketcan-Rs/SOCKETCAN-Rs: Linux socketcan access in rust.
Accesssed: Jan. 4, 2024 |Online|.
https://github.com/socketcan-rs/socketcan-rs.

[26] Pier-Yves Lessard. python-udsoncan. Accesssed: Jan. 4, 2024 |Online|.
https://github.com/pylessard/python-udsoncan.

[27] Vector Products from A to Z . Vector Group. Accesssed: Jan. 7, 2024 |Online|.
https://www.vector.com/int/en/products/products-a-z/.

[28] Ashcon Mohseninia. Rnd-ash/openvehiclediag: A rust based cross-platform ECU
diagnostics and car hacking application, utilizing the passthru Protocol. Accesssed:
Jan. 4, 2024 |Online|.
https://github.com/rnd-ash/OpenVehicleDiag.

33

https://rust-lang.github.io/async-book/08_ecosystem/00_chapter.html
https://tokio.rs/
https://async.rs/
https://github.com/smol-rs/smol
https://github.com/async-rs/async-std/issues/992#issuecomment-1035223559
https://github.com/async-rs/async-std/issues/992#issuecomment-1035223559
https://tokio-rs.github.io/mio/doc/mio/
https://api.semanticscholar.org/CorpusID:6612764
https://www.kernel.org/doc/html/latest/networking/can.html
https://github.com/hartkopp/can-isotp
https://github.com/linux-can/can-utils
https://github.com/marcelbuesing/socketcan-isotp
https://github.com/oefd/tokio-socketcan
https://github.com/socketcan-rs/socketcan-rs
https://github.com/pylessard/python-udsoncan
https://www.vector.com/int/en/products/products-a-z/
https://github.com/rnd-ash/OpenVehicleDiag

References .
[29] Ashcon Mohseninia. year=Accesssed: Jan. 9, 2024 |Online|,Rnd-ash/ecu_diag-

nostics: A rust crate for ECU diagnostic protocols (UDS / KWP). Accesssed:
Jan. 4, 2024 |Online|.
https://github.com/rnd-ash/ecu_diagnostics.

[30] odxtools – set of utilities for working with the ODX standard. Mercedes-Benz.
Accesssed: Jan. 4, 2024 |Online|.
https://github.com/mercedes-benz/odxtools.

[31] Trait futures::stream::stream. CAN in Automation. Accesssed: Jan. 9, 2024 |On-
line|.
https://docs.rs/futures/0.3.30/futures/stream/trait.Stream.html.

[32] Trait futures::sink::Sink. CAN in Automation. Accesssed: Jan. 9, 2024 |Online|.
https://docs.rs/futures/latest/futures/sink/trait.Sink.html.

[33] Tokio. Trait tokio::io::asyncread. Accesssed: Jan. 9, 2024 |Online|.
https://docs.rs/tokio/latest/tokio/io/trait.AsyncRead.html.

[34] Tokio. Trait tokio::io::asyncwrite. Accesssed: Jan. 9, 2024 |Online|.
https://docs.rs/tokio/latest/tokio/io/trait.AsyncWrite.html.

[35] Tokio - bridging with sync code. Accesssed: Jan. 4, 2024 |Online|.
https://tokio.rs/tokio/topics/bridging.

[36] ASAM MCD-2D (ODX) Version 2.0.1. Association for Standardization of Au-
tomation and Measuring Systems. 2005.
https://www.asam.net/standards/detail/mcd-2-d/.

[37] Jakub Jíra. A asynchronous tokio ISO-TP library build on top of socketcan-isotp.
Accesssed: Jan. 9, 2024 |Online|.
https://crates.io/crates/tokio-socketcan-isotp.

[38] Tokio. Rust docs for tokio::io::unix::AsyncFd. Accesssed: Jan. 4, 2024 |Online|.
https://docs.rs/tokio/latest/tokio/io/unix/struct.AsyncFd.html.

[39] How to corectly poll_write after WouldBlock. Accesssed: Jan. 4, 2024 |Online|.
https://github.com/tokio-rs/tokio/discussions/5387.

[40] can: isotp: fix poll() to not report false EPOLLOUT events. Accesssed: Jan. 4,
2024 |Online|.
https://lore.kernel.org/all/20230331125511.372783-1-michal.sojka@cv
ut.cz/.

[41] can: isotp: epoll breaks isotp_sendmsg. Accesssed: Jan. 4, 2024 |Online|.
https://lore.kernel.org/all/11328958-453f-447f-9af8-3b5824dfb041@mu
nic.io/.

[42] Tyler Mandry onbehalfof The Async WorkingGroup. Announcing ‘async fn‘ and
return-position ‘impl Trait‘ in traits. Accesssed: Jan. 5, 2024 |Online|.
https://blog.rust-lang.org/2023/12/21/async-fn-rpit-in-traits.html.

[43] Ri Xu. XSD (XML Schema Definition) parser and Go/C/Java/Rust/TypeScript
code generator . Accesssed: Jan. 4, 2024 |Online|.
https://github.com/xuri/xgen.

[44] Ingvar Stepanyan. xml-rs based deserializer for Serde. Accesssed: Jan. 4, 2024
|Online|.
https://docs.rs/serde-xml-rs/latest/serde_xml_rs/.

[45] Johann Tuffe. Rust high performance xml reader and writer . Accesssed: Jan. 4,
2024 |Online|.
https://docs.rs/quick-xml/latest/quick_xml/.

34

https://github.com/rnd-ash/ecu_diagnostics
https://github.com/mercedes-benz/odxtools
https://docs.rs/futures/0.3.30/futures/stream/trait.Stream.html
https://docs.rs/futures/latest/futures/sink/trait.Sink.html
https://docs.rs/tokio/latest/tokio/io/trait.AsyncRead.html
https://docs.rs/tokio/latest/tokio/io/trait.AsyncWrite.html
https://tokio.rs/tokio/topics/bridging
https://www.asam.net/standards/detail/mcd-2-d/
https://crates.io/crates/tokio-socketcan-isotp
https://docs.rs/tokio/latest/tokio/io/unix/struct.AsyncFd.html
https://github.com/tokio-rs/tokio/discussions/5387
https://lore.kernel.org/all/20230331125511.372783-1-michal.sojka@cvut.cz/
https://lore.kernel.org/all/20230331125511.372783-1-michal.sojka@cvut.cz/
https://lore.kernel.org/all/11328958-453f-447f-9af8-3b5824dfb041@munic.io/
https://lore.kernel.org/all/11328958-453f-447f-9af8-3b5824dfb041@munic.io/
https://blog.rust-lang.org/2023/12/21/async-fn-rpit-in-traits.html
https://github.com/xuri/xgen
https://docs.rs/serde-xml-rs/latest/serde_xml_rs/
https://docs.rs/quick-xml/latest/quick_xml/

. .
[46] Module quick_xml::de – Sequences (xs:all and xs:sequence XML Schema types).

Accesssed: Jan. 9, 2024 |Online|.
https://docs.rs/quick-xml/latest/quick_xml/de/#sequences-xsall-and-
xssequence-xml-schema-types.

[47] Serde issue #1905 – Allow to flatten sequences/tuples. Accesssed: Jan. 4, 2024
|Online|.
https://github.com/serde-rs/serde/issues/1905.

[48] quick-xml issue #326 – Using flatten and rename=”$value” on adjacent fields
causes error . Accesssed: Jan. 4, 2024 |Online|.
https://github.com/tafia/quick-xml/issues/326.

[49] quick-xml issue #257 – Help deserialize mixed tags and string in body $value (html
text formatting). Accesssed: Jan. 4, 2024 |Online|.
https://github.com/tafia/quick-xml/issues/257.

[50] Rust – Struct std::sync::Arc. Accesssed: Jan. 4, 2024 |Online|.
https://doc.rust-lang.org/std/sync/struct.Arc.html.

[51] Jakub Jíra. Basic echo server built with tokio-socketcan-isotp. Accesssed: Jan. 4,
2024 |Online|.
https://github.com/japawBlob/tokio-isotp-echo.

[52] Command Line Argument Parser for Rust. clap-rs. Accesssed: Jan. 7, 2024 |On-
line|.
https://docs.rs/clap/latest/clap/.

35

https://docs.rs/quick-xml/latest/quick_xml/de/#sequences-xsall-and-xssequence-xml-schema-types
https://docs.rs/quick-xml/latest/quick_xml/de/#sequences-xsall-and-xssequence-xml-schema-types
https://github.com/serde-rs/serde/issues/1905
https://github.com/tafia/quick-xml/issues/326
https://github.com/tafia/quick-xml/issues/257
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://github.com/japawBlob/tokio-isotp-echo
https://docs.rs/clap/latest/clap/

Appendix A
Abbreviations

API . Application Programming Interface
ASAM . Association for Standarsidation of Automation and Measuring Systems
ASCII . American Standard Code for Information Interchange
CAN . Controller Area Network
CLI . Command line interface
DID . Data Identifier
DTC . Diagnostic Trouble Code
ECU . Electronic Control Unit
ISO . International Organization for Standardization
ISO-TP . Transport Layer ISO 15765-2
LIN . Local Interconnect Network
LSB . Least significant byte
MSB . Most significant byte
NDA . Non-disclosure agreement
NRC . Negative Response Code
ODX . Open Diagnostic data eXchange
PDX . Packaged ODX
RAII . Resource acquisition is initialization
SID . Service Identifier
UDS . Unified Diagnostic Services
UML . Unified modeling language
W3C . World Wide Web Consortium
XML . eXtensible Markup Language

37

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Background
	Communication protocols
	UDS
	ISO-TP
	CAN

	Used programming technologies
	Rust
	Async/Await
	Asynchronous runtime

	ODX
	Current drivers and implementations
	Linux driver
	socketcan-isotp
	tokio-socketcan
	python-udsoncan

	Custom vehicle diagnostic tools
	OpenVehicleDiag
	odxtools

	Design
	Overview
	Async Rust ISO-TP library
	Async Rust UDS library
	ODX Parser library
	Application design

	Implementation
	tokio-socketcan-isotp
	uds-rs
	odx-parser
	Deserialization
	Resolving ODX references

	Evaluation
	Testing the functionality of the libraries
	Creating sample application
	Basic CLI UDS application
	Interpreting ECU response using an odx-parser

	Conclusion
	Future work

	References
	Abbreviations
	e7ab5aa6-866f-4e26-864b-2e003fd0259f.pdf
	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Background
	Communication protocols
	UDS
	ISO-TP
	CAN

	Used programming technologies
	Rust
	Async/Await
	Asynchronous runtime

	ODX
	Current drivers and implementations
	Linux driver
	socketcan-isotp
	tokio-socketcan
	python-udsoncan

	Custom vehicle diagnostic tools
	OpenVehicleDiag
	odxtools

	Design
	Overview
	Async Rust ISO-TP library
	Async Rust UDS library
	ODX Parser library
	Application design

	Implementation
	tokio-socketcan-isotp
	uds-rs
	odx-parser
	Deserialization
	Resolving ODX references

	Evaluation
	Testing the functionality of the libraries
	Creating sample application
	Basic CLI UDS application
	Interpreting ECU response using an odx-parser

	Conclusion
	Future work

	References
	Abbreviations

