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Abstrakt / Abstract

Přesná detekce objektů v LiDAR
datech je klíčovým předpokladem pro
robustní a bezpečné autonomní řízení
a také robotické aplikace. Trénování
3D detektorů objektů v současnosti
vyžaduje manuální anotaci velkého
množství trénovacích dat, což je velmi
časově náročné a nákladné. V důsledku
toho je množství dostupných anotova-
ných trénovacích dat omezené a navíc
tyto anotované datové sady pravdě-
podobně neobsahují vzácné případy,
jednoduše proto, že pravděpodobnost
jejich výskytu v tak malé datové sadě
je nízká.

V této práci navrhujeme metodu pro
trénování 3D detektoru objektů bez
potřeby lidských anotací, a to využitím
existujících vizuálních komponent a
konzistence světa kolem nás. Metoda
proto může být použita pro trénování
3D detektoru pouze pomocí sběru dat
ze senzorů v reálném světě, což je ex-
trémně levné a umožňuje trénování
s řádově více daty než tradiční plně
supervizované metody.

Metoda byla evaluována jak na vali-
dačních, tak testovacích datech KITTI,
kde překonává všechny předchozí slabě
supervizované metody a zmenšuje roz-
díl přesnosti s metodami využívajících
lidské 3D anotace.

Klíčová slova: slabě, supervizované,
trénování, 3D, objekt, detekce, KITTI,
konzistence

Accurate object detection in LiDAR
point clouds is a key prerequisite of
robust and safe autonomous driving
and robotics applications. Training the
3D object detectors currently involves
the need to manually annotate vasts
amounts of training data, which is very
time-consuming and costly. As a result,
the amount of annotated training data
readily available is limited, and more-
over these annotated datasets likely do
not contain edge-case or otherwise rare
instances, simply because the probabil-
ity of them occurring in such a small
dataset is low.

In this thesis, we propose a method
to train 3D object detector without any
need for manual annotations, by exploit-
ing existing off-the-shelf vision compo-
nents and by using the consistency of
the world around us. The method can
therefore be used to train a 3D detector
by only collecting sensor recordings in
the real world, which is extremely cheap
and allows training using orders of mag-
nitude more data than traditional fully-
supervised methods.

The method is evaluated on the both
KITTI validation and test datasets,
where it outperforms all previous
weakly-supervised methods and where
it narrows the gap when compared to
methods using human 3D labels.

Keywords: weakly, supervised, train-
ing, 3D, object, detection, KITTI, tem-
poral, consistency

vi



Contents /

1 Introduction 1

2 Related work 4
2.1 Datasets . . . . . . . . . . . . . . 4

2.1.1 KITTI . . . . . . . . . . . . 4
2.1.2 NuScenes . . . . . . . . . . . 5
2.1.3 Waymo Open . . . . . . . . . 6

2.2 Fully supervised 3D detectors . . 6
2.2.1 PointNet . . . . . . . . . . . 7
2.2.2 VoxelNet . . . . . . . . . . . 8
2.2.3 PointPillars . . . . . . . . . . 8
2.2.4 PV-RCNN . . . . . . . . . . 9
2.2.5 Voxel-RCNN . . . . . . . . 10
2.2.6 CasA . . . . . . . . . . . . 11

2.3 Weakly supervised 3D de-
tectors . . . . . . . . . . . . . . 11

2.3.1 VS3D . . . . . . . . . . . . 11
2.3.2 Zakharov et al. . . . . . . . 12
2.3.3 McCraith et al. . . . . . . . 13
2.3.4 FGR . . . . . . . . . . . . 14
2.3.5 WS3Dv2 . . . . . . . . . . 15
2.3.6 MAP-gen . . . . . . . . . . 16
2.3.7 M-trans . . . . . . . . . . . 16

3 Foreground segmentation 18
3.1 Instance segmentation . . . . . 18
3.2 Point extraction . . . . . . . . 21
3.3 Postprocessing . . . . . . . . . 22

4 Temporal consistency 24
4.1 Ambiguity challenge . . . . . . 24
4.2 Frame-to-frame transfor-

mations . . . . . . . . . . . . . 25
4.3 Car tracking . . . . . . . . . . 25
4.4 Standing cars . . . . . . . . . . 27
4.5 Moving cars . . . . . . . . . . . 30
4.6 Iterative closest point re-

finement . . . . . . . . . . . . . 31
5 Rigid shape model fitting 34

5.1 Meshes . . . . . . . . . . . . . 34
5.2 Raycasting on meshes . . . . . 35
5.3 Fitting of standing cars . . . . 36
5.4 Fitting of the moving cars . . . 40
5.5 Raycasted templates in the

fitting . . . . . . . . . . . . . . 42
5.6 Loss functions . . . . . . . . . 43

5.6.1 Chamfer Distance Loss . . 43

5.6.2 Median Chamfer Dis-
tance Loss . . . . . . . . . 43

5.6.3 Template Fitting Loss . . . 44
5.6.4 Occlusion Loss . . . . . . . 46

5.7 Histogram Yaw Estimation . . 47
6 Scale Detector 50

6.1 Point aggregation . . . . . . . . 50
6.2 Fitting process in Scale De-

tector . . . . . . . . . . . . . . 51
6.3 Bounding box reducer . . . . . 53

7 Voxel-RCNN adaptation 55
7.1 Voxel-RCNN with pseudo

ground truth labels . . . . . . . 55
7.2 Voxel-RCNN outputs . . . . . . 55
7.3 Differentiable Template

Fitting Loss . . . . . . . . . . . 56
7.4 Mask Appearence Loss . . . . . 57
7.5 Data Augmentation . . . . . . 59
7.6 Training Process . . . . . . . . 60

8 Experiments 62
8.1 Evaluation methods . . . . . . 62
8.2 Implementation and hard-

ware used . . . . . . . . . . . . 63
8.3 Various 2D detection back-

bones . . . . . . . . . . . . . . 64
8.4 Fitting threshold . . . . . . . . 65
8.5 Histogram Yaw Estimation . . 65
8.6 Occlusion loss . . . . . . . . . . 66
8.7 Fine fitting . . . . . . . . . . . 67
8.8 Downsampling . . . . . . . . . 67
8.9 Scale Detector . . . . . . . . . 68
8.10 Number of frames . . . . . . . 69
8.11 Iterative Closest Points . . . . 71
8.12 Loss Function Comparison . . . 72
8.13 Steepness parameter in Dif-

ferentiable Template Fit-
ting Loss . . . . . . . . . . . . 73

8.14 Losses in the training loop . . . 73
9 Evaluation 75

9.1 Comparison with the State-
of-the-art . . . . . . . . . . . . 75

9.2 Qualitative comparison to
human annotations . . . . . . . 77

10 Conclusion 79

References 80

vii



Tables / Figures

3.1 RegNetY evaluation . . . . . . . . . . . . 18
8.1 Evaluation of pseudo ground

truth labels with different 2D
backbone . . . . . . . . . . . . . . . . . . . . . . . 64

8.2 Evaluation of pseudo ground
truth labels with different
fitting threshold . . . . . . . . . . . . . . . . 65

8.3 Evaluation of 3D detector
trained with different fitting
threshold. . . . . . . . . . . . . . . . . . . . . . . . 65

8.4 Evaluation of pseudo ground
truth labels with Histogram
Yaw Estimation . . . . . . . . . . . . . . . . 66

8.5 Evaluation of pseudo ground
truth labels with occlusion
loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.6 Evaluation of pseudo ground
truth labels with or without
fine fitting . . . . . . . . . . . . . . . . . . . . . . 67

8.7 Evaluation of pseudo ground
truth labels with different
downsampling method . . . . . . . . . 67

8.8 Evaluation of pseudo ground
truth labels with various set-
tings of the Scale Detector. . . . . 68

8.9 Evaluation of 3D detector
trained with various settings
of the Scale Detector . . . . . . . . . . . 68

8.10 Evaluation of pseudo ground
truth labels with different
number of frames. . . . . . . . . . . . . . . 70

8.11 Evaluation of 3D detector
trained with different number
of frames . . . . . . . . . . . . . . . . . . . . . . . . 70

8.12 Evaluation of pseudo ground
truth labels with or without
ICP employed . . . . . . . . . . . . . . . . . . 71

8.13 Evaluation of 3D detector
trained with or without ICP
employed . . . . . . . . . . . . . . . . . . . . . . . 71

8.14 Evaluation of pseudo ground
truth labels using various fit-
ting losses. . . . . . . . . . . . . . . . . . . . . . . 72

8.15 Evaluation of 3D detector
trained with various losses . . . . . 73

1.1 3D detection showcase . . . . . . . . . . .1
1.2 Introduction image . . . . . . . . . . . . . . .2
2.1 KITTI dataset setup . . . . . . . . . . . . .4
2.2 NuScenes setup. . . . . . . . . . . . . . . . . . .5
2.3 Waymo Open setup . . . . . . . . . . . . . .6
2.4 PointNet pipeline . . . . . . . . . . . . . . . .7
2.5 VoxelNet pipeline . . . . . . . . . . . . . . . .8
2.6 PointPillars pipeline . . . . . . . . . . . . .9
2.7 PV-RCNN pipeline. . . . . . . . . . . . . . .9
2.8 Voxel-RCNN pipeline . . . . . . . . . . 10
2.9 CasA pipeline . . . . . . . . . . . . . . . . . . 11

2.10 VS3D pipeline . . . . . . . . . . . . . . . . . . 12
2.11 Zakharov et al. pipeline . . . . . . . 13
2.12 McCraith et al. pipeline . . . . . . . 13
2.13 FGR pipeline . . . . . . . . . . . . . . . . . . . 14
2.14 WS3Dv2 pipeline. . . . . . . . . . . . . . . 15
2.15 MAP-gen pipeline . . . . . . . . . . . . . . 16
2.16 M-trans pipeline. . . . . . . . . . . . . . . . 17

3.1 Detectron2 instance segmen-
tation example . . . . . . . . . . . . . . . . . 19

3.2 Class ambiguity . . . . . . . . . . . . . . . . 20
3.3 Labeling ambiguity. . . . . . . . . . . . . 20
3.4 Foreground segmentation ex-

ample . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Filtering of the foreground

segmentation . . . . . . . . . . . . . . . . . . . 23
3.6 Example of failed segmenta-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1 Fitting ambiguity . . . . . . . . . . . . . . 24
4.2 Point aggregation for stand-

ing cars . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Downsampling of the seg-

mented cars. . . . . . . . . . . . . . . . . . . . . 29
4.4 Wrong standing car classifi-

cation . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 Tracking of the moving cars . . . 30
4.6 Pointcloud time difference . . . . . 32
4.7 ICP example . . . . . . . . . . . . . . . . . . . 32
4.8 ICP fail example . . . . . . . . . . . . . . . 33
5.1 Fiat uno mesh and point cloud . 35
5.2 Volkswagen Passat mesh and

point cloud . . . . . . . . . . . . . . . . . . . . . 35
5.3 Raycasting on mesh . . . . . . . . . . . . 36
5.4 Fine fitting failed recovery . . . . . 38
5.5 Coarse and fine fitting . . . . . . . . . 39
5.6 Standing cars fitting . . . . . . . . . . . 39

viii



8.16 Evaluation of pseudo ground
truth labels with different
steepness parameter 𝜎 . . . . . . . . . 73

8.17 Evaluation of 3D detector
trained with added losses . . . . . . 74

9.1 Qualitative comparison to
human annotations. . . . . . . . . . . . . 75

9.2 Comparison with other
weakly-supervised methods
on test set . . . . . . . . . . . . . . . . . . . . . . 76

5.7 Standing cars fitting prob-
lematic examples . . . . . . . . . . . . . . . 40

5.8 Moving cars fitting examples . . 41
5.9 Moving cars fitting problem-

atic examples . . . . . . . . . . . . . . . . . . . 42
5.10 Fitting with raycasted tem-

plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.11 Template fitting loss . . . . . . . . . . . 45
5.12 Occlusion voxel grid. . . . . . . . . . . . 47
5.13 Segmented aggregated point

cloud example for histogram
yaw estimation . . . . . . . . . . . . . . . . . 48

5.14 Histogram example. . . . . . . . . . . . . 48
5.15 Histogram yaw estimation fail . 49

6.1 Scale Detector motivation . . . . . 50
6.2 Scale detection point aggre-

gation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3 Scale fitting scene examples . . . 53
6.4 Scale detection with bound-

ing box reducer . . . . . . . . . . . . . . . . . 54
7.1 Voxel-RCNN pipeline . . . . . . . . . . 56
7.2 Differentiable Template fit-

ting loss . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.3 Mask Appearance Loss . . . . . . . . 59
7.4 Fully-supervised pipeline. . . . . . . 60
7.5 Pretraining pipeline . . . . . . . . . . . . 60
7.6 Weakly-supervised pipeline . . . . 61
8.1 Comparison of using the

Scale Detector . . . . . . . . . . . . . . . . . . 69
8.2 Enhancement by additional

losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.1 Failing scenes . . . . . . . . . . . . . . . . . . . 77
9.2 Promising scenes . . . . . . . . . . . . . . . 78

ix





Chapter 1
Introduction

Accurate and swift 3D object detection in LiDAR point clouds is a critical component
of various real-time applications, ranging from robotics to autonomous driving. These
fields have received increasing attention in the last decades due to their potential impact
on everyday life. One of the main limitations that currently hinders the exploitation
of 3D object detectors in real-world scenarios is the scarcity of labelled training data,
owing to the fact that human labelling in 3D is very time-consuming and therefore
costly, as labelling one object instance can take up to 100 seconds [1–2].

a) b)

Figure 1.1. Example of the 3D detection on the raw LiDAR scan (a), 3D ground truth
labels (b). LiDAR scan and ground truth labels come from the KITTI [3] dataset.

While publicly available datasets like KITTI [3], Waymo open [4], or NuScenes [5]
feature hundreds of thousands of annotated scenes, they fall short of capturing the
diversity of possible events or environments.

Various tools can aid human annotators in significantly reducing the time spent per
instance. All off-the-shelf pre-trained fully-supervised 3D detectors can be used as an
estimate of the 3D bounding boxes and then the human must perform only the fine
refinement of the 3D bounding boxes. Additionally, specialized methods focused on
autolabeling, such as WS3Dv2 [6], have demonstrated the ability to reduce the time
spent per instance to 2.6 seconds, though with a tradeoff in accuracy.

On the other hand, vasts amounts of data are readily available, because capturing
and storing sensor data is relatively cheap. As almost all modern cars are connected
to the internet, equipping them with appropriate sensors and sending them to millions
of customers all over the world, enables the possibility to capture very rare events at
almost zero cost. However, the data are just not annotated and therefore useless for
traditional fully-supervised 3D detection methods.

In this Master’s Thesis, we aim to narrow this gap by training a standard 3D object
detector, but without using any human labels in the process, therefore allowing the
detector to be trained using the large quantities of unlabelled data readily available.
Instead, We exploit an off-the-shelf 2D detector for the RGB camera (trained on a
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1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
generic non-related dataset such as MS COCO [7]) and a number of real-world priors
such as multiple generic shapes of cars, temporal consistency between frames or the
fact other objects only move subject to constraints given by the laws of physics between
individual frames to train the detector. The result of our training process is a traditional
3D object detector that operates on LiDAR point clouds; the only yet crucial difference
is the training signal (the training loss) used for the training, which does not rely on
human annotations.

We’ve chosen to apply our method to the KITTI dataset, as it’s the standard in
all related methods, allowing for an easy comparison of our results. Additionally, this
dataset contains all the necessary data for our method.

Figure 1.2. Combining raw unlabelled RGB camera and LiDAR sensor data across multiple
frames in a temporally consistent manner allows the exploitation of a generic off-the-shelf

2D object detector to train a 3D object (vehicle) detector for LiDAR point clouds.

Chapter 2 describes multiple publicly available datasets, focusing on the amount of
data and type of data provided, as well as on the sensor setup. Further, it details
fully-supervised methods for 3D object detection and also all other relevant weakly-
supervised methods for 3D vehicle detection.

Chapter 3 details the use of an off-the-shelf 2D detector for obtaining 2D instance
segmentation masks. The chapter discusses how these masks are used for segmentation
in 3D data, including post-processing steps like outlier removal and spatial location
estimation.

Chapter 4 covers the exploitation of temporal consistency. It includes tracking ve-
hicles over multiple frames, classifying them as standing or moving, and using this
classification for point aggregation or yaw estimation. The frame-to-frame transforma-
tions and fine-tuning with the Iterative Closest Point [8] algorithm are also discussed.

Chapter 5 describes the generic car shape template for the fitting process and the
fitting process for moving and standing cars. It also explores various loss functions for
the fitting process and discusses additional fitting ideas that were less successful.

Chapter 6 focuses on the Scale Detector, which uses information from the fitting
process to estimate car spatial dimensions. The chapter also introduces the Bounding
Box Reducer for refining scale detection outputs as the Scale Detector tends to estimate
inadequately large bounding boxes.

Chapter 7 details how a fully-supervised 3D detector (Voxel-RCNN [9]) is adapted
for weakly-supervised training. It includes discussions on the Voxel-RCNN properties
and the incorporation of information from previous chapters into the training loop,
including two new loss functions added to the training loop.

Chapter 8 provides a range of experiments supporting the decisions made during the
method’s development.

Further, Chapter 9 compares the method with other fully and weakly supervised
methods on the KITTI dataset in both BEV and 3D metrics and illustrates the method’s
performance on real-world scenes from the KITTI dataset.

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lastly, in Chapter 10, the whole thesis is concluded and the results are commented

on.
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Chapter 2
Related work

First, We describe three main publicly available datasets for autonomous driving in
Section 2.1. We focus on the quantity and type of the data, along with the specifics of
the sensor setup. Second, We describe various fully-supervised 3D detectors in Section
2.2, starting with the fundamental ones and progressing to the latest state-of-the-art
detectors. One of them is chosen and used to be trained under weak supervision in
the following chapters. Third, We describe related weakly-supervised methods solving
the same challenge as we do, however with different approaches in Section 2.3. This
thorough exploration establishes the groundwork for the chapters to follow.

2.1 Datasets

2.1.1 KITTI
One of the most renowned open datasets for autonomous driving is the KITTI
dataset [3], captured near Karlsruhe, Germany. The 3D object detection subset
contains 7481 training and 7518 testing frames, featuring a total of 80256 labelled
objects. This subset is fully annotated in both 2D and 3D, labelling various entities
such as cars, vans, trucks, pedestrians, etc. As we leverage the temporal consistency,
we use the KITTI raw dataset [10], which contains sequences of unlabelled data from
which the 3D object detection subset is derived. The KITTI raw dataset consists of a
total of 47885 frames.

a) b)

Figure 2.1. KITTI [3] dataset setup. The figures are taken from [10].

The dataset incorporates four cameras, two RGB and two grayscale, all mounted
on the roof and facing in the forward direction of the ego-vehicle. Additionally, a
rooftop-mounted LiDAR scanner and a precise IMU unit capturing angular velocities,
accelerations, and location via GNSS contribute to the dataset. Detailed sensor cali-
brations are provided, and a visual representation of the setup is presented in Figure
2.1.

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Datasets

All objects are labelled with regards to the RGB camera with index 2. Thus, as
every labelled object has to be visible in the camera, the amount of labelled cars in
the LiDAR scan is low, because the LiDAR scanner captures the whole surroundings
of the ego-vehicle. Every object label contains 8 parameters: type (car, truck, etc.),
truncation, occlusion, alpha (observation angle of an object), 2D bounding box, 3D
dimensions, 3D location, and yaw.

2.1.2 NuScenes

The NuScenes dataset [5] draws inspiration from the KITTI dataset [3], expanding it
with approximately 7 times more object annotations. Collected in Boston (USA) and
Singapore, the dataset exhibits diversity compared to the KITTI dataset, reflecting
distinct road and car appearances on each continent. Comprising 1000 scenes, each
lasting 20 seconds, these scenes are specifically chosen to showcase a diverse set. Labels
for all scenes are provided at a rate of 2 Hz, resulting in around 1.4 million camera
images, 390,000 LiDAR scans, and 1.4 million object bounding boxes across 40,000
keyframes (frames sampled at 2Hz). NuScenes stands out as a significantly larger
dataset compared to the KITTI dataset.

The dataset employs six RGB cameras, strategically positioned to cover the whole
surroundings of the car. A LiDAR scanner is mounted on the roof. Additionally, a
precise IMU unit captures angular velocities, accelerations, and location via GNSS,
which is enhanced by HD lidar maps. The dataset is further equipped with five radars,
strategically placed to cover all angles around the vehicle. Detailed sensor calibrations
are provided, and a visual representation of the setup is presented in Figure 2.2.

Since the cameras cover the whole surroundings, all objects around the ego-vehicle
are labeled in the NuScenes dataset. There are 23 distinct object classes utilized for
labeling, and each label comprises 12 parameters. We omit descriptions for parameters
identical to those in the KITTI labels, NuScenes labels introduce an instance token,
assigning a unique ID to all objects. Additionally, the label of the object provides the
number of lidar points within the 3D bounding box, the number of radar points, and
pointers to the next or previous annotation of the object in time. Notably, NuScenes
labels lack information on the difficulty of the object, truncation, alpha rotation, and,
most significantly, the 2D bounding box when compared to the KITTI dataset.

a) b)

Figure 2.2. (a) NuScenes dataset [5] setup, (b) camera overlap. The figures are taken
from [5].

5



2. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.3 Waymo Open

Waymo Open Dataset is composed of two datasets. The perception [4] and motion [11]
dataset. For our specific task, only the perception dataset is relevant, as it features
precise 3D bounding box labels. Captured across multiple cities in the USA, the dataset
consists of 2030 segments, each lasting 20 seconds and sampled at 10Hz. In total, it
consists of 1.2 million images and LiDAR scans. Thus it has 2x more segments, but a
similar number of images compared to NuScenes [5]. If we focus only on the vehicles,
It provides high-quality labels for objects in 1200 segments, in total 12.6 million 3D
bounding box labels. Similar to NuScenes, precise 3D labels are provided at a rate of
2Hz.

The dataset employs five cameras positioned on the roof of the car, pointing forward
and to the sides, collectively achieving a field of view (FOV) exceeding 180∘. Addi-
tionally, a mid-range LiDAR scanner is mounted on the roof. Four short-range LiDAR
scanners are mounted at the front, front-left, front-right and back of the car. The
dataset also integrates a precise IMU unit, ensuring accurate capture of angular veloc-
ities, accelerations, and location data. Detailed sensor calibrations are provided, and a
visual representation of the setup is illustrated in Figure 2.3.

All objects surrounding the ego-vehicle are labelled, meaning a 3D bounding box
doesn’t necessarily require a 2D bounding box correspondence since the object may not
be visible in any camera. The dataset employs only four object classes: vehicle, pedes-
trian, cyclist, and traffic sign. No label zones are utilized to disregard irrelevant zones
(e.g. the opposite side of the highway). Labels consist of 3D dimensions, 3D locations,
yaws, 2D bounding boxes, and 2D-3D correspondences of the objects. Each object is
assigned a unique ID for tracking purposes. Notably, the dataset labels lack informa-
tion on the difficulty, truncation, and alpha rotation of the object when compared to
the KITTI dataset.

Figure 2.3. Waymo Open dataset [4] setup. The figure is taken from [4].

2.2 Fully supervised 3D detectors
Fully-supervised 3D detector architectures typically fall into two primary streams:
point-based and voxel-based methods. Point-based methods directly utilize the un-
ordered point set (LiDAR scans) as input. This approach retains all information present
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in the original data, as the point set is not transformed or voxelized. On the other hand,
voxel-based methods transform the unordered point set (LiDAR scan) into a voxel grid.
Voxelization involves dividing the 3D space into small, regularly spaced volumetric units
called voxels. This regular data format allows for efficient storage and memory access.
With the precise memory location of each voxel and its neighbours known, 3D convolu-
tions can be applied efficiently. However, it’s important to note that during voxelization,
the precise location of each individual point is lost, as they are aggregated within the
voxel grid.

2.2.1 PointNet

PointNet [12] is a representative example of point-based methods. It introduces a
unified architecture applicable to various tasks such as instance segmentation, object
classification, and more. Pointnet modules are a foundation for many other methods,
e.g. PointNet++ [13] or Voxel-RCNN [9]. A key concept in PointNet is max pooling.
This method effectively learns a set of optimization functions or criteria that identify
and encode the interesting points, along with the reason for their selection. These
encoded points are then utilized in a fully connected layer to predict the desired output,
be it instance segmentation, object detection, or other related tasks.

The detailed pipeline of the PointNet is shown in Figure 2.4. The input to the network
is a point cloud of shape 𝑛 × 3, where 𝑛 denotes the number of points. Points are first
transformed into a unified coordination space, as the network should be invariant to
the rigid transformation of the input. Subsequently, each point undergoes encoding
through an MLP (Multi-Layer Perceptron), transitioning from 𝑛 × 3 to 𝑛 × 64. The
features of these points are then once again transformed through a rigid transformation
and fed into another MLP, producing a final shape of 𝑛 × 1024 from 𝑛 × 64.

Up to this point in the pipeline, features of individual points have been extracted
independently. To capture global features, max pooling is applied, selecting the max-
imum value across all points for each feature channel. These global features are then
fed into another MLP to obtain output scores corresponding to 𝑘 classes.

As can be seen, the whole network is invariant with the ordering of the input points.
While the Segmentation Network’s details haven’t been explicitly described, the fun-
damental idea of PointNet, which forms the basis of subsequent methods, has been
outlined. Despite its simplicity, PointNet proved itself fast and effective.

Figure 2.4. Pipeline of PointNet [12] described in Section 2.2.1. The figure is taken
from [12].
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2.2.2 VoxelNet

PointNet operates on point clouds with approximately 1k points due to limitations in
memory and computation. However, to adequately describe the complex scenes around
autonomous vehicles, a more extensive point cloud is often required. VoxelNet [14]
addresses these limitations, allowing for the use of point clouds with approximately
100k points. While the smaller point clouds used by PointNet are suitable for tasks like
3D object classification or segmentation, a larger number of points becomes essential
for capturing the scene in adequate detail around an autonomous vehicle. VoxelNet
consists of three key blocks: FLN (Feature Learning Network), CML (Convolutional
Middle Layers), and RPN (Region Proposal Network). The pipeline is shown in Figure
2.5.

Within the Feature Learning Network (FLN), a voxel grid is created, and each point
is assigned to a specific voxel. To account for potential variations in point density across
voxels, a random downsampling mechanism is applied, limiting the number of points
within each voxel to a predefined threshold. The points within the voxel are encoded
through multiple stacked Voxel Feature Encoders (VFEs), resulting in the extraction
of voxel-wise features.

A 4D tensor of size 𝐶 × 𝐷′ × 𝐻′ × 𝑊 ′ is created, containing a voxel feature vector of
length 𝐶 per voxel. 𝐷′ denotes z-axis, 𝐻′ denotes y-axis, 𝑊 ′ denotes x-axis of a given
world coordinate space. Subsequently, this 4D tensor is fed into the Convolutional Mid-
dle Layers (CML), mainly composed of 3D convolution layers. These layers aggregate
voxel features via increasing receptive fields of the 3D convolutions.

The aggregated voxel features are then employed in the Region Proposal Network
(RPN) to generate 3D bounding boxes. Proper handling of the sparsity within the 4D
tensor is crucial for maintaining computational efficiency. However, the method runs
at ~4Hz.

Figure 2.5. Pipeline of VoxelNet [14] described in Section 2.2.2. The figure is taken
from [14].

2.2.3 PointPillars
PointPillars [15] key idea is to encode a 3D point set into a Bird’s Eye View (BEV) grid,
allowing the utilization of fast 2D convolutions on modern GPUs. Positioned within the
category of voxel-based methods, PointPillars achieved state-of-the-art performance on
the KITTI object detection benchmark at the time of its release. Notably, it operates
at a remarkable speed of 62 Hz, making it 2-4 times faster than other methods and
highly applicable for real-time applications. The pipeline is shown in Figure 2.6.
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PointPillars consists of three main components: first, the point cloud is encoded into
a pseudo-image (BEV grid); second, features are extracted from the pseudo-image using
a 2D convolutional backbone; third, the detection head regresses 3D bounding boxes.
It is worth noting that a simplified version of PointNet is employed in the initial stage
of the PointPillars method.

Figure 2.6. Pipeline of PointPillars [15] described in Section 2.2.3. The figure is taken
from [15].

2.2.4 PV-RCNN
Point-Voxel RCNN (PV-RCNN) [16] integrates both 3D voxel Convolutional Neural
Network (CNN) and PointNet-based [12] networks, combining the strengths of both
main streams. Upon its release, PV-RCNN set a new standard in performance on the
KITTI [3] and Waymo Open [17] datasets. The pipeline is shown in Figure 2.7.

The PV-RCNN architecture consists of two stages. In the initial stage, a 3D sparse
convolutional network operates on voxelized points, generating voxel-wise features and
3D proposals using a Region Proposal Network (RPN) on stacked features in the Bird’s
Eye View (BEV). As it would be unfeasible to use all points inside the proposal, only
specific keypoints are sampled using Furthest Point Sampling (FPS). The features of
each keypoint are then aggregated from neighbouring voxels across all 3D CNN layers
using the PointNet-based set abstraction. This strategy enables the use of only a few
keypoints for describing the entire scene.

Figure 2.7. Pipeline of PV-RCNN [16] described in Section 2.2.4. The figure is taken
from [16].

Moving to the second stage, the 3D proposal undergoes uniform sampling to obtain
grid points. For each grid point, Region of Interest (RoI) pooling is applied over neigh-
bouring keypoints. RoI grid features are used to get fine-refined 3D bounding boxes
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and confidence scores. This two-stage approach allows the state-of-the-art performance
of PV-RCNN.

2.2.5 Voxel-RCNN

Voxel-RCNN [9] falls into the voxel-based stream, demonstrating that maintaining pre-
cise point locations isn’t necessary. Voxel-RCNN achieves performance comparable
to state-of-the-art methods while operating at an impressive 25 Hz (on Nvidia RTX
2080TI), showcasing significant speed improvements over other methods. The pipeline,
illustrated in Figure 2.8, consists of three key components.

In the first part, the 3D BackBone network takes voxelized points as input and
produces voxel-wise features. These features are stacked along the z-axis, in the second
stage, to create a Bird’s Eye View (BEV) grid. Then, the Region Proposal Network
(RPN) head, utilizing 2D convolutions, generates proposals out of the BEV grid.

As the second part generates proposals equal to the number of anchors (tens of
thousands), only a small subset of proposals is selected for the third stage based on
the Intersection over Union (IoU) with ground truth during training or predicted score
during inference. The third stage uses voxel-wise features from the first stage and a
subset of proposals from the second stage.

Proposals from the second stage are divided into sub-voxels, with each sub-voxel
functioning as a query point. For each query point, neighbouring voxel features are
aggregated, and features are then extracted using a PointNet module. However, as
the number of sub-voxels is big, the computation of the Voxel RoI pooling is computa-
tionally demanding. To address this, Voxel-RCNN introduces an accelerated PointNet
module.

Instead of applying the PointNet module separately to the grouped features for each
query point (sub-voxel), the PointNet module is split into two parts. The first part
operates on voxel-wise features, and the second part focuses on sub-voxel locations.
Those PointNet modules are used to precompute features of all voxel-wise features
(First stage) and sub-voxel locations (Second stage proposals). At query time, these
precomputed features are merged, significantly enhancing computation efficiency.

The features extracted from Voxel RoI pooling are then utilized in the detection head,
which produces finely-refined predictions and scores. Notably, Voxel-RCNN’s output
scores represent predictions of IoU with the ground truth.

Figure 2.8. Pipeline of Voxel-RCNN [9] described in Section 2.2.5. The figure is taken
from [9].
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2.2.6 CasA

Cascade Attention Network (CasA) [18] serves as an adaptation of current two-stage ar-
chitectures like PV-RCNN [16], Voxel-RCNN [9], etc. It adapts the well-known Cascade
networks in 2D to 3D, as the vanilla cascade network directly applied to 3D fails due to
the different properties of images and point clouds, proposing a novel Cascade Atten-
tion Module (CAM). This innovative module enhances performance by approximately
1-2% when integrated into Voxel-RCNN. The pipeline is shown in Figure 2.9.

In the initial step, the point cloud undergoes voxelization and is employed in the
Region Proposal Network (RPN). The RPN starts with 3D convolutions, transforms
the voxel grid to a Bird’s Eye View (BEV) grid, and utilizes 2D convolutions to generate
proposals and corresponding scores. These proposals serve as inputs to the Cascade
Refinement Network (CRN), which consists of multiple Cascade Attention Modules.

Within each stage of the CRN, the input for the Cascade Attention Module is created
by concatenating features from both the previous and current stages. The CRN serves
as a fine refinement of the proposals, contributing to the overall enhancement of the
detection process.

Figure 2.9. Pipeline of CasA [18] described in Section 2.2.6. The figure is taken from [18].

2.3 Weakly supervised 3D detectors
The section starts with weakly supervised methods using no ground truth labels at all
and progresses into state-of-the-art methods, which use a small subset of the ground
truth labels. Current state-of-the-art methods are described and the performance of
each method compared with the fully supervised methods is discussed. As weakly
supervised 3D training is challenging, each method proposes a unique solution to the
problem and a step forward in the field.

2.3.1 VS3D

VS3D [19] operates without any ground truth labels and consists of an unsupervised
3D object proposal module (UPM) coupled with cross-modal transfer learning. The
pipeline is shown in Figure 2.10.
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UPM is used to find regions with a high probability of containing an object. This

is achieved by leveraging the point cloud density as an indicative factor. As the point
density of an object is dependent on the distance, normalized point density is used to
mitigate the dependency. The anchor and points are projected into the image plane.
The anchor and points are projected onto the image plane, followed by cropping the
image to the projected anchor size and resizing it to a constant size. Given the sparsity
of point clouds, inpainting [20] is applied to the projected points.

The Regions of Interest (RoI) identified by the UPM must be classified and re-
gressed. Cross-modal transfer learning consists of a teacher and a student architecture.
An off-the-shelf 2D detector, pretrained on datasets such as PASCAL VOC [21] or Im-
agenet [22], serves as the teacher. Each RoI is utilized to crop the RGB image, which
is then input into the 2D detector. The 2D detector outputs classification labels and
viewpoint estimation, serving as an object yaw estimation. In the student network,
all points are projected into a depth image. This depth image is processed by a CNN
backbone, followed by a RoIAlign [23] layer and fully connected layers. Similar to the
teacher network, the student network performs classification and object yaw estimation.

When initially introduced, VS3D demonstrated state-of-the-art performance on the
KITTI [3] dataset. However, it is important to note that the 3D performance gap
compared to fully supervised methods remains significant (approximately 40% at 3D
IoU 0.3), attributed to the absence of fine-tuning of RoI proposals and poor utilization
of the 3D domain.

Figure 2.10. Pipeline of VS3D [19] described in Section 2.3.1. The figure is taken from [19].

2.3.2 Zakharov et al.

Zakharov et al. [24] employ an off-the-shelf 2D detector, pre-trained on a generic non-
related dataset, with a novel differentiable renderer within the DeepSDF framework [25]
to autonomously label 3D bounding boxes of cars. The pipeline is shown in Figure 2.11.

Initially, 2D detections are generated by the 2D detector. The Coordinate Shape
Space (CSS) Net then produces a 2D Normalized Object Coordinate Shape (NOCS)
map. As there is no ground truth available for NOCS maps, the CSS Net is trained
using a synthetic dataset. The NOCS map is then projected back into 3D points and
merged with LiDAR points filtered using 2D detection. An object’s shape, functioning
as a 3D prediction, is derived from the NOCS map. A render of an object’s shape must
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be aligned with the NOCS map, but at the same time, it has to be aligned with the
LiDAR points.

The method is pre-trained on the synthetic dataset, followed by training on the actual
KITTI [3] dataset, progressively adding more complex samples iteratively. Remarkably,
the method achieves good accuracy on easy and moderate targets without utilizing any
human-labeled data. However, no evaluation is provided for hard examples. While out-
performing VS3D [19] by a large margin, a noticeable performance gap (approximately
60% at 3D IoU 0.7, 15% at 3D IoU 0.5) remains when compared to fully-supervised
methods.

Figure 2.11. Pipeline of Zakharov et al. [24] described in Section 2.3.2. The figure is taken
from [24].

2.3.3 McCraith et al.

McCraith et al. [26] leverage an off-the-shelf 2D detector and direct optimization of
a template mesh onto LiDAR point clouds. The system employs a model such as
Mask RCNN [23], pre-trained on a generic non-related dataset, to generate 2D masks
corresponding to objects, particularly cars. The pipeline is shown in Figure 2.12.

θk

Segmentation
PointNet Ψ(Lm)Filtered

LiDAR Lm

Translation

Template mesh S0

Tm

Alignment loss
        Eq. (4)

d (gk S0 | Lm)

gk = [ R(θk) Tm ]

Yaw bins

Full transform

Yaw classification

Mask R-CNN detections

Pose regression
PointNet Φ(Lm)

(k)

Fig. 2: Network architecture. Dashed arrows in red show the flow of the gradients during the backward pass. Alignment loss
is evaluated for each yaw bin θk and the optimal yaw is used to supervise the yaw classification network Φr (see sec. III-C).

To do so, assume that the LiDAR points are expressed in the
reference frame of the camera and that the camera calibration
function k : R2 → Ω = {1, . . . ,H} × {1, . . . ,W} is known.
The calibration function is defined such that the 3D point X =
(X,Y, Z) projects onto the image pixel u = k(π(X)) where
π(X,Y, Z) = (X/Z, Y/Z) is the perspective projection. In
particular, the subset of LiDAR points Lm ⊂ L that project
onto the 2D mask m is given by: Lm = L ∩ (k ◦ π)∗(m)
where ∗ denotes the pre-image of a function. In practice, this
is a crude filtering step, because the masks are imprecise
and not perfectly aligned to the LiDAR and because LiDAR
may sometimes see ‘through’ the object, for instance in
correspondence of glass surfaces (see Fig. 3).

In order to fit a 3D bounding box B to Lm, we use a
weak prior on the 3D shape of the object. Specifically, we
assume that a 3D template surface S0 ⊂ R3 is available,
for example as simplicial (triangulated) mesh. We fit the 3D
surface to the LiDAR points by considering a rigid motion
g ∈ SE(3) which, applied to S0, results in the posed mesh
S = gS0 = {gX : X ∈ S0}. We then define a distance
between the mesh and the 3D LiDAR points as follows:

d(S|Lm) =
1

|Lm|
∑

X∈Lm

min
X′∈S

‖X′ −X‖2. (1)

This quantity is similar to a Chamfer distance, but it only
considers half of it: this is because most of the 3D points that

Fig. 3: For each pair, left: RGB input image with Mask R-
CNN predicted box and highlighted pixels inside the mask.
Right: LiDAR points in blue represent those inside the 2D
mask, green those outside. Note that, while the image mask
removes many outliers, many remain at the object boundaries
and transparent surfaces.

belong to the template object are not be visible in a given
view (in particular, at least half are self-occluded), so not all
points in the template mesh have a corresponding LiDAR
point.

Given a 2D object mask m and its corresponding LiDAR
points Lm, we can find the pose g of the object by minimizing
d(gS0|Lm) with respect to g ∈ SE(3). Then the bounding
box of the object m is given by gB0 where B0 ⊂ R3 is the
3D bounding box that tightly encloses the template S0.

In accordance with prior work [7], [29], [19], we can
in practice carry out the minimization not over the of
full space SE(3), but only on 4-DoF transformation g =
[Rθ, T] where the rotation Rθ is restricted to the yaw θ
(rotation perpendicular to the ground plane). Even so, direct
minimization of (1) is in practice prone to failure because
individual partial LiDAR point clouds do not contain sufficient
information and fitting results are thus ambiguous (we do not
report results in this setting as they are extremely poor).

Our solution to the ambiguity of fitting (1) is to share
information across all object instances in the dataset. We do
this by training a deep neural network Φ : Fin(R3)→ SE(3)
mapping the LiDAR points Lm to the corresponding object
pose g = Φ(Lm) directly. The network Φ can be trained in
a self-supervised manner by minimizing (1) averaged over
the entire dataset D as

L(Φ|D) =
1

|D|
∑

(Lm,m)∈D

d(gmS0|Lm) (2)

where gm = Φ(Lm).

B. Modelling and discounting outliers

A major drawback of (2) is that LiDAR points tend to be
noisy, especially because the boundaries of the region m may
not correspond to the object exactly or the LiDAR may be
affected by a reflection or ‘see through’ a glass surface. Such
points might disproportionally skew the loss term, forcing
the estimated object position closer to these outliers. In order
to help the model discriminate between inliers and outliers,
we let the network predict an estimate of whether a given
measurement is likely to belong to the object or not.
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Figure 2.12. Pipeline of McCraith et al. [26] described in Section 2.3.3. The figure is taken
from [26].

For each detection, LiDAR points corresponding to the mask are filtered to obtain a
raw point cloud containing only points of the object. The Pose Regression PointNet [12]
fits the object point cloud with a generic car shape using a one-way Chamfer Distance
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loss. The loss calculation uses multiple frames to exploit temporal consistency. Given
that the object point cloud often contains numerous outliers, a Segmentation PointNet
is employed to assign a number to each point in the object point cloud, representing
the variance of the point. This variance is used in the fitting loss. Since yaw prediction
can be ambiguous (with ±90∘), each prediction from the Pose Regression PointNet
undergoes evaluation across all possible rotations, with the one minimizing the loss
chosen for back-propagation.

The method shows the significance of proper outlier handling and the exploitation
of temporal consistency in achieving good accuracy. Operating without any human-
labeled data, the method demonstrates promising results in the easy category of the
KITTI [3] dataset. However, a noticeable performance gap (approximately 14% at 3D
IoU 0.5) exists on moderate and hard examples.

2.3.4 FGR

Frustum-aware geometric reasoning (FGR) [27] uses 2D bounding boxes ground truth
as labelling 2D bounding boxes is 3-16 times faster than 3D bounding boxes. FGR
consists of coarse 3D segmentation and 3D bounding box estimation. The pipeline is
shown in Figure 2.13.

In the initial stage of coarse 3D segmentation, FGR employs the RANSAC algo-
rithm [28] to remove points in the LiDAR scan corresponding to the ground plane.
Subsequently, it extracts points from the LiDAR scan within the frustum area corre-
sponding to each provided 2D bounding box. To address potential occlusions of cars by
other vehicles in the scene, the algorithm prioritizes the extraction of the closest cars
to the ego-vehicle. Iteratively a random point from the extracted frustum is chosen
and its connected component is computed. This process is done until all points within
the extracted frustum area have a corresponding connected component. The connected
component with the highest point count is then chosen as the representation of the
object.

Fig. 2: The pipeline of FGR. Our framework consists of two parts. For coarse 3D segmentation, we first estimate ground
plane and remove it from the whole point clouds. Then we adopt context-aware adaptive region growing algorithm to get
segmentation mask. However, there still exists noise in segmented points set. To solve this problem, we propose the anti-noise
key vertex localization. Finally we use key vertex and key edges to intersect the frustum to predict 3D bounding boxes.

Algorithm 1 The pipeline of context-aware adaptive region growing

Input: Whole point cloud Pall , points set in frustum region F i of vehicle Oi, distance thresholds {φ k}
Output: Segmented points set Mi

best
1: for k = 1 to n: do
2: while there exists a point Pi

j in Fi which doesn’t belong to any connected component in {Ci
jk} do

3: Set up an empty points set Ci
jk, add Pi

j to Ci
jk

4: while there exists a point p in Ci
jk which has not been processed do

5: Search points set q from whole point cloud Pall whose Euclidean distance to p is smaller than φ k

6: For each point in q, check if the point has already been processed, and if not add it to Ci
jk

7: end while
8: If

|Ci
jk∩F i|
|Ci

jk|
< θseg, we treat this connected component as a outlier and remove it

9: end while
10: From connected component set {Ci

jk}, select Mi
k which has the most points as the segmentation result for φ k

11: end for
12: From {Mi

k}, select Mi
best which has the most points as the final segmentation result.

B. 3D Bounding Box Estimation

A baseline method to calculate 3D bounding boxes of
segmented points set Mi

best is to estimate minimum-area
rectangle which encases all points. Although this is a mature
algorithm, it is sensitive to noise points and doesn’t make
use of frustum information. Different from this baseline
approach, for the vehicle Oi, we first locate the key vertex
V i of Mi

best in an anti-noise manner. Then based on this
key vertex, we calculate the final 3D bounding box by
computing the intersection with frustum boundaries. This
stage is conducted on Bird’s Eye View (BEV).
Anti-noise Key Vertex Localization: Fig. 3 illustrates
the procedure of anti-noise key vertex localization. For a
bounding rectangle, we can separate out four right triangles
according to its four vertexes. We define the right angle
vertex of the triangle containing the most points as the key
vertex and its corresponding legs as key edges.

In many cases, we can only observe points in one right
triangle. If we use the area as the objective function to
calculate the optimal bounding rectangle, we will get two
results, which are shown in Fig. 4. To address this problem,
we design a new objective function. We assume that we want
to estimate the bounding rectangle of points set Q, and key

outlier point

inlier point

key vertex

key edge

Fig. 3: The illustration of anti-noise key vertex localization.
Adopting a iterative framework, our method can detect noise
points and remove them. The algorithm will stop if key
vertex’s position changes slightly between two iterations.

edges are l1, l2 respectively. The following equation describes
our new objective equation f :

f =
|Q0|
|Q|

Q0 = {q| q ∈ Q, ||q, l1||> θrect , ||q, l2||> θrect}
(2)

where ||q, l|| is the vertical distance between point q and edge
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Figure 2.13. Pipeline of FGR [27] described in Section 2.3.4. The figure is taken from [27].

3D bounding box estimation first performs the Anti-noise Key Vertex Localization.
It operates in Bird’s Eye View (BEV) and finds the key vertex, defining the BEV
bounding box. The objective is to find a key vertex with two edges in a way that
minimizes the number of points with a greater distance than a specified threshold. In the
optimization process, the removal of an outlier creates a change in the optimal bounding
box, while the removal of an inlier has a negligible impact on the outcome. This
approach effectively handles outliers. Subsequently, an intersection with the frustum
area is employed to generate precise 3D bounding boxes from 2D bounding boxes. It’s
important to note that this process relies on accurate amodal 2D bounding boxes.
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Generated pseudo ground truth 3D labels are used to train a 3D detector. The
method achieved good results on the Easy and Moderate targets on the KITTI [3]
dataset when the pseudo labels were used to train PointRCNN [29]. The observed
performance gap (3D IoU 0.7) compared to fully-supervised PointRCNN ranges between
3% to 13%.

2.3.5 WS3Dv2

WS3Dv2 [6] uses human-labeled BEV click-point annotations, representing the object’s
center. It consists of two stages: object center detection and foreground segmentation,
and 3D bounding box regression. The pipeline is shown in Figure 2.14.

In the initial stage of WS3Dv2, a network architecture resembling the encoder-
decoder structure found in PointNet++ [13] is employed. The primary objective is
to identify foreground points within the point cloud. Each point is assigned a proba-
bility indicative of its likelihood to be part of the foreground. The network is trained
using pseudo-ground truth, generated by creating a Gaussian distribution based on the
distance between a point and the nearest object center.

Simultaneously, another network is employed for predicting the object centers. Points
with predicted foreground values surpassing a predefined threshold are considered. Each
foreground point predicts an object center. Human-annotated point clicks, representing
object centers, serve as the ground truth for training.

To ensure the quality of predictions, an Objectness-score-based Non-maximum Sup-
pression strategy is employed, filtering out redundant predicted object centers. Object
centers are defined by foreground points. The training process for this stage involves
BEV maps featuring point clicks generated by human annotators.

The second stage is a cascade network, initially transforming the cylindrical proposals
into a cuboid and then refining the cuboid in each layer. It consists of several set
abstraction layers and an MLP branch at the end. The output is 3D bounding boxes
and confidences generated by the IoU-based Confidence Estimation branch.

The first stage of WS3Dv2 is trained on 500 frames containing human-labeled BEV
click-point maps. The second stage is trained on 534 precisely labeled objects extracted
from the same 500 frames. This implies that not all objects within a given scene are
used for training in the second stage. The number of labeled objects is significantly
lower compared to fully supervised methods. However, WS3Dv2’s performance is com-
parable to fully supervised methods like PointPillars [15] and PointRCNN [29], which
were trained on 3712 frames. The performance gap (3D IoU 0.7) is less than 6%.
Additionally, the method allows for the incorporation of a human labeler in the loop,
providing click-points to achieve an even lower performance gap.

separation is helpful for the proposal generation and provides
useful information for Stage-2. As only the horizontal centers
of objects are labeled on the BEVmaps, our proposals are cyl-
inder-shaped, instead of being 3D bounding boxes.

Pseudo Ground-Truth Generation. Since the annotations in
the BEV maps are weak, proper modifications should be
made to produce pseudo, yet stronger supervisory signals.
Specifically, for a labeled vehicle center point o2O, its hori-
zontal location ðxo; zoÞ in the LiDAR coordinate system can
be inferred according to the projection from the BEV to the
point cloud. We set its height yo (over the y-axis) to the
LiDAR sensor’s height (the height of the ego-vehicle), i.e.,
yo¼0. The rationale behind such a setting will be detailed
later. Then, for each unlabeled point p, its pseudo fore-
ground value fp2½0; 1� is defined as

fp ¼ maxo2Oðiðp; oÞÞ;

where iðp; oÞ¼
1 if dðp; oÞ � 0:7;

1

k
Nðdðp; oÞ;m; s2Þ if dðp; oÞ > 0:7:

8<
:

(1)

Here,Nðx;m; s2Þ is a 1DGaussian distributionwithmeanm¼
0:7 and variance s2¼1:5, and k¼Nð0:7;m; s2Þ is a normaliza-
tion factor. Further, dðp; oÞ is a distance function: dðp; oÞ¼
½ðxp�xoÞ2þ�ðyp � yoÞ2 þ ðzp�zoÞ2�

1
2, where ðxp; yp; zpÞ are the

3D coordinate of p. The coefficient � (¼0:5) is used due to the
large uncertainty over the y-axis. As the BEV annotations do
not provide height information, if a large coefficient � is
adopted, many foreground points will be excluded (i.e., blue
points in Fig. 6), causing performance decrease. Basically, the
foreground probability assignment function iðp; oÞ gives high
confidence (¼1) for those points close to o (i.e., dðp; oÞ�0:7),
and attenuates the confidence for distant ones (i.e.,
dðp; oÞ > 0:7), following the Gaussian distributionN . Asmost
vehicles are seemingly of a similar height, for each labeled
center o, we roughly set its height (=0) as the altitude of the

Lidar sensor, which is placed on the ego-vehicle (i.e., right car
in Fig. 6). For the points that are close to o and at lower alti-
tudes than the LiDAR sensor, most of them are object points
and will gain high foreground values. For the points above
the ego-vehicle, there may exist some background points
which are assigned high foreground scores, but the amounts
are trivial. This is because, at the similar altitudes to the
LiDAR sensor, background points are very sparse and typi-
cally far away from the vehicle centers in the (x, z)-plane (see
Fig. 3h).Note that, ifwe set the heights of labeled center points
a smaller value, many background points on the ground will
gain high foreground scores. Plane detection [4] can be also
used here for more accurate height estimation, but in practice
we find our strategy is already good enough.

Point Cloud Feature Extraction. For point cloud feature
extraction, an encoder-decoder network like [25] is adopted.
In the encoder, a stack of set-abstraction layers with multi-
scale grouping is applied to extract raw point cloud fea-
tures. Then, the decoder, which consists of several feature
propagation layers, is added to learn more discriminative
point-wise features. Finally, two branches are placed over
the feature extraction backbone for foreground point seg-
mentation and object (x; z)-center regression, respectively.

Foreground Point Segmentation. With the point-wise fea-
tures extracted from the backbone network and the pseudo
ground-truth fp generated by Eq. (1), we use a foreground
segmentation branch for estimating the foreground probabil-
ity ~fp2½0; 1� of each point p. The learning is achieved by
minimizing the following loss:

Lseg ¼ �að1� f̂pÞg log ðf̂pÞ;
f̂p ¼ ~fp � fp þ ð1� ~fpÞ � ð1� fpÞ:

(2)

This is a soft version of the focal loss [53], which is used to
address the foreground-background imbalance in outdoor
scenes. As in [53], we set a ¼ 0:25 and g ¼ 2.

Fig. 4. Error distributions of our weak BEVannotations.

Fig. 5. Our 3D object detection pipeline (Section 4). (a-b) Cylindrical 3D proposal generation results from Stage-1 (Section 4.1). Yellower colors corre-
spond to higher foreground probabilities. (c-d) Cascaded cuboid prediction in Stage-2 (Section 4.2). (e) Our final 3D object results.

Fig. 6. Illustration of our pseudo ground-truth generation strategy (Eq. (1)).

4458 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 8, AUGUST 2022

Authorized licensed use limited to: CZECH TECHNICAL UNIVERSITY. Downloaded on December 06,2023 at 10:35:17 UTC from IEEE Xplore.  Restrictions apply. 
Figure 2.14. Pipeline of WS3Dv2 [6] described in Section 2.3.5. The figure is taken from [6].
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2.3.6 MAP-gen

Multimodal attention point generator (MAP-gen) [30] tackles the sparsity problem of
the LiDAR scans by introducing a method to generate 3D points based on an image,
enriching the sparse LiDAR scans. The method can be divided into three stages: fore-
ground segmentation, point cloud enrichment, and 3D box regression. The pipeline is
shown in Figure 2.15.

Points inside the frustum area corresponding to each 2D bounding box are extracted,
and the RGB values of the corresponding pixels are used to enhance the extracted
LiDAR points. Segmentation of the point cloud is performed using PointNet [12], while
the image segmentation is done by PSPNet [31]. During training, only points inside the
ground truth 3D bounding box are used as the ground truth for training the PointNet.
Similarly, only pixels with corresponding points inside the 3D ground truth bounding
box are used for the training of PSPNet.

Pixels in the cropped and segmented image are sampled and enriched by features ex-
tracted from PSPNet. The resulting order-invariant sequence contains both segmented
and sampled points, with each point containing a 2D location, 2D features from PSP-
Net, and 3D features from PointNet. The sampled points have unknown 3D features.
Each sampled point is queried, and then 3D features are predicted with multimodal
attention. An MLP is used to retrieve 3D location from the predicted 3D features. To
train this stage, randomly chosen points within the 3D ground truth bounding box are
masked and then recovered by multimodal attention.

PointNet is employed to extract global features from the enriched RGB point cloud,
while global image features are extracted from PSPNet. An MLP is then used to
generate a 3D bounding box by processing the concatenated RGB point cloud and
image features.

The method is trained on the same data as WS3Dv2 [6] (500 frames, 534 precisely
annotated objects). MAP-gen achieved state-of-the-art performance, reducing the per-
formance gap (3D IoU 0.7) between fully and weakly supervised PointRCNN [29] to 2%.
This achievement demonstrates comparable performance with significantly less training
data.

Fig. 2: The 3-stages MAP-Gen workflow. First, an image and a point cloud are respectively segmented. Then, the proposed
multimodal attention module samples targets from the 2D image and generates new 3D points (in green). In the end, a pseudo
3D bounding box is regressed from the enriched point cloud together with global image features.

accuracy drop for moderate and hard samples, which are
usually far and hence sparse. This work is based on the premise
that alleviating the sparsity problem can effectively boost
the quality of generated annotations, as is verified through
extensive experiments.

III. METHODOLOGY

Given an image cropped by a 2D box and the corresponding
frustum point cloud, the goal of MAP-Gen is to automatically
generate 3D bounding box annotations. As shown in Fig. 2,
MAP-Gen consists of three stages: 1) foreground segmenta-
tion, 2) point cloud enrichment, and 3) 3D box regression.
The image and point cloud are first segmented to remove the
backgrounds. Then new points are generated by the proposed
multimodal attention module to alleviate the sparsity issue.
Finally, a simple PointNet [22] is used to regress 3D boxes
from the enriched point clouds.

Specifically, MAP-Gen is trained with a small amount (500
frames) of ground truth 3D boxes. After training, the MAP-
Gen works as an autolabeler and is used to re-label the
KITTI dataset. Given weak annotation of 2D boxes, MAP-Gen
outputs pseudo 3D labels which can be used for training any
object detection network (e.g., PointRCNN). The following
sections elaborate on how MAP-Gen generates 3D boxes from
weak 2D annotations.

A. Foreground Segmentation

First, the region enclosed by each 2D bounding box is
cropped and resized to a fixed size H × W . Given the
LiDAR-camera projection matrix, each point in the 3D LiDAR
coordinate system can be projected onto the 2D plane of the
camera image. As illustrated in Fig. 1a, we extract the frustum
sub-cloud P ∈ Rn×3 whose 2D projects P2d ∈ Rn×2 are
within the target 2D bounding box. n is the number of points in
the cloud. Corresponding RGB values for P are also extracted
based on the projection.

Then, the RGB point cloud is segmented by a PointNet [22],
while the image is segmented by a PSPNet [35] with a
Res18 [36] backbone. The outputs are lpn, lpsp ∈ Rn×2 re-
spectively, denoting the foreground/background segmentation
results. Here lpsp is extracted from the PSPNet’s H × W

segmentation map by the aforementioned LiDAR-image map-
ping. During training, points within the ground truth 3D boxes
are regarded as foreground, and Cross-Entropy Loss is used
for both lpn and lpsp. We balance the loss for foregrounds
and backgrounds by their populations. Although there are no
ground-truth segmentation masks for the images, the CNN is
partially supervised by calculating loss only for pixels with
LiDAR point projection. As shown in Fig. 2, images are
coarsely segmented.

B. Point Generation with Multimodal Attention

After segmentation, we remove the background points, re-
sulting in a new point cloud P ′ ∈ Rn′×3, where n′(≤ n) is the
number of remaining points. Then the proposed multimodal
attention module generates new foreground points to enrich
P ′ to a predefined size m via the following steps:

a) 2D Target Sampling: To enrich P ′, k = m − n′

pixels are randomly sampled from the image foreground,
representing targets. The sampled target pixels have known 2D
coordinates C2d ∈ Rk×2 and features F2d ∈ Rk×ci extracted
from the feature pyramid in PSPNet. Their 3D coordinates are
unknown and to be estimated in later steps.

b) Sequence Building: Merging the segmented cloud P ′

and the k sampled targets, an order-invariant sequence S of
length m is built,

S =
[(

C(1)
2d ,F (1)

2d ,F (1)
3d

)
, . . . ,

(
C(m)
2d ,F (m)

2d ,F (m)
3d

)]
(1)

F (i)
3d =

{
f(C

(i)
3d ), i = 1, 2, ..., n′

u, i = n′ + 1, ...,m

In S, each tuple denotes a point with 3 properties, namely, 2D
coordinate C(i)

2d , 2D feature F (i)
2d and 3D feature F (i)

3d derived
from 3D coordinates C(i)

3d by the function f (e.g., a multilayer
perceptron). For the k targets without known 3D coordinates,
we fill their 3D features with an identical trainable embedding
vector u as the unknown features. Next, we try to recover 3D
features and hence 3D coordinates for the k targets.

c) Multimodal Attention: We restore the 3D features by
the proposed multimodal attention mechanism. By referencing
context points based on the semantic and geometric relation-
ships, 3D features are interpolated for the target points. As
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Figure 2.15. Pipeline of MAP-gen [30] described in Section 2.3.6. The figure is taken
from [30].

2.3.7 M-trans
Multimodal transformer (M-trans) [32] shares the idea with MAP-gen [30], so they
tackle the sparsity of the LiDAR scans. However, the proposed method uses a different
architecture than MAP-gen. The pipeline is shown in Figure 2.16.

The method uses 2D ground truth bounding boxes to extract points from the LiDAR
scan within the frustum area. Additionally, image patches of the object are extracted.
A fixed number of target points is then sampled from the image, which are employed to
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generate 3D points. Similar to vanilla transformers [33–34], the features of the object
are encoded as embedding vectors. Each 2D and 3D position, along with the image
patch, is encoded into features. Target points have unknown 3D position features. All
these features are concatenated and fed into an MLP.

The features encoded by the MLP serve as input to the M-trans module, which con-
sists of three different features: C-pts, points with known 3D locations (3D features),
T-pts, target points without known 3D locations, and CLS, object-level information.
All these features are used in multiple heads. The first head is responsible for point
segmentation, using points inside a 3D ground truth bounding box as the foreground
ground truth. The second head predicts the 3D point locations for target points, em-
ploying a similar strategy as MAP-gen, where some points inside a 3D ground truth
bounding box are masked. The third head regresses 3D bounding boxes, using the 3D
ground truth bounding boxes directly for training.

The method currently achieves state-of-the-art performance as an auto-labeler, with
a performance gap (3D IoU 0.7) lower than 1% when compared to both weakly and
fully supervised PointRCNN [29]. It uses the same number of training samples as in
MAP-gen, so 500 frames with 534 precisely annotated objects. Thus showing, that it
can achieve the same performance while using a small fraction of the labeled data.662 C. Liu et al.

Fig. 2. Workflow of the MTrans. The network models both 3D and 2D information
from the LiDAR scans and images. The frustum points and the image are fed into the
network for simultaneous foreground segmentation, point generation, and box regres-
sion. Ff2d, Fc2d and Fc3d are the embeddings for image patches, 2D coordinates and
3D coordinates. Fs is the global image feature derived by averaging Ff2d.

problem (Sect. 3.4). Additionally, a self-supervised training strategy is proposed
to leverage unlabeled data for the point generation task (Sect. 3.5).

3.1 Data Preparation

Our MTrans generates one 3D bounding box for each object in a weak 2D box.
Using the LiDAR-image calibration parameters, a 3D point (x, y, z) can be pro-
jected onto the image plane (u, v) by the mapping function fcal. Therefore, we
can extract the frustum sub-cloud PF corresponding to a 2D box:

PF = {(x, y, z) | fcal(x, y, z) ∈ B2D}, (1)

where B2D is the region cropped by the 2D box. We use n to represent the
frustum cloud size (i.e., the number of points). The points’ 2D projections are
defined as:

C2D = {(u, v) | (u, v) = fcal(x, y, z), (x, y, z) ∈ PF }, (2)

A shown in Fig. 2, centered by the 2D projections, image patches of shape k × k
are extracted, denoted as Ip. Thus, every LiDAR point has three categories of
features, P(i)

F , C(i)
2D and I(i)

p .

Figure 2.16. Pipeline of M-trans [32] described in Section 2.3.7. The figure is taken
from [32].
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Chapter 3
Foreground segmentation

This chapter starts with a description of our proposed method. Here the focus is on the
process of foreground segmentation of LiDAR points. Our primary goal is to accurately
extract and segment LiDAR point clouds that correspond to individual objects, with a
focus on cars, in a given scene.

Initially, as outlined in Section 3.1, we utilize the 2D detector, Mask-RCNN [23], for
the detection of cars in the image. Following this, in Section 3.2, we focus on how we
employ binary masks from the 2D detector to extract points within the frustum area
of these masks. Furthermore, Section 3.3 discusses additional steps of postprocessing,
including the filtering of points and estimation of their location.

3.1 Instance segmentation
We employed the Detectron2 framework [35], which uses Mask-RCNN [23] for instance
segmentation. Detectron2 is known for its high-performing models, excellent documen-
tation, and user-friendly API. It provides access to pre-trained model weights, trained
on various datasets like MS-COCO [7] and ImageNet [22].

We have selected RegNetY [36] as a backbone for Detectron2 for its optimal balance
of speed, memory efficiency, and performance. The model weights were trained using
the Simple Copy-Paste Data Augmentation [37]. We have evaluated multiple back-
bones, trained on different datasets, on the 2D object detection KITTI dataset, and
the RegNetY trained on MS-COCO proved itself as a sufficient choice for our task. More
complex architectures, like ViTDet [38], showed only marginal performance improve-
ments in vehicle detection (cars, vans, trucks) when evaluated on the KITTI dataset.
However, the KITTI dataset’s use of amodal 2D bounding boxes limits the relevance
of this comparison for occluded cars. The evaluation of RegNetY is shown in table 3.1.

Difficulty Easy Moderate Hard
Average precision [%] 79.03 71.69 56.35

Table 3.1. Evaluation of the RegNetY on the 2D object detection KITTI dataset [3].

The procedure begins with creating the model and loading the configuration, followed
by applying the weights. The model operates on either CPU or GPU. Processing one
image takes roughly 72 ms, consuming about 1.5 GB of memory per sample in the
batch. For efficiency, we process 20 images per batch on an Nvidia A100 GPU.

The KITTI object detection dataset provides one image per camera, in total four
images. As detailed in Subsection 2.1.1, all cameras face forward, but we specifically
utilize the camera with index two. This camera is an RGB camera positioned almost
in the middle of the roof. Once more, we want to emphasize that the KITTI dataset
labels only objects visible in camera 2 and with regards to this camera.
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Let 𝐿𝑖 ∈ ℤ, 0 ≤ 𝐿𝑖 ≤ 80 denote object class label, 𝑆𝑖 ∈ ℝ, 0.0 ≤ 𝑆𝑖 ≤ 1.0 denote
score, 𝐵𝐵𝑖 ∈ ℤ𝟜 denote 2D bounding box, and 𝑀𝑖 ∈ 0, 1𝐻×𝑊, 𝑀𝑖 ∈ {0, 1} denote binary
mask for each detected object in the image. A bounding box is decoded as a pair of
two points in the pixel coordinates, 𝐻 and 𝑊 denote the image’s height and width.
Outputs are illustrated in Figure 3.1.

Figure 3.1. Example of using Detectron2 [35] framework as instance segmentation tool on
KITTI [3] dataset.

We first eliminate all detections with a score 𝑆𝑖 below 0.7, an empirically set threshold
that effectively reduces false positives while retaining true positives. Then, we filter out
detections not classified as cars. We have to deal with non-overlapping object class
labels, as MS-COCO labels vehicles as cars, trucks, motorcycles, and buses, on the
other hand, KITTI labels vehicles as cars, vans, and trucks. Vans in the scene are
usually detected as cars (as it is correct in MS-COCO), creating a false positive in the
KITTI labels. The problems with the ambiguities in the KITTI dataset are shown in
Figures 3.2 and 3.3.

It is worth noting, that we experimented with the Segment Anything (SAM) [39]
model for fine-tuning the masks 𝑀 initially generated by Detectron2. We encountered
a challenge because SAM often segmented specific parts of cars, such as windows, tires,
or side mirrors, rather than the entire car. To mitigate this problem, the user in the
SAM API can specify a bounding box around the object intended for segmentation.
Each mask 𝑀𝑖 with a corresponding bounding box 𝐵𝐵𝑖 was then with SAM to create
a new improved mask. However, the performance difference between using masks from
Detectron2 and those refined with SAM was negligible. This outcome indicates, that
the quality of the segmentation is not the bottleneck of our method.
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Figure 3.2. Examples of the ambiguity caused by the non-overlapping classes in KITTI [3]
and MS-COCO [7] dataset. Red bounding boxes denote KITTI ground truth, and blue
bounding boxes denote Mask-RCNN [23] output. The upper image shows a van being
detected by Mask-RCNN as a car and also it shows the problem with overlapping cars,
caused by the amodal KITTI ground truth. The lower image shows an object in the lower
left corner, which we believe is a car, however, in the KITTI dataset it is labeled as a van.

Figure 3.3. Examples of the ambiguity caused by the non-consistent labeling in KITTI [3].
Red bounding boxes denote KITTI ground truth, and blue bounding boxes denote Mask-
RCNN [23] output. The upper image shows labeled cars (marked by red arrows), that are
less visible than the car in the lower image (marked by red arrow), however, the car in the

lower image is not labeled.
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3.2 Point extraction
At this stage, having successfully detected cars in the images and obtained their corre-
sponding 2D binary masks, our next step is to utilize these masks for extracting points
that belong to the detected objects (cars). To achieve this, it is essential first to project
the LiDAR scan data into the image coordinate frame.

Let 𝑃 ∈ ℝ4×𝑛 be a raw point cloud, where 𝑛 represents the number of points in the
LiDAR scan. Each point in this point cloud has four values (𝑥, 𝑦, 𝑧, 𝛼), where 𝑥, 𝑦, 𝑧
denotes the location in the Euclidean space, while 𝛼 denotes a point’s reflectance. In
our process, since reflectance 𝛼 is not utilized, we assign it a constant value of 1 to
all points. This adjustment effectively transforms the point cloud P into homogenous
coordinates.

The subsequent step involves transforming the point cloud 𝑃 from the LiDAR coordi-
nate frame to the camera 0 coordinate frame. This is achieved using the transformation
matrix 𝑇 c0

𝑙 ∈ ℝ4×4. Given that the camera has a limited field of view (FOV), we remove
all points, that are behind the camera, as they obviously cannot be seen. Therefore,
we obtain a filtered point cloud 𝑃𝑓 = {𝑝 ∈ ℝ4 | 𝑝 ⊂ 𝑃 , 𝑝(𝑧) ≥ 0}.

After filtering, the point cloud 𝑃𝑓 is rectified using the matrix 𝑅 ∈ ℝ4×4 as the
projection matrices are defined for rectified images. Next, the rectified point cloud is
transformed from the camera 0 coordinate frame to the camera 2 coordinate frame,
employing the transformation matrix 𝑇 c2

c0 ∈ ℝ4×4. The final step involves projecting
the rectified point cloud 𝑃𝑓 from this rectified camera 2 coordinate frame into the
image coordinate frame. This projection is done using the matrix 𝐾𝑖

rc2 ∈ ℝ3×4, as
it describes the camera’s intrinsics using the pinhole camera model. The projection
matrix is structured as follows:

𝐾𝑖
rc2 = ⎛⎜

⎝

𝑓𝑢 0 𝑐𝑢 −𝑓𝑢𝑏𝑥
0 𝑓𝑣 𝑐𝑣 0
0 0 1 0

⎞⎟
⎠

(1)

Where 𝑓 are the focal lengths, 𝑐 are coordinates of the principal point, and 𝑏𝑥 is
the baseline. Ignoring the point filtering, the transformation matrix from the LiDAR
coordinate frame to the image coordinate frame can be computed as follows:

𝐾𝑖
𝑙 = 𝐾𝑖

rc2𝑇 c2
c0 𝑅𝑇 c0

𝑙 (2)

Utilizing this transformation matrix, we can project a point X = (𝑥, 𝑦, 𝑧, 1) from
the LiDAR coordinate frame to a corresponding point Y = (𝑢/𝑧, 𝑣/𝑧, 1) in the image
coordinate frame. Here, 𝑥,𝑦, and 𝑧 represent the point’s location in Euclidean space,
while 𝑢 and 𝑣 correspond to the pixel location in the image coordinate frame. This
projection effectively transforms the three-dimensional spatial coordinates into two-
dimensional pixel coordinates, aligning the LiDAR data with the image captured by
the camera.

𝑌 = 𝐾𝑖
𝑙 𝑋 → 𝑃𝑒 = 𝐾𝑖

𝑙 𝑃 (3)

We enrich the point cloud 𝑃𝑓 by appending 𝑢, 𝑣 values to each point, so each point
has a corresponding location in the image. Thus each point has known 3D and 2D
coordinates. Considering that only objects within the FOV of camera 2 are labeled,
we filter out points, where 𝑢 or 𝑣 exceed the image’s width or height. This filtering
provides us an enriched and filtered point cloud 𝑃𝑒 ∈ ℝ6×𝑛, where n denotes the number
of points.
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With the given enriched point cloud 𝑃𝑒 we can perform the instance segmentation

leveraging the provided binary masks 𝑀 provided by Detectron2. However, given that
our implementation is in Python, iterating over all points in 𝑃𝑒 with a simple loop
is impractical due to poor Python for loop performance. Instead, we employ NumPy
slicing to significantly speed up the 3D instance segmentation. For each mask 𝑀𝑖, we
extract all points where the mask 𝑀𝑖 equals 1 at pixel coordinates 𝑢, 𝑣 determined by
the point. Thus, we get object point cloud 𝐹𝑖 ⊂ 𝑃𝑒 for each mask 𝑀𝑖, illustrated in
Figure 3.4.

a) b)

Figure 3.4. Example of the foreground segmentation. (a) raw point cloud (LiDAR scan)
cropped to camera FOV, (b) foreground segmentation performed on all objects visible in

the camera. Each distinct color represents a different object instance.

3.3 Postprocessing
For each object point cloud 𝐹𝑖 our goal is to estimate its approximate 3D location.
However, the point cloud 𝐹𝑖 often contains many outliers due to the imperfect masks
𝑀 generated by Detectron2 [35] or see-through surfaces such as windows. As a result,
simply using a mean of the points in 𝐹𝑖 doesn’t give good results. Instead, we employ
the median of all points in 𝐹𝑖, which has proven to be a more robust estimator in
handling these outliers.

To further enhance the robustness of our estimator, we can shrink the mask 𝑀𝑖. This
is based on our belief that the central area of the mask is likely to contain fewer outliers
compared to the edges. For this purpose, we employ binary dilatation from the SciPy
package to shrink the mask.

However, a crucial step is to determine the number of iterations 𝑘𝑖, needed for the
mask 𝑀𝑖 shrinking. It’s important that 𝑘𝑖 is always greater than zero to ensure that
the mask is indeed shrunk, but at the same time, it also must not be so large, otherwise
the mask will disappear. We have empirically found and tested an estimator for the 𝑘𝑖
for each mask 𝑀𝑖. This calculation is done as follows:

𝑘𝑖 = int(2 + (√∑ 𝑀𝑖)/10) (4)

As the mask 𝑀𝑖 is a binary mask, the sum of all elements corresponds to the total
number of foreground pixels. Since the area shrinks in a quadratic manner, we need
to consider the square root of the total number of foreground pixels in the mask 𝑀𝑖.
Here, 𝑖𝑛𝑡 represents the operation of casting values to the integer type. Utilizing the
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more robust location estimator is especially useful in tracking, described in the following
Chapter 4.

To eliminate obvious outliers, we remove all points whose distance from the estimated
location exceeds 4 meters. This simple yet effective filtering is demonstrated in Figure
3.5. However, this process of location estimation and further filtering can fail as shown
in Figure 3.6.

a) b)

Figure 3.5. Example of the simple filtering of the segmented points. (a) raw segmented
points, (b) filtered segmented points.

a) b)

Figure 3.6. Example of an unsuccessful segmentation of a moving car. The segmentation
failed due to a low ratio of inliers to outliers. The imbalance led to the location estima-
tion being placed in the background, and the following filtering wrongly removed all the
foreground points. (a) Green segmented points, clearly being in the background (in this

picture trees), (b) correct segmentation of a car in the corresponding image.
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Chapter 4
Temporal consistency

In this chapter, our focus is on leveraging temporal consistency. We begin in Section
4.1 by describing the issue of ambiguity in sparse point clouds. Next, in Section 4.2,
we focus on how can we utilize calibration data from the KITTI dataset [3] to get
frame-to-frame transformations.

Subsequently, Section 4.3 details our method for tracking cars across multiple adja-
cent frames, a key aspect of exploiting temporal consistency. In Section 4.4, we explore
the aggregation of points from multiple frames for standing cars. Additionally, Section
4.5 focuses on estimating the yaw of moving cars based on their trajectories.

The chapter concludes with Section 4.6, where we discuss the challenges posed by
inaccuracies in the localization provided by calibration data. We describe how these
challenges are addressed using the Iterative Closest Points (ICP) algorithm [8], provid-
ing a fine refinement of the frame-to-frame transformations.

4.1 Ambiguity challenge
In the previous Chapter 3, we discussed foreground segmentation of point clouds cor-
responding with objects (specifically cars) within a scene. A notable challenge with
LiDAR scans is their sparsity, which increases with distance. For instance, an object a
few meters away from the ego-vehicle may have thousands of corresponding points in
the LiDAR scan. However, an object approximately 40 meters away might only have
tens of points. This significant reduction in point density at greater distances poses a
challenge for the fitting process. When attempting to fit a generic car mesh to such a
sparse point cloud, multiple solutions are proposed, leading to ambiguity. This issue of
ambiguity is shown in Figure 4.1.

Figure 4.1. Example of the ambiguity fitting challenge in the Bird’s Eye View (BEV).
Green points correspond to a car, and red and blue bounding boxes propose a solution,

however, it is not obvious which one is the correct one.
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To address the ambiguity defined by the sparsity of the LiDAR scans, our strategy
involves aggregating a larger number of points of the car across multiple adjacent frames
or estimating the yaw of the car from its trajectory. Given that our pre-processing
is done offline, which gives us access to future frames, we can utilize this additional
data. With the dataset’s frame rate of 10 Hz, we can observe the car across multiple
frames, significantly increasing point density or we can track the car and thus reducing
ambiguity in the fitting process. This is further discussed in this chapter.

4.2 Frame-to-frame transformations

The KITTI dataset includes calibration data for each frame, which includes IMU (In-
ertial Measurement Unit) readings. These readings contain precise positional data in
the world coordinate frame, given by the Global Navigation Satellite System (GNSS)
and further enhanced with real-time kinematics. This combination can provide posi-
tional accuracy to within a few centimeters. For processing this data, we employ the
Pykitti library [40], which provides frame-to-frame transformations. Pykitti processes
all sequences in the dataset by taking the first frame of each sequence as the world
frame. It then computes transformation matrices for each subsequent frame relative to
this world frame.

In this process, we are focused on transforming any given frame within the sequence
to a reference frame. For any 𝑖-th frame in the sequence, our first step is to transform
frame 𝑖 into the world frame. This is done using the transformation matrix 𝑇 𝑤

𝑖 ∈
ℝ4×4. Subsequently, we transform from the world frame to the reference frame using
another transformation matrix 𝑇 𝑟

𝑤 ∈ ℝ4×4. The transformation matrix 𝑇 𝑟
𝑖 ∈ ℝ4×4,

which converts frame 𝑖 to the reference frame, is calculated as follows:

𝑇 𝑟
𝑖 = 𝑇 𝑟

𝑤𝑇 𝑤
𝑖 = (𝑇 𝑤

𝑟 )−1𝑇 𝑤
𝑖 (1)

However, it’s important to note that this transformation is defined within the IMU
coordinate space. Our entire process, on the other hand, is done with all LiDAR scans
in the camera 2 coordinate space. So, we cannot apply this transformation directly
to LiDAR scans. First, we transform from the camera 2 coordinate space to the IMU
coordinate space using the transformation matrix 𝑇 imu

c2 ∈ ℝ4×4. Following this, we do
the frame-to-frame transformation using 𝑇 𝑟

𝑖 . Finally, we transform back to the camera
2 coordinates using the transformation matrix 𝑇 c2

imu ∈ ℝ4×4. Note, that only 𝑇 c2
imu is

defined in the calibration files. The final transformation matrix operating in the camera
2 coordinate frame is calculated as follows:

(𝑇 𝑟
𝑖 )c2 = 𝑇 c2

imu𝑇 𝑟
𝑖 𝑇 imu

c2 = 𝑇 c2
imu𝑇 𝑟

𝑤𝑇 𝑤
𝑖 𝑇 imu

c2 = 𝑇 c2
imu(𝑇 𝑤

𝑟 )−1𝑇 𝑤
𝑖 (𝑇 c2

imu)−1 (2)

4.3 Car tracking
To effectively aggregate additional data from adjacent frames, as previously mentioned,
we exploit temporal consistency. This involves tracking each vehicle across all frames,
to ensure that multiple instances of cars are correctly distinguished. As it is crucial to
avoid mixing data of different instances. Additionally, we need to determine whether
each instance represents a standing or moving car. This distinction is crucial as it allows
us to gather different types of data depending on the car’s state.
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We set a fixed number of frames to be processed both before and after the reference

frame, which is the sample from the training set. Empirically, we determined that
30 frames on both sides of the reference frame (totaling 60 frames) provide sufficient
coverage. This equates to 3 seconds before and after the reference frame, considering
the dataset’s sampling rate of 10 Hz

The initial step involves processing all images corresponding to frames using Mask-
RCNN [23]. To speed up the computation, we set the batch size to 20. For each frame
and its corresponding image, we extract the spatial locations of cars 𝐿 ∈ ℝ3×𝑛 using
the robust location estimator described in Section 3.3. For each car location 𝐿𝑖 ∈ ℝ3,
the corresponding segmented point clouds 𝐹𝑖 and binary masks 𝑀𝑖 are also extracted.
We omit any detected cars with fewer than two segmented points.

The spatial location 𝐿𝑖 of each car is then transformed into the reference coordinate
frame using the transformation matrix 𝑇 𝑟

𝑖 , as detailed in Section 4.2. All transformed
locations in the reference frame behind the ego-vehicle are removed. Additionally, the
segmented point clouds 𝐹 are also transformed into the reference coordinate frame.

For each frame 𝑖, we now have 𝑛 spatial car locations 𝐿𝑛, segmented point clouds 𝐹𝑛,
both transformed into the reference coordinate frame, and corresponding binary mask
𝑀𝑛. However, at this stage, the correspondences between car instances across different
frames are not yet established.

To resolve this, we implement a tracking algorithm that we have developed. This
algorithm’s primary goal is to track the cars over the sequence of frames, to establish
the necessary correspondences. The output of this algorithm is an array, where each
entry represents a unique car instance identified over some subset of the frame sequence.
Each car instance contains 𝑘 spatial locations 𝐿𝑘, segmented point clouds 𝐹𝑘, binary
masks 𝑀𝑘, and additional information 𝐼𝑘 (such as bounding box and score). Here, 𝑘
represents the number of frames in which the car was observed and successfully tracked.
The pseudo-code for our tracking algorithm is presented on page 27.

In cases where a car instance has only been seen once previously, we simply use the
last known location as the estimated location. However, when we have access to at
least two locations for a car instance from the past, we implement a motion model to
predict its current location. The motion model we employ is outlined as follows:

𝐿𝑡
𝑖 = 𝐿𝑡−1

𝑖 + (𝐿𝑡−1
𝑖 − 𝐿𝑡−2

𝑖 )

Where 𝑖 denotes the 𝑖-th tracked car and 𝑡 denotes the frame index. This motion
model is especially important for tracking moving cars.

In the matching process, we aim to pair each car instance 𝑖, with a given location,
in the current frame with the closest corresponding tracked car 𝑧, with a predicted
location, in the Euclidean space. To make our tracker robust, we require two key
conditions to be satisfied: Firstly, the tracked car 𝑧 must be the nearest to the current
car 𝑖 in terms of an Euclidean distance. Secondly, the current car 𝑖 must also be the
nearest to the tracked car 𝑧.

Additionally, even when both conditions are satisfied, we introduce a further con-
straint: the distance between the matched cars must be less than 5 meters. This
constraint is to prevent unrealistic matches that could occur. If all of these conditions
are satisfied, then we take them as a match and we can establish the correspondence.

It’s worth noting a limitation in our tracking method: it cannot recover from a
lost object. This means that if a vehicle disappears in a frame and then reappears in
subsequent frames, it will be treated as two distinct instances. However, the occurrence
of this situation is very rare.

26



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Standing cars

Algorithm 4.1 Car Tracking Algorithm

1 Input: Car locations for each frame in the reference coordinate frame
2 Output: Car instances with locations over the frames in the reference co-
3 ordinate frame
4

5 begin
6 tracked = []
7 final = []
8 for i in frames:
9 current = car locations in frame i

10 if number of current > 0:
11 for each tracked estimate location
12 for k in current:
13 if number of tracked > 0:
14 perform matching of k-th current with tracked
15 if matched:
16 add location of k-th current to matched tracked
17 else:
18 move k-th current to tracked
19 else:
20 move all current to tracked cars
21

22 move all unmatched tracked to final
23 else:
24 move all tracked to final
25 move all tracked to final
26 return final
27 end

The next step in our process involves filtering out all instances of tracked cars that
are not visible in the reference frame. This step is needed because such instances are
just not labeled in the KITTI dataset, otherwise, they will pose as false positives. After
this filtering, we categorize the remaining tracked cars into two groups: standing and
moving. This categorization is based on the distance the vehicle has traveled: if the
total path length of a tracked vehicle exceeds 5 meters, we classify it as a moving car.
If the distance is less than this threshold, the car is considered as standing.

4.4 Standing cars
For each instance of a standing tracked car 𝑖, observed across 𝑛 frames, we have the
spatial location 𝐿𝑖,𝑛, segmented point cloud 𝐹𝑖,𝑛, binary mask 𝑀𝑖,𝑛 and information
𝐼𝑖,𝑛. Both the spatial locations and segmented point clouds are in the reference coor-
dinate frame. By compensating for the movement of the ego-vehicle using the known
transformation matrices 𝑇 𝑟

𝑖 we ensure that the segmented point cloud remains in a con-
sistent location across all frames. This is enabled by the fact, that the car is standing.
This consistency allows us to concatenate all individual point clouds 𝐹𝑖,𝑛 from different
frames into a single aggregated point cloud ̂𝐹𝑖.

This process enables us to give a much denser point cloud ̂𝐹𝑖, which helps mitigate
the ambiguity shown in Section 4.1. It improves the performance of our method signif-
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icantly, especially for the Hard examples in the KITTI dataset, which are represented
by cars in the distance. We can virtually move closer to those hard examples, extract
the points, and then move back.

̂𝐹𝑖 =
𝑛

∑
𝑘=1

𝐹𝑖,𝑛 (3)

Where 𝑖 represents the index of the instance, 𝑛 denotes the number of frames in which
instance 𝑖 has been tracked. The sum denotes concatenation. The point aggregation is
shown in Figure 4.2.

a) b)

Figure 4.2. Example of the point aggregation exploiting the temporal consistency for stand-
ing cars. (a) Segmentation is employed only in the reference frame, (b) Segmentation is
employed in 30 scans before and after the reference frame, and then the segmented points

are aggregated together. Downsampling is not used for visualization purposes.

As the number of points in each 𝐹𝑖 can be excessively large, to keep the computational
requirements at a reasonable level, we implement two downsampling methods: random
and voxel. We achieve the best results by applying these methods independently to 𝐹𝑖
and then concatenating the resulting downsampled point clouds. The reasoning behind
this approach is as follows.

Random downsampling, in theory, uniformly reduces the point density across all
areas. We assume that areas with a higher density of points are less likely to be
outliers and therefore should be given preference. Voxel downsampling, on the other
hand, retains areas that are observed at least once, thus more effectively preserving
the overall shape of the car, at the cost of including outliers. By combining these two
downsampling methods, we get a point cloud that not only preserves the general shape
of the car but also keeps points from locations with a high likelihood of being inliers.

The random downsampling process is written using NumPy slicing, while voxel down-
sampling is performed with the PyntCloud library, with a set voxel size of 0.15 meters.
The results of this downsampling process are illustrated in Figure 4.3.

It’s important to highlight a potential problem in our classification of standing cars.
Consider a scenario where a car is waiting at a red light and then begins to accelerate
slowly. If this slow movement does not surpass our 5-meter threshold, the car may
still be classified as standing. However, because the car is not standing, the aggregated
point cloud becomes blurred due to the small movement of the car. Consequently, this
leads to wrong results in the fitting process. On the other hand, these occasions are
very rare, so they do not pose a significant problem for our method. This problem is
shown in Figure 4.4.
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a) b)

c) d)

Figure 4.3. Example of the downsampling of the segmented cars. (a) raw segmented car,
(b) random downsampling to 1000 points, (c) voxel downsampling with voxel size 0.15m,

(d) concatenation of random and voxel downsampled points.

Figure 4.4. Example of the wrong classification of a standing car. In the upper image, the
cars are moving slowly in a traffic jam, and the car with a green mask in the left part of
the image is classified as standing. In the lower image, we can see, that aggregated points

over the frames are blurred of the blue car, as the car is moving.
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4.5 Moving cars
For each instance of a moving tracked car 𝑖, observed across 𝑛 frames, we have the
spatial location 𝐿𝑖,𝑛, segmented point cloud 𝐹𝑖,𝑛, binary mask 𝑀𝑖,𝑛 and information
𝐼𝑖,𝑛. The process of aggregating point clouds for the moving cars are significantly
challenging problem, as the compensation for the movement of the ego-vehicle is not
sufficient. A highly accurate tracking of the car’s movement in space is required to
establish the precise rigid transformation of the car between frames.

We experimented with using the Iterative Closest Point (ICP) method to align the
adjacent pair of segmented point clouds 𝐹𝑖,𝑛 and 𝐹𝑖,𝑛−1 frame by frame, trying to find
the perfect fit. However, this approach often failed, mainly because the segmented point
clouds can differ significantly between frames.

Instead, we have discovered that accurately estimating the yaw (rotation around the
vertical axis) of the car significantly simplifies the fitting process. This estimation of
yaw also effectively addresses the ambiguity challenge previously described in Section
4.1.

As we have successfully tracked the given instance, a reliable estimate of its trajec-
tory is available. This makes it easy to estimate the car’s yaw – its rotation around
the vertical axis – from this trajectory. However, for a robust estimation of yaw, we
require that the instance must have been tracked for a minimum of three frames. The
trajectories used for the yaw estimation are shown in Figure 4.5.

Figure 4.5. Example of the tracking of the moving cars. The upper image shows the scene,
while the lower case shows the trajectories of the cars from the past and the future.

To calculate the yaw angle, we consider each pair of spatial locations 𝐿𝑖,𝑘 and 𝐿𝑖,𝑟
where 𝑟 denotes the index of the reference frame and 𝑘 represents a set of indices such
that 𝑘 = {𝑘 ∈ ℤ | 𝑘 = 1...𝑛, 𝑘 ≠ 𝑟}, with 𝑛 being the total number of locations.
We select five pairs of locations both before and after the reference frame to compute
the yaw. The computation of the yaw angle for each pair of locations is based on the
following equation:
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𝜃 = arctan2(𝐿𝑖,𝑛(𝑧) − 𝐿𝑖,𝑛−1(𝑧), 𝐿𝑖,𝑛(𝑥) − 𝐿𝑖,𝑛−1(𝑥)) (4)

We employ NumPy implementation of arctan2. It’s important to clarify, that our
method operates within the camera 2 coordinate frame. Consequently, when viewing
from the bird’s eye view (BEV), the 𝑦 axis vanishes, and only 𝑥 and 𝑧 are present. This
is a key distinction from operating in the LiDAR coordinate space, where the 𝑧 axis
would be absent in the BEV.

To ensure the robustness of our yaw estimation, we require that the distance between
points in each pair must be at least 3 meters. After computing the yaw estimations for
all valid pairs, we compute the median value out of these estimations as our final yaw
estimation. This approach of using the median helps in mitigating the impact of any
outliers in the estimations.

4.6 Iterative closest point refinement
While working with the frame-to-frame transformations and subsequent aggregation of
points from standing cars, we encountered instances where the aggregated point cloud,
denoted as ̂𝐹𝑖, appeared blurred. Initially, we thought that this blurring might be
caused, by the effect, that the LiDAR scanner needs approximately 100 ms to do the
complete scan. During this interval, any movement of the ego-vehicle could distort the
captured scene. However, during further investigation, we realized that this was not
the case.

The actual problem lies in the imprecise IMU. Despite the theoretical claim that this
system can achieve precision up to a few centimeters, in practice, it does not consistently
maintain this level of accuracy. Various factors can distort the localization such as a
low number of satellites in view or signal reflection from buildings. Those factors lead
to a less accurate position provided by the IMU, which in the end causes the blurring
of the aggregated point cloud ̂𝐹𝑖.

In order to achieve an optimal alignment of the frames, we decided to refine the trans-
formation matrices 𝑇 𝑟

𝑖 using the Iterative Closest Point (ICP) [8] algorithm, specifically
its point-to-plane variant. We use the IMU frame-to-frame matrices as a prior estimate,
providing a solid baseline for the alignment. We then apply the ICP algorithm to the
LiDAR scans from the adjacent frames. This step enables us to finely refine the trans-
formation matrices, which will reduce the blurring of the point cloud ̂𝐹𝑖.

In the initial version of our approach, we tried to directly refine the transformation
matrix 𝑇 𝑟

𝑖 for each frame 𝑖, where 𝑖 is defined as 𝑖 = {𝑖 ∈ ℤ | 𝑖 = −𝑛...0...𝑛, 𝑖 ≠ 𝑟},
with 𝑛 representing the number of frames before and after the reference frame. However,
as the time difference between the two frames increased, the overlap of the LiDAR scans
became small. This reduced overlap posed a significant challenge for the ICP algorithm,
which then often failed and proposed even worse solutions than the IMU frame-to-frame
transformations. The problem is shown in Figure 4.6.

In the second version, we approach the fine refinement process by focusing on each
pair of adjacent frames. For this, we use the transformation matrix 𝑇 𝑖

𝑖−1, where 𝑖 is
defined as 𝑖 = {𝑖 ∈ ℤ | 𝑖 = −𝑛 + 1...0...𝑛}. Again, we used the IMU frame-to-frame
matrices as a prior. As these frame pairs are directly adjacent, the differences between
their LiDAR point clouds are negligible. This significantly increases the probability of
ICP converging to a better solution. Having the refined transformation matrices for
each pair of adjacent frames, we can compute the refined transformed matrix 𝑇 𝑟

𝑖 as
follows:
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Figure 4.6. Example of two LiDAR scans are taken from the same sequence in the KITTI [3]
dataset. The LiDAR scans are captured three seconds apart, which represents the max-
imum time we employ the tracking. As those LiDAR scans are different, aligning them

poses a challenge.

𝑇 𝑟
𝑖 =

𝑟
∏

𝑘=𝑖+1
𝑇 𝑘

𝑘−1 (5)

This second version proved itself to be robust and showed a significant performance
boost for our method.

For the implementation of the ICP algorithm, we employ the version available in
the Open3D Python library. The first step in our process estimates normals for each
point cloud. We do this using a radius of 0.5 meters and setting a limit of a maximum
of 30 neighbors for each point. Once the normals are estimated, we then execute the
ICP algorithm, setting the maximum correspondence distance to 0.1 meters. The fine
refinement by ICP is shown in Figure 4.7

a) b)

Figure 4.7. Example of the same frame from the KITTI [3] dataset. In both images, the
points are aggregated from 30 frames before and after the reference scan. (a) uses the
frame-to-frame transformation provided by the KITTI dataset. (b) uses the frame-to-
frame transformation provided by the KITTI dataset as a prior and then Iterative Closest

Point [8] for fine refinement.

There are some cases in the KITTI dataset, that the localization from IMU data is
distorted, and ICP cannot recover from that. This situation is shown in Figure 4.8 and
happens only in one captured sequence.
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Figure 4.8. Example of a situation, where the ICP fails because the localization from IMU
data from the KITTI [3] is distorted.
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Chapter 5
Rigid shape model fitting

This chapter is dedicated to the process of fitting a generic shape mesh to segmented
(aggregated) point clouds. We begin in Section 5.1, where we describe the meshes and
their conversion process into point clouds. Following this, Section 5.2 discusses the use
of raycasting on these generic shape meshes to produce raycasted point clouds.

In Section 5.3, the focus shifts to the fitting process specifically for standing cars.
On the other hand, Section 5.4 discusses the process of the fitting process for moving
cars. Section 5.5 then proceeds into how raycasted templates are employed within the
fitting process. In Section 5.6, we explore various loss functions that are crucial to the
fitting process.

The chapter concludes with Section 5.7, where we provide an idea behind the His-
togram Yaw Estimation, particularly in the context of standing cars.

5.1 Meshes
To effectively fit a generic shape mesh to various car types, it’s crucial to choose a
mesh that represents the common categories of cars. In real-world scenarios, most cars
can be classified into a few categories, such as hatchbacks, sedans, SUVs, MPVs, and
pickups. We aren’t focused on the pickups, as we employ our method on the KITTI [3]
dataset, which takes place in Germany, where the percentage of pickups among all cars
in Germany is very low.

Initially, we decided to use a single mesh corresponding to a hatchback. This choice
is reasonable as hatchbacks share similarities with SUVs and MPVs and also offer clear
differentiation of the car’s orientation. This is important because sedans can appear
symmetrical, especially when rotated by 180 degrees around the 𝑦-axis (yaw). However,
it is worth noting that the 3D objection detection evaluation script for the KITTI
dataset does not differentiate the car’s orientation. For our purposes, we have selected
the Fiat Uno model as our hatchback representation, taken from [41]. The chosen mesh
effectively represents the generic shape of a car and is shown in Figure 5.1.

The subsequent step in our method involves converting the mesh into a point cloud,
which is needed for the fitting process. To achieve this, we randomly sample 1000
points from the mesh. Notably, we have excluded the bottom (floor) of the car from
this sampling process, as these points are not visible and thus not useful for the fitting.
The resulting sampled point cloud, denoted as 𝑃ℎ ∈ ℝ3×1000, is shown in Figure 5.1.

Once 𝑃ℎ is generated, we load it into memory and proceed to shift it so the centre
of the mesh is located at the origin of the coordinate frame. Following this alignment,
we apply an upward shift to 𝑃ℎ. We have empirically determined that a shift of 0.2
meters is optimal for this particular mesh to achieve the best performance during the
fitting process. This adjustment is necessary to compensate for a slight bias introduced
by the estimator of spatial location.

After shifting 𝑃ℎ, our next step is to scale it to match real-life spatial dimensions.
We use the average dimensions of cars in the KITTI dataset as a prior estimate for this
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a) b)

Figure 5.1. (a) Mesh of a Fiat Uno, which is utilized as a template for the fitting process.
The image is taken from [41]. (b) point cloud generated by 1000 randomly sampled points

on the Fiat Uno mesh (a).

scaling. The prior estimate is based on the dataset, where the average car dimensions
are 1.53 meters in width, 1.63 meters in height, and 3.88 meters in length.

As we have continued our research, especially in the development of the Scale Detector
described in Chapter 6, it became apparent that adding another car type is necessary
to increase the performance of our method. Specifically, we need to include a sedan
model, as fitting a hatchback template to a sedan is not precise enough. To address
this, we selected a mesh model of a Volkswagen Passat, taken from [42]. The mesh for
this sedan, along with its corresponding sampled point cloud 𝑃𝑠 ∈ ℝ3×1000, is shown in
figure 5.2.

a) b)

Figure 5.2. (a) Mesh of a Volkswagen Passat used as a second template for fitting. The
image is taken from [42]. (b) point cloud consisting of 1000 randomly sampled points on

the mesh (a).

5.2 Raycasting on meshes
In our fitting process, using the entire mesh of a car may not always be practical, as
it’s impossible to see the entire vehicle from a single viewpoint, as a significant part of
the car is occluded by itself. The portion of the car that is visible to us is determined
by the viewing angle, which is defined by the car’s location and yaw.

To employ this strategy, we take our two selected mesh models — the Fiat Uno
and the Volkswagen Passat — and create a corresponding point cloud 𝑃rh ∈ ℝ3×𝑛 or
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𝑃rs ∈ ℝ3×𝑛, where 𝑛 denotes the number of points, to a given viewing angle. We achieve
this by rotating each car model around the 𝑦-axis. For every one-degree increment in
this rotation, we perform raycasting on the mesh. This process generates a partial point
cloud 𝑃rh or 𝑃rs representing the portion of the mesh visible from that specific viewing
angle. However, it’s important to note that due to imperfections in the mesh models,
which are not completely water-tight, this raycasting process can sometimes produce
outliers. The results of this raycasting process, including potential outlier points, are
illustrated in Figure 5.3.

a) b)

Figure 5.3. Example of the raycasting performed on the mesh. (a) Only the points, that
are visible based on the viewing angle are sampled, (b) Point cloud resulting from the

raycasting process on the mesh.

The raycasting is performed with Open3D [43] Python library. As the LiDAR point
cloud generated by the raycasting is usually dense, we employ voxel downsampling with
a voxel size of 0.025 metres, also using the Open3D Python library.

5.3 Fitting of standing cars
In this section, our focus is on fitting a generic car template to standing cars. At this
point, we have the segmented aggregated point clouds ̂𝐹, as outlined in Chapter 4, and
point clouds 𝑃ℎ and 𝑃𝑠, which correspond to the hatchback and sedan car categories,
described in Section 5.1. For standing cars, we primarily utilize ̂𝐹, as there is no
available estimate of the yaw angle for the standing vehicles. During our evaluation
process, we have found that using both point clouds 𝑃ℎ and 𝑃𝑠 simultaneously does not
yield a better performance of our method. Therefore, in the fitting process, we employ
only the hatchback template point cloud 𝑃ℎ.

For each 𝑖-th car represented by dense point cloud ̂𝐹𝑖, the first step is to decide
whether we have sufficient data to perform a reliable fitting. We exclude any 𝑖-th car
with corresponding point cloud ̂𝐹𝑖 that has fewer than 1000 points in the ̂𝐹𝑖. The
reasoning behind this threshold is that point clouds with fewer points often face the
ambiguity challenge, as discussed in 4.1. It is important to note that at this stage, the
point clouds ̂𝐹 are not yet downsampled. As the point clouds are aggregated over many
frames, they can have tens of thousands of points for each car.

The subsequent step involves downsampling the point cloud ̂𝐹𝑖 using the combination
of random and voxel downsampling methods we previously outlined in Section 4.4. After
downsampling, our next task is to estimate the spatial location of the 𝑖-th car, which
will serve as a prior for the fitting process. For this estimation, we use our robust spatial
location estimator, described in Section 3.3. This estimator calculates the median of
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all points, each axis separately, in the point cloud ̂𝐹𝑖, providing a reliable estimate of
the car’s location.

The 3D detection problem for cars is generally defined by seven degrees of freedom
(7-DOF): three for spatial location, three for the car’s dimensions, and one for yaw.
In this phase of the process, we simplify the problem to 4-DOF by setting the car’s
dimensions to the average dimensions derived from the KITTI dataset. Despite having
a prior estimate for the spatial location, which theoretically reduces the optimization
space, performing the optimization over a 4D space is still infeasible. The reason is
that our optimization process, consisting of a brute-force approach, would require an
impractically large number of iterations.

In the fitting process, we chose to exclude optimization along the 𝑦-axis (the verti-
cal axis) based on two key considerations. First, our robust spatial location estimator
reliably determines the 𝑦-axis location. Second, and more importantly, the 𝑦-axis es-
timated location remains unaffected by the yaw rotation, for which we currently have
no prior estimation. Our optimization strategy is executed in two distinct stages: an
initial coarse optimization and a subsequent fine optimization.

The coarse optimization phase optimizes over the parameters 𝑥, 𝑧, and 𝜃, where 𝜃
represents the yaw angle of the car. We define a region 𝐶𝑐 ∈ {−2, ..., 2} × {−2, ..., 2} ×
{0, ..., 360} for the coarse optimization. The first and second dimensions denote the 𝑥
and 𝑧 ranges in metres. The third dimension denotes the range of 𝜃 in degrees. We
sample the region with 20 steps for each dimension, resulting in 𝑥 and 𝑧 steps being
0.21 metres and the 𝜃 step being 19 degrees.

Within this region, we define a parameter set 𝑄 = {𝑞 ∈ ℝ3 | 𝑞 ∈ 𝐶𝑐} and parameters
𝑝 ⊂ 𝑄, and considering the given estimated spatial location 𝑒 ∈ ℝ3 along with the
average KITTI car dimensions as a prior, we can represent a car in 3D using a total of
7 parameters. These parameters consist of the spatial location, dimensions, and yaw of
the car as follows:

𝑥 = 𝑒(𝑥) + 𝑝(𝑥) 𝑦 = 𝑒(𝑦) 𝑧 = 𝑒(𝑧) + 𝑝(𝑧) 𝜃 = 𝑝(𝜃) 𝑙 = 3.88 ℎ = 1.63 𝑤 = 1.53
(1)

Where 𝑙, ℎ, 𝑤 denotes the length, height, and width of the car in meters. The pa-
rameters 𝑥, 𝑦, 𝑧 represent the car’s spatial location, while 𝜃 denotes the yaw. To align
the template point cloud 𝑃ℎ with these state parameters, 𝑃ℎ is shifted and rotated
according to the parameters. It’s important to note that 𝑃ℎ is already scaled to the
average car dimensions, so further scaling is not required at this stage. We use the
complete point cloud 𝑃ℎ, rather than its raycasted version, which is later reasoned in
this chapter.

The final step in our coarse optimization process involves computing the loss for all
parameters 𝑝 ⊂ 𝑄. We then select the parameters with the lowest loss value, 𝑝opt, as
our optimal solution. The specific loss functions used in this process are discussed later
in the chapter. However, the relatively large step size for 𝜃 can lead to imperfect fitting.
To refine this, we conduct fine fitting focused only on the yaw of the car.

We define a region 𝐶𝑓 ∈ {0, ..., 360} for the fine fitting, which is one-dimensional,
as the only parameter we optimize over is the yaw. Thus, we can afford a finer step
size of 1 degree with 360 samples. Within this region, we define a parameter set
𝑄𝑓 = {𝑞𝑓 ∈ ℝ1 | 𝑞𝑓 ⊂ 𝐶𝑓}, together with the previously determined optimal parameters
𝑝opt and parameter 𝑝𝑓 ⊂ 𝑄𝑓, the estimated spatial location 𝑒 ∈ ℝ3, and the average
KITTI car dimensions as a prior. We can represent a car in 3D with the same 7
parameters as follows:
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𝑥 = 𝑝opt(𝑥) 𝑦 = 𝑒(𝑦) 𝑧 = 𝑒(𝑧) + 𝑝opt(𝑧) 𝜃 = 𝑝𝑓(𝜃) 𝑙 = 3.88 ℎ = 1.63 𝑤 = 1.53
(2)

Where 𝑙, ℎ, 𝑤 denotes the length, height, and width of the car in meters, 𝑥, 𝑦, 𝑧
represents the spatial location, and the 𝜃 denotes the yaw of the car. For each parameter
𝑝𝑓, we adjust the template point cloud 𝑃ℎ by shifting and rotating it according to the
values in 𝑝𝑓 and 𝑝opt. After this transformation, we compute the loss for each parameter
𝑝𝑓.

We then select the optimal parameter, denoted as 𝑝fopt ⊂ 𝑄𝑓, which is the one having
the lowest loss, following the same criterion used in the coarse fitting process. Although
the fine fitting process improves the performance, it is mainly useful in correcting small
errors in the yaw estimation. This limitation is a bottleneck in cases where the initial
bounding box estimation is completely wrong, as shown in Figure 5.4. In such scenarios,
the fine fitting process is not able to help at all.

Figure 5.4. Example of fine fitting limitation, as it can’t recover from completely wrong
yaw prediction provided by the coarse fitting. Orange points represent the car, the red
bounding box represents the ground truth, the green bounding box represents the output
of the coarse fitting and the light blue bounding box represents how would the output of
coarse fitting look if we set the correct yaw. This figure illustrates that as the fine fitting
can only change yaw, it can’t recover from the completely wrong coarse fitting output.

This fitting process effectively generates all the necessary parameters to define the
3D detection of a car, encoded in the form of a 3D bounding box. These 3D bounding
boxes can then be exported into .txt files, functioning as KITTI [3] dataset labels.
These labels can be either used for the evaluation of our method or as training data for
a 3D detector. The improvement that fine fitting brings to the process is illustrated in
Figure 5.5, where the results of coarse and fine fitting are compared.

To further illustrate the capability of our fitting process, we present examples of suc-
cessful fittings for standing cars in Figure 5.6. Additionally, Figure 5.7 shows examples
of instances where the fitting process encounters problems, highlighting the challenges
and limitations of the fitting process.

38



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 Fitting of standing cars

a) b)

Figure 5.5. Example of the difference between the coarse and fine fitting. (a) A coarse fit
to a car, (b) a fine fit to the same car. Green points are aggregated points corresponding
to a car, red points correspond to a template point cloud 𝑃ℎ fitted to the standing cars,

and red bounding boxes denote the 7-DOF optimal parameters.

Figure 5.6. Examples of frames containing only standing cars and how our fitting performs
well on those frames in terms of Bird’s Eye View (BEV). Green points are aggregated points
corresponding to cars, red points correspond to a template point cloud 𝑃ℎ fitted to the

standing cars, and red bounding boxes denote the 7-DOF optimal parameters.
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a) b)

Figure 5.7. Examples of problematic situations in the standing cars fitting process. (a) The
fitted template has an incorrect yaw, as the correct fit should be rotated by 90 degrees.
(b) even though the BEV looks perfect, the correct fit should be rotated by 180 degrees, as
the car orientation is wrong. However, the KITTI [3] object detection dataset evaluation
does not care about this ambiguity. Green points are aggregated points corresponding to
a car, red points correspond to a template point cloud 𝑃ℎ fitted to the standing cars, and

red bounding boxes denote the 7-DOF optimal parameters.

5.4 Fitting of the moving cars
In this section, we’ll detail how the fitting process for moving cars differs from that of
standing cars. One key difference is that for moving cars, we do not use the segmented
aggregated point clouds ̂𝐹. This is because the aggregation of points for moving objects
is very challenging. Instead, we use the segmented point clouds 𝐹, as described in
Chapter 3. Additionally, the fitting process utilizes the yaw estimation derived from
the car’s trajectory described in Section 4.5. For this fitting, we also use only the
template point cloud 𝑃ℎ.

While we also perform downsampling on 𝐹 for moving cars, it’s a rare occasion
because these point clouds are not aggregated over multiple frames, so they are not
dense. Unlike with standing cars, we do not discard moving cars based on the number
of points in the cloud. The estimation of the spatial location is performed in the same
manner as with standing cars.

For moving cars, we again exclude optimization over the 𝑦-axis. Given the yaw
estimation from the trajectory, we also omit optimization over yaw. In rare cases,
where a moving car is not visible for at least three frames, we apply the same fitting
process used for standing cars.

The fitting process for moving cars is conducted over a region 𝐶𝑚 ∈ {−2, ..., 2} ×
{−0.5, ..., 2.5}. This fitting process optimizes only the parameters 𝑥 and 𝑧. The first
dimension denotes the range of 𝑥, while the second dimension denotes the range of 𝑧,
both are in metres. We sample the region with 20 points for each dimension. The
adjustment in the 𝑧-axis range is based on our observation that our robust spatial
location estimator tends to place estimated locations slightly closer than the actual
positions. Together with the fixed yaw, this allows us to lower the 𝑧-axis range.

We define a parameter set 𝑄 = {𝑞 ∈ ℝ2 | 𝑞 ⊂ 𝐶𝑚} and a parameters 𝑝 ⊂ 𝑄, with
the estimated spatial location 𝑒 ∈ ℝ3, the estimated yaw ̂𝜃 ∈ ℝ1, and the average
KITTI car dimensions as a prior. We describe a moving car in 3D using the following
7 parameters:
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𝑥 = 𝑒(𝑥)+𝑝(𝑥) 𝑦 = 𝑒(𝑦) 𝑧 = 𝑒(𝑧)+𝑝(𝑧) 𝜃 = ̂𝜃 𝑙 = 3.88 ℎ = 1.63 𝑤 = 1.53 (3)

Where 𝑙, ℎ, 𝑤 denotes the length, height, and width of the car in meters, 𝑥, 𝑦, 𝑧
represents the spatial location, and the 𝜃 denotes the yaw of the car. We adjust the
template point cloud 𝑃ℎ by shifting and rotating it to match the parameters 𝑝. Then
we proceed to find the parameters 𝑝opt with the lowest loss.

We have discovered that when the yaw of the car is accurately estimated, it leads
to a significant simplification of the fitting process as this approach directly addresses
the ambiguity challenge described in Section 4.1. Despite the sparsity of the point
cloud 𝐹𝑖 corresponding to 𝑖-th car to which we try to fit our template 𝑃ℎ, we achieve
surprisingly accurate results in fitting moving cars. Moreover, this fitting process is
significantly faster than that for standing cars due to the reduced dimension of the
parameter space.

As for standing cars, the fitting process generates all the necessary parameters to
define the 3D detection of a car, encoded in the form of a 3D bounding box. These 3D
bounding boxes can then be exported into .txt files, functioning as KITTI [3] dataset
labels. These labels can be either used for the evaluation of our method or as training
data for a 3D detector. Examples of successful fitting of moving cars are illustrated in
Figure 5.8, and instances where the fitting presents challenges are shown in Figure 5.9.

Figure 5.8. Examples of frames containing only moving cars and how our fitting performs
well on those frames in terms of Bird’s Eye View (BEV). Green points correspond to cars,
small green cubes denote the trajectories, red points correspond to a template point cloud
𝑃ℎ fitted to the moving cars, and red bounding boxes denote 7-DOF optimal parameters.
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a) b)

Figure 5.9. Examples of problematic examples for the moving cars fitting. (a) The fitted
template 𝑃ℎ is in a completely wrong location because of the high outlier-to-inlier ratio,
even though the trajectory is correct, (b) the fitted template 𝑃ℎ is not perfectly aligned
with the segmented point cloud 𝐹𝑖. Green points correspond to cars, small green cubes
denote the trajectories, red points correspond to a template point cloud 𝑃ℎ fitted to the

moving cars, and red bounding boxes denote 7-DOF optimal parameters.

5.5 Raycasted templates in the fitting
As previously detailed in Section 5.1, we have generated raycasted point clouds 𝑃rh,
which include only the points visible given a specific viewing angle. To effectively
utilize these raycasted point clouds in our fitting process, we first need to determine
the viewing angle of a detected car. This angle is calculated based on the location and
yaw of the car.

For each parameters 𝑝, provided at each step of the optimization, along with the
estimated spatial location 𝑒 ∈ ℝ3, we can calculate the viewing angle 𝛼 as follows:

𝛼 = atan2(𝑒(𝑧) + 𝑝(𝑧), 𝑒(𝑥) + 𝑝(𝑥)) + 𝑝(𝜃) − 𝜋/2 (4)

Once we have determined the viewing angle 𝛼, we select the corresponding raycasted
point cloud 𝑃rh. During the optimization process, we shift and rotate this selected
point cloud in the same manner as we would with the complete point cloud 𝑃ℎ. By
using the 𝑃𝑟ℎ in the fitting process, we increase the potential similarity between 𝑃rh
and 𝐹𝑖. The application of this technique, employing the raycasted point cloud 𝑃rh in
the fitting process, is shown in Figure 5.10.

Figure 5.10. Example of the raycasted template point cloud 𝑃ℎ employed in the fitting
process on cars in a Bird’s Eye View (BEV) scene. Green points are aggregated points
corresponding to a car, red points correspond to a template point cloud 𝑃rh fitted to the

standing cars, and red bounding boxes denote the 7-DOF optimal parameters.
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However, during the evaluation, we observed that using the raycasted point cloud
𝑃rh in the fitting process does not increase the performance of our method at all when
using the best-performing loss function (Template Fitting Loss). The different loss
functions are described further in the chapter. Consequently, in our fitting process, we
have chosen to use 𝑃ℎ in place of 𝑃rh.

5.6 Loss functions
This section is focused on various loss functions that play a crucial role in the fitting
process of two point clouds. In the context of our method, these point clouds are the
segmented (aggregated) point cloud 𝐹𝑖 ( ̂𝐹𝑖) and the generic shape point cloud 𝑃ℎ. These
loss functions are essential for estimating the alignment between 𝐹𝑖, which represents
the actual car in the scene, and 𝑃ℎ, our template model.

5.6.1 Chamfer Distance Loss
Initially, we have chosen to use the well-known Chamfer Distance Loss. The formula of
the Chamfer Distance Loss is as follows:

𝐿(𝐹𝑖, 𝑃ℎ) = ∑
𝑥∈𝐹𝑖

𝑚𝑖𝑛𝑦∈𝑃ℎ
‖𝑥 − 𝑦‖2

2 + ∑
𝑦∈𝑃ℎ

𝑚𝑖𝑛𝑥∈𝐹𝑖
‖𝑥 − 𝑦‖2

2 (5)

In words, the Chamfer Distance Loss consists of finding the nearest neighbor for
each point in 𝐹𝑖 from the points in 𝑃ℎ and calculating the L2 distance between them.
Then, it sums all these distances for all points in 𝐹𝑖 and repeats the process from the
perspective of 𝑃ℎ.

In our method, we found that Chamfer Distance Loss does not perform well. This
loss function is typically used when comparing very similar point clouds that might only
differ by a rigid body transformation. The Chamfer Distance Loss handles outliers very
poorly. It assigns a high cost to outliers in 𝐹𝑖, as they tend to be far from their nearest
neighbors in 𝑃ℎ. This high cost can cause the fitting process to inadequately adjust for
these outliers, which gives a poor performance as there should be no attention paid to
outliers.

It is interesting to note, though, that the Chamfer Distance Loss shows better per-
formance with the raycasted template point cloud 𝑃rh than with the complete template
point cloud 𝑃ℎ.

To improve the loss function, we propose normalizing each part of the loss by the
size of its corresponding point cloud. The modified formula for the Chamfer Distance
Loss, employing this normalization, is as follows:

𝐿(𝐹𝑖, 𝑃ℎ) = ( ∑
𝑥∈𝐹𝑖

𝑚𝑖𝑛𝑦∈𝑃ℎ
‖𝑥 − 𝑦‖2

2)/|𝐹𝑖| + ( ∑
𝑦∈𝑃ℎ

𝑚𝑖𝑛𝑥∈𝐹𝑖
‖𝑥 − 𝑦‖2

2)/|𝑃ℎ| (6)

5.6.2 Median Chamfer Distance Loss
In our efforts to improve the Chamfer Distance Loss to reduce its sensitivity to outliers,
we have chosen to use the median instead of the sum. This approach follows the usage of
the median within this thesis for its robustness. The modified formula for this Median
Chamfer Distance Loss, which uses the median rather than the sum of point distances,
is as follows:
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𝐿(𝐹𝑖, 𝑃ℎ) = median𝑥∈𝐹𝑖
(𝑚𝑖𝑛𝑦∈𝑃ℎ

‖𝑥 − 𝑦‖2
2) + median𝑦∈𝑃ℎ

(𝑚𝑖𝑛𝑥∈𝐹𝑖
‖𝑥 − 𝑦‖2

2) (7)

Surprisingly, the shift from using a sum to a median in our loss calculation provided
a significant boost in performance. This improvement is primarily due to the median’s
ability to disregard outliers if the ratio of outliers to inliers remains low. At the same
time, the median also discards points that fit perfectly, which is actually a plus because
our iteration step is relatively coarse and we do not care if the distance between a point
is 1 or 2 centimetres, but rather we care if the distance is 1 or 50 centimetres. It’s
interesting to note that, as the original Chamfer Distance Loss, the Median Chamfer
Distance Loss shows better performance when used with the raycasted template point
cloud 𝑃ℎ.

With the same approach as in the Chamfer Distance Loss, we normalize each part of
the Median Chamfer Distance Loss by the size of the corresponding point cloud. We
have thus modified the formula for the Median Chamfer Distance Loss to include this
normalization, and it is structured as follows:

𝐿(𝐹𝑖, 𝑃ℎ) = (median𝑥∈𝐹𝑖
(𝑚𝑖𝑛𝑦∈𝑃ℎ

‖𝑥 − 𝑦‖2
2))/|𝐹𝑖|

+ (median𝑦∈𝑃ℎ
(𝑚𝑖𝑛𝑥∈𝐹𝑖

‖𝑥 − 𝑦‖2
2))/|𝑃ℎ|

(8)

It is worth noting that it is possible to use only one-sided Median Chamfer Distance
Loss, which means either the median over 𝐹𝑖 or 𝑃ℎ is taken. However, none of those
adaptations ever achieved a reasonable performance compared to the double-sided ver-
sions.

5.6.3 Template Fitting Loss

To further refine the Chamfer Fitting Loss, we have developed a new loss, which we call
the Template Fitting Loss. The inspiration comes from the RANSAC algorithm [28],
which utilizes the ratio of inliers to outliers as an optimization criterion. We have chosen
a different approach from the conventional L2 norm. Instead, we employ a saturation
function instead of the L2 norm. This means that if the distance between points is less
than a certain threshold, the value is set to 1, indicating an inlier. On the other hand,
if the distance exceeds this threshold, the value becomes 0, indicating an outlier. The
loss behaves simply as an estimator of the inlier-to-outlier ratio. The formula for the
Template Fitting Loss, employing this saturation-based inlier counting, is as follows:

𝐿(𝐹𝑖, 𝑃ℎ) = ∑
𝑥∈𝐹𝑖

𝑔(𝑚𝑖𝑛𝑦∈𝑃ℎ
‖𝑥 − 𝑦‖2

2) + ∑
𝑦∈𝑃ℎ

𝑔(𝑚𝑖𝑛𝑥∈𝐹𝑖
‖𝑥 − 𝑦‖2

2) (9)

𝑔(𝑑) = {
1 if 𝑑 ≤ 𝜖
0 if 𝑑 > 𝜖

(10)

Where 𝜖 denotes the distance threshold, for which we have empirically found that
the optimal value is 0.2 meters.

The logic behind this loss function is as follows: When aligning two point clouds,
𝐹𝑖 and 𝑃ℎ, our goal isn’t to achieve perfect alignment of just a small subset of points.
Instead, we aim for a reasonable alignment across the majority of the points. In this
context, we don’t care if the distance between points is 1 or 2 centimetres. What
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a) b)

Figure 5.11. Example of the Template Fitting Loss. (a) represents the points from the
template 𝑃ℎ, blue points are from 𝐹𝑖, red points are outliers and green points are inliers
from 𝑃ℎ. (b) represents the points from the 𝐹𝑖, blue points are from 𝑃ℎ, red points are

outliers and green points are inliers from 𝐹𝑖.

matters more is if the distance between points is 1 centimetre (inlier) or 50 centime-
tres (outlier). Our goal is to maximize the number of inliers, those points where the
distance is relatively small. This focus on the inliers instead of distance is employed
by the saturation function 𝑔(𝑑), which differentiates between inliers and outliers. The
visualization of this loss function is shown in Figure 5.11.

The Template Fitting Loss has achieved the best performance among all other loss
functions discussed in this thesis. It achieves the best performance when the complete
template point cloud 𝑃ℎ is used. Again it is a good idea to normalize each part of
the loss by its corresponding point cloud size. This results in an updated formula as
follows:

𝐿(𝐹𝑖, 𝑃ℎ) = ( ∑
𝑥∈𝐹𝑖

𝑔(𝑚𝑖𝑛𝑦∈𝑃ℎ
‖𝑥 − 𝑦‖2

2))/|𝐹𝑖| + ( ∑
𝑦∈𝑃ℎ

𝑔(𝑚𝑖𝑛𝑥∈𝐹𝑖
‖𝑥 − 𝑦‖2

2))/|𝑃ℎ| (11)

It’s worth noting that our loss function essentially represents the inlier-to-outlier
ratio. Therefore, during the optimization process, which involves minimization, we
need to invert the loss by multiplying it by −1. This adjustment is needed so the
optimization process minimizes the number of outliers.

To further enhance the speed of our method, we have successfully utilized the FAISS
library [44], known for its speed in similarity search and clustering of dense vectors.
The integration of FAISS into our method is as follows:

Given that the point cloud 𝐹𝑖 remains constant during the optimization, we take
advantage of this property. We create a quantizer IndexFlatL2 from the FAISS library
to represent 𝐹𝑖. Subsequently, we build an IndexIVFFlat using this quantizer. The
number of cells 𝑛𝑐 for the IndexIVFFlat is determined by a specific formula, which is
designed to optimize the balance between search speed and accuracy. This formula for
selecting the number of cells 𝑛𝑐 in the IndexIVFFlat is as follows:

𝑛𝑐 = ⌊
√

𝑛 (12)

Where 𝑛 denotes the number of points in the 𝐹𝑖. Since building the index is a time-
consuming step, we perform it only once at the beginning of the optimization. The
points are then divided into multiple cells in the index. We can adjust a parameter to
control how many neighboring cells are searched around a prior estimate. Setting this
parameter to the total number of cells follows the behaviour of a k-nearest neighbors
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algorithm. However, reducing the parameter makes the search approximate, which is
more efficient. For our method, searching only the cell of the prior estimate has proven
to be sufficiently precise while also being the fastest.

Instead of a standard k-nearest neighbor search, we use the range_search function.
This function, for a given query point 𝑞, returns all points within a specified range. We
set this range equal to our distance threshold 𝜖.

To compute the loss, we query each point from 𝑃ℎ in the index to find all neighbors
within 𝜖. The output format is as follows: for each query point in 𝑃ℎ that has at least
one neighbor in 𝐹𝑖 represented as an Index, it returns a list of neighbor indexes from
𝐹𝑖.

For the part of the loss function that sums over all points in 𝑃ℎ, we simply count the
number of arrays returned as points in 𝑃ℎ with no neighbors in 𝐹𝑖 within the distance
threshold do not return any array.

For the part of the loss function summing over all points in 𝐹𝑖, we merge all returned
arrays of indexes and count the unique indexes. This count indicates the number of
points in 𝐹𝑖 that have at least one neighbor in 𝑃ℎ within the threshold. We must
ensure that each point in 𝐹𝑖 is counted only once, even if it appears multiple times in
the merged array.

This FAISS implementation allows for multi-core processing and uses approximate k-
nearest neighbors, resulting in linear time growth with an increasing number of points.
This is a significant improvement over the quadratic increase seen with the exact k-
nearest neighbors algorithm. Thanks to this efficiency, we can increase the number of
optimization steps per parameter from 20 to 40 and use denser point clouds (around
2000 points instead of 1000), further increasing the performance of our method.

5.6.4 Occlusion Loss

To address the ambiguity challenge outlined in Section 4.1, we have developed an ad-
ditional loss function, which we call the Occlusion Loss. The idea behind this loss is
straightforward. In a LiDAR point cloud, a line drawn from the LiDAR scanner to any
point in the point cloud implies that the space along this line is free of objects. If it
weren’t, the scanner wouldn’t be able to detect the point.

The first step in implementing this idea is to generate a 3D voxel grid representing
the space around the ego-vehicle. For each voxel in this grid, we need to determine its
state: whether it’s free or occupied. Initially, we set all voxels to the state occupied.
We determine these states by drawing lines from each point in the LiDAR scan to the
origin (the position of the LiDAR scanner). To do this, we utilize the Bresenham line
algorithm [45], which provides the indices of voxels intersected by these lines. For each
voxel, we keep the number of total intersections with all lines.

A voxel is classified as free if the number of intersections exceeds a given threshold.
It is classified as occupied if there is at least one LiDAR scan point inside the voxel or
the number of intersections is lower than a given threshold.

It is important to note that the number of intersections per voxel is highly influenced
by its distance from the ego-vehicle. To address this, we divide the number of intersec-
tions of each voxel by the squared L2 distance to the ego-vehicle. The scaled 3D voxel
grid is shown in Figure 5.12.

One of the disadvantages of the Occlusion Loss method is that we cannot aggregate
the number of voxel intersections over multiple frames due to the movement of cars.
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Figure 5.12. Example of the 3D voxel grid used for the occlusion loss. The blue points
denote free voxels, so the template point cloud 𝑃ℎ or 𝑃rh should not intersect those. Green

points correspond to cars, and white points are from the LiDAR scan.

Given a 3D voxel grid that categorizes each voxel based on occupancy, we want to
use it in the fitting process. Here, we take the shifted and rotated template point cloud
𝑃ℎ or 𝑃rh, corresponding to each parameter set, and calculate the loss as follows.

For every point in the template point cloud 𝑃ℎ or 𝑃rh, we assign it to a corresponding
voxel in the grid. If a voxel is marked as free, it implies that the template point cloud
should not intersect with this voxel. If that happens, we add 1 to the loss for each
free voxel intersected. This loss is then normalized by dividing it by the total number
of points in 𝑃ℎ or 𝑃rh and scaled with a weight. This scaling allows the Occlusion
Loss to be integrated with other loss functions previously mentioned, as it serves as
supplementary information and is never used in isolation.

However, it is important to note that the Occlusion Loss has not shown improvement
in performance in our experiments. The main problem lies in the usage of the generic
size of the template 𝑃ℎ or 𝑃rh, which may not match the exact dimensions of the actual
car. Even though we can provide a perfect fit, the overlapping of the template will cause
the intersections with free voxels, resulting in increased loss. We believe that with more
attention, this loss could be useful. However, we chose to go in another direction.

5.7 Histogram Yaw Estimation
Another way to estimate the yaw of the car we did a little bit of research is something
we call Histogram Yaw Estimation. This technique is specifically designed for use with
segmented aggregated point clouds ̂𝐹 of standing cars.

To illustrate the concept, let’s consider a simple example of what a segmented ag-
gregated point cloud ̂𝐹𝑖 might look like, as shown in Figure 5.13. For a given point
cloud ̂𝐹𝑖, we can encode the cloud into two lines that represent the dominant angles
among the points. This encoding allows us to compare two point clouds based on these
dominant angles. In our case, the comparison is between ̂𝐹𝑖 and 𝑃rh.

We compute the encoding as a histogram. We randomly sample point tuples (𝑝, 𝑞),
where both points are from the same point cloud. Then, we compute the angle 𝛽
between (𝑝, 𝑞) with the following equation:

𝛽 = atan2(𝑝(𝑧) − 𝑞(𝑧), 𝑝(𝑥) − 𝑞(𝑥)) (13)
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a) b)

Figure 5.13. Example of the reasoning behind Histogram Yaw Estimation. (a) hand drawn
simple example of segmented aggregated point cloud ̂𝐹𝑖, (b) key lines describing the point

cloud ̂𝐹𝑖.

The computed angles 𝛽 are then utilized to create a histogram representing the point
cloud ̂𝐹𝑖 or 𝑃rh. As stated before, the histogram should contain two dominant angles,
one being the correct yaw of the car. A real histogram computed for one car from the
KITTI [3] dataset is shown in Figure 5.14, where the dominant angles are shown.

a) b)

Figure 5.14. Example of the (b) histogram corresponding to (a) a car. Green points cor-
respond to segmented aggregated point cloud 𝐹𝑖. The correct yaw is around 0 degrees,
which is also the dominant angle in the histogram. The dominant angle is also around 180

degrees because this method cannot distinguish if the car is facing forward or not.

Now, let us integrate the Histogram Yaw Estimation into our fitting process. The
first step involves taking the segmented aggregated point cloud ̂𝐹𝑖 and computing its
corresponding histogram. We also calculate the viewing angle 𝛼 for ̂𝐹𝑖 using the esti-
mated spatial location 𝑒 ∈ ℝ3. The viewing angle is needed for shifting the histogram
to compensate for the angle at which the car is seen. The viewing angle 𝛼 is calculated
as follows:

𝛼 = −atan2(𝑒(𝑧), 𝑒(𝑥)) + 𝜋/2 (14)

After computing the histogram and the viewing angle, we iterate over all raycasted
template point clouds 𝑃rh (one for each yaw degree). For each 𝑃rh, we compute its
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histogram, shift it by 𝛼 to account for the viewing angle, and then compute the simi-
larity with the histogram corresponding to ̂𝐹𝑖. The 𝑃rh corresponding to a yaw angle
with the most similar histogram is selected. Various functions are employed to esti-
mate the histogram similarity, including L1 and L2 distance per bin, Bhattacharyya
distance [46], and Earth Mover’s Distance (EMD). As these histograms are compen-
sated for the viewing angle, they are location-invariant; thus, maximizing similarity
leads to an estimation of the yaw. With this estimated yaw, similar to the process for
moving cars, we then optimize over two parameters to refine the location estimation.

Even though this method looks promising, we have encountered problems in prac-
tice. Our results with Histogram Yaw Estimation have not been as successful as hoped,
often leading to failed yaw estimation, which caused the fitting process to fail. Con-
sequently, a brute-force-like fitting approach remains more robust for our needs. We
have not assigned a lot of focus to this method. However, we believe that this yaw
estimation should receive more attention in the future as it might provide promising
results. An example of a situation where Histogram Yaw Estimation did not perform
well is illustrated in Figure 5.15.

a) b)

Figure 5.15. Example of a failed histogram yaw estimation. (a) Segmented aggregated
point cloud 𝐹𝑖, green points correspond to a car, (b) histogram corresponding to 𝐹𝑖. The
correct yaw is approximately 0 yaw. However, the histogram suggests ±90 degrees, which

is wrong. This is caused by seeing only the back of the car.
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Chapter 6
Scale Detector

In this chapter, we describe the Scale Detector, our method designed for estimating the
dimensions (scale) of standing cars. This method is crucial for increasing performance
on the tight 0.7 3D IoU evaluation threshold.

We begin in Section 6.1 by describing the process of point aggregation from multiple
frames. Section 6.2 is then dedicated to the fitting process utilized within the Scale
Detector. The fitting process is very similar to the ones described in Chapter 5.

Finally, in Section 6.3, we discuss the refinement of the fitting process outputs. This
step is needed to create reasonable outputs and account for the bias in the KITTI
dataset [3] labels.

6.1 Point aggregation
The main motivation for the Scale Detector’s development is the objective to estimate
the dimensions of cars, a task that currently hinders our method’s performance, es-
pecially on the 0.7 3D IoU threshold. The problem in this estimation process is the
limited visibility of the entire car. Our car segmentation process only applies to cars
in front of the ego-vehicle, meaning we only have a clear view of up to two sides of any
given car. Unfortunately, this limited perspective is insufficient for a robust estimation
of a car’s dimensions.

Seeing at least three sides of a car would significantly simplify the dimension es-
timation process, providing a fuller understanding of the car’s shape and size. This
is demonstrated in Figure 6.1, which shows the difference in estimation based on the
number of visible car sides.

a) b)

Figure 6.1. Example of the Scale Detector motivation. (a) Car viewed only from two
sides in Bird’s Eye View (BEV), (b) Car viewed from three sides in BEV. Estimating
the car’s dimensions in (a) is not straightforward, as we might not capture some critical
points, creating ambiguity in estimating the dimensions. However, in (b), the ambiguity
in estimating the length of the car has vanished, thanks to the visibility of the third side.
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While the LiDAR scanner can capture a 360-degree view around the ego-vehicle,
we must focus only on the field of view (FOV) corresponding to the camera. In seg-
menting points from the LiDAR scan, we utilize the 2D binary masks provided by
Detectron2 [35]. In Scale Detector, we instead rely on the 3D detections obtained from
the fitting process described in Chapter 5. For each car instance, we segment all points
within its 7-DOF 3D bounding box in the LiDAR scan, resulting in a segmented point
cloud 𝑆𝑖 ∈ ℝ3×𝑛 for the 𝑖-th car, where 𝑛 represents the number of points.

Simply employing this segmentation in the reference frame would not gain additional
information. Therefore, similar to the approach in Chapter 4, we aggregate these
segmented point clouds over multiple adjacent frames. This aggregation results in a
segmented aggregated point cloud ̂𝑆𝑖 ∈ ℝ3×𝑚 for the 𝑖-th car, where 𝑚 represents the
total number of aggregated points. This method allows us to view the car from various
angles, enabling the segmentation even when the car is not visible in the camera’s FOV.
We need to expand the dimensions of the bounding box by 50% to increase the capture
area. However, it’s important to note that this strategy only works for standing cars.
The process of point aggregation and how it views the car from different perspectives
is shown in Figure 6.2.

a) b)

Figure 6.2. Comparison of (a) Segmented aggregate point cloud ̂𝐹𝑖 used for fitting in
Chapter 5, (b) Segmented aggregated point cloud ̂𝑆𝑖 used in Scale Detector.

However, this strategy produces many outliers, which we have been unable to filter
out. As expected, the point clouds ̂𝑆 are very dense. Thus, we need to perform the
downsampling in the same manner as in Section 4.4.

6.2 Fitting process in Scale Detector
The fitting process is similar to that described in Chapter 5. The key difference, how-
ever, lies in the target of our fitting process. Instead of fitting the template point cloud
𝑃ℎ to the segmented aggregates point cloud ̂𝐹𝑖, we fit 𝑃ℎ to the aggregated segmented
point cloud ̂𝑆𝑖 associated with the Scale Detector.

One of the objectives is to estimate the height of the car. As we have discovered, as
we are fitting the generic shapes of the car, optimizing over the height does not provide
good results. The computation of the car’s height, denoted as ℎ, is as follows:

ℎ = max𝑠∈ ̂𝑆𝑖
(𝑠(𝑦)) − min𝑠∈ ̂𝑆𝑖

(𝑠(𝑦)) (1)
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In the scale detection fitting process, we limit the car’s height ℎ to between 75% and

125% of the average car height in the KITTI dataset [3]. This is because the height
variance among cars is high. Our fitting process already provides a relatively accurate
estimation of spatial location and yaw. However, when adjusting the length or width
of the car, it becomes necessary to optimize the spatial location again. Additionally,
we employ slight adjustments in the yaw to enhance the fit potentially.

We’ve observed the best results when the length and width parameters are tied
together based on the assumption that longer cars tend to be wider, and vice versa.

For this purpose, we define a region 𝐶𝑠 ∈ {0, 1} × {0.67, ..., 1.5} × {−𝑟𝑥, ..., 𝑟𝑥} ×
{−𝑟𝑧, ..., 𝑟𝑧} × {−25, ..., 25}. The first dimension represents the two different template
meshes used: the hatchback template 𝑃ℎ and the sedan template 𝑃𝑠. We have discov-
ered that using both templates increases the performance of our method. The second
dimension is the scale of the car. Here, the length scale 𝑠𝑙 varies from 0.67 to 1.5, cor-
responding to lengths ranging from 2.6 meters to 5.8 meters, as the scaling is used on
the average KITTI car dimensions. The number of steps for the scale is 8. The width
scaling 𝑠𝑤, which is proportionally linked to the length scaling, is calculated using the
following formula:

𝑠𝑤 = 1 + (𝑠𝑙 − 1) ⋅ 0.75 (2)

Thus, the 𝑠𝑤 ranges from 0.75 to 1.38, corresponding to widths ranging from 1.15 to
2.11 meters. The next two dimensions are 𝑥 and 𝑧. Where the range for 𝑥 is −𝑟𝑥 to 𝑟𝑥
and 𝑧 is −𝑟𝑧 to 𝑟𝑧 with a number of steps equal to 10. The 𝑟𝑥 and 𝑟𝑧 is computed as
follows:

𝑟𝑧 = cos(𝜃) + sin(𝜃)/2 (3)

𝑟𝑥 = sin(𝜃) + cos(𝜃)/2 (4)

The reasoning is that the need to change the spatial location due to the length is
more significant than changing the width, so the range on the axis belonging to the
length must be greater. The last parameter to optimize is the yaw that ranges within
±25 degrees around the yaw estimate from the fitting process described in Chapter 5.
The number of steps for 𝜃 is 10. This variation of the yaw accounts for both possible
orientations (headings) of the car.

Regarding the loss function, we employ the same one used in the fitting process
described in Chapter 5. Both the complete point clouds 𝑃ℎ, 𝑃𝑠 and their raycasted
versions 𝑃rh, 𝑃rs can be used in the Scale Detector. However, we found that using the
complete point clouds 𝑃ℎ and 𝑃𝑠 provides better overall performance.

Once we find the parameters 𝑝sopt ⊂ 𝑄𝑠, where 𝑄𝑠 = {𝑞 ∈ ℝ5 | 𝑞 ⊂ 𝐶𝑠}, that results
in the lowest loss, we compute a one-sided loss from the template to the segmented
aggregated point cloud. Given that we primarily use the Template Fitting Loss, which
calculates the inlier-to-outlier ratio, we require that this ratio must exceed 0.7 for the
scale detection to be considered valid for the 𝑖-th car. If this threshold is not met, it
suggests that we may not have sufficient information for effective scale detection, so
we do not update the dimensions at all. The output of the fitting process is shown in
Figure 6.3.
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Figure 6.3. Examples of two scenes with the Scale Detector. Colourful points correspond
to segmented aggregated point clouds ̂𝑆. The red 3D bounding box represents the output
of the fitting phase with average KITTI car dimensions and the grey 3D bounding box is

provided by the scale detection.

6.3 Bounding box reducer
In the fitting process of the Scale Detector process described in Section 6.2, we often
encounter a situation where the resulting 3D bounding boxes are larger than the KITTI
ground truth labels. This probably arises from a bias in human labelling, where it ap-
pears that labellers might be relying only on the reference frame LiDAR scan, providing
a bounding box that only describes the car’s appearance in that specific scan.

To tackle this issue, we implement a function known as the Bounding Box Reducer.
This method begins by taking the bounding box output from the Scale Detector fitting
stage and slightly increasing its width. Additionally, the bounding box is shifted upward
by 0.4 meters along the y-axis. This shift is done to exclude any points on the ground.
Following this adjustment, the method extracts all points from the reference LiDAR
scan that fall within the adjusted 3D bounding box.

The final phase of the Bounding Box Reducer involves finding the smallest possible
3D bounding box that can include all the extracted points. We have encountered
a problem with this approach due to the sparsity of some segmented point clouds,
which sometimes led to unrealistically small bounding boxes. To avoid this, we apply
a rule: if the reduction in the bounding box’s length exceeds 25%, we keep the original
dimensions. In the other case, we adjust the length of the detected car, while keeping
the height and width unchanged. This provides the best results. The Scale Detector
with Bounding Box Reducer applied to a real scene is shown in Figure 6.4.
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Figure 6.4. Example of two scenes with the Scale Detector and Bounding Box Reducer.
Colourful points correspond to segmented aggregated point clouds ̂𝑆, red points correspond
to templates 𝑃ℎ or 𝑃𝑠, the red 3D bounding box represents the output of the fitting phase
with average KITTI [3] car dimensions, the grey 3D bounding box is provided by the Scale

Detector, and the yellow 3D bounding box is the reduced one.

54



Chapter 7
Voxel-RCNN adaptation

In this chapter, the adaptation of Voxel-RCNN for weakly-supervised training is ex-
plored. The detector’s pre-training on pseudo ground truth is discussed in Section 7.1,
while Section 7.2 focuses on describing the network’s outputs and associated losses.
Section 7.3 denotes the Differentiable Template Fitting Loss, and Section 7.4 describes
the Mask Appearance loss. Techniques for data augmentation are outlined in Section
7.5, with the entire training process detailed in Section 7.6.

It is worth noting that the OpenPCDet [47] framework performs all operations in
the LiDAR coordinate frame (𝑧-axis is upwards instead of 𝑦-axis), while the rest of this
thesis operates in the Camera coordinate frame. The coordinate frames are illustrated
in Figure 2.1.

7.1 Voxel-RCNN with pseudo ground truth labels
We have generated pseudo ground truth labels for all training set scenes using our
method mentioned in the previous chapters. This method integrates the foreground
segmentation process from Chapter 3, the exploitation of temporal consistency from
Chapter 4, the fitting process outlined in Chapter 5, and the Scale Detector approach
from Chapter 6. These pseudo ground truth labels were then used to replace the KITTI
dataset labels [3], allowing us to pretrain the Voxel-RCNN in a similar manner as with
the original KITTI labels.

Interestingly, despite our labels not showing exceptionally high accuracy on their own,
their use in the training of a 3D detector has resulted in a substantial performance boost.
This approach aligns with common practices in other weakly supervised methods, which
often incorporate a 3D detector at the end of their processing pipeline.

Unique to our approach, however, is the modification of the Loss functions in the
Voxel-RCNN. These modifications enable the utilization of additional information ex-
tracted by our method, such as segmented aggregated point clouds and binary masks.
This is further discussed in this chapter.

For implementing Voxel-RCNN [9], we chose the OpenPCDet framework [47], which
is a framework that has multiple 3D detectors implemented, including the Voxel-RCNN.

7.2 Voxel-RCNN outputs
While Voxel-RCNN [9] was initially introduced in Section 2.2.5, this section is going to
mention specific details about its outputs and loss computation.

The architecture and outputs of the Voxel-RCNN are shown in Figure 7.1. Focusing
first on the RPN Head (highlighted in green), it produces 70,400 anchors. Each anchor
is associated with a 7-DOF 3D bounding box and a classification score prediction. Based
on the IoU overlap with ground truth labels, the classification score is evaluated using
Binary Cross Entropy Loss (BCE). For the 3D bounding box parameters, a smooth-L1
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Figure 7.1. Pipeline of Voxel-RCNN [9] described in 2.2.5. The figure is taken from [9].

Regression Loss is applied, but only for anchors exceeding a certain IoU threshold with
any ground truth label.

An additional component in the RPN Head, not detailed in the original paper, is the
direction classification loss. Anchors are grouped in pairs, with one anchor in each pair
rotated by 90 degrees. This direction classification predicts which anchor in each pair
should be selected, employing BCE loss.

In the next stage, the Detect Head (highlighted in orange and grey), only a subset of
RPN anchors, those with high IoU with ground truth labels, are considered. Similar to
the RPN Head, the outputs here are 7-DOF bounding boxes with corresponding scores.
However, these scores represent the predicted IoU with the ground truth label rather
than the probability of the prediction being a car. The same BCE loss is used for the
IOU scores, and the smooth-L1 Regression Loss is applied to the bounding boxes.

Furthermore, the Detect Head includes additional loss not mentioned in the original
paper. The loss is the Corner Regression Loss, where two points in space represent the
3D bounding boxes, and the smooth-L1 Regression Loss is computed on the difference
of points corresponding to prediction and ground truth.

In our adaptation of the Voxel-RCNN, we have decided not to modify the loss func-
tions in the RPN Head. We found that using our pseudo ground truth labels was
efficient enough to generate reliable detections at this stage. Furthermore, modifying
only the loss functions in the RPN Head wouldn’t significantly impact overall perfor-
mance. This is because the final evaluation relies on the outputs from the Detect Head,
which converges to similar solutions regardless of the specific weights used in the RPN
Head.

On the other hand, we identified an opportunity to enhance performance by adjusting
the losses in the Detect Head. While keeping the IoU-based classification BCE loss and
the smooth-L1 Regression Loss, we introduced two additional losses specifically for the
3D bounding box parameters: the Template Fitting Loss and the Mask Appearance
Loss. These new losses, which we will discuss in more detail later in this chapter, are
designed to further refine and improve the accuracy of the 3D bounding box predictions

7.3 Differentiable Template Fitting Loss
Each proposal generated by the RPN Head is selected based on its IoU with the 3D
pseudo ground truth bounding box. Thus, for each proposal, we have an associated
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segmented (aggregated) point cloud, either 𝐹𝑖 or ̂𝐹𝑖. We can create a template that
represents the 7-DOF 3D bounding box, similar to the process detailed in Chapter 5.
Consequently, we can apply the Template Fitting Loss, as introduced in Subsection
5.6.3, which has demonstrated superior performance among various losses.

However, a significant challenge arises with the Template Fitting Loss: it is inherently
non-differentiable and therefore unsuitable for backpropagation. The primary issue is
the saturation function within the loss calculation. To address this, we’ve adapted
the loss function by substituting the non-differentiable saturation function with a dif-
ferentiable sigmoid function. This modification allows the Template Fitting Loss to
approximate its original functionality while becoming differentiable and suitable for
backpropagation. The modified Template Fitting Loss formula, utilizing the sigmoid
function, is presented as follows:

𝐿(𝐹𝑖, 𝑃ℎ) = ( ∑
𝑥∈𝐹𝑖

𝑔(𝑚𝑖𝑛𝑦∈𝑃ℎ
‖𝑥 − 𝑦‖2

2))/|𝐹𝑖| + ( ∑
𝑦∈𝑃ℎ

𝑔(𝑚𝑖𝑛𝑥∈𝐹𝑖
‖𝑥 − 𝑦‖2

2))/|𝑃ℎ| (1)

𝑔(𝑑) = 𝜎(𝑘 ⋅ 𝑑) (2)

Where 𝑘 denotes the steepness parameter. We have empirically proved 𝑘 to be
optimal when set to 10. The differentiable Template Fitting Loss is shown in Figure
7.2.

a) b)

Figure 7.2. Example of the Differentiable Template Fitting Loss. (a) represents the points
from the template 𝑃ℎ, blue points are from 𝐹𝑖, red points are outliers (value close to 1)
and green points are inliers (value close to 0.5) from 𝑃ℎ. (b) represents the points from the
𝐹𝑖, blue points are from 𝑃ℎ, red points are outliers and green points are inliers from 𝐹𝑖.

Adding this loss function did not pose a significant performance improvement. This
loss function increases the performance slightly in the BEV, however, it does not handle
well the car’s dimensions that are crucial for the 3D 0.7 IoU threshold.

7.4 Mask Appearence Loss
In Chapter 5, we highlighted our approach to not focus on the 𝑧-axis spatial location
and the car’s height. We relied on the Robust Spatial Location Estimator for the 𝑧-axis
and simply calculated the height by measuring the difference between the car’s lowest
and highest points. We suspect that this approach might contribute to our method’s
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strong performance in achieving 0.7 BEV IoU and 0.5 3D IoU, but not quite reaching
the performance at 0.7 3D IoU.

Optimizing the 𝑧-axis spatial location or car height using the Template Fitting Loss
alone may not result in significant improvements. The loss is vulnerable to the variations
in the upper parts of cars, which differ significantly across real cars in the wild.

To enhance our method, we want to utilize the binary masks provided by the De-
tectron2 framework [35]. By rendering a 3D template to generate a binary mask and
aligning these masks, we can achieve a more precise match in both 2D and hopefully in
3D. This concept aligns with the techniques used by Zakharov et al. [24], as described
in Section 2.3.2.

Our process begins with each predicted 7-DOF 3D bounding box, for which we pre-
pare the hatchback template mesh 𝑇ℎ and the sedan template mesh 𝑇𝑠. These meshes
are translated, rotated, and scaled to represent the predicted 3D bounding box per-
fectly. Each mesh is duplicated with a 180-degree rotation, resulting in four hypotheses
per bounding box. The mesh creation and transformation are done within the Py-
torch3D [48] Python library, as it keeps the gradients along the transformations.

These meshes are rendered using the PyTorch3D library, aiming to create a 2D binary
mask. The Differentiable Soft Silhouette Shader [49] is ideal for this task, as it outputs
the probability of mesh presence per pixel.

We utilize the KITTI dataset’s camera calibration matrix [3] in our rendering pro-
cess. However, probabilities of hard ones and zeros would not be suitable for back-
propagation, so we need to add blur both to the rasterizer and shader employed within
the PyTorch3D library. This approach slightly enlarges the binary mask, creating a
smoother probability transition between one and zero.

The final stage involves calculating the loss for each of the four hypotheses, selecting
the one with the lowest loss for backpropagation. We use per-pixel Binary Cross En-
tropy (BCE) Loss, comparing the rendered mask with the Detectron2 mask. Notably,
backpropagation is only employed on the 𝑧-axis spatial location and the car’s height.
The entire process and its pipeline are illustrated in Figure 7.3.

One might wonder why this method isn’t utilized to backpropagate the width and
length of a car, in addition to the 𝑧-axis location and height. The primary challenge
here is the inherent ambiguity in projecting 3D space into 2D space through rendering.
As illustrated in Figure 7.3, the alignment of the masks is not perfect. Intuitively, one
might consider adjusting the 𝑧-axis location, height, width, and length to better align
the masks. However, this approach can lead to ambiguity.

As it can be seen in Figure 7.3, increasing all the dimensions slightly might seem
like a solution in the 2D rendered mask, a slight decrease in length combined with an
increase in width could also produce a matching 2D mask. Yet, the second proposal
would result in an unrealistic representation in 3D space. This ambiguity is why we’ve
chosen to restrict backpropagation to only the 𝑧-axis spatial location and the height of
the car.
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a) b)

c) d)

Figure 7.3. Example of the Mask Appearance Loss process. (a) 7-DOF 3D bounding
box detection (red), 7-DOF 3D bounding box ground truth (green). (b) Template mesh
representing the 3D bounding box. (c) Rendered 2D binary mask. (d) Alignment of the
rendered binary mask (green) and the binary mask from Detectron2 [35] framework (red).

7.5 Data Augmentation

Data augmentation is an essential component in the training process that needs special
attention. Initially, for easier debugging, we had chosen not to use data augmentation.
This approach, however, led to Voxel-RCNN predicting zero yaw for all cars. It was
caused by the lack of data augmentation.

The OpenPCDet [47] uses three types of augmentation. The entire scene is rotated
around the 𝑧-axis, within a range of ±45 degrees. Additionally, the scene is scaled by
±10% and the whole scene can be mirrored around the 𝑥-axis.

For the Template Fitting Loss, it is necessary to adjust the segmented (aggregated)
point clouds ̂𝐹 or 𝐹, due to the data augmentation. Fortunately, rotating, scaling, and
mirroring a point cloud is a simple task.

However, integrating these augmentations with the Mask Appearance Loss is more
complex, especially when dealing with binary masks provided by Detectron2 [35] frame-
work, as it works only with the images, so the data augmentation would need to be first
converted to image transformation. To address this, we use inverse Data Augmenta-
tion. Each 3D bounding box proposal is inversely rotated, scaled, and mirrored before
applying the Mask Appearance Loss.
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Implementing data augmentation, along with these modifications to adapt our losses,

has significantly enhanced performance compared to training without data augmenta-
tion.

7.6 Training Process
First, we want to illustrate how is the fully-supervised version of the Voxel-RCNN [9]
trained in Figure 7.4.
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Figure 7.4. Visualization of the overall pipeline with the fully-supervised training.

The training process for our Voxel-RCNN implementation is structured into two
phases. In the first phase, we train the Voxel-RCNN using standard losses and utilizing
pseudo-ground truth labels. A key advantage of this initial phase is its speed and
memory efficiency, allowing us to train the model with a relatively large batch size.
The pipeline of the pretraining is shown in Figure 7.5.
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Figure 7.5. Visualization of the overall pipeline for the weakly-supervised pretraining.

The second phase is where we introduce the new losses while using the pre-trained
weights from the first phase. As we utilize the Mask Appearance Loss during the
second phase, which requires more memory resources, we need to reduce the batch
size significantly. Additionally, due to the complexity of the new losses, the training
time per epoch is significantly longer. Therefore, we also reduce the total number of
epochs in this second stage of training. The whole weakly-supervised pipeline is shown
in Figure 7.6.

60



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.6 Training Process

LiDAR scan

Human
GT

Fully supervised Voxel-RCNN

Loss
3D 

Boxes

3D 
backbone

RPN head

Detect 
head

LiDAR scan

3D 
Boxes

3D 
backbone

RPN head

Detect 
head

Aggregated LiDAR points

Template 
fitting loss

Template 
point cloud

Template fitting loss

Mesh
renderer

Binary cross-
entropy loss

Template mesh 2D mask 2D Mask-RCNN masks

Appearance mask loss

Weakly supervised Voxel-RCNN (Ours)

Pseudo
GT

Loss

Figure 7.6. Visualization of the overall pipeline for the weakly-supervised training.
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Chapter 8
Experiments

In this chapter, we present a range of experiments carried out to evaluate and refine our
method. We start with a discussion on various evaluation methods used for parameter
tuning, detailed in Section 8.1. Next, Section 8.2 outlines the implementation of our
complete pipeline and the hardware employed.

In Section 8.3, we explore the impact of different 2D detection backbones on our
method’s performance. The selection process for the fitting threshold is then discussed
in Section 8.4. Our attention shifts to the Histogram Yaw Estimation in Section 8.5
and the Occlusion Loss in Section 8.6. The effect of the fine fitting process is evaluated
in Section 8.7, followed by an analysis of various downsampling methods in Section 8.8.
The influence of the Scale Detector is discussed in Section 8.9.

We continue with an evaluation of using different numbers of adjacent frames in
temporal consistency exploitation in Section 8.10, and the impact of the ICP algorithm
in Section 8.11. We then discuss various Losses used in the fitting process in Section 8.12
and investigate the optimal steepness parameter value for the Differentiable Template
Fitting Loss in Section 8.13.

Further, Section 8.14 focuses on the effect of integrating our proposed Losses into
the training loop of Voxel-RCNN [9].

It is important to note that we conducted numerous experiments, yet many did not
yield significant improvements or interesting findings, so they are not detailed here.
Initially, we focus on evaluations that contributed to the development of our method.
Towards the end, we shift our attention to the final pipeline, analyzing how certain
parameter adjustments impact its overall performance.

8.1 Evaluation methods
Evaluating our models required a fast evaluation method. Initially, we considered the
official evaluation script provided by the KITTI object detection dataset [3]. However,
this script, written in C++, was not ideal as it sends evaluation results via email, so
there is no immediate feedback.

To address this need for quicker evaluation, we have decided to use an unofficial
Python adaptation of the KITTI evaluation script, sourced from a GitHub reposi-
tory [50]. This Python script allows us to focus specifically on the car class, which
is our research focus. It computes the average precision across three difficulty levels
(Easy, Moderate, Hard) as defined in Subsection 2.1.1, covering metrics such as 2D,
BEV (Bird’s Eye View), 3D, and AOS (Angle of Orientation Similarity). Our primary
focus, however, lies in the BEV and 3D evaluations. These metrics are calculated for
two IoU thresholds: 0.7 and 0.5.

A notable challenge in our approach was the generation of pseudo ground truth la-
bels without focus on output scores, which are essential for average precision evaluation.
To resolve this, we utilized scores from the Detectron2 framework [35] outputs, corre-
sponding to car instance detections in the reference frame. However, these scores did
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not always accurately reflect the complexity of the fitting process for each car instance,
leading to inconsistencies like an occluded distant car having the same score as a clearly
visible one.

To enhance the evaluation process and align it more closely with our research goals,
we modified the script to include recall calculations for each difficulty category. This
adaptation provided a deeper understanding of our method’s effectiveness, especially
since the recall was a key focus in generating our pseudo ground truth labels.

In the early stages of our method’s development, we also added precision calculations
into the script. Precision is crucial, as a high rate of false positives can significantly
decrease the overall average precision of the trained 3D detector. We conduct these
recall and precision evaluations using the 0.7 BEV IoU metric, which is less challenging
than the 0.7 3D IoU. This approach remained relevant until we developed the Scale
Detector, described in Chapter 6, which enabled us to estimate car dimensions essential
for achieving high scores in the 0.7 3D IoU metric.

It’s important to note that evaluations of our pseudo ground truth labels are con-
ducted on the entire training set. In contrast, for comparison with other weakly-
supervised methods, evaluations of the 3D detector are performed on a 50/50 train/val-
idation split of the training set.

8.2 Implementation and hardware used

The preprocessing pipeline of our project is structured into three key steps, with most
computations being single-core loads. To optimize the processing speed, we divided the
training dataset into smaller subsets (up to 200, as that is the maximum number of
jobs). This division allowed us to process the subsets in parallel, leveraging the cluster’s
extensive core capacity, far surpassing that of a standard desktop PC. Without access
to the RCI cluster, our research would take significantly more time and we couldn’t
achieve those results.

The first step involves calculations needed for the Iterative Closest Points algo-
rithm [8]. This process is CPU-intensive and, when utilizing 100 cores, takes approx-
imately 8 hours to compute frame-to-frame transformations for ±120 frames for the
whole training set, which contains 7481 frames. Computing the frame-to-frame trans-
formations for ±30 frames with 100 cores takes approximately 2 hours.

The second step in our pipeline makes use of the Detectron2 framework [35], requir-
ing GPU capabilities, to get the segmented (aggregated) point clouds and trajectories
exploiting the temporal consistency. The NVidia A100, available on the cluster, is em-
ployed for this purpose. Most of the computation time during this phase is dedicated
to GPU tasks, ensuring efficient use of the resource. This phase, when processing ±30
frames, takes around 3 hours with a single GPU employed. Of course, this process can
be parallelized in the same manner as the first step to employ multiple GPUs.

The third phase of our preprocessing pipeline involves the fitting process. Similar
to the first step, this phase is primarily a CPU load and is processed in parallel, as
described earlier. Utilizing 100 CPU cores, this fitting process is completed in about 2
hours, however, it varies with the loss employed.

Once we’ve generated the pseudo ground truth labels, we proceed to pretrain the
Voxel-RCNN [9]. This training is executed on 2x NVidia A100 GPUs, with a batch size
set to 50 and 50 epochs. For this phase, we set a learning rate of 0.01 and a weight
decay of 0.01. The training employs the Adam optimizer [51] together with the Cosine
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Annealing learning rate scheduler, which includes a warm-up period of one epoch. The
entire pretraining process is completed in approximately 2 hours.

The next step involves integrating our new loss functions into the training loop of the
pre-trained model. Adding these losses significantly raises both the computational and
memory demands, resulting in a needed reduction in the batch size to 8 and limiting
the training to 10 epochs. We maintain a learning rate of 0.001 with the same weight
decay of 0.01, using the Adam optimizer [51] and the Cosine Annealing learning rate
scheduler with a one-epoch warmup. This training phase requires around 10 hours to
complete.

8.3 Various 2D detection backbones
This section describes the influence of different 2D detection backbones on car detection
performance. In the initial stages of our research, we conducted tests with multiple
backbones and selected the RegNetY [36] backbone. This choice was based on its
superior performance and efficiency on the 2D object detection KITTI dataset [3].

However, as our development progressed, we wanted to explore more models, mostly
the larger models. To investigate this further, we experimented with the ViT-H [38]
model, a significantly larger and more computationally demanding model than Reg-
NetY. The ViT-H model, which is a Cascade Mask-RCNN model, achieves a 51.0%
Mask AP on the MS-COCO dataset [7], in contrast to the 43.3% Mask AP achieved by
RegNetY. This significant difference in model performance motivated us to explore the
models further.

Additionally, we explored the Segment Anything (SAM) model [39], as detailed in
Section 3.1. Our experiments with SAM aimed to provide tighter instance masks.
We have generated pseudo ground truth labels using various 2D detection backbones.
The results of these experiments, comparing the performance of various backbones, are
shown in Table 8.1.

Backbone SAM BEV Recall BEV Precision
Easy Moderate Hard Easy Moderate Hard
@0.7 @0.7 @0.7 @0.7 @0.7 @0.7

RegNetY Times 43.88 40.30 35.29 49.86 60.92 53.90
ViT-H Times 42.64 37.30 35.04 48.95 58.54 51.30
RegNetY Check 43.98 39.35 35.21 50.25 60.12 54.31

Table 8.1. Evaluation of the pseudo ground truth labels on the whole BEV object detection
KITTI dataset [3] with different 2D Mask-RCNN [23] backbone or SAM.

The outcomes of our experiments indicate that using the Segment Anything (SAM)
model does not yield a significant performance improvement. We noticed that the
masks produced with SAM were more precise and tighter, however, the removal of
some outliers by these improved masks did not enhance the overall performance of our
method.

Surprisingly, our results also revealed that the ViT-H backbone, despite being a
larger and more complex model, actually achieved lower precision and recall compared
to RegNetY. This result was unexpected, given the higher Mask AP achieved on MS-
COCO than RegNetY.
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Based on these results, we have concluded that the RegNetY backbone is the most
suitable choice for our needs. Its ability to provide better precision and recall, without
the additional computational demands of larger models like ViT-H or the marginal
improvements offered by SAM, makes it the optimal backbone.

8.4 Fitting threshold
In this section, we explore the impact of the fitting threshold on the performance of
our method. or each segmented aggregated point cloud ̂𝐹𝑖, which is a standing car, we
require a minimum number of points, otherwise, we do not perform this fitting. We
have generated pseudo ground truth labels for three different values of the threshold.
The results are shown in Table 8.2.

Threshold BEV Recall BEV Precision
Easy Moderate Hard Easy Moderate Hard
@0.7 @0.7 @0.7 @0.7 @0.7 @0.7

200 87.69 78.08 57.30 56.42 69.22 54.28
500 87.61 77.19 56.81 59.27 70.75 56.44
1000 87.64 75.52 54.23 63.52 72.53 58.49

Table 8.2. Evaluation of the pseudo ground truth labels on the whole BEV object detection
KITTI dataset [3] with different fitting thresholds.

From the results, it is evident that a lower threshold correlates with higher recall,
while a higher threshold enhances precision. This trend aligns with our expectations.
However, to find the optimal threshold, we need to consider the performance of a 3D
detector trained with these thresholds. The outcomes of training the 3D detector using
these varied thresholds are detailed in Table 8.3.

Number of frames BEV 3D
Easy Moderate Hard Easy Moderate Hard
@0.7 @0.7 @0.7 @0.7 @0.7 @0.7

200 87.97 84.97 82.94 57.18 48.24 48.55
500 87.66 84.6 82.38 58.26 48.38 48.47
1000 87.69 83.66 82.44 57.38 48.22 48.31

Table 8.3. Evaluation of the weakly-supervised Voxel-RCNN [9] on the validation object
detection KITTI dataset [3] trained with different fitting threshold.

The analysis of the fitting thresholds reveals that variations in the threshold do not
lead to significant improvements in performance. Given these findings, we have decided
to keep a fitting threshold of 1000 for our method.

8.5 Histogram Yaw Estimation
This section presents the outcomes of our Histogram Yaw Estimation method, as de-
tailed in section 5.7. Here, we also discuss the impact of various loss functions used to
measure histogram similarity. We have generated pseudo ground truth labels employing
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Histogram Loss BEV Recall
Easy Moderate Hard
@0.7 @0.7 @0.7

Times 70.69 41.40 16.89
L1 55.00 38.43 14.48
L2 56.69 37.37 14.29
Bhattacharyya [46] 56.71 37.33 14.18

Table 8.4. Evaluation of the pseudo ground truth labels on the whole BEV object detection
KITTI dataset [3] with different fitting thresholds.

the Histogram Yaw Estimation. The results of these experiments are shown in Table
8.4.

Please note, that this evaluation comes from the early stages of development, so the
results are quite poor and only the recall is computed.

The results indicate that employing the Histogram Yaw Estimation in our method
leads to a decrease in overall performance, regardless of the loss function used for com-
puting histogram similarities. Consequently, we have decided to avoid the Histogram
Yaw Estimation as a research direction.

8.6 Occlusion loss
In this section, we discuss the impact of integrating Occlusion Loss with two distinct fit-
ting losses: the Median Chamfer Distance Loss and the Template Fitting Loss, detailed
respectively in Sections 5.6.2 and 5.6.3.

A challenge we encountered, as discussed in Section 5.6.4, comes from using a generic
car shape for fitting. This generic template does not always align perfectly with the
point cloud data, occasionally leading to overlaps and consequently, an increased Oc-
clusion Loss. To resolve this issue, we experimented with calculating the Occlusion Loss
only for the lower half of the car template. This approach should reduce the penalty
from misalignments in the upper part of the template, which is more varied among
different car models.

We have generated the pseudo ground truth labels and evaluated them in Table 8.5.

Loss BEV Recall BEV Precision
Easy Moderate Hard Easy Moderate Hard
@0.7 @0.7 @0.7 @0.7 @0.7 @0.7

TFL no occlusion 43.81 40.34 35.37 49.76 60.97 54.02
TFL 43.48 40.13 31.78 49.89 60.77 48.22
TFL half 44.11 40.76 34.10 50.25 61.71 51.95
Median Chamfer 40.68 33.69 24.59 46.95 50.88 37.40
Median Chamfer half 43.26 37.57 28.25 49.70 56.93 42.90

Table 8.5. Evaluation of the pseudo ground truth labels on the whole BEV object detection
KITTI dataset [3] with different fitting losses employed together with occlusion loss.

The evaluation results indicate that Occlusion Loss does not significantly improve
recall or precision in our method. While it shows some improvement in the Easy and
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Moderate categories when combined with the Template Fitting Loss, it falls short in the
Hard category. Therefore, we have opted to exclude Occlusion Loss from our approach.

8.7 Fine fitting

In this section, we examine the improvement in performance by the fine fitting process,
which is employed after coarse fitting. The fine fitting is described in Section 5.3. We
have generated pseudo ground truth labels with or without the fine fitting employed.
To showcase the impact of this step, we present the results in Table 8.6.

Fitting BEV Recall BEV Precision
Easy Moderate Hard Easy Moderate Hard
@0.7 @0.7 @0.7 @0.7 @0.7 @0.7

Coarse 87.00 73.03 49.62 71.59 72.35 60.12
Fine 87.54 73.29 49.74 72.04 72.64 60.27
Coarse 40* 87.96 74.79 50.74 72.32 74.12 61.5
Fine 40* 88.23 74.78 50.98 72.58 74.12 61.76

Table 8.6. Evaluation of the pseudo ground truth labels on the whole BEV object detection
KITTI dataset [3] with or without fine fitting employed. * 40 denotes, that the number of

steps for each parameter during fitting is increased from 20 to 40

Analyzing the results, we observe that the fine fitting process, especially when the
number of steps for each parameter is increased from 20 to 40, does not result in
a significant improvement. This outcome can be explained by the usage of the Scale
Detector, which uses fine fitting as a prior estimate, so it does not significantly influence
the final output. However, considering that the addition of the fine fitting process does
not significantly increase computation time, we have chosen to keep it in our method.

8.8 Downsampling

This section focuses on the impact of various downsampling methods on our method’s
performance. The specifics of these downsampling methods are detailed in Section
4.4. To evaluate their effects, we generated pseudo ground truth labels using different
downsampling methods. The comparative results are tabulated in Table 8.7.

Downsampling BEV Recall BEV Precision
Easy Moderate Hard Easy Moderate Hard
@0.7 @0.7 @0.7 @0.7 @0.7 @0.7

Random 87.74 74.69 51.00 72.15 74.00 61.82
Voxel 88.18 74.89 50.24 72.54 74.24 60.85
Both 88.23 74.78 50.98 72.58 74.12 61.76

Table 8.7. Evaluation of the pseudo ground truth labels on the whole BEV object detection
KITTI dataset [3] with different downsampling methods employed.
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Analysis of the results reveals that employing Random downsampling alone provides

good performance, especially for Hard examples. On the other hand, Voxel down-
sampling, when used exclusively, shows enhanced performance for Easy targets. The
most notable finding is that the combination of both Random and Voxel downsampling
methods delivers the best overall recall and precision.

8.9 Scale Detector
This section evaluates the impact of the Scale Detector, as described in Chapter 6, on
our method’s performance. We first evaluate the pseudo ground truth labels generated
with different configurations of the Scale Detector. The results are displayed in Table
8.8.

BEV Recall BEV Precision
Scale Easy Moderate Hard Easy Moderate Hard
Det. Width Reducer Points @0.7 @0.7 @0.7 @0.7 @0.7 @0.7
No No No No 89.05 76.81 52.89 73.27 76.18 64.06
Yes Dep Yes Agg 87.87 74.49 48.59 72.24 73.83 58.79
Yes Dep No Agg 82.48 69.62 46.41 67.85 68.98 56.18
Yes Dep Yes, limit Ref 88.29 75.78 51.81 72.65 75.12 62.77
Yes Indep Yes, limit Agg 87.76 74.42 47.90 72.21 73.48 58.01
Yes Dep Yes, limit Agg 88.23 74.78 50.98 72.58 74.12 61.76

Table 8.8. Evaluation of the pseudo ground truth labels on the whole BEV object detection
KITTI dataset [3] with various settings of the Scale Detector.

Surprisingly, the results reveal that the Scale Detector does not enhance our method’s
recall or precision on the 0.7 IoU BEV. Despite trying various configurations, the per-
formance remains the same as using average KITTI car dimensions for each car.

To examine this situation more deeply, we trained the Voxel-RCNN [9] with these
pseudo ground truth labels to determine if the Scale Detector might boost the 3D de-
tector’s performance. We think that the Scale Detector adds more information into the
training loop, as the 3D detector would otherwise not learn to estimate car dimensions
due to the lack of variation in spatial dimensions without the Scale Detector.

The trained Voxel-RCNN’s performance is shown in Table 8.9.

BEV 3D
Scale Easy Moderate Hard Easy Moderate Hard
Det. Width Reducer Points @0.7 @0.7 @0.7 @0.7 @0.7 @0.7
No No No No 88.99 86.37 83.97 61.38 53.47 52.82
Yes Dep Yes Agg 89.74 87.18 84.40 78.61 65.12 62.51
Yes Dep No Agg 88.90 85.73 78.59 63.16 54.66 52.91
Yes Dep Yes, limit Ref 90.00 87.47 84.53 79.45 65.25 62.95
Yes Indep Yes, limit Agg 89.76 86.95 84.17 79.69 65.86 62.19
Yes Dep Yes, limit Agg 89.81 87.13 84.31 78.37 65.06 63.71

Table 8.9. Evaluation of the weakly-supervised Voxel-RCNN [9] on the validation object
detection KITTI dataset [3] with various settings of the Scale Detector.
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Examining the BEV results, it’s apparent that the Scale Detector’s settings minimally
affect the BEV average precision. However, one specific setting, where the Bounding
Box Reducer is not applied, results in significantly lower BEV average precision, as the
bounding boxes tend to be large.

In contrast, the 3D average precision shows more promising results. The implementa-
tion of the Scale Detector significantly improves the 3D average precision. The poorest
3D average precision occurs again when the Bounding Box Reducer is not used. The
optimal configuration, which employs the Scale Detector with dependent width and
length, Bounding Box Reducer with limited reduction, and aggregated points for re-
duction, achieves the highest average precision.

Figure 8.1 shows the usage of the Scale Detector for the pseudo ground truth label
generation and also for the Voxel-RCNN [9] training. This figure also shows how the
training can recover from wrong pseudo ground truth labels.

Figure 8.1. Example of the usage of the Scale Detector. The upper scene shows the com-
parison of using the Scale Detector for the pseudo ground truth label generation. Blue
bounding boxes are with the Scale Detector, Red without. The lower scene shows the
comparison of using the pseudo ground truth labels with Scale Detector to train Voxel-

RCNN [9]. Blue bounding boxes are with the Scale Detector, Red without.

8.10 Number of frames
This section investigates how the number of frames utilized in temporal consistency
exploitation influences the recall, precision, and average precision of our method. We
experimented with four different numbers of frames. The temporal consistency ex-
ploitation is described in Chapter 4.

First, ±0 frames which means there is no tracking employed. Consequently, all cars
are treated as standing, and there is no point aggregation or yaw estimation based on
trajectory.
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Second, ±10 frames, correspond to ±1 second before and after the reference frames.

The tracking is employed, as well as the classification of standing or moving cars, which
allows point aggregation or yaw estimation.

The third and fourth settings are ±30 and ±120 frames, which translates into ±3,
respectively ±12 seconds. These settings differ from the ±10 frames settings only by
the time span.

An extended time span requires processing more images with the Detectron2 [35]
framework, making a very long time span computationally challenging and inefficient.

Let us examine the pseudo ground truth labels based on the 0.7 IoU BEV metric.
The results are presented in Table 8.10.

Number of frames BEV Recall BEV Precision
Easy Moderate Hard Easy Moderate Hard
@0.7 @0.7 @0.7 @0.7 @0.7 @0.7

±0 88.46 69.08 34.84 76.60 70.06 49.47
±10 86.33 75.94 49.43 74.10 74.50 62.31
±30 87.66 74.84 51.05 72.11 74.20 61.85
±120 86.47 70.34 47.43 68.84 74.68 59.63

Table 8.10. Evaluation of the pseudo ground truth labels on the whole BEV object detec-
tion KITTI dataset [3] with different numbers of frames for temporal consistency exploita-

tion.

The results demonstrate that exploiting temporal consistency improves recall and
precision, particularly for Moderate and Hard examples. However, extending to ±120
frames results in reduced recall and precision. Consequently, we have decided to use
the ±30 frames setting, which offers the highest recall for Hard examples and, along
with ±10 frames, delivers the best overall recall and precision.

A slight decline in recall and precision for Easy examples is observed with an increased
number of frames. This is probably caused by that when we can see more time in the
future, we can detect cars at bigger distances. However, these distant cars are often
not labeled in the dataset, leading to a decrease in recall and precision.

Next, we utilized the pseudo ground truth labels, along with segmented (aggregated)
point clouds, trajectories, and binary masks, into our complete pipeline for weakly-
supervised training. The performance of this approach was evaluated by training the
Voxel-RCNN [9] and evaluating it in both Bird’s Eye View (BEV) and 3D metrics.
The results of this evaluation, based on different numbers of frames used for temporal
consistency exploitation, are presented in Table 8.11.

Number of frames BEV 3D
Easy Moderate Hard Easy Moderate Hard
@0.7 @0.7 @0.7 @0.7 @0.7 @0.7

±0 88.83 84.7 78.11 53.70 45.17 41.26
±10 89.70 87.71 86.75 83.77 68.05 67.13
±30 90.09 88.25 86.95 85.92 75.33 73.74

Table 8.11. Evaluation of the weakly-supervised Voxel-RCNN [9] on the validation object
detection KITTI dataset [3] with different number of frames for temporal consistency

exploitation.
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The results demonstrate that exploiting temporal consistency is an essential com-
ponent of our method. It significantly boosts performance, particularly in 3D object
detection. Additionally, there is a noticeable improvement in performance when in-
creasing the frame number from ±10 to ±30. These findings show the importance of
temporal consistency in enhancing the average precision of 3D object detection in our
weakly-supervised training framework.

8.11 Iterative Closest Points
In this section, we explore the impact of the Iterative Closest Points (ICP) algorithm [8]
on our method’s performance. As outlined in Chapter 4, the provided IMU data does
not always ensure perfect alignment in frame-to-frame transformations. We implement
the ICP algorithm for fine-tuning these transformations.

Our initial evaluation focuses on the recall and precision of our pseudo ground truth
labels, specifically using the 0.7 IoU BEV metric and considering ±30 frames. The
results of this evaluation are summarized in Table 8.12.

ICP BEV Recall BEV Precision
Easy Moderate Hard Easy Moderate Hard
@0.7 @0.7 @0.7 @0.7 @0.7 @0.7

Times 80.96 63.48 43.71 66.52 62.67 52.62
Check 87.66 74.84 51.05 72.11 74.20 61.85

Table 8.12. Evaluation of the pseudo ground truth labels on the whole BEV object detec-
tion KITTI dataset [3] with or without the Iterative Closest Point [8] algorithm employed.

The results clearly show that utilizing the ICP algorithm in the temporal consistency
exploitation significantly enhances our method’s performance. Throughout our experi-
ments, we observed that employing ICP enables the use of a larger number of frames,
which is essential for our method. For instance, without the use of ICP, choosing a
larger frame window, such as ±30 frames instead of ±10 frames, results in a significant
drop in both recall and precision. The utilization of ICP addresses this issue, showing
its importance in the overall method.

Next, we utilized the pseudo ground truth labels, along with segmented (aggregated)
point clouds, trajectories, and binary masks, into our complete pipeline for weakly-
supervised training. The performance of this approach was evaluated by training the
Voxel-RCNN [9] and evaluating it in both Bird’s Eye View (BEV) and 3D metrics. The
results are presented in 8.13.

ICP BEV 3D
Easy Moderate Hard Easy Moderate Hard
@0.7 @0.7 @0.7 @0.7 @0.7 @0.7

Times 89.80 87.56 86.34 74.78 70.04 64.61
Check 90.09 88.25 86.95 85.92 75.33 73.74

Table 8.13. Evaluation of the weakly-supervised Voxel-RCNN [9] on the validation object
detection KITTI dataset [3] with or without the Iterative Closest Point [8] algorithm

employed.
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Our findings show that while the ICP algorithm doesn’t lead to significant changes in

the BEV performance metric, it notably enhances performance in the 3D metric. This
improvement in 3D can be explained by the near-perfect alignment of point clouds
achieved through the ICP. It is particularly beneficial in a 3D metric, where achieving
the 0.7 IoU threshold is harder than in the BEV.

8.12 Loss Function Comparison

This section focuses on the different losses employed in the fitting process within our
method. First, we evaluate various losses for the pseudo ground truth label generation
The evaluation of pseudo ground truth labels is shown in Table 8.14.

Loss Recall Precision
Easy Moderate Hard Easy Moderate Hard
@0.7 @0.7 @0.7 @0.7 @0.7 @0.7

Chamfer 56.26 37.96 22.20 46.43 37.65 26.72
Median Chamfer 82.51 67.68 43.18 67.94 51.40 52.29
Template Fitting 87.54 73.29 49.74 72.04 72.64 60.27
Template Fitting 40* 88.23 74.78 50.98 72.59 74.12 61.76
Differentiable TF 85.95 72.55 46.73 70.68 71.94 56.54

Table 8.14. Evaluation of the pseudo ground truth labels on the whole BEV object detec-
tion KITTI dataset [3] with various fitting losses employed. * 40 denotes, that the number

of steps for each parameter during fitting is increased from 20 to 40.

The evaluation reveals that the Chamfer Distance Loss, despite its widespread use,
delivers suboptimal performance, primarily due to its inadequate handling of outliers
as described in Subsection 5.6.1. On the other hand, the Median Chamfer Distance
Loss, described in Subsection 5.6.2, significantly enhances both recall and precision.
Yet, it’s the Template Fitting Loss, described in Subsection 5.6.3, that delivers the
best performance, surpassing the Median Chamfer Distance Loss significantly in both
metrics.

Notably, the fast implementation of the Template Fitting Loss allows us to increase
the number of steps in coarse optimization from 20 to 40, further boosting perfor-
mance. The comparison between the non-differentiable and differentiable versions of
the Template Fitting Loss shows a relatively small performance gap, proving that this
approximation is good enough for our method.

As the Median Chamfer Distance Loss and Template Fitting Loss aren’t differen-
tiable, we cannot use them in the whole pipeline for weakly-supervised training. So
they are omitted in the next table showing the performance difference with various
losses employed in the whole weakly-supervised training shown in Table 8.15. The
Mask Fitting Loss described in Section 7.4 is employed in both cases.

This analysis reveals that the Differentiable Template Fitting Loss, described in
Section 7.3, significantly enhances the performance in both the 0.7 BEV IoU and 0.7
3D IoU metrics. The steepness parameter 𝜎 is chosen 10 as described in Section 8.13.
On the other hand the Chamfer Distance Loss, despite its wide usage, provides poor
performance compared to the Differentiable Template Fitting Loss.
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Loss BEV 3D
Easy Moderate Hard Easy Moderate Hard
@0.7 @0.7 @0.7 @0.7 @0.7 @0.7

Chamfer 84.02 73.11 66.39 67.21 53.93 51.37
Differentiable TF 90.09 88.25 86.95 85.92 75.33 73.74

Table 8.15. Evaluation of the weakly-supervised Voxel-RCNN [9] on the validation object
detection KITTI dataset [3] with various losses employed.

8.13 Steepness parameter in Differentiable Template
Fitting Loss

This section examines the influence of the steepness parameter 𝜎 in the Differentiable
Template Fitting Loss, which is an essential setting of the loss. As detailed in Section
8.12, this loss has demonstrated superior results. However, it contains the steepness
parameter 𝜎 in the sigmoid function that must be tuned.

To determine the optimal steepness parameter, we generated various pseudo ground
truth labels with different values of 𝜎. The performance of each setting was evaluated
using the 0.7 IoU BEV metric, with the results shown in Table 8.16. For context, these
results are compared against the non-differentiable Template Fitting Loss.

𝜎 BEV Recall BEV Precision
Easy Moderate Hard Easy Moderate Hard
@0.7 @0.7 @0.7 @0.7 @0.7 @0.7

5 86.59 75.37 52.32 62.80 72.33 56.33
10 85.88 74.48 52.44 62.26 71.51 56.47
15 84.73 72.96 50.75 61.41 70.06 54.64
25 83.25 69.36 46.65 60.27 66.59 50.21
TFL 86.43 74.29 53.39 64.65 71.33 57.57

Table 8.16. Evaluation of the pseudo ground truth labels on the whole BEV object detec-
tion KITTI dataset [3] with various steepness parameters 𝜎 employed.

Two key insights come from this analysis. Firstly, the Differentiable Template Fitting
Loss demonstrates a performance comparable to the Template Fitting Loss. Secondly,
the optimal value for the steepness parameter 𝜎 appears to lie within the range of 5 to
10. Considering these findings, we have decided to use a 𝜎 value of 10, which balances
the trade-off between sensitivity and performance.

8.14 Losses in the training loop
This section describes the influence of integrating additional losses into the weakly-
supervised training pipeline on the performance of a 3D detector. We start by using
a pre-trained model on pseudo ground truth labels without any added losses, basically
continuing in the pretraining phase. We then incrementally add the Differentiable
Template Fitting Loss (DTFL) and Mask Appearance Loss (MAL) to the training
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DTFL MAL BEV 3D
Easy Moderate Hard Easy Moderate Hard
@0.7 @0.7 @0.7 @0.7 @0.7 @0.7

Times Times 89.64 87.55 85.48 78.42 64.77 63.64
Check Times 90.12 88.15 86.99 76.42 66.01 65.00
Times Check 90.09 88.05 86.64 85.35 74.54 67.67
Check Check 90.09 88.25 86.95 85.92 75.33 73.74

Table 8.17. Evaluation of the weakly-supervised Voxel-RCNN [9] on the validation object
detection KITTI dataset [3] with various added losses employed.

loop, analyzing their individual and combined effects on the performance. The results
of this evaluation are shown in Table 8.17.

First, the results show that adding only DTFL, described in Section 7.3, provides a
marginal performance increase. Since DTFL was already utilized in generating pseudo
ground truth labels, it adds limited additional information to the training process.
However, the average precision is still improved.

Second, we can see that the introduction of MAL, described in Section 7.4, signifi-
cantly improves performance, especially in the evaluation with a 3D 0.7 IoU threshold.
As this loss is not used for generating the pseudo ground truth labels, it offers additional
information for the training, which is beneficial in terms of improving performance.

Third, the results show that employing both losses together achieves the highest
average precision, significantly enhancing 3D detection performance while also slightly
improving BEV results.

Further, we want to illustrate the enhancement that the addition of new losses adds
to the method. It is shown in Figure 8.2. It can be seen that predictions proposed by
Voxel-RCNN, trained with or without added losses, are a little bit different. The main
enhancement lies in the correct prediction of the 3D bounding box height and also the
𝑧-axis spatial location.

a) b)

Figure 8.2. Examples of 3D object detections on the KITTI dataset. Detections by our
method with added losses are in red, without the added losses are in blue, and ground
truth is in green. (a) Examples of how is the height prediction improved, (b) the same

scene to show the minor differences.
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Chapter 9
Evaluation

In this Chapter, we first compare our method’s average precision both with the weakly-
supervised and fully-supervised in Section 9.1. Further, we provide a few scenes, where
we can compare the quality of our methods labels to the human annotations in Section
9.2.

9.1 Comparison with the State-of-the-art

This section presents a comparison of our method against other weakly-supervised 3D
detection approaches, as detailed in Section 2.3. We divide the methods into two
distinct categories. The ones that do not use any human labels, and where our method
falls. And the ones that use some subset of the human labels.

The comparison is based on the performance metrics obtained on the validation
subset of the KITTI object detection dataset [3]. The results are shown in Table 9.1.
This comparison is essential for understanding the strengths and weaknesses of both
categories and how they can overlap.

KITTI BEV AP 3D BEV

labels Easy Moderate Hard Easy Moderate Hard

Method Year 2D 3D @0.5 @0.7 @0.5 @0.7 @0.5 @0.7 @0.5 @0.7 @0.5 @0.7 @0.5 @0.7

Fully-supervised methods

PV-RCNN [16] 2020 Yes Yes × × × × × × × 89.35 × 83.69 × 78.70

Voxel-RCNN [9] 2021 Yes Yes × × × × × × × 89.41 × 84.52 × 78.93

CasA+T [18] 2021 Yes Yes × × × × × × × 90.11 × 86.63 × 79.49

Weakly-supervised methods with partial human labels

WS3D [52] 2020 No 500 96.33 88.56 89.01 84.99 88.52 84.74 95.85 84.04 89.14 75.10 88.32 73.29

FGR [27] 2021 Yes No × × × × × × × 86.11 × 74.86 × 67.53

WS3D v2 [6] 2021 No 500 96.46 88.95 89.35 85.83 88.97 85.03 96.34 85.04 89.44 75.94 88.95 74.38

MAP-Gen [30] 2022 Yes 500 × × × × × × × 87.87 × 77.98 × 76.18

Mtrans [32] 2022 Yes 500 × × × × × × × 88.72 × 78.84 × 77.43

Weakly-supervised methods with no human labels

VS3D [19] 2020 No No 81.60 × 72.43 × 64.31 × 41.83 × 39.22 × 32.73 ×
Zakharov [24] 2020 No No 94.9 81.0 88.5 59.8 × × 90.7 22.4 71.1 13.3 × ×
McCraith [26] 2022 No No 90.23 × 85.74 × 76.84 × × × × × × ×
Ours No No 98.86 90.09 89.58 88.25 89.06 86.95 98.81 85.92 89.54 75.33 88.97 73.74

Table 9.1. Comparison of ours, other weakly-supervised and fully-supervised evaluated on
the validation object detection KITTI dataset [3].
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First, examining the BEV results, it’s evident that our method achieves top-tier

performance in both 0.5 and 0.7 BEV IoU metrics on the validation KITTI dataset
compared to other weakly-supervised methods. Notably, our method outperforms all
other approaches that do not use human labels by a significant margin. It also surpasses
those methods that employ a subset of human labels, although some of these methods
haven’t published their BEV metrics results.

Second, looking at the 3D results, our method demonstrates state-of-the-art per-
formance at the 0.5 3D IoU metrics on the validation KITTI dataset among weakly-
supervised methods. While it doesn’t lead in the 0.7 3D IoU metrics, the performance
gap is below 5%, and those leading methods use a subset of human labels. Our method
significantly outperforms other methods that do not use human labels and shows a
small performance gap compared to state-of-the-art fully-supervised methods.

Next, we evaluate our method on the test object detection KITTI dataset and com-
pare it with other methods. These results are shown in Table 9.2. We focus on the 0.7
IoU threshold as it is the standard for the test set evaluation.

KITTI labels BEV AP 3D BEV
Easy Moderate Hard Easy Moderate Hard

Method Year 2D 3D @0.7 @0.7 @0.7 @0.7 @0.7 @0.7
Fully-supervised methods

PV-RCNN [16] 2020 Yes Yes 94.98 90.65 86.14 90.25 81.43 76.82
Voxel-RCNN [9] 2021 Yes Yes 94.85 88.83 86.13 90.90 81.62 77.06
CasA+T [18] 2021 Yes Yes 94.57 91.22 88.43 90.68 84.04 79.69

Weakly-supervised methods with partial human labels
WS3D [52] 2020 No 500 90.11 84.02 76.97 80.15 69.64 63.7
FGR [27] 2021 Yes No 90.64 82.67 75.46 80.26 68.47 61.57
WS3D v2 [6] 2021 No 500 90.96 84.93 77.96 80.99 70.59 64.23
MAP-Gen [30] 2022 Yes 500 90.61 85.91 80.58 81.51 74.14 67.55
Mtrans [32] 2022 Yes 500 91.42 85.96 78.82 83.42 75.07 68.26

Weakly-supervised methods with no human labels
Ours No No 91.20 85.13 80.15 77.76 65.41 60.90

Table 9.2. Comparison of ours, other weakly-supervised and fully-supervised evaluated on
the test object detection KITTI dataset [3].

Reviewing the 0.7 BEV IoU metric on the test set, our method is competitive with
other state-of-the-art weakly-supervised approaches, especially those using a subset of
human labels. Unfortunately, no methods using no human labels have published their
results on the test set. Compared to fully-supervised methods, there’s a noticeable but
small performance difference.

In the 0.7 3D IoU metric, our method closely follows other approaches but doesn’t
outperform any. Again we can’t compare our method with other methods using no
human labels. The gap with fully-supervised methods is significant, and it’s worth
noting that our method’s performance drop between the validation and test sets is
larger than in other methods.
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9.2 Qualitative comparison to human annotations
In this section, we show frames where we employ our method and compare the outputs
of our method with the human-labeled ground truth labels. First, in Figure 9.1 we
show scenes where our method fails. Second, in Figure 9.2, we show scenes, where our
method performs well.

a) b)

Figure 9.1. Typical failure modes on the KITTI dataset. Estimating length of a car which
is moving and has the same yaw as the ego-vehicle is extremely difficult as there is no data
even in subsequent frames to infer vehicle length (a). A vehicle in the Hard category (car)
has very sparse LiDAR point cloud and since it is a moving car in opposite direction, we

cannot aggregate enough LiDAR points for this instance (b).
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a) b)

c) d)

e) f)

Figure 9.2. Examples of 3D object detections on the KITTI dataset. Detections by our
method are in red color, ground truth is in green color. Note the two detections in c)
marked with a red arrow which are cars missed by human annotators of KITTI. Best

viewed zoomed in.
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Chapter 10
Conclusion

In this thesis, we have analyzed the current state of 3D vehicle detection, focusing
on datasets and methods in both fully-supervised and weakly-supervised domains, as
detailed in Chapter 2. This analysis has been used to gather insights into the problem
of weak supervision.

Further, a new method which exploits a generic off-the-shelf 2D detector and a num-
ber of real-world priors to train a 3D object detector was proposed. Exploitation of the
temporal consistency, such as car tracking or point aggregation, plays a significant role
in the method, together with a novel Template Fitting Loss used in the fitting process.
The method has been described in Chapters 3, 4, 5, and 6.

Furthermore, in Chapter 7, we show how a fully-supervised 3D detector pipeline
can be adapted to a weakly-supervised one to increase the method’s performance by
adding both novel Differentiable Template Fitting and Mask Appearance Loss. The
addition of novel losses incorporates more information into the training loop in the form
of segmented aggregated point clouds, car trajectories, and 2D instance segmentation
binary masks.

The experiments performed during the development of the method are discussed and
evaluated in Chapter 8 to support our decisions during the development of the method.
Numerous experiments were possible thanks to the granted access to the RCI cluster.
The results are proposed in Chapter 9, where the comparison both with the weakly and
fully supervised methods on the KITTI dataset is shown and discussed together with
an illustration of the method’s performance on real-world scenes.

One of the most significant advantages of our method is that it can be used to train
any 3D detector by only collecting sensor recordings in the real world, which is extremely
cheap and allows training using orders of magnitude more data than traditional fully-
supervised methods.

Our method significantly outperforms all previous methods which do not rely on
domain-specific human labels, thus achieving state-of-the-art accuracy in 3D object de-
tection trained without human annotations. In Bird’s Eye View (BEV) AP, our method
also outperforms methods which rely on partial 2D or 3D KITTI [3] annotations, and
in 3D AP it achieves similar results, despite not having access to any 3D human labels.

The main limitation of our method seems to be the inability to account for some an-
notation bias, which is demonstrated by a smaller gap to the fully-supervised method
in the less strict overlap evaluation (IoU threshold 0.5). Also, by improving the spatial
dimensions estimation, the method’s 0.7 3D IoU average precision would increase sig-
nificantly, however, the estimation of spatial dimensions for a special subset of cars is
challenging, even for the human annotator.
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