
Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Measurement

Master’s Thesis

Memory Safety Analysis in Rust GCC

Jakub Dupák

Supervisor: Ing. Pavel Píša Ph.D.

Project reviewer: MSc. Arthur Cohen

Study programme: Open Informatics

Branch of study: Computer Engineering

January 2024

Thesis Supervisor
Ing. Pavel Píša Ph.D.
Department of Control Engineering
Faculty of Electrical Engineering
Czech Technical University in Prague

Project Reviewer
MSc. Arthur Cohen
Rust GCC Maintainer responsible to the GCC Steering Committee
Embecosm

This work is licensed under CC BY 4.0.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

483785 Personal ID number: Dupák Jakub Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Control Engineering

Open Informatics Study program:

Computer Engineering Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

Memory safety analysis in Rust GCC

Master’s thesis title in Czech:

Analýza bezpečného přístupu k paměti pro kompilátor Rust GCC

Guidelines:

Rust is a modern programming language focused on producing safe and performant code that is being largely adopted
across the programming industry. The Rust compiler rustc is implemented on top of the LLVM compiler framework. GCCRS
implements a new Rust front end on top of GCC to leverage GCC capabilities for Rust projects and provides a second
independent Rust implementation.
The student will implement memory safety analysis (borrow checking) in the Rust GCC compiler using the Polonius project.
1) Study Polonius API and analysis principles.
2) Study Rust GCC control-flow information representation.
3) Design and implement foreign-function interface from Rust GCC (C++) to Polonius (Rust).
4) Design and implement input of control-flow information to Polonius.
5) Design and implement input of relevant memory operation facts to Polonius.
6) Design and implement output of Polonius analysis and basic error reporting.

Bibliography / sources:

[1] MATSAKIS, Nicholas D. and KLOCK, Felix S., 2014, The rust language. ACM SIGAda Ada Letters. 2014. Vol. 34,
no. 3, p. 103–104. DOI 10.1145/2692956.2663188.
[2] An alias-based formulation of the borrow checker, 2018. Baby Steps [online], Accessed June 2023. Available from:
http://smallcultfollowing.com/babysteps/blog/2018/04/27/an-alias-based-formulation-of-the-borrow-checker
[3] RAKIC, Rémy and MATSAKIS, Niko. Polonius. Available from: https://rust-lang.github.io/polonius/

Name and workplace of master’s thesis supervisor:

Ing. Pavel Píša, Ph.D. Department of Control Engineering FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 09.01.2024 Date of master’s thesis assignment: 01.09.2023

Assignment valid until:
by the end of winter semester 2024/2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Pavel Píša, Ph.D.
Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Acknowledgement

I express my gratitude to Jeremy Bennett for providing me with the opportunity to
work on this project. I would also like to thank Arthur Cohen and Philip Herron, the
maintainers of the Rust GCC project, for their consultations and reviews, and Pavel
Píša for my introduction to the professional open-source developer community.
Furthermore, I would like to acknowledge our entire study group, Max Hollmann,
Matěj Kafka, Vojtěch Štěpančík and Jáchym Herynek, for endless technical discus-
sions and mental support.
Finally, I would like to thank my family for their continuous support.

Declaration

I declare that the presented work was developed independently and that I have
listed all sources of information used within it in accordance with the methodical
instructions for observing the ethical principles in the preparation of university
theses.

In Prague on 8th January 2024 ...

iii

Abstract

This thesis presents the first attempt to implement a memory safety analysis, known
as the borrow checker, within the Rust GCC compiler. It utilizes the Polonius en-
gine, which was designed as the next-generation borrow checker for rustc. The text
describes the design of this analysis, the necessary modifications of the compiler,
and compares the internal representations between rustc and gccrs. This compari-
son highlights the challenges in adapting the rustc borrow checker design to gccrs.
The thesis concludes with a discussion of the results and known limitations.

Keywords: compiler, Rust, borrow checker, static analysis, GCC, Polonius

Abstrakt

Tato práce představuje první pokus o realizaci analýzy paměťové bezpečnosti,
nazývané borrow-checker, v překladači Rust GCC. Analýza využívá systém Polo-
nius, který byl vytvořen jako nová generace borrow-checkeru pro překladač rustc.
Práce popisuje návrh analýzy a úpravy překladače, porovnává vnitřní reprezentaci
překladačů rustc a gccrs a poukazuje na problémy spojené s adaptací návrhu
borrow-checkeru z překladače rustc na gccrs. Závěr práce je věnován diskusi o
výsledcích a známých omezeních.

Klíčová slova: překladač, Rust, borrow checker, statická analýza, GCC, Polonius

v

Contents

1 Introduction 1

2 The Problem of Borrow Checking 2
2.1 The Evolution of Borrow Checking in Rustc 4

3 Polonius Engine 7
3.1 Polonius Facts . 8

4 Comparison of Internal Representations 10
4.1 GCC and LLVM . 10
4.2 Rustc Representation . 12
4.3 Rust GCC Representation . 14

5 Rust GCC Borrow Checker Design 16
5.1 Analysis of the Fact Collection Problem 16
5.2 The Borrow Checking Process . 18
5.3 Representation of Lifetimes in TyTy 19
5.4 Borrow Checker IR Design . 20
5.5 BIR Building . 23
5.6 BIR Fact Collection and Checking 23

5.6.1 Subtyping and Variance . 24
5.6.2 Variance of Generic Types . 26

5.7 Error Reporting . 27

6 Implementation 29
6.1 Limitations . 31

6.1.1 BIR and BIR Builder . 31
6.1.2 Parsing, AST, HIR, TyTy . 32
6.1.3 Fact Collection . 32
6.1.4 Polonius FFI and Error Reporting 32

6.2 Building, Usage, and Debugging . 32

7 Conclusion 35

A References 37
A.1 Used Software . 39

B Rustc Intermediate Representations Examples 41
B.1 Rust Source Code . 41
B.2 Abstract Syntax Tree (AST) . 42
B.3 High-Level Intermediate Representation (HIR) 45
B.4 Mid-Level Intermediate Representation (MIR) 48

vii

CONTENTS

C Comparison of BIR and MIR 49
C.1 Compilation Commands . 49
C.2 Rust Source Code . 49
C.3 BIR (Rustc GCC) . 50
C.4 MIR (rustc) . 51

D Examples of Errors Detected by the Borrow-Checker 55
D.1 Move Errors . 55
D.2 Subset Errors . 57
D.3 Loan Errors . 58

D.3.1 Polonius Smoke Test . 58
D.3.2 Additional Tests of Access Rules 59
D.3.3 Access Rules Violations with Structs 61

E Glossary 65

viii

List of Figures

3.1 Illustration of steps performed by Polonius to detect errors.
(Adapted from [8].) . 8

4.1 Comparison of compiler pipelines with a focus on internal represen-
tations . 10

4.2 LLVM IR CFG Example (generated by Compiler Explorer) 11

5.1 Placement of the borrow checker IR in the compilation pipeline . . . 19

ix

Chapter 1
Introduction

Rust is a modern systems programming language that aims to provide memory
safety without runtime overhead[1]. To achieve this goal, a Rust compiler has to
perform a static analysis to ensure that the memory safety rules are not violated.
This analysis is commonly called the borrow checker. The borrow checker is a com-
plex analysis that has been evolving throughout the history of the Rust language
and its reference implementation compiler, rustc. It evolved from a simple lexical
analysis to a control-flow sensitive analysis, gradually providing a more precise val-
idation. The experimental version of the rustc compiler uses a new analysis engine
and algorithm called Polonius. The algorithm changes some fundamental views on
the internal semantics of the analysis to allow more programs to be accepted and
provides better error reporting for rejected programs[2]. The Polonius Working
Group1 is planning to replace the current rustc borrow checker with one based on
Polonius in the Rust language edition 2024[3].

Rust GCC, also known as gccrs, is one of the emerging alternative Rust compilers.
Unlike mrustc and rustc_codegen_gcc, gccrs aims to build a complete general-
purpose Rust compiler independent of rustc. Gccrs aims to offer a rustc-compatible,
drop-in replacement, capitalizing on the mature and diverse features of the GCC
infrastructure. GCC (compared to LLVM) offers more target platforms and different
optimizations and provides security plugins (originally designed for C) that could
be used to find errors in unsafe2 Rust code[4]. The goal of this thesis was to start
the development of a Polonius-based borrow checker in gccrs.

The first chapter introduces the problem of borrow checking. It gives a brief
overview of the development of the borrow checker in the rustc compiler, up to
the Polonius project. The second chapter describes the Polonius analysis engine
and its API. The third chapter compares the internal representations of rustc and
gccrs to highlight the challenges of adapting the rustc borrow checker design to
gccrs. The next chapter explains the design of the borrow checker implemented
in gccrs as part of this work. It maps the experiments that lead to the current
design and describes the new intermediate representation and its usage in the anal-
ysis. Later sections of the chapter describe other modifications of the rest of the
compiler necessary to support borrow checking. The final chapter elaborates on the
implementation, its development, the current state, and the known missing features
and limitations.

1https://rust-lang.github.io/compiler-team/working-groups/polonius/
2https://doc.rust-lang.org/reference/unsafety.html

1

https://rust-lang.github.io/compiler-team/working-groups/polonius/
https://doc.rust-lang.org/reference/unsafety.html

Chapter 2

The Problem of Borrow Checking

This section introduces the concept of borrow checking and traces its development
within the Rust programming language. It presents a simple lexical approach, fol-
lowed by an explanation of a more advanced control-flow sensitive analysis and an
introduction to the Polonius analysis engine, the latest approach to borrow checking
in Rust. Since this work utilizes the Polonius engine, it is described in more detail
in the following chapter.

Typical programming language implementations manage memory with dynamic
storage duration1 in one of two ways. Languages like C employ manual memory
management, where programmers explicitly allocate and free memory, a method
prone to errors[5]. In contrast, higher-level languages such as Java and Python
employ automatic memory management, where runtime garbage collectors handle
memory management tasks.

Addressing the pitfalls of manual memory management, languages like C++ and
Zig2 have introduced tools for more implicit memory deallocation. In simple situ-
ations, these tools tie memory deallocation to the destruction of objects, utilizing
concepts like RAII3, smart-pointers4, and defer statements5. Here, the key differ-
ence from stack allocation is that the ownership can be dynamically transferred
between objects. In more complex situations, where multiple objects share memory
and deallocation is tied to the last object’s destruction, these languages opt in for
runtime solutions like reference counting6.

Despite these improvements, two serious problems remain. First, programmers can
incorrectly establish and maintain the ownership ties, especially during dynamic
ownership transfers between objects. This problem can very often occur when
interfacing systems with differing memory management models7. The second issue
appears when the ownership is not transferred, but a copy of the pointer is used
temporarily (this is called borrowing in Rust). The assumption that the owning
object will exist for the whole time this copy is used is often wrong. This kind of
mistake is called a dangling pointer.[6]

1Dynamic storage duration means that it is unknown at compile time when storage can be safely
reclaimed. In contrast, memory with static storage duration is reclaimed at the end of the
program, and memory with automatic storage duration is bound to a function call.

2https://ziglang.org/
3https://en.cppreference.com/w/cpp/language/raii
4https://en.cppreference.com/w/cpp/memory#Smart_pointers
5https://ziglang.org/documentation/master/#defer
6https://en.wikipedia.org/wiki/Reference_counting
7An interface between a C++ application with STL-based8 memory management and the Qt GUI
framework9, where all Qt API methods take raw pointers (as opposed to smart pointers). Some
of those methods assume that the ownership is transferred, and some of them do not. These
methods can only be differentiated using their documentation.

2

https://ziglang.org/
https://en.cppreference.com/w/cpp/language/raii
https://en.cppreference.com/w/cpp/memory#Smart_pointers
https://ziglang.org/documentation/master/#defer
https://en.wikipedia.org/wiki/Reference_counting

2. The Problem of Borrow Checking

Rust’s memory safety strategy builds upon the RAII approach, but introduces
a built-in static analysis, known as the borrow checker, to prevent the above-
mentioned memory errors. To make the analysis feasible, Rust allows only a con-
servative subset of memory-safe operations. Furthermore, Rust adds additional
limitations to ensure that memory use is safe even during multithreaded execution.
Because these restrictions are very strict and would severely limit the language,
Rust allows certain restrictions to be bypassed in unsafe code blocks, placing the
responsibility for maintaining safety invariants on the programmer.

The key idea behind Rust’s approach is the strict differentiation between ownership
transfers and borrowing, achieved through its type system. An ownership transfer,
called move in Rust (and C++), binds owned unique resources to another object,
detaching them from the current object. Rust simplifies this operation to a mere
bitwise copy by restricting objects from storing a reference to itself, avoiding the
complications seen in C++. It also ensures that the original object cannot be used
after the move operation.

For borrows, Rust uses static analysis to ensure that any borrowed object is not
deallocated during its use, requiring the borrowed object to outlive the borrow. This
analysis is limited to individual functions to ensure analysis feasibility. Program-
mers are required to formally describe the relationships of borrows within function
inputs and outputs using so-called lifetimes. Lifetimes are a special kind of type pa-
rameter that can be used to describe a part of program where concerned references
must be valid. One can image a lifetime as an inference variable, for which the
compiler has to find a valid value (a subset of the program). Lifetime annotations
are related using outlives relationships, indicating that one reference’s lifetime is a
subset of another.

Throughout Rust’s borrow checking development, the interpretation of a subset of
the program has evolved. Initially, it was based on expressions and statements, then
control flow graph (CFG) points, and later potentially used borrows.

Example: Consider a vector-like structure that stores references to integers
without owning them. We introduce a lifetime parameter 'a to represent
the parts of the program where the vector must be valid. The parameter is
substituted with a concrete lifetime at each use site.

struct Vec<'a> { ... }

The add method has a separate lifetime parameter 'b for the inserted refer-
ence. Each method invocation substitutes 'b with the concrete lifetime of
the reference. The compiler ensures 'b outlives 'a (imposed by the 'b: 'a
constraint), ensuring all references in the vector remain valid as long as the
vector exists.

impl<'a> Vec<'a> {
fn add<'b> where 'b: 'a (&mut self, x: &'b i32) { ... }

}

3

2. The Problem of Borrow Checking

2.1 The Evolution of Borrow Checking in Rustc

This section describes how the analysis evolved, gradually rejecting less memory-
safe programs. Rustc started with a lexical (scope-based) analysis, followed by the
first non-lexical (CFG-based) analysis, which is being extended by the Polonius
project. This section strongly builds upon RFC 2094[7], which introduced non-
lexical borrow checking to Rust. Examples from the RFC are presented in this
section.

The simplest variant of borrow checker is based on stack variable scopes. A reference
is valid from the point in the program, in terms of statements and expressions, where
it is created until the end of the current scope. This approach can be extended to
handle some common programming patterns as special cases. For example, when a
reference is created in function parameters, it is valid until the end of the function
call.

{
let mut data = vec!['a', 'b', 'c']; // --+ 'scope
capitalize(&mut data[..]); // |

// ^~~~~~~~~~~~~~~~~~~~~~~~~ 'lifetime // |
data.push('d'); // |
data.push('e'); // |
data.push('f'); // |

} // <---------------------------------------+

However, a very common modification might cause the program to be rejected.
Since the reference is not created in the list of function arguments, but rather as a
local variable, the special case does not apply and the reference must be valid until
the end of the scope of the variable slice.

{
let mut data = vec!['a', 'b', 'c'];
let slice = &mut data[..]; // <-+ 'lifetime
capitalize(slice); // |
data.push('d'); // ERROR! // |
data.push('e'); // ERROR! // |
data.push('f'); // ERROR! // |

} // <------------------------------+

There is no simple way to determine (from the syntactic structure) when the lifetime
of the reference should end to prove that his program is safe. This code can be fixed
by explicitly specifying where the lifetime should end. However, this clutters the
code and cannot be used for more advanced cases.

4

2.1. The Evolution of Borrow Checking in Rustc

{
let mut data = vec!['a', 'b', 'c'];
{

let slice = &mut data[..]; // <-+ 'lifetime
capitalize(slice); // |

} // <------------------------------+
data.push('d'); // OK
data.push('e'); // OK
data.push('f'); // OK

}

One of those more advanced cases occurs when lifetimes are not symmetric in
conditional branches. A typical case is where a condition checks the presence of
a value. In the positive branch, we have a reference to a value that is part of the
map, but in the negative branch, we do not. Therefore, it is safe to create a new
reference in the negative branch. By safe, we mean that there will be only one
reference pointing to the map object at any time. A convenient way to describe at
any time is to use the control flow graph (CFG) of the program.

let mut map = ...;
let key = ...;
match map.get_mut(&key) { // -------------+ 'lifetime

Some(value) => process(value), // |
None => { // |

map.insert(key, V::default()); // |
// ^~~~~~ ERROR. // |

} // |
} // <------------------------------------+

For more examples, see RFC 2094[7]. However, the provided examples should be suf-
ficient to demonstrate that analyzing the program on the control flow graph (CFG)
instead of the syntactic structure (AST) enables the borrow checker to validate and
ensure the safety of complex programs that were previously rejected.

The above analysis thinks of lifetimes as regions (set of points in CFG) where the
reference is valid. The goal of the analysis is to find the smallest regions such that
the reference is not required to be valid outside of those regions. The smaller the
regions, the more references can coexist at the same time, allowing more programs
to be accepted. This approach is called NLL (non-lexical lifetimes) in rustc.

The next generation of borrow checker in Rust is based on the Polonius analysis
engine. Polonius is an extension of NLL, which is capable of proving more programs
to be safe by using a different interpretation of lifetimes. Unlike NLL, Polonius can
handle the last example. In this scenario, the problem is that everything that is tied
to external lifetimes ('a) has to be valid for the whole function. Since v is returned,
it has to outlive the lifetime 'a. However, the lifetime of v is bound to the lifetime
of the reference to the hashmap it is stored in. It forces the map to be borrowed
(transitively) for at least the whole function. This includes the map.insert call,

5

2. The Problem of Borrow Checking

which needs to borrow the hashmap itself, resulting in an error. However, we can
clearly see that no reference to map is available in the None branch. Here, Polonius
can help.

Instead of starting with references and figuring out where they need to be valid,
Polonius goes in the other direction and tracks what references need to be valid at
each point in the program. As we have determined in the example above, there is
no preexisting reference to the map in the None branch.

It is important to note that only internal computations inside the compiler are
changed by this shift of meaning. This change does not affect the language seman-
tics. It only removes some limitations of the compiler.

Another significant contribution of the Polonius project is the fact that it replaces
many handwritten checks with formal logical rules. Also, because it knows which
references are conflicting, it can be used to provide better error messages.

6

Chapter 3

Polonius Engine

The Polonius engine was created by Niko Matsakis1 and extended by Rémy Rakic2

and Albin Stjerna[8] as a next-generation control-flow sensitive borrow checking
analysis for rustc. It was designed as an independent library that can be used
both by the rustc compiler and by different research projects, making it suitable
for usage in gccrs. Polonius interfaces with the compiler by passing around a struct
of vectors3 of facts, where each fact is represented by a tuple of integers4 (or types
convertible to integers). It is completely unaware of the compiler internals.

In the previous chapter, we mentioned that Polonius differs from NLL in its inter-
pretation of lifetimes. Polonius uses the term origin to better describe the concept.
An origin is a set of loans that can be referenced using a variable at each CFG point.
In other words, it tracks where the references that are used could have originated.

let r: &'0 i32 = if (cond) {
&x /* Loan L0 */

} else {
&y /* Loan L1 */

};

Example: The origin of the reference r (denoted as '0) is the set of loans
L0 and L1. Note that this fact is initially unknown and that it is the task of
the analysis to compute it.

Polonius begins by processing the input facts, computing transitive closures of rela-
tionships, and analyzing variable initializations and deinitializations across the CFG.
Subsequently, it identifies move errors, which occur when an object’s ownership is
erroneously transferred multiple times. In the next step, it calculates the liveness of
variables and the “outlives” graph (transitive constraints of lifetimes at each CFG
point)[9]. All origins that appear in the type of live variable are considered live.

The engine next determines active loans based on two criteria: the liveliness of any
origin containing the loan (i.e., there is a variable that might reference it) and the
fact variable/place referencing the loan was not reassigned.

The compiler has to specify all the points in the control flow graph where a loan
being alive would violate the memory safety rules. Polonius then checks whether
such a situation can happen, and if so, it reports the facts involved in the violation.

1https://github.com/nikomatsakis
2https://github.com/lqd/
3A contiguous growable array type from the Rust standard library. (https://doc.rust-lang.org/s
td/vec/struct.Vec.html)

4usize

7

https://github.com/nikomatsakis
https://github.com/lqd/
https://doc.rust-lang.org/std/vec/struct.Vec.html
https://doc.rust-lang.org/std/vec/struct.Vec.html

3. Polonius Engine

For example, if a mutable loan of a variable is alive, then any read/write/borrow
operation on the variable invalidates the loan.

drop-use
and

defined

initialization

drop-live

used and defined

use-live

region live subset

outlives

errors

borrow live

killedborrow ⊂R

invalidates

requires

variable livevariable belongs to
region

path initialized
and moved

Figure 3.1: Illustration of steps performed by Polonius to detect errors. (Adapted
from [8].)

3.1 Polonius Facts

This section outlines the facts that Polonius utilizes, offering a better idea of the
work that the compiler needs to do. These facts are categorized and briefly ex-
plained. For an exhaustive list, refer to the Polonius source code5 and the Polonius
Book[10].

5https://github.com/rust-lang/polonius/blob/master/polonius-engine/src/facts.rs

8

https://github.com/rust-lang/polonius/blob/master/polonius-engine/src/facts.rs

3.1. Polonius Facts

• Atoms:
• Point is a CFG point.
• Variable is a variable in the program.
• Path is a memory location in the program.
• Origin is a set of loans that can be referenced using a variable at each

CFG point. It is the interpretation of lifetimes used by Polonius.
• Loan is the result of a borrow expression.

• Control Flow Graph:
• cfg_edge: (Point, Point) represent the edges in the control flow

graph of the program.
• Variable Usage and Effects:

• var_used_at: (Variable, Point) marks locations where a variable is
used in any way except for being dropped (destructed).

• var_defined_at: (Variable, Point) marks the beginning of a vari-
able scope or its reassignment. All facts related to the given variable are
reset at this point.

• var_dropped_at: (Variable, Point) indicates a point where a vari-
able is dropped (its destructor is called).

• use_of_var_derefs_origin: (Variable, Origin) means that a vari-
able type contains given origin.

• drop_of_var_derefs_origin: (Variable, Origin) reflects that the
origin is used in the drop implementation.

• Path Usage and Effects: Paths correspond to indirect or partial access to a
variable, such as field access or casting.

• path_is_var: (Path, Variable) lists trivial paths that directly corre-
spond to a variable.

• child_path: (Path, Path) describes hierarchical relationships be-
tween paths, where one path is a subset or component of another.

• path_assigned_at_base: (Path, Point) highlights where a specific
path is assigned in the CFG.

• path_moved_at_base: (Path, Point) marks the transfer of ownership
of origins at a specific CFG point.

• path_accessed_at_base: (Path, Point) indicates any memory access
(read or write) to a path.

• Origin Relationships:
• known_placeholder_subset: (Origin, Origin) constrains universal

origins, representing loans from outside the function.
• universal_region: (Origin) lists universal origins.
• subset_base: (Origin, Origin) describes origin subset (outlives) re-

lationships.
• placeholder: (Origin, Loan) associates a universal origin with a loan

that occurred outside the function.
• Loan Facts:

• loan_issued_at: (Origin, Loan, Point) marks execution of a bor-
row expression.

• loan_killed_at: (Loan, Point) marks the end of a loan’s validity.
• loan_invalidated_at: (Point, Loan) marks points where an active

loan leads to an error.

9

Chapter 4

Comparison of Internal Representations

Executing a borrow checker with an external analysis engine involves two key steps.
The first is collecting relevant program information, referred to as facts. The sec-
ond step is the evaluation of these facts using the external engine. Before we can
discuss the collection of facts, we need a clear understanding of how programs are
represented inside the compiler. We will use the term internal representation (IR)
to refer to the representation of the program inside the compiler. We will compare
the IRs used by rustc and gccrs to highlight the differences between the two com-
pilers. This will help us understand the challenges of adapting the borrow checker
design from rustc to gccrs. First, we will describe the IRs used by rustc and then
compare them with those used in gccrs.

AST

HIRTyTy

GENERIC

GIMPLE

AST

HIR TyTy

THIR

MIR

LLVM IR

gccrs

GCC

rustc

LLVM

source

Figure 4.1: Comparison of compiler pipelines with a focus on internal representa-
tions

4.1 GCC and LLVM

To understand the differences between each of the compilers, we must first explore
the differences between the compiler platforms on which they are built (GCC and
LLVM). We will only focus on the middle-end of each platform, since the back-end
does not directly influence the front-end development.

10

4.1. GCC and LLVM

LLVM is built around a three-address code (3-AD)1 representation known as the
LLVM intermediate representation (LLVM IR)[11]. This IR serves as an interface
between the front-ends and the LLVM platform. Each front-end is responsible for
transforming its custom AST IR2 into the LLVM IR. The LLVM IR is stable and
strictly separated from the front-end; therefore, it cannot be easily extended to
include language-specific constructs.

example::saturate

start:
%_0 = alloca i32, align 4
%_2 = icmp sge i32 %x, 0
br i1 %_2, label %bb1, label %bb2

bb2:
store i32 0 ptr %_0, align 4
br label %bb3

bb1:
store i32 %x ptr %_0, align 4
br label %bb3

bb3:
%0 = load i32 ptr %_0, align 4
ret i32 %0

Figure 4.2: LLVM IR CFG Example (generated by Compiler Explorer)

GCC, in contrast, uses a tree-based representation called GENERIC[12, p. 175]
for interfacing with front-ends. GENERIC was created as a generalized form of
AST shared by most front-ends. GCC provides a set of common tree nodes to de-
scribe all the standard language constructs in the GENERIC IR. Front-ends may
define language-specific constructs and provide hooks for their handling[12, p. 212].
The GENERIC representation is subsequently transformed into GIMPLE, which
is mostly3 a 3-AD representation. This transformation involves decomposing ex-
pressions into a series of statements and introducing temporary variables, and it is
performed inside the compiler platform, not in the front-end. This approach makes
the front-ends smaller and shifts more work into the shared part. The GIMPLE[12,
p. 225] representation does not contain information specific to each front-end (pro-
gramming language). However, it is possible to store language-specific information
in GIMPLE by adding entirely new statements[12, p. 262]. This is possible because
GIMPLE is not a stable interface.

The key takeaway from this section is that rustc has to transform the tree-based
representation into a 3-AD representation by itself. That means that it can access
the program’s control flow graph (CFG). This is not the case for gccrs. In GCC,
the CFG is only available in the Low GIMPLE representation, deep inside the
middle-end where the IR is language independent.

1The three-address code represents a program as sequences of statements (known as basic blocks),
connected by control flow instructions to form a control flow graph (CFG).

2The abstract syntax tree (AST) is a structure representing the program syntax. It is the direct re-
sult of parsing. For instance, an expression 1 + (2 - 7) would be represented as a subtraction
node, with children representing 1 and the subexpression (2 - 7).

3“GIMPLE that is not fully lowered is known as ‘High GIMPLE’ and consists of the IL before
the pass_lower_cf. High GIMPLE contains some container statements such as lexical scopes
and nested expressions, while “Low GIMPLE” exposes all of the implicit jumps for control and
exception expressions directly in the IL and EH region trees.”[12, p. 225]

11

4. Comparison of Internal Representations

4.2 Rustc Representation

In the previous section, we have seen that rustc is responsible for transforming
the code from the raw text to the LLVM IR. Given the high complexity of the
Rust language, rustc uses multiple intermediate representations (IRs) to simplify
the process (see the diagram below). The text is first tokenized and parsed into an
abstract syntax tree (AST), and then transformed into the high-level intermediate
representation (HIR). For transformation into a middle-level intermediate represen-
tation (MIR), the HIR is first transformed into a typed HIR (THIR). The MIR is
then transformed into the LLVM IR.

struct Foo(i31);

fn foo(x: i31) -> Foo {
Foo(x)

}

Example: This code snippet will serve us as example throughout this section.

AST is a tree-based representation of the program, closely following each source code
token. At this stage, rustc performs macro-expansion and a partial name resolution
(macros4 and imports5)[13]. As the AST is lowered to HIR, some complex language
constructs are desugared to simpler constructs. For example, various types of loops
are transformed into a single infinite loop construct (Rust loop keyword), and many
structures that can perform pattern matching (if let, while let, ? operator) are
transformed into the ‘match“ construct[14 6].

Fn {
generics: Generics { ... },
sig: FnSig {
header: FnHeader { ... },
decl: FnDecl {
inputs: [
Param {
ty: Ty {
Path { segments: [PathSegment { ident: i32#0 }] }

}
pat: Pat { Ident(x#0) }

},
],
output: Ty { Path { segments: [PathSegment { ident: Foo#0 }] }

...

Example: This is a textual representation of a small and simplified part of
the abstract syntax tree (AST) of the example program. The full version can
be found in the appendix B.2.

4https://rustc-dev-guide.rust-lang.org/macro-expansion.html
5https://rustc-dev-uide.rust-lang.org/name-resolution.html
6https://doc.rust-lang.org/reference/expressions/if-expr.html#if-let-expressions

12

https://rustc-dev-guide.rust-lang.org/macro-expansion.html
https://rustc-dev-uide.rust-lang.org/name-resolution.html
https://doc.rust-lang.org/reference/expressions/if-expr.html#if-let-expressions

4.2. Rustc Representation

The HIR is rustc’s primary representation, and it is used for most operations[13]
It combines a simplified AST with side tables for quick access to additional infor-
mation, such as expression and statement types. These tables are used for analysis
passes, including full name resolution and type checking. Type checking includes
verification of type correctness, inference, and resolving of implicit type-dependent
constructs[13 7].

#[prelude_import]
use ::std::prelude::rust_2015::*;
#[macro_use]
extern crate std;
struct Foo(i32);

fn foo(x: i32) -> Foo { Foo(x) }

Example: One of HIR dump formats: HIR structure still corresponds to a
valid Rust program, equivalent to the original one. rustc provides a textual
representation of HIR, which displays such a program.
The tree version of the dump can be found in the appendix B.3.

The HIR representation can contain many placeholders and “optional” fields that
are resolved during the HIR analysis. To simplify further processing, parts of HIR
that correspond to executable code (e.g., not type definitions) are transformed
into THIR (Typed High-Level Intermediate Representation), where all the missing
information must be resolved. The reader can think about HIR and THIR in terms
of the builder pattern8. HIR provides a flexible interface for modification, while
THIR is the final immutable representation of the program. This involves not only
the data stored in HIR helper tables, but also parts of the program that are implied
from the type system. This means that operator overloading, automatic references,
and automatic dereferences are all resolved into explicit code at this stage.

The final rustc IR, which is lowered directly to the LLVM IR, is the Mid-level
Intermediate Representation (MIR). We will pay extra attention to MIR because it
is the primary representation used by the borrow checker. MIR is a three-address
code representation, similar to LLVM IR but with Rust-specific constructs. It con-
tains information about types, including lifetimes. It differentiates pointers and
references, as well as mutable and immutable references. It is aware of panics and
stack unwinding. It contains additional information for the borrow checker, like
storage live/dead annotations, which denote when a place (an abstract representa-
tion of a memory location) is first used or last used, and fake operations, which
help with the analysis. For example, a fake unwind operation inside infinite loops
ensures an exit edge in the CFG. Fake operations can be critical for algorithms that
process the CFG in reverse order.

MIR consists of sequences of statements (basic blocks) connected by control flow
instructions. This structure forms a control flow graph. MIR statements operate
on places (often called lvalues) and rvalues. A place can represent either a variable
or a value derived from the variable (e.g., a field, an index, or a cast).

7https://rustc-dev-guide.rust-lang.org/type-checking.html
8https://en.wikipedia.org/wiki/Builder_pattern

13

https://rustc-dev-guide.rust-lang.org/type-checking.html
https://en.wikipedia.org/wiki/Builder_pattern

4. Comparison of Internal Representations

Rustc also uses a special IR, called TyTy, to represent types. Initially, types are
represented in HIR on a syntactic level. Every mention of a type in the program
compiles into a distinct HIR node. These HIR nodes are compiled into the TyTy rep-
resentation during the HIR analysis. Each type (all its occurrences in the program)
is represented by a single TyTy object instance. This is achieved by interning9.
Note that there can be multiple equivalent types of different structures. Those are
represented by different TyTy instances. Each non-primitive type forms a tree (e.g.,
reference to a pair of an integer and a character), where the inner nodes are shared
between types due to interning. Generic types, which are of particular interest
to borrow checking, are represented as a pair: an inner type and a list of generic
arguments. When generic type parameters are substituted for concrete types, the
concrete type is placed into the argument list. The inner type is left unchanged.
When the type substitution is complete, there is a procedure that transforms the
generic type into a concrete type.

Inside the HIR, after the type-checking analysis, TyTy types of nodes can be looked
up based on the node’s ID in one of the helper tables (namely, the type-check
context). Each THIR node directly contains a pointer to its type. In MIR, the type
is stored inside each place.

fn foo(_1: i32) -> Foo {
debug x => _1;
let mut _0: Foo;

bb0: {
_0 = Foo(_1);
return;

}
}

Example: MIR dump For further details, see the chapter “Source Code
Representation” in [13].

4.3 Rust GCC Representation

This section discusses intermediate representations in gccrs. Since gccrs is a second
implementation of the Rust compiler, it is heavily inspired by rustc. Therefore, this
section assumes familiarity with the rustc intermediate representations, described
in the previous section. We will focus on similarities and differences between rustc
and gccrs, rather than describing the gccrs intermediate representation in full detail.

The gccrs representation is strongly inspired by rustc. It diverges mostly for two
reasons: for simplicity, since gccrs is still in an early stage of development, and due
to the specifics of the GCC platform. Gccrs uses its own variants of AST, HIR, and
TyTy representations, but does not use a THIR or MIR.

AST and HIR representations are similar to rustc, with fewer features supported.
The main difference is the structure of the representation. Rustc takes advantage of

9https://en.wikipedia.org/wiki/Interning_%28computer_science%29

14

https://en.wikipedia.org/wiki/Interning_%28computer_science%29

4.3. Rust GCC Representation

algebraic data types, resulting in a very fine-grained representation. On the other
hand, gccrs is severely limited by the capabilities of C++11 and is forced to use an
object-oriented approach.

There are no THIR and MIR or any equivalent in gccrs. MIR cannot be used in GCC
unless the whole gccrs code generation is rewritten to output (low) GIMPLE instead
of GENERIC, which would be much more complex than the current approach.
Given the limited development resources of gccrs, this is not a viable option[15].

The TyTy-type representation is simplified in gccrs and provides no uniqueness
guarantees. There is a notable difference in the representation of generic types.
Instead of being built on top of the types (by composition) like in rustc, types that
support generic parameters inherit from a common base class. That means that
the type definition is not shared between different generic types. The advantage of
this approach is that during the substitution of generic parameters, the inner types
are modified during each type substitution, simplifying intermediate handling, like
type inference.

15

Chapter 5

Rust GCC Borrow Checker Design

The Rust GCC borrow checker is designed to closely resemble the rustc borrow
checker, within the constraints of the Rust GCC. This approach allows us to lever-
age the existing knowledge of borrow checking in Rust. The analysis operates in
two phases. First, it gathers relevant information, called facts, about the program,
stored as tuples of numbers. Each number represents a CFG node, variable, path/-
place, or loan (a borrow expression). The borrow checker then submits these facts
to the analysis engine, which computes the analysis results. The compiler receives
the facts related to memory safety violations and translates them into error mes-
sages. A significant aspect of the Rust GCC borrow checker is its reuse of the
analysis engine from rustc. To integrate the Polonius engine, developed in Rust,
into the gccrs compiler, which is C++-based, we utilize the C ABI and a thin Rust
wrapper.

This chapter details the design process of the gccrs borrow checker, the decisions
made during this process, and the final design. It places special emphasis on the
newly developed borrow checker intermediate representation (BIR) and its appli-
cation in analysis. Additionally, the chapter covers other compiler modifications
necessary to support borrow checking and concludes with a brief overview of the
error reporting design.

5.1 Analysis of the Fact Collection Problem

This section discusses the options for fact collection in gccrs explored during the
initial design phase. Due to the differences between internal representations of rustc
and gccrs, it was impossible to copy the rustc approach exactly. The considered
alternatives included direct use of HIR, implementing MIR in gccrs, or creating a
new IR specifically for borrow checking, with various placement possibilities within
the compilation pipeline.

The analysis has been control-flow sensitive since the introduction of non-lexical
lifetimes (NLL) in rustc (see the section 2.1), requiring us to match the required
facts, which are specific to Rust semantics, with control-flow graph nodes. We need
to distinguish between pointers (in unsafe Rust) and references. Pointers are not
subject to borrow checking, but references are. Furthermore, we need to distinguish
between mutable and immutable references, since they have different rules, which is
essential for borrow checking1. Each type must carry information about its lifetimes
and their variances (described later in this chapter). We need to store the explicit
lifetime parameters from explicit user type annotation.

1The critical rule of borrow checking is that for a single borrowed variable, there can only be a
single mutable borrow or only immutable borrows valid at each point of the CFG.

16

5.1. Analysis of the Fact Collection Problem

The only IR in GCC that contains CFG information is GIMPLE; however, under
normal circumstances, GIMPLE is language agnostic. It is possible to annotate
GIMPLE statements with language-specific information using special statements
that would have to be generated from special information that would need to be
added to GENERIC. The statements would need to be preserved by the middle-
end passes until the pass building the CFG (which includes 11 passes), after which
facts could be collected. After that, the facts would need to be discarded to avoid
complicating the tens of subsequent passes2[12, p. 141], and RTL generation. This
approach was discussed with senior GCC developers and quickly rejected as it would
require a large amount of work and leak front-end-specific information into the
middle-end, making it more complex. No attempt was made to experiment with
this approach.

It was clear that we needed to build a CFG. Luckily, working with a particular
control flow graph created by the compiler is unnecessary. Any CFG that is consis-
tent with Rust semantics is sufficient. In particular, adding any edges and merging
nodes in the CFG is conservative with regard to the borrow checking analysis. In
many cases, it does not change the result at all.

Initially, we tried to collect information from the HIR directly and compute an
approximate CFG on the fly. That worked nicely for simple language constructs
that are local, but it gets very complicated for more complex constructs like pat-
terns and loops with break and continue statements. Since no representation is
generated, there is no easy way to verify the process, not even by manual checking.
Furthermore, it was not clear how to handle panics and stack unwinding in this
model.

An option to ease such problems was to radically desugared the HIR to only basic
constructs. An advantage of this approach is that it would make the code genera-
tion easier. Also, the code generator already performs some of those transformations
locally (not applying them back to HIR, but using them directly for GENERIC gen-
eration), so those could be reused. The problem that quickly arose was that the
HIR visitor system was not designed for HIR-to-HIR transformations, where new
nodes would be created. Many such transformations, such as explicit handling of
automatic referencing and dereferencing, would require information about the type
of each node, which would, in return, require name resolution results. Therefore,
that transformation would have to happen after all analysis passes on the HIR are
completed. However, all information stored alongside HIR would need to be up-
dated for each newly created node. The code generator partly avoids this problem
by querying the GENERIC API for the information it needs about the code already
compiled. This fact would complicate the use of existing transformations on the
HIR-to-HIR level. Rustc avoids this problem by doing such transformations on the
HIR-THIR boundary and not modifying the HIR itself. Since this option would be
complicated and would only be a preparation for borrow checking, it was decided
not to proceed in this direction at that time. However, we found that some trans-
formation can be performed on the AST-HIR boundary. This approach can be
done mostly independently (only code handling the removed nodes is also removed,
but no additions or modifications are needed). It was agreed that such transfor-
mations are useful and should be implemented regardless of the path taken by the

2See file gcc/passes.def in the GCC source code.

17

5. Rust GCC Borrow Checker Design

borrow checker. Those transformations include mainly loops and pattern-matching
structures. These transformations are even documented in the rust reference[14].

At the time of writing, desugaring of the for loop was implemented by Philip
Herron. More desugaring work is in progress or is planned. However, I have
focused on the borrow checking itself. For the time being, I have ignored the
complex constructs, assuming that they will be eventually desugared into
constructs that the borrow checker would already be able to handle.

To ensure that all possible approaches were considered, we discussed the possibility
of implementing MIR to gccrs. This approach has some advantages and many
problems. Should the MIR be implemented in a completely compatible way, it
would be possible to use tools like MIRI with gccrs. The borrow checking would
be very similar to rustc borrow checking, and parts of rustc code might even be
reused. Gccrs would also be more ready for Rust-specific optimizations within the
front-end. The final advantage is that the current test suite would cover the process
of lowering the HIR to MIR, as all transformations would affect the code generation.
The main problem with this approach is that it would require a large portion of
gccrs to be reimplemented, delaying the project by a considerable amount of time.
Should such an approach be taken, any effort on borrow checking would be delayed
until the MIR is implemented. The maintainers decided that such an approach is
not feasible and that gccrs will not use MIR in any foreseeable future[15].

After Arthur Cohen suggested keeping things simpler, I decided to experiment with
a different, minimalistic approach: building a radically simplified MIR-like IR that
keeps only the bare minimum of information needed for borrow checking. Given
the unexpected productivity of this approach, it was decided to continue. This
IR, later called the borrow checker IR (BIR), focuses only on the flow of data and
ignores the actual data transformations. The main disadvantage of this approach is
that it creates a dead branch of the compilation pipeline that is not used for code
generation, and therefore it is not covered by the existing test suite. To overcome
this difficulty, the BIR and its textual representation (dump) are designed to be as
similar to rustc MIR as possible. This feature allows us to check the generated BIR
against the MIR generated by rustc, at least for simple programs. The use of BIR
is the final approach used in this work. Details of the BIR design are described in
the next chapter.

5.2 The Borrow Checking Process

Before the borrow checking itself can be performed, specific information about types
needs to be collected when the HIR is type checked and TyTy types are created.
The TyTy needs to resolve and store information about lifetimes and their corre-
sponding constraints. At this point, lifetimes are resolved from string names, and
their bounding clauses are found. There are different kinds of lifetimes in the Rust
language. Inside types, the lifetimes are bound to the lifetime parameters of generic
types. In function pointers, lifetimes can be universally quantified (meaning that
the function must be memory-safe for every possible lifetime). In function defini-
tions, lifetimes may be omitted (elided) if all references share the same lifetime. In
function bodies, lifetimes can be bound to the lifetime parameters of the function,

18

5.3. Representation of Lifetimes in TyTy

AST

HIRTyTy

GENERIC

GIMPLE

gccrs

GCC

source

BIR

Figure 5.1: Placement of the borrow checker IR in the compilation pipeline

or they can be omitted, in which case they are inferred3. The type-checked HIR
is then transformed into the borrow checker IR (BIR). The BIR is then processed
to extract facts for Polonius. At this phase, some errors that are easy to detect
can be emitted. Subsequently, the collected facts are passed to Polonius, which
then computes the results of the analysis. The results are then passed back to the
compiler, which translates them into error messages.

5.3 Representation of Lifetimes in TyTy

In this work, the term lifetime refers to the syntactic object in HIR and AST.
In the source code, it corresponds to either explicit universala lifetime an-
notation ('a), elided universal lifetime annotation[14]b, and local/existential
lifetimes, which are always inferred. In contrast, region/origin is used to
refer to the semantic object. The object is, in fact, an inference variable, and
its value is computed by the borrow checker. The term region is used by
NLL to refer to a set of CFG points. Polonius introduced the term origin to
refer to a set of loans. In both this text and the implementation, the terms
are used interchangeably.

aThere are two kinds of lifetimes in Rust semantics: universal and existential. Universal
lifetimes correspond to code that occurs outside the function. It is called universal
because the concerned borrow checking rules use the universal quantifier. That means
that the function has to be valid for all possible outside code that satisfies the specified
(or implied) constraints. Existential lifetimes correspond to the code that happens inside

3At least Rust semantics thinks about it that way. In reality, the compiler only checks that there
exists some lifetime that could be used in that position by collecting constraints that would
apply to such a lifetime.

19

5. Rust GCC Borrow Checker Design

the function. The existential quantifier is used in the rules regarding existential lifetimes.
That means that the code has to be valid for some set of loans (or CFG points).

bhttps://doc.rust-lang.org/reference/lifetime-elision.html

In order to analyze more complex lifetimes than just simple references, it was nec-
essary to add a representation of lifetime parameters to the type system and unify
it with the representation of lifetimes in the rest of the compiler. The first step is
to resolve the lifetimes and bind them to their binding clauses. Gccrs recognizes
four kinds of regions. In a function body, explicit lifetime annotations result in
named lifetimes, while implicit annotations lead to anonymous lifetimes. Within
generic data types, lifetimes resolved to lifetime parameters are called early-bound.
For function pointers and traits, lifetimes can be universally quantified using the
for clause4. These lifetimes are not resolved when the definition is analyzed, but
only when this type is used. Hence, the name is late-bound lifetimes. In addition,
there is a representation for unresolved lifetimes. It is used, for example, when
a generic type is defined, but the generic arguments have not been provided yet.
Any occurrence of an unresolved lifetime after type checking is to be treated as a
compiler bug.

Inside TyTy, lifetimes are represented in the following ways. Named lifetimes are
enumerated. Anonymous lifetimes are assumed to be always distinct (but they are
represented by an identical object at this stage). Early bound lifetimes are repre-
sented by the relative position of the lifetime parameter to which they are bound.
In generic types, lifetime arguments are stored together with type arguments, which
ensures their automatic propagation. An issue arising from this automatic propa-
gation is the updating of the bindings of early bound lifetimes. This means that
by a simple inspection of the body of the generic type, one would not be able to
resolve the lifetimes. A trick solves this problem. Each type in TyTy is identified
by a unique ID. When generic arguments are substituted, a clone of the type with
a fresh ID is created. What we would like to achieve is to have the same state as in
rustc: the original body and an up-to-date list of generic arguments. This can be
achieved by storing the ID of the original type in addition to the current ID. When
necessary, the original ID can be used to look up the initial type.5 The analysis
can then traverse the original type, and when a type placeholder is encountered,
the appropriate argument is looked up in the current type.

5.4 Borrow Checker IR Design

The Borrow Checker Intermediate Representation (BIR) is a three-address code
representation, designed to closely resemble a subset of rustc Mid-level Intermediate
Representation (MIR). Like MIR, it represents the body of a single function (or a
function-like item, such as a closure), as borrow checking is performed on each
function separately. It abstracts specific operations into a few key operations that
focus on data flow.

4for<'a> fn(&'a i32) -> &'a i32
5This was once revealed to me in a dream.

20

https://doc.rust-lang.org/reference/lifetime-elision.html

5.4. Borrow Checker IR Design

fn fib(_2: u32) -> u32 {
bb0: {
0 StorageLive(_3);
1 StorageLive(_5);
2 _5 = _2;
3 StorageLive(_6);
4 _6 = Operator(move _5, const u32);
5 switchInt(move _6) -> [bb1, bb2];
}

// ... (omitted for brevity)

bb5: {
0 StorageLive(_14);
1 _14 = _2;
2 StorageLive(_15);
3 _15 = Operator(move _14, const u32);
4 StorageLive(_16);
5 _16 = Call(fib)(move _15) -> [bb6];
}

// ... (omitted for brevity)

bb8: {
0 StorageDead(_9);
// ... (omitted for brevity)
4 StorageDead(_3);
5 return;
}

}

Example: The following example shows a shortened BIR dump of a simple
Rust program computing the nth Fibonacci number. The complete source
code and the full dump are available in the appendix C.

The BIR of a single function is composed of basic metadata about the function
(such as arguments, return type, or explicit lifetimes), a list of basic blocks, and a
list of places.

A basic block is identified by its index in the function’s basic block list. It contains
a list of BIR statements and a list of successor basic block indices in the CFG. BIR
statements are of three categories: An assignment of an expression to a local (place),
a control flow operation (switch, return), or a special statement (not executable),
which carries additional information for the borrow checker (explicit type annota-
tions, information about variable scope, etc.). BIR statements correspond to the
MIR StatementKind enum.

Expressions represent the executable parts of Rust code. Many different Rust con-
structs are represented by a single expression. Only data (and lifetime) flow needs to
be tracked. Some expressions are differentiated only to allow for a better debugging
experience. BIR expressions correspond to the MIR RValue enum.

Expressions and statements operate on places. A place is an abstract representation

21

5. Rust GCC Borrow Checker Design

of a memory location. It is either a variable, a field, an index, or a dereference of
another place. For simplicity, constants are also represented as places. Since exact
values are not important for borrow checking and constants are, from principle,
immutable with static storage duration, a single place can represent all constants
of a single type. Rustc MIR cannot afford this simplification, and keeps constants
separate. However, since operations use constants and lvalues in the same way, MIR
introduces a special layer of lvalues: the Operand enum.

Places are identified by the index in the place database. The database stores a list
of places and their properties. The properties include an identifier, used to always
resolve the same variable (field, index, etc.) to the same place, move and copy flags,
type, a list of fresh regions (lifetimes), and a relationship to other places (e.g., a
field of a struct). Temporaries are treated just like variables but are differentiated
in the place database because of place lookup. The place database also keeps
track of scopes and existing loans. The place database structure is based on rustc
MovePathData6. It combines the handling of places done by both MIR and borrow
checker separately in rustc.

It is important to highlight that different fields are assigned to different places;
however, all indices are assigned to the same place (both in gccrs and rustc). This
fact has a strong impact on the strength and complexity of the analysis, because
the number of fields is static and typically small, the size of arrays is unbound and
depends on runtime information.

Structure of the BIR Function
• basic block list

• basic block
• Statement

• Assignment
• InitializerExpr
• Operator<ARITY>
• BorrowExpr
• AssignmentExpr (copy)
• CallExpr

• Switch
• Goto
• Return
• StorageLive (start of variable scope)
• StorageDead (end of variable scope)
• UserTypeAsscription (explicit type annotation)

• place database
• arguments
• return type
• universal lifetimes
• universal lifetime constraints

6https://rustc-dev-guide.rust-lang.org/borrow_check/moves_and_initialization/move_paths.
html

22

https://rustc-dev-guide.rust-lang.org/borrow_check/moves_and_initialization/move_paths.html
https://rustc-dev-guide.rust-lang.org/borrow_check/moves_and_initialization/move_paths.html

5.5. BIR Building

5.5 BIR Building

BIR construction involves visiting the High-Level Intermediate Representation
(HIR) tree of the function. There are specialized visitors for expressions, state-
ments, and patterns, as well as a top-level visitor for handling function headers.
Whenever a new place is created in the compilation database, a corresponding list
of fresh regions7 is generated. Counting the number of lifetimes to be generated
involves traversing the type structure. For generic types, the inner structure is
ignored and only the lifetime and type parameters are considered. Note that the
type parameters can also be generic, creating a structure known as higher-kinded8.
All types are independently queried for each node from the HIR, instead of being
derived within the BIR.

Example: For a BIR code that reads a field from a variable, the type is not
computed from the variable. Rather, it is queried from the HIR for both the
variable and the field.

BIR building itself is fairly straightforward. However, some extra handling was
added to produce a code that is more similar to rustc’s MIR. For example, instead
of eagerly assigning computed expressions to temporaries, it is checked whether the
caller did not provide a destination place. This transformation removes some of
the _10 = _11 statements from the BIR dump. The BIR dump also renumbers all
places to produce a closer match with the BIR dump. This can cause some confusion
during debugging because Polonius is receiving the original place numbers. When
debugging using the Polonius debug output, the dump can be switched to show the
original place numbers.

This handling was especially important when testing the initial BIR builder,
since it makes the dump more similar to the MIR dump and, therefore, easier
for manual comparison.

5.6 BIR Fact Collection and Checking

The BIR fact collection process extracts Polonius facts from the BIR and performs
additional checks. Polonius is responsible for verifying lifetime (region) constraints,
ensuring that each place is moved at most once, and checking that illegal accesses are
not made to borrowed memory locations. The collection process involves two phases:
gathering static facts from the place database and universal region constraints and
traversing the BIR along the CFG to collect dynamic facts.

The fact collection is performed in two phases. First, static facts are collected from
the place database. These include universal region constraints (constraints corre-
sponding to lifetime parameters of the function) collected during BIR construction

7In this text, we use the term lifetime for the syntactic object in the code and region for the
semantic object in the analysis. It is called a region because it represents a set of points in the
control flow graph (CFG). At this point, the set is not yet known. It is the main task of the
borrow checker analysis engine to compute the set of points for each region.

8https://rustc-dev-guide.rust-lang.org/what-does-early-late-bound-mean.html#early-and-late-
bound-parameter-definitions

23

https://rustc-dev-guide.rust-lang.org/what-does-early-late-bound-mean.html#early-and-late-bound-parameter-definitions
https://rustc-dev-guide.rust-lang.org/what-does-early-late-bound-mean.html#early-and-late-bound-parameter-definitions

5. Rust GCC Borrow Checker Design

and facts collected from the place database. Polonius needs to know which places
correspond to variables and which form paths (see the definition below). Further-
more, it needs to sanitize fresh regions of places that are related (e.g., a field and a
parent variable) by adding appropriate constraints between them. The relations of
the regions depend on the variance of the region within the type. (See 5.6.2.1.)

Path = Variable
| Path "." Field // field access
| Path "[" "]" // index
| "*" Path

Formal definition of paths from the Polonius book[10].

In the second phase, the BIR is traversed along the CFG, and dynamic facts are
collected. For each statement, two CFG nodes are added. Two nodes are necessary
to model the semantic aspects where the statement’s effect is immediate or follows
the execution of the statement. For each statement and (if present) its expression,
Polonius facts are collected. These include generic facts related to read and write
operations, as well as facts specific to borrows and function calls. For the function,
we need to instantiate fresh regions for the function lifetime parameters, which need
to be correctly bound together.

5.6.1 Subtyping and Variance

In the basic interpretation of Rust language semantics (one used by programmers
to reason about their code, not the one used by the compiler), lifetimes are part of
the type and are always present. Lifetimes not explicitly mentioned are inferred in
the same way as type parts (e.g., let a = (_, i32) = (true, 5); infers the type
to (bool, i32)). In Rust, explicit lifetime annotations in a function correspond to
borrows that occurred outside the function, implying that these lifetimes span the
entire function body. Annotations for lifetimes that cover only part of the function
body would be redundant, as borrows within a function are precisely analyzed by
the borrow checker. Explicit annotations are used only to represent constraints
from code outside the function scope.

let mut x;
if (b) {

x = a; // a: &'a T
} else {

x = b; // b: &'b T
}

Example: The type of x must be inferred to be a subtype of both &'a T
and &'b T, ensuring safe use with all potential loans (here a or b).

24

5.6. BIR Fact Collection and Checking

In Rust, unlike object-oriented languages like Java or C++, the only subtyping
relationship, apart from identity, arises from lifetimes9. Two regions (representing
lifetimes) can either be unrelated, subsets of each other in terms of loans or CFG
points ('a: 'b), or equal (resulting from 'a: 'b and 'b: 'a). The dependency of
subtyping on the inner parameter is called variance.

Definition [14]
F<T> is covariant over T if T being a subtype of U implies that F<T> is a
subtype of F<U> (subtyping “passes through”)
F<T> is contravariant over T if T being a subtype of U implies that F<U> is a
subtype of F
F<T> is invariant over T otherwise (no subtyping relation can be derived)

Consider an example specific to lifetimes in Rust. With a simple reference type &'a
T, the lifetime parameter 'a is covariant. This implies that a reference &'a T can
be safely coerced into &'b T if 'a is a subtype of 'b. In practical terms, if it is
safe to dereference a reference at any point during the period 'a, it remains safe
throughout the shorter period 'b, given 'b is a subset of 'a.

The situation is different when we pass a reference to a function as an argument.
In that case, the lifetime parameter is contravariant. For function parameters, we
need to ensure that the parameter lives as long as the function needs it to. For
instance, a function pointer with the type fn foo<'a>(x: &'a T) can be coerced
into fn foo<'b>(x: &'b T) if 'b: 'a. Such a transformation is safe because it
narrows the range of acceptable argument values for the parameter x.

To visualize this concept, consider the following code snippet, where 'a denotes a
region safe for referencing the storage of x, and 'b denotes a similar region for y.
A function that operates correctly with a reference of lifetime 'b is also guaranteed
to work correctly with a reference of lifetime 'a, since 'a contains 'b.

let x = 5; // region 'a
{ //

let y = 7; // // region 'b
} //

The return type of the function is effectively an assignment to a local variable (just
across function boundaries) and therefore is covariant.

The situation becomes interesting when the two rules are combined. Let us have a
function fn foo<'a>(x: &'a T) -> &'a T. The return type requires the function
to be covariant over 'a, while the parameter requires it to be contravariant. This
is called invariance.

For non-generic types, variance is directly derived from the type definition. However,
variance in generic types is more complex and subject to different approaches.

9During type inference computation, there can also be subtyping relations with general kinds of
types (like), which is mostly used for literals without a type annotation, where we know it is
“some kind” of integer, but we do not yet know which one.

25

5. Rust GCC Borrow Checker Design

5.6.2 Variance of Generic Types

Generic type variance can be derived from either the type usage or its definition[16].
Rustc employs definition-site variance for generic types, meaning that variance is
computed from the type’s definition, rather than its usage in functions. The situa-
tion becomes complicated when a generic type is used within another type, possibly
in a recursive manner. In such cases, variance requires computation via a fixed-point
algorithm, referred to as variance analysis.

5.6.2.1 Variance Analysis

Both rustc and gccrs implement variance analysis based on section 4 of the paper
[16]. The notation from the paper is followed in the documentation of both compil-
ers, as well as in this text. Although the paper primarily focuses on the variance of
complex subtyping, like in the case of Java, it introduces an effective formal calculus
which is also applicable to higher-kinded lifetimes.

For a thorough understanding of the exact rules, the paper and the source code are
the best resources. Here, we provide only a basic overview. The analysis employs
an iterative fixed-point computation, where variables form a semi-lattice with an
additional binary operation. Each variable corresponds to a single lifetime or type
parameter and is initially set as bivariant.

The visitor algorithm traverses each type, taking the current variance of the visited
expression as input. Every type member is in a covariant position. Conversely, each
function parameter member is in a contravariant position, while the return type is
in a covariant position. The position of a generic argument is determined by the
variance of the generic parameter (represented as a variable in this computation).
The variance of the current node within the type is computed by a transform
function, which considers both the parent node’s variance and the current node’s
positional variance. When a lifetime or type parameter is encountered, then, if the
current variance expression is constant, the variable is updated to the new variance
using the join operation with the current value. For expressions containing at least
one variable, the expression is added to a list of constraints. After processing all
types in the crate, constraints are resolved using fixed-point computation. Note
that current crates might use generic types from other crates, necessitating the
export/load of variance for public types.

Example of Algorithm Execution

struct Foo<'a, 'b, T> {
x: &'a T,
y: Bar<T>,

}

• Foo has three generic parameters, resulting in 3 variables initialized as
bivariant: f0=o, f1=o, f2=o.

• x is first processed in the covariant position.
• &'a T being in the covariant position updates the variables to
f0=+ and f2=+.

• y is next, also in the covariant position.

26

5.7. Error Reporting

• Bar<T> being in the covariant position.
• T inside a generic argument leads to transform(+, b0) for

its position.
• A new constraint f2 = join(f2, transform(+, b0)) is

stored for later computation.
• After processing all types and assuming Bar is an external type with

variances [-] (contravariant in the first parameter), a fixed-point com-
putation begins.

• Iteration 1:
• Starting values: f0=+, f1=o, f2=+.
• Processing constraint f2 = join(f2, transform(+, b0)).
• transform(+, b0) with b0=- gives -.
• join(+, -) results in *.
• Update of f2 requires another iteration.

• Iteration 2:
• Current values: f0=+, f1=o, f2=*.
• Processing same constraint.
• transform(+, b0) still yields -.
• join(*, -) remains *.
• No update to f2, computation concludes.

• Final variances: f0=+, f1=o, f2=*:
• f0 is evident.
• f1 remains bivariant, as it is not mentioned in the type.
• f2 is invariant due to its usage in both covariant and contravari-

ant positions.

5.7 Error Reporting

As each function is analyzed separately, the compiler can easily report which func-
tions violate the rules. Currently, only the kind of violation is communicated from
the Polonius engine to the compiler. More detailed reporting is an area for future
work.

There are three possible approaches to implement more detailed reporting:

1. Returning All Violations: This method involves passing all violations back to
the compiler as a return value of the Polonius FFI invocation. It offers a clear
separation of roles between the compiler and the analysis engine. However,
implementing this correctly could be challenging due to memory ownership
concerns at the FFI boundary. Polonius would need to allocate dynamically
sized memory for the result and provide an API for its release.

2. Callback Function for Error Reporting: Another option is to provide the
Polonius engine with a callback function to report each found error. But, as
Polonius only possesses information in terms of the enumerated nodes of the
control flow graph, a pointer to an instance of the borrow checker would also
need to be passed. This pointer would be used in conjunction with the callback
to map nodes back to the actual code. However, this approach compromises

27

5. Rust GCC Borrow Checker Design

the separation of roles, where Polonius and Polonius FFI act solely as external
computation engines.

3. Compiler-Side Allocation via Callback Functions: A compromise between
these two methods would be to supply Polonius with callback functions that
relay violations to the compiler one at a time, keeping memory allocation on
the compiler side.

Additionally, the borrow checker does not currently store information to trace the
nodes back to their source code locations. This limitation is purely technical and
can be addressed straightforwardly with localized changes. Given the experimental
nature of this work, the focus has been on analysis over detailed error reporting.

The final stage in developing the borrow checker would involve implementing heuris-
tics to infer the reasons for errors and suggest potential fixes.

28

Chapter 6
Implementation

After the initial experiments described in 5.1, the project was implemented in the
following phases: First, an initial version of the borrow checker IR (BIR), lowering
from HIR to BIR (the BIR builder), and a textual BIR dump were implemented.
Second, the first version of the BIR fact collection and the Polonius FFI were added.
At this stage, the first simple error detections were tested. The implementation
was then extended to handle more complex data types, especially generics. Finally,
the BIR fact collection was extended to handle the new information and emit all
available facts.

The initial version of the borrow checker included only the minimal information
that the borrow checker was expected to need. The builder was able to lower
most operator and initializer expressions, borrow expressions, function calls, and
simple control flow operations (if, if/else, while, loop, return). The compiler
was extended1 to handle labeled blocks2 to lower (and test) break and continue
expressions. Note that in the Rust language, break and continue can use label
identifiers to exit nested loops or return a value from any labeled block[14].

The BIR dump was designed to be as similar to MIR as possible for manual ver-
ification. However, rustc performs many transformations on MIR, and there are
various versions of the dump available. Originally, the MIR dump from the online
Compiler Explorer3 was used, but this version is optimized and cleaned up. It
proved complicated to align with this dump, requiring additional BIR transforma-
tions. This led to the decision to change the reference MIR dump. MIR after each
MIR pass can be exported from rustc using the -Zdump-mir=* flag. Additionally,
the -Zunpretty=mir option is available. The logical choice was to use the MIR ver-
sion for borrow checking (-Zdump-mir=nll), which is less optimized and contains
additional borrow checking information. Most BIR transformations were removed
after this change of the reference MIR dump.

This initial BIR version and related infrastructure were submitted to Rust GCC in
pull request 27024, adding 3,779 lines of new code, including a document titled “BIR
Design Notes” to assist new developers with the borrow checker implementation. It
is located in gcc/rust/checks/errors/borrowck/bir-design-notes.md5.

In the second phase, the fact collection and an interface to the Polonius engine were
implemented. Initially, only lifetimes of simple references were handled (at most
one lifetime per type). The fact collection processed all places in the place database

1https://github.com/Rust-GCC/gccrs/pull/2689
2https://doc.rust-lang.org/reference/expressions/loop-expr.html#labelled-block-expressions
3https://godbolt.org/
4https://github.com/Rust-GCC/gccrs/pull/2702
5https://github.com/Rust-GCC/gccrs/blob/df5b6a371dba385e4bb03ebd638cd473c4cc38eb/gcc/
rust/checks/errors/borrowck/bir-design-notes.md

29

https://github.com/Rust-GCC/gccrs/pull/2689
https://doc.rust-lang.org/reference/expressions/loop-expr.html#labelled-block-expressions
https://godbolt.org/
https://github.com/Rust-GCC/gccrs/pull/2702
https://github.com/Rust-GCC/gccrs/blob/df5b6a371dba385e4bb03ebd638cd473c4cc38eb/gcc/rust/checks/errors/borrowck/bir-design-notes.md
https://github.com/Rust-GCC/gccrs/blob/df5b6a371dba385e4bb03ebd638cd473c4cc38eb/gcc/rust/checks/errors/borrowck/bir-design-notes.md

6. Implementation

and traversed the BIR control flow graphs. The interface to Polonius consists of
a C ABI in gccrs and a C ABI (generated by rust-bindgen6 and manually cleaned
up and extended) in a small static Rust library (FFI Polonius). The FFI Polonius
library’s role is to invoke the Polonius engine. A discussion about integrating this
interface into the GCC build system began in pull request draft 27167.

This integration is complex, requiring compilation of Rustc code beyond gccrs cur-
rent capabilities. For development purposes, the Cargo build system (rustc) is
invoked from the GCC Makefile. While not ideal for production due to no cross-
compilation handling, this solution is optimal for development. It was decided to
keep the build integration downstream for the time being. The most viable solution
for upstreaming is to release the Polonius FFI as a dynamic library, with the build-
ing process outside GCC. The final decision on this will be made when the borrow
checker is ready for public release. Therefore, this phase was not submitted to Rust
GCC, with newer independent commits rebased below the FFI commit and sub-
mitted separately. At this stage, the borrow checker successfully detected repeated
moves8, basic subset errors (i.e., insufficient constraints between inputs and outputs
of functions), and moves behind a reference9. Error output was implemented using
only the FFI Polonius debug output at this stage (see the example).

[34/35] Checking function test_move
Polonius analysis completed. Results:
Errors: {}
Subset error: {}
Move error: {

GccrsAtom(
11,

): [
GccrsAtom(

2,
),

],
}

Example: FFI Polonius debug output for a simple program with a move
error. The output reports that at a CFG point encoded as the number 11, a
path number 2 was moved illegally.

In the third (and final) phase, the entire borrow checker, the TyTy IR, and the
type checker were extended to support complex types containing multiple regions
(lifetimes). Variance analysis and helper region tools were implemented. The BIR
builder and the fact collection were expanded to handle the new information and
emit all the available facts. Correctly collecting facts is challenging due to limited
documentation of the facts and their relationship with Rust code. The current
implementation relies on the Polonius Book[10], the Polonius source code[17], the
rustc source code[18], and experiments using rustc and the Polonius CLI. Some

6https://github.com/rust-lang/rust-bindgen
7https://github.com/Rust-GCC/gccrs/pull/2716
8https://doc.rust-lang.org/error_codes/E0382.html
9https://doc.rust-lang.org/error_codes/E0507.html

30

https://github.com/rust-lang/rust-bindgen
https://github.com/Rust-GCC/gccrs/pull/2716
https://doc.rust-lang.org/error_codes/E0382.html
https://doc.rust-lang.org/error_codes/E0507.html

6.1. Limitations

facts may be missing or incorrectly collected.

The borrow checker could identify most errors that violate access rules (number of
loans of a given type allowed, loan/access conflicts), move/initialization errors, and
subset errors. To demonstrate its functionality, a small test suite was created based
on tests from the Polonius project, supplemented with custom ones. Ideally, the
borrow checker would be tested against the rustc test suite, but gccrs is currently
unable to compile most of these tests as they rely on the Rust standard library.
Examples from the gccrs borrow checker test suite are available in the appendix D.

This phase is pending final cleanup and submission in the branch borrowck-stage210.
It includes 5146 additions and 720 deletions and is expected to be submitted to Rust
GCC soon.

6.1 Limitations

The main bottleneck in the current implementation is the BIR builder. After cov-
ering a subset of Rust sufficient for testing error detection capabilities, the focus
shifted to other aspects of the borrow checker to implement all necessary parts,
even if in a limited fashion. Below is a list of known limitations of the current
implementation.

6.1.1 BIR and BIR Builder

• Currently, only non-generic functions are supported (not closures or associated
functions and methods11). Other function-like items require special top-level
handling, though their body handling is identical. Generic functions must be
monomorphised before checking.

• Method calls are not handled due to the required implicit coercion of the self
argument.

• The ? operator and while let are not addressed. They will be removed at
the AST->HIR boundary.

• Handling for if let and match expressions is missing, particularly for pattern
detection (variant selection). Pattern destructuring is mostly implemented for
let expressions and function parameters. The or pattern12 is unsupported, as
is pattern declaration without an initial value, except for identifier patterns13.

• Enums14 are not supported.
• Unsafe blocks are not handled.
• Asynchronous code is completely unsupported in the compiler.
• Unwind paths (drops) are not created, as drops are not supported by the

compiler.
• Two-phase borrowing15 is not implemented. While not essential for correct-

ness, it reduces false positives.

10https://github.com/jdupak/gccrs/tree/borrowck-stage2
11https://doc.rust-lang.org/nightly/reference/items/associated-items.html#associated-functions-

and-methods
12https://doc.rust-lang.org/reference/patterns.html#or-patterns
13https://doc.rust-lang.org/reference/patterns.html#identifier-patterns
14https://doc.rust-lang.org/reference/types/enum.html
15https://rustc-dev-guide.rust-lang.org/borrow_check/two_phase_borrows.html

31

https://github.com/jdupak/gccrs/tree/borrowck-stage2
https://doc.rust-lang.org/nightly/reference/items/associated-items.html#associated-functions-and-methods
https://doc.rust-lang.org/nightly/reference/items/associated-items.html#associated-functions-and-methods
https://doc.rust-lang.org/reference/patterns.html#or-patterns
https://doc.rust-lang.org/reference/patterns.html#identifier-patterns
https://doc.rust-lang.org/reference/types/enum.html
https://rustc-dev-guide.rust-lang.org/borrow_check/two_phase_borrows.html

6. Implementation

• Location information is not stored, which is necessary for practical error re-
porting.

• Copy trait probing is not performed. The Copy trait is derived only for prim-
itive types and tuples of primitive types.

• Not all fake operations (e.g., fake_unwind) are represented or emitted.
• Advanced projections like cast might require more complex handling.

6.1.2 Parsing, AST, HIR, TyTy

• Lifetime elision16 is not handled.
• Variance analysis does not import or export variance information via metadata

export and currently only considers one crate.
• Region propagation in the type checker requires further testing, particularly

in cases involving traits.
• Late-bound lifetime17 instantiation is unaddressed.

6.1.3 Fact Collection

• Implicit constraints between a reference and its base type (&'a T => T: 'a)
are not collected.

• The collection of the loan_killed_at fact is simplified.
• Drop and unwind-related handling is not implemented due to incomplete sup-

port elsewhere in the borrow checker.
• Two-phase borrowing18 is unaddressed. See the section 6.1.1.
• The reasons for loan invalidation are not stored, which is necessary for prac-

tical error reporting.
• Rustc prioritizes subset facts to display more relevant errors. This is not

implemented in gccrs.

6.1.4 Polonius FFI and Error Reporting

• The current integration with the build system is not viable for production.
Refer to the beginning of this chapter for details.

• Only information about the presence and category of violations is passed back
to the borrow checker; details about the violations themselves are not.

• Errors are reported only at the function level (and using debug output), which
can be problematic for automated testing if tests fail or succeed for incorrect
reasons.

6.2 Building, Usage, and Debugging

This section provides references and basic information on how to build gccrs and
use the borrow checker, along with tips for debugging.

The latest source code is available in the author’s fork19 on the branch
borrowck-stage220.
16https://doc.rust-lang.org/nightly/reference/lifetime-elision.html#lifetime-elision
17https://doc.rust-lang.org/reference/trait-bounds.html#higher-ranked-trait-bounds
18https://rustc-dev-guide.rust-lang.org/borrow_check/two_phase_borrows.html
19https://github.com/jdupak/gccrs/
20https://github.com/jdupak/gccrs/tree/borrowck-stage2

32

https://doc.rust-lang.org/nightly/reference/lifetime-elision.html#lifetime-elision
https://doc.rust-lang.org/reference/trait-bounds.html#higher-ranked-trait-bounds
https://rustc-dev-guide.rust-lang.org/borrow_check/two_phase_borrows.html
https://github.com/jdupak/gccrs/
https://github.com/jdupak/gccrs/tree/borrowck-stage2

6.2. Building, Usage, and Debugging

Detailed instructions for building gccrs are in the README.md file in the project’s
root directory. For tips on a better development experience (e.g., faster builds),
refer to [19].

The gccrs binary is named crab1, and it is located in the gcc directory within the
chosen build directory. When built from the borrowck-stage2 branch the binary
will automatically include the borrow checker. Since gccrs is still experimental, the
flag -frust-incomplete-and-experimental-compiler-do-not-use is required to
use the compiler. To enable the borrow checker, add the -frust-borrowcheck flag.
Any detected borrow checker errors will be reported as standard compilation errors.

$ crab1 -frust-incomplete-and-experimental-compiler-do-not-use \
-frust-borrowcheck some_rust_code.rs

../../gcc/testsuite/rust/borrowck/borrowck-assign-comp.rs:5:1:
error: Found loan errors in function a
5 | fn a() { // { dg-error "Found loan errors in function a" }
| ^~

The -frust-debug flag enables debug logs, including the borrow checker activity.
Unfortunately, GCC’s debug logging lacks category filtering. The reader may find
the variance analysis log, the borrow checker log (BIR build and fact collector),
and Polonius debug output particularly interesting. This flag also activates the
BIR dump (saved to ./bir_dump/<crate_name?>/<function_name?>.bir.dump)
and facts dump (saved to nll_facts_gccrs/<function_name>.facts).

crab1: note: Variance analysis solving started:
crab1: note: Variance analysis results:
crab1: note: Point<>

../../gcc/testsuite/rust/borrowck/borrowck-assign-comp.rs:5:1: note:
Checking function a

5 | fn a() { // { dg-error "Found loan errors in function a" }
| ^~

crab1: note: BIR::Builder::build function={a}
crab1: note: ctx.fn_free_region={}
crab1: note: handle_lifetime_param_constraints
crab1: note: visit_statemensts
crab1: note: Sanitize constraints of Point{Point {x:isize, y:isize}}
crab1: note: _4 = BorrowExpr(_1)
crab1: note: push_subset: '?2: '?1
crab1: note: _5 = Assignment(_6) at 0:5
crab1: note: _9 = Assignment(_8) at 0:7
crab1: note: _0 = Assignment(_10) at 0:11
crab1: note: Sanitize field .0 of Point{Point {x:isize, y:isize}}
crab1: note: Sanitize deref of & Point{Point {x:isize, y:isize}}

33

6. Implementation

To obtain a similar output from rustc, use the flags -Znll-facts -Zdump-mir=nll
-Zidentify-regions. With a debug build of rustc, you can also enable the bor-
row checker debug log using the environment variable RUSTC_LOG=rustc_borrowck.
Building rustc is described in the Rustc Developer Guide21.

For more advanced debugging and inspection, gdb/lldb can be used as usual. A
common issue with LLDB is its difficulty to correctly identify virtual classes. To
address this, a simple LLDB formatter for resolving TyTy classes based on internal
identifiers is available in this gist22. This script can be used as a template and can
be adapted to other classes suffering from this problem.

21https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html
22https://gist.github.com/jdupak/68af0f0ad91f3e6eba2c478dc4f662dd

34

https://rustc-dev-guide.rust-lang.org/building/how-to-build-and-run.html
https://gist.github.com/jdupak/68af0f0ad91f3e6eba2c478dc4f662dd

Chapter 7
Conclusion

This project aimed to implement a prototype of a Polonius-based borrow checker
for Rustc GCC to explore the feasibility of this approach and establish a code infras-
tructure for further development. The development was carried out in a personal
fork1 of Rust GCC, and stabilized parts are being integrated into the main Rustc
GCC GitHub repository2. All accepted changes are scheduled to be integrated into
the central GCC repository3 by the maintainers of Rust GCC with the help of the
author.

This text described the problem of borrow checking, mapped the situation in rustc
and gccrs, and presented the design of the solution, as well as the experiments that
led to it. The prototype version of the implemented borrow checker can detect
most common errors in simple Rust code. These include violations of access rules
(number of allowed loans of a given type, loan/access conflicts), move/initialization
errors, and subset errors. Examples of detected errors can be found in the appendix.

The last chapter provides an overview of the prototype’s limitations. These limi-
tations are not fundamental and should be resolvable with simple extensions and
implementation of missing cases in the existing code. Future work should address
these limitations to provide a production-ready solution.

Given the complex nature of borrow checking, a comprehensive, fully functional
solution is likely to take months, if not years, of future work. This project provides
a significant stepping stone toward a production-ready solution, offering extensive
infrastructure for further development and solutions to most of the challenging
problems identified in the analysis.

I believe that the Rust programming language will play a significant role in sys-
tems programming, and I would like to continue working on this project, on other
problems in Rustc GCC, or on the rustc compiler itself. There appears to be consid-
erable interest in the industry as well. Bradley Spengler, President of Open Source
Security, Inc., one of the two main sponsors of Rust GCC, has expressed interest
in financially supporting my continued work on Rust GCC.

1https://github.com/jdupak/gccrs/
2https://github.com/Rust-GCC/gccrs
3https://gcc.gnu.org/git/

35

https://github.com/jdupak/gccrs/
https://github.com/Rust-GCC/gccrs
https://gcc.gnu.org/git/

Appendix A

References

[1] MATSAKIS, Nicholas D. and KLOCK, Felix S. The rust language.
In : Proceedings of the 2014 ACM SIGAda annual conference on
high integrity language technology. ACM, October 2014. HILT ’14.
DOI 10.1145/2663171.26631881.

[2] MATSAKIS, Niko. Polonius: Either borrower or lender be, but responsi-
bly. Online. January 2020. Rust Belt Rust Conference. [Accessed 4 Jan-
uary 2024]. Available from: https://www.youtube.com/watch?v=_agDei
Wek8w

[3] RAKIC, Rémy and MATSAKIS, Niko. Polonius update. Online. October
2023. [Accessed 4 January 2024]. Available from: https://blog.rust-lang.org
/inside-rust/2023/10/06/polonius-update.html

[4] COHEN, Arthur. The road to compiling the standard library with gccrs.
Online. 2023. EuroRust. [Accessed 5 January 2024]. Available from: https:
//www.youtube.com/watch?v=WgqGahDl-sY

[5] “Software Memory Safety” Cybersecurity Information Sheet. Online. The
National Security Agency, 2022. [Accessed 29 December 2023]. Available
from: https://media.defense.gov/2022/nov/10/2003112742/-1/-1/0/csi_so
ftware_memory_safety.pdf

[6] MITRE. CWE-416: Use after free. Online. [Accessed 20 December 2023].
Available from: https://cwe.mitre.org/data/definitions/416.html

[7] MATSAKIS, Niko. 2094-nll. In : The Rust RFC Book. Online. Rust
Foundation, 2017. [Accessed 18 December 2023]. Available from: https:
//rust-lang.github.io/rfcs/2094-nll.html

[8] STJERNA, Albin. Modelling Rust’s Reference Ownership Analysis Declar-
atively in Datalog. Online. Master’s thesis. Uppsala University, 2020. [Ac-
cessed 28 December 2023]. Available from: https://www.diva-portal.org/s
mash/get/diva2:1684081/fulltext01.pdf

[9] MATSAKIS, Niko. Polonius revisited, part 1. Online. 22 September 2023.
[Accessed 17 December 2023]. Available from: https://smallcultfollowing.c
om/babysteps/blog/2023/09/22/polonius-part-1/

37

https://www.youtube.com/watch?v=_agDeiWek8w
https://www.youtube.com/watch?v=_agDeiWek8w
https://blog.rust-lang.org/inside-rust/2023/10/06/polonius-update.html
https://blog.rust-lang.org/inside-rust/2023/10/06/polonius-update.html
https://www.youtube.com/watch?v=WgqGahDl-sY
https://www.youtube.com/watch?v=WgqGahDl-sY
https://media.defense.gov/2022/nov/10/2003112742/-1/-1/0/csi_software_memory_safety.pdf
https://media.defense.gov/2022/nov/10/2003112742/-1/-1/0/csi_software_memory_safety.pdf
https://cwe.mitre.org/data/definitions/416.html
https://rust-lang.github.io/rfcs/2094-nll.html
https://rust-lang.github.io/rfcs/2094-nll.html
https://www.diva-portal.org/smash/get/diva2:1684081/fulltext01.pdf
https://www.diva-portal.org/smash/get/diva2:1684081/fulltext01.pdf
https://smallcultfollowing.com/babysteps/blog/2023/09/22/polonius-part-1/
https://smallcultfollowing.com/babysteps/blog/2023/09/22/polonius-part-1/

A. References

[10] MATSAKIS, Niko, RAKIC, Rémy and OTHERS. The Polonius Book. 2021.
Rust Foundation.

[11] Reference. Online. LLVM Project, 2023. [Accessed 15 December 2023].
Available from: https://llvm.org/docs/Reference.html

[12] STALLMAN, Richard M. and GCC DEVELOPER COMMUNITY, the.
GNU Compiler Collection Internals. Online. 14. Free Software Foun-
dation, 2023. [Accessed 18 December 2023]. Available from: https:
//gcc.gnu.org/onlinedocs/gccint/

[13] Rust Compiler Development Guide. Online. Rust Foundation, 2023. [Ac-
cessed 18 December 2023]. Available from: https://rustc-dev-guide.rust-
lang.org/index.html

[14] RUSTC DEVELOPERS. Reference. Online. Rust Foundation, 2023. [Ac-
cessed 7 December 2023]. Available from: https://doc.rust-lang.org/referen
ce/

[15] #compiler-development > Borrowchecking vs (H)IR - GCC rust - zulip.
Online. 5 September 2023. [Accessed 5 December 2023]. Available from:
https://gcc-rust.zulipchat.com/#narrow/stream/281658-compiler-
development/topic/Borrowchecking.20vs.20.28H.29IR

[16] ALTIDOR, John, HUANG, Shan Shan and SMARAGDAKIS, Yan-
nis. Taming the wildcards: Combining definition- and use-site vari-
ance. ACM SIGPLAN Notices. June 2011. Vol. 46, no. 6, p. 602–613.
DOI 10.1145/1993316.19935692.

[17] Polonius. Online. Rust Foundation. [Accessed 29 December 2023]. Available
from: https://github.com/rust-lang/polonius/

[18] Rust. Online. Rust Foundation. [Accessed 28 December 2023]. Available
from: https://github.com/rust-lang/rust/

[19] DUPÁK, Jakub. Contribution to the Rust front-end for the GCC compiler.
Online. research report. Czech Technical University in Prague, 2023. [Ac-
cessed 5 January 2023]. Available from: https://jakubdupak.com/dev/aca
demic/dupakjak-svp-report.pdf

[20] MATSAKIS, Niko. Polonius revisited, part 2. Online. 29 September 2023.
[Accessed 30 December 2023]. Available from: https://smallcultfollowing.c
om/babysteps/blog/2023/09/29/polonius-part-2/

[21] BEINGESSNER, Aria and OTHERS. The Rustonomicon. Online. Rust
Foundation, 2023. [Accessed 15 December 2023]. Available from: https:
//doc.rust-lang.org/nomicon/

38

https://llvm.org/docs/Reference.html
https://gcc.gnu.org/onlinedocs/gccint/
https://gcc.gnu.org/onlinedocs/gccint/
https://rustc-dev-guide.rust-lang.org/index.html
https://rustc-dev-guide.rust-lang.org/index.html
https://doc.rust-lang.org/reference/
https://doc.rust-lang.org/reference/
https://gcc-rust.zulipchat.com/#narrow/stream/281658-compiler-development/topic/Borrowchecking.20vs.20.28H.29IR
https://gcc-rust.zulipchat.com/#narrow/stream/281658-compiler-development/topic/Borrowchecking.20vs.20.28H.29IR
https://github.com/rust-lang/polonius/
https://github.com/rust-lang/rust/
https://jakubdupak.com/dev/academic/dupakjak-svp-report.pdf
https://jakubdupak.com/dev/academic/dupakjak-svp-report.pdf
https://smallcultfollowing.com/babysteps/blog/2023/09/29/polonius-part-2/
https://smallcultfollowing.com/babysteps/blog/2023/09/29/polonius-part-2/
https://doc.rust-lang.org/nomicon/
https://doc.rust-lang.org/nomicon/

A.1. Used Software

A.1 Used Software

In accordance with the Methodological guideline No. 5/20233, the following software
was used in the development of this thesis:

• GitHub Copilot4 (with disabled suggestions matching public code) for im-
proved autocompletion of code (Used only to complete the current line, not
to generate any larger code structures.)

• ChatGPT (OpenAI)5 for text style feedback and rephrasing suggestions
• Grammarly6 for grammar and spelling checking
• Writefull7 for style and grammar checking
• Grazie Pro (JetBrains)8 for grammar and spelling checking

3https://www.cvut.cz/sites/default/files/content/d1dc93cd-5894-4521-b799-c7e715d3c59e/en/
20231003-methodological-guideline-no-52023.pdf

4https://github.com/features/copilot
5https://chat.openai.com/
6https://www.grammarly.com/
7https://www.writefull.com/
8https://plugins.jetbrains.com/plugin/16136-grazie-pro

39

https://www.cvut.cz/sites/default/files/content/d1dc93cd-5894-4521-b799-c7e715d3c59e/en/20231003-methodological-guideline-no-52023.pdf
https://www.cvut.cz/sites/default/files/content/d1dc93cd-5894-4521-b799-c7e715d3c59e/en/20231003-methodological-guideline-no-52023.pdf
https://github.com/features/copilot
https://chat.openai.com/
https://www.grammarly.com/
https://www.writefull.com/
https://plugins.jetbrains.com/plugin/16136-grazie-pro

Appendix B
Rustc Intermediate Representations
Examples

B.1 Rust Source Code

struct Foo(i32);

fn foo(x: i32) -> Foo {
Foo(x)

}

41

B. Rustc Intermediate Representations Examples

B.2 Abstract Syntax Tree (AST)

$ rustc -Z unpretty=ast-tree

Fn {
defaultness: Final,
generics: Generics {

params: [],
where_clause: WhereClause {

has_where_token: false,
predicates: [],
span: simple.rs:3:22: 3:22 (#0),

},
span: simple.rs:3:7: 3:7 (#0),

},
sig: FnSig {

header: FnHeader { unsafety: No, asyncness: No, constness: No },
decl: FnDecl {

inputs: [
Param {

attrs: [],
ty: Ty {

id: NodeId(4294967040),
kind: Path(

None,
Path {

span: simple.rs:3:11: 3:14 (#0),
segments: [

PathSegment {
ident: i31#0,
id: NodeId(4294967040),
args: None,

},
],
tokens: None,

},
),
span: simple.rs:3:11: 3:14 (#0),
tokens: None,

},
pat: Pat {

id: NodeId(4294967040),
kind: Ident(

BindingAnnotation(No, Not),
x#0,
None,

),
span: simple.rs:3:8: 3:9 (#0),
tokens: None,

},
id: NodeId(4294967040),
span: simple.rs:3:8: 3:14 (#0),
is_placeholder: false,

42

B.2. Abstract Syntax Tree (AST)

},
],
output: Ty(

Ty {
id: NodeId(4294967040),
kind: Path(

None,
Path {

span: simple.rs:3:19: 3:22 (#0),
segments: [

PathSegment {
ident: Foo#0,
id: NodeId(4294967040),
args: None,

},
],
tokens: None,

},
),
span: simple.rs:3:19: 3:22 (#0),
tokens: None,

},
),

},
span: simple.rs:3:1: 3:22 (#0),

},
body: Some(

Block {
stmts: [

Stmt {
id: NodeId(4294967040),
kind: Expr(

Expr {
id: NodeId(4294967040),
kind: Call(

Expr {
id: NodeId(4294967040),
kind: Path(

None,
Path {

span: simple.rs:4:5: 4:8 (#0),
segments: [

PathSegment {
ident: Foo#0,
id: NodeId(4294967040),
args: None,

},
],
tokens: None,

},
),
span: simple.rs:4:5: 4:8 (#0),
attrs: [],
tokens: None,

},

43

B. Rustc Intermediate Representations Examples

[
Expr {

id: NodeId(4294967040),
kind: Path(

None,
Path {

span: simple.rs:4:9: 4:10 (#0),
segments: [

PathSegment {
ident: x#0,
id: NodeId(4294967040),
args: None,

},
],
tokens: None,

},
),
span: simple.rs:4:9: 4:10 (#0),
attrs: [],
tokens: None,

},
],

),
span: simple.rs:4:5: 4:11 (#0),
attrs: [],
tokens: None,

},
),
span: simple.rs:4:5: 4:11 (#0),

},
],
id: NodeId(4294967040),
rules: Default,
span: simple.rs:3:23: 5:2 (#0),
tokens: None,
could_be_bare_literal: false,

},
),

}

44

B.3. High-Level Intermediate Representation (HIR)

B.3 High-Level Intermediate Representation (HIR)

$ rustc -Z unpretty=hir-tree

Fn(
FnSig {

header: FnHeader {
unsafety: Normal,
constness: NotConst,
asyncness: NotAsync,
abi: Rust,

},
decl: FnDecl {

inputs: [
Ty {

hir_id: HirId(DefId(0:6 ~ simple[415f]::foo).10),
kind: Path(

Resolved(
None,
Path {

span: simple.rs:3:11: 3:14 (#0),
res: PrimTy(

Int(
I32,

),
),
segments: [

PathSegment {
ident: i32#0,
hir_id: HirId(

DefId(0:6 ~ simple[415f]::foo).11),
res: PrimTy(

Int(
I32,

),
),
args: None,
infer_args: false,

},
],

},
),

),
span: simple.rs:3:11: 3:14 (#0),

},
],
output: Return(

Ty {
hir_id: HirId(DefId(0:6 ~ simple[415f]::foo).12),
kind: Path(

Resolved(
None,
Path {

45

B. Rustc Intermediate Representations Examples

span: simple.rs:3:19: 3:22 (#0),
res: Def(

Struct,
DefId(0:3 ~ simple[415f]::Foo),

),
segments: [

PathSegment {
ident: Foo#0,
hir_id: HirId(

DefId(0:6 ~ simple[415f]::foo).13),
res: Def(

Struct,
DefId(0:3 ~ simple[415f]::Foo),

),
args: None,
infer_args: false,

},
],

},
),

),
span: simple.rs:3:19: 3:22 (#0),

},
),
c_variadic: false,
implicit_self: None,
lifetime_elision_allowed: false,

},
span: simple.rs:3:1: 3:22 (#0),

},
Generics {

params: [],
predicates: [],
has_where_clause_predicates: false,
where_clause_span: simple.rs:3:22: 3:22 (#0),
span: simple.rs:3:7: 3:7 (#0),

},
BodyId {

hir_id: HirId(DefId(0:6 ~ simple[415f]::foo).9),
},

)

...

Expr {
hir_id: HirId(DefId(0:6 ~ simple[415f]::foo).3),
kind: Call(

Expr {
hir_id: HirId(DefId(0:6 ~ simple[415f]::foo).4),
kind: Path(

Resolved(
None,
Path {

span: simple.rs:4:5: 4:8 (#0),
res: Def(

46

B.3. High-Level Intermediate Representation (HIR)

Ctor(Struct, Fn),
DefId(0:4 ~ simple[415f]::Foo::{constructor#0}),

),
segments: [

PathSegment {
ident: Foo#0,
hir_id: HirId(DefId(0:6 ~ simple[415f]::foo).5),
res: Def(

Ctor(Struct, Fn),
DefId(0:4 ~ simple[415f]::Foo::{constructor#0}),

),
args: None,
infer_args: true,

},
],

},
),

),
span: simple.rs:4:5: 4:8 (#0),

},
[

Expr {
hir_id: HirId(DefId(0:6 ~ simple[415f]::foo).6),
kind: Path(

Resolved(
None,
Path {

span: simple.rs:4:9: 4:10 (#0),
res: Local(

HirId(DefId(0:6 ~ simple[415f]::foo).2),
),
segments: [

PathSegment {
ident: x#0,
hir_id: HirId(

DefId(0:6 ~ simple[415f]::foo).7),
res: Local(

HirId(
DefId(0:6 ~ simple[415f]::foo).2),

),
args: None,
infer_args: true,

},
],

},
),

),
span: simple.rs:4:9: 4:10 (#0),

},
],

),
span: simple.rs:4:5: 4:11 (#0),

}

47

B. Rustc Intermediate Representations Examples

B.4 Mid-Level Intermediate Representation (MIR)

$ rustc -Z unpretty=mir -Z identify-regions

fn foo(_1: i32) -> Foo {
debug x => _1;
let mut _0: Foo;

bb0: {
_0 = Foo(_1);
return;

}
}

fn Foo(_1: i32) -> Foo {
let mut _0: Foo;

bb0: {
_0 = Foo(move _1);
return;

}
}

48

Appendix C
Comparison of BIR and MIR

BIR and MIR dump of the following code are displayed parallel, BIR on left pages
and MIR on right pages. Note that assert macros in MIR were simplified to fit onto
the page.

C.1 Compilation Commands

$ crab1 -frust-incomplete-and-experimental-compiler-do-not-use \
-frust-dump-bir -frust-borrowcheck

$ rustc -Zdump-mir=nll -Zidentify-regions

C.2 Rust Source Code

pub fn fib(n: u32) -> u32 {
if n == 0 || n == 1 {

1
} else {

fib(n-1) + fib(n - 2)
}

}

49

C. Comparison of BIR and MIR

C.3 BIR (Rustc GCC)

fn fib(_2: u32) -> u32 {
let _1: u32; []
let _2: u32; []
let _3: bool; []
let _5: u32; []
let _6: bool; []
let _8: u32; []
let _9: bool; []
scope 2 {

let _14: u32; []
let _15: u32; []
let _16: u32; []
let _19: u32; []
let _20: u32; []
let _21: u32; []

}

bb0: {
0 StorageLive(_3);
1 StorageLive(_5);
2 _5 = _2;
3 StorageLive(_6);
4 _6 = Operator(move _5, const u32);
5 switchInt(move _6) -> [bb1, bb2];
}

bb1: {
0 _3 = const bool;
1 goto -> bb3;
}

bb2: {
0 StorageLive(_8);
1 _8 = _2;
2 StorageLive(_9);
3 _9 = Operator(move _8, const u32);
4 _3 = move _9;
5 goto -> bb3;
}

bb3: {
0 switchInt(move _3) -> [bb4, bb5];
}

bb4: {
0 _1 = const u32;
1 goto -> bb8;
}

bb5: {
0 StorageLive(_14);

50

C.2. Rust Source Code

C.4 MIR (rustc)

fn fib(_1: u32) -> u32 {
debug n => _1;
let mut _0: u32;
let mut _2: bool;
let mut _3: u32;
let mut _4: bool;
let mut _5: u32;
let mut _6: u32;
let mut _7: u32;
let mut _8: u32;
let mut _9: (u32, bool);
let mut _10: u32;
let mut _11: u32;
let mut _12: u32;
let mut _13: (u32, bool);
let mut _14: (u32, bool);

bb0: {
StorageLive(_2);
StorageLive(_3);
_3 = _1;
_2 = Eq(move _3, const 0_u32);
switchInt(move _2) -> [0: bb2, otherwise: bb1];

}

bb1: {
StorageDead(_3);
goto -> bb3;

}

bb2: {
StorageDead(_3);
StorageLive(_4);
StorageLive(_5);
_5 = _1;
_4 = Eq(move _5, const 1_u32);
switchInt(move _4) -> [0: bb4, otherwise: bb3];

}

bb3: {
StorageDead(_5);
_0 = const 1_u32;
goto -> bb10;

}

bb4: {
StorageDead(_5);
StorageLive(_6);
StorageLive(_7);
StorageLive(_8);
_8 = _1;

51

C. Comparison of BIR and MIR

1 _14 = _2;
2 StorageLive(_15);
3 _15 = Operator(move _14, const u32);
4 StorageLive(_16);
5 _16 = Call(fib)(move _15) -> [bb6];
}

bb6: {
0 StorageLive(_19);
1 _19 = _2;
2 StorageLive(_20);
3 _20 = Operator(move _19, const u32);
4 StorageLive(_21);
5 _21 = Call(fib)(move _20) -> [bb7];
}

bb7: {
0 _1 = Operator(move _16, move _21);
1 StorageDead(_21);
2 StorageDead(_20);
3 StorageDead(_19);
4 StorageDead(_16);
5 StorageDead(_15);
6 StorageDead(_14);
7 goto -> bb8;
}

bb8: {
0 StorageDead(_9);
1 StorageDead(_8);
2 StorageDead(_6);
3 StorageDead(_5);
4 StorageDead(_3);
5 return;
}

}

52

C.2. Rust Source Code

_9 = CheckedSub(_8, const 1_u32);
assert(!move (_9.1: bool)) -> [success: bb5, unwind: bb11];

}

bb5: {
_7 = move (_9.0: u32);
StorageDead(_8);
_6 = fib(move _7) -> [return: bb6, unwind: bb11];

}

bb6: {
StorageDead(_7);
StorageLive(_10);
StorageLive(_11);
StorageLive(_12);

_12 = _1;
_13 = CheckedSub(_12, const 2_u32);
assert(!move (_13.1: bool)) -> [success: bb7, unwind: bb11];

}

bb7: {
_11 = move (_13.0: u32);
StorageDead(_12);
_10 = fib(move _11) -> [return: bb8, unwind: bb11];

}

bb8: {
StorageDead(_11);
_14 = CheckedAdd(_6, _10);
assert(!move (_14.1: bool)) -> [success: bb9, unwind: bb11];

}

bb9: {
_0 = move (_14.0: u32);
StorageDead(_10);
StorageDead(_6);
goto -> bb10;

}

bb10: {
StorageDead(_4);
StorageDead(_2);
return;

}

bb11 (cleanup): {
resume;

}
}

}

53

Appendix D

Examples of Errors Detected by the
Borrow-Checker

This appendix presents some faulty program from gccrs test suite together with
fixed alternatives (when applicable).

Expected errors are marked using special comments used by the DejaGnu compiler
testing framework, that contain the expected error message. Comments staring
with //~ ERROR provide additional details for the reader. They are not a functional
part of the test suite.

D.1 Move Errors

A simple test, where an instance of type A, which is not trivially copyable (does
not implement the Copy trait) is moved twice.

fn test_move() {
// { dg-error "Found move errors in function test_move" }
struct A {

i: i32,
}
let a = A { i: 1 };
let b = a; // a is moved here for the first time
let c = a; //~ ERROR `a` moved here for the second time

}

fn test_move_fixed() {
let a = 1; // `a` is now primitive and can be copied
let b = a; // `a` is not moved here
let c = b;

}

More complex text test, where moves the occurrence of the error depends on runtime
values. Error is raised because for some values, the violation is possible

55

D. Examples of Errors Detected by the Borrow-Checker

fn test_move_conditional(b1: bool, b2:bool) {
// { dg-error "Found move errors in function test_move" }

struct A { i: i32 }

let a = A { i: 1 }; // `A` cannot be copied
if b1 {

let b = a; // `a` might be moved here for the first time
}
if b2 {

let c = a; // `a` might be moved here for the second time
}

}

fn test_move_fixed(b1: bool, b2:bool) {
let a = 1; // a is now primitive and can be copied
if b1 {

let b = a;
}
if b2 {

let c = a;
}

}

56

D.2. Subset Errors

D.2 Subset Errors

In the following examples, a reference with insufficient lifetime might be returned
from a function.

fn missing_subset<'a, 'b>(x: &'a u32, y: &'b u32) -> &'a u32 {
// { dg-error "Found subset errors in function missing_subset" }
y //~ ERROR

}

fn missing_subset_fixed<'a, 'b>(x: &'a u32, y: &'b u32) -> &'a u32
where 'b: 'a {
y

}

fn complex_cfg_subset<'a, 'b>(b: bool, x: &'a u32, y: &'b u32)
-> &'a u32 {
// { dg-error "Found subset errors in function

complex_cfg_subset" }
if b {

y //~ ERROR
} else {

x
}

}

fn complex_cfg_subset_fixed<'a, 'b>(b: bool, x: &'a u32, y: &'b u32)
-> &'a u32 where 'b: 'a {
if b {

x
} else {

y
}

}

57

D. Examples of Errors Detected by the Borrow-Checker

D.3 Loan Errors

D.3.1 Polonius Smoke Test

The following tests were used when Polonius was first experimentally integrated
into rustc.

In this test s is moved while it is borrowed. The test checks that facts are correctly
propagated through the function call.

fn foo<'a, 'b>(p: &'b &'a mut usize) -> &'b&'a mut usize {
p

}

fn well_formed_function_inputs() {
// { dg-error "Found loan errors in function

well_formed_function_inputs" }
let s = &mut 1;
let r = &mut *s;
let tmp = foo(&r);
s; //~ ERROR
tmp;

}

This test checks that variable cannot be used while borrowed.

pub fn use_while_mut() {
// { dg-error "Found loan errors in function use_while_mut" }
let mut x = 0;
let y = &mut x;
let z = x; //~ ERROR
let w = y;

}

This test is similar to the previous one but uses a reborrow of a reference passed as
an argument.

pub fn use_while_mut_fr(x: &mut i32) -> &mut i32 {
// { dg-error "Found loan errors in function use_while_mut_fr" }
let y = &mut *x;
let z = x; //~ ERROR
y

}

58

D.3. Loan Errors

This code fails under NLL but not under Polonius (including in gccrs).

pub fn position_dependent_outlives<'a>(x: &'a mut i32, cond: bool)
-> &'a mut i32 {
let y = &mut *x;
if cond {

return y;
} else {

*x = 0;
return x;

}
}

D.3.2 Additional Tests of Access Rules

The tested rule should be obvious form the test name.

fn immutable_borrow_while_immutable_borrowed() {
let x = 0;
let y = &x;
let z = &x;
let w = y;

}

fn immutable_borrow_while_mutable_borrowed() {
// { dg-error "Found loan errors in function

immutable_borrow_while_mutable_borrowed" }
let mut x = 0;
let y = &mut x;
let z = &x; //~ ERROR
let w = y;

}

fn mutable_borrow_while_immutable_borrowed() {
// { dg-error "Found loan errors in function

mutable_borrow_while_immutable_borrowed" }
let x = 0;
let y = &x;
let z = &mut x; //~ ERROR
let w = y;

}

59

D. Examples of Errors Detected by the Borrow-Checker

fn mutable_borrow_while_mutable_borrowed() {
// { dg-error "Found loan errors in function

mutable_borrow_while_mutable_borrowed" }
let mut x = 0;
let y = &mut x;
let z = &mut x; //~ ERROR
let w = y;

}

fn immutable_reborrow_while_immutable_borrowed() {
let x = 0;
let y = &x;
let z = &*y;

}

fn immutable_reborrow_while_mutable_borrowed() {
let mut x = 0;
let y = &mut x;
let z = &*y;

}

fn mutable_reborrow_while_immutable_borrowed() {
// { dg-error "Cannot reborrow immutable borrow as mutable" }
let x = 0;
let y = &x;
let z = &mut *y; //~ ERROR

}

fn read_while_mutable_borrowed() {
// { dg-error "Found loan errors in function

read_while_mutable_borrowed" }
let mut x = 0;
let y = &mut x;
let z = x; //~ ERROR
let w = y;

}

60

D.3. Loan Errors

fn write_while_borrowed() {
// { dg-error "Found loan errors in function

write_while_borrowed" }
let mut x = 0;
let y = &x;
x = 1; //~ ERROR
let z = y;

}

fn write_while_immutable_borrowed() {
// { dg-error "Found loan errors in function

write_while_immutable_borrowed" }
let x = 0;
let y = &x;
x = 1; //~ ERROR
let z = y;

}

D.3.3 Access Rules Violations with Structs

The following tests demonstrate that the previous detections work also when the
references are wrapped in structs. Type generic structs cannot be demonstrated
due to a preexisting bug in gccrs. This bug is unrelated to the borrow-checker, but
it creates invalid TyTy.

Note that due to one limitation of the current implementation, the impl functions
need to explicitly specify the <'a> lifetime parameter. This is not required and not
allowed in Rust, but it is required by the current implementation.

struct Reference<'a> {
value: &'a i32,

}

impl<'a> Reference<'a> {
fn new<'a>(value: &'a i32) -> Reference<'a> {

Reference { value: value }
}

}

struct ReferenceMut<'a> {
value: &'a mut i32,

}

impl<'a> ReferenceMut<'a> {
fn new<'a>(value: &'a mut i32) -> ReferenceMut<'a> {

ReferenceMut { value: value }
}

}

61

D. Examples of Errors Detected by the Borrow-Checker

fn immutable_borrow_while_immutable_borrowed_struct() {
let x = 0;
let y = Reference::new(&x);
let z = &x;
let w = y;

}

fn immutable_borrow_while_mutable_borrowed_struct() {
// { dg-error "Found loan errors in function

immutable_borrow_while_mutable_borrowed_struct" }
let mut x = 0;
let y = ReferenceMut::new(&mut x);
let z = &x; //~ ERROR
let w = y;

}

fn mutable_borrow_while_immutable_borrowed_struct() {
// { dg-error "Found loan errors in function

mutable_borrow_while_immutable_borrowed_struct" }
let x = 0;
let y = Reference::new(&x);
let z = &mut x; //~ ERROR
let w = y;

}

fn mutable_borrow_while_mutable_borrowed_struct() {
// { dg-error "Found loan errors in function

mutable_borrow_while_mutable_borrowed_struct" }
let mut x = 0;
let y = ReferenceMut::new(&mut x);
let z = &mut x; //~ ERROR
let w = y;

}

fn immutable_reborrow_while_immutable_borrowed_struct() {
let x = 0;
let y = Reference::new(&x);
let z = &*y.value;

}

62

D.3. Loan Errors

fn immutable_reborrow_while_mutable_borrowed_struct() {
let mut x = 0;
let y = Reference::new(&mut x);
let z = &*y.value;

}

fn mutable_reborrow_while_immutable_borrowed_struct() {
// { dg-error "Cannot reborrow immutable borrow as mutable" }
let x = 0;
let y = Reference::new(&x);
let z = &mut *y.value; //~ ERROR

}

fn read_while_mutable_borrowed_struct() {
// { dg-error "Found loan errors in function

read_while_mutable_borrowed_struct" }
let mut x = 0;
let y = ReferenceMut::new(&mut x);
let z = x; //~ ERROR
let w = y;

}

fn write_while_borrowed_struct() {
// { dg-error "Found loan errors in function

write_while_borrowed_struct" }
let mut x = 0;
let y = Reference::new(&x);
x = 1; //~ ERROR
let z = y;

}

fn write_while_immutable_borrowed_struct() {
// { dg-error "Found loan errors in function

write_while_immutable_borrowed_struct" }
let x = 0;
let y = Reference::new(&x);
x = 1; //~ ERROR
let z = y;

}

63

Appendix E
Glossary

ABI Application Binary Interface
3-AD Three Address Code
API Application Programming Interface
AST Abstract Syntax Tree
BIR (gccrs) Borrow-Checker Intermediate Representation
CFG Control Flow Graph
CLI Command Line Interface
GCC GNU Compiler Collection
GENERIC (GCC) The internal representation used by GCC as

an interface between the front-end and the
middle-end of the compiler

GIMPLE (GCC) The internal representation used by GCC in
the middle-end of the compiler

HIR (rustc, gccrs) High-level Intermediate Representation
IR Intermediate Representation
LLVM Low Level Virtual Machine
MIR (rustc) Mid-level Intermediate Representation
MIRI (rustc) The Rust MIR interpreter
NLL (rustc) Non-Lexical Lifetimes (a CFG-based

borrow-checker)
Polonius The name of the new borrow-checker algorithm and

engine
RAII Resource Acquisition Is Initialization (C++ idiom)
RFC Request For Comments (formal process for proposing

changes to Rust)
SSA Static Single Assignment
THIR (rustc) Typed High-level Intermediate

Representation
TyTy (rustc, gccrs) Type Intermediate Representation

(used after types are parsed and resolved)
basic block A sequence of instructions with a single entry point

and a single exit point
borrow (Polonius) The act of taking a checked reference
fact (Polonius) Information about the program, reduced

to a relation between enumerated program objects
gccrs GCC Rust Front-end
interning The process of replacing a value with a unique

identifier
loan (Polonius) The result of a borrow operation (taking

a checked reference).

65

E. Glossary

origin (Polonius) An inference variable that represents a set
of loans. May be used interchangeably with region.

outlives (Polonius) A relationship between two origins, where
the first region must live longer than the second
region. Denoted as R1: R2 where R1 outlives R2.
That means that the set of CFG points R1
represents must be a superset of the set of CFG
points R2 represents.

point (Polonius) A point in the CFG
region (Polonius/NLL) An inference variable that

represents a set of points in the CFG. May be used
interchangeably with origin.

rustc The main Rust Compiler based on LLVM
usize Unsigned integer type with the same size as a pointer

in Rust

66

	Introduction
	The Problem of Borrow Checking
	The Evolution of Borrow Checking in Rustc

	Polonius Engine
	Polonius Facts

	Comparison of Internal Representations
	GCC and LLVM
	Rustc Representation
	Rust GCC Representation

	Rust GCC Borrow Checker Design
	Analysis of the Fact Collection Problem
	The Borrow Checking Process
	Representation of Lifetimes in TyTy
	Borrow Checker IR Design
	BIR Building
	BIR Fact Collection and Checking
	Subtyping and Variance
	Variance of Generic Types

	Error Reporting

	Implementation
	Limitations
	BIR and BIR Builder
	Parsing, AST, HIR, TyTy
	Fact Collection
	Polonius FFI and Error Reporting

	Building, Usage, and Debugging

	Conclusion
	References
	Used Software

	Rustc Intermediate Representations Examples
	Rust Source Code
	Abstract Syntax Tree (AST)
	High-Level Intermediate Representation (HIR)
	Mid-Level Intermediate Representation (MIR)

	Comparison of BIR and MIR
	Compilation Commands
	Rust Source Code
	BIR (Rustc GCC)
	MIR (rustc)

	Examples of Errors Detected by the Borrow-Checker
	Move Errors
	Subset Errors
	Loan Errors
	Polonius Smoke Test
	Additional Tests of Access Rules
	Access Rules Violations with Structs

	Glossary

