Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Advanced User Interface for 3D Modeling
From Hand-Drawn Images

Tomas Cicvarek

Supervisor: prof. Ing. Daniel Sykora, Ph.D.
Field of study: Open Informatics

Subfield: Computer Graphics

January 2024

ii

cvuT ZADANI DIPLOMOVE PRACE

CESKE VYSOKE
UCENIi TECHNICKE
V PRAZE

I. OSOBNI A STUDIJNi UDAJE
e N

PFijmeni: Cicvarek Jméno: Tomas Osobni &islo: 466021

Fakulta/Ustav: Fakulta elektrotechnicka
Zadavajici katedra/Gstav: Katedra pocitacové grafiky a interakce

Studijni program: Oteviena informatika

Specializace: Pocitacova grafika
k Y
Il. UDAJE K DIPLOMOVE PRACI
\
Nazev diplomové prace:
Pokrocilé uzivatelské rozhrani pro 3D modelovani z ru€nich kreseb
Nazev diplomové prace anglicky:
Advanced User Interface for 3D Modeling From Hand-Drawn Images
Pokyny pro vypracovani:
Seznamte se technikami pro tvorbu 3D modell z ruénich kreseb [1-5]. Zaméfte se na metodu Monster Mash [3] a rozSifte
jeji existujici uzivatelské rozhrani tak, aby umoznilo aplikovat pracovni postup pouzity v metodé Ink-and-Ray [1], kde
uzivatel specifikuje jednotlivé dominantni regiony pomoci hrubych taht §tétcem. Ty slouzi jako vstup do algoritmu LazyBrush
[5], jenz generuje vyslednou podobu segmentace. Pro urceni relativni hloubky jednotlivych region implementuijte algoritmus
topologického usporadani [6], ktery s pomoci nékolika uzivatelem specifikovanych nerovnosti stanovi finalni poradi v
hloubce. Pro rekonstrukci zakrytych ¢asti segmentl pouzijte metodu zaloZzenou na feSeni Laplaceovy rovnice popsanou
v ¢lanku [1]. Z vysledné mnoziny 2D regionl sefazenych v hloubce vygenerujte 3D model pomoci existujici implementace
metody Monster Mash [3]. Praktickou pouzitelnost vysledného uzivatelského rozhrani ovéfte na sadé rucnich kreseb,
které doda vedouci diplomové prace. Vysledky porovnejte s vystupy konkurenénich metod [1, 4].
Seznam doporucené literatury:
[1] Sykora et al.: Ink-and-Ray: Bas-Relief Meshes for Adding Global lllumination Effects to Hand-Drawn Characters, ACM
Transactions on Graphics 33(2):16, 2014.
[2] Bessmeltsev et al.: Modeling Character Canvases from Cartoon Drawings, ACM Transactions on Graphics 34(5):162,
2015.
[3] Dvoroznak et al.: Monster Mash: A Single-View Approach to Casual 3D Modeling and Animation, ACM Transactions
on Graphics 39(6):214, 2020.
[4] Zhang et al.: CreatureShop: Interactive 3D Character Modeling and Texturing from a Single Color Drawing, IEEE
Transactions on Visualization and Computer Graphics, 2022.
[5] Sykora et al.: LazyBrush: Flexible Painting Tool for Hand-drawn Cartoons, Computer Graphics Forum 28(2):599-608,
20009.
[6] Sykora et al.: Adding Depth to Cartoons Using Sparse Depth (In)equalities, Computer Graphics Forum 29(2):615-623,
2010.
Jméno a pracovisté vedouci(ho) diplomové prace:
prof. Ing. Daniel Sykora, Ph.D. Katedra pocitacové grafiky a interakce
Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) diplomové prace:
Datum zadani diplomové prace: 12.09.2023 Termin odevzdani diplomové prace: 09.01.2024
Platnost zadani diplomové prace: 16.02.2025
prof. Ing. Daniel Sykora, Ph.D. podpis vedouci(ho) ustavu/katedry prof. Mgr. Petr Pata, Ph.D.
k podpis vedouci(ho) prace podpis dékana(ky))

CVUT-CZ-ZDP-2015.1 Stranalz?2 © CVUT v Praze, Design: CVUT v Praze, VIC

ll. PREVZETi ZADANI

Diplomant bere na védomi, Ze je povinen vypracovat diplomovou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci.
Seznam pouZzité literatury, jinych prament a jmen konzultantd je tfeba uvést v diplomové praci.

Datum pfevzeti zadani Podpis studenta

CVUT-CZ-ZDP-2015.1 Strana 2z 2 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

I would like to give my thanks to my super-
visor, prof. Ing. Daniel Sykora, Ph.D., for
his supervision over my thesis and for all
information and consultations provided
by him. I would like to thank my family
as well for their psychical support.

Declaration

I hereby declare that the present master’s
thesis was composed by myself only and
that I specified all used resources in ac-
cordance with the Methodical guideline
for adhering to ethical principles when I
was working on the academic final thesis.
Prague, 9. January 2024

Abstract

There are many tools for creating 3D mod-
els. However, for a large number of them,
users may be concerned that their inter-
face and controls are too complex. For
instance, in situations where they want to
create a simple prototype or just study the
movement of a 3D model. Monster Mash
solved this problem by having the users
draw a simple outline of the characters
from a profile. The program then creates
the resulting model itself. However, if one
wants to reconstruct a 3D model from a
given drawing in this tool, the drawing
must be traced accurately. In addition,
the individual parts must be entered in
the correct depth order, which can make
the process difficult and tedious. In this
work, we propose a system that enables
users to select the main character com-
ponents in the figure and determine their
relative ordering in a simple way. This
information allows us to create their seg-
ments and assign them an absolute order
in depth automatically. The resulting set
of ordered segments can then be uploaded
to the Monster Mash tool to create the
final 3D model.

Keywords: Monster Mash, image
segmentation, occluded shape
reconstruction

Supervisor:
Ph.D.

prof. Ing. Daniel Sykora,

vi

Abstrakt

Existuje mnoho nastroji pro tvorbu 3D
modelti. U velké ¢asti z nich se vsak uzi-
vatelé muzou pozastavit nad tim, ze je-
jich rozhrani a ovladani jsou prilis slozité.
Naptiklad v situacich, kdy chtéji vytvorit
jednoduchy prototyp nebo pouze studovat
pohyb 3D modelu. Monster Mash vytesil
tento problém tim, ze uzivatelé nakresli
pouhy obrys postavy z profilu. Program
pak vysledny model vytvori sdm. Pokud
vsak chceme v tomto nastroji rekonsturo-
vat 3D model ze zadané kresby, je nutno
kresbu presné obkreslit. Jednotlivé casti
navic musime zadat ve spravném poradi
v hloubce, coz mize tento proces ¢init
naro¢nym a zdlouhavym. V této praci na-
vrhujeme systém, ktery umoznuje uzivate-
lim vybrat hlavni celky postav v obrazku
a jednoduse urcit jejich relativni uspora-
dani. Tyto informace umozni automaticky
vytvorit jejich segmenty a priradit jim ab-
solutni usporadani v hloubce. Vyslednou
sadu serazenych segmentu lze nasledné
nahrat do néastroje Monster Mash, ktery
vytvori vysledny 3D model.

Klicova slova: Monster Mash,
segmentace obrazu, rekonstrukce
zakrytych tvara

Preklad nazvu: Pokrocilé uzivatelské
rozhrani pro 3D modelovani z ru¢nich
kreseb

Contents

1 Introduction

1.1 Segmentation
1.2 Depthorder..................
1.3 Segment reconstruction

2 Related work

2.1 Ink-and-Ray
2.2 Monster Mash................
2.3 CreatureShop

3 Analysis

3.1 Segmentation algorithm
3.2 Depthorder..................
3.2.1 Kahn’s algorithm
3.2.2 Simplified Kahn’s algorithm .
3.3 Segment shape approximation . .
3.3.1 Salient and illusory surfaces .
3.3.2 Occluded shapes estimation .

4 Implementation

4.1 User interface
4.2 Segmenting algorithm

4.3 Depth ordering
4.4 Shape approximation..........
4.4.1 The initial guess
4.4.2 Distance transform
4.4.3 The diffusion and the export

5 Results
5.1 Comparison
5.2 Limitations

6 Conclusion
6.1 Future work..................
6.2 Final words

A Bibliography

B Image credits

vii

Chapter 1

Introduction

There are currently a number of methods and tools available for 3D mod-
eling, such as Blender [Com23], Autodesk Maya [Aut23b] or Autodesk 3ds
Max [Aut23a]. Traditional methods allow users to create a 3D model by
forming a 3D mesh made up of polygons. These methods require the manipu-
lation and placement of new polygons, which can be a time-consuming and
meticulous process. Thus, the polygons must be accurately positioned in 3D
space. If we want to add detail to the model, we can either refine the 3D
model even further, which requires even more careful placement of polygons,
or apply textures to the model, which involves setting the coordinates for
the textures to the 3D model. In order to animate a 3D character, we need
to define a skeleton and set it up for skeletal animation. The whole process
requires adjusting complex settings that users must learn. However, more
intuitive tools and methods are available for newcomers to 3D modeling.

Sketch-based modeling methods [OSSJ09] allow users to draw 2D shapes
that are automatically transformed into 3D models, which brings a major
difference from traditional methods. While these methods do not allow the
creation of complex models, since we have only have a single image, they
are more than sufficient for casual modeling, prototyping or creating simpler
models. During the whole process, the user does not leave the 2D domain and
only modifies a few parameters in the application if necessary. By eliminating
the need to inspect the model from all angles, the time required to create a
3D model is reduced. Textures are then applied based on the implementation
of the tool used and the user does not have to manipulate complex settings to
achieve satisfactory results. This makes this approach much more intuitive for
people who are not familiar with 3D modeling. The only input these methods
need is the user-made drawings in the tool interface and the uploaded image.
We can get various results from a single image because the generated model
depends on what tool was just used and how the image and user input is
interpreted.

In this work, we propose to extend capabilities of one such tool, namely
Monster Mash [DSC™20]. We will do this extension either by improving its
web version [DS21], or by creating a new tool. The extension would work

1

1. Introduction

(b) : The user input for UI im-

Mash [DS21] plemented in this thesis
(c) : The original drawing (d) : The generated 3D model

Figure 1.1: Figure @ demonstrates the amount of manual work that needs
to be done in order to reconstruct a 3D model of wolf in Monster Mash @
from an existing drawing . Note, how the user needs to precisely trace the
region boundaries in the input image including hidden contours and also plan
the absolute depth order of individual regions in advance. Using the approach
implemented in this thesis (]E[) the user needs to specify only a set of rough
scribbles and a few arrows that define relative depth order of individual regions.
This enables significant speed up over the original Monster Mash tool. (Wolf
image source: ©Anifilm. All rights reserved.)

directly with the original image, which in the current implementation can
only be outlined, as shown in Figure Our goal is to intuitively separate
the main parts of an image and establish their depth order without having to
explicitly outline them. This process should require minimal precision, which
would accelerate and simplify the creation of models using Monster Mash
for users, especially those unfamiliar with the software or whose equipment
does not allow for precise strokes using a computer. The new tool is intended
to reduce the need for manual tracing of individual body parts, as shown in
Figure [1.1. The process begins with a grayscale image as an input. Users
select its parts by providing strokes on the main parts and start the segmenta-
tion process. Users then connect the created segments with arrows to create
a depth order between the segments. The arrows and strokes, along with
an additional input, can be observed in Figures Finally, the occluded
segments needed for the 3D model are estimated. At the end of these steps,
a project file is generated that can be used to create a 3D model in Monster

1.1. Segmentation

Mash, an example is shown in Figure [1.1d.

As mentioned, these activities do not usually require high precision. The
segmentation algorithm needs only rough scribbles and the depth relations
between the separated parts are determined by arrows that can start and
end anywhere within the image segments. The overlapping segments, which
are necessary in Monster Mash to connect the separated parts, are taken
care of by the program. The project archive contains all the files needed to
create a 3D model in Monster Mash, including the colored sketch generated
during segmentation. In addition, the segmentation results can be improved
by blurring or adding contrast to the image. All tools are described in detail
in Section 4.1, where the user interface is explained. At saving the project,
additional images are created to display the segmentation results. These
visualizations are intended as a preview to improve the segmentation.

The procedure proposed in this thesis involves segmentation, depth order
assignment, and segment overlap resolution, following the first three steps of
the Ink-and-Ray pipeline [SKv™14]: segmentation, completion, and layering.

B 1 Segmentation

In the segmentation step, the image is divided into several parts using the
LazyBrush algorithm [SDC09], which is mainly used for grayscale image
coloring. The user adds scribbles to the image and the algorithm assigns their
color to the corresponding parts, as shown in Figure[1.2. In some cases, it
is possible to brush over to other segments without creating artifacts in the
resulting segmentation.

The LazyBrush algorithm enables the color to seep into the outlines and light
edges in a drawing without bleeding into unwanted areas, even if there are
holes in the outlines. In contrast, flood-fill algorithms cause color to leak
into to other parts of the image if there is a gap in the outline. Furthermore,
flood-fill algorithms are applied to only one color, which is the color of the
starting pixel. However, the LazyBrush algorithm covers the entire contour
regardless of the intensity in the pixel, resulting in the efficient creation
of of single-color regions or segments. As seen in Figure [1.2b| this makes
LazyBrush an ideal tool for the image segmentation process. However, these
segments cannot be used directly for shape reconstruction, as the segments
have user-defined regions that do not overlap. The depth and overlap infor-
mation necessary to obtain a 3D model is generated in the following two steps.

1. Introduction

)

\)
_//
|

(a) : User drawn scribbles (b) : Created segments

(c) : The segments applied to the
original image

Figure 1.2: Figure (@) displays the user’s input in the form of rough scribbles. In
image (]E[) we can see the segmentation results of the original image. Figure (|
contains the colorized image by the segmentation result. (Source: ©Anifilm. All
right reserved.)

B2 Depth order

In this work, layering follows the segmentation process. In this step, we
determine the relative depth ordering of the previously created segments and
identify any overlaps. Algorithms, such as the one proposed in the Ink-and-
Ray pipeline ﬂm, can be used to estimate the depth order. However,
instead of relying on approximation algorithms, we can utilize user input by
allowing users to add arrows to the image. Adding arrows is an intuitive task
that eliminates the need for absolute depth values. Figure displays an
example of arrows applied to existing segments. To process and validate the
depth information, we use the algorithm proposed by Sykora et al. ﬂm,
which is further explained in the paper by Kahn [Kah62]. The topological
ordering results in an absolute depth, as shown in Figure [I.3b. The white
colored segment is the closest to the user and the black color represents the
background. The data obtained here will be used in the final step to estimate
occluded segments.

1.3. Segment reconstruction

b——/

ments (b) : The depth levels

(a) : The arrows applied to the seg-

Figure 1.3: The arrows applied by the user are shown in image (a)). The depth
levels of all segments are shown in the in image (bl), with brighter color indicating
closer proximity to the user.

B 13 Segment reconstruction

The final step of this project is the reconstruction of the occluded segments
and their boundaries. To ensure a smooth continuity of the results, gaps
in the contours of the upper segments will mean merging with overlaid seg-
ments in the final 3D model. Similarly, some of the occluded segments will
be merged with closer segments. Depending on the input images and the
user’s requirements for the resulting 3D model, manual intervention might be
required to set proper merging boundaries. This is necessary in situations
where shading, other details, or noise in the image may cause dark pixels to
be misinterpreted as contour lines. Such areas can be resolved within the
application, as shown in Figure [1.1b, or by adjusting the border lines in a
2D graphics tool after exporting the segments. It is important to note that
this problem is not limited to the upper segments. The tool can also modify
the merging behavior imposed by the arrows, which is applied globally to the
entire segment. However, in some local cases, users may require a different
type of behavior to separate or merge two segments.

The segment reconstruction step is equivalent to the completion step in the
Ink-and-Ray pipeline [SKv™14]. We use the segments boundaries gained in
the segmentation step and the depth levels to determine which segments
require estimation of their shape. The algorithm proposed by Jeschke et
al. [JCWQ9| for the approximation quickly provides the desired solution. All
shapes, their borders, colored template image, and configuration files are can
be then uploaded to Monster Mash to create the final 3D model.

Chapter 2
Related work

Creating a 3D model from a hand-drawn sketch has been a long-standing
topic. There are many tools and methods to handle the creation of a 3D
model from a single image [OSSJ09]. In this chapter, we present a selection
of sketch-based modeling methods that are particularly relevant to our appli-
cation.

B 21 Ink-and-Ray

The first approach is the Ink-and-Ray pipeline [SKv™14] and its user interface
is very similar to the one proposed in this work. This approach generates 2.5D
objects and creates the illusion that images have a physical form. The pipeline
is inspired by bas-relief sculptures, which add depth to the portrayed view.
The final results are classified as 2.5D instead of 3D because the models are
only visually appealing from a frontal view. The pipeline was designed to add
depth only to the images as they are viewed front. From Figure 2.1, it can be
seen that strokes must be entered before the segmentation process can begin.
The depth order is usually handled automatically here, but inconsistencies can
be corrected by the user using an arrow connecting two segments. Boundary
conditions can be adjusted to straighten them out in the inflated regions in
the 3D model because the default conditions round the segments at the edges.
This way, users can suppress rounding in certain boundary areas to maintain
a straight and smooth transition at the ends of the segments. To achieve this,
the user must click on two locations near the segment boundary in the user
interface. The tool then identifies the nearest boundary and determines the
path that spans the boundary between the two points.

As can be seen, this work is heavily influenced by the Ink-and-Ray pipeline [SKv™14].
The segmentation algorithm remains the same, with only minor differences

in parameterization and options regarding the user interface. The depth
relations in this work rely solely on arrows added by the user, as no auto-
mated method is planned to solve the segment depth order. The procedure

for approximating hidden segments is inspired by the procedure presented in

the Ink-and-Ray pipeline [SKv"14| proposed by Geiger et al. [GPRIS].

7

2. Related work

(a) : User input (b) : Refined stitches (c) : Texture (d) : Result

Figure 2.1: The images represent the Ink-and-Ray pipeline M’J Figure (EI)
shows the user input. The input consists of the scribbles used in the segmentation
process and the optional arrows that specify the depth relations for the program.
Figure (]E[) shows us the optional specification of the stitch type along with the
estimated overlaps. Figure contains the applied texture. The last image @
shows us the rendered result of the provided input. (Source of the images:

Ink-and-Ray [SKvT14])

. 2.2 Monster Mash

Monster Mash is a sketch-based 3D modeling tool designed by Dvorozndk
et al. [DSCT20]. In this tool, the user remains in the 2D domain during the
creation of the 3D model. The input data consists of a set of open and closed
strokes. The closed strokes are utilized to create a coherent mesh. On the
other hand, we have open strokes that are automatically closed by a line
that defines either a free boundary or a merge boundary. These strokes are
primarily intended to attach new parts to existing shapes. Thus, all strokes
describe individual body part shapes and are stored in layers. These layers are
arranged according to the order in which they were added and the shortcuts
used. Typically,users draw over existing shapes when adding a shape. One
of the shortcuts allows users to draw under other shapes. Double-clicking
mirrors the secected shape to the other side of the target object, as shown in
Figure The tool also allows users to use the image as a template for a
future 3D object. The content of the image is drawn and then orthogonally
projected into the model as a texture.

The tool also allows users to quickly create looping animations by moving
control points and recording their path. The length of each new animation is
defined by the first animation created. This feature allows users to calibrate
new animations with previously created movements. To ensure that the length
of the new animations matches the set duration, the initial portion of the
calibrated animation is discarded, allowing the 3D model to be motion tested.
The model can also be exported to a more advanced 3D tool for further editing.

8

2.3. CreatureShop

—— T . Oma p— 1= 1. Yo Jo.lo..Jrli] oma

(a) : Monster Mash user input (b) : Inflated model with control points

Figure 2.2: Both images were captured in the Monster Mash demo tool [DS21].
Figure @ shows us the user input for the Monster Mash in the form of the
template image outlined by the user-drawn strokes. The wings, legs and eyes
are connected to the main body in the area where their contours are open. The
red outlines indicate that the segment will be mirrored to the other side of the
segment it is connected to. Figure (]E[) contains the inflated image along with
the control points and animation curves.

To obtain a more accurate model using the template in Monster Mash, the
existing sketch must be outlined accurately. Additionally, the outlines must
be in the correct depth order, as the resulting 3D model depends on them. If
there are multiple failed attempts regarding the outlines or their order, the
process can become tedious and time-consuming as it may be necessary to
start from scratch. This is because the Monster Mash tool only addresses
depth order by drawing new parts either above or below the others. The
newest outline cannot be drawn between existing overlapping strokes, only
over or under them. These limitations slow down the model creation process
by forcing the user to either stop and plan the next step or repeat the drawing
process.

B 23 CreatureShop

Zhang et al. present us with a novel sketch-based modeling method,
which they call CreatureShop. The method enables users to create highly
attractive 3D models from a single image, and the character can be drawn in
almost any viewpoint.

CreatureShop employs four tools to define the geometry of the model, as
illustrated in Figure The first tool in the user interface allows users to
outline the segments of the creature to prepare the individual parts. Although
the segmentation process is present, it is handled manually, not by tools such

9

2. Related work

as the LazyBrush. The second tool allows selection of the orientation of the
bilaterally symmetric planes. These planes will mirror the assigned segment
halves on their other side, allowing the shape and texture of the segment
to be mirrored later in the process. The third tool allows the user to find
symmetrical landmarks, such as eyes, which can be used to add additional
detail to the geometry. The last tool is used to define a plane in the middle of
each segment. The middle plane is indicated by a drawn curve that intersects
the segment plane. The lines of this tool can also be used to control the
shapes of smaller details that cannot be defined using symmetric landmarks.

After the user provides the input, the program creates the individual body
parts and connects them into a seamless, watertight mesh. In some cases,
mirroring the original image with reflection planes may result in unwanted
texture mirroring or textures that are not processed correctly by the frame-
work, as shown in Figure Texture inpainting method is used to solve this
issue. The algorithm selects the area with the wrong texture and replaces it
with a new texture patch sourced from the appropriate area.

(b) : Result from the
(a) : User input front (c) : Result from the back

Figure 2.3: Figure @ presents the user input. The violet marks indicate
the segments of the tiger in the original image. The blue marks represent the
midlines that specify the symmetric plane. The orange arrows are used to
select the orientation of the symmetric planes. The green dashed lines connect
symmetric landmarks on the tiger. Figures (]E[) and display the generated
3D model that was enhanced with the inpainting. The source of the images is

the CreatureShop [ZYC¥23]

In contrast to this approach, the Monster Mash tool primarily processes
characters from an orthogonal or frontal view. Arbitrary view can cause
artifacts in the models generated by Monster Mash. Although Monster Mash
can also generate 3D models from arbitrary view, they are not as accurate.
The aim of this work is to simplify the segmentation process, which consists
of tracing the segments in Monster Mash. The segmentation process will only
require the user to draw scribbles in the segmented areas. The final segments
will be determined automatically based on the depth order of the segments.

When comparing the way Monster Mash and CreatureShop work with tex-
tures, it is important to note that Monster Mash only applies textures by
orthogonal mapping to the front and back of the model. This might result
in artifacts such as blurred or elongated textures on the sides of the model,

10

2.3. CreatureShop

(a) : Wrong patch (b) : Refined stitches

Figure 2.4: The images from CreatureShop [ZYC*23] that show us the appli-
cation of image inpainting. In image @ the 3D model contains an improperly
applied texture. Figure @ shows us the model after the inpainting process.

face or limb textures appearing on the other side of the model, and also
copied textures on obscured parts of the model. These artifacts, that might
appear in the generated model, cannot be handled by an external tool such
as the one proposed in this work. In contrast, CreatureShop mirrors textures
locally through the midplanes. In the case of artifacts, inpainting is utilized
to provide a suitable texture.

11

12

Chapter 3

Analysis

The analysis chapter describes the steps and key algorithms used in this thesis.
We focus on the first three steps of the Ink-and-Ray pipeline [SKv™14], which
will provide the 2D shapes needed to create the desired 3D model.

(c) : The segmented

(a) : The original image (b) : The user input image

Figure 3.1: In the figure we can see the segmentation process. The user adds
scribbles to the image, as can be seen in image (b)). The segmentation process
then fills the contours with the color of the drawn scribbles.

Segmentation

In the segmentation step, the character or object in the image is divided
into several parts (segments). The user creates segments recognizable to the
algorithm by drawing strokes, which are then processed by the segmentation
algorithm. The segmentation will provide us with a set of regions that will
give us basic information about the shape of the character. It also provides
us with a color texture for the resulting 3D model.

Layering

In this step, the user establishes the relative depth order between all segments
by adding arrows, as shown in Image [1.3al The layering step then processes
the arrows to produce the absolute depth order used in the last step, as
displayed in Image [1.3b. The depth order is used to constrain the estimation
for visually occluded segments only and when creating the model in the
Monster Mash.

Completion
The last step presented in this work is the approximation of the occluded

13

3. Analysis

segment shapes extracted in the segmentation step. An example of the seg-
ments can be seen in Image |3.2a, The visible segments are used to complete
the occluded regions along with their depth ordering. In the Ink-and-Ray
pipeline [SKv'14|, the layering and completion steps are not in this order
because the dependence of these steps is reversed in the article. Since we do
not need to estimate the depth of the segments, the depth order in this work
allows us to directly distinguish which shapes need to be processed and which
we can omitted entirely. The result of this step is shown in Image [3.2bl

| LK S Lt

(a) : Segments (b) : Approximated shapes

Figure 3.2: Tmage (a) displays the segments in their depth layers. The segments
are then processed and the occluded ones have their shape approximated, as we
can see in image (b)). Although some of the shapes may not look right, such
as those around the neck, they provide the connection between the segments
in the final model and are not visible. We can also see that the eye segment is
missing. The eye segment is missing because it is inside the head segment and
its boundary does not cross the boundary of any other segment.

Each step of this work and its results depend on the results of the previous
steps and on the user’s input. In the following section, we define the problems
we need to solve and explain the basic algorithms we need. The implementa-
tion of the algorithms is described in the following chapter.

B 31 Segmentation algorithm

The segmentation algorithm is the foundation of our pipeline because it
creates the basic structure of the future 3D model. The image containing the
character is divided into several parts (segments), which are later sorted and
completed to meet the requirements of the Monster Mash tool.

There are several algorithms and methods that allow us to segment an image.

In our work, we focus on the LazyBrush algorithm [SDC09] which was intro-
duced as a tool for coloring hand-drawn sketches.

14

3.1. Segmentation algorithm

With properly defined parameters, this min-cut algorithm will achieve results
that no flood-fill algorithm can achieve. There are certain conditions for
flood-fill algorithms to work properly. They require homogeneous regions that
must be bounded by a closed boundary. However, these conditions are not
always satisfied in the case of sketches, because there may be open contours
in the image. In addition, areas along the contours may be blurred, which
increases the range of colors present in the segmented area. In the case of
scanned images, we have to take into account the noise in the images. Unlike
flood-fill algorithms, the LazyBrush algorithm can work with open contours,
i.e. holes in the contours, and perserve the color inside them. Depending
on the implementation, the LazyBrush algorithm can work well on images
that do not have large homogeneous areas, such as the photos in grayscale.
However, the configuration required for the sketches allows the color to seep
into the outlines even when color gradients are present. A comparison of
the results of the flood-fill and min-cut algorithms can be seen in Figure [3.3.
The properties of the min-cut algorithms allow us to utilize colored regons as
segments that we will need in the next steps.

(a) : An example im- (b) : The flood fill al- (c) : The min-cut algo-
age with open outline gorithm result rithm result

and a user drawn la-

bel

Figure 3.3: Image (a) shows us an image with an open outline. The scribble
is at the location used by both the flood-fill and min-cut algorithms. The
background label, used by the LazyBrush algorithm, is located at the corners of
the image. The flood-fill algorithm then avoids non-white pixels and ignores the
open contour, filling most of the image with blue color, as shown in image (b)).
In contrast, the min-cut algorithm seeps in the blue color to the contour and
stops at the hole in the outline, as shown in image (c]).

Due to the nature of min-cut algorithms, the LazyBrush algorithm itself
allows us to solve a binary problem. The task we face is to create a labeling
that assigns pixels to two scribbles drawn by the user. We are given a set of
labels L and an image containing pixels P in a 4-connected neighborhood N.
We want to find a labeling c that assigns label ¢, € L to a pixel p € P. The
problem can be formulated as energy function:

E(c) = Z Vp,q(%v%) + Z Dp(cp) (3.1)

{p,q}eN peP

where p, ¢ are neighboring pixels, V), 4 is the color discontinuity energy between

15

3. Analysis

them, and D), represents the color energy assigned to pixel p by the scribble.
We can express the term V), ; as the intensity difference between pixels p and
g. The term D, indicates whether pixel p has been covered by one of the
scribbles or not. If p has been covered by a scribble, we set the term D,, for
that pixel to a high number, otherwise we set this parameter to zero. The
prepared data can then be solved with the min-cut algorithm. One of the
available algorithms for cutting graphs is the push-relabel algorithm, proposed
for example by Timo Stitch [Sti09]. This algorithm incrementally converts
the current flow into the maximum flow, instead of sending the flow directly
from the source to the sink along paths as it does Ford-Fulkerson algorithm
and algorithms derived from it. In our work, we will use a method based
on the Boykov-Kolmogorov algorithm [BK04] implemented in the GridCut
library [SJ].

10 10
Wp,er | €pec; € E.

o
LIty

Figure 3.4: Multi-way cut problem example [SDCQ9]:

On the left we can see the white dots representing pixels from P. The three
terminal nodes C' are colored. The black lines represent the neighbourhood of
every two pixels p and ¢ with the weights between them w, , which represent
the term V,, ;. The colored edges from pixels p € P to terminals ¢; € C represent
the data term D).

In the right image there is a possible multiway cut solution and labeling for all
pixels.

If we want to allow the user to add multiple scribbles, the algorithm must
solve the problem for each label separately against the other scribbles. In
doing so, the area and data are dynamically reduced to avoid unnecessary
computation. Figure [3.4] displays a simple setup and the final labeling.

The created segments are then used in the next two steps. In the depth
ordering step, they are topologically sorted and assigned to depth layers. In
the last step, the missing parts of the segments are estimated to provide the
basis for the future 3D model.

16

3.2. Depth order

B 32 Depth order

To estimate missing contours, a distinction must be made between occluded
and occluding segments. The arrows seen in Figure [1.1b| are user input
defining the relative depth order between all segments. This input indicates
possible occlusion caused by closer segments and is crucial in approximating
segment boundaries. In that step, only the shape of the occluded segments is
reconstructed. These arrows form an oriented graph where the nodes are the
segments and the arrows are the edges between them. In order to determine
the correct depth order, the generated graph must not contain an oriented
loop, since such a situation would lead to an inconsistent depth ordering. We
cannot solve the loop problem only before approximating the occluded parts,
as there may form several loops and deciding which arrows to delete can
be a difficult task. The only solution is to delete the incorrect arrow at the
moment it is added to the graph. This problem can be solved by topological
sorting with loop detection. Since we test for the presence of a loop every
time an arrow is added to the graph, there can exist only one loop, namely
the one that was created by the most recent arrow.

Kahn’s algorithm [Kah62] presented in the article by Sykora et al. [SSJT10]
allows us to detect cycles in an oriented graph. Although the original Kahn’s
algorithm [Kah62] is optimized to work on large-scale networks, the expected
input in our case is limited and some possible scenarios in the article do
not occur in this work. Here we can work with a simplified version of the
algorithm to avoid the sorting steps mentioned in the original article.

B 3.2.1 Kahn’'s algorithm

The algorithm utilizes two structures: an event list and a list of activities. At
the beginning of the algorithm, the list of activities is sorted by the starting
nodes(events) of the edges(activities). In the rest of the explanation of the
algorithm, we will refer to nodes as events and edges as activities to maintain
consistency with the format of the original article.

Each activity in the list of activities contains a flag that indicates the last
element of the group of activities with the same initial event (referred to as
the predecessor flag) and the location of the successor activity (referred to as
the successor). Each field in the event list contains the number of incoming
activities to the event (referred to as the count) and the first position of the
activity in the list of activities starting with that event (referred to as the
location). The most important features suggested by these two structures
are:

® The list of activities is ordered based on the predecessors, which are the
initial events of the activities, and thus organized into groups of initial

17

3. Analysis

events. Fach group can be iterated until the predecessor flag indicates
the last element of the group.

® The initial location of the group, or its first activity, is perserved as the
location in the event list. If it is a terminal event, a special symbol is
used instead of the first edge location.

® The successor in the activity list and the first location in the event list
provide communication between the two lists.

® The count in the event list represents the number of incoming edges to
the event. It indicates whether the event is ready to be processed or
whether it must wait for its predecessors to be processed.

At the beginning of the process, we iterate the event counts and look for
possible zeros. If we find a zero indicating the initial network event, we assign
it a serial number and set the count to -1. We then reduce the count of all
its successors by 1. If any success has the count of 0, we set the flag F' to
indicate the creation of a new initial event. We do this for all events with
a count of 0. After the iteration over the counts is complete, we check the
flag F. If it has been set, a new iteration begins because there are additional
events to process, and we reset the flag. If the flag F' has no been not set, it
indicates that:

® The topological order has been successfully completed.
® There exists a loop in the network (graph).
® The network is currently undergoing segmentation procedures.

The author further suggests that the need to search for zeros can be avoided
by maintaining a separate list of initial events. This list would be updated
each time the number of successors of an event reaches 0 and then added to
the queue.

B 3.2.2 Simplified Kahn's algorithm

In this case, only the first two results of the algorithm are important: topo-
logical order generation and loop detection. In fact, no parallel segmentation
processes will be performed in parallel with this algorithm.

The management of structures in this work differs from that in the original
article. Actually, our graph is significantly smaller than the graph presented
in the article. Furthermore, we try to integrate the algorithm with the rest of
the pipeline by using only the core of the algorithm and avoiding the sorting
steps. Our graph G(V, E) consists of a set of nodes V that represent segments
and oriented edges E between these nodes that represent user-specified arrows.
We also utilize an empty list L and a set S containing all initial nodes. The
algorithm follows the pseudocode described in Figure [3.6]

18

3.2. Depth order

(a) : The input with arrows

®@® @

~—

(b) : The formed graph (c) : The topologically sorted graph

Figure 3.5: To create the topological order of the segments, as shown in image (c)),
the user must place arrows on the segmented image (a). The arrows form the
graph visible in image (b)).

There are multiple methods for detecting loops in the graph, depending on
the implementation. As the pseudocode in Figure [3.6] shows, we can check if
FE is empty. If it is not, then the graph contains a loop. However, since we
need to perserve the edges, we can use a different approach to detect cycles.
One other method compares the number of nodes with the last assigned
serial number [Kah62]. Another method is to identify nodes that do not have
their count set to -1 as in the original algorithm [Kah62]. If there is a cycle
in the graph, nodes in the loop cannot have the count of incoming edges
equal to zero or -1 because there exists a path in the loop that leads from a
node to its predecessor. Another approach to loop detection is to maintain a
flag indicating which nodes have been used and which have not. This flag
should initially be set to zero. If a newly visited node has the flag set to 1,
this indicates the presence of a cycle in the graph. However, this approach

19

3. Analysis

while S # () do
§:=8S—{n} and L:=LU{n}
for Vim € V having edge e : n — m do
E:=E—{e}
if m has no other incoming edges then
S:=Su{m}
endfor

endwhile

if £ = () then

G has at least one oriented cycle else
L contains topologically sorted nodes.

Figure 3.6: The figure illustrates the Kahn’s algorithm for creating the topologi-
cal order, as described by Sykora et al. [SSJT10|. G is the processed graph, S
indicates the set of the starting nodes, L is a list that contains the topological
order, E is the set of the edges, V is the set of the nodes, n is the selected node,
m is the neighboring node.

requires the use of an additional flag for each node.

To retrieve the final depth levels of each segment, we must iterate over a
topologically sorted list of nodes L. In the list, each node represents a segment.
The initial depth level d(v) of all nodes v € V' is equal to 1, 0 is reserved for
the background. When we visit the first node v in L, we follow the following
steps:

1. Search for all successors s of v.

2. Compute their depth as d(s) = max(d(s),d(v)+1), finding the maximum
of their current depth and the depth determined by the relationship
between s and v.

3. If v is the last node of the list, stop the procedure.

4. Select v as the next node in L and continue from the first step.

The depth levels in the output indicate the distance user’s the from segments,
with 0 representing the farthest segments (i.e. background) and higher num-
bers indicating increasing proximity.

Both the depth levels and the topological order are used in estimating of
occluded segments and extraction of segment boundaries in the following
section.

20

3.3. Segment shape approximation

. 3.3 Segment shape approximation

The data obtained from the previous algorithms allows us to fill in the
occluded parts of the segments. An example of the input for this step is
displayed in Figure 3.7. We are currently trying to solve a diffusion problem
that creates a smooth shape in occluded areas. The diffusion process should
create a transition (gradient) between known boundaries that results in a
protrusion into the region of closer segments. The diffused boundaries will
then be used for the missing part of the occluded segment. The principles
depicted in this part of the pipeline correspond to the Completion section of
the Ink-and-Ray pipeline [SKv'14].

—

(a) : Segmented image with the (b) : Depth layers
arrows

Figure 3.7: Picture (al) contains the segmentation result and the relative depth
order provided by the user. Image (b)) shows the absolute depth order represented
as grayscale values. The white areas correspond to the segments closest to the
user, while the black area represents the background.

Bl 3.3.1 Salient and illusory surfaces

The article by Geiger et al. [GPR9IS| serves as the foundation for the shape
approximation in the Ink-and-Ray pipeline [SKv™14]. The algorithm pro-
posed in this work is based on the algorithm presented in the referenced
article. The article explains how the human visual system perceives illusory
surfaces in images and why some are more difficult to perceive than others.
They also present an algorithm that allows to estimate the salient and illu-
sory shapes. The process of the surfaces identification consists of several steps:

1. All edges and junctions in the image are located.

2. At each junction, we assign a set of hypotheses for each possible configu-
ration of the junction. These hypotheses interpret the possible config-
urations of the surfaces in the junctions. Using this set of hypotheses,
multiple hypotheses are assigned to several pixels.

21

3. Analysis

3. The hypotheses are diffused by assigning each pixel a probability that
indicates whether it belongs to the hypothesis. The diffusion process is
blocked by the edges of the drawing.

4. The winning configurations are selected. An example of these hypotheses
is shown in the images [3.8b| and [3.8c. The optimal configuration is
chosen based on two criteria. The first criterion is biased towards the
smooth shapes, interpreting the L-shaped junctions as the T-junctions.
The algorithm attempts to minimize the L-junctions, but this approach
may not always be accurate. To compensate for this bias, the algorithm
also considers the entropy of the diffusion as the second criterion. The
entropy is measurable solely in the visible pixels and favors diffusions
with a probability closer to 1.

5. Upon receiving the winning hypotheses, we have determined that the
surface with the one with the highest entropy per pixel is salient. The
probabilities assigning pixels to surfaces distinguish the obscured surface
from the one on top. The winning hypotheses result in the original
shapes of the salient and illusory surfaces, as depicted in the images [3.8d
and |3.8€.

As it has been shown, the algorithm produces both occluded and illusory
shapes. Although this work and the Ink-and-Ray pipeline [SKv™14] focul
only on salient surfaces, the occlusion problem still needs to be addressed. In
this work, we select known and visible regions and make hypotheses based on
them. These hypotheses will then be diffused to obtain occluded shapes.

B 3.3.2 Occluded shapes estimation

In comparison with the article by Geiger et al. [GPRI8], our only concern
is occluded shapes, which are necessary to create the 3D model. We do not
need to calculate which segments are occluded, as this information is provided
by the user. It should be mentioned that we do not work with illusory surfaces.

The problem we face is binary, and may seem similar to the segmentation
Section 3.1, We have a segment whose boundary we want to recover, along
with other segments potentially covering it, which together form a group.
To formulate this problem as binary, we will mask this group as a second
segment. Following the example in Figure |3.7, we can prepare to recreate
the rest of the blue segment. Figure 3.9 displays the blue segment and the
boundary conditions that determine the hypotheses. The first condition is
white pixels directly bordering black pixels, and the second condition is black
pixels bordering gray pixels. The hypotheses will be diffused within the area
surrounded by these conditions.

The LazyBrush algorithm was used for image segmentation, but it may not
be the best solution for this problem. The grid cutting algorithm produces
segments with L-shaped boundaries that fill the gaps in the contours, which

22

3.3. Segment shape approximation

¢ 9
¢ 9

(a) : The Kanizsa square (b) : The hypothesis 1 (c) : The hypothesis 2

(d) : The diffused hy- (e) : The diffused hy-
pothesis 1 with thresh- pothesis 2 with thresh-
old old

Figure 3.8: Image (a)) displays the Kanizsa square, which is an illusory white
square which occludes four black circles. The images (b)) and (c|) show boundaries
visible in image (a)), along with the two winning hypotheses. These hypotheses
are formed at the junction areas and diffused. Notably, there are four L-junctions
and eight T-junctions, which were converted from the former L-junctions. The
images (d)) and (e)) display the result of the threshold of the diffused hypotheses.

makes it unsuitable. Moreover, in some cases, one segment may cover the en-
tire computational space, leaving the other segment with only its own labeled
area. To create a smooth boundary, an alternative approach is necessary. The
problem we want to solve can be formulated using a different energy function:

E= Z Wp,q|Tp — mq’2 (3.2)
{p.a}eN

where F is the total energy, while p, ¢ represent neighboring pixels. IV is the
set of neighboring pixels that form the 4-neighborhood of any pixel. The
weight w), , between pixels p, ¢ is calculated based on the intensity of the
image pixels. The weight value represents contours or other obstacles in the
image. In this section, we only encounter obstacles at segment boundaries,
since we do not use the original image. As a result we can assign w,, a
value of 1 for all {p,q} € N. The assigned labels z,,z, € (0,1) represent
the probability of assigning a pixel to two segments and are the result of the
diffusion process. In contrast to the LazyBrush algorithm, which directly
assigns labels 0 and 1 to the pixels, this method assigns the probability of

23

3. Analysis

(a) : The estimated segment (b) : The hypothesis
(white) and the closer segments
(black)

(c) : The diffusion result (d) : The threshold result

Figure 3.9: The task we aim to solve is to recreate shape of the overlapped
segment marked by the white area in picture @ Picture (]E[) displays the
boundary conditions that will be diffused. The white and black pixels represent
the boundary conditions and the light-gray area is used for computation. The
diffusion result for the blue segment can be found in image , while the thresh-
olded diffusion results for the overlapped segment are displayed in picture @

their assignment to the occluded segment.

The problem was expressed using an energy function. According to the law of
conservation of energy, we can set the energy derivative to 0 (E' = 0) which
leads to the following result:

OF
8_1’1, = ; 2(xp — xq;) = 0, (3.3)
A xp —Tgy — Tgy — Tgz — Tgy =0, (3.4)
Ax = 0. (3.5)

Equation expresses the behavior in all pixels and is summarized as a
Laplace of an image with equation The behavior depicted in equation
can be observed in Figure when multiplying the equation by —1. The
sum of the coefficients of all five pixels is zero, including the pixel x, and its
4-neighborhood, which are the pixels z4,, 74,, T4, and xg,.

24

3.3. Segment shape approximation

1xxzg,

1% x4, —4 x 1) 1 x4

1xxg,

Figure 3.10: The Laplacian of the image is calculated using the 4-neighborhood
of the pixels. The sum of the coefficients in all pixels of the 4-neighborhood,
including the pixel x, and its neighboring pixels z,, where i € {1,2,3,4}, is
equal to zero.

The initial conditions for this problem are the boundaries of the upper segment
group. The first condition is the boundary adjacent to the estimated segment,
which is labeled as x; = 1. The second condition is the boundary formed
from the upper segments adjacent to the remaining segments, which will be
labeled as x5 = 0. An example of this configuration is shown in Figure [3.9bl
To diffuse the boundary conditions, we compute the Laplacian of the image.

There are several methods for solving the diffusion problem. Indirect methods,
such as the Jacobi or Gauss-Seidel iterative methods, are well-known but
can be time-consuming for large images. Direct methods that use sparse
matrix solvers to compute the diffused pixel values can be more efficient.
These methods can be applied to a linear system consisting of a formu-
lated sparse incidence matrix with weights, and with boundary conditions
included. However, even these methods can take a long time for larger images.

To improve the computation speed, we use two optimization techniques. The
first technique involves constraining the computational space. Initially, a
bounding box is created around the current segment and all segments closer
to the user. Then, only the necessary pixels are used. Specifically, the bound-
aries depicting the closer segments define the computation area, as illustrated
in Figure |3.9.

25

3. Analysis

The other optimization technique discussed here involves utilizing the variable
kernel [JCW09]. To successfully employ this solver, three conditions must be
met:

1. creating an accurate initial guess to ensure proper convergence with the
variable kernel,

2. determining the distance of each pixel from the boundaries. During the
computation, the distances are gradually shortened. Initially, however,
it is necessary to transfer information from the farthest possible pixels,
which are the segment boundaries, to the currently computed pixel.
The algorithm obtains the distances using the distance transform of
Felzenwalb et al. [FH12).

3. The data from the previous steps are utilized to obtain the final result
during a few dozen or a few hundred iterations instead of hundreds
or thousands. Table |5.1] in Chapter |5 provides a comparison to the
Gaussian-Seidel method.

The combination of optimization techniques reduces the computation time of
the boundary condition diffusion process. The diffused data from Figure |3.9¢,
which are in the range [0 — 1], are thresholded to obtain the final segment
shape shown in Figure 3.9d. The occluded shapes and their boundaries are
computed and added to the project file to create the 3D model.

26

Chapter 4

Implementation

The project was implemented in C++17 in Visual Studio 2019. Its objective is
to segment the image, provide depth ordering of the segments and approximate
all hidden parts of overlapping segments. At the end, a zip file of the
project will be prepared to be used in the Monster Mash software. This
will summarize the use of the application followed by a description of the
implemented algorithms and structures.

. 4.1 User interface

The application is controlled by interacting with the image and key-bound
commands. The processed image is displayed in a 1000x800 resolution window,
following the Monster Mash tool. Any uploaded image is scaled and padded
to match this resolution. The workspace does not contain any visual elements
other than the image. The console displays information about running
processes and other important details. The application has four modes that
are essential to create suitable data for Monster Mash:

1. drawing mode,

2. depth mode,

3. segment picking mode, and
4. area selection mode.

The main input data of the application comes from the cursor. The keys
control initializing procedures and various optional application controls. In
drawing mode, users can draw scribbles on the window, change colors, change
the type of scribbles (as discussed in Section 4.2 about LazyBrush imple-
mentation), or increase blur and contrast. These features are important
because they can suppress or even remove visible image distortions caused by
scaling operations, noise, or poor drawing quality. The use of all tools will be
described later in this chapter.

Depth mode allows the user to add two types of arrows to the image. These
arrows are added by selecting the farther segment with the first click and the

27

4. Implementation

closer segment with the second click. Further details on arrows are given in
the text below in Section 4.3l

Segment picking mode allows the user to select an existing segment label
from the image, similar to the color picking tools found in 2D editing software
such as GIMP [dt23] or Photoshop [Inc23]. This allows the user to improve
segmentation results by providing additional scribbles of the selected segments.
However, the segmentation process must be restarted for the new scribbles to
take effect.

The last mode allows to select areas that will be forcibly separated or merged
in the final 3D model. To start selecting an area, either the left or right mouse
button must be clicked. A rectangular area appears that follows the cursor
from the position of the first click. A second click determines whether or not
the boundary passing through the selected area merges with another segment.
Left-clicking (LMB) on the second click will create normal boundaries, while
right-clicking (RMB) will denote merging boundaries in the area. This tool
should be used with caution as it affects all segments below it, including
directly set boundaries and estimated boundaries of overlapped segments.
The advantage of this tool is that it does not alter the shape of the segments,
only the type of the boundary. If users are not satisfied with the results of
the tool, they can adjust the boundaries either in a 2D editing tool or in the
Monster Mash tool.

When we talk about merging boundaries, it is meant that in the final 3D
model created using the Monster Mash tool, the segments will be seamlessly
connected in areas where merging boundary is defined. Blur and contrast
tools can either improve the visual quality of the image where artifacts appear,
or they can help in the segmentation process to achieve better results.

The application key bindings are listed below:

= Q /ESC
The application is terminated using this key binding.

s C
The command changes the color of the scribble. Using the RGB/HSV
color space element, the desired color can be selected (received by pressing
the enter key). If this UI element does not work correctly, the desired
color can be entered into the console in RGB format in the range [0-1].
Note that this command is only available in drawing mode.

= H
This command toggles between soft and hard scribbles discussed in
Section 4.2 on the implementation of the segmentation algorithm. Please
note that this command is only available in drawing mode.

e D

28

4.1. User interface

Here you can switch to depth mode from any other mode or switch to
drawing mode from depth mode.

P
Users can use this key to enter segment picking mode from any other
mode. The drawing mode is accessible from the segment selection mode.

A%
This command can be used to enter selection mode from any other mode.
Alternatively, drawing mode can be entered from selection mode.

S

The progress is saved in a binary file along with the current segmentation
layers, scribbles and the modified original image. The original image is
not overwritten. Additionally, it saves the screen, the depth order and
segments in image files to provide a better overview of the application
state.

X
This key is used to load the saved progress.

B

The predefined blurring tool can be used to improve visual or segmen-
tation results by blurring the image. Note that this command is only
available in draw mode.

K
This button accesses a tool that increases the contrast by a predetermined
value. It is only available in drawing mode.

R
This command resets the application.

M
This key starts the segmentation process.

O

Using this key, the borders of the segments can be approximated to
create the Monster Mash project zip file. Depth order is required for
this operation to work.

A

The A key toggles the screen display and can switch between four possible
displays: segmented image and user input with original image, segmented
result with original image, segmented result alone, and original image
with user input.

LMB
In drawing mode, the LMB is used to draw new scribbles. In depth
mode, the first click selects the more distant segment and the second

29

4. Implementation

click selects the closer one. The result is a green arrow. In selection
mode, the first click triggers the selection and the second click selects
the region in which segment boundaries will not be merging.

= RMB
In drawing mode, the background scribbles are drawn. In selection mode,
the boundaries of all segments within the selected area will merge upon
the second click.

® shift+D
Using this key to refresh the depth information in the window.

® shift4+V
This command resets the selection areas.

® shift+R
Only the blur and contrast are reset using this key.

® shift+LMB
In drawing mode, it is possible to create another scribble of the last
segment or the selected segment using the segment picking tool. In depth
mode, a red arrow appears upon the second click.

B a2 Segmenting algorithm

The LazyBrush algorithm, explained in Section [3.1], is used to segment the
image. Users provide scribbles in the regions they want to segment using the
two available types of scribbles listed in the key-bindings in Section 4.1;: hard
and soft scribbles. Pixels drawn over using hard scribbles are directly as-
signed to them, while other pixels are labeled depending on the segmentation
results. The second type of scribbles follows the majority rule. If a scribble
appears in an area where another scribble has more influence, whether it is
a soft or hard scribble, the area below that soft scribble will belong to the
other scribble. This behavior is useful in situations where there is a risk of
accidentally brushing over into other areas. The soft scribble will fill in the in-
tended area, and any area that was accidentally brushed over will still belong
to the other scribble, with no artifacts remaining in the resulting segmentation.

Although the LazyBrush algorithm solves the binary problem of assigning
pixels between two labels, the following steps adapt it for multiple labels:

1. Initialize a set of active labels L based on the user’s input and a mask
M of unlabeled pixels.

2. Identify all unlabeled regions R in M that intersect with scribbles con-
taining only one label /. For each found r € R, assign labels in M to
[. If there are no other regions in M containing scribbles with label [,
remove [, from L.

30

4.2. Segmenting algorithm

3. If L is empty, stop.
4. Select an arbitrary label [€ L.
5. Build a graph G from all unlabeled pixels in M.

6. Connect the pixels labeled with [to the terminal node S, and the pixels
seeded with labels from L — {l} to the terminal node 7.

7. Solve the max-flow/min-cut problem on G using S as the source node
and T as the sink node.

8. Set the label in M to [at the pixels, where the corresponding graph
nodes (pixels) were assigned to the terminal node S.

9. Remove the label | from L and go to step 2.

To completely understand the process, we can follow the example pipeline
that starts in Figure Both types of scribbles can be present in the seg-
mentation process and used for multi-label segmentation. In the segmentation
process, we always count one segment against the others and then remove
the assigned pixels from the next calculation, as shown in Figure

(a) : Input data (b) : Preparation for the first label

Figure 4.1: The figure shows the initialization of the LazyBrush algorithm.
The user input is contained in the 8x8 grayscale image @ The input consists
of three labels: blue, red and green. The dark pixels in the image represent
contours. Figure (]E[) is used to prepare the input for the computation of the
green segment.

The processed image can be viewed as a grid whose nodes are pixels and
whose edges are represented by 4-neighborhood of the pixels. The weights
between nodes are determined by the smoothness term V) ,, as shown in
Figure The smoothness term V), ,, which represents weights/capacities
between pixels p and ¢, is calculated using the weighting function

wyg = 1+ K xmin(I,, I,)? (4.1)

31

4. Implementation

=

(p,q)

L
L e
o

7
¢
5L

54
o4

Figure 4.2: The graph in this figure is represents the situation in Figure 4.1b.
Each node corresponds to a pixel and edges are only present between neighboring
pixels. The weight between two neighboring pixels, p and ¢, denoted as V(p, q)
and is set according to the equation [4.1, which depends on the intensity of the
pixels.

Y
NN
Y

(NI AN
<

where the intensities of pixels p and ¢ are represented by I, I, € (0,1). To
increase the contrast, a constant 2 was added using gamma correction, which
helps prevent problems with segmentation of light-gray boundaries close to
white. The weighting function ensures that the segment boundary seeps
into the darkest pixels along the outline, rather than stopping at the edge
of the drawn outlines. However, in the case of thick contours, the segment
may accidentally bleed into other unintended areas below the outlines. This
behavior is inevitable due to the nature of the algorithm, as shown in the
first row of Figure |4.5]

To improve the resulting shape and suppress noise in the image, we imple-
mented an optional Gaussian blur to thin out dark areas and create a gradient
around them. Using this tool, users can create more appropriately shaped
segments, as demonstrated in the second row of Figure |4.5 The resulting
shapes then tend to converge towards the center of the contours.

If the image contains faint outlines, it is natural to increase the contrast of
these lines so that the algorithm does not accidentally neglect them. Segmen-

32

4.2. Segmenting algorithm

Figure 4.3: The figure illustrates how the assignment of the sink and source
pixels are assigned to graph in Figure 4.2, The data term K is assigned to
the edges between the source/sink and the scribbled pixels, while the edges
between the source/sink and the other pixels have set a value of 0, indicating no
connection to the source/sink.

tation is not the only step that requires proper outlines, and as mentioned,
the LazyBrush algorithm already handles contrast. The last step of this
framework also depends on the intensity of the contour pixels. Therefore, a
contrast enhancement tool has been added to the application. However, the
contrast enhancement tool also amplifies the noise in the image.

The min-cut algorithm operates with a single sink and one source, both of
which are imaginary pixels located either above or below the image. These
pixels are connected to the scribbled pixels as shown in Figure [4.3. As men-
tioned in Section 3.1, the LazyBrush algorithm utilizes the data term D).
If the user has not brushed over a pixel, the data term for that pixel is set
to zero. If a pixel is scribbled over, the data term is set to a high number
denoted as K. For hard scribbles, K is proposed to be as high as the image
perimeter. In our implementation, we set K to 4000 because our images have
a resolution of 1000x800. For soft scribbles, the number is lower and is se to
K/16. In the example Figure 4.3, we assigned a value of K to the data term
between the source and scribbled pixels because we expected hard scribbles
on the input.

Multi-label segmentation is performed by following the steps described in
Section [3.1. The remaining steps can be seen in the example Figure [4.4]

33

4. Implementation

The segmentation result for the green segment is shown in Figure The
remaining parts of the image must also be assigned to the appropriate seg-
ments, since there is no area covered by only one segment. Then the labels
for the next segment were prepared, as shown in Figure The graph
produced in this step does not include the area assigned to the green segment
in Figure The nodes of the graph are then assigned smoothness and
data terms accordingly. We then complete the computation of the min-cut
algorithm on the graph as displayed in Figure 4.4d. The result for the green
scribble can be seen in Figure Since only one label remains, the remain-
ing area covered by its scribble is assigned the last segment. The final result,
shown in Figure was obtained by assigning the last scribble.

(a) : First partial solution (b) : Preparation to (c) : Graph representation
the next label

(d) : Addition of the (e) : Second partial so- (f) : Final result
label pixels lution

Figure 4.4: The figure illustrates the remaining steps in the multi-label segmenta-
tion process. Figure @ shows the outcome for the green segment. Computation
for the remaining labels is required. The computation for the blue scribble will
be performed with the preparation displayed in image (]E[) The green segment
and its scribble will be excluded from further computation, as shown in graph
images and @ Once the grid cut algorithm is complete, the area assigned
to the blue segment will be determined. Since only one segment remains, the
remaining area will be assigned to the red scribble. The resulting segmentation
is displayed in image (f).

The GridCut library [SJ] allows us to prepare graphs and calculate min-cuts
for splitting the image between two segments. The data term is assigned
separately for the sink and source, while the smoothness term is calculated
between neighboring pixels in the image.

34

4.2. Segmenting algorithm

Figure 4.5: The figure illustrates the recreation of the border of the middle
segment, which is overlapped by the surrounding segments. The first column
contains the input images, the second column shows their segmentation results,
and the third column displays the approximated borders. The first row depicts
the pipeline of the unprocessed input, while the second row shows the process of
the blurred input.

The processed areas for the red and green segments are very similar. There was
significant improvement in the area of the cyan segment pointing to the left. The
segmentation process produced a large protrusion outside of the middle segment,
where the minimal cut was located.

Listing 4.1: The color map structure contains primarily segmentation results
and colors mapped as scribble indices.
Color Map {
integer[]: indices of the segments mapped to
the pixels
integer: image width
integer: image height
byte: active pixel
integer[2]: amount of the used hard and
soft scribbles
RGB[256]: assigment of RGB colors to scribble
indices
}
At the beginning of the program, the framework generates background scrib-
bles around the image. These scribbles allow users to focus only on the drawn

area. If additional background scribbles are needed, the user can use RMB
as described in the user interface Section 4.1l

35

4. Implementation

The segmentation process uses several structures. The first stores the scribbles
and their intensity in the image. It contains indices of the drawn scribbles
in each pixel, which allows us to ignore the color of a segment during the
computation so that multiple segments can have the same color. The second
structure is the input image converted to a grayscale image, which contains
only the intensities of each pixel. The segmentation results and colors mapped
to scribble indices are stored in another structure, which is shown in pseu-
docode 4.1, This structure provides information in other parts of the shape
approximation process. The limit of labels is 256, divided between soft and
hard scribbles, with 128 for each. This limit is set because it is not anticipated
that more scribbles will be needed.

Using the LazyBrush algorithm, we were able to divide the image into multiple
segments. These segments require further processing, beginning with their
depth order.

B a3 Depth ordering

The relative depth order between segments is manually created by the user,
as discussed in Section 4.1] of the user interface. The first selected segment is
considered more distant, while the second is considered closer. There are two
types of arrows: green arrows indicate the merging boundary of the closer
segment in the occluded area, while red arrows keep the segments separated
in the resulting 3D model. The use of both types of arrows depends on the in-
tended purpose. Both cases can be seen in Figure 4.6, Similar to our example,
the green arrows can be used for example for fingers connected to the palm or
for similar situations where we want to completely connect two segments. The
red arrows should be used in cases where we want to restrict the connection
to the closer segment in the area where there is an opening in the contour or
to completely separate the selected segment. In some cases, such as animal
ears or limbs that are connected to the body only by the base, it is important
to keep the border of the body segment separate from the limbs. The connec-
tion should then be controlled solely by the open outline of the closer segments.

When the user adds new arrows to determine the depth order, an oriented loop
may be formed. In this context, loops are not desirable because we cannot
determine the proximity of segments. To address this issue, we can use an
algorithm that checks the topological order and detects the presence of a loop.
Kahn’s algorithm described in Section 3.2, can help with loop detection. The
location of the loop in the graph is unnecessary information. The algorithm
implemented in this work removes the newly added arrow and alerts the
user if a loop is detected. The user is also informed if the same segment
is selected on both clicks or if the background is selected. The displayed
alert consists of a short animation that is indicated by a dynamic change
in the color of the arrow before it disappears. During the animation, other

36

4.3. Depth ordering

(a) : Green arrows (b) : Full merge

N/,

(c) : Red arrows (d) : Partial merge

Figure 4.6: In the first row, the pictures @ and (]EI) demonstrate the use of
green arrows in the demo example. It is important to note that the blue segment
area merges with its border to the other segments in the 3D view. Pictures (c))
and @ in the second row display the difference when red arrows are used. As
shown in the image view, the merged area near the holes in the contours of the
closer segments remains unchanged. The distinction is in the border of the blue
shape, which is separated from the other shapes. In the example, the red segment
is always connected by the green arrow. If a red arrow were used instead, the
red segment would be completely isolated from the rest of the mesh.

interactions are blocked to to avoid distracting the user from the misplaced
arrow. The most important information provided by Kahn’s algorithm is the
topological order of the segments, which is used to determine the absolute
depth level of each segment. As described in Section [3.2, when iterating
through the ordered array, each segment pointing arrows to other segments
is to the left of the remaining segments in the topologically ordered array.
During the iteration, each segment is processed and depth level is updated in
its successors. Figure displays the steps of the depth level computation.

Our implementation of Kahn’s algorithm involves maintaining three lists.
The first list contains the nodes, the second contains indices of the initial
nodes and serves as a queue. The algorithm runs until this list is empty. The
third list maintains the order of nodes and is initially empty. This list also
contains segment indices and is used instead of managing sequence numbers.

37

4. Implementation

(a) : Arrow setup (b) : Formed oriented graph

-

@@@@@@@

(c) : Topologically sorted nodes (d) : Formed depth layers

Figure 4.7: Picture (a)) displays the user input with two types of arrows.
Picture (b|) presents the segments and arrows as an oriented graph. The
segments are labeled with numbers from top to bottom and left to right for
clarity. Picture (c)) displays the topological order of the segments, where all
arrows point from left to right. Other combinations of the topological order
are possible as long as no arrow must point to the left. The final depth levels
extracted from the topological order are shown in image (d)). (Wolf image source:
©Anifilm. All rights reserved.)

The order kept here is later used to retrieve the depth level of all segments.

Other structures are used in topological sorting. One of them is the struc-
ture necessary to track the location of arrows in the image for visualization
purposes. The other is used to track edges between segments. The node used
in a graph consisting of segments and arrows is explained in pseudocode 4.2.
The node contains the list of outgoing edges and thew number of incoming
edges. The depth information in the node represents the assigned absolute
depth level.

38

4.4. Shape approximation

Listing 4.2: The node class used in the graph.

Node {
list of edges: edges outcoming from the node
integer: number of incoming edges
integer: the depth level assigned to the node
}

Having established the depth order between the segments, we can now concen-
trate on recovering the occluded shapes. It is important to note that we only
need to obtain the depth level information before we begin approximating
the occluded segments.

. 4.4 Shape approximation

The final step of the pipeline is to approximate the occluded shapes using
the segmented image and depth data. In the preprocessing step, the image is
searched to find the segment boundaries. The neighborhood of each pixel is
searched, and if a neighboring pixel belongs to another segment, that pixel is
marked as part of its segment boundary.

To create an efficient environment for shape approximation, we iterate over
the depth levels of all other segments. This selects segments that are closer
to the user than the current segment. Using the topological order, we can
navigate from the segment adjacent to the current segment because all previ-
ous segments have an equal or lower depth level, as shown in Figure |4.7d. We
can further refine the bounding box region around the current segment by
determining the minimum and maximum coordinates of all segments involved
in the shape approximation process. By creating a computational window in
this way, we minimize the required computational space. In this process, we
select not only adjacent segments, but also other closer segments, since the
occluded segment may intersect them. This section will present the estimation
method supplemented with a complete example of the wolf body segment
approximation, starting with Figure [4.8|

Although there are many possible segment configurations, it is sufficient to
generalize them to two types. In the first type of configurations, a segment is
adjacent to two or more segments, including the background. In the first type
of configurations, a segment is adjacent to two or more segments, including the
background. In the second, a segment is completely surrounded by another.
For the latter, then, there are two situations that we have to deal with. The
first one describes the outline of the segment as an open or user-set merge
area. In this case, we extract the boundary immediately from the previously
calculated boundaries and mark the opening in the contour as the merging
boundary. Ensure that the selected area described in Section 4.1] of the user
interface is considered. However, in the latter situation, the segment cannot
be merged with the rest due to the contour separation. The calculation of its

39

4. Implementation

boundary will stop because it would not be possible to merge the segment
with the 3D model in Monster Mash. In the first image in Figure 4.8] the left
eye segment is completely enclosed by the head segment and its outline is
closed. Therefore, only its texture will be used in the final 3D model.

As we have already mentioned, some areas are merging because of the open
contours. It is important to consider the possibility that the boundary follows
the contour caused by the segmentation algorithm, and also the possible
presence of small holes in the contour due to noise. These situations are
handled by treating contours adjacent to dark pixels as closed.

(a) : Segmentation and depth input (b) : Body segment prepa-
ration

Figure 4.8: Figure @ shows the input for the algorithm. It also exemplifies a
scenario where the segment representing the left eye has a closed outline and
is fully enclosed by another segment. The image contains the scribbles, the
segmentation result based on them and the arrows denoting the topological order
of the segments. Figure @ displays the area of a segment with occluded parts
(white) and the areas that occlude the body segment (black). These areas are by
the segments that are closer to the user than the white segment. (Wolf image
source: ©Anifilm. All rights reserved.)

After preprocessing, each segment is processed separately, except for segments
with closed contour, which were excluded from the calculation. The boundaries
of the closed segments with open contours as well as the segments closest to
the user are processed immediately based on the previously extracted segment
boundaries.

If we want to estimate the occluded shape of segments using a variable kernel,
we follow the following three steps:

1. find an initial solution guess,
2. find a distance transform from the boundary conditions,

3. estimate the occluded shape of the segment.

40

4.4. Shape approximation

B 4.4.1 The initial guess

Jeskhe et al. [JCW09| state that the initial guess is made by the Voronoi
color image. However, our approach differs. First, we obtain a mask of the
current segment and other segments closer to the user, as shown in Figure
4.8. We then scale down this mask using the nearest neighbor algorithm to
avoid color smearing in the smaller version of the mask. The boundary of the
reduced mask is then identified, forming the Dirichlet boundary conditions.
These conditions represent the values around the boundary of the segments
involved in the computation. The boundary conditions are divided into two
types based on color. The first type includes the boundaries of the closer
segments in the reduced mask except for the boundary in common with the
current segment. These boundaries are indicated by the color black and the
number 0. For the second type of boundary conditions, we use the part of
the boundary of the currently processed segment shared with the boundary
of the closer segments. The boundary is marked with white color and number
1. The boundary conditions for the main body of the wolf can be observed in
Figure |4.10a. The computation area is further limited to the area under the
overlapping segments because the space where the estimated boundary might
be located is limited to the area formed by closer segments. The Laplacian,
which represents the diffusion process of the boundary conditions, can be
solved by directly computing the sparse matrix from Section [3.3| using a
specialized solver such as the Eigen library [GBT21].

In order to obtain the Laplacian image, we need to solve the linear system
A x x = 0 must be solved. The array x represents the pixels with unknown
values, and O represents the desired Laplacian. The matrix A is sparse and
contains in each row the coeflicients of the 4-neighborhood of each pixel,
except those that convey the boundary conditions, in each row. The main
diagonal contains a coefficient of —4 (—3 and —2 in cases of image edges and
corners). A value 1 is assigned to the neighboring pixels, specifically to the
indices to the left and right of the diagonal, as well as the upper and lower
pixels that are further away. To set up the linear system, we remove the rows
and columns of the pixels with boundary conditions from the matrix A, as
well as their corresponding positions in vectors b and 0, since we know their
values. The sum along certain rows in matrix A is less than 0 because the
boundary pixels have not been included. To account for the boundary pixels,
we utilize the vector 0 and subtract the value of the boundary pixels from it
at the positions of their neighbors. Figure 4.9|shows an example of this setup
for a 4x4 image.

To maintain the smoothness of the diffusion, the solution for the scaled-down
image, as shown in Figure 4.10b; is scaled back to its original size using the
bi-linear scaling algorithm. The image is then used as an initial guess to
ensure that no artifacts are present in the final result.

41

4. Implementation

112|314 0fo
516|718 olo]o
9 (101112 olo]o
13|14 15] 16 0ofo
-3 1 0 1 0 00 0 0 o] [3] 0—2]
1 -2 0 0 1 000 00 4 0
0 0 -4 1 0 010 00 6 0—-2-5
1 0 1 -4 1 00 1 0 ol (7] = |0
0 1 1 =300 0 00 8 0—12

Figure 4.9: The left image displays a 4x4 grid with highlighted pixels at positions
1, 2, 5, 12, 15 and 16, which represent the boundary conditions. The objective
is to compute the values of the remaining pixels. The right image shows the
desired Laplacian. To solve this problem, we use the linear system A * x = b,
where A is the matrix that describes the behavior of the Laplace operator, x
is the array of pixels with unknown values, and b contains the Laplacian. The
array x had the known pixels (boundary conditions) removed and their rows and
columns in A that corresponded to those pixels. To include these pixels in the
computation, the value they contained was subtracted from the Laplacian of the
computed pixels in their neighborhood.

B 4.4.2 Distance transform

As stated in Section [3.3, the distance to the boundaries is necessary for
computing with the variable kernel method. To initialize, we utilize a scan-
line algorithm to search the 4-neighborhood of all segments for the borders,
as we did for the scaled-down mask. The shape of the boundary is identical
to that of the boundary conditions. However, in this case all borders have the
same value because we want to find the distance to any border independent of
its type. We then follow the Euclidean distance transform algorithm described
by Felzenwalb et al. [FH12]. They presented the distance transform of a
sampled function (a grid) as a function

Dy(p) = aneig(d(p, q) + f(q)) (4.2)

where S is a sampled function, d(p,q) is a measure of distance, and f(q)
represents an arbitrary function. The proposed algorithm solves a one-
dimensional DT problem. For higher dimensions, the algorithm is applied
separately to each dimension. The algorithm can be used with different

42

4.4. Shape approximation

N

o~

(a) : Boundary conditions (b) : Diffused boundary conditions
in computed areas

Figure 4.10: Figure (EI) provides an example of boundary conditions. The white
border belongs to the overlapped segment, while the black border belongs to the
closer segments. The light-gray area denotes the space where the computation
will take place. The dark-gray area is ignored as there was no segment that
overlapped the current segment. Figure (]ED displays the result we obtained from
the matrix solver. The result will be scaled up using a bi-linear filter to maintain
the smoothness and will serve as the initial guess for the diffusion algorithm.

measures of distance, including the L1 (Manhattan) and Euclidean distances.
The Euclidean distance transform (EDT) utilizes the min-convolution of
the input image (function f) and a parabola. The calculation of EDT is
represented by the equation

Dy(p) = min((p - 0+ f(q)) (4.3)

where S is a one-dimensional grid, f : S — R represents a function on the
grid, which defines the height of the root of a parabola in each pixel g. The
EDT is defined by the lower envelope formed by all parabolas.

The algorithm’s separability allows for independent processing of each dimen-
sion. Figure displays the result of the distance transform based on the
boundary conditions from Figure The distance transform is created
only in the desired areas from Figure The DT is computed only in the
selected areas, as the visible area of the body does not require estimation.
Only its border parts are used.

B 4.4.3 The diffusion and the export

The third step in this pipeline involves applying the varying kernel to the
initial guess. The initial guess, acquired from the Section [4.4.1, is then
converged to the Laplacian of the image, except for the Dirichlet boundary

43

4. Implementation

Figure 4.11: The Euclidean distance transform used for the reconstruction of
the occluded body parts.

conditions [JCWO09]. As previously mentioned, the computation will take
place in a limited space denoted by the boundary conditions. The variable
kernel method solves the main issue with the Gaussian-Seidel and Jacobi
iteration methods, which is the reliance on information from one side of the
image to another. Jeschke et al. [JCW09| have proven that the Jacobi method
is guaranteed to converge for a typical Laplacian kernel. Even if the kernel
is modified by moving the kernel members further away, the Laplacian will
always be equal to zero. However, the array of unknown z will be different if
the kernel size remains constant during the computation compared, compared
to using a commonly used kernel with 4-neighborhood. To modify matrix A
according to the kernel, the ones are moved further away from the diagonal
by h for the left and right neighbors. The neighboring pixels above and below
the currently processed pixel are moved away by a distance equal to distance
equal to the image width multiplied by h. The value of h, which is selected
for the initial iteration steps is the distance to the boundary pixels and is
equal to the distance gained from the distance transform at each pixel. The
modified kernel can be observed in Figure |4.12. It is reasonable to expect
that the Gaussian-Seidel iteration method will behave similarly to the Jacobi
method. Both methods share foundational principles and maintain properties
that lead to convergence.

In this work, we use the Gaussian-Seidel iteration method expanded with
the variable kernel. The speedup of this algorithm is shown in Section [5
when compared to the classical Gaussian-Seidel iteration method. In each
iteration, we update the entire, similarly to the original Gaussian-Seidel
iteration. The basic algorithm employs the 4-neighborhood of a pixel, as
shown in Figure [3.10. However, in our case, we set up the kernel differently,
as described in the article by Jeskhe et al. [JCW09].

In each step, a scale factor of 1— % is kept, where n is the number of iterations

44

4.4. Shape approximation

and ¢ is the current iteration number. By multiplying the distance of the
pixel to the border in the distance transform with the scaling factor, the
offset to all directions from the pixel in current iteration can be obtained. In
Figure 4.12 which was previously mentioned, the distance from the computed
pixel was set to three pixels using this method. The same approach as in the
Gaussian-Seidel iteration is then employed, following the equation

Tp = (Tgy + Tgy + Tgy + Tg,) /4 (4.4)

where the z4,,7 € 1,2, 3,4 represent the pixels denoted by the offset from the
current pixel. When using this technique, we can employ one of two strategies
mentioned in the article [JCW09]: the shrink always strategy or the shrink
half strategy.

The shrink always strategy reduces the kernel size in each iteration by the
scaling factor of 1 — %, where n is the number of iterations and i is the current
iteration index. The shrink half strategy keeps the kernel radius maximal in
the first half of the iterations, then continues as the former strategy. In our
case, we used the shrink half strategy as it should converge faster than the
shrink always strategy. In the final steps of both methods, the distance from
the current pixel is reduced to 1, converting the variable kernel method back
to the original Gaussian-Seidel iteration. However, it is important to note
that the shrink half strategy requires at least twelve to fourteen iterations to
converge correctly. To address this issue, we have set the minimum number of
iterations to forty, resulting in satisfying outcomes. However, this approach
may not be always sufficient as the results may not be fully converged. The
number of iterations depends on the size and shape of the computed area,
making it impossible to set an absolute number of iterations. Instead, we
can define the maximum difference in a pixel before and after each iteration.
Therefore, we use the variable kernel method for a fixed number of iterations
and then continue with the basic Gaussian-Seidel iteration method until the
change in all pixels is less than the specified difference.

The image diffusion is similar to that shown in Figure 4.10. To finalize
the output, the image values are thresholded. The boundary conditions are
colored white for 1 and black for 0. Pixels with the value 0.5 and higher are
set to 1, and the rest are set to 0 creating the desired segment area. The
remaining task is to set the segment boundary.

As previously mentioned, the type of boundary determines whether the part
will be merged with the rest of the model or not. The problem of overlapped
segments was mostly solved by using arrows. In cases where there are issues
with occluded regions, selection areas were proposed to cover unintentionally
merged or separated areas. It is also possible to encounter merging issues in
segments that are on top. Not all dark areas are intended to define outlines,
such as noise, shading, or other details. These issues can also be addressed
by the selection tool.

45

4. Implementation

1xxg

1xxg, —4 %z 1xmwg,

1xxg,

Figure 4.12: The image is an example of a kernel used during the variable kernel
iteration method for pixel z,. The offset has been set to 3 by multiplying the
scale factor with the distance transform. It is important to notice that the pixels
between the current pixel and the offset pixels are not used.

The optional user selection is the first tool applied because it is considered
the ground truth solution. It indicates the type of border and is applied
to both overlapping and overlapped segments. The mechanics for the bor-
der type of the overlapping and overlapped segments differ from this point out.

For the overlapped segment, we use the newly computed segment as a mask
to set its border against the initial segments. Then, we refer to the color map
containing the segmentation results. If a pixel on the mask boundary belongs
to a different segment in the color map than the mask, we check the type of
arrow leading from the current segment to the other segment. If the arrow
is green, we set the border in that pixel to apply merging in Monster Mash.
The second arrow indicates separation. In cases where the arrow is absent
but the depth levels indicate occlusion, we applied a heuristic to separate the
overlapped segment from the closer segments, which was done if the difference
in depth levels was greater than 1. Figure |4.13|illustrates how the body of
the wolf was refined.

46

4.4. Shape approximation

(a) : Body segment cre- (b) : Body segment (c) : New border of the
ated by LazyBrush with its occluded parts body segment
estimated

Figure 4.13: Figure (al) shows the segmentation result of the body that requires
refinement. Figure (b)) displays the approximated body segment with its over-
lapped parts. Figure (/) contains the border of the approximated segment. The
occluded areas were determined based on the arrows as no user selection was
present.

The borders of the overlapping segments are established to merge when there
is an open contour connecting this segment with a segment of lower depth
level. If the neighbor is the background or when the intensity in the original
image is low, i.e. the outlines are present, the border is set to separate the
segments.

To obtain the shapes and borders of the 3D model, we created an accurate
initial guess, found a distance transform, and used the variable kernel method
to compute the Laplace of the image. Our tools helped us define the model’s
structure and depth layout, with refinement in the stitched areas resulting in
a more appealing result.

The borders and segment masks are saved to a zip archive along with the
colored image as a template. Additionally, two files are included: a con-
figuration file for Monster Mash and a file with the topological order of
all segments. It is important to include these files to avoid any undesir-
able situations or results when using the Monster Mash tool. The order
of the segments is determined by their depth order. The segments that
we have ignored will be missing in the list. The configuration file for the
Monster Mash tool specifies the tool’s preferences upon loading, including
mode (drawing, inflation or animation), template image display, and other
settings. These settings can always be modified within the Monster Mash tool.

The implementation section guided us through the process of creating a 3D
model from a single picture. The final Figure |4.14] in this section provides
a visual representations of our accomplishments. We began by applying
scribbles intended for the LazyBrush algorithm and the segmentation process.
We then used the arrows to sort the segments based on proximity. We applied
selection areas to define the properties of the borders. The estimation process
then filled in the missing parts using the variable kernel method. Subsequently,
the borders were extracted from the new segment masks and the specified

47

4. Implementation

user data. The resulting project file in the form of a zip archive was uploaded
to Monster Mash to create the desired 3D model. An overview of several 3D
models can be found in the following chapter.

48

4.4. Shape approximation

(a) : Intensity im- (b) : User scribbles (c) : Segmented image

g

(e) : Segment mask layers

(g) : Completed 3D

(d) : Depth and the

model f area input

(f) : Segment border
layers

Figure 4.14: The chart displays the primary steps in the pipeline described in
this thesis. The process begins with image @ which serves as an intensity image
with black represented as 0 and white as 1. The user then applies scribbles, as
shown in image (]ED, to separate the character into parts. The parts can have
the same color, and in some cases, separate scribbles can belong to the same
segment. The image segmentation, as demonstrated in image (cf), is followed by
the user adding input in the form of arrows and the area tool, as displayed in
image @ This enables the framework to estimate occluded segments, shown in
image @, and create their borders in image @) These are then added together
with the colored image and two predefined configuration files to a project file,
which can be uploaded to the Monster Mash tool. Figure (g) shows the final
3D model that was generated.

49

50

Chapter 5

Results

This framework allows users to process hand-made drawings and experiment
with the 3D models that are generated from them using Monster Mash. The
tool allows us to segment the image, including the texture, sort the segments
created and specify the the of border if necessary. These steps require mini-
mal precision and allow for additional inputs that enhance the results. The
objective is to create a smooth boundary in overlapping areas, allowing them
to merge in the final 3D model. This was achieved by diffusing the boundary
conditions in the specified image parts of the image.

The tool described in this work was tested on several test images. Figures|5.1
and 5.1 display a selection of images that led to successful results. The first
column of the figures shows the intermediate steps consisting of the pro-
vided user data, while the second column represents the resulting generated
segments in the overlay. The depth order of the segments depends on the
color intensity, with lighter colors indicating closer proximity to the user.
The third column shows the 3D models created using the Monster Mash
tool. The types of overlapping boundaries vary depending on the arrows
and user specifications to accurately merge the segments in the resulting mesh.

Section [4.4.3/ mentions the speedup of the variable kernel method compared to
the Gaussian-Seidel iteration. Table 5.1l demonstrates the difference between
the two methods when calculating the parts of the Dino Figure [5.1a. Both
algorithms ran until the iteration produced a difference of less than 0.00001
for each pixel. The variable kernel method brought significant speedup and
reduced the number of iteration cycles by at least one order of magnitude.
The computation time was reduced from units of seconds to hundreds of
milliseconds, resulting in almost immediate results. The algorithms were
executed on a computer with Intel Core i7-10750H, 2.6 GHz, 16GB RAM,
and the Windows 10 operating system.

o1

5. Results

(a) : Dino results

(b) : Wolf results

(c) : Big bird [Rawal results

: Hyena [Rawf] results

: Sheep results

Figure 5.1: These are the testing images for this tool. The left column displays
the input images with the user input applied. The middle column shows the
created segments, with lighter colors indicating closer proximity to the user. The
right column displays 3D models created in Monster Mash. (Wolf, Dino sources:
©Anifilm. All rights reserved. The sheep image is provided by the supervisor)

52

5. Results

(a) : Rabbit results

(b) : Robber results

(c) : Dodo [Rawc]| results

(e) : Emu [Rawe] results

Figure 5.2: The figure contains the second set of test images for the tool. The
left column shows the input images with user input applied, including colored
areas by the segmentation algorithm. The middle column displays the created
segments, with lighter the color indicating closer proximity to the user. The
right column displays 3D models created in Monster Mash. (sources: robber
©UPP. rabbit ©Anifilm. All rights reserved.)

53

5. Results

Variable kernel Gauss-Seidel
Segment || Iterations L Time [ms] || Iterations l Time [ms]
tail 468 582 8 663 10 180
main body 693 705 19 920 18 294
belly 541 354 10 589 6 445
head 348 37 1871 187

Table 5.1: The table contains the variable kernel method and the Gauss-Seidel
method in terms of speed. The number of iteration cycles and required time are
in the first and second column, respectively.

B 51 Comparison

Monster Mash

Compared to the segmentation process in Monster Mash, which is based on
tracing the template drawing, the LazyBrush algorithm described in Sec-
tion [4.2| requires only rough scribbles. As a result, in most cases, users do
not have to concentrate as much on placing scribbles in the segmented area.
If placement is ineflicient, an additional scribble can be added, reducing the
need for repeated redrawing. If the user needs to dispose of drawn scribbles,
repositioning scribbles should be faster and more flexible than manual tracing.

For a closer comparison, we can evaluate the performance of the implemented
tool and the time required to trace the image in Monster Mash. Table |5.2
shows a comparison of the approaches including the time required to create
3D models, potentially redraw, and importing into Monster Mash.

character [Monster Mash [This tool
brontosaurus 405" 3/20”
wolf 4'15" 2/15"
big bird 145" 133"
sheep 158" 1/40”
hyena 2'16" 9'03"

Table 5.2: A comparison of the performance of this tool and Monster Mash was
conducted. The time required for creating the 3D model is faster or similar to
Monster Mash in images with larger homogeneous areas and minimal segment
overlap in one place. However, in scenarios where there are too many merging
borders at once, a more detailed and precise setup is required, resulting in higher
time consumption, as demonstrated in the time comparison for the hyena image.
In the ear area, there are overlaps between the ear and the body segments that
need to be merged with the head segment. It is also important to consider
the head border behind the ear, which may be affected by the selection tool.
Properly setting took more than nine minutes to solve in this case.

The depth order in this tool is determined solely by the orientation of the

o4

5.1. Comparison

arrows. A comparison between the depth ordering in this tool and that imple-
mented in Monster Mash reveals a notable difference in approach. In Monster
Mash, the depth order is based on the order and placement of the drawn
segments. The order of segments can be determined through interaction with
them. The gray lines indicate the borders of the occluded segments, as shown
in Figure |5.3al However, when the segments are not selected, the borders
may not be visible, as in the case of the head in Figure [5.3l In contrast, the
Monster Mash tool displays the entire contour of the selected segments. In
this framework, the arrows in this approach indicate the depth order directly.
Since this work does not permit additional interaction with the estimated
segments, the estimation results are not visible in the tool window. However,
the segments created using the LazyBrush algorithm are visible only due to
the color difference, image outlines, or in detail upon saving the current work.
The segments are saved in separate images, which could be misleading or
difficult to process in more detailed work.

(a) : Monster Mash visuals (b) : Visuals of this work

Figure 5.3: The figure illustrates the depth order of both Monster Mash and
the current framework for comparison. (Dino source: ©Anifilm. All rights
reserved.)

Ink-and-Ray

One of the articles that will be compared with this work is Ink-and-Ray [SKv™14].
This work is essentially the implementation of the Ink-and-Ray pipeline [SKv™14]
adapted for the Monster Mash tool. Therefore, most of the results should
be very similar to that tool. Pipeline [SKv™14] produces images that are
converted to the 2.5D domain. We will not compare the 3D model results
because Monster Mash works differently and was not part of the implemen-
tation of this work. Figure 5.4 shows a comparison of the generated layers
using both frameworks. The main difference can be seen in the Rumcajs
figure 7?7, where the body and head segments overlap in this implementation,
while they only touch in the other implementation. Additionally, there is
a difference at the ear, where the head segment turns sharper than in the
Ink-and-Ray implementation. There may be other differences, but some of
these may be due to the result of segmentation.

The results for the wolf example are very similar. The most obvious simi-

55

5. Results

larities can be observed on the back of the wolf and in the area where the
body segment overlaps with the closer leg. The ears are segmented sep-
arately, consistent with the choice of segmentation. The most noticeable
difference is the absence of the left eye in this implementation, which remains
in the Ink-and-Ray pipeline [SKv™14]. The eye is absent here because its
segment shares no visible boundaries with any other segment. This configura-
tion was chosen because Monster Mash would create separate a 3D mesh for it.

(a) : Rumcajs reconstruction in (b) : Rumcajs reconstruction in
this work Ink-and-Ray [SKv™ 14

-

y A

(c) : Wolf reconstruction in this (d) : Wolf reconstruction in Ink-
work and-Ray [SKv™14]

Figure 5.4: The figure presents results of this work in the first column and those
from the Ink-and-Ray pipeline [SKv™14] in the second column.

CreatureShop

CreatureShop will be used as another point of comparison. Both tools share
the segmentation process, but their workflows for image processing differ
significantly. The segmentation process in CreatureShop is manual and
requires the user to trace the hidden parts of the segment. Repeating failed
attempts can lengthen the segmentation process unless a tool is available
to erase incorrectly drawn lines. If the user is experienced, the tracing can
be more accurate and meet the user’s requirements. This can reduce the
time required compared to using this pipeline. In our work, we compute the
Laplace of the image and add the estimated part to the segment already
created by LazyBrush. The estimated part is based on the depth order of the
segments. The segmentation process allows us to place the scribbles anywhere
in the region of the future segment. It is assumed that the user may not be

56

5.2. Limitations

able to draw precisely and may be limited by their equipment. However, even
if the user’s input is not precise enough, this tool can provide accurate results.
Additional scribbles can be added to problem areas to refine the shape of the
segment. It is important to note that this tool converts all loaded colored
images to grayscale because the segmentation tool relies on pixel intensity.
On the other hand, CreatureShop can work directly with color images.

(a) : Segmentation input of the (b) : User input for the
zebra image [Med] zebra image by Crea-
tureShop [ZYC™23]

Figure 5.5: The image of zebra segmented using both the CreatureShop and this
tool. In the CreatureShop, the user outlines the boundary of each segment using
the purple brush. In this work we added scribbles for the LazyBrush algorithm.
Due to the stripes, more scribbles are required in this tool. For more information,
see the segmentation limits in Section |5.2|

. 5.2 Limitations

The tool described in this work has several limitations. The first issue that
may arise is the presence of dark areas in the images that do not depict the
outlines. These regions can lead to improper segmentation results due to the
inability of LazyBrush to create the correct segmentation regions within them.
Figure |5.6 illustrates a case where images require more detailed processing.
Zebra stripes can cause distortions during segmentation. To address this
problem, additional scribbles need to be drawn over the dark areas and near
the segment outlines. While precision may be more necessary in cases with
such details, it is not always necessary to be completely precise.

Another problem concerns the diffusion process. In some cases, it may be
necessary to estimate part of a relatively narrow segment. However, if a
significant part of the segment is covered, the resulting estimate might become
fragmented. In these cases, the boundary conditions prepared for the diffusion
process are set so that the covered segments do not meet. It is important
to note that this limitation is not exclusive to narrow segments. In some
cases, the arrangement in the drawing may prevent the estimated segments
from joining in the 3D model as desired. For example, when examining the
elephant in Figure [5.7, only the two left limbs require estimation. While the

o7

5. Results

(a) : User input (b) : Estimated segments (c) : 3D result

Figure 5.6: The image of the zebra [Rawg] demonstrates the challenge of
managing dark pixel areas. The creation of the model is still manageable.

front leg is adjacent to the main body, the hind leg does not share a common
boundary with the elephant’s trunk. Thus, the leg is drawn too far from the
main body, preventing it from connecting to the main mesh in the Monster
Mash tool. Instead, a separate mesh is created, as shown in Figure [5.7c/.
Unfortunately, this tool cannot solve this problem directly. Therefore, the
segment must be redrawn in a painting tool to connect it to the main body
segment, including the segment layer as well as its border.

(a) : The user input (b) : Estimated segments (c) : 3D result

Figure 5.7: The elephant in image |a is prepared for estimation of all hidden
parts. As shown in image bl the hidden leg part is estimated in a way that it
does not meet the body segment, preventing it from merging with the mesh of
the 3D model displayed in image |c. (The elephant image was provided by the
thesis supervisor.)

The third limitation is related to the interpretation of the generated data
by the Monster Mash tool [DS21I]. As already mentioned, there are two
types of borders: one allows merging, while the other directly outlines the
segments. The issue arises when two or more merging boundaries intersect in
an uploaded Monster Mash project. In such situations, Monster Mash cannot
create the desired 3D model. The only solution to this problem is to detect
problematic boundaries, preferably by removing segments in Monster Mash.
The segments can then be adjusted by selecting tool for selecting areas in this
work or by rearranging the segments in a different way. No other solution to
this problem has yet been found.

The fourth issue is related to segment boundaries. It occurs when segment
boundaries rapidly change types rapidly at small intervals. In this setting,

o8

5.2. Limitations

Monster Mash is unable to produce a 3D model. This situation occurs
when shading, noise, or other dark pixels cross the top segment boundary.
The only solution in this framework is to use a selection tool that assigns
type directly to the problematic boundary segments. This scenario is solved
for both the hyena in Figure |5.1d and the brontosaurus in Figure |4.14. It
is important to note that the selection areas tool modifies all borders it covers.

In this work, we should consider creating more detailed models with more
overlapping segments. When merging segments, we must be careful not to
merge unwanted segments. For instance, we can refer to the Dino Figure [5.1al.
Although in our case the claws are part of the hand, if we wanted to create a
more detailed model and separate them from the hand, the Monster Mash
tool would merge the claw mesh not only with the hand, but also with the
abdomen below it. This problem is mentioned in this section because it can
occur frequently.

The limitations outlined in this chapter suggest opportunities for further
improvements to the framework. In the next chapter, improvements and
extensions will be proposed to address all the relevant issues identified in this
chapter.

99

60

Chapter 0

Conclusion

The aim of this project was to develop an advanced user interface for Monster
Mash. The drawn image serves as a basis for obtaining the data needed
to create the 3D model. Although we did not integrate this framework
into Monster Mash due to time constraints, we created a separate program
to generate project files that can be uploaded to the Monster Mash tool [DS21].

The process of creating data for Monster Mash involved three steps. First,
the image was segmented. Second, the depth order between all segments was
established. Finally, the occluded parts were estimated to determine the final
shape of the model parts. The depth order and selection tool implemented
in this work determined which parts of the segments would be merged with
other segments in the final model.

. 6.1 Future work

This tool was designed as an extension of the Monster Mash tool. Integrating
this framework into Monster Mash would greatly speed up the creation of a
model from a single image.

Since this work has a simple user interface, it could be improved by intro-
ducing a more visually pleasing interface that is not based on shortcuts only.
The new interface could include a status window and a panel with elements
for manipulating color selection, brush size and other parameters. These
improvements would make it more intuitive and attractive for users, and
could even allow the original image to be used as a template texture.

The comparison of the acceleration in Table |5.1| reveals that the head seg-
ment has also been calculated. However, the head segment has only two
possible neighbors for shape estimation, namely the eyes. However, these
segments are completely surrounded by the head segment. It is suggested
that regions where such segments exist should be automatically assigned to a
lower segment (the head in the case of the dino), thus reducing the required
time needed for estimation. In addition, segments that are not part of a

61

6. Conclusion

contiguous group of segments do not contribute to the estimation and should
also be removed from computation.

Although it is not possible to solve all the limitations described in Section [5.2
using this tool alone, it is possible to improve the framework. Specifically,
the selection areas currently overwrite the entire area below them, which
should be changed so that only problematic boundaries are selected instead.
This issue is related to the segment visualization problem. Currently, image
segments can only be perceived after the work is saved and completed seg-
ments can only be accessed from the project file generated for Monster Mash.
Therefore, the tool should be improved to allow visualization of both types
of segments including segmentation and diffusion results.

The fundamental problem that needs to be addressed is the constraint based
on segment shapes. Before the diffusion process of each segment, users
should be able to adjust the threshold of the Laplacian result by setting its
parameter. Another way to address issues during diffusion is to allow users to
draw additional conditions in the computed area to help indicate the shape of
the occluded segments. These user-drawn scribbles should belong only to the
currently processed segment or the upper segments. The proposed method
is designed to connect thin parts of the segments and enlarge the occluded
parts which would otherwise be separated from the rest of the model.

. 6.2 Final words

While writing this thesis and working on the tool described here, I gained
a deeper understanding of 2D and 3D graphics. The framework discussed
in this text provides insight into the possibilities of sketch-based modeling,
including its optimized speed and possible applications in graphics programs.
The methods explained in this thesis can be used to add depth to illustrations
using the Ink-and-Ray pipeline [SKv™ 14|, create prototypes and create casual
3D models using the Monster Mash tool [DSCT20], and even create precise
3D models suitable for 3D printing using CreatureShop [ZYC™23|. There
may also be previously undiscovered methods that could make sketch-based
modeling more efficient and accurate.

Although the topic of sketch-based modeling methods is not widely known,
at least to my knowledge, these methods can be very useful for beginners in
creating 3D models and understanding the basics of 3D modeling. This is
especially true when implementing and directly using these methods. The
discussion deals with segmentation algorithms, flow algorithms, a topological
sorting method, and diffusion methods. These topics were relatively new to
me and provided and valuable experience for my future work.

62

Appendix A

Bibliography

[Aut23a)]

[Aut23b]

[BKO4]

[Com23]

[DSC*20]

IDS21]

[FH12]

[GPROS]

[GB*21]

[Inc23|

[JCWOY]

AUTODESK, Autodesk 3ds max, 2023. Available at https://wwwl
lautodesk.com/products/3ds—max.

AUTODESK, Autodesk maya, 2023. Available at |https://wwwl
lautodesk.com/products/mavyal

Y. Boykov and V. KOLMOGOROV, An experimental comparison
of min-cut/max- flow algorithms for energy minimization in vision,
IEEE Transactions on Pattern Analysis and Machine Intelligence
26 no. 9 (2004), 1124-1137.

B. O. COMMUNITY, Blender, 2023. Available at https://wwwl
blender.orgl

M. DVOROZNAK, D. SYKOrA, C. Curtis, B. CURLESS,
O. SORKINE-HORNUNG, and D. SALESIN, Monster Mash: A
single-view approach to casual 3D modeling and animation, ACM
Transactions on Graphics 39 no. 6 (2020), 214.

M. DVOROZNAK and D. SYKORA, Monster mash demo, June 2021.
Available at https://github.com/google/monster—mashl

P. F. FELZENSZWALB and D. P. HUTTENLOCHER, Distance

transforms of sampled functions, Theory of Computing 8 no. 19
(2012), 415-428.

D. GEIGER, H. PAo, and N. RUBIN, Salient and multiple illusory
surfaces, in Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, 1998, pp. 118-124.

G. GUENNEBAUD, J. BENOIT, and OTHERS, Eigen, 2021. Available
at https://eigen.tuxfamily.orgl

A. INc., Adobe photoshop, 2023. Available at https://wwwl
ladobe.com/cz/products/photoshop.htmll

S. JESCHKE, D. CLINE, and P. WONKA, A GPU laplacian solver
for diffusion curves and Poisson image editing, ACM Transactions
on Graphics 28 no. 5 (2009), 116.

63

https://www.autodesk.com/products/3ds-max
https://www.autodesk.com/products/3ds-max
https://www.autodesk.com/products/maya
https://www.autodesk.com/products/maya
https://www.blender.org
https://www.blender.org
https://github.com/google/monster-mash
https://eigen.tuxfamily.org
https://www.adobe.com/cz/products/photoshop.html
https://www.adobe.com/cz/products/photoshop.html

A. Bibliography

[Kah62]

[0SSJ09]

[Sti09]

[SDCO9]

[SKv*14]

[SSJ+10]

[SJ]

[dt23]

[ZYC+23]

A. B. KanN, Topological sorting of large networks, Communica-
tions of the ACM 5 no. 11 (1962), 558—562.

L. OLsEN, F. F. SamavaTi, M. C. Sousa, and J. A. JORGE,
Sketch-based modeling: A survey, Computers € Graphics 33 no. 1
(2009), 85-103.

T. StiTcH, Graph cuts with cuda, in GPU Technology Conference,
Nvidia Corporation, 2009. Available at https://www.nvidial
com/content/GTC/documents/1060_GTCO09.pdfl

D. SYKORA, J. DINGLIANA, and S. COLLINS, LazyBrush: Flexible
painting tool for hand-drawn cartoons, Computer Graphics Forum
28 no. 2 (2009), 599-608.

D. SYKORA, L. KavaN, M. CaDIK, O. JAMRISKA, A. JACOBSON,
B. WHITED, M. SIMMONS, and O. SORKINE-HORNUNG, Ink-and-
Ray: Bas-relief meshes for adding global illumination effects to
hand-drawn characters, ACM Transactions on Graphics 33 no. 2
(2014), 16.

D. SYKORA, D. SEDLACEK, S. JINCHAO, J. DINGLIANA, and
S. CoLLINS, Adding depth to cartoons using sparse depth
(in)equalities, Computer Graphics Forum 29 no. 2 (2010), 615-623.

D. SYKORA and O. JAMRISKA, Gridcut. Available at https |
//gridcut.com/|

T. G. DEVELOPMENT TEAM, Gnu image manipulation program,
2023. Available at [https://www.gimp.org/l

C. ZHANG, L. YANG, N. CHEN, N. VINING, A. SHEFFER, F. M.
Lau, G. WANG, and W. WANG, CreatureShop: Interactive 3D
character modeling and texturing from a single color drawing,
IEEE Transactions on Visualization and Computer Graphics 29
no. 12 (2023), 4874-4890.

64

https://www.nvidia.com/content/GTC/documents/1060_GTC09.pdf
https://www.nvidia.com/content/GTC/documents/1060_GTC09.pdf
https://gridcut.com/
https://gridcut.com/
https://www.gimp.org/

Appendix B

Image credits

[srcMed]

[srcRawal

[srcRawb]

[srcRawc]

[srcRawd]

[srcRawe]

[srcRawf]

[srcRawg]

K. MEDFORD, cartoon zebra, Modified version of the image pro-
vided by wikiHow; License: CC BY-NC-SA 3.0 DEED. Available
athttps://www.wikihow.com/Draw—a—-Zebral

RAWPIXEL, big bird, Image source: Public domain. Avail-
able at |https://www.rawpixel.com/image/6289252/
[osd—-sticker—-vintage—-public—domain|

RAWPIXEL, brontosurus, Image source: Public domain. Avail-
able at |https://www.rawpixel.com/image/6327123/
[ong—sticker—-public—domain,

RAwPIXEL, dodo, Image source: Public domain. Avail-
able at |https://www.rawpixel.com/image/6327530/
[osd-sticker—-public-domain-vintage-illustrations|

RAWPIXEL, dog, Image source: Public domain. Avail-
able at |https://www.rawpixel.com/image/6261350/
[ong-vintage—-public—-domain,

RAWPIXEL, emu, Image source: Public domain. Avail-
able at |https://www.rawpixel.com/image/6256901/
[psd—-sticker—-vintage—-public—domain|

RAWPIXEL, hyena, Image source: Public domain. Avail-
able at |https://www.rawpixel.com/image/6536525/
[image-vintage—-public-domain-black|

RAWPIXEL, zebra, Image source: Public domain. Avail-
able at |https://www.rawpixel.com/image/6305642/
[psd-sticker—-vintage—-public—domainl

65

https://www.wikihow.com/Draw-a-Zebra
https://www.rawpixel.com/image/6289252/psd-sticker-vintage-public-domain
https://www.rawpixel.com/image/6289252/psd-sticker-vintage-public-domain
https://www.rawpixel.com/image/6327123/png-sticker-public-domain
https://www.rawpixel.com/image/6327123/png-sticker-public-domain
https://www.rawpixel.com/image/6327530/psd-sticker-public-domain-vintage-illustrations
https://www.rawpixel.com/image/6327530/psd-sticker-public-domain-vintage-illustrations
https://www.rawpixel.com/image/6261350/png-vintage-public-domain
https://www.rawpixel.com/image/6261350/png-vintage-public-domain
https://www.rawpixel.com/image/6256901/psd-sticker-vintage-public-domain
https://www.rawpixel.com/image/6256901/psd-sticker-vintage-public-domain
https://www.rawpixel.com/image/6536525/image-vintage-public-domain-black
https://www.rawpixel.com/image/6536525/image-vintage-public-domain-black
https://www.rawpixel.com/image/6305642/psd-sticker-vintage-public-domain
https://www.rawpixel.com/image/6305642/psd-sticker-vintage-public-domain

	Introduction
	Segmentation
	Depth order
	Segment reconstruction

	Related work
	Ink-and-Ray
	Monster Mash
	CreatureShop

	Analysis
	Segmentation algorithm
	Depth order
	Kahn's algorithm
	Simplified Kahn's algorithm

	Segment shape approximation
	Salient and illusory surfaces
	Occluded shapes estimation

	Implementation
	User interface
	Segmenting algorithm
	Depth ordering
	Shape approximation
	The initial guess
	Distance transform
	The diffusion and the export

	Results
	Comparison
	Limitations

	Conclusion
	Future work
	Final words

	Bibliography
	Image credits

