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Abstrakt: Tato diplomová práce zkoumá optimální kontrolu a interpretaci měření kvantových systémů.
Zaměřuje se na kvantové tečky (QDs) a zejména na měření pomocí radiofrekvenční reflektometrie, při-
čemž představuje nové metodologie pro diskriminaci kvantových stavů. Práce nejprve shrnuje (GaAs)
kvantové tečky a následně se zabývá technikami kvantové kontroly jak pro uzavřené, tak otevřené kvan-
tové systémy. Stěžejním bodem této práce je nový přístup k diskriminaci kvantových stavů prostřednic-
tvím identifikace lineárního dynamického systému (LDS) a Kalmanova filtru, využívající jak polyno-
miální optimalizaci, tak zavedené metody identifikace LDS. Jsou nastíněny dvě hlavní strategie: jedna
využívající označené měřené trajektorie a druhá založená na sdruženém shlukování a identifikaci LDS.
Práce konstatuje, že ačkoliv navrhované metody dosud nepřekonaly přesnost stávajících technik, mohou
slibovat rychlejší rozpoznávání kvantových stavů. Výhledově bude nutné uvážit LDS vyšší dimenze a
snížení výpočetní náročnosti pro širší uplatnění.
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Abstract: This master’s thesis investigates the precise control and measurement interpretation of quan-
tum systems. It focuses on quantum dots (QDs) and especially the radio-frequency reflectometry mea-
surement, presenting novel methodologies for quantum state discrimination. The thesis first provides
an overview of (GaAs) QDs. It then explores quantum control techniques for both closed and open
quantum systems. Central to this work is a new approach to quantum state discrimination through linear
dynamical system (LDS) identification and Kalman filtering, using both polynomial optimization and es-
tablished LDS identification methods. Two main strategies are outlined: one using labeled measurement
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Chapter 1

Introduction

In the realm of current quantum technologies, where noise is a significant factor, the ability to extract
maximal information from measurements is essential for ongoing progress. This is especially crucial
in the field of quantum computing, where the realization of effective quantum information processing
hinges on the precise control of quantum systems [24, 30, 66, 81]. Such precision necessitates highly
accurate system identification [8, 14], which, in turn, depends on meticulous measurement and insightful
interpretation of measurement data [17, 28, 56].

In this thesis, we review the basics of quantum dots (QDs) which have shown considerable promise
as a platform for fault-tolerant quantum computing, owing to their high-fidelity control over coherent
states and their compatibility with scalable industrial architectures [91, 79, 25, 33]. We place a special
emphasis on radio-frequency (RF) reflectometry [84], a prevalent technique for measuring semiconductor
QDs. The review then continues with the summary of quantum control techniques for both closed [24]
and open [44] quantum systems.

The main part of this thesis, however, deals with the challenge of accurately determining quantum
states based on noisy measurement trajectories. Our attention is particularly drawn to semiconductor
quantum dots, although we anticipate that the methodology we propose could be applicable to a broader
spectrum of quantum devices. While the standard measurement interpretation techniques are based on
finding some optimal threshold value or separating curve [28, 84, 41], we propose a fundamentally
different method.

Our approach to quantum state discrimination centers on learning the linear dynamical system (LDS)
matrices [4] from measurement trajectories acquired from a specific device. During this learning process,
we confront a complex non-convex optimization problem. We deal with it using the recently developed
polynomial optimization (POP) framework [2, 94], which has garnered significant interest for its ef-
fectiveness in identifying global optima in challenging non-convex scenarios, as well as using more
established methods of LDS identification.

We address the problem of state discrimination through two distinct methodologies. Initially, we
consider measurement trajectories that are labeled based on whether the QD was initialized in the |0⟩ or
|1⟩ state. We then learn the LDS matrices corresponding to each initial state, resulting in two separate
sets of matrices. During actual measurements, we process the obtained trajectory with the Kalman filter
[40], applying it with each set of system matrices. The final state assignment is based on which set of
matrices yields a lower error for the measured trajectory. This approach necessitates precise labeling of
the training trajectories, implying the need for already established control over the system.

Alternatively, we explore state discrimination as an unlabeled clustering challenge. This involves the
simultaneous task of learning LDS matrices and clustering within the space defined by these matrices.
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This method is particularly appealing for experimental devices in their early stages, where adequate
control has not yet been achieved, making precise labeling unattainable.

The thesis is organized as follows: in chapter 2 we review the quantum dots and, in particular, QDs
based on GaAs. Summary of RF reflectometry then follows. In chapter 3 we give a brief overview
of quantum control methods for closed quantum systems, starting with Lie group decomposition and
continuing with optimal quantum control based on Pontryagin maximum principle. We conclude this
section with an example of globally optimal control based on POP. Very closely related to this chapter are
the concepts of controllability and Cartan decomposition with the first being described in Appendix A and
the second in Appendix B. In chapter 4 a short introduction to methods of optimal quantum control for
open quantum systems is given. This is divided into open-loop and closed-loop techniques. In the later,
we focused mainly on the reinforcement learning methods. Finally, in chapter 5 our approach to quantum
state discrimination from measurement trajectories is described. This starts with the introduction of all
the necessary concepts such as LDS identification and Kalman filter. For these purposes, a brief summary
of polynomial optimization is provided in Appendix C. We then introduce the algorithm for the case of
labeled measurement trajectories and show the results first for 1D data from a real device and then
for the artificial IQ-plane data. The later goes along with the description of the artificial data and the
IQ demodulator setup. We conclude the chapter with our proposal for an algorithm for quantum state
discrimination in the case of unlabeled trajectories. All codes can be found at: https://github.com/
ludvicheck/QD_LDS_readout.
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Chapter 2

Quantum dots overview

Due to advances in semiconductor physics and technology, it has become possible to isolate a single
electron [46]. This isolation is achieved using repelling electric fields that trap the electron, or a few
electrons, within a region on the nanometer scale. Such confinement in a potential well leads to a sig-
nificant outcome: the discretization of energy levels. Therefore, a quantum dot (QD) can be seen as an
adjustable artificial atom. This property gives quantum dots a range of interesting physical characteristics
and potential uses.

As previously noted, one of the exciting uses of QDs lies in quantum information processing. The
capability to control a single spin and employ it as an ideal two-level system for quantum computation
– a qubit – is particularly attractive. Loss and DiVincenzo [55] have demonstrated that such a system
can meet the five DiVincenzo criteria for universal quantum computation: scalability, initialization, pro-
longed coherence times, the ability to perform a universal set of gates, and the capability to measure
individual qubits.

However, a single electron is never entirely isolated from its surroundings. The most notable inter-
actions affecting the electron include the spin-orbit interaction and the hyperfine interaction between the
electron’s spin and the nuclear spins in its environment. The intensity of these interactions largely de-
pends on the material used to create the QD. Since our experiment involves (but is not limited to) GaAs
quantum dots, we primarily focus on this material. Nevertheless, much of the underlying physics is also
relevant for other materials, and we emphasize that our method should be applicable not only to different
materials but to other quantum computing platforms as well.

2.1 GaAs Quantum Dots

In Figure (2.1), a schematic of a GaAs quantum dot is presented. A GaAs QD is created at the
interface of GaAs and AlGaAs heterostructures, where the AlGaAs layer is doped with Si. This doping
process results in free electrons gathering at the interface, forming a two-dimensional electron gas with
a relatively low density. On top of the heterostructure, metal gate electrodes are placed. By applying a
negative voltage to these electrodes, the resulting electric field depletes certain areas of the electron gas.
Then, small regions with lower potential, where the electron gas isn’t completely depleted, define the
quantum dot.

To measure the properties of the QD, Ohmic contacts are connected to electron gas reservoirs, usually
referred to as the source and drain. The most common measurement techniques for QDs are quantum
point contact (QPC) or a nearby sensor quantum dot (QDS). Both QPC and QDS are highly sensitive
to the charge state of the QD being measured. This sensitivity is shown by the current flowing either
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Figure 2.1: Schematic drawing of a GaAs quantum dot.

between the QPC and the QD or through the QDS. We will discuss the measurement process in detail
later.

The dominant factor in determining the state of the QD is Coulomb repulsion. Practically, this
means that some energy, known as charging energy, is required to add an extra electron to the QD. At
low temperatures, where thermal effects are minimal, this leads to the Coulomb blockade phenomenon,
which can be understood using the constant interaction model [82]. Let Vs,Vg, and Vd represent the
source, gate, and drain voltages, respectively. This model assumes that all Coulomb interactions can
be represented by a single constant capacitance C = Cs + Cg + Cd and that the single-electron energy
spectrum ϵi(B) (where B is the applied magnetic field) is independent of these interactions. The total
energy of the dot with N electrons is then expressed as

E(N) =
(−e(N − N0) +CsVs +CgVg +CdVd)2

2C
+

N∑
i=1

ϵi(B) (2.1)

where the sum in the second term covers occupied energy levels and |e|N0 compensates for the positive
background charge from the heterostructure’s donors.

The electrochemical potential for the transition between an arbitrary N-electron state |β⟩ and an
(N − 1)-electron state |α⟩ is defined as

µα→β(N) = Eβ(N) − Eα(N − 1). (2.2)

Defining the charging energy as Ec =
e2

C , the formula for a simple transition between the (N−1)-electron
ground state and the N-electron ground state becomes

µ(N) = (N − N0 −
1
2

)Ec −
CsVs +CgVg +CdVd

e
Ec + ϵN . (2.3)

Therefore, the energy required to add one more electron to the QD is

Ea = µ(N + 1) − µ(N) = Ec + ϵN+1(B) − ϵN(B)︸              ︷︷              ︸
∆ϵ

(2.4)
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where ∆ϵ could be zero if the electron is added to the same spatial orbital.
Transport through the QD can be seen as a process involving a double tunnel barrier. An electron

can tunnel from the source to the dot and from the dot to the drain only if the electrochemical potential
of the dot falls between the source’s and drain’s electrochemical potentials, µs and µd. In other words,
applying a bias voltage Vsd = Vs−Vd creates an energy difference between the source and drain, allowing
electrons to tunnel from the filled states of the source to the empty states of the drain through the QD.
This only happens if there’s a QD energy state within this energy gap. When no such QD energy level
exists within the bias window, it leads to Coulomb blockade, fixing the number of electrons in the QD.

The gradual change of source and drain voltages gives rise to the so-called charge stability diagram.
This is shown in figure (2.2), where the yellow spots indicate changes in the number of electrons.

Figure 2.2: Charge stability diagram of the GaAs quantum dot. Data for this diagram can be found in
201125150216.h5 and were measured at the Quantum Device Lab at Tohoku University.

2.2 Measuring QDs with radio-frequency reflectometry

2.2.1 Basics of radio-frequency reflectometry

Radio-frequency reflectometry is a widely used technique for measuring QDs. In this section, we’ll
cover the basic principles of this method, and later we will delve into its application for single QDs.

A possible setup for the measurement apparatus is illustrated in Figure (2.3). In this figure, the device
and its embedding circuit are represented by the impedance Zload. The core idea is to detect changes in
the impedance of the device by converting it into a voltage. Zload is measured by sending an input pulse
Vin(t) to the device, where it gets reflected. The reflected signal, different from Vin(t), depends on Zload.
It is then amplified and demodulated by applying VLO(t) (often derived from Vin(t)) and a low-pass filter.
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Figure 2.3: Example of RF reflectometry measurement circuit.

From the resulting VIF(t) the information about Zload is read and interpreted and this is, in fact, the main
goal of this thesis.

Following [84], the signal propagation through the entire circuit can be described by voltage V(x, t)
and current I(x, t) that satisfy the telegraph equations

∂V
∂x
= −Lu

∂I
∂t

∂I
∂x
= −Cu

∂V
∂t

(2.5)

where Lu and Cu are the cable’s inductance and capacitance per unit length, respectively. The solution
can be expressed as

V(x, t) = V+(t −
√

LuCux) + V−(t +
√

LuCux) (2.6)

I(x, t) =
1
Z0

[V+(t −
√

LuCux) − V−(t +
√

LuCux)] (2.7)

with V+ and V− corresponding to solutions propagating forward and backward, respectively, and Z0 =√
Lu
Cu

being the characteristic impedance of the transmission line.
Let V(x, ω) and I(x, ω) be the Fourier transform of V(x, t) and I(x, t), respectively. When another

impedance Zload is connected to the transmission line, the boundary conditions take the form

V(x, ω)
I(x, ω)

= Zload(ω). (2.8)
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It is evident that if Zload , Z0, then V+ cannot satisfy this boundary condition alone, and therefore,
whenever the impedance of the device differs from Z0, there will also be a reflected wave V−. Assuming
that the boundary is at x = 0, the reflection coefficient, measuring the portion of the reflected signal, is
given as

Γ(ω) ≡
V−(0, ω)
V+(0, ω)

=
Zload(ω) − Z0

Zload(ω) + Z0
. (2.9)

The dependence of |Γ| on the ratio Zload
Z0

is depicted in Figure (2.4). It’s clear that the reflection coefficient

Figure 2.4: Dependence of the reflection coefficient |Γ| on Zload
Z0

. The code for this image can be found in
QDs_plots.ipynb.

Γ is particularly sensitive to changes in Zload when Zload is close to Z0. However, when the absolute value
of Zload is much greater than Z0, changes in Zload have a minimal impact on Γ. This presents a challenge
because the resistance of the quantum device, given by

Zload =
h
e2 ≈ 25.8 kΩ (2.10)

is significantly higher than the typical impedance of the transmission line, which is usually much lower,
around

Z0 ≈ 50 Ω. (2.11)

To address this issue, the load is often treated as an electrical resonator approximated by an LCR circuit,
consisting of inductance L, capacitance C, and effective resistance Reff, where the details of what is
included in Reff can be found in [84]. This approach involves embedding the device in what is known as
a tank circuit. The impedance of such a circuit is expressed as

Zload(ω) = iωL −
i
ωC
+ Reff. (2.12)

The resonance frequency, where the imaginary part of Zload(ω) becomes zero, occurs at ω = 1√
LC

.
This significantly influences the reflection coefficient Γ(ω). As demonstrated in Fig. (2.5), there’s a
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Figure 2.5: Dependence of magnitude of the reflection coefficient |Γ| on the frequency. We used val-
ues L = 800 nH, C = 0, 6 pF and Reff = 46, 68Ω. The code for this image can be found in
QDs_plots.ipynb.

notable drop in |Γ| at the resonance frequency. At this frequency, any slight variation in the tank circuit
parameters results in a significant change in the reflection coefficient, which is the desired outcome. A
detailed explanation of how to select the inductance and capacitance of the embedding circuit to match
the resistance of the device is found in [84], Section III A.

Next, we describe how the final signal is obtained and extracted using demodulation. For this, we
use the IQ-plane representation of the signal. A periodic signal with frequency ω can be represented as

V(t) = VR cos(ωt + ϕ). (2.13)

By applying simple trigonometric identities and defining VI = VR cos(ϕ) and VQ = VR sin(ϕ), we can
express

V(t) = VR cos(ϕ) cos(ωt) − VR sin(ϕ) sin(ωt) = VI cos(ωt) − VQ sin(ωt). (2.14)

In this way, a periodic signal with a specific amplitude and phase is represented as a point (VI ,VQ) on
the IQ-plane.

Direct measurement of V(t) would require very fast data collection. Therefore, the signal is de-
modulated to an intermediate-frequency signal VIF(t) with a much lower frequency but still retaining
information about the quadratures VI and VQ. This is achieved by mixing V(t) with a signal of the same
frequency and phase VLO = cos(ωt). Indeed,

VIF(t) = V(t) · VLO =
(VI

2
+

VI

2
cos(2ωt)

)
−

(
0 +

VQ

2
sin(2ωt)

)
. (2.15)

A low-pass filter is used to remove the rapidly oscillating part, leaving a signal proportional to VI . Sim-
ilarly, a signal proportional to VQ is obtained by mixing V(t) with a phase-shifted demodulating signal
VLO = − sin(ωt). Thus, if V(t) and VLO have a phase difference ϕ, then after passing through the low-pass
filter, we obtain

V(t)→
VI

2
cos(ϕ) −

VQ

2
sin(ϕ). (2.16)
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2.2.2 Application on QDs

As previously mentioned, the most common method for measuring the target QD is to use a quantum
point contact (QPC) or another quantum dot, known as a sensor quantum dot (QDS). This section briefly
summarizes the process of spin-to-charge conversion and subsequent measurement.

In spin-selective measurement, the two states |↑⟩ and |↓⟩ (sometimes also referred to as |0⟩ and |1⟩)
are separated in energy by a strong magnetic field. In a single QD, we can correlate these different energy
states with a tunneling event from the QD. Such an event occurs when the higher energy level (in GaAs
QDs, it’s the |↓⟩ state) is above the Fermi energy of the reservoir, allowing the electron to tunnel into the
reservoir. Therefore, to measure the spin state of the QD, we need to shift the potential of the QD so that
the |↓⟩ state is above and the |↑⟩ state is below the Fermi level of the reservoir, as shown in Fig. (2.6).
This is usually achieved by an illumination signal Vin. When the tunneling event occurs, the electron that

Figure 2.6: Spin to charge conversion.

tunneled out of the dot is quickly replaced by another electron in the |↑⟩ state tunneling into the dot from
the reservoir. A fast charge sensor can detect the interval when the QD is temporarily empty. In double
quantum dots (DQD), however, the information about the spin state is encoded not in the tunneling effect
but in the charge configuration within the DQD.

Now, let’s discuss what the QPC or QDS sensors actually measure and how they are tuned. A QPC
is created using only one additional depletion gate, positioned so that when a negative voltage VQPC is
applied, a narrow channel forms between this gate and the target QD. This channel allows current to flow
from one region of the 2D electron gas to another, connected to contact leads for measuring the QPC
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conductance GQPC . In the ballistic limit, the conductance is given by

GQPC =
e2

h

∑
n

f (En)gn (2.17)

where f is the Fermi distribution, En the energy, and gn the degeneracy of the nth subband. As the
negative voltage is increased, the channel narrows and the conductance decreases. The ideal VQPC is
chosen so that the conductance change is most sensitive to VQPC . Hence, any occupation change in the
nearby QD (effectively a voltage change) causes a significant conductance change in the QPC.

For a quantum dot sensor (QDS), electron transport is governed by the Coulomb blockade. If the
conditions for Coulomb blockade are met, sharp conductance peaks GQDS occur as a function of gate
voltage VQDS . These peaks correspond to situations when any energy level of the QDS is within the bias
window between two regions of the electron gas. Near the charge degeneracy point V0, the conductance
relation is

GQDS = Gmax
∆E

4kBT
cosh−2

(α(VQDS − V0)
2kBT

)
(2.18)

where Gmax is the maximum conductance at the degeneracy point, α is the ratio of gate to total capaci-
tance, and ∆E is the energy level spacing. Like the QPC, VQDS is tuned to the point where conductance
change is most sensitive, typically on a peak’s flank. Any change in the charge configuration of the target
QD shifts the peak, causing a significant conductance change. Due to the steeper slope of the QDS curve
compared to the QPC, the QDS is usually more sensitive.

We now turn to the most commonly used technique for single-shot measurement and state discrim-
ination. The key goals for single-shot measurement are speed and accuracy. For instance, in quantum
error correction protocols, the fidelity of state discrimination should be around 99.9% or higher. Addi-
tionally, the measurement must be completed within the qubit coherence time T1, which is the time it
takes for an electron in state |↓⟩ to spontaneously relax to state |↑⟩. However, due to the noise mostly
generated by the amplifier, the measurement requires numerous data points (time steps) to accurately
determine the state of the QD. These requirements naturally conflict with each other.

A common and straightforward method for state discrimination is to look at the amplitude of the
output signal and average it over a specified number of data points. The state is then determined based
on whether the average value is above or below a certain threshold value, which differentiates the output
voltages for states |↑⟩ and |↓⟩. This approach is clearly demonstrated in Fig. (2.7). Although there are
many techniques how to set the optimal measurement time (number of data points to be averaged) and
the optimal threshold value [28], the general idea remains the same.

Perhaps the best illustration of the effect of the T1 process is directly on data from a device from the
Quantum Device Lab at Tohoku University. These can be found in the file 201125150755.h5 and can
be seen in figure (2.8) , where it is clear how, with a longer averaging time, the T1 process gradually
begins to dominate and even the trajectories, which were correctly assigned to the cluster corresponding
to state 1 at a shorter time, are then assigned to state 0. We also add the typical cross section profile for
such a histogram at some (optimal) fixed integration time.
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Figure 2.7: A scheme of series of measurements of the QD. The green and yellow background correspond
to time when the state is spin down and spin up, respectively.

(a) Time integration histogram for readout signal with
gradual change of the integration time. The data can be
found in 201125150755.h5.

(b) Scheme of typical counts for fixed integration time.
The data can be found in

Figure 2.8: Time integration and the typical cross section at fixed time.
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Chapter 3

Control of closed quantum systems

This chapter is dedicated to provide an overview of the open-loop control techniques for closed
quantum systems. Moreover, we consider only finite-dimensional systems, i.e. systems, where the
multilevel approximation is relevant. This is almost always the case e.g. for various quantum computing
platforms, since the qubits represent an approximation of an ideal two-level quantum system.

In general, finite-dimensional control system has the form

ẋ = f (t, x, u), (3.1)

where x represents the state of the system, u B u(t) represents the (one or more) functions of control
fields and f (t, ·, u) is the family of vector fields parameterized by t and u. In the quantum theory the
dynamics of the system is described by the Schrödinger equation. Let ψ denote the finite-dimensional
representation of the ket |ψ⟩. Then, setting ℏ = 1, the dynamics is given by

dψ
dt
= −iH(u(t))ψ. (3.2)

Here H(u(t)) denotes the Hamiltonian of the system which is Hermitian for every u (hence −iH(u) is
skew-Hermitian). In most cases the Hamiltonian is of the form

H(u) = H0 +
∑

k

Hkuk. (3.3)

For computational purposes it is often needed to express the problem using only real quantities. This
is easily done by writing

ψ = ψR + iψI (3.4)

and
−iH(u) = R(u) + iI(u), (3.5)

where ψR,ψI ∈ R
n and R(u), I(u) ∈ Rn×n, R(u) is skew-symmetric and I(u) is symmetric for every u.

Separating the real and imaginary parts we obtain two real equations, which can be further rewritten to a
single equation by introducing

x B
(
ψR
ψI

)
, H̃(u) B

(
R(u) −I(u)
I(u) R(u)

)
. (3.6)

The equation describing the quantum system using only real quantities then has the form

ẋ = H̃(u)x. (3.7)
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When we consider an ensemble instead of a pure state, the state is described by the density matrix
ρ(t) and the dynamics is described by the Liouville’s equation

ρ̇(t) = [−iH(u(t)), ρ]. (3.8)

The solution has the form
ρ(t) = U(t)ρ(0)U†(t) (3.9)

where U(t) is the unitary propagator satisfying

U̇(t) = −iH(u)U(t), U(0) = In×n. (3.10)

In fact, relations (3.10) serve as the most common definition of the control system where the propagator
U(t), varying on the Lie group of unitary matrices, is the object of control. Obviously, solving the
problem for the propagator immediately provides also the solution for the pure state ψ or the ensemble
ρ. Posing the problem as the control of the propagator, however, often provides more convenient and
natural formulation of the problem, as for example in quantum computing U(t) represents the operation
(performed by logic gates) transforming the state ψ in the desired way.

3.1 Lie group decomposition

Lie group decomposition is a tool to analyze dynamics and design quantum control algorithms which
is especially useful when the control problem can be decomposed into sub-problems that are easier to
solve. Let L be the Lie algebra and eL the corresponding Lie group. Let G j, j = 1, . . . r be the proper
subsets of eL (typically subgroups). Then by decomposition of the Lie group eL we mean factorization
of each element X ∈ eL as

X = XrXr−1 . . . X1, (3.11)

where X j ∈ G j.
This is particularly relevant when we consider eL being compact (such as S U(n)), because then the

following lemma holds:

Lemma 1. Let eL be the compact Lie group and {A1, . . . As} the set of generators of the corresponding
Lie algebra. Then every element of eL can be expressed as

X = eÃrtr eÃr−1tr−1 . . . eÃ1t1 (3.12)

for some t j ≥ 0 and Ã j ∈ {A1, . . . As} for j = 1, . . . r.

The proof of this lemma can be found in Appendix D of [24]. Now, consider the definition of the
general quantum control problem (3.10) and the common objective to find the control u(t) that steers the
unitary X to some desired unitary X f . Having the Lie group decomposition at hand, we can write

X f = Xr f . . . X1 f . (3.13)

Assuming the existence of u j driving the X j from identity to X j f , j = 1, . . . , r, it is clear that the resulting
control will be piece-wise constant.

In the case of a two-level system the relevant Lie group is SU(2) and it leads to the well-known
Euler’s decomposition

X = eσ̃zt3eσ̃yt2eσ̃zt1 (3.14)

19



with t1, t2, t3 being the Euler’s angles and

σ̃k =
i
2
σk, k = x, y, z (3.15)

where σk are the Pauli matrices. For this simple example the determination of the angles is straightfor-
ward since any matrix from SU(2) can be written as

X f =

(
cos(θ)eiϕ sin(θ)eiψ

− sin(θ)e−iψ cos(θ)e−iϕ

)
, (3.16)

where θ ∈ [0, π2 ] and ϕ, ψ ∈ [0, 2π). As

eσ̃zt =

(
ei t

2 0
0 e−i t

2

)
, eσ̃yt =

 cos
(

t
2

)
sin

(
t
2

)
− sin

(
t
2

)
cos

(
t
2

) , (3.17)

choosing

t1 = ϕ − ψ, t2 = θ, t3 = ϕ + ψ (3.18)

will give
eσ̃zt3eσ̃yt2eσ̃zt1 = X f . (3.19)

Going beyond SU(2), quite simple and explicit way to parameterize SU(n) is the decomposition into
planar rotations described in [60]. Let us denote such a planar rotation as U j,k(θ, β), with j < k denoting
the row and column at the intersection of which the elements are(

cos(θ)eiϕ − sin(θ)e−iβ

sin(θ)eiβ cos(θ)

)
,

otherwise it is an n× n identity. The decomposition of any SU(n) matrix into planar rotations is given by
the following theorem.

Theorem 1. Let
D(α1, . . . , αn−1) B diag(eiα1 , . . . , eiαn−1 , e−i(

∑n−1
k=1 αk)).

Then, for any X ∈ SU(n) there exist parameters α1, . . . αn−1, θ1, . . . , θ n(n−1)
2
, β1, . . . , β n(n−1)

2
, such that

X = D(α1, . . . , αn−1)U1,2(θ1, β1)U1,3(θ2, β2)U2,3(θ3, β3) . . .Un−1,n(θ n(n−1)
2
, β n(n−1)

2
). (3.20)

The proof of this theorem is constructive and provides the way of setting the parameters. It proceeds
by converting X ∈ SU(n) to the identity by successively multiplying it by U j,k from the right and finally
using the fact that [U j,k(θ, β)]−1 = U j,k(−θ, β). The whole proof can be found in [24].

The most general and in quantum mechanics the most ubiquitous Lie group decomposition is the
so-called Cartan decomposition. This topic is very broad and cannot be discussed in full here. The most
important aspects are, however, discussed in Appendix B.

3.2 Optimal control of closed quantum systems

In this section we introduce some methods from optimal control theory [26, 53] and immediately
adjust it to the case of quantum systems. We start with the general formulation of an optimal control
problem.
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Definition 1. Given a set X of (state) functions x : R → Rn, and a setU of (control) functions u : R →
Rm, the objective of the optimal control is to find the functions x ∈ X and u ∈ U which minimize a cost
functional J : X ×U → R and satisfy the dynamical constraint (3.1) almost everywhere.

Such a general definition of a control problem is, however, rarely used in practice. Considering the
x and the Hamiltonian as in (3.6) and constrained by the controlled Schrödinger equation (3.2), the three
most common equivalent formulations are Mayer’s, Lagrange’s and Bolza’s.

The problem of Mayer emphasizes the final state and/or time and is defined as

J(u) B ϕ(x(T ),T ) (3.21)

with ϕ being a smooth function Rn × R → R. When the emphasis is solely on the final state, the ϕ is
most often defined as

ϕ(x(T )) =
∥∥∥x(T ) − x f

∥∥∥2
, (3.22)

where x f is some desired final state. If there is an emphasis also on the final time, the time parameter T
will appear in the definition of ϕ explicitly.

The problem of Lagrange often gives an emphasis on the minimization of the overall energy used
during the control action and the cost function has the form

J(u) B
∫ T

0
L(x(t), u(t), t)dt. (3.23)

The combination of the problem Mayer and Lagrange is the problem of Bolza with the cost function
defined as

J(u) B ϕ(x(T ),T ) +
∫ T

0
L(x(t), u(t), t). (3.24)

It is clear, that in the problem of Bolza the cumulative cost increases with time, but the final state still
plays an important role.

It can be shown that these three formulations are in fact equivalent as they can be easily transformed
from one to another. Take for example the problem of Mayer with the cost function (3.21) and rewrite it
as

ϕ(x(T ),T ) = ϕ(x(0), 0) +
∫ T

0

d
dt
ϕ(x(t), t)dt. (3.25)

As ϕ(x(0), 0) is constant, the cost function to be minimized has the form(3.23) with

L(x(t), u(t), t) =
d
dt
ϕ(x(t), t), (3.26)

which is the problem of Lagrange.
If we consider density matrix instead of the quantum state formulation, the standard cost function

may have the form

J(u) =
1
2
⟨O⟩ρ +

∫ T

0
u2(t)dt =

1
2

Tr{Oρ} +
∫ T

0
u2(t)dt (3.27)

for some negative definite, Hermitian matrix O.
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3.2.1 Pontryagin maximum principle

We will now derive the necessary conditions of optimality under the assumptions that the optimal
control exists and that the set of admissible control functions includes at least piecewise continuous
functions. Intuitively, if u is the optimal control function with regards to some cost function J(u), then
for any other function v from the set of admissible functions it will hold that

J(v) − J(u) ≥ 0. (3.28)

To pose it as a variational problem, we consider strong variations of the optimal control function u(t)
on the interval [0,T ], i.e. for some fixed τ ∈ (0,T ] we define uϵ(t) B u(t) for t ∈ (0, τ − ϵ] and t ∈ (τ,T ],
and uϵ(t) B v for t ∈ (τ − ϵ, τ] with v being constant. Then the optimality condition has the form

J(uϵ) − J(u) ≥ 0. (3.29)

Such a search over the set of admissible functions is, in principle, infinite-dimensional problem. In
the following, we introduce the Pontryagin maximum principle (PMP), which allows us to transform it
to finite-dimensional optimization problem. We use the formulation for the problem of Mayer with fixed
final time and free final state. Nevertheless, as long as the Lagrangian is not explicitly dependent on t,
the resulting conditions can be generalized for the problem of Bolza [26].

Theorem 2 (PMP for the problem of Mayer with fixed final time and free final state). Let u be the
optimal control and x the corresponding trajectory solution of (3.1). Then, there exists a nonzero vector
λ which is a solution of the adjoint equations

λ̇
T
= −λT ∂ f (x(t), u(t))

∂x
(3.30)

with terminal condition
λT (T ) = −

∂ϕ(x(T ))
∂x

, (3.31)

such that, for almost every τ ∈ (0,T ], we have

λT (τ) f (x(τ), u(τ)) ≥ λT (τ) f (x(τ, v), (3.32)

for every v in the set of the admissible values for the control functions. Furthermore, for every τ ∈ [0,T ],

λT (τ) f (x(τ), u(τ)) = c, (3.33)

for a constant c. The vector λ is called the costate.

The proof of this theorem can be found in [26]. In practice, the so-called optimal control Hamiltonian
is defined as

h(λ, x, u) B λT f (x, u), (3.34)

so that the optimality condition (3.33) can be written as

h(λ(τ), x(τ), u(τ)) = c. (3.35)

With such a definition, the goal is to maximize h over the set of admissible functions, i.e. to choose u
such that

h(λ, x, u) ≥ h(λ, x, v) (3.36)
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for every λ, x and for every v from the set. This is a finite-dimensional optimization problem over the
values of parameters λ, x with the resulting control u = u(λ, x) dependent on these parameters.

This way we obtain the system of equations

ẋ = f (x, u(λ, x)), (3.37)

λ̇
T
= −λT ∂ f (x, u(λ, x))

∂x
(3.38)

with boundary conditions x(0) = x0 and λT = −
∂ϕ(x(T ))

∂x , which is a two points boundary value problem.
There is usually no way of solving this problem analytically, except for some low-dimensional prob-
lems. Hence, various numerical methods have been developed to address this kind of problem, including
discretization and iterative methods. Overview of some selected methods can be found in [24].

In case of the quantum optimal control problem defined by the relations (3.7) and (3.21), the optimal
control Hamiltonian has the form

h(λ, x, u) = λT H̃(u)x. (3.39)

The adjoint equations are

λ̇
T
= −λT H̃(u)

H̃ is skew-symmetric
⇐⇒ λ̇ = H̃(u)λ (3.40)

with the terminal condition λT (T ) = −∂ϕ(x(T ))
∂x .

For the density matrix representation, the costate will be represented by matrix Λ satisfying Liou-
ville’s equation

Λ̇ = [−iH(u),Λ]. (3.41)

Since H is skew-Hermitian and adH = [H, ·] is skew-symmetric, Λ is Hermitian. The optimal control
Hamiltonian then can be written as

h = Tr{Λ[−iH(u), ρ]}. (3.42)

For the problem of Mayer with the emphasis on minimizing the expectation value of some observable O
at fixed final time T (which for a particular desired final state ψ f can be defined as O = ψT

f ψ f ), the cost
function has the form Tr{Oρ(T )} and the terminal condition is simply

Λ(T ) = −O. (3.43)

The time optimal control of quantum systems is also a very broad topic and won’t be included in this
thesis. An overview covering both bounded and unbounded control functions can be found in [24].

3.3 Globally optimal control of closed quantum systems via polynomial
optimization

In this section we approach general quantum optimal control problem using polynomial optimization
(POP) [7]. We decided to include this section for two reasons. First, because POP plays a significant role
in the last chapter dealing with the quantum state discrimination. Second, to demonstrate the operator
control formalism which hasn’t been introduced in detail in the previous sections. Introduction to POP
is given in Appendix C.

We consider the setting of operator control (3.10) with the Hamiltonian of the form (3.3). For sim-
plicity, let us consider the Hamiltonian having only one control term, i.e.

H(u) = H0 + H1u(t). (3.44)
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Having the desired target unitary U f and given the final time T , the common task is to minimize the
Frobenius norm of the difference of the final and our control-prepared unitary:

minimize
u(t)

||U(T ) − U f ||
2
F (3.45)

subject to U̇(t) = −i(H0 + H1u(t))U(t) (3.46)

U(0) = I. (3.47)

The resulting unitary generally has the exponential form. Assuming smooth control functions, to
formulate the control problem using polynomials, we have to use some kind of expansion. A particularly
useful in this case is the so-called Magnus expansion [57]

U(T ) = exp
{
Ω(∞)(T )

}
with Ω(n) =

n∑
k=1

Ωk (3.48)

and Ωk(t) being a multiple integral of nested commutators of −iH(t). The first two terms are

Ω1 = −i
∫ T

0
dt1H(t1), Ω2 =

(−i)2

2

∫ T

0

∫ t1

0
dt1dt2[H(t1),H(t2)]. (3.49)

The main advantage of using the Magnus expansion rather than e.g. the Dyson expansion is that, since all
the Ωk and their sums are in the Lie algebra u(n), the truncation at any order stays in u(n) and, therefore,
the approximation of U(T ) is unitary.

From the unitary invariance of the Frobenius norm we have

||U(T ) − U f ||
2
F =

∥∥∥∥∥∥exp
{
Ω(∞)(T )

2

}
− exp

{
−
Ω(∞)(T )

2

}
U f

∥∥∥∥∥∥2

F
. (3.50)

Such a matrix exponential can be efficiently represented by Chebyshev polynomials [80]

exp
{
αΩ(n)

}
= exp

{
α,Ω(n)

}
∞
, exp

{
α,Ω(n)

}
p
= J0(α)I + 2

p∑
k=1

Jk(α)Tk, (3.51)

where Jk(α) is the Bessel function and Tk the matrix valued Chebyshev polynomial defined recurrently
as

T0 = I, T1 = Ω
(n),Tk+1 = 2Ω(n)Tk + Tk−1. (3.52)

What remains is to approximate the smooth control function via polynomial as

u(t) =
m∑

k=1

uktk−1, u = (u1, . . . , um). (3.53)

It is clear then that Ω(n) becomes a polynomial in u. As also the square of the Frobenius norm of a matrix
is a polynomial of its elements, the polynomial formulation of the optimal control problem (3.45) has the
form

minimize
u

∥∥∥∥∥∥∥exp
{

1
2
,Ω(n)

}
p
− exp

{
1
2
,−Ω(n)

}
p
U f

∥∥∥∥∥∥∥
2

F

. (3.54)

The constraints given by the Schrödinger equation in (3.45) are now implicit in the Magnus expansion.
Hence, this is effectively unconstrained optimization problem.
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In the pure-state formalism, the polynomial formulation of the optimal control problem has the form

minimize
u

∥∥∥∥∥∥∥exp
{

1
2
,Ω(n)

}
p
|ψ(0)⟩ − exp

{
1
2
,−Ω(n)

}
p

∣∣∣ψ f
〉∥∥∥∥∥∥∥

2

(3.55)

with
∣∣∣ψ f

〉
being the desired final state at time T .

Both (3.54) and (3.55) are well-defined problems to be solved e.g. via Sum-of-Squares hierarchy
implemented in TSSOS Julia library [88, 87].
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Chapter 4

Control of open quantum systems

Generally, approaches to control can be divided into two classes: open-loop and closed-loop. Open-
loop control involves applying a predetermined sequence of controls to a quantum system without any
feedback or modification during the process. The control actions are designed based on a model of the
system and executed without real-time adjustment.

On the other hand, closed-loop control involves continuously monitoring the state of the quantum
system and dynamically adjusting the control actions based on this feedback. It’s a real-time process
where the control strategy adapts based on the system’s response. This chapter will be divided into two
sections, each describing one approach.

4.1 Open-loop control of open quantum systems

Open-loop quantum control is most often model-based and does not involve any kind of monitoring
of the state during the process. There has been vast literature published on this topic [44, 39, 23, 74]. We
review the most important concepts and methods.

The dynamics of an open quantum system can be described by a completely positive, trace preserving
(CPTP) mapM. The evolution from time 0 to time T is given as

ρS (t) =M0,T [ρS (0)], (4.1)

where ρS denotes the density matrix corresponding to the system. There is a very important distinction
between Markovian and non-Markovian dynamics. The evolution is called Markovian [11] (or memory-
less), if for every t1 ∈ (0,T ) it holds that

M0,T [ρS (0)] =Mt1,T [M0,t1[ρS (0)]]. (4.2)

From the quantum optimal control point of view, the distinction between Markovian and non-Markovian
dynamics is crucial. Markovian evolution can be described using the Lindblad equation. There is,
however, no unified framework for non-Markovian dynamics. Instead, a lot of different methods based
on different assumptions have been developed for this case [19]. On the other hand, while for most of
the quantum information processing purposes the Markovian dynamics is purely detrimental, there have
been some proposals to exploit the non-Markovianity [69, 27, 74].

The analogy to the cost function (3.27) for the goal of driving the system to a desired target state in
the open quantum system can be given in terms of the Hilbert-Schmidt product

J = Tr
{
M0,T [ρS ]ρtarget

}
. (4.3)
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There are two fundamental strategies how to deal with open-loop control of open quantum systems.
The first consists of exploiting the symmetries in the interaction between the system and the environment.
The second is devised from the assumptions on the timescales of this interaction.

The first strategy is generally tied to the conserved quantity in the presence of a symmetry. Consider
for example that all the qubits are coupled indistinguishably to the environment. It has been shown in
[54], using the semigroup approach, that there exist decoherence-free subspaces in which the universal
quantum computation is possible. In this approach, the error generators are identified with the generators
of a Lie algebra. The total Hamiltonian of the system and the environment can be written as

HS E = HS ⊗ IE + IS ⊗ HE + HI , (4.4)

where HS ,HE and HI are the system, environment and interaction Hamiltonians, respectively. Under
the assumptions of Markovian dynamics, complete positivity and initial decoupling, the evolution of the
system can be generally described by the master equation of the form (setting ℏ = 1)

dρ
dt
=M[ρ] = −i[HS , ρ] +

M∑
α,β=1

aα,β
(
AαρA†β −

1
2
{A†βAα, ρ}

)
(4.5)

with {, } being the anti-commutator. The operators Aα model all the dissipative processes, e.g. Aα |0⟩ ⟨α|
may stand for the spontaneous decay from the energy level α to the ground state and the coefficients
aα,β are the rates of these processes. The set {Aα}Mα=0 forms a basis for the vector space of bounded
operators acting on the system Hilbert space and it also forms the N × N matrix representation of the
M-dimensional Lie algebra L (generally, M ≤ N2 − 1).

In the case of the collective decoherence, i.e. all qubits undergoing the same decoherence process,
there are only three possible errors and hence L = su(2). Consider now the decoherence-free N0-
dimensional subspace spanned by the states {|i⟩}N0

i=1. The density matrix describing the states in this
subspace has the form

ρ̃ =

N0∑
i, j=1

ρ̃i j |i⟩ ⟨ j| . (4.6)

The "decoherence-free" means that the second, dissipative, term on the right-hand side of (4.5) gives 0
when acting on ρ̃. It is shown in [54] that the necessary and sufficient condition for such a decoherence-
free dynamics is that all basis states |i⟩ of the decoherence-free subspace are degenerate eigenstates of
all the error generators {Aα}Mα=0 or, if L is semisimple, that all |i⟩ are annihilated by all {Aα}Mα=0. If
we consider having K qubits, it can be shown [92] that, for the boson-spin in case of the collective
decoherence, the size of the decoherence-free subspace N0 is proportional to K − 3

2 log2 K. On the other
hand, in the case of independent qubit decoherence (here L =

⊕K
k=1 suk(2)), there does not exist any

decoherence-free subspace.
Let us now take a closer look on the second class of strategies - those based on the assumptions

on timescales of the system-environment interactions. If the decoherence is slow, the obvious strategy
would be to carry out the desired operation as fast as possible, so that decoherence does not have time
to disrupt this operation. But this is often not possible. There are, however, very popular methods to
mitigate the effects of decoherence, collectively referred to as dynamical decoupling (DD) [85, 77].

DD was originally understood as the selective removal of the undesired contributions to the spin
Hamiltonian via the application of suitable pulse sequences [32]. In the framework of quantum control
theory, it can be understood as a dynamical control protocol based on repeated application of controls.
The essence of the DD can be clearly seen on the simplest example of spin- 1

2 coupled to a harmonic
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environment. The Hamiltonian (4.4) now has the form

HS E = ω0σz ⊗ IE + IS ⊗
∑

k

ωkb†kbk + σz ⊗
∑

k

gk(b†k + bk), (4.7)

where ω0, ωk, gk are real parameters and b†k , bk are bosonic creation and annihilation operators, respec-
tively. As σz = diag(1,−1), it is easy to see that the last (interaction) term has the opposite signs
depending on the spin state. Thus, one may intuitively expect that it can be possible to average these
contributions out.

The pioneering Hahn’s spin-echo experiment [32] was based on the application of a π-pulse to the
spin system after letting it evolve in the magnetic field for time τ. As this reversed the sign of the
(Zeeman) interaction, after another time period τ of evolution under the (static) magnetic field, the echo
was generated.

Although very simple, current methods of DD are still based on this principle. A variety of methods
have been developed to deal with the fluctuating magnetic field, the most prominent being the method of
Carr and Purcell [15] based on application not one, but a sequence of pulses. This, however introduces
the errors originating from the pulse imperfections. For this purpose, Meiboom and Gill proposed a
modification to this sequence to compensate for these errors [58]. This resulted in so-called CPGM
sequence.

Finally, let us extend some notions of the optimal quantum control devised in the previous chapter
to open quantum systems. The functional to be optimized is given by the equation (4.3), where the
dependence on the control fields is given implicitly, i.e. M0,T = M0,T [{u j}]. One of the prominent
methods to calculate extremum of J is the Krotov’s method [70, 45]. It is based on the monotonic
convergence where the update equation for control is given as [44]

∆u(t) = ui+1(t) − ui(t) =
S (t)
α

Im
{

Tr
{
λi(t)

∂M[ρ]
∂u

∣∣∣∣
ρi+1,ui+1

}}
, (4.8)

where S (t) is the control shape function, α is the hyper-parameter determining the step size in the change
of the control and λ(t) denotes the costate. This is an implicit equation (dependence on ui+1 on the
RHS is through ρi+1(t)) which can be avoided using low order approximation [63]. The state at time t is
obtained by solving the Lindblad equation with initial condition ρi(0) = ρinit. The costate is, on the other
hand, obtained by solving the Lindblad equation with opposite sign for the dissipative terms and with the
"initial" condition λi(t = T ) = ρtarget, i.e. is solved backward in time.

4.2 Closed-loop control of open quantum systems

The closed-loop control of quantum systems can be roughly divided into three classes of methods
[22]:

1. Closed-Loop Learning Control

2. Feedback Control

3. Robust Control.

The first class refers to methods involving a learning process where the control strategy is iteratively
refined based on the outcomes of previous control attempts. It is a form of adaptive control that uses a
feedback loop not only for immediate control adjustments but also for learning and improving control
strategies over time. Such an approaches often involve reinforcement learning (RL) which, nowadays
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often powered by deep neural networks, turn out to be very popular as they provide very interesting
results [62, 12, 59].

The feedback control [21] is a mechanism where the control action is based on the current state of
the system. It involves measuring the state or output of a system and using this information to adjust the
inputs to the system in real-time to achieve the desired outcome. The key difference between the feed-
back and closed-loop learning control is that the latter emphasizes iterative learning and adaptation over
time, improving its performance with experience. Feedback control, in contrast, focuses on immediate
response to system states without necessarily improving or evolving its control strategy over time.

The methods included in the last class combine the objectives of optimal control (efficiency and ef-
fectiveness) with the requirements of robust control. Robust control [93] refers to methods that address
the challenge of uncertainties and disturbances which are inherent in any physical system. In quantum
systems, these uncertainties could arise from environmental noise, imperfections in the system, or in-
complete knowledge of the system’s dynamics. Such a strategies should be stable and provide the best
possible cost functional under the worst possible uncertainties. In the rest of this section we will focus on
the RL-based strategies as they are currently receiving a lot of attention due to the huge boom in neural
networks.

RL [78] is a type of machine learning where an agent learns to make decisions by interacting with
an environment. In RL, the agent seeks to learn a policy – a strategy of choosing actions based on
states – to maximize cumulative reward over time. The environment is typically modeled as a Markov
Decision Process (MDP), defined by a set of states S , a set of actions A, a transition function P(st+1|st, at)
(probability of reaching state st+1 from state st by making action at), and a reward function R(st, at). The
agent’s objective is to learn a policy π(a|s) (probability of choosing action a in state s) that maximizes
the expected return Gt, which is typically defined as the sum of discounted future rewards, i.e.

Gt =

∞∑
k=1

γkRt+k+1, (4.9)

where γ ∈ (0, 1) is the discount factor that determines the present value of future rewards. It should be
mentioned that sometimes it is more suitable to consider cost function instead of reward and consequently
the goal is to minimize the expected overall cost.

Two fundamental approaches in RL are value-based and policy-based methods [61]. Value-based
methods, like Q-learning [89], focus on learning the value function, which estimates how good it is to
be in a particular state or to perform a certain action. The Q-function in Q-learning, Q(s, a), is updated
using the Bellman equation:

Q(s, a)← Q(s, a) + α[R(s, a) + γmax
a′

Q(s′, a′) − Q(s, a)], (4.10)

where α is the learning rate. Policy-based methods, on the other hand, directly optimize the policy. An
example is the policy gradient method, where the policy πθ(a|s) is parametrized by θ and updated in the
direction of the gradient of expected return, i.e. θ ← θ + ∇θGt.

Deep Reinforcement Learning (DRL) [3] extends traditional reinforcement learning by integrating
deep learning, enabling agents to learn optimal policies in high-dimensional and complex environments.
In DRL, deep neural networks are used to approximate the policy (in policy-based methods) or the value
function (in value-based methods), which is particularly useful when dealing with large state or action
spaces that are impractical for traditional tabular approaches. The most prominent example of DRL is
the Deep Q-Network (DQN), which uses a neural network to approximate the Q-function in Q-learning.
DQN incorporates techniques like experience replay [73], where transitions are stored and randomly
sampled to train the network.
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As is obvious from the expressions above, RL requires the measurement of the state at each iteration.
This, in principle, requires complete quantum state tomography which is very expensive. There are,
however, various ways to bypass this requirement. For example in [62] the goal is to synthesize unitary
two-qubit gates with higher fidelity, shorter time and with high robustness. In the paper, the aim is
account for the leakage errors to higher energy states than is the computational basis. They focus on the
superconducting gmon qubits with Hamiltonian in the rotating wave approximation of the form

HRWA =
η

2

2∑
j=1

n̂ j(n̂ j − 1) + g(t)(â†2â1 − â†1â2) +
2∑

j=1

δ j(t)n̂ j +

2∑
j=1

i f j(t)(â je−iφ j(t) − â†je
iφ j(t)), (4.11)

where â†j , â j are the bosonic creation and annihilation operators, n̂ j the number operators and time-
independent parameter η represents the Josephson junction anharmonicity. The control parameters are:
f j(t) (amplitude), φ j(t) (phase), δ j(t) (qubit detuning) and g(t) (tunable capacitative coupling). In this
approximation, only the one-body and the nearest-neighbor two-body terms are included. Although this
model is for superconducting qubits, modifications for various models of quantum dots are straightfor-
ward. In the following considerations, only the lowest states above computational basis are added, thus
truncating the effective space and enabling classically computing the evolution at each iteration.

One of the most important parts of the RL strategy design is the definition of the reward/cost function.
This should account for various physical aspects such as the fidelity of the unitary, total time, leakage
etc. In [62] the cost was defined as

J(χ, β, µ, κ) = χ[1 − F[U(T )]] + βL + µ
∑

t∈{0,T }

[g2(t) + f 2(t)] + κT, (4.12)

where F = 1
16 |Tr

{
U†(T )Utarget

}
|2 is the gate fidelity, L accounts for the leakage and its form can be de-

termined via perturbation theory within time-dependent Schrieffer-Wolf transformation formalism [31],
the third term deals with the boundary conditions to facilitate convenient gate concatenation and T is the
final time to be minimized. (χ, β, µ, κ) are hyper-parameter to be optimized in order to obtain the best
possible outcomes.

The RL scheme then uses two neural networks (NN). The first, so-called policy NN, performs the
mapping of the state (containing the information about the unitary at time ti) to the mean and variance
of the Gaussian distribution of the proposed control actions at time t + 1. The second, so-called value
function NN, then takes the simulated proposed unitary as an input and outputs the predicted reward
associated with the current unitary. A crucial finding was the significant improvement of the robustness
of the control when adding noise in terms of the Gaussian fluctuation of the control signals. Such a
scheme provided a significant reduction in both gate time and infidelity.

Another very interesting way to bypass the need for the quantum state tomography at each step
has been recently shown in [59]. This method, suited primarily for preparing low-entangled 1D states,
leverages the matrix product state (MPS) [75] framework to represent the many-body system and as
a trainable architecture for RL agent. MPS provide a compressed representation of many-body wave
functions and allow for efficient computation with resources scaling only linearly in the system size for
area-law entangled states. This way, the authors have shown that the expensive training step can be
efficiently computed classically. Moreover, they provided a mapping of MPS to parameterized quantum
circuit on NISQ device, eliminating the need for quantum state tomography and doing the inexpensive
inference step directly on the quantum hardware.

There is much room to explore the use of DRL for optimal quantum control. This is an area of very
active research and the scalability of different approaches is now a major issue.
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Chapter 5

Quantum state discrimination via LDS
identification

5.1 LDS identification and Kalman filtering

Linear dynamical system (LDS) identification is a process in control theory and signal processing
[76] that aims to determine the parameters of a LDS from the observed input-output data. In a LDS, the
relationship between the system’s inputs and outputs is described by linear equations. The identification
of such systems is essential for understanding their behavior, predicting future responses, and designing
effective control strategies. The process typically involves estimating parameters such as the system’s
state matrices, input matrices, and output matrices, which govern the dynamics of the system.

For formal definition of the LDS (G, F,V,W) we use the standard notation adapted from [90]:

ϕt = Gϕt−1 + ωt, (5.1)

Yt = F′ϕt + νt. (5.2)

Here ϕt ∈ R
n is the hidden state, Yt ∈ R

m is the measured observation, G ∈ Rn×n is the process matrix,
F ∈ Rn×m is the measurement matrix (F′ is its transposition) and ωt, νt are the process and measurement
noises, respectively. These noises are assumed to be normally distributed and have covariance matrices
W and V respectively. The goal is then to identify the LDS (G, F,V,W).

There are some major problems that have to be addressed in the LDS identification. One of them is
that the underlying optimization problem is non-convex which is also one of the reasons why polynomial
optimization might turn out superior. Another problem is that the dimension of the hidden state is not
known in general. In this work, however, we hard-assign the dimension to 2 since we want to preserve
the direct relation to the underlying two-dimensional quantum state. Finally, since G, F are matrices,
the problem is in principle non-commutative. Although work has been done on the non-commutative
POP LDS identification [94], the minimizer extraction (which is vital for this work) remains highly non-
trivial and is a part of an active research. For this reason we consider the commutative case and write the
constraints in terms of elements of matrices G and F.

5.1.1 Standard LDS identification methods

One common method used for LDS identification is the least squares approach. This technique
minimizes the sum of squared errors between the actual output data and the output data predicted by the
model based on the estimated parameters. The least squares approach is widely used because it provides
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a simple and efficient way to estimate the system’s parameters. However, it is essential to ensure that the
system being identified is indeed linear, as this method is not suitable for identifying nonlinear systems.

Another powerful and widely used class of methods for state-space model estimation from input-
output data are subspace methods. These methods are particularly well-suited for handling noisy and
incomplete data, making them valuable in practical applications. The subspace methods utilize the con-
cept of subspaces, which are low-dimensional representations of system data that capture its essential
dynamics. Subspace methods can estimate the state matrices of a LDS directly from input-output mea-
surements, without the need to explicitly identify intermediate parameters like poles or transfer functions.
This characteristic makes subspace methods computationally efficient and more robust in dealing with
time-varying systems.

The leading methods for state-space model identification are implemented in MathWorks™Matlab™
System Identification Toolbox. In our work we consider three different routines from this toolbox:

1. ssest ("def"): routine based on least squares algorithm

2. N4sid ("N4sid"): routine based on subspace methods of [83]

3. N4sid ("ssa"): routine based on subspace methods with weighting algorithm based on ARX [37]

5.1.2 LDS identification via polynomial optimization

The polynomial optimization approach to LDS identification is based on [94], however, as already
mentioned, we consider the commutative case. The loss function is based on the optimal least square
estimate. Namely, given the time series of observations Y i

1, . . .Y
i
t−1 where i denotes the trajectory and t

the time-step, we want to minimize a one-step error function of the form

min
ft ,t≥1

N∑
i=1

∑
t≥1

∥∥∥Y i
t − ft

∥∥∥2
, (5.3)

where N is the number of trajectories and ft are the estimates, i.e. in our case either scalar (if we measure

only the "I" component) or two-dimensional vector of decision variables
(

ft1
ft2

)
.

To put the polynomial optimization problem formally, we consider

G =
(
G1 G2
G3 G4

)
, F =

(
F1
F2

)
, ωt =

(
ωt1
ωt2

)
, νt = νt (5.4)

for the one dimensional measurement and

G =
(
G1 G2
G3 G4

)
, F =

(
F1 F2
F3 F4

)
, ωt =

(
ωt1
ωt2

)
, νt =

(
νt1
νt2

)
, (5.5)

for the IQ measurement. We also include variables mt =

(
mt1
mt2

)
that model the evolution of the hidden

state. Finally we add the sum of squares of the process and measurement noise variables as regularisers
with sufficient multipliers c1, c2 (that should be proportional to

√
N) to the loss function. The polynomial
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optimization formulation for identifying LDS (5.1) is then

min
ft ,mt ,G
F,ωt ,νt

N∑
i=1

∑
t≥1

∥∥∥Y i
t − ft

∥∥∥2
+ c1

∑
t≥1

ν2
t + c2

∑
t≥1

ω2
t (5.6)

over feasible set given by constraints

mt = Gmt−1 + ωt, (5.7)

ft = F′mt + νt. (5.8)

F′mt is called noise-free estimate and is regarded as the predicted output. In this approach we in a certain
way consider an "averaged trajectory" as in the loss function the noise realizations are common for all
the trajectories (this is also the reason behind the proportionality of the multipliers to

√
N). There is yet

another approach that consider each trajectory separately and only the system matrices are common to
all the trajectories. Such a minimization problem would then be formulated as

min
f i
t ,m

i
t ,G

F,ωi
t ,ν

i
t

N∑
i=1

∑
t≥1

∥∥∥Y i
t − f i

t

∥∥∥2
+ c1

N∑
i=1

∑
t≥1

(νi
t)

2 + c2

N∑
i=1

∑
t≥1

(ωi
t)

2 (5.9)

over feasible set given by constraints

mi
t = Gmi

t−1 + ω
i
t, (5.10)

f i
t = F′mi

t + ν
i
t. (5.11)

We tried this approach, however as the number of variables here (unlike the previous approach) scales
also with the number of trajectories, this becomes very quickly computationally intractable even on the
computing cluster.

5.1.3 Kalman filter

The Kalman filter [40] is a widely used recursive algorithm that provides an optimal estimate of
the state of a LDS in the presence of noise. It was developed by Rudolf Kalman in the 1960s and has
since found extensive applications in various fields, including control systems [40], navigation [35], and
signal processing [5]. The Kalman filter operates based on a two-step prediction-correction process. In
the prediction step, the filter estimates the state of the system at the next time step using the system’s
dynamic model and the previous state estimate. This predicted state is then updated in the correction
step by incorporating measurements from sensors or noisy observations. The Kalman filter calculates a
weighted average of the predicted state and the measurement to produce an optimal state estimate, taking
into account the uncertainties associated with both the system dynamics and the measurements.

The principle underlying the Kalman filter is to optimize the accuracy of state estimation by mini-
mizing the mean square error between the estimated state and the true state of the system. It achieves this
optimization by employing a Bayesian probabilistic approach. The Kalman filter maintains a probabilis-
tic representation of the state estimate, incorporating both the state estimate and the covariance matrix
that represents the uncertainty associated with that estimate. As new measurements become available, the
filter adjusts the state estimate and covariance matrix iteratively, progressively reducing the uncertainty
about the true state of the system. This recursive nature allows the Kalman filter to provide real-time esti-
mates with efficient and low computational complexity, making it a fundamental tool for state estimation
in various applications where accurate system state estimates are crucial for optimal decision-making
and control.
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To formally write down the equations that the Kalman filter is based on [47], let the initial state ϕ0
be a normal random variable with mean m0 and covariance C0 and set:

at = Gmt−1

Rt = GCt−1G′ +W (5.12)

Qt = F′RtF + V

At = RtF/Qt

where Ct is the covariance matrix of ϕt given Y0, . . .Yt. Then the Kalman filter update equations are

mt = AtYt + (I − F ⊗ At)at (5.13)

Ct = Rt − AtQtA′t (5.14)

where ⊗ denotes an operator for outer product, i.e. the matrix for a⊗b is ab′ for a, b ∈ Rn. It is important
to note that the only element that depends on Y0, . . .Yt is mt.

5.2 Quantum state discrimination

5.2.1 Discrimination with labeled training trajectories - the algorithm

In this section we describe the algorithm and results for quantum state discrimination from labeled
trajectories. This procedure assumes that at least some control is developed over the device because for
correct label assignment to trajectories we have to know in which state we prepare the QD.

The idea behind the state discrimination method is simple. We learn two sets of LDS matrices from
trajectories corresponding to state |0⟩ and |1⟩, respectively. Then, for the trajectories from the validation
set, we apply the Kalman filter with both sets of matrices and sum the error between the predicted value
and the actual measured value on all the time-steps. Finally, we assign the state according to which set
of matrices produces smaller cumulative error. The pseudo-code is summarized in Algorithm (1).

The hyper-parameters to be varied in this approach are the number of training trajectories and the
number of time-steps in each trajectory. Different choices will be made for 1D experiment data and 2D
simulated data, as the resources (mostly for the POP part) are different.

5.2.2 1D data and results

Although the whole process was first intended for the 2D data (IQ measurement), due to the un-
availability of the working IQ demodulator (this will be discussed in detail in the following sections)
we adjusted the whole process also for the 1D (only the "I" component) measurement. The measuring
device for this kind of measurement was ready and the data can be found in the file 201125150755.h5.

This data represent one long measurement sequence with 600000 data points. These are separated
into 600 subsets with 1000 data points each. This kind of separation, however, wasn’t well suited for
our purposes and more importantly these data weren’t labeled. We therefore used a Python module
from Quantum Device Lab at Tohoku University to find the threshold separating the state 0 and 1. The
data and the threshold value are depicted in fig. (5.1). Then we reshaped the data so that the 600000
data points were divided into 6000 trajectories, each containing 100 data points. Then each of these
trajectories was labeled 0 or 1 according to whether the mean of its data points was below or above the
threshold, respectively. Finally, we filtered out those labeled as 0 whose mean of the first 10 data points
was above the threshold because those trajectories with high probability corresponded to deexcitation
during the long measurement sequence and wouldn’t occur during the standard short measurement e.g.
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Algoritmus 1: Discrimination with labeled trajectories algorithm
Input : Training set of trajectories labeled 0 or 1, validation set of trajectories labeled 0 or 1
Output: accuracy of given model

1 Training phase;
2 Learn LDS (G0, F0,V0,W0) from trajectories labeled as 0;

; /* via standard or POP */
3 Learn LDS (G1, F1,V1,W1) from trajectories labeled as 1;
4 Discrimination phase;
5 for trajectory in validation set do
6 Apply Kalman filter with (G0, F0,V0,W0) and compute error e0
7 Apply Kalman filter with (G1, F1,V1,W1) and compute error e1
8 if e1 ≥ e0 then
9 assign state |0⟩;

10 else
11 assign state |1⟩;
12 end

13 end
14 Compute the accuracy of the assigned labels

Figure 5.1: Experimental data with threshold value. Each dot represents an average of 200 neighboring
data points. The threshold value has been determined to -1.546 mV.

during quantum computation. Similar steps but in the opposite manner has been done for the trajectories
labeled as 1. This procedure is implemented in the file tohoku_1D_data_prep.ipynb.

These trajectories are then used in the training and inference phase using both POP and standard
LDS identification methods. As POP is very resource intensive and these resources scale with the num-
ber of variables, which in turn are proportional to the number of time steps, this number of time steps
was very limited even when using the RCI cluster located at the Faculty of Electrical Engineering CTU.
Therefore, we used the number of time steps from 21 to 30. As the number of trajectories in our ap-
proach does not affect the number of variables, we considered 1000 training trajectories. The script
used for calculating the LDS matrices can be found in Julia_1D.jl and the identified variables for
state 0 trajectories in tohoku_state0_free_init_2023-12-14_11-32-07.txt and for state 1 in
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tohoku_state1_free_init_2023-12-12_19-33-56.txt.
The inference phase has been done using 500 trajectories and the accuracy and F1 score was cal-

culated in POP_1D_accuracy.ipynb. The results can be found in the table (5.1). From these results

time-steps accuracy (%)
22 49.9
23 50
24 50
25 46.8
26 53.4
27 50
28 50.8
29 50
30 50
31 50

Table 5.1: Accuracy of POP models trained on 1000 trajectories (both for state 0 and 1) and various
number of time-steps.

and the consequent analysis it is obvious that it is almost always the case that one set of matrices works
better (produces smaller error) on both state 0 and 1 test trajectories. This is not the desired behavior.
Given the huge number of modifications tried, the time spent and the results that will follow, I suspect
that the problem lies in the assumption on the system itself. First, there is no guarantee that the physical
system will behave linearly. Second, even if there would be any dynamics that could be well approxi-
mated by LDS, the signal to noise ratio is rather small, i.e. the noise prevents correctly identifying the
LDS and the results show signs of over-fitting. Third, it may be the case that for faithful identification or
approximation of the system by LDS the dimension of the LDS should be much higher than 2. Here we,
however, again encounter the problem of required resources scaling with the number of variables which
scale quadratically with the dimension of the LDS.

For comparison we performed the LDS identification using the earlier mentioned methods imple-
mented in Matlab. We considered learning on 1 and 1000 trajectories and (as these methods are less
resource demanding) and 20, 30 and 100 time-steps. The identification algorithm can be found in
sys_idents.m. The test phase has been done on another 500 trajectories of length 15, 30 and 100
in accuracy.ipynb. The accuracy and F1 score has been then again calculated and the results for the
accuracy can be found in the table (5.2). Clearly these methods suffer the same problems as in the POP
case, although some of the models seem to consistently provide slightly better accuracy.

5.2.3 Simulated data

Since by the start of the project there was no IQ demodulator available in the laboratory, we prepared
a program for simulated data generation. The main source of noise in the circuit is often the ampli-
fier, which produces Gaussian noise with different means and different covariance matrices for different
quantum states. The educated guess for the mean and the covariance matrix for the ground state were

x0 =

(
0.1
0.2

)
, X0 =

(
1 0
0 1

)
(5.15)
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time-steps: 15 time-steps: 30 time-steps: 100
def_1_20 64.77 69.86 78.94
def_1_30 54.9 51.5 50.4
def_1_100 50.0 50.0 50.0
def_1000_20 50.0 50.0 50.0
def_1000_30 50.0 50.0 50.0
def_1000_100 50.0 50.0 50.0
N4sid_1_20 50.0 50.0 50.0
N4sid_1_30 53.99 53.79 53.79
N4sid_1_100 50.0 50.0 50.0
N4sid_1000_20 50.0 48.0 50.0
N4sid_1000_30 50.0 51.0 50.0
N4sid_1000_100 50.0 52.5 50.0
ssa_1_20 71.06 71.06 56.59
ssa_1_30 65.27 64.77 59.88
ssa_1_100 63.57 63.17 58.88
ssa_1000_20 63.77 63.47 58.58
ssa_1000_30 63.77 63.37 58.68
ssa_1000_100 63.57 62.97 58.38

Table 5.2: Rows: different models with naming convention (model)_(number of training trajecto-
ries)_(number of time-steps in each trajectory). Columns: lengths of the validation trajectories. Results
are in %.

while for the excited state the choice was

x1 =

(
0.8
0.1

)
, X1 =

(
0.6 0
0 0.6

)
. (5.16)

For the trajectories corresponding to the excited state we also included the strongest of the processes
affecting the physical system and thus also the measurement results - spontaneous relaxation from the
excited state to the ground state with an exponential dependence on time. This dependence is determined
by the time T1, which was set here to 0.1 ms.

To illustrate how this process affects the standard averaging measurement procedure we prepared the
diagrams of measured trajectories averaged over different times. This is depicted in Fig. (5.2) (which
is two-dimensional equivalent to fig. (2.8)) and it is clear that as one extends the averaging time, the
variance of the trajectories decreases and the respective underlying states become more distinguishable.
This distinguishability peaks somewhere around 50 time-steps. If we continue averaging over longer
trajectories, however, the T1 process starts to play an important role and the distinguishability again
decreases as the mean of the trajectories corresponding to state |1⟩ shifts towards the mean of the of the
trajectories corresponding to state |0⟩. The algorithm for the data generation and averaging can be found
in Simulation_with_T1.ipynb.

5.2.4 IQ demodulator setup

The IQ demodulator came to the lab by the very end of the COLABS program and so the installation
had to be done very fast. The IQ demodulator is depicted in Fig. (5.3). Unfortunately, the installation
of this device to the circuit was not successful. From Fig. (5.4) it is clear that for the previous mixer
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Figure 5.2: Simulation trajectories averaged over 1, 4, 10, 50, 250 and 1000 time-steps, respectively.

(that is only built for "I" component measurement) there is an apparent dependence of the output signal
on the frequency and also the shift at −27V gate voltage is manifest. For the I component of the newly
installed IQ demodulator, on the other hand, there was no dependence on the frequency and gate voltage.
This state remained even after trying different source power, attenuators etc. So the measurement with
IQ demodulator was concluded as unsuccessful and the device has to be investigated. This is the reason
why all consequent methods were used only on simulated data. As soon as the demodulator will be ready
to use, the data will be sent and the methods will be verified on the real data.
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Figure 5.3: IQ demodulator

(a) 1D mixer (b) I component of IQ demodulator

Figure 5.4: Dependence of the response signal on frequency and gate voltage.
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5.2.5 Results with the artificial IQ data

In this case of 2D IQ measurement data we again tried to employ both POP and standard LDS iden-
tification methods. However, POP failed to produce any remotely reasonable results for several reasons.
On the one hand, there are reasons preventing better results already on the previously discussed 1D data.
Furthermore, higher dimensionality implies more variables, and therefore the number of time steps had
to be considerably reduced due to computing power. This, in the presence of significant noise, naturally
prevents better identification of LDS, as the matrices show strong signs of over-fitting. Ultimately, this
data is generated as two Gaussians with different means, with trajectories corresponding to state |1⟩ hav-
ing an exponential probability of deexcitation to state |0⟩. Such data will not inherently behave as LDS.
Although attempts at identification using POP were made, they were not successful and therefore there
is no point in publishing the results. Further attempts will take place after the delivery of data from IQ
measurements on a real device.

For standard methods of LDS identification we again varied the number of trajectories from which
was the LDS identified and the number of time-steps in each trajectory. The number of trajectories
was now varied within the set {1, 10, 50} and the number of time-steps within {15, 30, 60, 200}. For
each combination we estimated all three standard models - ssest (def), N4sid, ssarx (ssa) - first on
trajectories corresponding to the state |0⟩ a then on trajectories corresponding to the state |1⟩.

In Figs (5.5, 5.6, 5.7, 5.8) we plot the comparison of the output of the identified models with selected
parameters and the actual output. It can be seen that especially on the longer trajectories corresponding
to the state |1⟩, at least one of the models was able to identify that the mean for these trajectories may
change and hence the outputs were estimated as decreasing in the case of the amplitude.

The results in terms of accuracy of label assignment for all the models after applying Kalman filters
on trajectories with different lengths can be found in table (5.3).

It can be again seen that for most systems one set of matrices is simply better on both types of
trajectories and this is the reason why exactly 50% is so common result. Even though most of the results
are not very optimistic and are in general worse than would be the results of simple averaging technique,
there are also reasons for mild optimism.

If we take a look at the shortest validation trajectories (12 or 30 time-steps), models like def_50_200,
N4sid_10_30 and N4sid_10_200 reach accuracy over 60%. Especially for the 12 time-steps trajectories
this is comparable to performance of the averaging method. Furthermore, and this is very important,
these models were identified on simulated data which are almost perfect Gaussian noise with just different
means and variances without any underlying dynamics. We can expect that for real measurements where
underlying physical processes take place, the models would be more distinguishable and this would result
in better accuracy. This will be explored as soon as the measurement data will be available.

There is one more thing that works in favor of LDS identification method. On the experimental
devices even the number of electrons in the QD can be unstable and during the measurement it can
produce trajectories that would be very uncertain in the averaging method. Here, however, we can
simply consider LDS of higher dimension that may be able to identify also the measurements where
some unexpected trajectory occurred and we may be able to exclude this measurement.

5.3 Discrimination with unlabeled training trajectories

Many experimental devices provide very poor control over the state which implies that the labels
cannot be reliably assigned to the trajectories since there is a huge uncertainty about the prepared state.
For this purpose, we created an algorithm that is built up on the previous case but which does not rely on
the labels.
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Figure 5.5: Comparison of models trained on 1 trajectory with 30 time-steps. Upper: trained on trajectory
corresponding to |0⟩, lower: trained on trajectory corresponding to |1⟩.

Instead of working with pre-assigned labels, this approach creates its own clusters in joint clustering
and LDS identification algorithm. Although there are many ways how to formulate this joint algorithm,
as the first step we chose probably the most straightforward way. This is based on agglomerative cluster-
ing in the space of system matrices.

First, we properly formulate the problem. The general formulation of joint clustering and LDS
identification problem can be written as

arg min
S,L

L(S,L|Y) (5.17)

where L is a properly chosen loss function such that the empirical risk will be minimized, S = {S 1, S 2, . . . }
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Figure 5.6: Comparison of models trained on 10 trajectories with 30 time-steps. Upper: trained on
trajectories corresponding to |0⟩, lower: trained on trajectories corresponding to |1⟩.

is the set of clusters, L = (G, F,W,V) is the set of system matrices for all the trajectories and Y =
{Y1,Y2, . . . } is the set of all the trajectories. By "arg" we mean that the result of the problem are the
optimally determined LDSs and their optimal clustering.

Holding one of {S,L} fixed, we can decompose the optimization as

arg min
S

L(S|Y,L)

arg min
L

L(L|Y,S)

The first line describes standard clustering in the space of system matrices. The second line corresponds
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time-steps: 12 time-steps: 30 time-steps: 60 time-steps: 250
def_1_15 50.5 50.0 50.0 50.0
def_1_30 52.0 50.0 50.0 50.0
def_1_60 50.0 50.0 50.0 50.0
def_1_200 31.5 33.5 34.0 44.0
def_10_15 50.0 50.0 50.0 50.0
def_10_30 50.0 50.0 50.0 50.0
def_10_60 50.0 50.0 50.0 50.0
def_10_200 50.0 50.0 50.0 50.0
def_50_15 50.0 50.0 50.0 50.0
def_50_30 50.0 50.0 50.0 50.0
def_50_60 50.0 50.0 50.0 50.0
def_50_200 58.5 61.0 59.5 51.5
N4sid_1_15 50.0 50.0 50.0 50.0
N4sid_1_30 50.0 50.0 50.0 50.0
N4sid_1_60 50.0 50.0 50.0 50.0
N4sid_1_200 49.5 48.0 47.0 50.0
N4sid_10_15 49.0 51.0 50.5 49.5
N4sid_10_30 60.5 52.5 50.0 50.0
N4sid_10_60 50.0 50.5 50.0 50.0
N4sid_10_200 60.0 56.0 50.0 50.0
N4sid_50_15 42.5 40.5 47.0 49.5
N4sid_50_30 49.0 49.5 50.0 50.0
N4sid_50_60 54.0 50.0 50.0 50.0
N4sid_50_200 50.0 49.0 50.0 50.0
ssa_1_15 50.0 50.0 50.0 50.0
ssa_1_30 43.0 50.0 50.0 50.0
ssa_1_60 50.5 50.0 50.0 50.0
ssa_1_200 33.5 44.0 48.5 50.0
ssa_10_15 27.0 32.5 36.5 48.5
ssa_10_30 37.0 49.5 50.0 50.0
ssa_10_60 46.5 50.0 50.0 50.0
ssa_10_200 29.5 38.5 42.5 49.5
ssa_50_15 35.0 49.5 50.0 50.0
ssa_50_30 33.5 45.0 49.0 50.0
ssa_50_60 47.0 50.0 50.0 50.0
ssa_50_200 28.0 34.5 36.5 46.5

Table 5.3: Rows: different models with naming convention (model)_(number of training trajecto-
ries)_(number of time-steps in each trajectory). Columns: lengths of the validation trajectories. Results
are in %.

to "supervised" learning of LDS matrices (or better to say, learning LDS through trajectories associated
with LDSs in given cluster).

Agglomerative clustering can be described as at each step trying to merge two clusters S a, S b such
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that:
{S a, S b} = arg min

S i,S j∈S,i, j
A(S i, S j)

whereA(S i, S j) is a function to measure affinity between two clusters.
The high-level view on the algorithm is as follows: first, for each trajectory learn the LDS and

consider this LDS a cluster on its own in the space system matrices. Then, merge the two most affine
systems and on their corresponding trajectories compute new LDS. Consider this LDS as a new cluster in
the space of system matrices. Repeat this procedure until only two LDS computed on the corresponding
trajectories remain. The discrimination phase is then the same as in the previous case, i.e. for new
trajectory apply the Kalman filter with both sets of the system matrices and assign the state that produces
smaller error.

Since the formulation for standard LDS identification methods is trivial and apparent from the high-
level overview, we formalize more precisely only the POP method. In the k-th step of the algorithm there
will be N − k clusters, each corresponding to one LDS (i.e. here by "cluster" we mean that the single
LDS was computed from cluster of trajectories that were merged), where N denotes the total number
trajectories. Let Sk−1 = {S k−1

1 , S k−1
2 , . . . S k−1

N−k+1} be the set of clusters after k − 1 steps. Let S k−1
i , S k−1

j be
the most affine LDSs according to affinity measure A. Let S k

l be the newly produced set of trajectories.
The LDS computed from trajectories in this cluster will be based on objective function of the form

min
ft ,mt ,G
F,ωt ,νt

∑
Y i∈S k

l

∑
t≥1

∥∥∥Y i
t − ft

∥∥∥2
+ c1

∑
t≥1

ν2
t + c2

∑
t≥1

ω2
t (5.18)

with constraints

mt = Gmt−1 + ωt (5.19)

ft = F′mt + νt (5.20)

The pseudo-code for this algorithm is summarized in Algorithm (2).
This algorithm obviously relies very much on the performance of the previous labeled approach.

For this reason we left for now the formulation quite general (e.g. the affinity measure A can be later
specified as the Frobenius norm) and we will proceed with specific implementation after we solve all the
problems in the previous approach with the real measurement data.

There are, of course, other possible clustering algorithms like e.g. k-means (for which we are also
working on formulation within the framework of joint clustering and LDS identification), but these are
out of scope of this work.
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Algoritmus 2: Discrimination with unlabeled trajectories algorithm
Input : Training set of trajectories unlabeled, validation set of trajectories labeled 0 or 1 (if

available)
Output: accuracy of given model

1 Training phase;
2 Learn LDS fro each trajectory;
3 while number of clusters , 2 do
4 Join two clusters of trajectories that are most affine in the space of system matrices;
5 Learn LDS from trajectories in the newly produced cluster
6 end
7 Denote the two resulting LDSs as (G0, F0,V0,W0) and (G1, F1,V1,W1);
8 Discrimination phase;
9 for trajectory in validation set do

10 Apply Kalman filter with (G0, F0,V0,W0) and compute error e0
11 Apply Kalman filter with (G1, F1,V1,W1) and compute error e1
12 if e1 ≥ e0 then
13 assign state |0⟩;
14 else
15 assign state |1⟩;
16 end

17 end
18 Compute the accuracy of the assigned labels
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Figure 5.7: Comparison of models trained on 10 trajectories with 200 time-steps. Upper: trained on
trajectories corresponding to |0⟩, lower: trained on trajectories corresponding to |1⟩.
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Figure 5.8: Comparison of models trained on 50 trajectories with 200 time-steps. Upper: trained on
trajectories corresponding to |0⟩, lower: trained on trajectories corresponding to |1⟩.
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Chapter 6

Conclusion

In this master’s thesis, we have explored several key areas in the field of quantum technology, par-
ticularly focusing on quantum dots, their measurement techniques, and the challenges in controlling
both closed and open quantum systems. Our journey through these topics has led to the development of
new methods for determining the states of quantum systems. This conclusion brings together the main
findings of our research, acknowledges its limitations, and suggests directions for future study.

We started the thesis with a brief overview of quantum dots. As GaAs QDs were used in our following
research, these were of our main interest. Since the last chapter of the thesis was dedicated to improving
the readout interpretation, we reviewed in greater detail the radio-frequency reflectometry technique and
its application on QDs. We described the IQ-plane measurement and discussed the role of T1 process in
quantum state discrimination.

We then moved on to the topic of quantum control. We started with the case of a finite dimensional
closed quantum system. For this case, there is a comprehensive theoretical framework based on the
decomposition of the Lie group. In the main text, we provided an example of S U(2) decomposition and
a theorem for S U(n) decomposition into planar rotations. A discussion of the more advanced concept
of Cartan decomposition, as well as the concept of controllability, was done in Appendix B and A,
respectively. We also presented a framework for optimal quantum control based on Pontryagin maximum
principle, and we concluded the case of closed quantum systems with an example of globally optimal
control using polynomial optimization.

Subsequently, we focused on the control of open quantum systems. Here, in contrast to closed
systems, there is still no comprehensive theoretical framework and the question of the Markovianity
of the system is crucial. We divided the discussion into open-loop and closed-loop methods. Within
open-loop methods, there are two basic approaches. The first is based on decoherence-free subspaces
given by the symmetries of the system. The second class of methods uses assumptions on the time
scales of system-environment interactions. Here, we discussed dynamic decoupling as a leading method
to reduce decoherence. From the closed-loop techniques, we focused primarily on methods based on
reinforcement learning, as these are now experiencing great popularity with the boom in deep neural
networks. We presented the basic concepts of reinforcement learning, possible implementations of the
loss function and options for bypassing the seemingly necessary tomography of the quantum state.

In the last chapter, we focused on quantum state discrimination. We proposed a method based on the
identification of a linear dynamic system and the subsequent application of a Kalman filter. For these
purposes, we first summarized the fundamental ideas of the linear dynamic system and its identifica-
tion, as well as the principle of the Kalman filter. A fundamental innovation was the use of polynomial
optimization for LDS identification, the basics of which we summarized in Appendix C. We proposed
two possible formulations, of which only one is currently computationally feasible for practical pur-
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poses. Subsequently, we presented in detail the algorithm for quantum state discrimination for the case
of marked measured trajectories. The idea was based on identifying two sets of system matrices, each
identified on trajectories corresponding to a different state. The result of the new measurement was then
interpreted according to which of the sets of matrices generated a smaller cumulative error using the
Kalman filter on the new trajectory.

We have divided the discussion of data preparation and results into the case of 1D measurement and
the case of measurement in the IQ-plane. For the first case, we used data from GaAs quantum dots,
which first needed to be properly processed. We then applied the aforementioned algorithm both using
POP and using traditional LDS identification methods. In doing so, we considered models learned on a
different number of trajectories of different lengths. We also tried different lengths of test trajectories. We
chose a similar procedure for the IQ data collection. Here, however, due to the absence and subsequent
unsuccessful installation of the IQ-demodulator, we had to implement a data generator based on an
educated guess. Due to the nature of the data and the computational complexity, in this case we only
considered standard LDS identification methods and omitted the results for POP.

From these first results, it is clear that the level of accuracy has not yet been reached as for the
currently standard methods based on averaging data points. In the case of POP, the issue of regularization
and over-fitting must first be solved, but even then we see the problem with traditional identification
methods that one set of LDS matrices provides a smaller error on any trajectory than the other. However,
there are reasons for mild optimism. If these problems can be overcome, preliminary results suggest that
it may be possible to recognize trajectory type from fewer data points, and thus more quickly than is
necessary with current methods. Such a feature would be very useful, for example, for error correction,
where the measurement speed is a crucial parameter.

A first step to overcome the current problems in further research will be to consider higher dimen-
sional LDS. The approximation of real dynamics can then be much more accurate and, in principle, can
also capture phenomena that could not be accurately projected into a two-dimensional system. Due to the
computational complexity, it is probably not practical to consider this approach for POP at the present
time, however, active research is underway to reduce the computational demands using matrix sparsity
and other methods that can change this situation. If increasing the dimension turns out to be the right
way, it will also be possible to continue working on the algorithm for the case of unmarked trajectories
presented at the end of the last chapter. The latter could subsequently provide an advantage for early
experimental devices.

As such, this work represents not only a comprehensive overview of quantum control methods and
their possible use for quantum dots, but also an attempt at an original synthesis of quantum technologies
and computer science. Although the current results do not bring significant improvement in the accuracy
of measurement interpretation, the ideas presented here pave the way for further research in the field of
optimal readout using methods fundamentally different from those currently used.
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Appendix A

Controllability

Having a control system described by the Schrödinger equation (3.10), controllability theory focuses
on the study of so-called reachable set - set of states that can be obtained with a given experimental
set-up. In the language of quantum operations, the question may be as follows: what unitary operations
can we perform on a given device? Here we, of course, consider closed quantum systems, which will be
of the main interest in this section.

For the closed finite-dimensional systems, there is a complete framework to determine the controlla-
bility of the system. In short, it can be said that, having the Hamiltonian (3.3), the system is controllable
provided the Lie algebra spanned by the nested commutators of H0 and Hk is full rank. In another words,
the system is controllable if the set of matrices that can be obtained through (3.10) is the set of all unitary
matrices U(n) [24, 36].

Let U(t, u) be the solution of (3.10) at time t with control function u. We define the reachable set at
time T > 0, R(T ), as the set of all the unitary matrices Ũ such that there exists an admissible control
function u with U(T, u) = Ũ. The reachable set R is then defined as R =

⋃
T≥0 R(T ). In the following we

will consider u from the set of piecewise constant functions. We also note that this is sometimes called
operator controllability or complete controllability to distinguish it from the state controllability.

The following theorem is the basis for testing the controllability of the system [24]:

Theorem 3 (Lie algebra rank condition). The set of reachable states for system (3.10) is dense (in the
subset topology induced by U(n)) in the connected Lie group eL associated with the Lie algebra L
generated by {−iH(u)|u ∈ U}, U being the set of admissible functions. Furthermore, if eL is a Lie
subgroup of U(n) then R = eL.

The proof of this theorem can be found in Appendix D of [24]. When the dynamical Lie algebra L
is equal to u(n) then eL = U(n) and R = U(n). The statement of the theorem is that all the information
about R is contained in the dynamical Lie algebra L. The crucial discussion is then whether R = eL and
it can be shown that the assumption on eL being the subgroup of U(n) is essential. Such a discussion can
be reduced to a question whether a Lie group is a Lie subgroup of another Lie group, which is a typical
question a Lie theory. The answer is provided by so-called closed subgroup theorem [72] which roughly
states that eL is a Lie subgroup if and only if eL is closed in the topology of U(n).

This property can be checked using so-called Killing form defined as

⟨x, y⟩K B Tr
{
adxady

}
, (A.1)

where adx : L → [x, L] is a matrix representation of linear operator on L. The Proposition 4.27 in [42]
then states that if the Killing form of L is negative definite, then eL is a compact (and therefore closed)
Lie group. This, however, provides only sufficient condition. Another approach utilizing the structure of
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Lie algebra L is based on the fact that any Lie subalgebra of u(n) is reductive [18], i.e. can be written as
L = S ⊕Z, where S is semisimple andZ is Abelian center - subspace of elements commuting with all
of L. The question whether eS is a Lie subgroup of U(n) is answered by the following theorem [67]:

Theorem 4 (eS is subgroup of U(n)). Let S be the a semisimple Lie subalgebra of a Lie algebra G and
eS a compact Lie group (in our case U(n)). Then eS is a compact Lie subgroup of eG.

This reduces the analysis only to whether eZ is a subgroup of U(n). This is often very easy as Z
tends to be low-dimensional and commutes with the whole group. The standard procedure is then to first
find the basis of L, identify Z and check whether eZ is closed. Since eL is then a subgroup of U(n),
theorem (3) implies that R = eL. Simple recursive procedure to generate a basis of L is given in [24].

An interesting question is also the dependence of the reachable set R(t) on time t. This is answered
by the following theorem [38]:

Theorem 5 (eS is subgroup of U(n)). Assume that the dynamical Lie algebraL is semisimple (L = su(n)
for controllable systems). Then there exists a critical time Tc such that for every T ≥ Tc, R(T ) = eL.

Accurate estimation of Tc is an active area of research. Detailed discussion of pure state and density
matrix controllability can be found in [24].

Regarding the open quantum systems, any complete framework for controllability analysis does not
exist and the extension for these purposes remains an open problem to date [44]. As the evolution is no
longer unitary, controllability can not be deduced purely from the Hamiltonian. The dissipative processes
can prevent or even enable reaching some states. The simplest example is the impossibility of transition
between pure states under fast decoherence.

There are two ways to approach the controllability analysis of the open quantum systems. First,
dealing with the complete system-environment description. In such a case some of the methods for
the unitary evolution can be employed. The advantage of this approach is that there are no a priori
assumptions on the dynamics of the reduced system. Although the description and the controllability
analyses of the complete system-environment dynamics is extremely challenging, some advances in
controllability analysis of infinite-dimensional system may be utilized [9, 16].

Second, considering controllability analyses solely for the reduced dynamics. Rigorous analyses of
the reachable sets has been done only for the Markovian case [1], where the Lindblad operators were
shown to form a Lie wedge [20]. For non-Markovian systems no rigorous analyses has been done to date
[44].
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Appendix B

Cartan decomposition

Cartan decomposition of Lie groups represents a very general framework for achieving a desired
unitary evolution given a model of a closed quantum system. Here we provide a short overview of this
concept.

Definition 2 (Cartan decomposition). Let L be a semisimple Lie algebra. A decomposition of the form

L = K ⊕ P, P B K⊥ (B.1)

is called Cartan decomposition if:

1.
[K ,K] ⊆ K (B.2)

(i.e. K is subalgebra of L)

2.
[K ,P] ⊆ P (B.3)

3.
[P,P] ⊆ K . (B.4)

The following theorem is the basis for utilizing the Cartan decomposition for control purposes.

Theorem 6 (PK decomposition). For a semisimple Lie algebra L (such as su(n)) with Cartan decompo-
sition (B.1), every X ∈ eL can be written in the form

X = PK, (B.5)

where P ∈ eP and K ∈ eK .

The proof of this theorem can be found e.g. in [34]. This paves the way for yet another decomposi-
tion. ConsiderA being a subalgebra ofL and simultaneously a subspace ofL. Because [A,A] ⊆ A ⊆ P
and [A,A] ⊆ [P,P] ⊆ K , then clearly [A,A] = {0}, i.e. A is Abelian. For a given Cartan decompo-
sition of L, maximal Abelian subalgebra of P is called Cartan subalgebra of L. The following two
theorems are the necessary ingredients for so-called KAK decomposition [24].

Theorem 7 (Every element of P belongs to a Cartan subalgebra). LetA be a Cartan subalgebra associ-
ated with the Cartan decomposition (B.1). Then⋃

K∈eK
KAK−1 = P. (B.6)
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Theorem 8 (All the Cartan subalgebras are conjugate via K). For any two subalgebrasA, Ã in P, there
exists K ∈ eK such that

KAK−1 = Ã. (B.7)

With these two theorems at hand it is straightforward to prove the KAK decomposition:

Theorem 9 (KAK decomposition). For a semisimple Lie algebra L with Cartan decomposition (B.1),
every X ∈ eL can be written in the form

X = K1AK2, (B.8)

with K1,K2 ∈ eK and A ∈ eA.

In particular, it can be shown [24] that for every X ∈ S U(n) the matrices K1,K2 are orthogonal and

A B diag(eiα1 , . . . , eiαn−1 , e−i
∑n−1

k=1 αk ). (B.9)

This important result, nevertheless, doesn’t tell us anything about the way of finding the factors in the
KAK decomposition. For su(n) (which is relevant for quantum computing), however, Cartan classifica-
tion of symmetric spaces revealed that there are, up to conjugation, only three types of decompositions,
often denoted AI, AII, AIII. These are:

• AI:
K = so(n) (B.10)

• AII:
K = sp(

n
2

) (B.11)

for n even with sp(.) denoting the symplectic Lie algebra

• AIII:

K = span
{ (A 0

0 B

) ∣∣∣∣A ∈ u(p), B ∈ u(q), p + q = n,Tr{A} + Tr{B} = 0
}
. (B.12)

For each type of decomposition, corresponding subalgebraA can be found [24]. E.g. for the type AI,A
is the subalgebra of diagonal matrices.

To calculate the factors in the KAK decomposition, the first step is often to put the subspaces K ,P
in the standard form via some similarity transform T . Finding such a transform can be significantly
simplified using the concept of Cartan involution [24]. Having the standard for, the goal is then to reduce
the calculation KAK factors for each type of Cartan decomposition to so-called structured eigenvalue
problem. E.g. for type AI we have U = O1DO2 with O1,O2 orthogonal and D diagonal matrix. By
simple manipulation we get

UUT O1 = O1D2, (B.13)

i.e. finding the eigenvalues and eigenvectors of UUT . Calculating O1, D and finally O2 is then straight-
forward. There exist several algorithms for solving such problems [13].

Let us demonstrate the Cartan decomposition on an example. Very simple and yet for quantum
dots very relevant model is two weakly coupled spins with Ising interaction. The Schrödinger operator
equation, after proper scaling and considering the z component of the magnetic field constant, reads

U̇ = −i
[
σz ⊗ σz +

( ∑
k=x,y

uk(t)σk ⊗ I
)
+

(
r

∑
k=x,y

uk(t)I ⊗ σk
)]

U, (B.14)

where r = γ2/γ1 is the ration of gyromagnetic ratios of the two spins.
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Here (for r , ±1) the algebra generated by the control matrices is

K = span{iσk ⊗ I, iI ⊗ σk|k = x, y, z}. (B.15)

This imply the corresponding Lie group of the form

eK = {X1 ⊗ X2|X1, X2 ∈ S U(2)}, (B.16)

i.e. no entangling dynamics without the interaction. It is not hard to see that the orthogonal complement
to su(4) is

P = {σk ⊗ σl|k, l = x, y, z} (B.17)

and the decomposition is of the type AI. The maximal subalgebra in P is

A = span{iσk ⊗ σk|k = x, y, z}. (B.18)

Hence, according to KAK decomposition, every U ∈ S U(4) can be written as

U = X1 ⊗ X2eit1σx⊗σxeit2σy⊗σyeit3σz⊗σz X3 ⊗ X4 (B.19)

for some real parameters t1,2,3. As Pauli matrices are unitarily equivalent, we can write σz = UxσxU†x =
UyσyU

†
y and the previous relation can be further rewritten as

U = X1 ⊗ X2eit1σz⊗σz X3 ⊗ X4eit2σz⊗σz X5 ⊗ X6eit3σz⊗σz X7 ⊗ X8 (B.20)

with X j ∈ S U(2), j = 1, . . . , 8. This means that we can perform the desired unitary operation by alter-
nating very fast single spin operations (during which we can neglect the coupling) and turning off all the
control fields and letting the the system evolve under eiσz⊗σz for times t1,2,3.
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Appendix C

Polynomial optimization

Polynomial optimization is a branch of mathematics and optimization theory that deals with finding
the minimum or maximum of a polynomial function over a given domain. In contrast to general global
optimization problem

f ∗ B inf
x
{x|x ∈ K} for some feasible set

K = {x ∈ Rn|g j(x) ≥ 0, j = 1, . . .m} (C.1)

where f , g j : Rn → R are arbitrary continuous functions, which is in general intractable, in polynomial
optimization we restrict ourselves to the case where f , g j are polynomials. It turns out, that with such a
restriction it is in principle possible to obtain the global optimum f ∗ or its approximation that is as close
as needed. It is important to mention that this remain true also for highly non-convex problems for which
standard methods often struggle to find the global optima. This was enabled by representation theorems
from real algebraic geometry produced in 1990s [68] and is the reason why polynomial optimization
attracted a lot of attention recently.

At first glance, it may seem that the conditions of polynomial optimization are quite restrictive, but
on closer inspection it is clear that many problems can be expressed as POPs. Examples can be:

• Linear and quadratic optimization problems, i.e. problems with objective function in the form

inf
x
{xTA0x + bT

0 x|xTA jx + bT
j x − c j ≥ 0, j = 1, . . . ,m} (C.2)

• Boolean optimization by enforcing the constraints x2
i − xi = 0. This obviously produces a Boolean

variable xi ∈ {0, 1}.

• Mixed Integer programming by enforcing the constraints

(xi + N) · (xi + N − 1) . . . xi · (xi − 1) . . . (xi − N) = 0. (C.3)

Clearly now x ∈ {−M, . . .M}.

Solving polynomial optimization problems can be challenging due to the complexity of the poly-
nomial functions and the constraints involved. Various approaches have been developed to tackle these
problems, and some of the prominent methods include:

1. Algebraic Methods: For certain types of polynomials, especially those with low degrees, algebraic
methods can be employed to find the optimal points analytically. These methods involve manipu-
lating the polynomial algebraically to identify critical points and check for their optimality using
calculus techniques [6].
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2. Convex Optimization: Convex optimization deals with finding optimal solutions for convex poly-
nomial functions subject to convex constraints. Convex polynomials are well-behaved, and effi-
cient algorithms exist to find the global optimum for such problems. Semidefinite programming
(SDP) is a popular technique used in convex optimization for certain classes of polynomial opti-
mization problems [2].

3. Sum-of-Squares (SOS) Optimization: SOS optimization is a powerful technique used to handle
non-convex polynomial optimization problems. It transforms the original problem into a hierar-
chy of convex optimization problems by expressing the polynomial as a sum of squares of other
polynomials. The higher the degree of the SOS relaxation, the better the approximation to the true
optimal solution [86].

4. Polynomial Homotopy Continuation: This method converts the polynomial optimization problem
into a series of simpler problems, and by gradually adjusting the parameters, it finds the solution
to the original problem. It is particularly useful for finding all the solutions of a polynomial system
and is commonly used in algebraic geometry and engineering [10].

One of the key aspects of polynomial optimization is that it has a wide range of applications across
various fields, including engineering [29, 65], computer science [43], economics [71], and physics [8,
7]. For instance, in engineering, it is used in control systems to find optimal parameter values for system
performance, while in computer science, it plays a vital role in machine learning algorithms [51], where
finding optimal parameters can lead to better model accuracy. Additionally, in economics, polynomial
optimization is utilized to maximize utility functions subject to budget constraints, helping economists
make better decisions. These examples demonstrate the practical significance of polynomial optimization
in solving real-world problems.

Let us formalize the moment/SOS hierarchy, first introduced in the fundamental papers of POP [49,
64]. Let us refer to POP problem (C.1) (i.e. with f , g j being polynomials) as P. We then define the
family of problems

Pλ : f ∗ = sup{λ| f (x) − λ, x ∈ K}. (C.4)

It was in the last-mentioned articles that Lasserre and Parrilo presented a systematic algorithmic con-
struction of certificates of positivity on K for f (x) − λ. These then serve to obtain solution of (C.4).

The basis of the construction is Putinar’s Positivstellensatz.

Theorem 10 (Putinar’s Positivstellensatz). Let K be as in (C.1), with g j, f polynomial functions, and
compact. Let us denote the quadratic module generated by the family (g j) as

Q(g) B
{
σ0 +

m∑
j=1

σ jg j : σ j ∈ Σ[x], j = 1, . . . ,m
}
, (C.5)

where Σ[x] denotes the space of SOS polynomials, i.e. polynomials that can be written as p(x) =∑
j p j(x)2 for some finite family of polynomials (p j). Assume that there exists u ∈ Q(g) such that level

set {x ∈ Rn : u(x) ≥ 0} is compact. Then, if f is strictly positive on K, then f ∈ Q(g), that is,

f = σ0 +

m∑
j=1

σ jg j, (C.6)

for some SOS polynomials σ j ∈ Σ[x], j = 1, . . . ,m.
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Testing the possibility of writing f as in (C.6) means solving the SDP.
The dual of this SDP deals with the problem that, given a real sequence y = (yα) with multi-index

α ∈ Nn, whether there exists a Borel measure µ on K such that

yα =

∫
K

xαdµ (C.7)

for any α. µ is then said to be a representing measure of the sequence y. We introduce Riesz linear
functional Ly from real polynomials as

f =
∑
α∈Nn

fαxα → Ly( f ) =
∑
α∈Nn

fαyα. (C.8)

The Riesz-Haviland theorem roughly states, that the sequence y above has a representing measure on K
if and only if Ly( f ) ≥ 0 for all polynomials nonnegative on K. Then, if relations

Ly(h2) ≥ 0, Ly(h2g j) ≥ 0, j = 1, . . . ,m (C.9)

hold for all polynomials h with maximum degree d, certain m + 1 moment and localizing matrices, with
entries linear in (yα), are positive semidefinite, i.e.

Md(y) ⪰ 0, Md(g jy) ⪰ 0, j = 1, . . . ,m. (C.10)

This can be modeled as a so-called generalized moment problem (GMP), which has the form

inf
µi

{ s∑
i=1

∫
Ki

fidµi :
s∑

i=1

∫
Ki

hikdµi ≥ bk
}
, (C.11)

where Ki ⊂ R
ni is a compact semi-algebraic set and fi, gik : Rni → R are polynomials. In this work, we

will not go into the details of GMP, but a comprehensive description can be found in [50].
Nevertheless, from both primal and dual point of view, solving the moment/SOS amounts to solving

a hierarchy of (convex) semidefinite programs of increasing size:

f ∗d = sup
λ,σ j

{
λ : σ0 +

m∑
j=1

σ jg j, with deg(σ jg j) ≤ 2d
}

(C.12)

The sequence { f ∗d , d ∈ N}, is monotone and non-decreasing. For K compact, the global optimum of (C.4)
is obtained as

f ∗ = lim
d→∞

f ∗d . (C.13)

We note that finite convergence of (C.13) is a generic property.
As POP over a basic semialgebraic set is NP-hard problem [52], since the size of the matrices corre-

sponding to the d-th step of the moment/SOS relaxation with n variables is of the order
(
n + d

n

)
, several

proposals have been put forward to lower the required computational resources. One way is to exploit
the sparsity patterns appearing in the POP problems proposed by Lasserre [48] and implemented e.g. in
TSSOS Julia library [88].
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