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simulací. NiTi vykazuje jedinečnou kombinaci silně anizotropní plastické deformace
zprostředkované pouze jedním systémem skluzu s vysoce pohyblivými hranicemi
typu dvojčat, přičemž se předpokládá, že spojení těchto dvou mechanismů vytváří
jedinečný plastický proces, který způsobuje houževnatost B19’ NiTi. Vzhledem ke
složitosti martenzitické fáze B19’ mají dosavadní potenciály (např. 2NN-MEAM)
problém podchytit všechny vlastnosti ovlivňující plastickou deformaci . Tato práce
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Abstract: This thesis focuses on the study of the plastic deformation mechanisms
and microstructure evolution of B19’ martensitic NiTi crystals through atomistic
simulations. This phase exhibits a unique combination of strongly anisotropic plastic
deformation mediated by only one slip system with highly mobile twin-type bound-
aries, where the coupling of these two mechanisms is believed to create a unique
plastic process that governs the high toughness of B19’ NiTi. The computational
analysis of the plastic slip pathways is carried out by molecular dynamics. Consider-
ing the complexity of the plastic phenomena occurring in B19’ martensitic crystals,
the parametrizations of available interatomic potentials for Ni-Ti systems (such as
the 2NN-MEAM model) are deemed to be insufficient for an accurate prediction of
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NiTi using neural networks, evaluating their accuracy by way of comparison to the
theory and experiments.

Key words: Molecular dynamics, interatomic potential, neural networks, NiTi,
shape memory alloys



Contents

Introduction 9

1 Theoretical background 10

1.1 Molecular dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Basics of neural networks . . . . . . . . . . . . . . . . . . . . . 11

1.2.2 Learning algorithm . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.3 The evaluation of the machine learning prediction . . . . . . . 16

1.3 Development of neural network interatomic potentials for molecular
dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 High-dimensional neural network potentials . . . . . . . . . . 18

1.3.2 Atom-centered symmetry functions . . . . . . . . . . . . . . . 20

1.3.3 Extrapolation and interpolation . . . . . . . . . . . . . . . . . 22

1.4 Shape memory alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4.1 Shape memory and superelasticity . . . . . . . . . . . . . . . . 24

1.4.2 Martensitic transformation . . . . . . . . . . . . . . . . . . . . 25

1.4.3 NiTi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Results and discussion 30

2.1 Proof-of-concept: Neural network potential for silicon . . . . . . . . . 30

2.1.1 Basic properties of silicon . . . . . . . . . . . . . . . . . . . . 30

2.1.2 Data set for the neural network potential . . . . . . . . . . . . 31

2.1.3 Neural network potential . . . . . . . . . . . . . . . . . . . . . 32

2.1.4 Elastic constants . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.5 Phonon dispersion . . . . . . . . . . . . . . . . . . . . . . . . 37

7



2.2 Neural network potential for NiTi . . . . . . . . . . . . . . . . . . . . 38

2.2.1 Basic properties of NiTi . . . . . . . . . . . . . . . . . . . . . 39

2.2.2 The data set for neural network potential . . . . . . . . . . . . 42

2.2.3 Neural network potential . . . . . . . . . . . . . . . . . . . . . 47

2.2.4 Elastic constants . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2.5 Phonon dispersion . . . . . . . . . . . . . . . . . . . . . . . . 53

2.2.6 Stacking fault energy . . . . . . . . . . . . . . . . . . . . . . . 54

2.2.7 Shearing responses of B19’: NN vs. 2NN-MEAM potentials . . 55

2.2.8 Possible slip pathways on the (100) slip plane . . . . . . . . . 57

Conclusions 60

Literature 61

8



Introduction

Atom-level analysis can provide insightful information about the processes occur-
ring in material systems, thus helping to understand the governing mechanisms that
determine the physical properties of materials. Molecular dynamics simulations, a
computational tool, play an important role in understanding the dynamic behavior
of materials. The accuracy of these simulations is heavily dependent on the inter-
atomic potentials used to describe the interactions between atoms within a system.
Traditional analytical potentials, such as the Tersoff or 2NN-MEAM potential, have
long been employed for metallic systems because of their computational efficiency,
but their ability to predict complex interactions is limited.

In recent years, there has been introduced an entirely new approach, which serves
to develop high-accuracy interatomic potential: the neural network (NN) potentials.
This approach uses machine learning techniques, to develop interatomic potentials
that overcome the limitations of traditional analytical models and essentially bring
the precision of density functional theory into molecular dynamics.

The main focus of this work is to develop NN potential for the B19’ martensitic
phase of NiTi. While many existing potentials are focused on the simulation of the
transformation between the B2 austenitic and B19’ martensitic phases, the NN po-
tential aims to describe the plastic deformation in the martensitic B19’ phase of
NiTi. It was newly suggested in Ref. [1], that the plastic deformation in the marten-
sitic phase can play an important role in the reversibility of phase transformation in
NiTi. The confirmation of such a claim demands extensive study on the atomistic
level.

As a proof of concept, I develop the NN potential for silicon. I will compare the
result of the NN potential of silicon with the existing Tersoff potential. The com-
parison involves a study of basic elastic and dynamical properties such as the elastic
constant and phonon dispersion curves. Finally, I will build the NN potential for
NiTi and compare the basic mechanical properties predicted by this potential with
the analytical 2NN-MEAM potential. In this regard, attention is directed to the
behavior of the B19’ martensitic phase under shearing on the (100) slip plane.
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Theoretical background

1.1 Molecular dynamics

Molecular dynamics (MD) is a computational approach that simulates the time
evolution of a system composed of atoms, which are defined by their position r, and
velocity v. This technique can simulate systems containing hundreds of thousands
of atoms on the time scale of nanoseconds. The computation of the time evolution is
done by iteratively solving Newton’s equation of motion, where the acting forces are
determined by interatomic potential. The statistical properties such as temperature,
pressure, and volume are controlled by the statistical ensemble [2]. A simplified
workflow of the MD is shown in Figure 1.1

Figure 1.1: A simplified workflow of an MD. Figure taken from Ref. [3].

The Verlet algorithm is a common numerical approach that calculates the discrete
evolution of the system from t to t+∆t. This algorithm is based on Taylor’s expansion
of the time-dependent position r(t)

ri(t+∆t) ≈ ri(t)+
dri(t)

dt
∆t+

1

2

d2ri(t)

d2t
(∆t)2 = ri(t)+vi(t)∆t+

ai(t)

2
(∆t)2 (1.1)

by the application of Taylor’s expansion for step +∆t and −∆t and summing up
these two expansions, the Verlet algorithm is obtained

ri(t+∆t) = 2ri(t)− ri(t−∆t) +
1

mi

F i(t)(∆t)2 (1.2)
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In this work, I will focus on the determination of acting forces through the inter-
atomic potentials. A more detailed description of the MD technique can be found
in my bachelor thesis [3], or in Ref. [4].

1.2 Neural networks

Thanks to the increasing computing power, the calculation of highly complex
tasks becomes possible. However, tasks that seem easy to humans can be prob-
lematic for computers, for example recognizing an image, a font or a digit can be
difficult. To solve this problem, so-called machine learning methods started to be
used. Machine learning is a very brought term, but in general refers to mathematical
and statistical methods, that help algorithms find solutions without knowing at the
beginning. Finding the solution is done using learning, which can be defined as [4]:

A computer program is said to learn from experience E concerning some class of
tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.

It is clear from the definition that three parts are needed to go through the process
of learning. A computer program (model) e.g. neural network and a task, in my case
the task is to predict the energy. A source of experience, for me, it is a data set of
structures with corresponding energies. Finally, we need some reference to whether
the prediction of the model has improved or not.

1.2.1 Basics of neural networks

One of the most used machine learning approaches is called neural networks. This
method is inspired by neural synapses in the brain. A typical neural network model
consists of many interconnected layers, each layer contains many mathematical func-
tions called neurons, and the number of neurons determines the size of the layer.
A feed forward neural network, which will be used in this work, is usually divided
into three parts. The first part is called the input layer, which is only one layer
containing input data. The second part consists of several hidden layers, size can
vary depending on the size of the data set and the purpose of the neural network.
The last part is called the output layer and represents the prediction of the neural
network. This classification is schematically shown in Figure 1.2.

All neurons in the layer are connected to the neighboring layers by weights, which
represent the importance of the neuron’s connection and each neuron has its own
bias, which can be understood as a threshold for accepting the value of the neuron
[5]. This is described in

y ≡ f(wx+ b) (1.3)

where w refers to the weight, b refers to bias, x denotes the input value for the neu-
ron and y represents the output value of the neuron. In equation (1.3), f(...) is the
activation function, which has a fundamental role. Activation functions are usually
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non-linear and smooth. Non-linearity ensures that neural networks are capable of
capturing more complex problems. A neural network with a linear function is es-
sentially just a linear regression model. The smoothness of the activation function
ensures differentiability, thus the possibility to transfer an effect of small changes in
weights or biases to the final prediction. Activation functions can take many forms
and can improve the predicting abilities of neural networks.

Figure 1.2: A general architecture of a neural network containing the input layer, hidden
layers, and the output layer. The figure is taken from Ref. [5].

In general, let wkl
ij be the weight between neuron i in layer k and neuron j in layer

l, where l = k + 1. Then, the input value ylj into neuron j in layer l is

ylj ≡ bl +

p∑
i=1

al−1
i wl−1,l

ij (1.4)

where p is the number of neurons in layer l−1 and al−1
i denotes to the function value

of the activation function for neuron i in layer al−1
i = f(yl−1

i ) [5, 6]. For example,
the activation function can be defined as

1. sigmoid

f(x) =
1

1 + e−x
(1.5)

2. hyperbolic tangent
f(x) = tanh(x) (1.6)

3. Gaussian function
f(x) = e−ax2

(1.7)

Sometimes, the identity f(x) = x activation function can be used, especially in
situations, when a change of values is not wanted [6]. Commonly used activation
functions are shown in Figure 1.3. The nowadays popular ReLu is not suitable for
my purpose because has discontinuous differentiation.
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Figure 1.3: The summary of the often used activation functions. Figure taken from Ref.
[6].

1.2.2 Learning algorithm

This section will focused on the process of learning itself. The basic principles of
learning will be introduced. More advanced concepts of learning can be found in Ref.
[4]. Usually data set is divided into two parts, the train part and the test part. A
learning, and training data set is used for the process of learning, whereas a test set
represents a source of unbiased information, which is not used during learning. In
neural networks, the term learning is understood as a numerical process that edits
the values of weights and biases throughout the entire neural network. This process
allows for a gradually better prediction of the neural network employing the training
dataset.

To compare the quality of the prediction, the so-called cost function is typically
employed. This function can be described under various forms, see Ref. [4]. For the
sake of explanation, here it will be described in its simplest form

C(w, b) =
1

2n

∑
x

∥y(x)− a∥ (1.8)

where y(x) represents known information from data set and a refers to predicted
value of our model, ∥.∥ refers to the norm because generally vectors are used. The
aim is to set the weighting and bias to minimize the cost function. The simplest
way to minimize respectively find a local minimum of the function is through the
gradient descent algorithm with respect to parameters w and b [4, 5]. This can be
obtained by defining the following sequence

wi → wi+1 = wi − η
∂C

∂wi

bi → bi+1 = bi − η
∂C

∂bi
(1.9)
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where indexes i and i + 1 respectively refer to iterations steps and parameter η
denotes the size of a step in the direction of the local minimum in multidimensional
space. It can be shown, Ref. [5], that the best choice of parameter η is η = ϵ/∥∇C∥,
where ϵ > 0 is denoting the desirable prediction error. The gradient descent method
reflects the basic idea behind the search for optimal values of the weight and biases.
Nowadays there exist many more advanced approaches to find a local minimum,
such as stochastic gradient descent [4, 5], Adam [7] or Kalman filter [8].

The process of the cost function evaluation is called forward propagation [4]. The
remaining question is how to compute gradients most efficiently and set new values
of weights and biases. This process is called back propagation. It is important to
mention that backpropagation is not a minimization method. It is just a way to
efficiently compute gradients as a function of weight and bias for individual layers
and neurons within layers.

Let’s defined an error δlj, which represents the influence of j-th neuron in l-th layer
on the final value of the cost function C

δlj ≡
∂C

∂ylj
(1.10)

where ylj is from Equation (1.3). We can use this definition to calculate the error in
output layer δLj as

δLj =
∂C

∂aLj

∂aLj
∂yLj

=
∂C

∂aLj
f ′(yLj ) (1.11)

where a ≡ f(y). The first part represents the sensitivity of the cost function to
change in the j-th neuron output. The second term in Equation (1.11) accounts for
the change in the activation function due to a change in input. Symbol L refers to
the index of the output layer. We can rewrite this equation into vector form, where
the vector has layer length.

δL = ∇aC ⊙ f ′(yLj ) (1.12)

where symbol ⊙ stands for the Hadamard product, which is defined as the multi-
plication of two vectors with the same length element-wise, s and t are vectors and
index j refers to the j-th element, then (s⊙t)j = sjtj [5]. Symbol ∇a refers to partial
derivative ∂C/∂aLj .

Equation (1.10) works for errors in the output layer. The error in arbitrary layer δl
can be expressed by means of error of following layer δl+1, then Equation (1.10) has
following form

δlj =
∂C

∂ylj
=

∑
k

∂C

∂yl+1
k

∂yl+1
k

∂ylj
=

∑
k

∂yl+1
k

∂ylj
δl+1
k (1.13)

yl+1
k =

∑
j

wl+1
kj alj + bl+1

k =
∑
j

wl+1
kj f(ylj) + bl+1

k (1.14)

where indexes k, j refers to neurons and indexes l denotes to layer. Thus

∂yl+1
k

∂ylj
= wl+1

kj f ′(yjl ) (1.15)
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in the end
δlj =

∑
k

wl+1
kj δl+1

k f ′(ylj) (1.16)

The equation can be rewritten with the usage of Hadamard product as

δl = ((wl+1)T δl+1)⊙ f ′(yl) (1.17)

where (wl+1)T is transpose matrix of weights for l+1 layer. Multiplication with the
transpose matrix (wl+1)T causes the transfer of the error through the neural network
[5]. Using equations (1.12),(1.17) the error in an arbitrary layer can be estimated.
The error in layer l can be calculated using the error in the output layer (1.12) by
iterative calculation. The error in the l+1 layer is known, in first iteration l+1 ≡ L,
then with usage of Equation (1.17), error is calculated in the l layer, then redefined
l ≡ l + 1 and iterate or backpropagate the error to the input layer

All the above-mentioned equations are used in the process of the calculation of the
gradients of the cost function. For the biases

∂C(f(ylj))

∂blj
=

∂C

∂f(ylj)

∂f(ylj)

∂ylj

∂ylj
∂blj

= δlj (1.18)

and for the weights

∂C(f(ylj))

∂wl
jk

=
∂C

∂f(ylj)

∂f(ylj)

∂ylj

∂ylj
∂wl

jk

= δlja
l−1
k (1.19)

The Equations (1.18) and (1.19) can be used for direct calculation of the gradient
of a cost function using the defined error δ. Equations (1.12), (1.17), (1.18), (1.19)
present the backpropagation method. The calculated values from the gradients can
be used in minimization methods, such as gradient descent in Equation (1.9), and
the newly estimated values of the weights and biases are then updated in the neural
network.

The whole process of learning by backpropagation has the following steps

1. A train data from the data set are loaded into the input layer

2. For each training example

(a) Feedforward process is applied using Equation (1.4) for each layer of NN.

(b) The error in the output layer is calculated according to Equation (1.12).

(c) The remaining errors of the NN are calculated by Equation (1.17).

3. The calculated values of the gradients used for the minimization method, such
as gradient descent, and new values of the weights and the biases are obtained.
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1.2.3 The evaluation of the machine learning prediction

The goal of machine learning models is to achieve the most accurate prediction on
related data that were not used during the process of learning. The problem is that
the learning process on the learning data can achieve theoretically arbitrary small
values of error. This is the reason why the test data set is introduced. The model
can have two limiting cases: underfitting and overfitting. Underfitting is a situation
when the model has few fitting parameters and is not able to describe all relations
between the data and eventually gives a poor prediction. On the other hand, when
the model has too many fitting parameters, it can give a very good prediction on
the training data but fails to give a good prediction for the testing data. As a toy
model quadratic equation can be used, see Figure 1.4. In the Figure are three cases,
on the left side we used a linear model to describe the data, unfortunately linear
model poorly describes the data and we have an underfitted case. The right-hand
side of this figure represents the case of an overfitted model. The training points
are very well described but the model is not able to identify any new points with
quadratic dependence. The ideal case is to use a second-order polynomial, which is
shown in the middle of Figure 1.4

Figure 1.4: Difference between underfitting and overfitting. The left shows a case of un-
derfitting, the middle shows a suitably chosen model and the right shows an example of
overfitting. Figure taken from Ref. [4].

Several fitting parameters are called capacity [4].The capacity can be understood
as the ability of a model to capture multidimensional functions. A typical relation
between error on the train and test data depending on the capacity of a model is
shown in Figure 1.5.

It is seen in Figure 1.5, that the error on the training data is asymptotically ap-
proaching zero, whereas the error of the prediction has a convex shape. The gap
between training error and predicting error increases with the capacity of a model.
The minimum of the generalization error refers to the optimal capacity of the model.
Capacity values to the left of the optimal capacity correspond to the underfitted
model, and capacity to the right of the optimal capacity refers to the overfitted
model.

We need to take great care to set the neural network parameters correctly. The
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Figure 1.5: Typical relationship between model error on training data and general model
error as a function of model capacity. To the left of the optimal capacity is the underfitting
region and to the right is the overfitting region. Figure taken from Ref. [4].

quality of the prediction can be affected by capacity, type of the activation function,
the minimization method, the quality of the data set, the way of creation of training
and test data set, the initial set of the weights and the biases, the way of training
and by the type of cost function. The number and the size of the layers represent
the capacity of the model. By setting of all the above parameters we can improve
or worsen the quality of the prediction of the neural network also these parameters
should be set about the application and size of the data set.
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1.3 Development of neural network interatomic po-
tentials for molecular dynamics

This section will introduce the concept of using neural networks in developing
the interatomic potential for molecular dynamics as well as the main problems and
bottlenecks of this methods. Nowadays two major approaches in the creation of the
machine learning interatomic potential are used. Neural networks and Kernel ridge
regression.

Whereas neural networks decompose multidimensional nonlinear functions into a net
of linear functions connected with a nonlinear activation function, the kernel-based
method approximates this function by a linear combination of typically nonlinear
functions known as a kernel [9]. Both methods can yield similar results but Kernel-
based methods are more suitable for small data sets because the learning procedure
can be computationally consuming due to the number of training points. A rule of
thumb could be to prefer kernel methods when there are less than 103−104 training
points [9].

Quality and generality of a machine learning model mainly depend on the data set,
which usually contains structure coordinates, energy of atoms, and acting forces.
Machine learning models have no analytical expression of fitted function, therefore
the physics of the system is dictated by the data set. Machine learning models rep-
resenting a potential energy surface are usually based on the idea of decomposition
of the total energy into summation over the energies of all elements in the system.

Etot =
∑
i

Ei(R⃗) (1.20)

where Ei, the energy of a i-th atom, depends on the chemical environment of the
atoms defined by the positions of all neighbors inside some sphere with cutoff radius
Rc [6]. The first application of the use of neural networks for potential energy pre-
diction struggled with the description of the structural input for the NN and with
the dependency of the system size on the results. These problems will be discussed
in the following sections and I will introduce solutions to the problems within the
Behler - Parrinello frame [10].

1.3.1 High-dimensional neural network potentials

The neural network is constrained by the size of the input layer once the model
is trained. Thus, any change in the degrees of freedom of the input layer would
make the fitted model useless for prediction and a new neural network has to be
fitted. Based on this, it is not possible to simply add a new node to the input layer
with a newly added atom. The second drawback is that the standard feed-forward
neural networks are dependent on the order in which the data are loaded into the
input layer. When two chemically and physically same atoms are exchanged, nothing
would happen from the physical point of view, but this does not apply to a neural
network. In 2007 Behler and Parrinello introduced the method how to overcome

18



this limitation [10]. They took advantage of Equation (1.20) and replaced the neural
network representing the total energy with a set of atomic neural networks [10, 11].
Each atomic neural network gives contribution Ei which is used in summation of
the total energy from Equation (1.20).

The construction of an atom-based high dimensional neural network is schematically
shown in Figure 1.6. Initially, each atom in the system is described by Cartesian
coordinates R⃗i = (Xi, Yi, Zi). Cartesian coordinates are then transformed into a
suitable set of internal coordinates for the atomic neural network. This internal set
of coordinates represents the environment of an atom within the cut-off radius.

In this work, I will use the symmetry functions presented in Ref. [10, 11]. Symmetry
functions set consists of fixed number of functions Mi for each element i which
describes the environment; G⃗i = {Gi,j} where j = {1, ...,Mi}. This set of symmetry
functions is used as an input for the atomic neural network and the atomic energy
contribution to the total energy is estimated. Figure (1.6) also shows, that by adding
or removing the atom in the system it just adds or removes an atomic neural network.
In the end, this means that this approach overcomes the size-dependent problem.
The above-mentioned architecture of the atomic neural network is made for each
chemical element, due to this fact computational effort increases with the number of
elements in a system. For example, for the atomic neural network with two neurons

Figure 1.6: Schematics of the architecture of a high-dimensional neural network. The posi-
tions of individual atoms R⃗ are used to describe the neighborhood of an atom using a set
of symmetric functions Gi, where i represents the indexing of the neighborhood of each
atom. The set of symmetric functions is also the input layer for the feed-forward neural
network. The total energy Etot is the sum of the predictions of the individual networks.
Figure taken from Ref. [6].

in each layer, three hidden layers, and an atomic environment described by four
symmetric functions, we obtain atomic energy contribution as

E = f 3
1 (b

3
1 +

2∑
l=1

w23
l1 f

2
l (b

2
l +

2∑
k=1

w12
kl f

1
k (b

1
k +

4∑
j=1

w01
jkGj))) (1.21)

where f represents activation functions. The usual architecture of an atomic neural
network has two or three hidden layers each containing from 25 to 40 neurons [6].
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The acting forces can be calculated as a derivative of estimated energy as follows

Fk,α = − ∂E

∂Rk,α

= −
N∑
i=1

∂Ei

∂Rk,α

= −
N∑
i=1

Mi∑
j=1

∂Ei

∂Gij

∂Gij

∂Rk,α

(1.22)

where Fk,α is force action on k-th atom with coordinates α = {x, y, z}, Mi is the
number of symmetry function describing environment of i-th atom and N is the
number of atoms. The first term in equation ∂Ei

∂Gij
is given by the architecture of the

neural network, the second term is given by the definition of the symmetry function
∂Gij

∂Rk,α
.

The calculated forces from DFT can be used in the learning process and the model
can predict them in the same way as the energy. Such a use enforces the normal-
ization of the forces in the cost function. The forces are scaled by a factor, see Ref.
[12]. The models using this approach predict the forces much more accurately than
those learning only with the energies. On the other hand, correlation and causality
between the energy and the forces are not ensured. Small partitions of the calculated
forces can be used during the learning process. However, the number of used forces
has to be determined with care.

1.3.2 Atom-centered symmetry functions

Cartesian coordinates are not the best choice for structural description. The main
reason is that the neural network output depends on the absolute values of the
input coordinates. Imagine an isolated system of the atoms described with Cartesian
coordinates. When we apply translation or rotation operation on the system, energy
does not change but every atom in the system has different Cartesian coordinates,
thus the prediction of the neural network would be different due to different inputs.
A straightforward solution is to describe the structure using internal coordinates
such as interatomic distances. While this works well for small systems, the choice is
not unique and their number grows rapidly with the size of the system [11]. Behler
introduced the atomic-centered symmetry function which overcame the problem of
translation and rotation. These functions describe the environment of the atom
within a defined sphere with the center in that atom. For example, the sphere is
described by a cut-off function that can by defined as

fc(Rij) = 0.5(cos

(
πRij

Rc

)
+ 1) Rij ≤ Rc

fc(Rij) = 0 Rij > Rc (1.23)

where Rij is distance between atoms i, j and Rc is radius of the sphere. This function
decreases to zero when approaching to Rc, which reflects the influence of further
atoms on the atom in the center. The problem with such a cut-off function is the
discontinuity of the second derivative at the cutoff radius [11]. This discontinuity can
cause errors in molecular dynamics simulation, but this limitation can be overcome
with a sufficiently large cutoff [11]. Symmetry functions are multiplied by the cutoff
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function so the atoms out of the sphere do not contribute to the description of the
environment and thus to the prediction of the energy.

The last limitation for the symmetry function is its differentiability and analytical
form of differentiation. The request originates in Equation (1.22), where we need dif-
ferentiation of the symmetry function to obtain forces. The atomic-centered symme-
try function is divided into two parts. The radial symmetry function which describes
two-body interaction and the angular symmetry function represents three-body in-
teraction. Three examples of symmetry functions (G1, G2, G3) are shown below

G1
i =

∑
j

fc(Rij) (1.24)

where index j describes all atoms within the cutoff radius Rc and index i refers to
the atom in the center of the atom sphere.

G2
i =

∑
j

eη(Rij−Rs)2fc(Rij) (1.25)

function G2 is base on Gaussian function of a width η and s shift Rs

G3
i =

∑
j

cos(κRij)fc(Rij) (1.26)

The symmetry function G3 should not be used alone but in combination with other
symmetry functions. The G3 symmetry function is similar to the description of the
environment by Fourier series with parameter κ [11].

Angular symmetry functions can have the following description

G4
i = 21−ζ

∑
j,k ̸=i

(1+λ cos(Θijk))
ζe−η((Rij−Rs)2+(Rik−Rs)2+(Rjk−Rs)2))fc(Rij)fc(Rik)fc(Rjk)

(1.27)
G5

i = 21−ζ
∑
j,k ̸=i

(1 + λ cos(Θijk))
ζe−η(Rij−Rs)2+(Rik−Rs)2fc(Rij)fc(Rik) (1.28)

where parameter λ is equal to -1 or 1, parameter ζ refers to curvature of the symme-
try function. The function G4 describes the interaction between all three atoms ijk,
while function G5 describes the interaction between centered atoms i with atoms jk
determined by angle Θijk [11].

Because the value of symmetry functions can range widely, it is convenient to scale
or center them due to numerical reasons. Such a scaling can be simply done by

Gscaled =
G−Gmin

Gmax −Gmin

(1.29)

and centering
Gscaled = G−Gaverage (1.30)

if both scaling and centering are applied

Gscaled =
G−Gaverage

Gmax −Gmin

(1.31)
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where Gmin, Gmax, Gaverage represents the minimal or maximal value of a particular
symmetry function respective to its average.

All symmetry functions are based on the summation of all atoms in the particular
cut-off sphere. The advantage of this summation is the independence of the num-
ber of atoms in the sphere around the central one. On the other hand, information
about the initial structure is lost. Thus the transformation from Cartesian coordi-
nates to atom-centred symmetry function is not bijection and it cannot reproduce
original Cartesian coordinates from a given set of symmetry functions. Great care
is needed to take on setting symmetry function sets and try to avoid the situation,
where two different structures are described by the same symmetry function set but
have different energies. It is common to use more symmetry functions with different
parameters to ensure a unique relation between the symmetry function set and the
energy. For radial symmetry functions, it is common to calculate the second differ-
entiation concerning parameter η in equation (1.25) and find the value of ηmin where
the second derivative is zero. Then create an equidistant mesh of values from zero
to determined value ηmin.

For angular symmetry function, it’s common to set its parameters as η = 0, λ =
±1, ζ = 1, 2, 3, 4, 16. This initial guess usually ensures a sufficient description
of structures. The influence of the parameters on the shape of radial and angular
symmetry functions is shown in Figures 1.7 and 1.8. In the latter figure, note can
be seen that the symmetry function with parameter λ = ±1 causes sampling to go
through all angles.

Figure 1.7: (a) Influence of Rc on the shape of cut-off function, (b) Equidistant sampling
of radial symmetry functions concerning parameter η. Figures taken from Ref. [11].

1.3.3 Extrapolation and interpolation

The quality of the prediction of the machine learning potential strongly depends
on the number of extrapolations and interpolations.

Extrapolation occurs when the model is forced to predict data beyond the known
data from the data set. In such cases, the model can give us very poor or unreliable
predictions and the data has to be presented with care. On the other hand, interpo-
lation is a situation when the dataset is poorly sampled and the model has a poor
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Figure 1.8: (a) Influence of parameter ζ for λ = 1, (b) Influence of parameter ζ for λ = -1.
Figure taken from Ref. [11].

prediction.

The occurrence of the extrapolation is easy to detect. It is known, what the data set
looks like and it is not hard to detect when the model goes out of the data set range.
The more problematic is the detection of the interpolations. It is hard to detect the
regions of poor sampling. The convenient way, how to detect the interpolation is to
create more machine learning models of the same methodology with different capac-
ities (e.g. number of neurons). If the models predict very differently on particular
data points, it means, that such a data point is poorly sampled and needs to be
added into the data set.

In general, the goal is to reduce the extrapolation and interpolation by sufficient
sampling of the data set and by the diverse dataset.
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1.4 Shape memory alloys

Shape memory alloys (SMA) are widely studied materials due to their reversible
martensitic microstructural transformation that leads to extraordinary mechanical
properties. SMAs are also of great industrial interest because of their application
in the biomedical, aerospace, or automotive industries. The phase transformation
is usually between the parent phase, which appears at high temperature, and the
martensitic phase, a lower temperature phase. The reversible martensitic transfor-
mation causes the two main features of the SMAs: shape memory effect and supere-
lasticity.

The martensitic transformation in materials is a very complex problem that demands
an investigation on all possible theoretical levels, from DFT calculation through mul-
tiscale models in molecular dynamics to continuous models [1, 13]. A frequently used
method for experimental observation of martensitic transformation is transition elec-
tron microscopy. Nowadays transition electron microscopy provides high-resolution
imaging reaching the atom level but only artifacts of the transformation can be seen
and guessing the processes backward is challenging. Theoretical approaches, such as
DFT can offer us an insightful view on a microscopic level, but the calculations are
constrained by the ground state which is not suitable for modeling processes such
as shape memory effect because these effects are usually coupled with temperature.
Methods such as ab-initio molecular dynamics could be alternatives but we are lim-
ited by the size of the supercell and the computations can be demanding. The last
computational technique to observe the time evolution of a system on an atomic level
is MD, which seems suitable for such a task, but usually, the available interatomic
potentials are not able to capture the complexity of the martensitic transformation.

Even though SMAs have been intensively studied for over a half of century, many
problems remain. During the martensitic transformation, the system can undergo
plastic deformation via dislocation movement in specific slip systems and defects can
be created which can lead to loss of reversibility and ultimately loss of the unique
mechanical properties. In this work, we will focus on the mostly studied alloy Nickle
- Titanium (NiTi) which is well known for its good transformation reversibility, and
biocompatibility and is mostly used in SMA applications.

1.4.1 Shape memory and superelasticity

The shape memory effect is the ability of a material to recover its original shape
after a large (several percent) inelastic deformation. At temperature below Mf the
system is in self-accommodated twinned martensite, when an external stress is ap-
plied, the structure becomes fully detwined, which remains so upon unloading. Heat-
ing the unloaded detwinned martensite above Af would transform it into a parent
phase called austenitic which can return to the original twinned martensite by cool-
ing.

Superelasticity is the isothermal effect above Af temperature. It enables material
full recovery after inelastic strain. Through stress underloading, the austenitic phase
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is transformed to detwinned martensite and during unloading, the microstructure
is reverted into austenite [13]. These processes are shown in Figure 1.9. The path

Figure 1.9: Phase transformations during shape memory effect (path c - d - a-c) and
superelasticity (path a - b - d - a). Figure taken from Ref. [13].

from twinned martensite (c) through fully detwinned martensite (d) and austenite
(a) back to twinned martensite represents the shape memory effect. Superelastic-
ity above temperature Af is defined by the path from austenite (a) to detwinned
martensite (d) back to austenite (a).

1.4.2 Martensitic transformation

The martensitic transformation is a diffusionless phase transformation in solids,
in which atoms move cooperatively, and often by a shear-like mechanism [14]. The
martensitic transformation is divided into two main groups, weak transformation and
reconstructive transformation [15–17]. Weak transformation is a process in which the
symmetry group of both the parent and product phase is included in a common finite
symmetry group whereas reconstructive transformation occurs otherwise [15]. The
idea behind reconstructive phase transition can be shown by a 2D model square-
to-hexagonal phase change. Let’s assume a square lattice, as it is shown on the left
side of Figure 1.10. This cell is transformed into the unit cell of the hexagonal lat-
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tice. Based on symmetry, it can establish a new dashed unit cell that is equivalent.
The new dashed unit cell can be transformed back into the squared lattice, which is
shown on the right side of Figure 1.10. The same squared lattice is observed, however
the original unit cell (marked with a solid line) is sheared. It means that during the

Figure 1.10: A lattice-invariant shear generated by a forward and reverse square-to- hexag-
onal phase transformation. Figure taken from Ref. [15].

transformation, applying symmetry operation and transforming back, we have de-
formed the crystal through a lattice-invariant shear [15]. Because the squared lattice
are the same, as they represent the same lattice, the energy surface of the crystal
has infinitely many wells regarding infinitely many same lattices. The shape of the
energy landscape is determined by Landau’s theory of phase transition [18]. For re-
constructive martensitic transformation, the energetic barrier between the infinitely
many energy wells of the crystal is at most equal to that of the underlying trans-
formation. Based on mathematical theory it can be shown that any reconstructive
transformation necessarily generates unbounded distortion which in the end leads
to the irreversible phase change [15]. A deeper discussion is out of the scope of this
work, see Ref. [15, 19, 20].

The energetic landscape of the weak and reconstructive martensitic transformation
is shown in Figure 1.11. Figure 1.11 (a) is an energy landscape of reconstructive
transformation in the square-to-hexagonal lattice, where s denotes to square phase
and h denotes to hexagonal one. Figure 1.11 is an energy landscape of the weak
square-to-rhombic martensitic transformation. The squared state s in metastable
and new minima appeared at intermediate rhombic configuration r. The Erricksen-
Pitteri neighborhood (EPN) of the weak martensitic transformation refers to the
part of the energy landscape that does not contain any lattice-invariant shears. Thus,
contains only a finite number of energy wells [15]. Alternatively, it is a neighborhood
beyond the set of martensitic lattices related to the reference lattice of austenite
by unique lattice correspondence resulting from the transformation path [21]. This
above-mentioned fact has the following implication: Reconstructive transformations
are accompanied by plastic deformation through dislocation and twinning in the
parent phase that leads to the irreversibility of the phase transition.
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Figure 1.11: The r denotes rhombic, s to squared, and h to hexagonal, (a) the energy profile
of square-to-hexagonal reconstructive transformation along the s-h-s line; (b) the energy
profile of a crystal close to square-to-rhombic transformation, along the s-r-h line with
metastable square state s. Figure taken from Ref. [15].

1.4.3 NiTi

NiTi is one of the most studied shape memory materials due to its considerable
technological relevance. The martensitic transformation in NiTi undergoes between
low symmetry, low-temperature martensitic B19’ structure, high-symmetry, high-
temperature austenitic B2 structure. The martensitic diffusionless phase transfor-
mation between B2 and B19’ has been extensively studied in the past decades and
the mechanisms of the plastic deformation during the transformation are relatively
well described, see, e.g., Refs. [13, 22]. Although the martensitic phase transforma-
tion of near equiatomic NiTi should be fully reversible because of the group-subgroup
relation for the weak martensitic transformation, as was proposed by Ref. [15], de-
fect generation is still observed. The defects cause degradation of the superelasticity
and shape memory effect shown in Figure 1.12. To investigate the mechanisms be-

Figure 1.12: Shape memory and superelasticity experiments on solutionized 50.1 % Ni–Ti:
(a) Macroscopic plastic residual strain upon temperature cycling under constant stress, (b)
the plastic residual strain at constant temperature (T = 28 ◦C). Figures taken from Ref.
[22].

hind plastic deformation, dislocation slip systems in austenite have been extensively
studied on both experimental and theoretical levels. Detailed atomistic study of en-
ergetically favorable slip system is presented in Ref. [22]. The authors of Ref. [22]
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Figure 1.13: Different possible slip system in austenitic NiTi. The grey array denotes to
slip plane and the arrow shows the slip direction. Figure taken from Ref. [22].

calculated based on the DFT theory the generalized stacking fault energy (GSFE)
[23] for the {011}, {2̄,1,1} and {001} planes in <100>, <111> and <011> directions
in B2 austenite. The combination of all possible slips in austenitic NiTi is shown
in Figure 1.13. The calculations show that the (011)[100] and (011)[11̄1] (here (...)
and [...] denote slip plane and slip direction, respectively) systems are energetically
favorable over other slip systems. This is in agreement with experimental observa-
tions.

Despite a detailed study of plastic deformation in austenite, the occurrence of defects
such as (411̄)P twins which have origin in (201̄)M (subscript P and M denote to
parent phase and martensitic phase, respectively) was still a mystery. Formation of
(201̄)M twins were usually observed in the martensitic phase after straining beyond
recoverability limits, see Ref. [24]. These twins are not predictable by the classical

Figure 1.14: The merge of two EPN of two different austenitic B2 structures related through
lattice invariant shear. The two EPNs are separated by a high symmetry structure refers
to based centred orthorhombic structure(BCO). Figure taken from Ref. [19].
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mathematical theory of martensitic microstructures as they correspond to straining
conditions beyond the given EPN [1]. Straining beyond the given Eriksen-Pitteri
neighborhood was first discussed by Gao et al. in Ref. [19, 20]. Assume two austenitic
B2 structures which are related through a lattice invariant shear. Each B2 structure
has its own EPN which can be connected into one energetic landscape as illustrated
in Figure 1.14. To assume the connection between energetic landscapes, the existence
of a related high-symmetry structure is needed, the existence of such a structure will
be discussed later. The high symmetry structure should be metastable and create
an energetic barrier between two EPNs. However, through the shear strain, the

Figure 1.15: Free energy landscape of merged EPN under shear strain. Straining causes
the vanishing of the energetic barrier of metastable high symmetry structure and creates
a single energetic well. Figure taken from Ref.[19].

energetic landscape is distorted in a way that the energetic barrier between two
EPNs vanishes and the transition becomes barrierless. What is more, shear strain
can create a single energetic well as it is shown in Figure 1.15. This phenomenon is
called a symmetry-dictated non-phase transformation pathway [19].

As was already mentioned the interconnection of two EPNs lies in the presence
of a high symmetry structure. At the beginning of the century was surprisingly
found that the B19’ is not an energetic ground state. Theoretical calculation based
on DFT showed that the base-centered orthorhombic structure B33 is more ener-
getically favorable than B19’, see Ref. [25]. However, the B33 structure was never
experimentally observed. The fact that B19’ is more favorable over B33 despite B33
having lower potential energy is usually justified by the free energy of the system.
The act of temperature causes instability and in the end, other structures are more
stable even though it has higher potential energy. Another feature in favor of B33
as a transient state between two EPNs is the existence of two crystallographically
equivalent B2 states. Thus one B33 can be in both EPNs of different B2 structures
as shown in Figure 1.14.
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Results and discussion

In this section, I will introduce the method employed to construct an NN potential
for B19’ NiTi that produces consistent results with DFT and experiments. Prior to
this, I will discuss the development of an NN potential for silicon, which served me
as a proof-of-concept model. I will establish basic physical properties such as elastic
constants and the phonon dispersion. The computational results predicted by the
NN potentials will be compared to those obtained from existing analytical potentials
and experimental data.

The data set will be generated by means of DFT simulations using the VASP code
[26–28]. The NN potential will be fitted by the program RuNNer [29, 30]. All MD
simulations are run under the LAMMPS code [31, 32]. The implementation of the
fitted neural network for predicting the interatomic forces in MD systems is carried
out using the n2p2 package [8, 33].

2.1 Proof-of-concept: Neural network potential for
silicon

The aim of this part is not to create the most accurate potential but to demon-
strate the generality and applicability of the NN potential model in the context of
MD simulations. The created potential will be compared to the already existing
analytical Tersoff potential which is presented in Ref. [34].

2.1.1 Basic properties of silicon

Silicon crystals naturally form under the diamond structure with a lattice pa-
rameter a = 5.43 Å. The space group of Silicon is 227 (F d-3m) and the primitive
cell contains two atoms. The primitive lattice vectors are

a⃗1 =
a

2
x̂+

a

2
ŷ a⃗2 =

a

2
x̂+

a

2
ẑ a⃗3 =

a

2
ŷ +

a

2
ẑ (2.1)

where x̂, ŷ, ẑ refers to unit vectors of the orthogonal coordination system. The posi-
tions of the two basis atoms are given in fraction coordinates concerning the lattice
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constant by
B⃗1 = (0, 0, 0) B⃗2 = (0.25, 0.25, 0.25) (2.2)

I will further assess the quality of the potential through elasticity tensor Cijkl which
describes the elastic properties of the material. The linear stress-strain relation can
be written in tensor notation as

σij = cijklϵkl (2.3)

where σij represents stress and ϵkl denotes to the infinitesimal strain tensor. Because
diamond-structured silicon is a cubic crystal, the elasticity tensor has only three
independent values C11 = C22 = C33 , C12 = C21 = C31 = C32 = C13 = C23 and C44

= C55 = C66, according to the Voight notation. The rest of the values are zero due
to the symmetry of the crystal. Following the experimental measurements presented
in Ref. [35], the elastic constants at room temperature are C11 = 165.64 GPa, C12

= 63.92 GPa, and C44 = 79.51 GPa. Then, the elasticity tensor reads (values are in
GPa) 

165.64 63.92 63.92 0 0 0

63.92 165.64 63.92 0 0 0

63.92 63.92 165.64 0 0 0

0 0 0 79.51 0 0

0 0 0 0 79.51 0

0 0 0 0 0 79.51


(2.4)

2.1.2 Data set for the neural network potential

To train the NN potential, I constructed a data set that contains 752 structures of
conventional cells with eight atoms. To ensure thermal fluctuations in all directions,
some of these structures were obtained from an MD simulation of Si following NPT
conditions at T = 300 K and P = 0 bar using the Tersoff potential from Ref. [34]. The
data set also contains structures in which the atoms were randomly displaced up to
0.2 Å, structures in which the cell was compressed up to 2%, and structures which
were sheared up to 0.5% in (001)[100], (100)[001], and (100)[010] directions. The

Table 2.1: Dependence of the calculated energy per atom of silicon on the plane-wave
basis size.

plane-wave basis [eV] energy [eV] plane-wave basis [eV] energy [eV]
250 -5.39876685 550 -5.42216369
300 -5.41172667 600 -5.42218459
350 -5.41902081 650 -5.42223646
400 -5.42114846 700 -5.4222662
450 -5.42205728 750 -5.42227147
500 -5.42219311 800 -5.42225724
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resulting energies and forces for each structure were calculated by DFT. Brillouin
zone was sampled employing the Monkhorst Pack net with 11 k-points in each
direction of the reciprocal lattice and the size of the basis was set to 500 eV. In my
DFT calculations, PAW PBE potential for silicon was adopted. The final parameters
were set based on the convergence with different plane-wave basis sets and different
densities of points in the first Brillouin zone. The dependence of the energy per atom
on the plane-wave basis is shown in Table 2.1. It is sufficient to achieve an accuracy
of 1 meV per atom because such accuracy is limited by the neural network fit itself.
The energy values from Table 2.1 are plotted in Figure 2.1. The relation between the

Figure 2.1: Relation between the energy per atom and the size of the plane-wave basis
referred to as ENCUT.

number of k-points in the Brillouin zone and the energy per atom is shown in Figure
2.2. Note in Figure 2.2 that although the energy values fluctuate, all deviations are
under the threshold of 1 meV per atom,

2.1.3 Neural network potential

The potential was fitted by the RuNNer code. For the atomic environment de-
scription, atom-centered symmetry function see equation (1.25) and (1.27) for radial
respectively angular symmetry function. In total 26 radial and angular symmetry
functions were used. The radius of the cut-off sphere was set to 6.36 Å and the
cut-off function was identical to the equation (1.23). The neural network used to
calculate the interatomic forces during an MD simulation consists of two hidden
layers, each containing 10 neurons. The hyperbolic tangent activation function is
adopted. For the output layer, however, the linear activation function is employed.
The test dataset was 10% of the whole dataset and during the learning 10% of
forces were used. I used 30 epochs to train the neural network. The Kalman filter
was used as the training algorithm [8, 33]. A detailed description of all symmetry
functions and the setup is in the Attachment of this work. The root mean squared
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Figure 2.2: The relation between sampling of the Brillouin zone and the calculated energy
per atom. The number on the x-axis represents the number of k-points used in the sampling
for each direction of the reciprocal space.

error (RMSE) cost function is adopted

RMSE =

√∑N
i=1(xi − x̂i)2

N
(2.5)

where N is number of inputs, xi is the reference value and x̂i is the value predicted
by the model. Figure 2.3 shows the distribution of the energies per atom across
the dataset. The energies are distributed within a reasonable range that varies from

Figure 2.3: Distribution of energy per atom values from the dataset.

-5.4 eV to -3.9 eV. The lowest energies denote states around 300 K obtained from
MD and the shearing of the cell. The highest energies come from the random atom
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displacements imposed to the cells. It is important for the quality of the fit that the
data set is sampled sufficiently. In addition, Figure 2.4 shows the evolution of the
prediction error for the energies. The prediction error of energy smoothly decreases

Figure 2.4: Evolution of energy prediction error during the process of training.

for both the training and test data. In Figure 2.5, the evolution of forces error
prediction. The error also converges. The best prediction is observed at the epoch

Figure 2.5: Evolution of forces prediction error during the process of training. Forces are
calculated from the energy prediction.

14. The energy and force errors obtained from this epoch are provided in Table 2.2.

It is not always the best option to take the weight and biases setup from the last
epoch despite it having the smallest error. As was mentioned in Section 1.2.3, errors
on the train data will always decrease, however, errors on the test data will at some
point start to increase. This point indicates that the model becomes overfitted and
loses its ability to predict. Another way how to determine the quality of prediction is
to compare data from the data set and the predicted data. In an ideal case, I should
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Table 2.2: The error in prediction of energies and forces from epoch 14.

RMSE train data test data
Energy [eV/atom] 0.0015 0.0024
Force [eV/Bohr] 0.0382 0.0425

observe equality in the ratio of the predicted energy (model) and the reference energy
(DFT) which can be represented with a linear function. The relations between the
reference energies and forces and the prediction of the model are shown in Figures 2.6
and 2.7. These types of plots are referred to as correlation graphs. The correlation

Figure 2.6: The relation between reference energies from DFT calculation and predicted
energies. Data are taken across the data set.

graphs show that is NN potential model of silicon follows very well the energies and
forces calculated by DFT as well as preserves their distribution, as shown in the
histograms in Figures 2.6 and 2.7.

2.1.4 Elastic constants

As a first insight into the physical properties of created interatomic potential, I
evaluate the elasticity tensor. To do so, the elasticity tensor is obtained from the
relation between energy and strain

Ψ(ϵ) =
1

2
Cijklϵijϵkl (2.6)

where Ψ in energy, Cijkl represents elastic constants an ϵ is strain, for more details
see Ref. [32]. Using the stress-strain relation from Equation (2.3), elastic constants
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Figure 2.7: The relation between reference forces form DFT calculation and predicted
forces. Data are taken across the data set.

can be calculated directly from the energy as

σij =
∂Ψ

∂ϵij
= Cijklϵkl

Cijkl =
∂Ψ

∂ϵij∂ϵkl
(2.7)

I will use this approach which is implemented in LAMMPS. The calculation is based
on static straining of the system during which the change of the energy is extracted
at 0 K without entropy effect. The calculated elastic constants with the use NN
potential have the following form with values in GPa.

NN potential ⇒



167.92 55.90 55.90 0 0 0

55.90 167.92 55.90 0 0 0

55.90 55.90 167.92 0 0 0

0 0 0 69.97 0 0

0 0 0 0 69.97 0

0 0 0 0 0 69.97


(2.8)

It is important to mention that the values of the elastic constant are averaged to
two digits and that all elements of the tensor are not exactly zero. To compare the
elastic constants from the NN potential with those predicted by DFT, I provide the
elasticity tensor obtained from DFT using the same computational setup as was
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used for the data set.

DFT ⇒



159.68 63.11 63.11 0 0 0

63.11 159.68 63.11 0 0 0

63.11 63.11 159.68 0 0 0

0 0 0 76.10 0 0

0 0 0 0 76.10 0

0 0 0 0 0 76.10


(2.9)

Note that the differences between the elastic constants computed with the NN po-
tential (Equation (2.8)) and by DFT (Equation (2.9)) are small. These differences
can have the origin in the small data set and the order of energy prediction error as
well as from the slightly different implementation of the employed codes for elasticity
tensor calculation. For comparison, I calculate the elastic constants using existing
analytical Tersoff potential presented in Ref. [34]. The resulting elasticity tensor is
giving in the following matrix (2.10), in GPa units

TERSOFF ⇒



172.57 64.57 64.57 0 0 0

64.57 172.57 64.57 0 0 0

64.57 64.57 172.57 0 0 0

0 0 0 81.29 0 0

0 0 0 0 81.29 0

0 0 0 0 0 81.29


(2.10)

According to the calculated elastic constants (2.8) - (2.10) the NN potential for Si
succeeds in providing accurate results relative to the DFT values, even though the
size of the data set is relatively small. The values are comparable to those obtained
by existing potentials based on other methods, DFT, and experimental data within
reasonable error. The elasticity tensor predicted by the NN potential shows that
the cubic symmetry of the material is preserved, despite such symmetries were not
imposed in the creation of the data set.

2.1.5 Phonon dispersion

Another convenient way to analyze the accuracy of potential is through phonon
dispersion. Phonon dispersion capture the fundamental properties of the lattice dy-
namics, especially in low frequencies which correspond to the acoustic phonon band.
The negative values of frequencies indicate structural instability. Such knowledge
can be very valuable information for the evaluation of the accuracy of the NN po-
tential, thus helping with the improvement of the dataset. The phonon dispersion
calculation can be demanding, especially in DFT. A common approach used to ob-
tain the phonon dispersion of a system composed of atoms implies the calculation of
the dynamical matrix [36]. To do so, the system is decomposed into primitive cells
marked with indexes a. The dynamical matrix is defined by

Dκ,κ′

α,α′(q) =
1√

MκMκ′

∑
a

∂2E

∂uα,κ,a∂uα′,κ′,a
e−iqRa (2.11)
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where q is the wave vector, M is mass, κ represents the index of atom in the
primitive cell, α represents cartesian coordinates, u is the vector of displacement
and summation goes over all primitive cells in the system. The eigenvalues of the
dynamical matrix correspond to the modes of the strucutre. The effect of the tem-
perature is not included, thus the calculation of the phonon dispersion refers to the
ground state at 0 K. Although it is possible to calculate the phonon dispersion at
finite temperature by MD simulation, this is out of the scope of this work. Such
a methodology is presented in Ref. [36]. I calculated the phonon spectra from the
dynamical matrix with the use of LAMMPS and the tool Phonopy [37, 38]. The
results were compared to phonon spectra from the theoretical calculation and the
experimental measurement. Figure 2.8 the phonon dispersion predicted by the NN
potential. The frequencies are in Terahertz. The first important property is that the

Figure 2.8: The phonon spectra calculated from the dynamical matrix. The y-axis is in
THz and the x-axis refers to the wave vectors.

there is no negative branch. The occurrence of a negative branch would point to
structural instability of Si ground state in relaxed structure. Figure 2.9 shows the
phonon dispersion predicted by theoretical calculation (solid line) and from experi-
mental measurements by neutron diffraction (black points), see Ref. [39]. Comparing
the results shown in Figures 2.8 and 2.9, the phonon dispersion calculated by the NN
potential is in good agreement with theoretical and experimental results, where both
figures show similar frequency ranges (up to 16 THz) and reasonably comparable
shapes of the phonon branches.

2.2 Neural network potential for NiTi

In the previous section, I demonstrated that the NN potential approach is suitable
to capture the properties of silicon. This section aims to create the potential for NiTi
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Figure 2.9: The phonon spectra from theoretical calculation (solid line) and experimental
measurement (black points). Figure taken from Ref. [39].

in the martensitic phase and investigate basic physical properties such as elastic
constants and phonons dispersion. As I am focused on the martensitic phase I will
investigate the properties of the B19’ and B33 phases. The austenitic phase is out of
the scope of this work. The analysis includes, whether the NN potential preserves the
shear anisotropy. The results will be compared to reference DFT data or calculation
of the semiempirical 2NN-MEAM potential presented in Ref. [40].

2.2.1 Basic properties of NiTi

The martensitic phase of NiTi occurs in the monoclinic B19’ structure with the
B33 as the theoretical ground state. The lattice vector values are summarized in
Table 2.3, parameters for martensitic B19’ phase are taken from the experimental
measurements presented in Ref. [41, 42]. Interestingly, the DFT calculation consis-
tently results in B33 as a ground state. The lattice parameters of the B33 structure
may slightly differ based on the DFT calculation setup. Here, I present the data
obtained in Ref. [25] using PAW-LDA potential. The primitive cell of NiTi contains
four atoms, two atoms of nickel (Ni) and two atoms of titanium (Ti). The fraction
coordinates of the atoms in B19’ are summarized in Table 2.4, where the data are
taken from the experimental measurement [41, 42]. The values of the atom’s fraction
coordinates in the B33 phase depend on DFT calculation setup, thus are not listed
in this section but will be discussed in the following section. Figure 2.10 shows the
primitive cells of B19’ and B33. The lattice vectors are expressed in the Cartesian
coordinates system 1, 2, 3. The directions of the Cartesian 1- and 2-directions fall
in line with a and b lattice vectors.

The determination of the elastic tensor of NiTi martensitic phase is a challenging
task, both by experiments and computations. The experimental determination is
complicated due to the preparation of a suitable single-variant sample. The theo-
retical calculation has difficulties with the tendency to converge into B33 through
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Table 2.3: The lattice parameters of the monoclinic B19’ and B33 structure. The
data taken from experimental measurement presented in Ref. [41, 42]. Data for the
B33 structure are taken from theoretical calculations presented in Ref. [25].

a(Å) b(Å) c(Å) β(deg)
B19’ [41] 4.646 4.108 2.898 97.78
B33 [25] 4.815 3.921 2.851 107.2

(a) B19’ (b) B33

Figure 2.10: The primitive cell of (a) B19’ and (b) B33. For B19’; lattice vectors and
fraction coordinates are taken from Table 2.3 and 2.4. For B33, lattice vectors and fraction
coordinates are taken from minimization with here resented setup. The lattice vectors are
expressed in the Cartesian coordinates system 1, 2, 3. The directions of the Cartesian 1-
and 2-directions fall in line with c and b.

Table 2.4: The fraction coordinates of atoms in B19’ unit cell. The data taken from
Ref. [41, 42].

x y z
Ti1 0 0 0
Ti2 0.5672 0.5 0.1648
Ni1 0.4588 0.0 0.6196
Ni2 0.1084 0.5 0.5452

minimization. Moreover, B19’ is a monoclinic structure, thus it has 13 independent
elastic constants. The DFT calculation of the elastic tensor is presented in Ref. [43]
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and predicts the following elasticity tensor (all values are in GPa)

B19’ ⇒



209 114 102 0 1 0

114 234 139 0 −7 0

102 139 238 0 27 0

0 0 0 77 0 −5

1 −7 27 0 23 0

0 0 0 −5 0 72


(2.12)

The elasticity tensor for B33 primitive cell was calculated using DFT in Ref. [44]

B33 ⇒



247 137 113 0 33 0

137 231 134 0 1 0

113 134 179 0 −18 0

0 0 0 84 0 2

33 1 −18 0 23 0

0 0 0 2 0 90


(2.13)

A more detailed comparison of the calculation of the elasticity tensor can be found
in Ref. [41, 44].

The experimental values of phonon dispersion are not available, the theoretical study
of the phonon dispersion was published in Ref. [45], the results for B19’ and B33
are shown in Figure 2.11.
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Figure 2.11: The phonon spectra of B19’ and B33. The data are calculated with the use of
DFT. Figure taken from Ref. [45].

2.2.2 The data set for neural network potential

The data set contains 200 structures of a mixture of larger cells which are two
and three times larger in each direction than primitive cells (2x2x2 and 3x3x3 super-
lattices) and primitive cells which are sampled around the transition path between
B19’ and B33. The structures in the data set are added iteratively. The first part of
the data set represents the random fluctuations. Then the structures obtained from
MD (with use of the newly created NN potential) at different temperature levels
are added. In the data set are also structures that are compressed to 97 % of their
original volume and the random displacement of the magnitude of 0.2 Å is applied.
The random displacement of the magnitude of 0.2 was also applied to the structures
without compression. In the data set are included the shearing structures of B19’ in
(100)[001] direction.

In total, the data set contains around 200 structures, this number could seem small,
on the other hand, the structures contain more atoms, in the total data set contains
around 6600 atom configurations.

Energies and forces are calculated with the use of VASP. The Brillouin zone was
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sampled with a Monkhorst-Pack net with 24 k-points in each direction of reciprocal
lattice vectors for calculation on primitive cells. The number of points was adjusted
depending on the size of the structure, for x-times larger cell was used x-times
smaller sampling. It is important to note that such sampling is anisotropic. The
lattice vectors of B19’ therefore the vectors of reciprocal space do not have the
same length, thus some directions of reciprocal space would be more sampled than
others. These inhomogeneities can cause errors in the forces calculations on the other
hand they allow us to calculate the same k-points independently of the size of the
structure. The calculation in the same k-point is for the anisotropic materials such
as NiTi much more important, thus I decided to use the same number of points in
each direction. The influence of sampling on the calculation of the forces and the
error was below 0.000395 eV/Å which is neglectable for our purpose.

The size of the plane-wave basis was set to 650 eV. The PAW potential with the
PBE exchange-correlation function is used for both elements. Due to the random
fluctuation, no symmetries could be used for the speed-up of the calculations. For
Ni, potential with valency 10, and for Ti, potential with p-valence electrons with
valency 10 (further denoted as Ti-pv).

B19’

The dependency of energy per atom on the plane-wave basis is shown in Figure 2.12,
values of the energies are in Table 2.5. The values in Table 2.5 show, that from the
600 eV plane-wave basis size the values of the energies per atom have convergence
in order of 0.1 meV/atom which is more than sufficient for the data set.

The dependence on the sampling in the Brillouin zone is shown in Figure 2.13. All
values are within the error in order of 0.1 meV/atom. I decided to use 24 k-points
for the sampling in each direction of the reciprocal lattice because 24 is divisible
by 2,3 and 4. This is important for the computation of the superlattices 2x2x2 and
3x3x3, where I need to adjust the number of k-points .

Figure 2.12: Relation between the energy per atom and size of the plane-wave basis marked
as ENCUT.
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Figure 2.13: The relation between sampling of the Brillouin zone and calculated energy
per atom. The number on the x-axis represents the number of points used in sampling in
each direction of the reciprocal lattice vectors.

Table 2.5: Dependence of calculated energy per atom of B19’ phase on size of the
plane-wave basis.

plane-wave basis [eV] energy [eV] plane-wave basis [eV] energy [eV]
250 -7.02006342 550 -7.02908775
300 -7.03546932 600 -7.02911627
350 -7.03222247 650 -7.02912461
400 -7.02996445 700 -7.02912202
450 -7.02919416 750 -7.02910879
500 -7.02910310 800 -7.02910738

B33

The B33 structure was obtained by minimizing B19’ with the use of the conjugate
gradient method implemented in VASP. The plane-wave basis size was set to 650
eV, and the reciprocal space was sampled using a Monkhorst-Pack net with 15 k-
points in each direction of reciprocal lattice vectors. Both Ni and Ti were modeled
using the PAW-PBE potential, for Ti a potential with p-valence electrons was used.
The reason why I used smaller sampling in reciprocal space will be discussed in
the following section. The parameters obtained from the minimization are written
in Table 2.6. Figure 2.14 shows the conventional cell suggested by red rectangu-
lar. The conventional cell reflects the orthorhombic symmetries. The orthorhombic
B33 conventional cell can be obtained by rotation along the 2-axis of the Cartesian
coordinates system, such a rotation orients the 1’- and 3’-direction parallel to the
orthorhombic lattice. The atom position in the B33 structure from the minimiza-
tion is expressed in Table 2.7 in fraction coordinates. The lattice parameters are
comparable with results presented in literature Ref. [25].

To ensure that my calculation setup is also suitable for the B33 structure I calculated
the energy dependencies on a plane-wave basis and k-points sampling as I did for
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Figure 2.14: The orthorombic cell of the B33 mark by the solid red line.

Table 2.6: The lattice parameters obtained after minimization from B19’ structure.
All parameters, such as lattice parameters, angles, and atom positions had a degree
of freedom.

a(Å) b(Å) c(Å) α(deg) β(deg) γ(deg)

B33 4.90806 4.00592 2.92304 90.00 107.01 90.00
B33 [25] 4.815 3.921 2.851 90.00 107.20 90.00

Table 2.7: The fraction coordinates of atoms in B33 structure observed through
minimization.

x y z
Ti1 -0.00246 0.00 -0.05935
Ti2 -0.56966 0.50 0.22415
Ni1 0.11233 0.50 0.49775
Ni2 0.45487 0.00 0.66705

B19’ structure. In Figures 2.15 and 2.16 are plotted energy differences per atom
B19’ - B33. The error in plane-wave basis energies is on the order of 0.01 meV/atom
and for the k-points sampling is on the order of 0.1 meV/atom, for the same setting
as was used for B19’. Thus the quality of the NN potential fit is limited by the error
of the order of 0.1 meV/atom.

Note to the minimization

In this section, it was previously stated that 24 k-points would be used in each
direction of reciprocal lattice vectors for all calculations, or the number would be
adjusted based on the size of the superlattice to preserve the same density of k-
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Figure 2.15: The energy difference between B19’ and B33 depended on the size of plane-
wave basis.

Figure 2.16: The energy difference between B19’ and B33 depended on the number of k-
points in reciprocal space. The number on the y-axis represents the number of points used
in each direction of the reciprocal space basis vectors. The plane-wave basis was set to 650
eV.

points. However, during the minimization process, only 15 k-points were used in
each direction of reciprocal lattice vectors. The reason behind this change is that I
was not able to capture the ground state B33 structure with the use of 24 k-points.
Finer sampling in the Brillouin zone causes the existence of very shallow minima
around angle β = 101◦ in step 25, which stops the minimization algorithm. This
stop is marked in Figure 2.17 by the red dashed line.

Figure 2.17 shows the calculated energies for the structures from the minimization
path of B19’ obtained from the minimization with 15 k-points setup. Both calcu-
lations have a similar setup but only differ in the density of the reciprocal space
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Figure 2.17: The energy evolution during the minimization from B19’ to B33. The energy
of the whole structure in each minimization step is plotted. The red dashed line suggests
the point where the minimization stops for the 24 k-point sampling.

sampling. For both samplings, the B33 is energetically favorable over other struc-
tures. The local minimum in step 25 is insignificantly small. Thus, in the data set
are used structures from the minimization path with 15 k-points sampling but the
energies of these structures are recalculated with the 24 k-points sampling.

2.2.3 Neural network potential

The potential was fitted by the RuNNer code. For the atomic environment de-
scription were used atom-centered symmetry function, as was presented in the Theo-
retical part, see equation (1.25) and (1.27) for radial respectively angular symmetry
function. In total 73 radial and angular symmetry functions for each element were
used. The radius of the cut-off sphere was set to 6.36 Å and the cut-off function was
identical to the equation (1.3.2). The neural network consists of two hidden layers,
each containing 15 neurons; hyperbolic tangent was used as an activation function,
and in the output layer was used linear activation function. The test dataset was
10% of the whole dataset and during the learning 10% of forces were used. I used 30
epochs to train the neural network. A detailed description of all symmetry functions
and the setup is in the Attachment of this work. As a training algorithm was used
Kalman filter was and the cost function was root mean squared error (RMSE)

In Figure 2.18 is presented the energy distribution in the data set. The lowest en-
ergies correspond to the B33 structure and the highest energies denote the B19’
structures and B19’ and B33 structures which were pressed to 97 % and 98 % of
their original volume. The lowest energies with the highest count in Figure 2.18 refer
to the minimization path from B19’ to B33.

In Figure 2.19 and 2.20 is plotted the evolution of the error in the prediction of ener-
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Figure 2.18: Distribution of energy per atom in the whole dataset.

gies and forces respectively. Both errors smoothly converge and the best prediction

Figure 2.19: The evolution of the energy prediction error during the process of training.
The energy prediction error is per atom.

was observed in epoch 8. In the following section I will used the weight and biases
from this epoch. These errors are written in Table 2.8. The fit reached an accurate
prediction in the energy, all errors are within the range of DFT calculation accuracy.
The Figures 2.21 and 2.22 show the correlation graphs for the energy and forces,
respectively.
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Figure 2.20: The evolution of the forces prediction error during the process of training.
Forces are calculated from the NN potential energy prediction. The forces prediction error
is per atom.

Table 2.8: The error in prediction of energies and forces from epoch 8.

RMSE train data test data
Energy [eV/atom] 0.0005 0.0013
Force [eV/Bohr] 0.0546 0.0529
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Figure 2.21: The relation between reference energies from DFT calculation and predicted
energies. Data are taken from the all structures in the data set

Figure 2.22: The relation between reference forces form DFT calculation and predicted
forces. Data are taken from all structures in the data set
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2.2.4 Elastic constants

The calculation is based on static straining of the system and observing the
change of the energy, thus all data are calculated at 0 K without entropy effect, it
is the same methodology that was used for Si potential.

B19’

The calculated elasticity tensor with NN potential has the following form, all
values are in GPa and averaged to two digits

NN potential ⇒



332.23 167.35 226.39 0 −7.82 0

167.35 245.72 123.62 0 −48.34 0

226.39 123.62 210.51 0 −22.34 0

0 0 0 87.62 0 −4.86

−7.82 −48.34 −22.34 0 23.11 0

0 0 0 −4.86 0 48.69


(2.14)

The calculated elasticity tensor preserved the monoclinic symmetry and is compa-
rable with the values presented in the literature. The biggest differences to the data
from the literature are in C15, C25 and C35 elastic constants. This direction can be
the subject of further development. For the comparison, the elasticity tensor was cal-
culated with the same structure and methodology using the 2NN-MEAM potential
presented in Ref. [40]. The values are in good agreement with the DFT calculation,
see Table 2.9.

B33

I calculated the elasticity tensor for both, the monoclinic primitive cell of B33 and
for the orthorhombic conventional cell. The elasticity tensor for the orthorhombic cell
was obtained by rotation of the coordinates system around 2-axis, see Figure 2.14.
The NN potential preserves sufficiently the orthorhombic symmetry. The calculated
elasticity tensor orthorhombic cell with NN potential has the following form, all
values are in GPa and averaged to two digits.

NN potential ⇒



430.19 235.42 278.33 0 9.34 0

235.42 337.34 197.32 0 −1.73 0

278.33 197.32 99.54 0 −3.30 0

0 0 0 90.55 0 0.04

9.34 −1.73 −3.300 0 23.11 0

0 0 0 0.04 0 56.12


(2.15)

There is no available interatomic potential for B33, thus I can only compare the
values of the elastic constants with the results from DFT calculation, provided in
Equation (2.13).
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Table 2.9: Values of elastic constants of B19’ phase. The values of elastic constants
computed by NN potential are compared to values obtained by DFT in Ref. [44]
and to the values predicted by the 2NN-MEAM potential in Ref. [40].

DFT [GPa] [44] NN potential [GPa] 2NN-MEAM [GPa] [40]
C11 226 332.23 197.04
C22 241 245.72 227.72
C33 179 210.51 186.86
C12 137 167.35 100.87
C13 129 226.39 80.54
C15 27 -7.82 12.44
C23 125 123.62 117.10
C25 -9 -48.34 -12.31
C35 4 -22.34 1.12
C44 76 87.62 66.43
C46 -4 -4.86 -8.22
C55 21 23.11 57.23
C66 77 48.69 40.42

Table 2.10: Values of elastic constants of B33 phase in the coordinate system shown
in Figure 2.10 and in the principal orthogonal directions in Figure 2.14 (denoted
as "ortho."). The values of NN potential are compared to values obtained by DFT
calculation in Ref. [44].

DFT [GPa] [44] DFT - ortho. [GPa] [44] NN [GPa] NN - ortho. [GPa]
C11 226 247 406.70 430.19
C22 231 231 337.34 337.34
C33 179 179 132.0 99.54
C12 137 137 235.42 237.70
C13 113 96 278.33 195.03
C15 33 -5 32.55 9.34
C23 134 134 197.32 282.82
C25 1 0 9.77 -1.73
C35 -18 2 59.67 -3.30
C44 84 83 87.99 90.55
C46 2 0 -0.03 0.04
C55 23 23 23.11 27.60
C66 90 90 58.68 56.12
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2.2.5 Phonon dispersion

I calculated the phonon dispersion with the use of LAMMPS and the tool Phonopy.
The calculations are static and were held at 0 K. The calculated phonon dispersion
curve from Figure 2.23 have similar shapes of branches as the published one in
Figure 2.11. Both structures have a similar range of phonon frequencies and there
is no occurrence of negative phonon spectra branches.

(a) B19’

(b) B33

Figure 2.23: The phonon spectra of B19’(a) and B33 (b). The values of the frequencies are
in Thz.
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2.2.6 Stacking fault energy

The stacking fault energy (SFE), a measure of the energy cost when two adjacent
atomic planes are sheared relative to each other, is a critical parameter in plastic
deformation [46]. The topology of such an energy landscape can provide us insightful
information into the mechanisms for dislocation slip, partial dislocation, or creation
of stacking faults in the crystal. The SFE is determined by a difference between a
sheared structure and an unperturbed system normalized by the surface between
adjacent atomic planes.

γ =
Eshear − E0

A
(2.16)

where Eshear is the energy of sheared system, E0 is energy of the unperturbed system
and A is the surface between adjacent atomic planes.

I examine the SFE surface of the NiTi B19’ phase containing 4 primitive cells in
[100], [010], [001] directions (further denoted as 4x4x4 structure). The shear would be
applied in the (100)[001], (100)[010], (010)[100] directions, and for the (100) plane
by shearing in [010] and [001] directions. The energy calculation will be done by
NN potential in the program LAMMPS using periodic boundary conditions in all
directions. Figure 2.24 shows NiTi 4x4x4 supercell of B19’ phase. In Figure 2.24, the
red parallelogram denotes the shearing on the (001) plane, the green parallelogram
marks the shearing on the (100) plane. The rest of the structure is static. With the
application of shearing, the instantaneous SFE is calculated for every configuration.
TIn the following section, the resulting SFE profiles obtained from the shearing
simulations using the NN potential will be compared to those using the 2NN-MEAM
potential from Ref. [40].

Figure 2.24: Schematics of the applied shearing in B19’ NiTi. The red parallelogram area
marks shearing on the (001) plane whereas the green green parallelogram denotes shearing
on (100) plane.
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2.2.7 Shearing responses of B19’: NN vs. 2NN-MEAM po-
tentials

Figure 2.25 shows the calculated SFE based on the Equation (2.16) using NN
potential. The energies in Figure 2.25 are calculated without minimization. The cal-
culations were made in the (100)[001], (100)[010], (010)[100] directions with shearing
step 0.01 Å. In the simulations, the way that the shearing along the slip plane is

Figure 2.25: SFE in the (100)[001], (100)[010], (010)[100] directions. The energies are ob-
tained without minimization by NN potential. The shearing step is 0.01 Å.

forced leads to atomic environments where atoms are too close to each other that
are not included in the dataset. Therefore, the resulting energies and forces are not
trustworthy, as shown by the number of extrapolations generated during the simula-
tions in Figure 2.26. In these cases, the results should be taken with great care. The

Figure 2.26: The number of extrapolations generated by the NN potential during the
simulation of shearing.

number of extrapolations generated by NN potential during the SFE calculation is
plotted in Figure 2.26.
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From Figures 2.25 and 2.26 is seen that the NN potential reproduces experimentally
observed anisotropy of the NiTi B19’ phase. The shear in direction (100)[001] is
energetically favorable over the other directions which is in agreement with the
experiments. Moreover, NN potential model does not generate any extrapolation in
this direction. By way of comparison, I run an identical shearing process using the
2NN-MEAM. The results are in Figure 2.27. Confronting the results from newly

Figure 2.27: SFE in the (100)[001], (100)[010], (010)[100] directions. The energies are ob-
tained without minimization with the use of 2NN-MEAM potential. The shearing step is
0.01 Å.

developed NN potential in Figure 2.25 and from 2NN-MEAM potential in Figure
2.27, it is clear that NN potential preserves the shearing anisotropy. Moreover, the
NN potential predicts smoother energy profiles than those predicted by the 2NN-
MEAM, compare Figures 2.25 and 2.27. To support such a claim, I will focus more
on the energy landscape in (100)[001] direction.

(100)[001]

Because the developed NN generates no extrapolation in (100)[001] direction, I
can compare it to the 2NN-MEAM potential. This shear direction has the lowest
SFE also during the shear process, the high symmetry orthogonal phase B33 should
locally occur, see the Theory part, Figure 1.14.

Figure 2.28 shows the SFE calculated using NN potential. The system reaches the
local minimum by shearing by 1.5 Å . Such a minimum is in agreement with the
theoretical occurrence of the local high symmetry phase. In Figure 2.29, the SFE
computed by 2NN-MEAM potential is plotted. By comparing the Figures 2.28 and
2.29 it is clear that the NN potential outperforms the 2NN-MEAM potential when it
comes to energy prediction. The NN potential energy landscape is much smoother.
Although both potentials predict a local minimum around the shearing direction
(100)[001] at 1.5 Å, the energy landscape obtained by the NN potential is smoother
and more well-defined than that predicted by the 2NN-MEAM potential.The height
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Figure 2.28: SFE during shearing in (100)[001] direction. Energy is calculated by NN
potential.

Figure 2.29: SFE during shearing in (100)[001] direction. Energy is calculated by 2NN-
MEAM potential.

of the energetic barrier differs by the order. This can be caused by the use of a
different DFT setup in the calculation of the data set.

2.2.8 Possible slip pathways on the (100) slip plane

In this chapter, a more detailed study of SFE will be presented. I will examine
the SFE values on the (100) plane by shearing the red parallelogram as is shown
in Figure 2.24 in [010] and [001] directions. The shearing magnitude is 0.1 Å and
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periodic boundary conditions were used in all directions. The energies are calculated
by the NN potential.

This plane exhibits high anisotropy. The easy shear in (100)[001] direction and the
occurrence of the high energetic barrier in the area of shear at 2 Å in the (100)[010]
direction. The existence of such a barrier causes the easy shear only in the (100)[001]
direction This is in good agreement with the experiments. Moreover, the topology
of SFE on the (100) plane suggests the existence of a saddle point and a possible
slip pathway. Such a path is marked by red arrows in Figure 2.30

Figure 2.30: SFE in the (100) plane. The energies are calculated by the NN potential. Red
arrows mark the possible slip pathway.

Figure 2.31 shows the extrapolations generated by the NN potential during shearing
in the (100) plane, where the largest number of extrapolations coincide with the
structures representing situations when the atoms are too close to each other. Such
structures are not included in the data set.
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Figure 2.31: The number of extrapolations of the NN potential model during the simulation
of the SFE landscape on the (100) plane.
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Conclusions

In this work, I present the state-of-the-art methodology for the development of
data-driven interatomic potentials using neural networks (NN), involving the gener-
ation of an extensive dataset employing density functional theory (DFT) computa-
tions. I create the interatomic potential for B19’ martensitic nickel-titanium (NiTi)
crystals with a focus on the plastic deformation mechanisms and the microstructure
evolution.

Overall, this technique allows for the development of accurate potentials for molec-
ular statics (MS) and molecular dynamics (MD) simulations that show accuracy
levels comparable to those from ab-inition molecular dynamics DFT calculation. To
support this claim, I develop two NN potentials for diamond crystal silicon (Si) and
B19’ NiTi. To evaluate the accuracy of these NN potentials, I calculate the result-
ing elastic constants and phonon dispersion curves. Then, I compare these results
with those predicted by DFT and those measured in previous experiments. The
analysis shows that the NN potentials for both Si and B19’ NiTi are fully compara-
ble or outperform the existing parametrized, analytical models (Tersoff for Si, and
2NN-MEAM for NiTi).

This work aimed to develop the NN potential for NiTi B19’ martensitic phase.
For analytical potential, such a system is a challenging task because these models
struggle to capture its complexity. I focused mainly on the elastic properties of the
martensitic B19’ phase. I use the NN potential for NiTi to assess the energetically
favorable plastic slip pathways in the martensitic B19’ phase. Such mechanisms
remain to be established in the available literature. According to the predictions by
the NN potential, the B19’ crystal exhibits strong shearing anisotropy, especially
in the (100)[001] direction. Under shearing along this direction, the NN potential
predicts the existence of a possible saddle point in the stacking fault energy surface
on the (100) slip plane, suggesting a possible slip pathway in B19’ NiTi.

According to the computational results, the developed NN potential appears to
be suitable for MS and MD simulations of B19’ NiTi crystals. Nevertheless, the
simulations running the current NN potential generate a relatively large number
of extrapolations in energy prediction. The dataset presents gaps in the energy
distribution, which may cause a loss of generality. The elimination of such faults will
be the subject of further research. With the generation of a much richer dataset, the
NN potential for NiTi may bring a fundamental insight into the governing plastic
mechanisms in B19’ martensites.
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