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Abstract

The search for proton decay has long been a cornerstone of particle physics, as its obser-
vation could offer evidence for the Grand unification theories (GUTs). Despite decades
of experimental efforts, no evidence of proton decay has been found. Nevertheless,
updated proton lifetime limits have helped to rule out some Grand unification models
and constrain others, making the ongoing search highly relevant. To further the search,
the new underground detectors with longer exposure time, improved sensitivity to cer-
tain proton decay channels, and stronger background suppression are needed. One of
the leading projects in the field is the the Deep Underground Neutrino Experiment
(DUNE), an international scientific collaboration and a future neutrino observatory.
The DUNE’s Liquid Argon Time Projection Chamber (LArTPC) far detector will fa-
cilitate the search.

In recent years, machine learning has emerged as a valuable tool at different stages
of high-energy particle physics research. Deep neural networks, in particular, possess
significant potential to improve detection sensitivity.

Several proton decay channels are predicted by GUTs with p → e+π0 and p → K+ν̄

being dominant. In this work, we focus on the latter. We employ two ensemble con-
volutional neural network models with a transfer learning approach to distinguish be-
tween the simulated proton decay and background interactions of atmospheric neutri-
nos on argon. Our late fusion model, combining the three modified ResNet18 model
outputs through a gating mechanism, demonstrates excellent performance in terms of
the ROC AUC and the PRC AUC. Conversely, our early fusion model using EfficientNet
B2 with spatial inputs from LArTPC readout planes only slightly improves the modified
ResNet18 model performance.

Key words: proton decay, convolutional neural network, residual neural network, ensem-
ble technique, the Deep Underground Neutrino Experiment, LArTPC.
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Abstrakt

Pozorování rozpadu protonu by mohlo naznačovat platnost teorií velkého sjednocení
(GUTs). Navzdory desetiletím experimentálního úsilí, žádné známky rozpadu protonu
nebyly pozorovány. Nicméně aktualizované limity životnosti protonu pomohly vyloučit
některé modely velkého sjednocení a omezit jiné. Pro další výzkum jsou zapotřebí nové
podzemní detektory s delší dobou expozice, zlepšenou citlivostí na určité kanály roz-
padu protonu a silnějším potlačením pozadí. Jedním z předních projektů v této oblasti
je DUNE, mezinárodní vědecká kolaborace a budoucí neutrinová observatoř. Vzdálený
detektor s kapalným argonem (DUNE LArTPC far detector (FD)) poslouží k detekci
rozpadu protonu.

V posledních letech se strojové učení stalo cenným nástrojem ve různých fázích vý-
zkumu ve fyzice vysokých energií. Zejména hluboké neuronové sítě mají významný
potenciál pro zlepšení citlivosti detekce.

GUTs předpovídají několik kanálů rozpadu protonu, přičemž dominují p → e+π0

a p → K+ν̄. V této práci se zaměřujeme na druhý zmíněný. Využíváme dvou archi-
tektur konvolučních neuronových sítí a přístupu transfer learning pro klasifikaci simulo-
vaných vzorků rozpadu protonu a pozadí tvořeného interakcemi atmosférických neu-
trin s atomy argonu. Náš late fusion model, kombinující výstupy tří modelů založených
na známé architektuře ResNet18 prostřednictvím tzv. gate metody, dosahuje z hlediska
ROC a PRC charakteristik vynikajících výsledků. Naopak, naše early fusion architektura
používající EfficientNet B2 s prostorovými vstupy z vyčítacích rovin LArTPC poskytuje
pouze mírné zlepšení výsledků ve srovnání s modifikovanou ResNet18.
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Chapter 1

Introduction

It is believed that in the early universe, mere moments after the Big Bang, there was
a balance between the masses and charges of particles and their respective antiparticles.
Contemporary observations indicate a dominance of matter over antimatter by nine
orders of magnitude, as highlighted in [1]. Understanding this asymmetry could hold
important clues to beyond the Standard Model physics.

The conservation of baryon number in interactions of elementary particles is a con-
venient and natural symmetry accounting for the stability of ordinary matter. Under
the baryon number conservation principle, the proton, the lightest baryon, would be
inherently stable as long as baryon number conservation holds. However, no explicit
constraint to baryon number non-conservation is known.

The concept of proton decay, forbidden in the Standard Model, was first proposed by
Andrei Sakharov in 1967 [2], introducing the notion of baryon number violation. Since
then, the theory received considerable attention within the high-energy particle physics
(HEP) domain.

1.1 Standard Model of Particle Physics and Beyond

The Standard Model of particle physics (SM) describes all known elementary particles
and their interactions through electromagnetic, weak, and strong forces. The elementary
particles can be divided into fermions and bosons, with every fermion having a corre-
sponding antifermion with the same properties except for the opposite electric charge.
Fermions can be subdivided into quarks and leptons, constituting all known matter.
Quarks are only found in bound states within the composite particles, hadrons. There
are three types of hadrons: baryons consisting of three quarks, antibaryons consisting
of three antiquarks, and mesons consisting of one quark and one antiquark. The baryon
number B is defined by expression

B =
1
3
(nq − nq) (1.1)

where nq is the number of quarks and nq is the number of antiquarks. According to
Weyl, Stuckenberg, and Wigner, the baryon number is conserved in all interactions in
the Standard Model [3]. In the early 1970s, various beyond the Standard Model (BSM)
theories, such as Grand unification, gained great research interest.

According to Grand unification theories (GUTs), the weak, the strong, and electro-
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magnetic forces are merged into a single unified force at ≈ 1016 GeV. However, particle
accelerators cannot directly produce particles with masses at this energy scale. Nonethe-
less, there is a more feasible approach. In GUTs, the baryon number is not conserved,
and protons are unstable, with finite yet extremely long lifetimes of 1030 − 1036 years
[3]. This range is directly accessible for future experiments [4]. As such, the search for
proton decay is a crucial test for various GUTs models and will provide a better under-
standing of the nature of matter, regardless of whether the decay itself is observed.

1.2 Brief Overview of Proton Decay Search

Initial efforts to detect proton decay with first-generation underground experiments, in-
cluding IMB, Soudan, Kamiokande, and Fréjus, did not yield the anticipated results;
nevertheless, lower limits on proton lifetime for different decay channels were deter-
mined. The need for larger detectors with longer exposure time was evident.

Figure 1.1: Summary of nucleon decay experimental lifetime limits from past and ongo-
ing experiments for several nucleon decay modes, and the model predictions for the life-
times in the domaninat proton decay modes, p → e+π0 and p → K+ν. The limits
displayed are 90% confidence level lower limits on the partial lifetimes, here denoted
τ/B [5].

Consequently, second-generation detectors, such as Super-Kamiokande and Soudan
2, were launched. While these also failed to find evidence for proton decay, the Super-
Kamiokande has put the most stringent limits to date on the proton partial lifetimes.

The next-generation detectors at DUNE, Hyper-Kamiokande, and JUNO will enable
probing proton lifetimes up to 1033 − 1034 [4], which is well within the range predicted
by GUTs. With its exceptional event imaging, particle identification, and calorimetric
capabilities, the DUNE LArTPC FD is poised to be a powerful instrument in the search
for rare processes. Many nucleon decay modes are accessible to DUNE. Among them is
proton decay via p→ ν̄K+, favored by many GUTs models [6].
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Chapter 2

The Deep Underground Neutrino
Experiment

The Deep Underground Neutrino Experiment, hosted by the Fermi National Accelera-
tor Laboratory (Fermilab), is a state-of-the-art neutrino observatory and nucleon decay
experiment under construction. The experiment will comprise a neutrino beam and two
particle detectors, as shown in Figure 2.1. DUNE unites an effort of more than 1000
scientists from over 30 countries striving to explore the enigma surrounding neutrinos.

Figure 2.1: Schematic of the Deep Underground Neutrino Experiment. The accelerator
complex and near detector are hosted at Fermilab, and the far detector is hosted at
the Sanford Underground Research Facility [7].

The experiment will use the world’s most powerful neutrino beam to send neu-
trinos over 1300 km from Fermilab in Illinois to the Sanford Underground Research
Facility (SURF) in South Dakota to examine interactions between matter and neutrinos.
Understanding the changes particles undergo on their journey through earth will give
physicists substantial insights into the history of the universe.

2.1 Key Goals of the DUNE Science Program

The main scientific goals of DUNE are precision measurements of neutrino oscillations
to determine the violation of charge-parity symmetry and the ordering of neutrino
masses, as well as the detection of core-collapse supernova neutrinos and nucleon decay
searches to advance BSM physics [5].
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2.1.1 Nucleon Decay Searches

Baryon number conservation implies proton stability. However, the conservation of
baryon number, while a feature of the SM, lacks a fundamental symmetry to mandate
it. Thus, phenomena like nucleon decay or neutron-antineutron oscillation, violating
baryon number conservation, could unveil new physics. These ideas led to the develop-
ment of large-scale underground detectors (for a brief review, see Section 1.1).

The DUNE FD, with the largest active volume of liquid argon (LAr), will be highly
sensitive to several possible nucleon decay modes. The LArTPC technology is particu-
larly advantageous in tracking and identifying kaons. The entire decay chain for nucleon
decays into charged kaons, e.g., p → K+ν, can be observed in LArTPC provided that
the kaon is reconstructed within the appropriate energy range and the kaon decay mode
is known.

Moreover, DUNE FD scientific program is not limited to kaon-related decay modes.
The studies also include proton decay via p → e+π0 and neutron decay into a charged
lepton and a meson.

The Monte Carlo method (MC) simulations of nucleon decays are being conducted.
In this thesis, we focus on proton decay via p→ K+ν. For more details on proton decay
simulations, see Section 2.3.

2.2 The DUNE Detectors

The DUNE near detector (ND), located 574 m downstream from the neutrino source,
will serve as an experiment control system that will measure the energy spectra νµ and
νe before any oscillation takes place. The ND will conduct neutrino on argon interaction
measurements to minimize systematic uncertainties of the FD observations. The FD will
be installed approximately 1.5 km underground. It will comprise four 10 kt independent
LArTPC detector modules, each contained within a cryostat. Currently, the single-phase
(SP) technology is considered.

2.2.1 Single-Phase Far Detector Technology

In a SP LArTPC, a volume of LAr medium is subject to a drift field of 500 V/cm [5]. As
charged particles traverse the detector, they ionize the argon atoms; the ionization elec-
trons drift horizontally toward the wall of anode plane assembly (APA) units. The APAs
comprise three layers of wires, with two of them strung at 37.5◦ angles (with respect to
the vertical) to form a readout grid. The topmost APA wire layer is strung vertically.
As drifting electrons cross the grid, they induce a bipolar signal. Eventually, the final
layer collects the electrons, resulting in a unipolar signal. The process is illustrated in
Figure 2.2.

At the same time, the charged particles emit the scintillation light, which arrives at
photon detectors nanoseconds later. Position in the drift direction can be reconstructed
by comparing the time it takes for the ionization charge to be collected on the anode
and the scintillation light detection time.
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Figure 2.2: The general operating principle of the SP LArTPC. Negatively charged ion-
ization electrons from the neutrino interaction drift horizontally, opposite to the electric
field Edrift in the LAr and are collected on the anode made of the U, V and X sense wires.
The right-hand side represents the time projections in the two dimensions as the event
occurs [5]

2.2.2 The DUNE Near Detector

Located 574 meters downstream from the neutrino source, the DUNE ND will measure
the initial composition and energy of the neutrino beam, thus improving the calibra-
tion and interpretation of observations at the FD. The ND will also be instrumental in
studying neutrino-argon interactions in both liquid and gaseous states.

The ND’s independent physics program complements that of the FD. It will focus
on electroweak physics, quantum chromodynamics, and the investigation of rare BSM
processes and exotic particles.

Figure 2.3: Illustration of the ND components. Neutrino beam enters the hall from
right to left. The ND LArTPC (right) is the most upstream component; immediately
downstream of it (center) is the MPD, and beyond (left) is the SAND [8].
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Figure 2.3 illustrates the ND’s layout, featuring the ND LArTPC, as its most up-
stream component. Following it is the Multi-Purpose Detector (MPD) and the System
for on-Axis Neutrino Detection (SAND) positioned further downstream. SAND, always
on-axis, acts as a neutrino spectrum monitor. A unique aspect of the ND is the ability
of the ND LArTPC and a High-Pressure Gaseous Argon time projection chamber (TPC)
(HPgTPC) to shift off-axis relative to the beam. This allows access to varied neutrino
energy spectra, offering an additional degree of freedom to the measurement. The de-
sign and functionality of the ND LArTPC overlap with that of the FD, which reduces
the impact of nuclear effects and detector-driven systematic uncertainties in oscillation
signal extraction at the FD.

2.3 Signal and Background Simulation Methodology

In DUNE FD, several nucleon decay modes will be possible to observe. Nucleon de-
cays involving kaons are particularly advantageous since the entire decay chain can be
observed for them. Proton decay, the signal, via p → K+ν̄ can be tagged in a LArTPC
if the kinematics and the decay of a single kaon with a sufficient energy can be recon-
structed [4]. The background events are primarily interactions of cosmic neutrinos on
argon nuclei.

Figure 2.4: Nucleon decay modes available in Generates Events for Neutrino Interaction
Experiments (GENIE) simulations [4, 9].
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2.3.1 Background Simulations

For an accurate simulation of the background in the DUNE FD, it is essential to under-
stand the source and behavior of atmospheric neutrinos forming a substantial part of
the background in nucleon decay searches. Atmospheric neutrinos are produced when
cosmic rays, mainly protons and heavier nuclei, collide with atoms in the Earth’s atmo-
sphere. This interaction triggers a cascade of secondary particles, particularly pions and
kaons, which decay into neutrinos due to their short-lived nature. In DUNE, the Bartol
model is used to model the neutrino flux. The Bartol model calculates the yield of neu-
trinos from the decay of charged pions and kaons, factoring in the energy and type of
the primary cosmic ray, atmospheric composition, and density, as well as geomagnetic
effects that impact the trajectory of cosmic ray particles. A critical aspect of the Bartol
model lies in its ability to forecast the energy spectrum and angular distribution of neu-
trinos. It differentiates between various types of neutrinos (muon neutrinos, electron
neutrinos, and their antiparticles) across a wide range of energies.

Atmospheric neutrino interactions on argon are modeled using the GENIE simu-
lation framework [9]. The interaction cross-section, measured in area units, expresses
the probability of neutrino-argon interaction. To estimate the total event rate in the de-
tector, the expected number of interactions per unit of time and volume is obtained
by multiplying the neutrino flux by the interaction cross-section. This product is then
integrated over the relevant energy range and volume.

2.3.2 Signal Simulations

The GENIE toolkit is employed for nucleon decay signal simulation (for proton de-
cay modes available, see Figure 2.4), albeit with adaptations and extensions beyond its
primary use for neutrino interaction simulations [4]. This involves incorporating theo-
retical models that predict different nucleon decay modes, each characterized by specific
final-state particles and branching ratios. GENIE employs MC techniques to create sta-
tistically significant samples of hypothetical decay events.

Considering final state interactions (FSIs) becomes crucial in nucleon decay event
simulations. Those are the interactions occurring between the production and detec-
tion of the initial nucleon decay products. These interactions can significantly alter
the observable properties of the decay products, such as their energy and momentum
distributions (see Figure 2.5). For instance, a kaon produced from a nucleon decay, say
p → K+ν̄, may interact with other nucleons or particles in the surrounding medium,
losing a part of its kinetic energy in each interaction. In GENIE, FSIs are modeled to
account for the various processes accompanying decays.

According to [4], the tracking efficiency for kaons is 58%, which implies that only
58% of the simulated kaons can be reconstructed as a track in the detector. The tracking
efficiency loss is mainly attributed to low energy (< 40 MeV) kaons, resulting in tracks
of < 4 cm.

2.3.3 Discriminating the Signal from the Background in Particle Identifica-
tion

In particle physics experiments, particularly those involving neutrinos, the challenge of
accurately identifying particles is paramount. As particles traverse the detector medium,
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Figure 2.5: A comparison of the kinetic energy of kaons in simulated proton decay via
p→ K+ν̄ before and after FSIs occur [4].

they lose energy primarily through ionization and scintillation. An intuitive method for
particle identification relies on analyzing the energy loss, i.e., the stopping power, de-
noted as dE/dx, which describes the energy loss of a particle per unit distance. Differ-
ent particles exhibit distinct dE/dx profiles. For instance, heavier particles like protons
have a higher stopping power compared to lighter particles like muons or electrons.
The Particle IDentification Algorithm (PIDA) [4] leverages this information by com-
bining the dE/dx data and particle track length to improve the accuracy of particle
identification.

A typical background in p → K+ν̄ simulations stems from atmospheric neutrino
interactions with argon, namely, νµn → µ−p. Challenges in discrimination arise when
the muon’s momentum mimics that from a K+ → µ+νµ decay at rest, compounded by
potential misreconstruction of the proton as a kaon (for an illustration, see Figure 2.6) [6].

(a) (b)

Figure 2.6: An example event displays for two commonly misidentified events: 2.6a
the proton decay via p → K+ν̄, with the kaon decaying into a positively charged muon
µ+ and a muon neutrino νµ and 2.6b a charged current quasi-elastic scatter of muon
neutrino on a neutron, i.e., νµn→ µ−p, the prevalent background process.

To address this, a log-likelihood ratio is utilized as a probabilistic discriminator.
The method takes advantage of spatial characteristics and energy deposition patterns
unique to each reaction. For instance, near the kaon-muon vertex, where the K+ decays,
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the kaon exhibits a higher ionization density due to its residual kinetic energy depo-
sition. The local increase in ionization is a key attribute used to distinguish between
signal and background events.

the method involves calculating two log-likelihood ratios along each particle track:
a backward ratio, commencing at the hadron-muon vertex, and a forward ratio, starting
from the opposite end. These are defined as follows

Ldirection = ∑
i

log
psig

i

pbkg
i

, (2.1)

where the direction is either forward or backward, and psig
i and pbkg

i denote the prob-
ability densities of the i-th event being a signal or background, respectively. The com-
bined sum, L = Lfwd + Lbkwd, yields a more robust discrimination between signal and
background [4].

2.4 The Prospects of Machine Learning in HEP

Two machine learning (ML) approaches are typically used in HEP: the classical methods,
such as boosted decision trees (BDTs) or multilayer perceptrons (MLPs), and image-
based algorithms. The former are widely used for the event reconstruction and feature
engineering, while the latter are used for classification [10, 11].

The challenges in ML and HEP are largely similar. Particularly, when it comes to
feature engineering, the core challenge lies in effectively extracting and interpreting
complex patterns from large datasets in both fields. This similarity highlights the poten-
tial of machine learning methods, particularly convolutional neural networks (CNNs),
in HEP.

HEP experiments conducted at particle accelerators and neutrino observatories gen-
erate vast datasets, with the events of interest being extremely rare compared to the back-
ground interactions. Similarly, in ML, one deals with extracting relevant patterns from
large, often unstructured datasets.

CNNs excel in this domain due to their hierarchical structure, which allows for
automatic and adaptive feature extraction. In image processing, CNNs have shown re-
markable success. They identify patterns and structures at various levels of complexity,
from simple edges and dots to complex, composite shapes. This is applicable and po-
tentially advantageous in HEP experiments, where particle data collected by detectors
can often be represented as images or image-like structures.

By applying CNNs to grid-like data, one can automate the feature extraction process,
identifying complex patterns that may not be detectable with traditional methods. In
nucleon decay searches, where the signature of decay events is subtle, traditional meth-
ods like BDTs have been effective [4]. However, they rely heavily on predefined features
and might only capture some relevant information. CNNs, on the other hand, can learn
to identify features directly from the data, potentially revealing new and significant
patterns that could improve event classification.
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Chapter 3

An Overview of Machine Learning
Techniques

3.1 A Conceptual Introduction to CNNs

Deep neural networks have achieved outstanding performance. The CNNs emerged
during the second wave of neural network popularity in the 1980s when researchers
began experimenting with networks for computer vision and speech recognition. How-
ever, due to memory and computational resource limitations, fully connected were not
feasible. An innovative solution was required to address these challenges. Like con-
ventional MLPs, CNNs draw inspiration from neuroscience. By utilizing convolutional
layers, CNNs can model the characteristics of the mammalian visual cortex. Thus, they
excel at capturing hierarchical and spatial dependencies within data that exhibits a grid-
like topology.

3.1.1 Convolution Operation

the convolution operation is defined for real-valued functions. Intuitively, it describes
the response of a linear time-invariant system to an input stimulus. In the continuous
case, it is defined for the real-valued function f and g as follows

( f ∗ g)(t) =
∫

R
f (u)g(t− u)du (3.1)

if the integral exists. For each t, it can be described as the area under the function f (u)
weighted by the function g(−u). As the t changes, g(t− u) emphasizes different parts
of the input function f (u). The discrete convolution can be defined similarly.

It is worth noting that the convolution operation used in the context of neural net-
works differs from its mathematical definition. Moreover, a single convolution kernel
can only extract one feature type across different spatial locations. To extract multiple
feature types per layer, convolution is applied repeatedly. Although the inputs exhibit
a grid topology, they are not exactly a grid of scalars but a grid of vector values. The in-
puts to the first layer of the network are usually multichannel, such as RGB images, fed
into the network in batches. The inputs to the intermediate network layer are the out-
puts of the preceding one, resulting in four-dimensional data tensors. Three dimensions
correspond to the RGB values, and the fourth dimension is used to index the inputs
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in batches. In neural networks that use multichannel convolutions, commutativity is
guaranteed only if each operation has the same number of input and output channels.
Consider a 4D kernel tensor K with element Ki,j,k,l and input data V with element Vi,j,k.
Let the output Z be the result of convolving the input with the kernel. To sample every
s pixels in each direction in the output, where s is the stride (or a step size of the convo-
lutional filter), a downsampled convolution is performed:

Zi,j,k = c(K, V, s)i,j,k = ∑
l,m,n

Vl,(j−1)s+m,(k−1)s+nKi,l,m,n. (3.2)

3.1.2 Motivation

In traditional neural network layers, all input and output neurons are interconnected.
That is represented by a parameter matrix, where each element corresponds to the weight
of the connection between specific input and output neurons. The fully connected struc-
ture implies that every output unit is influenced by every input unit, resulting in a dense
matrix of weights.

In contrast, CNNs exhibit sparse interactions. In the context of CNNs, the term sparse
denotes that each output unit is linked to a limited number of input units rather than all
of them. The sparse connectivity is accomplished using a kernel smaller than the input.

As a filter is convolved across the input, the basic features, such as edges and dots,
are detected. This results in a reduced number of operations required to obtain the out-
put, thereby leading to lower requirements for parameter storage and memory usage of
the model.

Figure 3.1: An illustration of a CNN architecture.

In deep CNNs, units in deeper layers may indirectly interact with a larger portion
of the input. This allows the network to capture local patterns and spatial hierarchies
efficiently [12]. Unlike in traditional neural networks, in CNNs, the parameters can be
used for multiple functions in a model. Each element of the kernel is used at every
position of the input. The parameter sharing used by the convolution operation means
that instead of learning unique parameters for each location, a single set of parameters
is learned. Moreover, parameter sharing implies translational equivariance of the layer.

3.1.3 Training CNNs

The CNNs are trained by backpropagation with gradient descent. During the backprop-
agation process in a neural network, the gradient of the loss function with respect to
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the kernel is computed using the gradient with respect to outputs. This allows the net-
work to learn and improve its performance over time. Consider a convolutional network
c(K, V, s) with a kernel tensor K, the input tensor V and a kernel stride s. The objective
is to minimize an arbitrary loss function J(V, K). In the forward pass, the input V is
fed into the neural network to produce an output Z, which is used to compute the loss
J. During the backpropagation, a tensor G with elements Gi,j,k = ∂

∂Zi,j,k
J(V, K) is ob-

tained. To train the network, the derivatives of J with respect to each kernel weight are
computed as follows [12]

∂J(V, K)

∂Ki,j,k,l
= ∑

p,q,r

∂J
∂Zp,q,r

∂Zp,q,r

∂Ki,j,k,l
= ∑

m,n
Gi,m,nVj,(m−1)s+k,(n−1)s+l . (3.3)

To continue propagating the error through the network’s intermediate layers, the gradi-
ent of the loss with respect to V is computed. Since

∂J(V, K)

∂Vi,j,k
= ∑

p,q,r

∂J
∂Zp,q,r

∂Zp,q,r

∂Vi,j,k
, (3.4)

and the output for a given convolutional layer is computed as in Equation 3.2,

∂J(V, K)

∂Vi,j,k
= ∑
{l,m:(l−1)s+m=j}

∑
{n,p:(n−1)s+p=k}

∑
q

Kq,i,m,pGq,l,n. (3.5)

3.2 Residual Networks

The concept of residual learning was proposed to address the challenge of network
depth and its influence on performance [13]. The issue is the vanishing, exploding, or
shattering (instability) of gradients [14], which hinder the convergence of the network
in the beginning. Deep residual networks (ResNets) introduced in [13] are modular
architectures comprising many blocks, commonly known as residual units. The original
residual unit is defined as

yi = H(xi) +F (xi,Wi), xi+1 = f (yi). (3.6)

Here, xi denotes the input feature to the i-th residual unit, Wi = {Wi,j : 1 ≤ j ≤ K}
is a set of weights and biases associated with the i-th residual unit and K is the num-
ber of layers in residual unit. The residual function F may take various forms; for
instance, in the original ResNet model [13], a stack of two 3× 3 convolutional layers
is used. The function f is an activation function, e.g., the rectified linear unit (ReLU)
f (yi) = max(0, yi), or the hyperbolic tangent f (yi) = tanh(yi). The function H is origi-
nally an identity mapping, e.i., H(xi) = xi.

To better understand the ResNets concept, let us consider a simplified scenario where
f = id, which implies that xi+1 = yi in Equation 3.6. Then, for an arbitrary unit L that
is deeper than the unit i

xL = xi +
L−1

∑
k=1
F (xk,Wk). (3.7)
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That states the feature xL of a deeper unit can be represented as a feature xi of a shal-
lower unit and a residual function ∑L−1

k=1 F . That means the feature of a deeper unit is
roughly the sum of all preceding residual functions, unlike the plain networks, where
a feature is obtained by multiplying the weight matrix and a feature vector. It is
worth noting that the shortcut connections do not introduce extra parameters or al-
ter the computational time, assuming that an element-wise addition is negligible in
computation [13]. The residual networks are trained via backpropagation with gradient
descent. We will illustrate it in the case of the identity activation f = id; the chain rule
applied to a loss function J holds

∂J
∂xi

=
∂J

∂xL

∂xL

∂xi
=

∂J
∂xL

(
1 +

∂

∂xi

L−1

∑
k=1
F (xk,Wk)

)
. (3.8)

Here, the term ∂J
∂xL

ensures the information is propagated directly to shallower units.

The term ∂J
∂xL

∂
∂xi

∑L−1
k=1 F (xk,Wk) propagates through the weight layers. It is worth noting

that the expression ∂
∂xi

∑L−1
k=1 F (xk,Wk) cannot be equal to −1 for all instances in a mini-

batch. As a result, the gradient ∂J
∂xi

is highly unlikely to vanish, even if the weights are
arbitrarily small. In the case of a non-trivial activation f , the backpropagation formula
can be derived similarly, as in Equation 3.8.

3.3 Transfer Learning

Obtaining sufficient data for a particular task can be challenging, if not impossible, due
to limited accessibility or the high cost of obtaining and labeling data. Consequently,
one often relies on extrapolating knowledge across domains. This philosophy has been
the basis for transfer learning (TL), a machine learning approach that seeks to improve
the performance of a model on a specific problem by leveraging knowledge from previ-
ously solved tasks. TL facilitates learning by establishing connections between past and
target tasks, resulting in faster and potentially more precise outcomes.

The increasing availability of large-scale data repositories has made TL an appealing
solution for tackling problems in domains where limited data is available. In particular,
using existing datasets related to the target domain of interest, though different, can
facilitate the development of effective machine learning models.

In data analysis, a domain D is characterized by a feature space X and a marginal
probability distribution p(X). Here, X = {x1, . . . , xn} ∈ X . For a given domain D,
a task T is defined by a label space Y , and a predictive function f that is learned from
a set of feature vectors and their corresponding labels {(xi, yi)}. The domain data is
then defined as D = {(xi, yi) : xi ∈ X , yi ∈ Y}.

Similarly, we define the source domain data DS and the target domain data DT as
DS = {(xS,i, yS,i) : xS,i ∈ XS , yS,i ∈ YS} and DT = {(xT,i, yT,i) : xT,i ∈ XT , yT,i ∈ YT },
respectively. Further, we denote the source task as TS and the target task as TT, each
with their corresponding predictive functions, fS and fT.

TL is a technique that can enhance the accuracy of a target predictive function fT by
utilizing information from a source domain DS and corresponding task TS, which may
differ from the target domain DT and task TT. This approach can be used with multiple
source domains, in contrast to conventional machine learning where DS and DT, as well
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as TS and TT, are identical.
Several cases are possible. Since the source domain DS = {XS, p(XS)} and the tar-

get domain DT = {XT, p(XT)} are distinct, DS ̸= DT implies unequal feature spaces
XS ̸= XT and/or marginal distributions of the inputs p(XS) ̸= p(XT). In the latter case,
a learner trained on a specific source domain may not perform optimally on a target
domain.

Another possible scenario is when the label space of the source and target domains,
denoted by YS and YT, respectively, do not match. The class space mismatch is ac-
companied by a difference in the conditional probability distribution, represented by
p(Y|X). Another possible case is an imbalance in the dataset labels between the source
and target domains, leading to p(YS|XS) ̸= p(YT|XT). In the upcoming section, we will
elaborate on the learning challenges posed by dataset imbalance.

3.4 Learning on an Imbalanced Dataset

As previously mentioned, discrepancies in distribution may arise between the source
and target domains. Imbalanced learning poses a significant challenge as it can compro-
mise the performance of most conventional learning algorithms. This is because these
typically assume that the class distributions are balanced, which is often not the case
in real-world scenarios. Consequently, the algorithms may fail to accurately represent
the distributive characteristics of complex datasets, leading to poor generalization.

Technically, any dataset demonstrating unequal class distribution can be considered
imbalanced. However, the common understanding is that the term imbalanced data cor-
responds to datasets exhibiting significant or severe class imbalance. The problem is
present in both binary and multiclass classification tasks. The choice of a descriptive,
suitable metric is therefore crucial.

A well-performing classifier should provide an equal level of predictive accuracy for
both the minority and majority classes in a given dataset. On the contrary, it is seen that
the classifier tends to provide a severely imbalanced degree of accuracy, excelling on
the majority class at the expense of the minority class, which is often the one desired or
sought. Therefore, accuracy is not a sufficient measure of goodness, and more informa-
tive assessment metrics, such as receiver operating characteristics, precision-recall, and
loss curves, are necessary for conclusive evaluation of the learner’s performance.

3.4.1 Assessment Metrics for Imbalanced Learning

Assuming a binary classification problem, the performance of a classifier can be repre-
sented by a confusion matrix (see Table 3.1).

Table 3.1: Confusion matrix for binary classification.

Predicted Negative Predicted Positive
Actual Negative True Negative (TN) False Positive (FP)
Actual Positive False Negative (FN) True Positive (TP)

One of the most commonly used metrics to assess the performance of a classifier is
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accuracy A, which is defined, using the notation from Table 3.1, as

a =
TP + TN

TP + FN + FP + TN
. (3.9)

Accuracy is computed as the ratio of the number of correct predictions (true positives
and true negatives) to the total number of predictions made by the classifier. It provides
a simple and intuitive way to describe a classifier’s performance on a given dataset.
Nevertheless, it can be misleading when the class distribution is uneven. In imbalanced
datasets, where one class significantly outnumbers the other, relying solely on accuracy
may result in an inadequate representation of a model’s performance. To better under-
stand the root problem, we can examine a confusion matrix in Table 3.1. The left col-
umn displays negative data instances, while the right column represents positive ones.
By comparing the counts in both columns, we can determine the class distribution in
the dataset. Therefore, metrics that rely on both columns are particularly susceptible to
imbalances and shifts in data distribution. This implies that accuracy, as a performance
measure, will fluctuate despite the classifier’s underlying fundamental performance re-
maining constant, depending on variations in class distribution.

When assessing the performance of a model on different datasets, inconsistencies
can arise, leading to difficulties in analyzing the model’s performance. This is especially
true when the assessment metrics are sensitive to the data distribution and when data
imbalance is present.

Other evaluation metrics are precision P (Equation 3.10), recall R (Equation 3.11),
and F-measure Fβ (Equation 3.12).

P =
TP

TP + FP
(3.10)

Precision measures the accuracy of positive classifications. Conversely, recall measures
completeness, i.e., how many examples of the positive class are labeled correctly.

R =
TP

TP + FN
(3.11)

Even though these two metrics, much like accuracy and error rate ER = 1− A, share
an inverse relationship, they are not both sensitive to changes in data distributions.
Precision is distribution sensitive, while recall is not. However, neither provides infor-
mation on the number of incorrectly labeled positive or misclassified examples. One can
use an F-measure that combines precision and recall to address this.

Fβ =
(1 + β)2 · R · P

β2 · R + P
(3.12)

The F-measure can be interpreted as a measure of classification effectiveness in terms
of the ratio of the importance of either recall or precision weighted by the β coefficient.
Typically, β = 1 is used. However, it is important to note that it can be influenced by
data distribution, making it less reliable when comparing the performance of models
on different datasets. Nonetheless, in most cases, it still proves to be a superior choice
compared to accuracy, precision, and recall.
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The receiver operating characteristic (ROC) is more optimal in this case. The ROC
utilizes two assessment metrics: true positive rate TPR (same as recall) and false positive
rate FPR defined as follows

TPR =
TP

TP + FN
, FPR =

FP
FP + TN

. (3.13)

By plotting the TPR against the FPR, the ROC curve is generated, and each point in
the ROC space represents the effectiveness of a particular classifier on a given data
distribution. The ROC curve provides a visual representation of the trade-offs between
the benefit and cost of classification with respect to data distributions.
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Chapter 4

The Aspects of Data

4.1 On Data Origin and Interpretation

The data comprises MC simulated signal and background samples. The signal is proton
decay via p→ K+ν, and neutrino-argon interactions represent the background.

For the signal sample, the simulation includes the modeling of the initial state of
the argon nucleus, the decay kinematics of the proton, and the intranuclear propaga-
tion of the decay products. The simulation of the atmospheric neutrino interactions
encompasses modeling the neutrino flux, the nuclear model, and the propagation of
the particles emerging inside the nucleus. The signal and background data was gener-
ated during the GENIE [9] runs 54474279 and 54053565, using the dune10kt_v4_1x2x6
detector geometry model. The Bodek-Ritchie extension of global relativistic Fermi gas
was used. The model extends the global relativistic Fermi gas, which assumes the nu-
cleus to be non-interacting particles, by nucleon-nucleon correlations [15].

The data was subject to a simple preselection filter to discard the atmospheric neu-
trino interactions whose signatures differ significantly from those of the signal. The filter
cut is described as follows:

1. maximum reconstructed track length ⩽ 100;

2. 1 ⩽ number of reconstructed tracks ⩽ 6;

3. number of reconstructed showers ⩽ 4;

4. 5 < number of reconstructed clusters of hits < 80;

5. 100 < number of reconstructed hits < 1200.

Here, hits represent parts of wire signals exceeding a certain threshold, fitted with
a Gaussian. They hold the time corresponding to the peak of the Gaussian curve, the
amplitude representing the peak’s height and thus the charge amount deposited, and
the width of the Gaussian, providing insights into the duration of the signal. The hits are
grouped into clusters formed by associating hits that are adjacent in both their physical
location on the individual readout plane and their timing, as determined by the drift
time.

The cut reduced the number of background and signal events by 65% and 10%,
respectively. The dataset size was further reduced by a total of 10% by the image
processing-based event selection described in this chapter.
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It is essential to consider the detector readout system geometry for proper interpre-
tation and processing of the data.

Figure 4.1: Illustration of the DUNE APA wire wrapping scheme showing small portions
of the wires from three readout planes (U, V, X). The TPC electronics, shown in blue to
the right, mount directly to the frame and process signals from both the collection and
induction channels [5].

As charged particles ionize the argon atoms, the ionization electrons drift in the de-
tector medium towards the APA wall. The APAs are large, rectangular frames made
of stainless steel with a slim profile. Each frame is strung with wires in several layers.
The topmost layer consists of shielding or grid wires that shape the electric field and
reduce the impact of external electronic noise. Beneath are induction wire layers, placed
at angles relative to the vertical to capture drifting electrons from particle interactions.
The final layer is the collection plane, where electrons are gathered to create a detectable
signal. The DUNE APA wire wrapping scheme is illustrated in Figure 4.1.

4.1.1 The Data Challenges

The wrapping of wires around the APA frame can lead to the scenario illustrated in
Figure 4.2. In this case, a single particle track may be partially captured by the wires on
one side of the wire plane and partially on the opposite side. This results in a double-
track image, where one continuous particle track appears as if it were two separate
tracks. When interpreting data from the APA, these instances are crucial to consider
since they may deplete the classifier’s performance.

4.2 Data Preprocessing

The dataset utilized in this study is formatted as comma-separated value (CSV) files.
Each file corresponds to a single event, categorized as either a signal or background.
The values in the file are so-called ADC counts. The ADC count is a quantized repre-
sentation of the amplitude of the analog input signal.

Initially, the data has a linear array format, where the values of individual pixels are
sequentially enumerated, spanning a total of N elements. The structure of the CSV files
is such that they represent images with dimensions n×m, where n denotes the number
of rows, and m is the number of columns in an image.
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(a) Induction plane. (b) Collection plane.

Figure 4.2: An example event display where the track continuation is observed.

Table 4.1: Initial linear data struc-
ture. Pixel values are denoted as vi
for i ∈ {0, 1, . . . , N − 1}.

Index Pixel Value
0 v0
1 v1
2 v2
...

...
N − 1 vN−1

Table 4.2: Data organized as a matrix cor-
responding to the image structure; ri and
cj denote rows and columns of the result-
ing image, respectively. The total number of
pixels is N = n×m.

r
c c0 c1 c2 . . . cm−1

r0 v0 v1 v2 . . . vm−1
r1 vm vm+1 vm+2 . . . v2m−1
...

...
...

...
. . .

...
rn−1 . . . . . . . . . . . . vN−1

A tabular representation of the initial data format is provided for clarity. In Table 4.1,
each row corresponds to a pixel index, ranging from 0 to N− 1, and the associated pixel
value is denoted as vi for each index i within the set 0, 1, . . . , N − 1. Table 4.2 provides
an image interpretation of the initial linear data.

The images are produced in (wire, time) coordinates, where the wire is the number
of the wire where the reconstructed hit was detected, and time indicates the duration be-
tween the interaction and the detection of the hit on the wire. Each pixel corresponds to
approximately 5 mm in the wire coordinate, owing to the spatial separation of the wires
in the readout plane. Time is measured in ticks, with each tick representing 0.5 µs
corresponding to approximately 0.8 mm of electron drift.

It is important to note that no data augmentations and transformations other than
conversion to grayscale, normalization, and resizing the images were employed in either
phase of the training process due to the coordinate choice. The detector and event
geometry would be violated in the opposite case.

For the late fusion model, the data loaders corresponding to the branch ResNet18-
based models utilized the fixed seed to feed the data into the networks. The data was
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Figure 4.3: An example signal event projections. Plane 0 and Plane 1 correspond to U
and V induction wire planes, and Plane 2 is the collection plane denoted as X in Figure
4.1.

not shuffled to ensure the event projections from the readout planes align. The same
applies to the early fusion model using the spatial channels (the readout plane views)
instead of the traditional RGB representation.

Figure 4.3 shows a signal p→ K+ν event as seen in the detector three readout views.
Figure 4.4 shows signal and background interactions.

Each CSV file contains information about the region of interest (ROI). For each file,
the ROI coordinates were extracted. The values inside the ROIs were checked to en-
sure high data quality, and events with empty or almost empty ROIs were discarded.
Since the event is translation invariant, the ROIs were then zero-padded and centered to
match the chosen image dimensions of 1000× 1000 pixels. Any interactions spanning
beyond the chosen dimensions were centered, cropped to fit within the 1000× 1000 pixel
region, and adjusted to ensure the most significant portion of the interaction was within
the chosen ROI. Since the ROI arrays are mostly zero, they were saved as compressed
sparse row (CSR) matrices to optimize the storage.

Table 4.3: Dominant K+ decay modes. The statistics in the second column are taken
from reference [16].

K+ decay mode Expected fraction Simulated dataset
K+ → µ+νµ (63.560± 0.110)% 63.94%
K+ → π+π0 (20.670± 0.080)% 18.34%
K+ → π+π+π− (5.583± 0.024)% 4.76%
K+ → π0e+νe (5.070± 0.040)% 4.13%
K+ → π0µ+νµ (3.352± 0.033)% 3.04%
K+ → π+π0π0 (1.760± 0.023)% 1.27%

The files were sorted according to kaon decay mode based on logs from the event
generator, with statistics presented in Table 4.3.
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(a)

(b)

Figure 4.4: A demonstration of a signal 4.4a and a background 4.4b simulated events.

The constrained flood fill algorithm was deployed to address the track continua-
tion problem discussed in Subsection 4.1.1. The details regarding this approach will be
described in the subsequent section.

4.2.1 The Constrained Flood Fill Algorithm

Flood fill is a classic algorithm used in computer graphics for filling a connected region
with a single color or pattern. The flood fill algorithm starts from a given seed pixel
and spreads to adjacent pixels. It continues to spread until it reaches the boundaries of
the area, which are defined by pixels of a different color or a predefined limit.

The conventional flood fill algorithm does not consider additional constraints; it
simply fills all connected pixels that match the seed pixel’s properties (such as color or
intensity). Several variations of flood fill algorithms exist, such as the four-way or eight-
way flood fill, which differ in how they define connectivity between pixels (directly or
diagonally adjacent).

On the other hand, the constrained flood fill adds certain conditions or limitations
to the filling process. Here, the constraints are the minimum area of a region (track) to
be considered and the maximum vertical distance between two regions to be considered
a single track. These constraints restrict the fill to certain areas and characteristics,
making it more controlled and selective. Instead of filling all connected regions with
similar properties, constrained flood fill will only fill regions that meet specific criteria,
such as size or proximity to another region.

The process starts by iterating through each image in the provided dictionary. The im-
age is converted to grayscale, and then a binary mask is created using a thresholding
technique. Nonzero pixels in this mask are identified, and if there are none, the loop
continues to the following image.
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Figure 4.5: Demonstration of the constrained flood fill algorithm applied to an image of
the signal. The sufficiently large regions (track parts) are marked with rectangles.

Algorithm 1 Constrained Flood Fill for Track Continuation Detection

Require: I, Amin, Dmax, T
Ensure: Lpaths

1: Lpaths ← []
2: for each img in I do
3: Convert img to grayscale and create binary mask M
4: Identify nonzero pixels in M
5: if M has no nonzero pixels then
6: Continue to next img
7: end if
8: Choose a random seed pixel in M
9: Apply flood fill to M; label and identify regions

10: Initialize mask for large regions, Mlarge, and f ound← False
11: for each region in identified regions do
12: if region.area ≥ Amin then
13: Update Mlarge and centroids
14: end if
15: end for
16: for each pair of different regions (RA, RB) do
17: if min vertical distance between RA and RB < Dmax then
18: f ound← True; Break
19: end if
20: end for
21: if f ound then
22: Append path of img to Lpaths
23: end if
24: end for
25: return Lpaths
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A random pixel is chosen as the seed for flood filling. The binary mask is flood-
filled from this seed point, and the filled area is labeled. Regions in the labeled image
are analyzed, and only those with an area larger than the minimum region area are
considered. For each of these large regions, centroids and pixel coordinates are stored.

The core of the algorithm involves comparing each pair of regions. The vertical
distance between any two pixels (one from each region) is calculated for each pair. If
the minimum of these distances is less than the specified maximum vertical distance, it
is determined that the continued track has been found. In the positive case, the process
for the current image terminates and continues with the next image in the dictionary.
A list of image paths where the continued tracks have been identified is returned for
further processing.

About 10% of the signal and background data was impacted by the double-track issue.
The images containing track continuation were removed from the dataset. This resulted
in a reduction in the active volume of the LArTPC detector, which is not addressed in
this work.
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Chapter 5

The Methodology

This chapter overviews two data fusion methodologies, employing networks trained us-
ing Python 3.10.9, Torch 2.0.1+cu117, and Torchvision 0.15.2+cu117 [17] on four NVIDIA
A100-SXM4-80GB GPUs within the HELIOS cluster [18] at the FNSPE Department of
Mathematics. Bayesian hyperparameter search was conducted using the Optuna op-
timization framework and the Weights and Biases Sweeps tool [19, 20]. The model
assessment metrics, such as ROC, precision, recall, and the F1 score, were calculated
using the Scikit-learn library [21]. The code is available in our GitHub repository.

5.1 Ensemble Approaches

In machine learning, multimodal approaches primarily enhance system robustness by
leveraging the unique information from individual data sources to clarify ambiguities
and refine the quality of noisy data.

Multimodal machine learning techniques can be divided into early and late fusion,
depending on their integration stage in the data processing pipeline. Although these
methods are standard for data with multiple modalities, e.g., images, sound, or video,
they are equally pertinent for the multi-view dataset in our context. Each readout plane
in the detector captures distinct spatial representations of events. Thus, when combined,
more relevant information about the event is obtained.

5.1.1 Late Fusion

Late fusion, or decision-level fusion, processes each spatial projection independently
using separate neural network channels merged at the decision point. In this approach,
each spatial representation is treated individually, allowing the network to capture and
analyze the characteristics inherent to each view.
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Figure 5.1: A schematic of the ResNet’s basic block [13].

For late fusion, we utilized three ResNet18-based models. The first convolutional
layer of each model is modified to accept one-channel (grayscale) images. Right after
the ResNet backbone, two additional linear layers are added. Those are followed by
the classifier layer with one output neuron producing the score representing the likeli-
ness of the particular event projection being the signal.

During the training process, we used an early stopping technique with a five-epoch
patience threshold, saving the model’s best weights upon achieving minimal loss on
the validation set.

The final classification layer of each model is removed, and all submodel parameters
are frozen to ensure the integration of their high-level features rather than modifying
their feature extraction functions. The architecture is designed to handle three inputs
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corresponding to three readout plane projections, each processed separately by its re-
spective model. Outputs from these models are flattened and concatenated, forming
a unified feature vector. This vector is subject to a gated fusion process, which modu-
lates the combined features. Subsequently, a linear classifier processes the modulated
vector to produce a single output score.

Figure 5.2: The architecture of the gating network utilized in the late fusion model.

Through a series of linear transformations and nonlinear activations (ReLU and sig-
moid), the gating network dynamically regulates the concatenated feature vector from
the branch models. Initially, it reduces the high-dimensional input to a lower dimension;
then, a ReLU activation is applied. The ReLU is followed by another linear transforma-
tion and a sigmoid activation to scale the output to a range between zero and one.

The gating allows for priority feature extraction. Certain features are selectively am-
plified or attenuated by scaling the original feature vector with the gating network’s
output. The model then focuses on features more pertinent to the task; on the con-
trary, less informative or noisy features are sifted out to potentially increase the model’s
performance. Moreover, the gating mechanism bolsters model resilience: by learning
different feature weightings, the model adapts to diverse input scenarios.

The architecture of the gating network is illustrated in Figure 5.2. The Gemm, or
general matrix multiplication, unit denotes the fully connected layer. Here, B and C denote
the weight matrix and a bias vector of the layer. The transB = 1 attribute signals that
the matrix B is transposed. The Mul unit stands for element-wise multiplication when
applying the gating mechanism to the input. The network outputs a scaled feature
vector.
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Figure 5.3: The simplified architecture of the late fusion model. The inputs correspond-
ing to the three signal projections in the LArTPC are fed into the three ResNet18-based
models. Subsequently, the outputs of the fourth layer of the ResNets18 pass through
the average pooling, flattening, and two added linear layers. The outputs are concate-
nated and passed through the gating mechanism illustrated in Figure 5.2 to produce
a single score (logit) representing the likeliness of the particular event being the signal.

5.1.2 Early Fusion

Early fusion, or feature-level fusion, combines the information from different sources
at the outset before any extensive data processing takes place. The approach allows
for the exploitation of potentially complementary information in the raw data. It is
beneficial when the correlation between the individual modalities is high and when
the joint distribution of features across the data is crucial for the task [22].

An EfficientNet B2 architecture [23] with pre-trained ImageNet [24] weights was
used for early fusion. The single-channel images of the events corresponding to the three
LArTPC readout planes were stacked along the channel dimension to create a single
three-channel representation of the event in a way similar to RGB. Instead of the colors,
the spatial channels are created.

5.1.3 Miscellaneous Ensemble Trials

In the earlier phases of our work, we employed simple, voting-style techniques, such as
the max-, average-, and weighted average-ensemble. These processed the ResNet18-based
submodel outputs in a way similar to the late fusion model. However, those were
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applied in the final stage of the data processing pipeline. The parameters of the trained
ResNet18-based models were frozen, the submodels were left to decide, and the final
decision level layer implementing the particular voting method was added.

These models did not improve the classification quality in terms of our preferred
metric, recall. On the contrary, these seemed to inherit the instability of the ResNet18-
based submodels. Therefore, we shifted our focus toward more flexible and com-
plex data-fusion models offering a more complete spatial representation of the events.
The simple ensemble techniques are not considered in further discussions.

5.2 Training Details

The dataset employed in this study consisted of 31 731 and 83 957 signal and background
events per readout plane, partitioned with 90% allocated for training and the remaining
10% equally split to validation and testing datasets. The signal-to-background ratio in
the dataset yielded approximately 0.37 and was ensured to be preserved in all subsets.

Figure 5.4: A parallel coordinate plot illustrating the hyperparameter search for the late
fusion model. The individual lines pass through the coordinates corresponding to re-
spective hyperparameters chosen by the Sweeps tool based on the Bayesian method. On
the right is the scale of the optimization objective, in this particular case, the average
recall on the validation dataset. The individual runs, or, sweeps with different hyperpa-
rameters lead to different objective values.

Table 5.1: The hyperparameter search description table.

Hyperparameter Search space Mod. ResNet18 choice Late fusion choice
Batch size 32 – 128, step = 8 128 128
Patience 3 – 10 5 5
Learning rate 10−6 − 10−3 2× 10−4 1.34× 10−4

Weight decay 0− 10−5 1.59× 10−4 4.93× 10−4

Gamma 0.05− 0.95 0.71 0.63

We conducted a hyperparameter optimization for a modified ResNet18 and the late
fusion architectures using the Optuna framework and the Weights and Biases Sweeps
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tool. The objective of the Optuna study was to maximize the average recall on the val-
idation dataset, paralleling sensitivity requirements in actual proton decay searches.
The hyperparameter search spaces and the values chosen for training are listed in Table
5.1.

The Optuna optimization process for the modified ResNet18 model took 100 trials
and utilized a median pruner as a callback. The median pruner compares the perfor-
mance of running trials against the median performance of completed trials at similar
stages and discontinues the trials with performance below the median.

Figure 5.5: A scatterplot of the average recall values obtained during the Weight and
Biases Sweeps hyperparameter search in time. The running maximum, indicated by
a light-blue line, gradually increases over time, resulting in a better performance in
terms of the average recall.

For the late fusion model hyperparameter search, the Sweeps tool by Weights and
Biases was used. The pruners are not explicitly available in the Weights and Biases
Sweeps tool. However, the tool is capable of predicting the success probability and ex-
pected improvement based on the chosen parameters. The Sweeps utilizes the Bayesian
search and, based on the success of the preceding runs, terminates or accepts the cur-
rent run. In Figure 5.4, a parallel coordinate plot illustrating the Sweeps optimization
process is displayed.

The optimal hyperparameters (see Table 5.1) were applied to train individual branch
models for late fusion. The branch models did not utilize the TL approach and were
trained from scratch with randomly initialized weights. The training utilized the Adam
optimizer, a variant of stochastic gradient descent (SGD), and incorporated an expo-
nential learning rate scheduler. For all models, the batch size was set to 128 images.
For the models trained on the Plane 0 and Plane 1 datasets, the training took 10 epochs;
the model trained on the Plane 2 dataset was trained for 12 epochs. Each epoch averaged
approximately 7 minutes on four NVIDIA A100-SXM4-80GB GPU units. The trainable
parameter count totaled 12 220 865 for each ResNet18-based branch model.

Learning curves for the three individual models are illustrated in Figure 5.6, along-
side ROC and precision-recall curve (PRC) plots in Figure 6.1.

In the figures, the training loss consistently decreases, indicating that the model is
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learning and improving its performance on the training data over time. This is ex-
pected as the optimization algorithm iteratively adjusts the model parameters to mini-
mize the loss function. The validation loss provides insight into the model’s ability to
generalize to unseen data. In an ideal learning scenario, the validation loss should de-
crease alongside the training loss. However, here, the validation loss exhibits volatility
throughout the epochs. Initially, as the model begins to learn from the training data,
the validation loss decreases. This is indicative of the model’s improving generalization
capabilities. Nevertheless, as training progresses, the validation loss begins to fluctuate,
which is symptomatic of overfitting.

(a) Plane 0 loss. (b) Plane 0 accuracy.

(c) Plane 1 loss. (d) Plane 1 accuracy.

(e) Plane 2 loss. (f) Plane 2 accuracy.

Figure 5.6: Loss and accuracy curves for the modified ResNet18 submodels used to
construct the late fusion model. The dashed gray line marks the epoch with the best
validation loss when the model weights were saved.

The loss on the validation set stopped decreasing, reaching the minimum value of
approximately 0.4, followed by a slight increase. At the same time, the training loss con-
tinued decreasing to reach the lowest value of less than 0.2 at the last epoch. The trend
of the training loss curve suggests the further decrease. Complement to loss plots are
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the accuracy plots with accuracy drops corresponding to the loss raises and vice versa.
For all three submodels, the validation accuracy stagnated at approximately 0.83. On
the contrary, the accuracy on the train set continued to grow until reaching the score of
approximately 0.93 by the last epoch.

(a) (b)

Figure 5.7: Loss (5.7a) and accuracy (5.7b) plots for the late fusion model. The dashed
gray line marks the epoch with the best validation loss when the model weights were
saved.

The data-fusion techniques were employed to refine the performance. The trained
submodels were used to construct the late fusion model. That was further trained for
16 epochs, with a batch size of 128 images, a learning rate of approximately 1.3× 10−4,
modulated by the exponential learning rate scheduler with the gamma of 0.63. Each
epoch in this phase averaged approximately 12 minutes. The training process utilized
the early stopping technique with a patience of 5 epochs. The trainable parameter
count yielded 1 576 449. The weights of the model were saved at the eleventh epoch
when the validation loss reached its minimum value. This model’s loss and accuracy
curves are displayed in Figure 5.7. In contrast to the branch model learning curves,
those of the late fusion models are smooth with evident trends. It is worth noting
that the minimum loss, compared to that of the submodels, is substantially lower (for
the same loss function, the binary cross-entropy), meaning less discrepancy between
the ground truth and the predicted labels. The validation loss in the case of the late
fusion model is lower than the training loss, yielding approximately 1.84× 10−3 and
1.97× 10−3. Generally, the consistent decrease in loss combined with the very low loss
scores mean a good level of model generalization. The validation accuracy score reached
the maximum of approximately 0.9, which is slightly higher than the training accuracy,
peaking at 0.89.

EfficientNet B2 architecture [23] with the pre-trained ImageNet weights [24] was
used for early fusion. The number of trainable parameters in the model is 7 794 184.
Instead of the standard RGB channels, the projections from the three readout planes
were used. The hyperparameters for the early fusion were chosen manually during
several runs with the different hyperparameter values. The model was trained over 10
epochs, with each epoch taking approximately 14 minutes. The loss and accuracy curves
for the model are in Figure 5.8.

34



(a) (b)

Figure 5.8: Loss (5.8a) and accuracy (5.8b) curves on the training and validation set for
the early fusion model. The dashed gray line marks the epoch with the best validation
loss when the model is saved.

As discussed in section 3.4.1, loss and accuracy themselves are not sufficient for
model assessment. Thus, additional metrics, such as F1 score, ROC, and PRC curves,
are utilized to interpret the training results. The objective of the training is to optimize
the recall on the validation set, which is similar to that of DUNE. In the next chapter,
we present and discuss our results for individual branch models, the late fusion model,
and the early fusion model in terms of proton decay sensitivity or recall.
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Chapter 6

The Results

The objective is to accurately distinguish between the signal and the background sim-
ulated events represented by proton decay via p → K+ν and atmospheric neutrino
interactions on argon, respectively. The modified ResNet18 models were first utilized
to learn the feature representations of the signal and background events on each re-
spective readout plane view. The learned features were then combined using the late
fusion approach with a gating mechanism to scale them based on their relevance to
the classification, enhancing the model’s flexibility and performance.

The signal-to-background ratio in the dataset yielded approximately 0.37. The signal
is the minority class and has a higher importance in the context of the proton decay
search; the right choice of model assessment metric is, therefore, crucial. In proton
decay searches, the sensitivity, or recall, is the metric of choice. In this chapter, we
present and discuss our results in terms of the sensitivity to proton decay.

The modified ResNet18 models, each trained from scratch on a corresponding view
dataset, were utilized in the late fusion approach. The ROC and PRC curves for these
models are in Figure 6.1.

6.1 The Modified ResNet Results

The PRC plot displays the trade-off between precision and recall for different threshold
settings. The area under the PRC curve (PRC AUC) is 0.77 and 0.72 for the induction
plane projections and 0.79 for the collection plane projections. This suggests moderate
performance, especially in a context where the positive class is rare or when the false
positives are more costly. The performance is acceptable since precision consistently
exceeds the baseline random classifier across most recall levels.

The ROC curve visualizes the trade-off between the true and false positive rates for
various thresholds. The true positive rate is equivalent to recall, while the false positive
rate is the proportion of negative instances incorrectly classified as positive. The area
under the ROC curve (ROC AUC) yielded 0.89 and 0.87 for the models trained on Plane
0 and Plane 1 projections and 0.9 for the model trained on Plane 2 projections. This
indicates a solid discriminative ability compared to a no-skill classifier.

The results suggest that the individual branch models show a decent discriminative
performance despite the loss and accuracy curves showing signs of early overfitting and
instability.

The histograms in Figure 6.2 illustrate the distribution of the signal and background
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(a) (b)

(c) (d)

(e) (f)

Figure 6.1: ROC and PRC curves for the modified ResNet18 submodels used to con-
struct the late fusion model. Figure pairs 6.1a – 6.1b, 6.1c – 6.1d and 6.1e – 6.1f corre-
spond to branch models trained on the Plane 0, Plane 1 and Plane 2 datasets, respectively.
The dashed line represents the performance of the no-skill, or random guess, classifier.
The curves are evaluated on the respective test datasets.
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events based on the sub-model response scaled using sigmoid to the range of zero to
unity.

On the validation set, the background density peaks near zero, and the signal density
peaks near one, while having another minor mode around zero. On the training set, we
observe a signal density with a rather heavy tail and one mode around unity. In contrast,
the background density is light-tailed, with a prominent peak around zero. This pattern
holds across all three branch models, with no significant improvement on the collection
plane (Plane 2) dataset.

(a) (b) (c)

Figure 6.2: Distribution of the signal and background samples based on the response of
the modified ResNet sub-models. From left to right, individual figures correspond to
models trained on Plane 0, Plane 1, and Plane 2 datasets. The dashed gray line represents
the classification threshold of 0.5.

Notably, the model response at around 0.3 marks the intersection of the signal and
background distributions, which falls below the classification threshold used for metric
calculation. It is essential to clarify that this behavior does not signal poor performance
since evaluation is based on ROC AUC and PRC AUC. However, in the future works,
the calibration of the classification threshold with respect to the metric of choice will be
performed.

The track continuation detection procedure may have induced differences (see Fig-
ure 5.6 and Figure 6.1) in the performance of the induction and collection plane datasets.
The track continuation problem occurs when the readout plane wires partly detect
the particle track on one side of the APA frame, and the rest of the track is recorded
by the wires on the other side of the APA frame, due to the wire wrapping scheme.
The double-track cases were identified using the constrained flood fill algorithm de-
scribed in Section 4.2.1. The algorithm parameters are the tolerance, the minimum area
of the region containing the track (the circumscribed rectangle), and the maximum dis-
tance between each two regions to consider the track parts as a single track. However,
the performance of the algorithm was only assessed by the visual inspection of a small
subset of the data. That revealed that some track continuation instances are still present.
This indicated that the algorithm is not sufficiently universal since the region separation
presents a hard, non-adaptive constraint and improvements to the constrained flood fill
algorithm are needed.
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An algorithm more reliable and reasonable than a simple visual inspection is re-
quired to assess the performance of the constrained flood fill and identify potential
algorithm drawbacks.

6.2 The Late Fusion Results

The fusion of the three modified ResNet18 models improved the classification perfor-
mance on the test set, resulting in the ROC AUC of 0.954 and the PRC AUC of 0.908,
which is an expected behavior due to the gating mechanism that enables the priority
training by multiplying the more significant feature vectors by higher sigmoid outputs.

(a) (b)

Figure 6.3: The ROC (6.3a) and PRC (6.3b) curves for the late fusion model. The curves
are evaluated on the test dataset.

The discriminability improvement is illustrated in Figure 6.4a. Indeed, the distribu-
tion tails of signal and background densities on the validation set are lighter, resulting in
more prominent peaks. The small peak of the signal density observed for the ResNet18-
based submodels is no longer present in the late fusion model histogram.

Even though the signal-to-background ratio was ensured to be approximately the same
on both sets, the training data seemed to be slightly harder to predict (see accuracy and
loss plots in Figure 5.7 for the late fusion model). That is possibly due to the gating
mechanism (Figure 5.2) serving as a regularization and on-the-flight feature selection
technique. Dropout, the most common regularization approach, temporarily removes
a portion of network units with all their input and output connections. The choice of
which units to drop is random. The dropout is applied during the training phase to
prevent overfitting [25]. The gating mechanism is conceptually very similar to dropout.
Instead of the probabilistic approach, the gate scales the features based on their im-
portance, which is represented by the sigmoid output score, to result in the effective
feature space dimension reduction. Nevertheless, in contrast to the dropout technique,
our gating mechanism is applied in all phases of model training.
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(a) (b)

Figure 6.4: The distribution of the signal and background events based on the response
of the late (6.4a) and the early (6.4b) fusion models. The histograms are evaluated on
the training and validation datasets.

Figure 6.5: The F1 score curve on training and validation set for the late fusion model.

For completeness, an F1 score plot for the late fusion model is displayed in Figure 6.5.
The curves are smooth with a clear increasing trend with a maximum of approximately
0.8, which indicates a decent model performance. The late fusion model improved
the performance of the branch models which demonstrated the F1 scores of merely 0.7.

6.3 The Early Fusion Results

The early fusion model does not rely on the modified ResNet18 model results. Instead,
it combines the information contained in the simulated LArTPC readout plane projec-
tions. Compared to the performance of the modified ResNet18 model on the Plane 2 test
dataset, the ROC AUC and the PRC AUC increased by approximately 0.03 and 0.05, re-
spectively. Figure 6.4b displays the distribution of signal and background events based
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on the model response.
The distributions of the signal and the background are mostly distinct, on both

datasets, with heavy-tailed training signal density with a rather small peak around
the unity. Overall, the histogram signals a decent discriminative ability of the model.

(a) (b)

Figure 6.6: The ROC (6.6a) curve and the PRC (6.6b) curve for the early fusion model.
The curves were evaluated on the test dataset.

The ROC and PRC curves for the early fusion model are displayed in Figure 6.6.
The complications hindering the model improvement may arise in the early fusion ap-
plied to the signal and background time projections stacked akin to the RGB channels.
The challenge lies in the spatial positioning of the signal patterns, which differs from
the conventional RGB representation where color components align.

6.4 Comparative Analysis

Few studies with similar methodology and objective are available in the field, while none
are for proton decay search. The proper comparison is, therefore, impossible. However,
we would like to highlight the works presented in [11] and [26].

In [11], the neutrino interactions are classified by the DUNE Convolutional Visual
Network (CVN) illustrated in Figure 6.7. The architecture of the CVN is based on
the Squeeze-and-Excitation ResNet34 (SE-ResNet34) variant [13, 27, 28] and shares con-
ceptual similarities with our late fusion model. The CVN receives three inputs that cor-
respond to the three readout views of the LArTPC. The inputs are 500× 500 pixel images
of simulated neutrino interactions generated in (wire, time) coordinates. The dataset
used in the study consisted of a total of 3 212 351 events from a single MC sample, with
each event represented by three LArTPC readout plane projections.
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Figure 6.7: Simplified diagram of the DUNE CVN architecture [11].

The model was trained for 15 epochs utilizing the early stopping technique. The model
achieved a maximum training accuracy of approximately 0.92 and a validation accuracy
of approximately 0.91 for neutrino flavor classification. Figure 6.8 displays the distribu-
tion of events based on the CVN charged current (CC) νµ classification score for the RHC
beam mode [4]. The original paper presents results for various neutrino flavors, includ-
ing a maximum selection efficiency of 97% for the CC νµ signal in the RHC neutrino
beam mode. This outcome corresponds to a maximum recall of 0.97 and applies to
a dataset with 27% of the CC νµ signal and 40% neutral current (NC) background. Fur-
ther results can be found in [11].

In [26], a CNN-based algorithm for the separation of particle tracks and showers and
Michel electron identification is proposed. The algorithm was tested on the ProtoDUNE
detector data. The inputs to the network illustrated in Figure 6.10 are 48× 48 pixel im-
ages of the small detector regions, or patches centered around the pixel corresponding
to the highest energy deposit. The dataset consisted of 30 million images, with roughly
15 million containing tracks, 11 million containing showers, 3 million empty, and 1 mil-
lion in the Michel sample. The classification threshold is optimized based on the F1
score.
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Figure 6.8: The number of events as a function of the CVN CC νµ classification scare for
RHC beam mode. Neutrino and antineutrino interactions have been combined within
each histogram category [11]

(a) (b)

Figure 6.9: The ROC curve (6.9a), histogram and the F1-score as a function of the classi-
fier threshold (6.9b) [26].

The results are presented in terms of the ROC curve, efficiency (recall), and the F1
score. Figure 6.9 illustrates the ROC curve and the histogram combined with an F1
score curve for the track-vs-shower classification. The ROC AUC value is not discussed
in the paper [26].

Our proton decay identification study achieved a maximum recall of 0.71, while
the late fusion model’s F1 score reached approximately 0.8. The findings in [26] were
obtained for a shower-to-track ratio of around 0.73, while our signal-to-background ratio
was roughly 0.37. In [11], the signal-to-background ratio in CC νµ classification was 0.67.
Due to the distribution discrepancy and different nature of the interactions, the results
could not be directly compared. Nevertheless, we can glean from both studies that
the classification threshold should be calibrated based on the study’s requirements and
the preferred metric.
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Figure 6.10: The CNN architecture utilized in the study [26]. The output of the network
features two branches. The first branch returns the track, shower, or empty (TSE) classi-
fication scores. The second branch returns the score for a Michel electron classification.
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Chapter 7

Conclusions and Further Research

Proton decay, proposed by A. Sakharov in 1967 [2], caused quite a stir in the par-
ticle physics community and prompted extensive research and experimental efforts.
The Deep Underground Neutrino Experiment, with its cutting-edge detectors and a com-
prehensive BSM physics program, has a great potential to unveil new and exotic physics
to improve our understanding of matter and the universe.

In this thesis, we explored the opportunities of deep learning in HEP research.
The CNNs are advantageous in feature engineering, with their ability to autonomously
extract meaningful information. Residual networks, particularly, are of great value:
the shortcut connections allow the training of much deeper networks with a substan-
tially lower risk of overfitting [13].

We trained three modified ResNet18 models from scratch on the dataset consisting of
the simulated proton decay via p → K+ν in LAr and background interactions of atmo-
spheric neutrinos and argon. Despite the subtle nature of the data, the models showed
a decent discriminative ability. They performed well in terms of the ROC, PRC on
the test set (Figure 6.1), and event distributions based on scores evaluated on the train-
ing and validation datasets (Figure 6.2). The models were then used to develop a late
fusion architecture featuring the so-called gate (Figure 5.3, Figure 5.2). The resulting late
fusion model improved the performance of the networks substantially.

A separate branch of our ongoing work is the development of the early fusion archi-
tecture, which combines information from the three readout planes to create a compre-
hensive spatial representation of events. Our current architecture choice involves replac-
ing the traditional RGB image representation in the EfficientNet B2 model with the spa-
tial channels, i.e., the projections from the LArTPC readout planes. While the model
only slightly improved accuracy compared to modified ResNet18 models trained sepa-
rately on corresponding readout view datasets, the signal and background distribution
plot indicates that the model is potent enough to effectively distinguish between signal
and background (Figure 6.4b).

Overall, the individual branch models and the early fusion model display learning
curve patterns that suggest overfitting and mild instability, but they also demonstrate
commendable performance with regard to ROC and PRC. However, among the classi-
fiers employed, the late fusion model stands out as the most effective.
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7.1 Future Research

In our further work, we plan to develop flexible and resilient late and early fusion ar-
chitectures as well as run extensive hyperparameter optimization for the models. Our
objective will remain to maximize the sensitivity of the models to proton decay. Further-
more, we have plans to implement a multiclass classification problem for proton decay
via p → K+ν based on different kaon decay modes (Table 4.3). For that, substantially
more data will be needed, implying more stringent requirements on the data processing
pipeline. The computational challenges we have encountered thus far in data prepro-
cessing include converting the original CSV file containing the image data and analyzing
event images, which involves extracting ROIs and detecting track-continued instances.
Rather than eliminating the track continuation cases from the dataset (as discussed in
4.2.1), which would reduce the active volume of the LArTPC, our proposed solution is
to reconstruct the tracks. An algorithm more potent than a simple visual inspection of
the processed images will be developed to assess the track reconstruction process. To
evaluate the model performance, we aim to utilize conformal prediction.

It was a great opportunity to learn to train (deep neural networks) within a framework
such promising as the Deep Underground Neutrino Experiment. We aspire to further
contribute to the project that may be the culmination of neutrino and nucleon decay
physics. However, hopefully, with that, the epilogue to the BSM discoveries will not
follow.
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