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Introduction

Epidemic mathematical models have become a point of interest in last three years due to new epi-
demic of COVID-19. There are lots of them nowadays with different classes, different parameters and
different assumptions. However, all of them have the same origin - the basic SIR model created by W.
O. Kermack and A. G. McKendrick in 1927. This work will focus on this model and the variation of this
model with demography. We will look into it’s properties and stability and will try to find an approxi-
mate solution. We will continue with analysis of model’s graphs and how change of the parameters will
influence the phase trajectories.

One of the goals of this work is also to learn about modern trends and usage of the basic SIR model in
solving nowadays problems. To reach this goal we will look into the research articles about COVID-19
and determine whether or not basic SIR model was used in these research papers.

Other two goals are to learn about non-linear evolution differential equations and numerical methods
for solving them. The first task will be done during the research of properties of basic SIR model and SIR
model with demography. The second task will consist of discovering numerical methods and comparing
them to determine which one is more suitable for finding the solution. In addition we will estimate the
accuracy of chosen method by calculating the experimental order of convergence.
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Chapter 1

SIR model

In this chapter we will be focusing on the SIR model, which is a simple mathematical model for
epidemic. The main idea of the model is that the population is divided into three classes: Susceptibles
(S ), Infected (I) and Recovered (R). We will be discussing required assumptions for the simple SIR
model and for the model with demography, then we will derive the basic model using works of Kermack
and McKendrick (1927) [2] and Keeling and Rohani (2011) [3]. We will describe the behaviour of each
class of the model and will expand the model by adding demographic processes such as birth and natural
death.

The main problem can be described as follows: Some number of the infected individuals are intro-
duced into the community of susceptible individuals. The susceptibility varies depending on immunity,
hygiene, overall health, environment and other factors. The disease spreads by contact of a susceptible
individual with an infected one. Each infected person remains sick until recovery or death. The chances
of recovery and the person’s infectivity depend on the stage of sickness [2].

To start with basic SIR model, the following assumptions are needed to be made:

• The disease is acute, not chronic. The acute disease is relatively fast (pathogen will be removed
after a short period of time) compared to an average lifespan of an individual, which means that
all population changes (birth, natural death, migration) can not be taken into consideration. Thus,
population remains constant during the epidemic [3].

• The incubation period is short enough to be negligible. A susceptible who contracts the disease is
immediately infective [1].

• Every individual has the same probability to come in contact with each other.

• Recovery will lead to a lifelong immunity. Thus, individual can not be infected twice. If the
disease is lethal, then dead individuals are still counted as recovered with immunity.

• At the beginning of the epidemic, no individual has an immunity.

These assumptions will restrict our model to simple cases without vaccination, demography or incubation
period. Nevertheless, it will give us a model, which will be useful for studying the disease’s properties,
such as the conditions for the beginning and the end of epidemic, and for observing model’s behaviour.

In this work we will be using the deriving from Kermack and McKendrick(1927) [2] and then sim-
plification from Keeling and Rohani (2011) [3]. In SIR models population is divided into three groups:
Susceptibles (S ), Infected (I), Recovered (R). At the beginning almost all individuals are put into S cate-
gory, with an exception of few I individuals. Transition from S class to I happens after successful disease
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Figure 1.1: Schema of the transition between Susceptible, Infected and Recovered classes

transmission, from I to R after successful (recovery) or unsuccessful (death) fight with the disease. This
dynamic is demonstrated in Figure 1.1. The probability of coming into a contact with infected person
depends on the number of people in the I class. Therefore, there will be an influence on transmission
from S to I.

For purposes of making the model we will denote X as the number of persons in S class, Y as the
number of persons in I class and Z the number of persons in R class. As for the number of individuals in
the whole population, we will use notation N. Next step will be dividing time into separate intervals. In-
fection will transmit only during the moment of passing between intervals. There will be no transmission
during these intervals. The size of the interval will be taken as the unit of time.

To describe how individuals move to and out of the I class, we need to denote vt,θ as the number of
individuals, who are infected for θ intervals at the time t. If we make a sum through all intervals, we will
get the total number who are ill at the time t:

Yt =

t∑
θ=0

vt,θ. (1.1)

As expected, vt,0 is the number individuals at the beginning of their infection. We will make another
denotation vt for people who were infected at the point (t − 1, t). In general vt = vt,0, except the point of
origin, where we have assumed that at the beginning of the epidemic we have a few infected individuals
Y0. Thus

v0,0 = v0 + Y0. (1.2)

The whole process of infection can be imagined as the scheme, which can be seen in Table 1.1 [2]:

Fresh infections. Numbers at each stage of illness. Number ill.
v3 v3,0 v3,1 v3,2 v3,3 Y3

↗ ↗ ↗

v2 v2,0 v2,1 v2,2 Y2
↗ ↗

v1 v1,0 v1,1 Y1
↗

v0 v0,0 Y0

Table 1.1: Scheme of illness spread. Every vt,θ will divide at the next stage into people who just became
infected and who have been infected for some period.
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Transition from the I class to the R class will be described with a help of a new denotation ψθ as
a removal rate (in our case the sum of recovery and death rates). Now we can express the difference
between number of infected at the time t and t + 1 as follows:

vt,θ − vt+1,θ+1 = ψθvt,θ.

Thus if we want to know the number of infected individuals at the time t through recursion, we get:

vt,θ = vt−1,θ−1(1 − ψθ−1) = vt−2,θ−2(1 − ψθ−2)(1 − ψθ−1) = vt−θ,0Bθ, (1.3)

where Bθ is the product (1 − ψ0)...(1 − ψθ−2)(1 − ψθ−1).
For the transition from the S class to the I class, we will need ϕθ as the rate of infectivity at the period

θ. Then we have a formula for the vt (number of individuals who became infected at the point (t − 1, t)),
since the chance of infection must be proportional to the number of infected on the one hand, and to the
number of not yet infected on the other [2]:

vt = Xt

t∑
θ=0

ϕθvt,θ.

where Xt is the number of uninfected individuals in S class at the time t. We can simplify the sum by
making an assumption that ϕ0 = 0 (individual can not transmit disease at the moment of infection):

vt = Xt

t∑
θ=1

ϕθvt,θ. (1.4)

Obviously, the number of individuals, who have not been exposed to the virus yet, can be found by
subtraction of people, who were infected at one period from the whole population. Using equation (1.2):

Xt = N −
t∑

x=0

vt,0 = N −
t∑

x=0

vt − Y0. (1.5)

If we take Zt as the number of recovered individuals at time t, then our population can be calculated as a
sum of recovered, unaffected and infected people:

N = Xt + Yt + Zt. (1.6)

Now we can rewrite (1.4) using (1.3) and (1.2) with the fact, that vt = vt,0, except at the point of
origin:

vt = Xt

t∑
θ=1

ϕθvt,θ = Xt

t∑
θ=1

ϕθvt−θ,0Bθ = Xt(
t−1∑
θ=1

ϕθBθvt−θ + ϕtBtv0,0) = (1.7)

= Xt(
t−1∑
θ=1

ϕθBθvt−θ + ϕtBtv0 + ϕtBtY0) = Xt(
t∑

θ=1

Aθvt−θ + AtY0),

where Aθ = ϕθBθ.
Substitute (1.3) and (1.2) in (1.1) and get an equation for Yt:

Yt =

t∑
θ=0

vt,θ =

t∑
θ=0

Bθvt−θ + BtY0. (1.8)
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By definition, the difference between unaffected people at the time t and t − 1 is the number of
individuals who became infected at the time t:

Xt−1 − Xt = vt, (1.9)

hence equation (1.7) can be written as:

Xt − Xt−1 = −vt = −Xt(
t∑

θ=1

Aθvt−θ + AtY0). (1.10)

Also Zt+1 − Zt is the number of individuals who are removed at the end of the interval of time t (for
detailed calculation see [2]):

Zt+1 − Zt =

t∑
θ=1

ψθvt,θ =

t∑
θ=1

ψθBθvt−θ + ψtBtY0 =

t∑
θ=1

Cθvt−θ +CtY0, (1.11)

where Cθ = ψθBθ. The last equation remaining is for Yt, which we will get from (1.13):

Yt+1 − Yt = Xt[
t∑

θ=1

Aθvt−theta + AtY0] − [
t∑

θ=1

Cθvt−θ +CtY0]. (1.12)

For the last step, we will assume that time intervals are very small and take a limit of (1.9) as t approaches
t − 1:

vt = − lim
t→t−1

Xt − Xt−1 = − lim
t→t−1

Xt − Xt−1

t − t + 1
= −

dXt

dt
according to the definition of the derivative. Repeating the same algorithm with (1.11) and (1.10) and
keeping in mind that A0 = C0 = 0, we get:

dXt

dt
= −Xt[

∫ t

0
Aθvt−θ dθ + AtY0],

dZt

dt
=

∫ t

0
Cθvt−θ dθ +CtY0.

Adding equation for Yt from (1.8) and equation for the whole population, we will get a system of five
equations:

N = Xt + Yt + Zt, (1.13)

vt = − lim
t→t−1

Xt − Xt−1 = − lim
t→t−1

Xt − Xt−1

t − t + 1
= −

dXt

dt
, (1.14)

dXt

dt
= −Xt[

∫ t

1
Aθvt−θ dθ + AtY0], (1.15)

dZt

dt
=

∫ t

1
Cθvt−θ dθ +CtY0, (1.16)

Yt =

∫ t

0
Bθvt−θ + BtY0, (1.17)

where Bθ = e−
∫ θ

0 ψα dα, Aθ = ϕθBθ and Cθ = ψθBθ.
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These equations are not independent and (1.13) is a necessary consequence of (1.15), (1.16), (1.17).
Four independent equations (1.14), (1.15), (1.16), (1.17) determine the four functions X,Y,Z and v [2].

However, for further simplification we will make an assumption that the recovery rate ψ and rate of
infectivity ϕ are constants; this leads to far more straightforward equations and exponentially distributed
infectious periods [3].

Let κ be a number of contacts that one susceptible individual makes per unit of time. To simplify, we
will represent the discrete population N by continuous interval [0, 1] and introduce the variables S, I, R
as the population density for each class:

S =
X
N
,

I =
Y
N
,

R =
Z
N
,

where N is the number of individuals in the population. Variables S, I, R are fraction, therefore:

S + I + R = 1. (1.18)

Assuming Infected and Recovered have a linear connection through parameter γ, we get the first
equation of SIR model:

dR
dt
= γI. (1.19)

Next step is defining c as a probability of the successful transmission of the infection and δq as a
probability that after a contact with an individual from Infected class a susceptible individual became in-
fected. During an infinitesimally small period of time δt the number of contacts with infected individuals
will be κ Y

N δt. Then the probability of not catching the disease is:

1 − δq = (1 − c)κ
Y
N δt.

We are interested in the probability of the successful transmission δq. If we define β = −κln(1 − c),
then the equation for δq will transform to:

δq = 1 − e−β
Y
N δt.

Using Taylor expansion, we get:

δq ≈ −β
Y
N
δt.

We will divide this equation by δt and take the limit of δq
δt as δt → 0

dq
dt
= β

Y
N
.

For the whole Susceptible class we get:
dX
dt
= βX

Y
N
.

Using previous equations, gives us the second differential equation of the basic SIR model without de-
mography:

dS
dt
= −βS I. (1.20)
13



For the third evolution equation (1.18), (1.19), (1.20) are added together:

dI
dt
=

d(1 − S − R)
dt

= −
dS
dt
−

dR
dt
= βS I − γI. (1.21)

As a result, we get a system of three linear equations:

dS
dt
= −βS I, (1.22)

dI
dt
= βS I − γI, (1.23)

dR
dt
= γI. (1.24)

These equations are endowed with the initial conditions S (0) > 0, I(0) > 0, R(0) = 0. The typical
behavior of these differential equations is shown on Figure 1.2.

Figure 1.2: The graph of the basic SIR model given by equations (1.22 - 1.24): dS
dt = −βS I, dI

dt =

βS I − γI, dR
dt = γI. The figure is plotted with β = 1.428 and 1

γ = 7 [3].

The basic SIR model was build on the assumption that the disease spread fast so it would not be
affected by deaths or births in population. Some important properties could be learned from this model,
but if we are interested in exploring the long-term epidemic, we definitely need to add demographic
processes. The simplest and most common way to introduce demography into the SIR model is to
assume there is a natural host "lifespan", 1

µ . Then, the rate at which individuals (in any epidemiological
class) suffer natural mortality is given by µ [3]. Some authors assume that mortality influences only
Recovered class ([18] Bailey 1975, [18] Keeling et al. 2001a, [18] Brauer 2002), but here the assumption
will be from [3] that µ also represents the population’s crude birth rate, so the size of population would

14



CHAPTER 1. SIR MODEL 15

not change through time. The simple SIR model changes into the generalized SIR model:

dS
dt
= µ − βS I − µS , (1.25)

dI
dt
= βS I − γI − µI, (1.26)

dR
dt
= γI − µR. (1.27)

This change drastically influences the behavior of the SIR curves, which is shown in Figure 1.3

Figure 1.3: The graph of the SIR model with demography given by equations (1.25 - 1.27): dS
dt =

µ − βS I − µS , dI
dt = βS I − γI − µI, dR

dt = γI − µR. The figure is plotted with β = 5 and 1
γ = 1 and µ = 1

70 .

In case of non-constant population size we need to differentiate between frequency- and density-
dependent transmission [3]. These two kinds of transmission are based on how we expect the contact
structure to change with population size. Frequency-dependent transmission is not influenced by the
population size (the number of contacts will stay the same). Density-dependent transmission assumes
that the bigger is density, the faster is transmission (contact rate rises) [3]. The first kind of transmission
is applicable on human population, the latest on plant and animals [1].



Chapter 2

Mathematical properties of SIR model

In this chapter we will deal with mathematical properties of the basic SIR model and SIR model with
demography. We will examine the life cycle of the epidemic, will consider when it has a possibility to
start and what is the reason for it’s end. With some additional assumptions we will be able to derive an
approximate analytical expression for Recovered class for the basic SIR model. Then we will discuss the
stability of the model with demography and look into stability analysis. Finally, we will study the phase
trajectories for both models and try to determine the reasons of the system’s behaviour.

2.1 The SIR Model Without Demography

2.1.1 The Threshold Phenomenon

Despite its simplicity, the SIR model (1.22) - (1.24) does not have an analytical solution; instead we
will be looking for its numerical solution (Chapter 3). Nevertheless, the two most important qualitative
properties can be studied on this model.

The first is called "The Threshold Phenomenon" by most of the authors. It will appear that for
each particular set of infectivity, recovery and death rates, there exists a critical or threshold density
of population. If the actual population density is equal to (or below) this threshold value the epidemic
will not occur. It will appear also that the size of epidemic increases rapidly as the threshold density is
exceeded [2].

We start with rewriting equation (1.23) in the form

dI
dt
= I(βS − γ). (2.1)

If S(0) is less then γ
β (threshold value) then dI

dt < 0 and the infection "dies out". The inverse R0 =
β
γ is called the basic reproductive ratio. The definition of this quantity is [8]: "the average number
of secondary cases arising from an average primary case in an entirely susceptible population". The
dynamics of disease transmission models is often described only by one parameter R0, not the pair
of γ, β parameters. The R0 is commonly estimated from case data or by fitting the SIR model to the
data. However, due to the assumption of neglecting the incubation period, the R0 approximation can be
underestimated. We can try to make R0 more accurate by adding the incubating period, nevertheless,
it will not give us an advantage. The attempts in estimating the incubation period will give the same
inaccuracy, if not greater. [8].

With use of R0 the threshold phenomenon will change to the following: assuming S(0) = 1, a
pathogen can invade only if R0 > 1 [3]. The logical explanation for this is that any disease cannot
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CHAPTER 2. MATHEMATICAL PROPERTIES OF SIR MODEL 17

spread if it cannot successfully transmit to more than one new susceptible [12]. R0 depends both on the
disease and population. Mathematically, basic reproductive ratio represents the rate at which new cases
are produced by an infectious person multiplied by the average infectious period.

2.1.2 Epidemic Burnout

The second property is the answer of the question: "When will the epidemic burnout?" First, we will
divide equation (1.22) by (1.24):

dS
dR
= −

β

γ
S = −R0S . (2.2)

Then we will integrate with respect to R, assuming that R(0)=0:∫
1
S

dS =
∫
−R0 dR,

ln S = −R0R +C,

S (t) = e−R0R(t)eC ,

solving for t = 0, we get the value of a constant:

S (0) = eC .

The final result is:
S (t) = S (0)e−R0R(t). (2.3)

As the epidemic develops, the Susceptible class declines, but never reaches zero. The meaning of this
is that there will be some individuals in the Susceptible class, who escaped the infection. This leads to
a very important conclusion: the chain of transmission eventually breaks due to the decline in infectives
(not due to a complete lack of susceptibles) [3].

Keeping in mind that the epidemic ends when I = 0, and using (1.18), we can get an equation for a
long-term behavior of (2.3):

S (∞) = 1 − R(∞) = S (0)e−R(∞)R0 ,

1 − R(∞) − S (0)e−R(∞)R0 = 0, (2.4)

where R(∞) is the final portion of recovered individuals, which is equal to the total portion of infected
individuals.

The next important thing that we want to get is the expression for the epidemic curve. To obtain it,
we will use the expressions (1.18), (2.3) and we will rewrite the expression 1.24:

dR
dt
= γ(1 − S (t) − R(t)) = γ(1 − S (0)e−R0R(t) − R(t)).

This equation does not have analytical solution for all R0R, but for small values we can use Maclaurin
series for exponential function to approximate:

dR
dt
≈ γ

[
1 − S (0)

(
1 − R0R(t) +

(R(t)R0)2

2

)
− R(t)

]
=

= γ

[
1 − S (0) + S (0)R0R(t) −

S (0)(R(t)R0)2

2
− R(t)

]
=

= γ

1 − S (0) + (S (0)R0 − 1)R(t) −
S (0)R2

0

2
R2(t)

 =
= c + bR(t) + aR2(t),

(2.5)
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where

c = γ(1 − S (0)) = γI(0),

b = γ(S (0)R0 − 1),

a = −
γS (0)R2

0

2
.

This is a separable differential equation, so we will separate the variables and then use partial fraction
decomposition. For this we, firstly, need to calculate solutions of:

c + bR + aR2 = 0,

D = b2 − 4ac.

Discriminant is above zero because c > 0 and a < 0, so as the result we get a sum of two positive
numbers. If we denote R1 and R2 as two solutions, we get:

R1 =
−b +

√
D

2a
=

1 − S (0)R0 +

√
(S (0)R0 − 1)2 + 2I(0)S (0)R2

0

−S (0)R2
0

,

R2 =
−b −

√
D

2a
=

1 − S (0)R0 −

√
(S (0)R0 − 1)2 + 2I(0)S (0)R2

0

−S (0)R2
0

.

Then the decomposition will be as follows:

1
c + bR + aR2 =

1
a(R − R1)(R − R2)

=
1
a

(
A

(R − R1)
+

B
(R − R2)

)
=

1
a

A(R − R2) + B(R − R1)
(R − R1)(R − R2)

,

A + B = 0⇒ A = −B,

−AR2 − BR1 = 1⇒ −AR2 + AR1 = 1⇒ A =
1

R1 − R2
.

Now after the separation the left part will be:∫
dR

c + bR + aR2 =
1

a(R1 − R2)

∫ (
1

(R − R1)
−

1
(R − R2)

)
dR =

1
a(R1 − R2)

ln
∣∣∣∣∣R − R1

R − R2

∣∣∣∣∣.
Next question is when the expression R−R1

R−R2
is more than 0 and when is less. We will start by removing

the square root:

R − R1

R − R2
=

R − −b+
√

D
2a

R − −b−
√

D
2a

=
2aR + b −

√
D

2aR + b +
√

D
==

(2aR + b)2 − D

(2aR + b +
√

D)2
.

The denominator (2aR + b +
√

D)2 is positive, therefore we can focus on numerator:

(2aR + b)2 − D = 4a2R2 + 4aRb + b2 − b2 + 4ac = 4a(aR2 + Rb + c) =

=
−4γS (0)(R0)2

2

−γS (0)R2
0

2
R2 + Rγ(S (0)R0 − 1) + γ(1 − S (0))

 =
= γ2S (0)(R0)2

[
S (0)((R0R − 1)2 + 1) − 2 + 2R

]
≈

≈ γ2S (0)(R0)2 [2S (0) − 2 + 2R] .
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This gives us the following observation: for R < 1 − S (0) = I(0) the expression R−R1
R−R2

is less than
0. This situation characterizes the beginning of the epidemic. For the end of the epidemic we get
R ≥ 1− S (0) = I(0) and the expression R−R1

R−R2
is greater than 0 or ist equal to 0. The final form of equation

is:

ln
(

R−R1
R−R2

)
a(R1 − R2)

= t +C, f or R(t) ≥ I(0),

ln
(
−

R−R1
R−R2

)
a(R1 − R2)

= t +C, f or R(t) < I(0),

where C is integration constant. Solving in terms of R, we get:

ln
(
±

R − R1

R − R2

)
= (t +C)a(R1 − R2),

±
R − R1

R − R2
= e(t+C)a(R1−R2),

finding constant by calculating the equation for t = 0:

±
R1

R2
= eCa(R1−R2).

As the result:

±
R − R1

R − R2
= ±eta(R1−R2) R1

R2
,

R − R2 + (R2 − R1)
R − R2

= eta(R1−R2) R1

R2
,

1 +
R2 − R1

R − R2
= eta(R1−R2) R1

R2
,

R − R2

R2 − R1
=

1

eta(R1−R2) R1
R2
− 1

,

R =
R2 − R1

eta(R1−R2) R1
R2
− 1
+ R2 =

R1(eta(R1−R2) − 1)

eta(R1−R2) R1
R2
− 1

.
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After reverse substitution:

R =
1

S (0)R2
0

(S (0)R0 − 1 + ζ)(etγζ − 1)

etγζ S (0)R0−1+ζ
S (0)R0−1−ζ − 1

=
1

S (0)R2
0

(S (0)R0 − 1 + ζ)(etγζ − 1)

etγζ S (0)R0−1+ζ+2ζ
S (0)R0−1−ζ − 1

=

=
1

S (0)R2
0

(S (0)R0 − 1 + ζ)(etγζ − 1)

etγζ − 1 + etγζ2ζ
S (0)R0−1+ζ

=

=
1

S (0)R2
0

(S (0)R0 − 1 + ζ)(etγζ − 1)(S (0)R0 − 1 − ζ)
(etγζ − 1)(S (0)R0 − 1) − ζ(etγζ − 1) + etγζ2ζ

=

=
1

S (0)R2
0

((S (0)R0 − 1)2ζ2)(etγζ − 1)
(etγζ − 1)(S (0)R0 − 1) + ζ(etγζ + 1)

=

=
1

S (0)R2
0

((S (0)R0 − 1)2 − ζ2)(etγζ − 1)
( 1
ζ tanh ( 1

2ζγt)(S (0)R0 − 1) + 1)ζ(etγζ + 1)
=

=
1

S (0)R2
0

((S (0)R0 − 1)2 − ζ2) tanh ( 1
2ζγt)

( 1
ζ tanh ( 1

2ζγt)(S (0)R0 − 1) + 1)
=

=
ζ

S (0)R2
0

((S (0)R0 − 1)2 1
ζ2 tanh ( 1

2ζγt) − tanh ( 1
2ζγt)

( 1
ζ tanh ( 1

2ζγt)(S (0)R0 − 1) + 1)
=

=
ζ

S (0)R2
0

S (0)R0−1
ζ ((S (0)R0 − 1) 1

ζ tanh ( 1
2ζγt) + 1) − S (0)R0−1

ζ − tanh ( 1
2ζγt)

( 1
ζ tanh ( 1

2ζγt)(S (0)R0 − 1) + 1)
=

=
1

S (0)R2
0

S (0)R0 − 1 −
(S (0)R0 − 1) + ζ tanh ( 1

2ζγt)

( 1
ζ tanh ( 1

2ζγt)(S (0)R0 − 1) + 1)

 =
=

1
S (0)R2

0

(
S (0)R0 − 1 + ζ tanh (

1
2
ζγt − ϕ)

)
,

where ζ =
√

(S (0)R0 − 1)2 + 2I(0)S (0)R2
0 and ϕ = tanh−1

(
1
α (S (0)R0 − 1)

)
.

The final result:

R(t) =
1

S (0)R2
0

[
S (0)R0 − 1 + ζ tanh

(
1
2
ζδt − ϕ

)]
, (2.6)

where ϕ = tanh−1
(

1
α (S (0)R0 − 1)

)
, ζ =

√
(S (0)R0 − 1)2 + 2I(0)S (0)R2

0.
To verify the correctness of the result, we will use another method to solve equation (2.5). Let’s start

with substitution R(t) = u(t) − b
2a [14]:

du
dt
= a

(
u −

b
2a

)2

+ b −
b2

2a
+ c = au2 −

b2

2a
+ c = au2 −

D
4a
,

where D = b2 − 4ac. Then we will substitute u = w
√

D
2a :

√
D

2a
dw
dt
=

du
dt
= au2 −

D
4a
= w2 D

4a
−

D
4a
,

√
D

2a
dw
dt
= (w2 − 1)

D
4a
,
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dw
w2 − 1

=

√
D

2
dt.

Solving differential equation:

tanh−1 w = −

√
D

2
t +C,

where C is a constant. After applying reverse substitution:

u(t) =

√
D

2a
tanh

− √D
2
+C

 .
R(t) = −

b
2a
+

√
D

2a
tanh

− √D
2
+C

 ,
Constant C can be found from initial condition R(0) = 0:

0 = −
b
2a
+

√
D

2a
tanh C,

tanh C =
b
√

D
,

C = tanh−1
(

b
√

D

)
.

With this result and reverse substitution for a, b, c we get:

R(t) = −
b

2a
+

√
D

2a
tanh

− √D
2

 + tanh−1
(

b
√

D

)
=

=
S (0)R0 − 1

S (0)R2
0

−
ζ

S (0)R2
0

tanh
(
−
γζt
2

)
+ tanh−1

(
S (0)R0 − 1

ζ

)
=

=
1

S (0)R2
0

(
S (0)R0 − 1 + ζ tanh

(
−
γζt
2
+ ϕ

))
,

where

ϕ = tanh−1
(
S (0)R0 − 1

ζ

)
,

ζ =
√

(S (0)R0 − 1)2 + 2I(0)S (0)R2
0.

The final result
R(t) =

1
S (0)R2

0

(
S (0)R0 − 1 + ζ tanh

(
−
γζt
2
+ ϕ

))
was reached by assuming that R0R is small. This condition is most likely to be met at the beginning at
the epidemic and will not be very accurate for highly infectious diseases [3]. Another important curve is
an epidemic curve. Expression for it can be obtained by differentiating R(t) (2.6) in terms of time t:

dR
dt
=

δζ2

2S (0)R2
0

sech2
(
1
2
ζδt − ϕ

)
. (2.7)

For any specific epidemic γ and ϕ can be estimated from a data. The derivation also requires R0R to be
small.
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The example of R(t) can be seen in Figure 2.1. The coefficients were taken from the Bombay plague
epidemic of 1905-1906. The epidemic was not severe compared to the population size. This allowed to
find the best fit for three parameters and get the result for an epidemic curve [1]:

dR
dt
= 890sech2(0.2t − 3.4),

which can be seen in Figure 2.2

Figure 2.1: Example of R(t) approximation (2.6) R(t) = 1
S (0)R2

0

(
S (0)R0 − 1 + ζ tanh

(
−
δζt
2 + ϕ

))
with

coefficients derived from the data of the plague in Bombay 1905.

Figure 2.2: Example of epidemic curve (2.7) given by equation dR
dt = 890sech2(0.2t − 3.4) derived from

the data of the plague in Bombay 1905 [3].
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2.2 The SIR Model With Demography

2.2.1 The Equilibrium State

The changes in host demographic can lead to the long term disease persistence [3]. To tell what is
going to happen, we can look at the system at equilibrium state with

dS
dt
=

dI
dt
=

dR
dt
= 0.

First equilibrium is trivial and is called the disease-free equilibrium. This is the situation when the
pathogen has died out and in the long term all population consists of Susceptibles. Mathematically it is
the point (S , I,R) = (1, 0, 0).

Other equilibrium is the endemic equilibrium. In epidemiology the term endemic means that infec-
tion is constantly present in population or is maintained on the same level, without extra infection being
brought. Therefore, we start by setting the equation for Infected (1.26) to zero:

I(βS − (γ + µ)) = 0,

from where we can see that I = 0 or βS −γ−µ = 0. First one is the disease-free equilibrium. The second
one is for endemic, we get condition:

S =
γ + µ

β
,

which is the inverse of R0. Then we substitute the result for S into (1.25):

µ − β
1

R0
I − µ

1
R0
= 0, (2.8)

β

R0
I = µ(1 −

1
R0

), (2.9)

I =
µ

β
(R0 − 1). (2.10)

Using that the sum of S , I and R is 1 (1.18), we can get an expression for R:

R = 1 − S − I = 1 −
1

R0
−
µ

β
(R0 − 1).

Therefore, the point of the endemic equilibrium is:

(S , I,R) =
(

1
R0
,
µ

β
(R0 − 1), 1 −

1
R0
−
µ

β
(R0 − 1)

)
. (2.11)

2.2.2 Stability Properties

The study of an equilibrium cannot be complete without stability analysis. Consider a general vector
field:

ẋ = f (x, t), x ϵ Rn, (2.12)

x(t0) = xini.

Let ϕ = ϕ(t; t0, xini) be any solution of 2.12, ||.|| is a norm on Rn. Then we can define stability:



CHAPTER 2. MATHEMATICAL PROPERTIES OF SIR MODEL 24

Definition 1. The solution ϕ is stable if for every ϵ > 0 there exists a δ = δ(ϵ) > 0 such that, for
any other solution, y(t), of 2.12 satisfying ||ϕ(t0)−y(t0)|| < δ, then ||ϕ(t)−y(t)|| < ϵ for t > t0, t0 ϵ R [22].

And asymptotic stability:

Definition 2. The solution ϕ is asymptotically stable if it is stable and for any other solution, y(t),
there exist a constant b > 0 such that, if ||ϕ(t0) − y(t0)|| < b, then limt→∞ ||ϕ(t) − y(t)|| = 0 [22].

In order to determine the stability of solution ϕ we can study the behaviour of other solutions near it:

x = ϕ(t) + y(t).

Substituting x in (2.12) we get:
ẋ = ϕ̇ + ẏ = f (ϕ(t), t) + ẏ.

Also we can use Taylor expansion for f (x, t) around ϕ(t) and get:

ẋ = f (ϕ(t)) + D f (ϕ(t))(x − ϕ(t)) + O(|(x − ϕ(t))2|) = f (ϕ(t)) + D f (ϕ(t))y + O(|y2|).

Aligning these two equations:
ẏ = D f (ϕ(t))y + O(|y2|).

Thus, if we want to describe the behavior of the solutions close to ϕ, we need to study the following
linear system:

ẏ = D f (ϕ(t))y.

To tell if the solution ϕ is stable we will use Poincaré-Lyapunov theorem:

Theorem 1. Suppose all of the eigenvalues of D f (ϕ(t)) have negative real parts. Then the equilibrium
solution x = ϕ(t) of the nonlinear vector field 2.12 is asymptotically stable [22].

Returning to the SIR model, the D f will be:

D f =

−βI − µ −βS 0
βI βS − (µ + γ) 0
0 γ −µ

 .
Next step is to obtain the characteristic polynomial:

(−βI − µ − λ)(βS − (µ + γ) − λ)(−µ − λ) + (βI)(βS )(−µ − λ) = 0.

The first eigenvalue is λ1 = −µ, which is negative. For the others we need to take in consideration our
equilibriums. First one is the disease-free equilibrium, after the substitution (S = 0, I = 0) we get:

(−µ − λ)(β − (µ + γ − λ)).

As the result, λ2 = −µ and λ3 = β − (µ + γ). For this equilibrium to be stable (for all eigenvalues to be
negative) this criterion must be met:

β < µ + γ,

which translates into ensuring R0 < 1 [3].
For the endemic equilibrium (S = γ+µ

β , I = µ
β (R0 − 1)) we get the following expression:

(−µ(R0 − 1) − µ − λ)(γ + µ − (µ + γ) − λ) + µ(R0 − 1)(γ + µ) = 0,
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(−µ(R0 − 1) − µ − λ)(−λ) + µ(R0 − 1)(γ + µ) = 0,

λ2 + µR0λ + µ(R0 − 1)(γ + µ) = 0,

the solution of which is:

λ2,3 = −
µR0 ±

√
(µR0)2 − 4

AG

2
,

where the term A = 1
µ(R0−1) denotes the mean age at infection and G = 1

µ+γ determines the typical period
of a host’s infectivity [3].

To continue with these eigenvalues, we can notice that (µR0)2 = (µ β
γ+µ )2 is often small enough to

ignore, hence we can approximate:

λ2,3 ≈ −
µR0

2
±

i
√

AG
.

Therefore, the endemic equilibrium is feasible only when R0 is greater than one, but it is always stable.
The fact that dominant eigenvalues are complex tells us that equilibrium is approached via oscillatory
dynamics. The simple SIR without demography is an excellent example of a damped oscillator, the
amplitude of fluctuation declines over time.

2.2.3 Phase Trajectories

The following set of figures is representing phase trajectories of models with and without demogra-
phy for different parameters β, γ and µ.

We will start with the basic SIR without demography. In Figure 2.3 we see a typical example of
phase trajectories for simple SIR model. The trajectories are set for different initial conditions of I(0):
0.9 (the highest one), 0.8, 0.6, 0.5, 0.3, 0.03 (the lowest one). The values for S (0) are found by using the
fact that since R(0) = 0 then S + I = 1, so S = 1 − I. The trajectories start on the line S + I = 1 and
remain within a triangle since 0 < S + I < 1. An epidemic exists if I(t) > I(0) for any t > 0 [1]. The
full picture of the all three curves’ behaviour can be found in three dimensional representation of phase
trajectories (Figure 2.5).

Results for different parameters β and γ can be seen in Figure 2.4. For β > γ (Figures 2.4, a and 2.4,
c) trajectories are curves or polygonal chains and for β < γ (Figures 2.4, b and 2.4, d) they are lines. In
the first case, the more is the difference the longer are segments and the higher polygonal chains are. If
the β (probability of catching an infection) is too high, the speed of spread will rise giving us the sharp
increase in Infected and decrease of Susceptibles. Combining with the fact that the speed of recovery γ
is slow, Infected will get a sharp rise with a small decrease leading to higher curve position and longer
segments of no decline (Figure 2.4, c). For the second case, the increase in difference leads to decrease in
tilt angle. The probability of catching a disease now is very small and the speed of recovery from illness
is high giving us almost no decrease in Susceptibles and sharp decrease of Infected. As the result we see
smaller and smaller tilt angle the bigger the recovery speed is (Figure 2.4, d). More of this behaviour can
be seen on phase trajectories in three dimensions (Figure 2.6).

For the SIR with demography, we are getting a third parameter - natural mortality µ. It gives us
an oscillatory dynamic which is also seen in phase trajectories towards the end of a trajectory (Figure
2.7). The third dimensional view on oscillation is captured in Figure 2.10. The change in this parameter
(Figure 2.8) gives us higher and lower position of oscillation. For higher values of µ the oscillation point
moves higher. If the mortality rate is high, we will see the fast decrease of the population. Both Infected
and Susceptibles are dependent on the population size, so the decrease in population will move the end
points of the curves to a higher level, making oscillation appear higher (Figure 2.8, b). More confirmation
can be found when studying phase trajectories in three dimensions (Figure 2.11).
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Figure 2.3: Phase trajectories of Susceptible and Infected given by equations (1.22), (1.23): dS
dt =

−βS I, dI
dt = βS I − γI with parameters β = 0.18, γ = 0.037.

For the case of no epidemic (β = 0.037 and γ = 0.18) this oscillation turns into a slight curve
(Figure 2.9). It shows that even with the mortality the decrease in Infected is still faster than decrease
in Susceptibles. In Figure (Figure 2.9, b) the speed of population’s decrease is so high, that despite the
absence of epidemic, the speed of Infected and Susceptibles decrease is almost the same. The three
dimensional representation of these situations can be found in Figure 2.12.

To sum up, for the model without demography the chances of epidemic occurrence are higher for the
cases when β > γ (Figures 2.4, a and 2.4, c), which is in accordance with the condition R0 > 1. And
we can see, that the end of epidemic happens not due to lack of Susceptibles (Figures 2.4, b and 2.4, d),
which also corresponds with our theoretic findings.

For the model with demography we also count the influence of parameter µ. If the β > γ + µ the
pathogen will be present in population long-term (2.8). This characterizes the endemic equilibrium. For
the disease-free equilibrium we see no oscillation no matter how big is parameter µ (Figure 2.9).

2.2.4 Modern trends

Nowadays there are a lot of extensions of the simple SIR model. The SI model for illnesses with
mortality risk, the SIS model for cases without immunity, the SIR model for immunity that lasts for a
limited time, the SEIR model for diseases with latent period and more. Nevertheless, even the simple
SIR model is used today in epidemiology researches. One of the examples is the research of COVID-19
in Algeria [9] (Fig. 2.13). We can use basic SIR to predict the disease spread in this situation because of
the following reasons:
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(a) Constants β = 10, γ = 5. (b) Constants β = 0.037, γ = 0.18.

(c) Constants β = 10, γ = 1. (d) Constants β = 0.18, γ = 5.

Figure 2.4: Phase trajectories given by equations (1.22), (1.23): dS
dt = −βS I, dI

dt = βS I−γI with different
parameters β and γ.

• No vaccination, curfews, lockdowns and social distancing were there in the time of research.

• Although Algeria’s health-care system ranks among the best in Africa, it lags far behind standards
of wealthier countries [19].

• The population is concentrated at northern regions with high density so the number of contacts
between people is high.

• Lifecycle of the COVID-19 is relatively short so we can ignore the demography.

Another good use of the model it to determine parameter for infectivity and the basic reproductive ratio
[6]. This case is represented in research of the COVID-19 in Italy [10] (Figure 2.14),

Recent trend in epidemiology is to not only customize the model with various specific parameters
but also to study the behavioral responses of individuals to the infection’s spread. This has led to the
birth of a new branch of mathematical epidemiology, which is called the behavioral epidemiology of
infectious diseases [16]. It takes into consideration lockdowns, restrictions, social distancing and other
governmental practises to determine whether or not they are effective. It is done by including a new
function, which is called the control function. Then the task is to optimize this function to prevent spread
of the disease or to slow it down. The other function that is added to the model is the information index.
This index describes the information regarding the status of the disease in the community [20].

For example, in order to compare of how different countries manage epidemics, Spatial SIR model
was introduced. The name comes from adding the spatial dimension to SIR model. It was very important
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Figure 2.5: Phase trajectories given by equations (1.22), (1.23), (1.24): dS
dt = −βS I, dI

dt = βS I−γI, dR
dt =

γI.

in researching the spread of SARS-CoC-2 under lockdown restriction. It allowed to study the epidemic
locally and count the local herd immunities to reach more accurate result [24]. Another example is
Distance-contagion model. It is used specifically to estimate the effectiveness of the social distancing.
The infectivity rate there is depended on the average dynamic distance that individuals usually keep from
each other [25].

The other trend is to use these epidemiological models not only for biological diseases, but also for
spread of computer viruses, online social networks and for the economic epidemiology [21]. It can be
used to predict the spread of gossips, to research viral market strategies, to understand the spread of
information on complex networks.
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(a) Constants β = 10, γ = 5. (b) Constants β = 10, γ = 1.

(c) Constants β = 0.18, γ = 5.

Figure 2.6: Phase trajectories given by equations (1.22), (1.23), (1.24): dS
dt = −βS I, dI

dt = βS I−γI, dR
dt =

γI with different parameters β and γ.
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Figure 2.7: Phase trajectories for the SIR model with demography given by equations (1.25), (1.26):
dS
dt = µ − βS I − µS , dI

dt = βS I − γI − µI with parameters β = 5, γ = 1, µ = 1
70 .
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(a) Constant µ = 1
7 . (b) Constant µ = 1.

(c) Constant µ = 1
90 .

Figure 2.8: Phase trajectories given by equations (1.25), (1.26): dS
dt = µ − βS I − µS , dI

dt = βS I − γI − µI
with different parameter µ for same β = 5 and γ = 1.

(a) Constant µ = 1
7 (b) Constant µ = 1.

Figure 2.9: Phase trajectories given by equations (1.25), (1.26): dS
dt = µ − βS I − µS , dI

dt = βS I − γI − µI
with different parameter µ for same β = 0.037 and γ = 0.18.
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Figure 2.10: Phase trajectories given by equations (1.25), (1.26), (1.27): dS
dt = µ − βS I − µS , dI

dt =

βS I − γI − µI, dR
dt = γI − µR with parameters β = 5, γ = 1, µ = 1

70 .
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(a) Constant µ = 1
7 . (b) Constant µ = 1.

(c) Constant µ = 1
90 .

Figure 2.11: Phase trajectories in 3 dimensions given by equations (1.25), (1.26), (1.27): dS
dt = µ−βS I−

µS , dI
dt = βS I − γI − µI, dR

dt = γI − µR with different parameter µ for same β = 5 and γ = 1.
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(a) Constant µ = 1
7 . (b) Constant µ = 1.

Figure 2.12: Phase trajectories in 3 dimensions given by equations (1.25), (1.26), (1.27): dS
dt = µ−βS I−

µS , dI
dt = βS I − γI − µI, dR

dt = γI − µR with different parameter µ for same β = 0.037 and γ = 0.18.

Figure 2.13: The SIR model for epidemic of COVID-19 in Algeria with coefficients β = 0.0561215 and
γ = 0.0455331 [9].
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Figure 2.14: The SIR model for epidemic of COVID-19 in Italy with coefficients β = 0.18 and γ = 0.037
[10].



Chapter 3

Numerical methods

Consider having a system of non-linear differential equations without analytical solution:

dy
dt
= f (t, y), (3.1)

y(t0) = y0.

Solving (3.1) is only possible with numerical methods. The most basic and simple method to use is
Euler’s method, where approximation of yn, solution of y(t) at the point tn, can be find from recursion
[13]

y0 = η,

yn+1 = yn + h f (tn, yn), n = 0, 1, ...,mn ∈ ⟨a, b⟩,

where η is the initial condition, h is a constant (integration step). This method was implemented by
myself in Python[15]:

Algorithm 1 Euler’s method
Require: y[0] = t0 for vector y
Ensure:

for i from the beginning to the end of the vector y do
y[i + 1]← y[i] + h ∗ f (t[i], y[i])

end for

Euler’s method is very dependent on the integration step. Figure 3.1 is comparing graphs for h = 1
and h = 0.1. The other method used for solving differential equations is Runge-Kutta method. Recursion
for the solution is [13]:

yn+1 = yn +
1
6

h ∗ (k1 + 2 ∗ k2 + 2 ∗ k3 + k4),

k1 = f (tn, yn),

k2 = f (tn +
1
2

h, yn +
1
2

h ∗ k1),

k3 = f (tn +
1
2

h, yn +
1
2

h ∗ k2),

k4 = f (tn + h, yn + h ∗ k2),

n = 0, 1, ...,mn ∈ ⟨a, b⟩.
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Figure 3.1: Graphical solution for the function f (t) = 8900
cosh2(0.2t−3.4)

with integration step 1 and 0.1.

Algorithm 2 Runge-Kutta method
Require: y[0] = t0 for vector y
Ensure:

for i from the beginning to the end of the vector y do
h← t[i + 1] − t[i]
k1← f (y[i], t[i])
k2← f (y[i] + k1 ∗ h/2, t[i] + h/2)
k3← f (y[i] + k2 ∗ h/2, t[i] + h/2)
k4← f (y[i] + k3 ∗ h, t[i] + h)
y[i + 1]← y[i] + (h/6) ∗ (k1 + 2 ∗ k2 + 2 ∗ k3 + k4)

end for

In order to choose one of them for solving SIR model, I compared the graphs of the Runge-Kutta
solution, the Euler solution and the exact solution. The verification task was the following: I took the
following equation:

dy
dt
= e−t, (3.2)

y(0) = −1.

. Then I applied both methods on this function and plotted them with the exact solution of integration
Y(t) = −e−t − 1. In Figure 3.2 is seen that the Runge-Kutta method is more accurate than Euler. That is
why my choice for numerical method is Runge-Kutta.

One of the important thing to know about a numerical method is how fast it converges to the exact
solution. In order to determine it for Runge-Kutta method I calculated the experimental order of con-
vergence (EOC) [13]. To complete this task, firstly, I needed to find the value of error. For comparison
I took errors in maximum, absolute value and Euclidean norms. The error is calculated by finding the
difference between the numerical and exact solution. If we denote exact solution as y, numerical solution
as ỹ, interval as T, the number of points of numerical solution as M, then we get the following formulas
for calculating errors (here we denote ψ as an error):
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Figure 3.2: Comparison of Runge-Kutta and Euler solutions for the equation (3.2) : dy
dt = e−t, y(0) = −1,

the exact solution is calculated for Y(t) = −e−t − 1.

ψmax = max
i=1,..,M

(|yi − ỹ(i∆t)|), (3.3)

ψ1 =

∑M
i=1|yi − ỹ(i∆t)|∆t

T
, (3.4)

ψ2 =
(
∑M

i=1(yi − ỹ(i∆t))2∆t)
1
2

T
. (3.5)

The (1.22) SIR model does not have the exact solution, so I took numerical solution [23] for more
points and replaced the exact solution with it. For numerical solution the number of points was maximum
6000 and for replacement it was 60000. Then I implemented the norms calculations in Python.

Algorithm 3 Error in maximum norm calculation
Require: errmax = 0
Ensure:

for k from the beginning to the end of the vectors S, I, R do
a = abs(S (k) − S̃ (k))
b = abs(I(k) − Ĩ(k))
c = abs(R(k) − R̃(k))
errmax = max(max(max(errmax, a), b), c)

end for

Algorithm 4 Error in discrete L1 norm calculation
Require: err = 0

for k from the beginning to the end of the vectors S, I, R do
a = (abs(S (k) − S̃ (k)) + abs(I(k) − Ĩ(k)) + abs(R(k) − R̃(k))) ∗ ∆t
err = err+a

T
end for



CHAPTER 3. NUMERICAL METHODS 39

Algorithm 5 Error in discrete L2 norm calculation
Require: err = 0

for k from the beginning to the end of the vectors S, I, R do
a = pow(pow(S (k) − S̃ (k), 2) + pow(I(k) − Ĩ(k), 2) + pow(R(k) − R̃(k), 2), 1/2) ∗ ∆t
err = err+a

T
end for

If ∆t = T
M then the equation for order of convergence (α) is:

α =
ln

(
err(∆tN1)
err(∆tN2)

)
ln

(
∆tN1
∆tN2

) . (3.6)

We can replace the expression in denominator: ∆tN1
∆tN2
= M2

M1 . Then the expression (3.7) will become:

α =
ln err(∆tN1)

err(∆tN2)

ln M2
M1

. (3.7)

Now we have two distributions of interval T : M1 and M2. To compare the solutions we need to
choose one of them and interpolate or extrapolate the other [13]. For accuracy the biggest of them
was chosen and the smallest was extrapolated to match the biggest. The extrapolation is the process
of filling the missing points with data using available values. In order to simplify calculations I im-
plemented the linear extrapolation using function InterpolatedUnivariateSpline from the Python library
scipy.interpolate.

After implementation I calculated EOC for the simple SIR model without demography (1.18, 1.19,
1.20). The results can be found in table below.

Experimental order of convergence
Number of points Lmax norm L1 norm L2 norm
100 - - -
200 2.169864 1.252807 1.253235
300 2.080329 1.152308 1.152739
400 2.036691 1.112664 1.112913
500 2.040279 1.09112 1.091249
600 2.007817 1.077364 1.077429
1000 2.01226 1.223652 1.223831
2000 2.003693 1.339686 1.339751
6000 2.000776 1.648976 1.649005

Table 3.1: Experimental order of convergence for SIR without demography: dS
dt = −βS I, dI

dt = βS I −
γI, dR

dt = γI.

Runge-Kutta method has the order 4. But for the system of non-linear equations, which cannot be
analytically solved, we should not expect that EOC will converge to 4. Nevertheless, if for Runge-Kutta
the EOC converges to a number bigger than 1, the method is more accurate than Euler method, which
order is 1. As we can see in Figure 3.1, EOC for every norm converges to the number greater than 1.
Moreover, for Lmax norm it converges to 2. This fact proves that Runge-Kutta for SIR model is more
accurate than Euler method.



Conclusion

The purpose of this work was to learn how mathematical models can be used in epidemioligy. The
purpose was reached by studying to SIR models: the basic one and the model with demography. Firstly,
some restrictions on the model were established. We decided that for the simplicity of the model we
need to focus on acute fast diseases with short incubation period. Our population should be homogenous
and recovery from the disease should give a lifelong immunity. Then we denoted some important and
widely used parameters in epidemiology, such as the recovery rate γ, the infectivity rate β and the basic
reproductive ratio R0. Next step was discovering the model of three non-linear differential equations for
Susceptibles, Infected and Recovered. Then, by dismissing the "fast disease" assumption, we added the
natural host lifespan to the model, thus the model with demography was obtained.

The second chapter was devoted to models’ properties. We tried and succeeded in calculating the
approximate solution for the basic SIR model. We used two different methods to determine that the
obtained solution was correct. Unfortunately, we were obligated to add the additional assumption (small
Recovered percentage) to obtain it. This result helped us to study the properties of the basic SIR model.
We determined the conditions for the beginning of the epidemic, discussed the role of the basic reproduc-
tive ratio and then established the conditions for the epidemic to "die out". For the SIR with demography
we discovered it’s oscillatory dynamic and tried to study the stability of it’s solution. We defined stability
and asymptotic stability and used the Poincaré-Lyapunov theorem to find if the model with demography
is asymptotically stable. We continued with studying the phase trajectories for both models in two and
three dimensional spaces. We discussed the influence of the recovery rate, infective rate and reverse to
host lifespan on the phase trajectories. The change in the parameters result in appearance of the curves
or polygonal chains and in changing size of oscillation.

We ended the chapter by discussing some modern trends, especially behavioral epidemiology, in SIR
models and proved that the basic model is still used by researches to conduct an analysis on modern
diseases.

In the last chapter we tried to solve SIR model with numerical methods for solving differential equa-
tions. We studied two methods: Euler’s and Runge-Kutta’s and compared them. Comparison showed
that Runge-Kutta will be a better choice for solving SIR model. Then we accessed the speed of con-
vergence of the solution found by Runge-Kutta method to the exact solution. For this objective we
calculated the experimental order of convergence. Because of non-linear character of the SIR equations,
the convergence to the exact solution is slower than expected for Runge-Kutta method.

For the future work, more restriction of the model can be discarded and study on SEIR, SI, SIS
models can be executed. Additionally, the detailed research can be conducted on the behavioral SIRs.
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