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Abstract

Chemical compound analysis is an interesting and important prob-
lem [1, 2, 3]. Recently, it has been shown [4] that an output of
an analytical chemistry tool revealing physical properties of a gas
is suitable for gender classification, and identity verification tasks.
Correct classification of particular chemical compounds present in
a gas sample is crucial for the mentioned tasks. However, the clas-
sification heavily relies on proprietary software with high error rate
requiring manual correction, which is a cumbersome task. In this thesis,
we apply Out-Of-Distribution (OOD) methods to detect chemical
compounds that are not informative for human scent analysis tasks.
OOD detectors assume that there exists a distribution underlying
the training classes samples, and detect samples not belonging to
that distribution. We use the OOD detection to filter out chemical
compounds that do not contribute to solving the gender classification,
and identity verification tasks. We experiment with 8 OOD detection
methods on: (i) chemical compounds dataset with manually checked
labels of 70 compounds, ≈ 334 samples for each compound, and (ii)
a single test measurement without ground-truth labels with ≈ 720000
samples. Given a predefined set of chemical compounds, which is small
compared to the set of all compounds that may appear in a gas sample,
we show that the OOD detection is a suitable method for filtering
out chemical compounds not contributing to human scent analysis tasks.

Keywords: chemical compounds classification, chemical compounds
OOD detection, GCxGC ToF mass spectrometry data analysis, near-
OOD detection



Abstrakt

Analýza chemických sloučenin je zaj́ımavý a d̊uležitý problém [1, 2, 3].
Nedávno se ukázalo [4], že výstup z analytického chemického př́ıstroje
odhaluj́ıćı fyzikálńı vlastnosti plynu je vhodný pro úlohu klasifikace
pohlav́ı a ověřeńı identity. Správná klasifikace konkrétńıch chemických
sloučenin př́ıtomných ve vzorku plynu je pro uvedené úlohy kĺıčová.
Klasifikace však do značné mı́ry záviśı na proprietárńım softwaru s
vysokou mı́rou chybovosti a vyžaduje ručńı opravu, která představuje
náročný úkol. V této práci se zabýváme klasifikaćı chemických sloučenin
s pomoćı detekce odchylek (anglicky ‘OOD detection’). Tyto detek-
tory předpokládaj́ı, že existuje rozděleńı, které reprezentuje vzorek
tréninkových tř́ıd, a detekuj́ı vzorky, které do tohoto rozděleńı nepatř́ı.
Detekci odchylek použ́ıváme k odfiltrováńı chemických sloučenin, které
nepřisṕıvaj́ı k řešeńı úloh klasifikace pohlav́ı a ověřováńı identity.
Experimentujeme s metodami detekce na: (i) souboru chemických
sloučenin s ručně ověřenými popisky 70 sloučenin, ≈ 334 vzork̊u pro
každou sloučeninu, a (ii) testovaćım měřeńı bez popisk̊u s ≈ 720000
vzorky. Vzhledem k předem definované množině chemických sloučenin,
která je malá ve srovnáńı s množinou všech sloučenin, které se mohou
objevit ve vzorku plynu, ukazujeme, že detekce odchylek je vhodnou
metodou pro odfiltrováńı chemických sloučenin, které nepřisṕıvaj́ı k
řešeńı úkolu analýzy lidského pachu.

Kĺıčová slova: klasifikace chemických sloučenin, detekce odchylek
chemických sloučenin, datová analýza hmotnostńı spektrometrie GCxGC
ToF
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1 Introduction

Chemical compounds analysis is of great importance due to its wide area of application
[1, 2, 3]. Recently, it has been shown [4] that a selected set of compounds found in human
scent could be used to perform gender classification and identity verification.

A particular instrument of chemical analysis is a gas chromatograph, which, given a gas,
produces a unique measurement, a spectrogram, reflecting the chemical composition of
the gas. Current practice of chemical data analysis relies on proprietary black box software
requiring human supervision, which is a tedious and prone-to-failure process.

In this thesis, we investigate ability of Out-Of-Distribution (OOD) methods to detect
chemical compounds that were not identified as prospective for human scent analysis –
compared to the set of all chemical compounds found in human scent, only 70 compounds
were identified [4] as prospective. Our datasets consist of gas spectrogram measurements –
spectrograms. In our first set of experiments, we artificially split our small labelled dataset
to in/out-distribution sets in a compound-wise manner, and we measure performance of 8
OOD methods on this dataset. In the second set of experiments, we first train a classifier
detecting 70 predefined compounds in an output of a gas chromatograph measurement
consisting of ≈ 720, 000 spectra1, and then we apply and evaluate OOD detection methods,
reporting the performance by eyeballing.

OOD detection methods attempt to solve a known problem of (not exclusively) image
classifiers2 – they tend to give accurate predictions for known classes, and inaccurate, yet
confident, predictions for objects not belonging to any of the classes the classifiers were
trained on. For example, an image of a bear is always classified either as a dog, or as a cat,
by a dog-cat classifier. OOD detection identifies unknown objects (classes) and either re-
fuses to classify them or submits them for further evaluation through a ‘manual annotation’
performed by a human. Note that in our experiments, we apply image classification specific
OOD detection algorithms due to theirs general applicability. Although the gas spectro-
graph output may be interpreted as a 2D image, investigation in that direction is left for
a future research.

Given the source of our dataset, we feel entitled to mention specific challenges related
to its origin. First, the output of the chromatograph is very sensitive to small changes in
experimental setting, such as small variations of instrument temperature or wear of its
internal parts. As a result, given the same compound, its spectra may vary considerably
both in its quality, i.e. signal-to-noise ratio, and its time of detection since the beginning
of an experiment, i.e. the retention time. Second, although the chromatograph produces
a spectrum every 5 ms for a total duration of about one hour yielding ≈ 720, 000 spectra for
each experiment, only 70 ground-truth labels were available to us from a single experiment.

1Experimental parameters of a gas chromatograph may be set differently depending on the purpose of
a particular measurement. In the human scent analysis data available to us, the chromatograph was set to
produce a single spectrum every 5 ms for the duration of 3, 578 s, yielding 715, 600 spectra.

2Image classification is the task of identifying objects (dog, cat, human) in images.
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In the following list, we state the formal objectives of this thesis, and we summarize our
contributions accordingly.

• Familiarize yourself with the published work on the detection of outliers
in: (i) image data, and (ii) gas chromatograph mass spectrometer data, if
relevant literature is available. We provide a comprehensive literature overview
on OOD detection in image data in Sec. 2. In the best of our knowledge, there
is no relevant literature available for OOD detection in gas chromatograph mass
spectrometer data.

• Review the literature on algorithms for chemical compound classification.
We provide a literature overview on chemical compound classification in Sec. 2.5.

• Select and implement or develop a chemical compound classification al-
gorithm, verify its function on data provided by the thesis supervisor. We
used a library SVM classifier and performed a series of quantitative experiments in
Sec. 5.1.

• Select and implement or develop at least two algorithms for out-of-distri-
bution detection for use with the classifier from previous step, verify their
function on data provided by the thesis supervisor. We investigated eight
OOD detection methods, and evaluated their performance with: (i) a qualitative ex-
periment on a single gas chromatograph experiment in Sec. 5.2, and (ii) a quantitative
experiment on a dataset consisting of artificially created in/out-distribution com-
pounds in Sec. 5.1. In the quantitative experiments, we show that OOD detection is
suitable for chemical compounds classification in our specific gas chromatography set-
ting. Depending on the choice of artificially created in/out-distribution compounds,
the performance varies significantly3.

3The performance of detectors ranges from AUROC ≈ 76 with a 10-fold cross-validation to AUROC ≈
94, depending on the relative sizes of in/out-distribution samples. Area Under Receiver Operation Charac-
teristic curve (AUROC) is a metric used to evaluate performance of a classification model, where a perfect
model has AUROC = 100.

2



2 Related literature

In this section, we describe existing OOD detection methods and, at the end, chemical
compound classification. We begin with OOD detection. Many OOD detection methods
have been developed. We divide these methods into multiple research areas and introduce
representative methods for each of them. We propose a taxonomy of OOD methods based
on techniques employed to derive OOD score.

OOD

score


Predicted

labels 


OOD

score
 OOD


score


Reconstruction-based


OOD

score


Figure 2.1: Comparison of OOD detection approaches, modified from [5].

We adopt the OOD detection taxonomy [6] with a following change – we add a subsection
about zero-shot models as they do not fit into other categories in the original taxonomy.
The taxonomy follows:

1. Classification-based methods

(a) Output-based methods

(b) Gradient-based methods

(c) Bayesian methods

(d) Methods using zero-shot pre-trained classifiers

2. Distance-based methods

3. Density-based methods

4. Reconstruction-based methods

In Fig. 2.1, we show how different OOD detection methods work in principle. We describe
their limitations and requirements, as well as their key principle. Dividing methods into
categories is important to quantitatively compare them.

For a test-time sample, an OOD detection method produces a single numerical value.
An In-Distribution (ID) sample is expected to have a high value, and an OOD sample is
expected to have a low value. In the following text, these values are referred to as OOD
scores. OOD detection process is a threshold-based classification that produces binary
output from OOD scores. If the score of a test-time sample is equal to or higher than
the threshold, it is classified as ID. Conversely, if the score is below the threshold, it is
classified as OOD.

3



2.1 Classification-based OOD detection

2.1 Classification-based OOD detection

Classification-based methods derive OOD scores from a trained classifier.

2.1.1 Output-based methods

Some output-based methods use (i) custom training schemas, or (ii) extra OOD data to
improve detection accuracy. To divide these methods, we adapt the following categorisation
from [6]:

1. Post-hoc

2. Confidence enhancement

3. Outlier Exposure

Post-hoc methods use a classifier’s output as-is. Confidence enhancement methods employ
different training schemas. Outlier Exposure methods use additional OOD data samples
for training.

Post-hoc methods take logits produced by a classifier and compute OOD scores by
employing different transformations. There are two important design choices:

• scoring function - a function that transforms the classifier’s logits to an OOD score

• aggregation function - an optional step where we aggregate logits after applying
the scoring function to them

In 2017, Hendrycks et al. [7] introduced the Maximum Softmax Probability (MSP)
detection method. MSP takes a data sample and feeds it to a trained classifier. It obtains
softmax probabilities, takes the maximum from these values, and uses it as an OOD score
for this sample. It is a straightforward method that was used to describe the OOD task
and how the experiments should be conducted. This method is used as a reference point
for comparison in the literature, is often denoted as the baseline method.

In 2017, Liang et al. [8] introduced ODIN, another simple method that builds on top of
MSP and improves its performance with input pre-processing (adding small perturbations
to input data points) and temperature scaling. The idea of temperature scaling was taken
from [9]. It involves scaling the logits (inputs to the softmax function) by a temperature
parameter T before computing the softmax function. It has the effect of sharpening the soft-
max output, making it easier to distinguish between in-distribution and out-of-distribution
images. Temperature scaling was later implemented in other methods. The base version of
ODIN does not use additional OOD data for fine-tuning. However, more recent versions
of ODIN do so. If this is the case, ODIN is a representative of Outlier Exposure (OE)
methods (which will be introduced later).

4



2.1 Classification-based OOD detection

In 2020, Liu et al. [10] introduced Energy-based detector that uses energy as a scor-
ing function. Unlike softmax confidence scores, energy scores are theoretically aligned
with the probability density of inputs and are less susceptible to the overconfidence is-
sue. The idea behind the so-called energy-based models (EBMs) [11] is to produce a scalar
energy as a measure of compatibility with each configuration of the input variables. In this
case, energy measures the compatibility of an image and its corresponding label. Small
energy values correspond to highly compatible configurations of the variables, while large
energy values correspond to highly incompatible configurations of the variables. Similarly
to ODIN, energy might be used as a scoring function for a post-hoc method or as a trainable
parameter that requires fine-tuning with OOD samples for a OE method.

In 2020, Sastry et al. [12] came up with GRAM that uses Gram’s matrices to de-
tect inconsistencies between the predicted class and the activity patterns of the classifier
intermediate layers. In general, Gram matrices are used to compute pairwise feature cor-
relations. In this work, they extended these matrices to characterize the activity patterns
in the intermediate layers of the classifier for each predicted class. The intuition behind
this is that if an image is predicted to contain a dog, but the classifier’s activity patterns
are atypical from the dog images that the classifier encountered during its training, then
it is likely to be an OOD example. Before generating OOD scores, we compute: (i) fea-
ture correlations with Gram’s matrices for every layer of the classification network and (ii)
class-specific minimum and maximum values for the correlations of training images. Then
we compute deviations of a test-time sample from training images. Here, a deviation is
a number that indicates how far the tested value falls outside the range given by the min-
imum and maximum values of the training data. This deviations are computed layer-wise
and summed to create an OOD score. Gram reaches state-of-the-art performance on two
popular datasets: CIFAR-10 and CIFAR-100 [13]. It does not have any hyperparameters
that need tuning. A drawback is the OOD detection speed, which is low.

In 2021, Sun et al. [14] introduced Rectified Activations (ReAct) detector. They
compared the output of the penultimate layer (fully connected layer represented as an n-
dimensional vector) between ID and OOD samples. The intuition behind this is that
the variance for ID samples is more or less constant across the n dimensions, but it is
quite large for OOD samples. ReAct refers to the process of removing any value that ex-
ceeds a certain constant at the second-to-last layer of a classifier. OOD score is extracted
using the classifier with the clipped layer and a scoring function like MSP, ODIN or energy.
It reaches state-of-the-art performance for some ImageNet-1k [15] benchmarks 4.

Multi-level Out-Of-distribution Detection (MOOD) was introduced in 2021 by
Lin et al [16] as a novel framework that uses intermediate layer outputs rather than only
using final layer outputs. Easy OOD examples are effectively detected early without prop-
agating to deeper layers using coarse-level features like colour. However, more complex
OOD samples will be detected in the deepest layers. The main advantage of MOOD is

4ImageNet-1k benchmark, refers to use ImageNet-1k dataset as ID dataset and evaluate with other
datasets as OOD datasets, in the literature.
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the complexity of inference, which is much lower than for other methods.

In 2022, Hendrycks et al [17] introduced two methods. MaxLogit gets the negative of
a maximum from un-normalized logits as OOD scores. They emphasis that MSP and alike
detectors do not perform well on large-scale datasets with a large number of classes that are
possibly semantically very close to each other. MaxLogit outperforms MSP on a large-scale
detection benchmark. The authors also introduce the Kullback-Leibler (KL) detector.
This detector computes the KL divergence between un-normalized logits and a uniform
distribution and uses it as OOD scores.

In 2022, Sun and Li [18] highlighted the problem with over-parameterized weight space
of Neural Network (NN)s that leads to overconfident predictions. They propose to use
sparsification on the weight space with their method DICE. The main idea is to rank
weights based on a measure of contribution and select only the most contributing weights.
The measure of contribution is computed with element-wise multiplication of a weight
vector for a class and a feature vector of a test-time sample. A matrix of the measures is
computed on ID dataset and the top k weights are selected based on the k largest elements
in the matrix. The sparse weights matrix is used to propagate a test-time sample through
the classifier to calculate softmax scores. Then, it utilizes the energy score to produce OOD
scores. DICE is comparable with ReAct in the performance, but compromises classification
performance (unline ReAct).

In 2022, Dong et al. [19] introduced Neural Mean Discrepancy (NMD) detector.
This method takes channel-wise activation means between a test-time sample and training
samples and computes their difference as element-wise subtraction. The difference results
in a NMD vector that is passed to a binary classifier (logistic regression or multi-layer per-
ceptron). The output of the classifier gives the OOD predictions. For the training samples,
we get the neural mean vector from batch normalization layers. Thus, inference time is very
small compared to other state-of-the-art methods. There are two main variants of the de-
tector. The first has access to OOD data for training the classifier (OE). The second does
not and uses artificial OOD examples by randomly permuting pixels of ID examples to train
the classifier. They both reach state-of-the-art performance on CIFAR-10 benchmarks.

Recently, in 2023, Djurisic et al. [20] introduced a new post-hoc method extremely
simple Activation SHaping (ASH) which is similar to DICE because it also uses spar-
sification. ASH, removes a large portion (i.e. 90%) of a sample’s activations at a late layer,
and the remaining portion (i.e. 10%) is simplified or adjusted (i.e. values are set at a con-
stant value). These values are propagated forward to other layers, and the OOD score
is computed with the energy score function. ASH has an interesting feature. It enables
to select a custom ‘ID-classification-performance-to-OOD-detection-performance’ ratio de-
pending on the specific requirements of the task at hand. ASH reaches state-of-the-art
performance on some ImageNet-1k benchmarks together with ReAct.

Confidence enhancement methods change the training process of a classifier to ac-
count for OOD data. They do not require OOD samples for training. They change the loss
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function or use feature engineering to generate augmented training samples. These meth-
ods do not reach the state-of-the-art performance of recent post-hoc methods,i.e. GRAM,
but they improve performance of some methods (i.e. MSP, or Energy-based detectpr). Im-
portantly, these concepts might be combined with other methods, leaving room for further
improvement of state-of-the-art methods.

In 2018, Vyas et al. [21] used ensemble of classifiers where each is trained with
a novel margin-based loss. To classify a test-time sample, first, the softmax probabilities of
all classifiers are averaged, and the class with the highest average softmax score is chosen
as the prediction. Then, for each of the classifiers, we compute both the maximum value
and the negative entropy of the softmax probabilities (with temperature scaling). Finally,
we compute the average of all these values to obtain the OOD detection score.

In 2019, Hein et al. [22] introduced ACET. They present an optimization for ReLU
networks 5 through enhanced adversarial confidence training. ACET modifies the network
directly via an adaptation of the training process so that uniform confidence predictions
are enforced far away from the training data.

Another set of methods generates augmented samples to better distinguish OOD sam-
ples. Classifiers trained with these augmented data are used to predict the classes, and
together with a post-hoc OOD scoring function, produce OOD score. The first method
MixUp by Thulasidasan et al., 2020, [23] trains the classifier with additional samples that
are generated during training by convexly combining random pairs of images and their as-
sociated labels. Similarly, Yun et al., 2019, [24] propose a different augmentation strategy
CutMix, where augmented patches are cut and pasted into training images, where ground
truth labels are also mixed proportionally to the area of the patches. The last and newest
of this kind of methods is PixMix developed by Hendrycks et al., 2022, [25]. PixMix
improves OOD detection simultaneously, as it improves classification accuracy. PixMix is
comprised of two main components: (i) a set of structurally complex pictures (”Pix”) and
(ii) a pipeline for augmenting clean training pictures (”Mix”). At a high level, PixMix
integrates diverse patterns from fractals and feature visualisations into the training set. As
fractals and feature visualisations do not belong to any particular class, we train networks
to classify augmented images as the original class, in standard data augmentation.

In 2020, Generalized ODIN was introduced by Hsu et al. [26], as an extension of
ODIN [8]. It improves ODIN by modifying the original input pre-processing and re-training
classifier with supervision on both class of ID samples and domain of ID samples.

In 2020, Meinke and Hein [27] introduced a method Certified Certain Uncertain-
ity(CCU). They focus on a so-called ‘far-OOD’ task, which means detecting OOD samples
that are semantically far away from ID dataset. I.e. take SVHN [28] dataset with street
view house numbers and CIFAR-10 dataset with objects like airplane, bird, truck, etc, for
ID/OOD datasets respectively. CCU guarantees that a classifier produce low confidence
for far-OOD task, it also computes upper bound for the worst-case scenario. CCU model

5ReLU networks refer to Neural Networks that utilize ReLU activation.
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keeps high-confidence predictions in regions close to the training data, while it produces
predictions close to uniform confidence for data points far away from the training. Their
approach is based on a Maximum Likelihood Estimation (MLE). It uses Gaussian mixture
models as density estimators. CCU reaches a near perfect score for the ‘SVHN / CIFAR-10’
(ID / OOD) benchmark.

In 2021, Macêdo and Ludermir [29] introduced IsoMax. It consists of using IsoMax loss
(as a replacement for SoftMax) for training and an entropic score. IsoMax loss uses class
prototypes, obtained from training data, and measures the distance between a sample’s and
prototype’s high-level features with a performance enhancement similar to the tempera-
ture scaling. The entropic score computes the negative entropy of the classifier’s output
probabilities. Later in 2022, Macêdo and Ludermir [30] developed an enhanced version
IsoMax+. The main changes were adding a distance scale and using the minimum dis-
tance score (minimum distance of a sample and a class prototype over all class prototypes)
instead of the entropic one as the OOD detection score. The distance score is a train-
able scalar parameter that is used to multiply distances. It performs slightly worse than
GRAM [12], the best post-hoc method, but does not suffer from a low detection speed.
The authors emphatize that speed is crucial for real-world large-scale applications.

In 2022, Wei et al. [31] introduced a novel loss LogitNorm that is used instead of
the Cross-Entropy loss for classifier training. Their LogitNorm loss enforces a constant
vector norm on the logits in training. It is based on the observation that even when most
training examples are classified to their correct labels, the softmax cross-entropy loss con-
tinues to increase the magnitude of the logit vectors. A NN with LogitNorm improves
performance of other post-hoc methods, i.e. MSP, ODIN, Energy, GradNorm.

Outlier Exposure methods represent methods that use auxiliary OOD samples in
training 6. Outlier Exposure generally leads to better performance, i.e. AUROC ≈ 99 on
some popular benchmarks, compared to post-hoc and confidence enhancement methods.
Outlier Exposure methods are suitable for applications where OOD detection score must be
really high. However, great performance comes with the following problems: (i) collecting
auxiliary OOD samples for training is not an easy task, as it is difficult to know a distribu-
tion of OOD samples in advanced, leading to high costs associated with collecting labeled
OOD data, and at the same time (ii) measured performance is possibly overestimated by
correlations between auxiliary OOD data, used for training, and real OOD samples, used
for testing.

In 2018, Hendrycks et al. [32] first used an auxiliary OOD dataset to train a detector
in the Outlier Exposure method. The auxiliary OOD samples are disjoint from test
OOD samples. This paper provides a template for using OE in other Outlier Exposure 7

6Note the difference between training and validation with OOD samples. I.e., ODIN uses OOD samples
as a validation set to fine-tune hyperparameters, where OE method train a network with OOD samples
available.

7In the literature, Outlier Exposure is used for both the detection methods category and the specific

8



2.1 Classification-based OOD detection

detectors. It requires to: (i) gather auxiliary OOD dataset, and (ii) define auxiliary OOD
loss used to train the classifier. It significantly improves performance of MSP detector and
it produces a perfect, AUROC = 100 classifier some benchmarks, representing far-OOD
task. However, this method needs a large auxiliary OOD dataset, for example as much as
ten times larger than the ID dataset, which is often not feasible for real datasets.

In 2020, Li and Vasconcelos [33] addressed the problem of the previous method by
making a selection on auxiliary dataset, thus making it smaller. They implement different
sampling strategies to produce the auxiliary dataset. They use so-called adversial resam-
pling technique to obtain a set of OOD that is compact (small) and representative at
the same time. The proposed technique leverages OOD loss to guide re-weighting of aux-
iliary dataset, encouraging the model to explore diverse examples that are challenging for
OOD detection. This work gives a performance comparable to that of the previous Outlier
Exposure method while having a much smaller auxiliary dataset. It results in a smaller
computational and space complexity.

In 2020, Mohseni et al. [34] developed a classifier using self-supervised learning. They
develop a classifier with two heads: (i) classification head using supervised learning with ID
samples, and (ii) auxiliary head using self-supervised learning with OOD samples. An aux-
iliary dataset is unlabeled and disjoint from test dataset. After initial training of the main
classification head on ID, the auxiliary head is trained with a mixture of labelled ID and
unlabelled OOD samples. The classifier generates labels during the training process using
a semi-random method.

In 2021, Papadopoulos et al. [35] introduced Outlier Exposure with Confidence
Control (OECC) using a novel loss function. This loss function makes a classifier highly
uncertain for OOD samples by producing a uniform distribution at the output of the soft-
max layer. They use OE training schema from [32] together with their loss function. OECC
increase performance of GRAM [12] method mentioned before, making it a state-of-the-art
method on CIFAR-10 benchmarks.

In 2021, Bitterwolf et al. [36] presentedGuaranteed Out-Of-distribution Detection
(GOOD) that concentrates on the worst-case scenario for OOD detection. In addition to
the standard measure AUROC, they use so-called Guaranteed AUC (GAUC) for evalua-
tion. This value represents AUC that is guaranteed in the worst-case scenario. They derive
this value as an upper bound on a confidence level for a classifier using OOD auxiliary
dataset. Similarly, they use confidence upper bound for loss function. The main contribu-
tion is the guarantee under the worst-case scenario.

In 2021, Yang et al. [37] introduced new so-called Semantically Coherent Out-
Of-distribution Detection(SC-OOD) benchmarks and evaluation framework Unsuper-
vised Dual Grouping (UDG). They point on the problems of some popular benchmarks,
i.e. CIFAR-10 (ID) vs. TinyImageNet [38] (OOD). There are about 15% images from Tiny-
ImageNet with the same semantics as CIFAR-10 images. Both datasets contain images of

detection method.
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cats and dogs with only a slight change (different breeds, skin color). Perfect performance
on such benchmark results in non-realistic detector that will concentrate on the small
covariance shifts too much and ignore semantics as a consequence. Their featured UDG
framework process datasets to be used for semantically coherent detection. There are two
steps: (i) pick out the ID classes from the OOD datasets and mark all images within
these selected classes as ID samples, (ii) perform fine-grained filtering on images with
wrongly-labeled categories (image of cat wearing a bow tie has bow time label). They use
an unlabeled OOD dataset for training and filtering.

In 2022, Katz-Samuels et al. [39] introduced a framework WOODS that enables using
unlabeled ‘wild’ data collected in deployment. When we introduced OE methods, we
mentioned that performance may be overestimated by correlations between additional and
real OOD samples. Unlabeled ‘wild’ data consists of both ID and OOD samples produced
during the deployment of a OOD detector. The main idea is to solve a constrained opti-
mization problem, by minimizing a detection error on an auxiliary OOD data while keeping
the: (i) detection error on ID data below a threshold, and (ii) OOD detection error on ID
data within certain limits. In their experiments, they simulate ‘wild’ data as a mixture of
ID and OOD data. When the ‘wild’ data contains samples from test OOD dataset, the de-
tector gives very good performance on CIFAR-100 benchmarks with large semantic shifts,
i.e. far-OOD task.

In 2022, Ming et al. [40] introduced a framework Posterior Sampling-based Outlier
Mining (POEM) that uses outlier mining. The goal of the outlier mining is the selection
of samples from auxiliary dataset that are closer to the decision boundary between ID
and OOD data. To collect OOD samples for training, it uses so-called Thompson sampling
technique instead of a random sampling technique. It iteratively samples from the auxiliary
OOD dataset based on a boundary score, where a high boundary score indicates sample
being close to the decision boundary. This method has state-of-the-art performance on
CIFAR-10 benchmarks and some CIFAR-100 benchmarks (together with WOODS).

2.1.2 Gradient-based methods

Previous, output-based methods utilize and an output space or a feature space of a clas-
sifier. Here, we describe a method that uses information from a gradient space instead.

In 2021, Huange et al. [41] introduced GradNorm. They compute KL divergence
between: (i) a softmax output, and (ii) an uniform probability distribution. KL diver-
gence [42] is a measure of a difference between two probability distributions and is defined
as the expectation of the logarithmic difference between the model-predicted distribution
and the reference distribution. ID data are expected to have a larger KL divergence be-
cause predictions tend to focus on one of the ground-truth classes, making it less uniformly
distributed. This technique does not directly employ KL divergence, but instead utilises
the gradient vector norm, which is propagated backwards from the KL divergence. Grad-
Norm has state-of-the-art performance on one CIFAR-100 benchmark, but has significantly
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worse performance, compared to state-of-the-art methods, on other popular benchmarks.

2.1.3 Bayesian methods

A Bayesian model is a type of statistical model that uses Bayes’ theorem to derive
posterior distributions based on prior distribution. These models use probability to repre-
sent all uncertainty within the model, both the uncertainty regarding the output (predicted
classes) and the uncertainty regarding the input (image features) to the model. ABayesian
neural network is a NN that uses Bayesian formalism. Prior distribution is specified upon
the parameters of NN and then, given the training data, the posterior distribution over
the parameters is computed. Non-Bayesian methods (standard classifiers) train the net-
work in a multi-task way, including both ID and OOD examples (for OE methods), to
generate precise and consistent categorical predictions. However, these classifiers are not
able to identify the source of a predictive uncertainty. Bayesian networks learn a distribu-
tion over weights (as in a standard classifier). I.e. a standard classification NN predicts
which animal is in an image, whereas a Bayesian classification NN determines probabilities
of each animal being in the image. A Bayesian method, in an OOD detection context,
means using a Bayesian NN to derive uncertainty for the OOD detection. It is possible
to convert a standard NN into a Bayesian NN to model the uncertainty. There are two
limitations of Bayesian NNs: (i) they are computationally expensive, and (ii) it is difficult
to acquire initial (prior) probabilities about the input. In the next paragraphs we introduce
methods modelling uncertainty using approximations to overcome the problems.

Uncertainty in the model parameters leads to a range of possible predictive distributions
for a given input data. The expected distribution, denoted as P (ωc | x∗,D), represents
the average or most likely predictive distribution considering all possible values of the model
parameters θ, given input data x∗. To obtain the expected distribution it integrates or sums
over all possible values of the model parameters:

P (ωc | x∗,D) =
∫

P (ωc | x∗,θ)︸ ︷︷ ︸
Data

p(θ | D)︸ ︷︷ ︸
Model

dθ, (1)

where D is a dataset the model used for training and ωc is a class label. The following
Bayesian methods use the following equation:

p(θ | D) ≈ q(θ) (2)

Obtaining true posterior distribution, denoted as p(θ | D), is computationally challeng-
ing, or impossible. Therefore, an approximation is necessary:

P (ωc | x∗,D) ≈ 1

M

M∑
i=1

P
(
ωc | x∗,θ(i)

)
,θ(i) ∼ q(θ) (3)
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Finding an exact solution to the integral in Eq. 1 is also computationally challenging or
even impossible. Eq. 3 represents the approximation of the integral using sampling. Sam-
pling involves randomly selecting values from a distribution to estimate the integral. This
is used in Monte-Carlo Dropout [43], that uses dropout layers of a Deep Neural Network
(DNN), or Deep ensembles [44], that uses ensembles of models, to produce uncertainty

estimates. In Eq. 3 each P
(
ωc | x∗,θ(i)

)
in the ensemble represents a categorical distri-

bution. A categorical distribution is a probability distribution that assigns probabilities to
a set of discrete outcomes or categories. The categories are class labels y, and the proba-
bilities represent the likelihood of each class label given the input x∗ and a specific set of
model parameters θ. The goal is to find a posterior model that is consistent in the region
of training data (ID) and increasingly diverse when the input is far from the training data
(OOD).

In 2018, Malinin and Gales [45] introduced a method that utilizes Dirichlet Prior
Networks (PNs) for modelling uncertainty. There are three different types of uncer-
tainty around the classification task: (i) model uncertainty that measures uncertainty in
model parameters (weights) estimation, given training data, (ii) data uncertainty, that
arises from the complexity of the data itself (due to noise, class overlap, etc.) and (iii)
distribution uncertainty, or dataset shift, that occurs due to a mismatch between train-
ing and test distributions. Previous methods are not able to separate these uncertainties.
Dirichlet PNs are explicitly constructed to capture both data uncertainty and distributional
uncertainty. Distributional uncertainty is described by the distribution over predictive cat-
egoricals p (µ | x∗,θ). Then the expected distribution is:

P (ωc | x∗,D) =
∫∫

p (ωc | µ)︸ ︷︷ ︸
Data

p (µ | x∗,θ)︸ ︷︷ ︸
Distributional

p(θ | D)︸ ︷︷ ︸
Model

dµdθ (4)

Dirichlet PNs model various types of uncertainty by producing distinct uni-modal Dirich-
let distributions for ID samples and flat Dirichlet distributions for OOD samples. They use
a loss function that incorporates KL-divergence between the model output and a target
Dirichlet with a pre-defined precision value by utilizing it. There are more ways to measure
the uncertainty: (i) taking probability of the predicted class and the entropy of the pre-
dictive distribution, (ii) compute mutual information between the categorical label and
the model parameters. OOD scores are produced with a measure of uncertainty.

In 2021, Nandy et al. [46] introduced a method using Dirichlet PNs. The disadvantage
of the previously mentioned method is that, for ID samples with high data uncertainties,
the proposed loss function spreads out the target precision values among the overlapping
classes, resulting in much flatter distributions. That leads to mis-classified samples. They
suggest a novel loss that models the mean and the precision, of the output Dirichlet dis-
tributions, separately. It trains the Dirichlet Prior Network (PN) to generate flatter and
more varied Dirichlet distributions for OOD samples.

In 2021, Kim et al. [47] introduced a method Locally Most Powerful Bayesian Test
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(LMPBT). A Bayesian hypothesis test is a statistical method used to evaluate the strength
of evidence for a particular hypothesis based on observed data. OOD detection is expressed
as a Bayesian test, where the null hypothesis states that a test sample is an ID sample and
the alternative hypothesis being that it is an OOD sample:

H0 : θ = θ0,

H1 : θ = θ1,
(5)

Where θ = θ0, θ = θ1 are representative parameters of a deep generative model for
ID samples and OOD samples respectively. Deep generative models consist of a generative
model and an inference model, where the generative model defines the process of generating
x from a latent variable z, and the inference model infers the distribution of x given z.
Bayesian hypothesis test is based on the ratio of the posterior odds that the alternative
hypothesis is true given the observed data:

P (H1 | xt)

P (H0 | xt)
=

L (θ1 | xt)

L (θ0 | xt)
× P (H1)

P (H0)
(6)

P (Hi) is the prior probability for hypothesis Hi, and L (θ1 | xt) /L (θ0 | xt) is the Bayes
factor in favor of the alternative hypothesis, where L (θi | xt) are the likelihood of xt under
Hi. To complete the test, we must specify θ0 and θ1, and the prior probabilities for H0 and
H1. θ0 is specified as the MLE but it is difficult to estimate θ1 for the lack of information
on OOD samples. For that, an optimization task is solved for individual OOD samples to
find θ1. A computational approximation is used for the solution to decrease computational
complexity. LMPBT performance is near perfect for some far-OOD benchmarks.

2.1.4 Methods using zero-shot pre-trained classifiers

The goal of zero-shot OOD learning is: (i) classifying test-time samples that belong
to one of the previously seen (ID) classes, and (ii) detecting samples that are not part
of any of the seen classes (OOD). Zero-shot models are trained on large datasets and
demonstrate excellent performance on data they have not seen during training. Note that
this area is also refered to as the ‘zero-shot OOD detection’. Zero-shot OOD detection
methods do not have acces to ID samples, therefore no closed-world (ID) classifier is built,
and consequently the detection is based only on labels of ID classes.

In 2022, Ming et al. [48] introduced Maximum Concept Matching (MCM) that
uses a distance function together with CLIP [49], a pre-trained language-vision model.
CLIP is trained using contrastive learning on a large dataset, consisting of images and
text caption pairs, allowing for a (zero-shot) transfer to various tasks, without the need of
training a new Machine Learning (ML) model. The zero-shot classification is performed by
comparing features from an image encoder to a set of text features from the text encoder,
in a test-time image. The label, with the greatest similarity to the image, is the one that
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is taken as a prediction. MCM computes the cosine similarity between image features of
a test-time sample and the closest ID text prototype. The similarities are then scaled with
softmax and a temperature scaling, similar to ODIN [8], and summed across all image
classes to derive OOD scores.

In 2022, Esmaeilpour et al. [50] introduced Zero-shot OOD detection based on
CLIP (ZOC) that also utilized pre-trained CLIP model. ZOC extends CLIP by training
a textual description generator to produce OOD labels for testing samples (images). It
performs OOD detection by comparing the similarity between a: (i) test-time image and
ID labels, obtained from the pre-trained CLIP, and (ii) test-time image and candidate
labels, obtained with the test-time image. The textual description generator is initialized
and then fine-tuned on a validation dataset.

In 2023, Vojir et al. [51] introduced Generic Representation based OOD detection
approach (GROOD) that uses a zero-shot classifier embeddings together with simple
classifiers. Unlike MCM and ZOC, GROOD does not use a text encoder. Instead, it relies
solely on the image encoder from CLIP or DIHT [52] models to extract a feature vector.
The vectors are taken as input by two simple classifiers: (i) Liear Probe (LP) and (ii)
Nearest Mean (NM). LP is a process that involves projecting data onto a line and then
normalizing it using a softmax function. NM assigns data to the class with the closest
mean. GROOD combines these two classifiers with the Neyman-Pearson task to further
increase performance. It combines the output of LP and NM, trained on ID data, to
model the distribution of the scores as a bivariate Gaussian. Then it formulates a two-class
Neyman-Pearson task to calibrate the detector, i.e. set thresholds. The calibration involves
setting a decision threshold such that ID classes are rejected evenly, without producing
higher false negative rates for certain classes. GROOD gives state-of-the-art performance
on the CIFAR-10 benchmarks.

2.2 Distance-based OOD detection methods

Distance-based methods are based on the idea that test-time OOD samples should be
relatively far from the centroids, geometric centers, of ID classes.

In 2018, Lee et al. [53] came up with a detector that uses Mahalanobis distance
and is compatible with any pre-trained softmax neural classifier. Previous methods explore
mainly output space of classifiers 8, probabilities created by softmax. However, this method
concentrates on a feature space of classifiers, outputs of deep layers. Mahalonobis detector
fits pre-trained low-level and upper-level features by a class-conditional Gaussian distri-
bution. To do this, one must first compute empirical class mean and class covariance of
training (ID) samples. OOD detection score is calculated using the Mahalanobis distance
with respect to the closest class conditional distribution (the class mean and covariance).
Generally, the Mahalonobis distance calculates a distance between two data points using

8GradNorm utilizes a gradient space of a classifier.
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2.2 Distance-based OOD detection methods

empirical mean and covariance, where Euclidean distance uses only empirical class mean.
It also uses input pre-processing for testing samples (adding small noise to input) for better
ID and OOD separation.

In 2021, Ren et al. [54] published a paper that builds on the Mahalanobis detector and
introduces so-called relative Mahalanobis distance. The method splits images into fore-
ground and background and then calculates the Mahalanobis distance ratio between the two
spaces. This method is hyperparameter-free, unlike the Mahalanobis distance method.

In 2021, Sehwag et al. [55] introduced SSD. They use self-supervised representation
learning followed by a Mahalanobis distance in the feature space of a classifier. Self-
supervised representation learning train a feature extractor by discriminating be-
tween individual instances from unlabeled data to learn a good set of representations. It
attempts to bring each sample near its positive (similar) samples while pushing it away
from negative (different) samples. This feature extractor is trained and used to extract
feature vectors from the training ID dataset. The detector then evaluates the Mahalanobis
distance between the features of a test-time sample and the mean and variance feature
vector of the training set, similarly as in the previous distance-based methods.

In 2022, Sun et al. [56] introduced a method Deep Nearest Neighbours that uses
the k-Nearest Neighbors (kNN) distance instead of the Mahalanobis distance. During test-
ing, it takes a feature vector from a testing sample and normalize it. Then it computes
the Euclidean distance between the feature vector of the test sample and each feature
vector of ID samples. It sorts the ID feature vectors based on the distances in ascending
order, and takes the first k distances and either compute a mean or a minimum, of these
distances, to obtain an OOD score.

In 2022, Ming et al. [57] introduced CIDER. Similarly to SSD [55], it aims to cre-
ate a hyperspherical embedding space in such a way that the extracted embeddings are
more meaningful and understandable for OOD detection. Hyperspherical embeddings lie
on the surface of a hypersphere. The main concept is to create a trainable loss function
that optimizes two terms at the same time: (i) dispersion loss, that encourages larger an-
gular distances between different class prototypes, (ii) compactness loss, that encourages
samples to be close to the same class prototypes. A test-time input is predicted as OOD
if it is significantly distant from the ID data in the embedding space. They use the kNN
distance as a distance metric.

In 2022, Wang et al. [58] introduced Virtual-logit Matching (ViM) that utilizes
information from both feature space and logits of a classifier. This method firstly computes
a difference between a sample’s feature vector and a principal subspace. Where the principal
subspace represents the most important features of the ID data. The difference is then
converted into an additional logit representing a virtual OOD class by projection and
scaling. Finally, the softmax probability of the constructed OOD class is used as the OOD
score. The smaller the original logits are, and the greater the difference is, the more likely
it is to be OOD.

In 2023, Park et al. [59] introduced a method NNGuide that combines distance-based
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2.3 Density-based OOD detection methods

and post-hoc methods. Post-hoc methods perform well on near-OOD detection task, i.e.
detecting an unknown animal from ID images of cats and dogs. However, they are not
as good in the far-OOD task, i.e. detecting a digit from ID images of cats and dogs. On
the other hand, distance-based methods are better in far-OOD task and worse in near-
OOD task. NNGuide balances the benefits and the weak spots of both. OOD score is
a product of a ‘base score’ function, i.e. Energy [11] scoring function, and a ‘guidance’
term, a kNN distance used as in [56]. NNGuide uses a subset of the ID dataset to compute
the distances and average over the nearest k of them. Importantly, this method is not only
a standalone detector OOD, but is able to improve performance of other post-hoc and
confidence-enhancement methods, i.e. MSP, GradNorm, Energy and Mahalanobis [7, 41,
10, 53].

2.3 Density-based OOD detection methods

Density-based method explicitly model ID by probabilistic models and find OOD
samples as areas with low density during testing. Probabilistic models are a class of ML
algorithms for making predictions based on the fundamental principles of probability and
statistics. These models identify uncertainty in data and incorporate it into their predic-
tions. These methods seem as a perfect candidate for OOD detection as they directly model
the distribution. They have a similar performance in comparison with classification-based
methods. But it is difficult and time-consuming to train and optimize them.

Density-based methods are sometimes referred to as generative models in some litera-
ture. These two terms are interchangeable. There is a difference between Bayesian methods
and density-based methods. Density-based methods employ probability models, and Bayes
methods, use Bayes models, in the context of OOD detection. A Bayesian model is a type
of probabilistic model that uses Bayes’ theorem to update beliefs or probabilities based on
new evidence. A probabilistic method will learn the probability distribution over the set of
classes and use that to make predictions (often using MLE). The main difference between
a probabilistic model and a Bayesian model is the way they update probabilities. While
a probabilistic model incorporates uncertainty, a Bayesian model specifically uses Bayes’
theorem to update probabilities based on new evidence.

The Mahalanobis detector [53] that we characterized as a distance-based method is
an example of density-based methods as well. When ID contains multiple classes, class-
conditional Gaussian distribution are able to explicitly model the ID so that the OOD
samples are identified based on their distances to the nearest class-conditional Gaussian
distribution.

One group of methods that use probabilistic models are flow-based methods. In this
paragraph, we will describe two such methods. In 2020, Zisselman and Tamar [60] intro-
duced a residual flow, a novel flow architecture to learn the residual distribution from a base
Gaussian distribution. They follow the success of the Mahalanobis detector [53] that fits
mid-layers of a network to a Gaussian distribution. They fit mid-layers of a network and
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2.3 Density-based OOD detection methods

use a more expressive density function, instead of a Gaussian, to model the ID. The density
function is based on a deep normalizing flow. Normalizing flows are a popular model for
high-dimensional data distributions in deep learning [61]. Main idea of normalizing flows is
to model a target distribution as an invertible transformation of a base Gaussian distribu-
tion. Because the transformation is a bijection, it is possible to learn this transformation
through MLE by training on ID data. Linear flow model establishes a relation between
the MLE of a Gaussian model and a linear flow. The linear flow transformation is obtained
analytically using the spectral decomposition of the empirical covariance matrix. Residual
flow model extends the linear flow model to include non-linear components. The residual
flow is applied to OOD detection by: (i) extracting mean feature vectors for each layer and
for each class, (ii) finding the most probable class using the difference between training
and testing feature vectors, and (iii) computing a confidence score as a difference between
the feature vectors of a test sample and estimated mean. Small noise is also added to
test-time samples, as in ODIN [8].

Theoretically, flow-based methods accurately estimate the probability of observing a given
data point and being a perfect candidate for OOD detection. However, Nalisnick et al. [62]
pointed on some problems of the flow-based methods. They showed that flows often assign
a higher likelihood to OOD data than the ID data used for training of the detectors. This
is true mainly for a far-OOD task. In 2020, Kirichenko et al. [63] followed this topic. They
show that maximum likelihood objective has a limited impact on the ability of normal-
izing flows to detect OOD data. Instead, the inductive biases of the flow, i.e. modeling
assumptions of the architecture, have a stronger influence on OOD detection. That is why
change a structure of the flow layers to encourage the flow to learn the semantic structure
of the target data rather than local pixel correlations, as with previous flow-based methods.

In 2020, Serrà et al. [64] discuss the drawbacks of generative models and how to solve
them. They show that the most complex images tend to have the lowest probabilities, while
the simplest images have the highest. They demonstrate this correlation by computing
a quantitative estimate of complexity. This estimate of the complexity, provided by a PNG
image compressor, is then used for OOD detection. OOD score is calculated by subtracting
the negative log-likelihoods from the complexity estimate. The higher the score, the more
the input resembles OOD which is opposite to the standard OOD detection definition.
The score adjusts ‘unusually’ high probabilities and provides more accurate predictions
for complex inputs. This method reaches near-perfect performance for near-OOD task and
comparable performance with other density-based methods for far-OOD task.

In 2022, Yang et al. [65] introduced SEM method that directly models the density of
semantic space. SEM score is used with a simple combination of density estimation in
the low-level and high-level space. SEM has two distinct probability measures that are
based on: (i) high-level features that contain both semantic and non-semantic data, and
(ii) low-level feature statistics that only capture non-semantic image characteristics. By
a simple combination, the non-semantic component is eliminated, leaving only the semantic
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2.4 Reconstruction-based OOD detection methods

information. The base OOD score:

SEM(x) = log p (xs) (7)

Where xs denotes features that only capture semantics. Probability p (xs) is computed
by a probabilistic model, such as a Gaussian mixture model using dense feature vectors.
Eq. 7 is extended to the value of different probability measures based on low-level and
high-level features as is explained above. This paper also introduces three Full-Spectrum
OOD (FS-OOD) detection benchmarks that evaluate both semantic and covariate shift
both on far-OOD and near-OOD tasks. This is done by creating a covariate-shifted ID
dataset from an existing one and using it for a density estimation.

2.4 Reconstruction-based OOD detection methods

Reconstruction-based methods use trained reconstruction networks. Reconstruction-
based NN trained with ID data usually leads to different outcomes for ID and OOD samples.
OOD for detection is based on the difference between these outcomes. Reconstruction-based
models with pixel-level comparison seem not a popular solution in OOD detection due to
its expensive training cost. Models that use hidden features for reconstruction are more
commonly employed.

Autoencoders are a type of NNs that consists of an encoder and a decoder. An encoder
takes an input data and compresses it into a lower-dimensional representation, known as
the latent space. The purpose of an encoder is to learn a compressed version of the input
data that captures the most significant features or patterns. The decoder takes the com-
pressed representation and attempts to recreate the original input data. The goal is to
make the reconstructed data as close to the original input as possible. There is an asump-
tion that the autoencoder is only able to effectively compress and reconstruct images that
belong to the same class as the training data. OOD samples are expected to be difficult
to compress and reconstruct accurately. Therefore, the reconstruction error is used as an
OOD score.

In 2018, Denouden et al. [66] used autoencoder abilities together with the Maha-
lanobis distance to produce OOD scores. The results of their experiments concluded
that methods that use reconstruction error as anOOD score are not able to detect certain
anomalies that are distant from the known ID samples.

In 2022, Yang et al. [5] introduced MoodCat. Rather than reconstructing the entire
image, MoodCat masks a random portion of the input image and identifies OOD samples
by calculating a semantic difference between the original image and the synthesized one.
MoodCat consists of an encoder and a decoder, where the encoder extracts low-level fea-
tures and the decoder generates the synthetic part of image. ID samples are synthesized
faithfully to their semantic meaning, while OOD samples highlight the mismatch between
the input and the label. Masking is used to eliminate redundant information from the input
image, allowing the generative model to concentrate on synthesizing the semantic meaning.
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2.5 Chemical compound classification

MoodCat’s performance might be improved using outlier exposure technique, see Sec. 2.1.1.
Altough MoodCat does not dependent on a classifier, it is designed to easily cooperate with
one, as a ‘plug-and-play’ OOD detector.

2.5 Chemical compound classification

In this subsection, we provide a literature overview on chemical compounds classification.
There are works [67, 68, 4], that concentrate on the chemical compounds classification from
the chemical point of view. They use different measuring systems, i.e. gas chromatograph,
and often proprietary software to process the output of a system’s measurements. The
works focus on the system configuration, rather that on the subsequent data analysis,
which is our intention. There are not much works in chemical compound classification
using data analysis, we only describe one work.

Croci et al. [69] used multi-dimensional gas chromatograph data to identify features of
the background of a sample and attribute samples to a particular region or cultivar. A
classifier is constructed to predict whether a test sample contains any compound or if it is
just air, denoted as blanks. They treated the data as an image and apply kNN classification
by the Wasserstein distance The Wasserstein distance is a measure of dissimilarity between
probability distributions. The kNN separates the blanks with a perfect performance. How-
ever, for a more complicated problem, i.e. predicting from which cultivar is the sample
from, the kNN classifier fails.

Clark [70], in his thesis, used different ML methods, i.e. SVM, kNN, Convolutional
Neural Network (CNN), to classify one-dimensional chromatograph data. He concluded
that using ML methods, for conventional gas chromatograph data, that is data similar to
the data used in our experiments, is possible.
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3 Datasets

In our experiments, we use mass spectra and retention times extracted from the output
of a GCxGC-TOF-MS9 system. Time-of-Flight Mass Spectrometry (TOF-MS) analysis
produces mass spectra that are coming out of a comprehensive multi-dimensional Gas
Chromatography (GC) (GCxGC) system every, i.e. 5 ms, for a total duration of 3600
s. For a single measurement, 2000 x 460 spectra are produced. The spectra are used for
tasks related to the molecular profile of human skin Volatile Organic Compound (VOC)s.
They are usually processed semi-automatically. Both by the proprietary black-box software
ChromaTOF®, and by domain experts who manually check its output.

In this section, we describe the GCxGC-TOF-MS system and the data used in our
experiments. There are four subsections in this section:

1. Gas Chromatography

2. Mass Spectometry

3. Multi-dimensional Gas Chromatography with Mass Detection

4. In-detail description of data used for experiments

The first three subsections discuss the main principles of measuring instruments, their com-
ponents, and the purpose of these devices – this is based on a previous thesis [4]. These
subsections are pre-requisities for the fourth subsection that describes the data used in
our experiments (Sec. 5). The purpose of extracting this data was to analyze the molecu-
lar composition of the human skin scent with multi-dimensional Gas Chromatography in
conjuction with Time-of-Flight Mass Spectometry (GCxGC-TOF-MS)

3.1 Gas Chromatography

Gas Chromatography is a simple physico-chemical separation technique that is used
for subsequent GCxGC-TOF-MS analysis. It is suitable for separating and determining
VOCs of various origins. The compound being analyzed is a gas or a liquid that has been
converted into a gas, and the results obtained are retention times and m/z (mass/charge)
ratios.

This technique works by separating individual sample molecules via a mobile phase, usu-
ally an inert ‘carrier’ gas, and a stationary phase, which is placed in the chromatographic
column. The stationary phase interacts with components of a sample that are carried away
by the mobile phase, delaying their movement based on chemical interactions. Therefore,
different molecules will move through the column at different speeds based on their relat-
edness to the stationary phase [71].

The gas chromatograph (visualized in Fig. 3.1) consists of a: (i) pressure cylinder
with carrier gas and regulator, (ii) sample injection, (iii) heated column compartment and

9We denoted the GCxGC-TOF-MS system as the ‘chromatograph’ in the previous sections.
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3.1 Gas Chromatography

Figure 3.1: Gas chromatography block diagram. Taken from [4].

(iv) detector. In this subsection, we provide a short explanation of these components.
A sample, in liquid or gas form, is injected into the carrier gas stream in an injection
chamber. It is then gasified (if needed) and carried to the column where the separation
process occurs. Individual components of the sample flow to the detector where they are
detected. A response from the detector is recorded as a chromatogram [72].

3.1.1 Mobile phase

The main role of the carrier gas (mobile phase) is to carry molecules of a sample
throughout a column. Because the carrier gas must not interact with individual sample
components, various inert or non-reactive gases such as helium, nitrogen, argon, or hydro-
gen are used.

3.1.2 Stationary phase

The stationary phase is the most important factor in choosing a chromatographic col-
umn. This selection determines the final resolution of the column and simultaneously in-
fluences other sampling parameters.

3.1.3 Sample injection

In this stage, a sample is introduced to the GC system. There are different techniques
for the injection process. A common technique involves directly injecting a liquid sample
into the column.
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3.2 Mass Spectometry

3.1.4 Detectors

In Gas Chromatography, a variety of detectors are used, and the choice of a detec-
tor depends primarily on the application and the compounds being analyzed. A detector
captures the physico-chemical properties of analytes eluting from a column and provides
a response, which is then amplified and converted into an electronic signal, resulting in
a chromatogram. The dataset from our experiments uses a GC with TOF-MS detector for
measurements. We dedicate the next subsection to that.

3.2 Mass Spectometry

A combination of Gas Chromatography with Mass Spectometry (MS) (GC-MS) is a stan-
dard choice for a detector that offers low detection limits without requiring perfect separa-
tion of all components in a sample. It provides maximum information with minimal sample
quantity. MS operates on the principle of ion separation in vacuum in the gas state. It is
determined by the ratio of ion mass to charge (m/z). Molecules that have been sepa-
rated by chromatography are ionized. The internal energy of these ions is too high, causing
them to break apart. These charged fragments are then guided and accelerated into a mass
analyzer, where they are classified according to their m/z values. Distinct signals from
fragments with varying m/z ratios allow for the subsequent detection and identification of
individual compounds [73].

3.2.1 Analyzers

Analyzers distinguish individual ions according to different m/z values. A Time-of-Flight
(ToF) analyzer was used to generate the dataset used for our experiments.

Time-of-Flight analyzer offers a high resolution and the highest scanning speed
among common analyzers, making them ideal for integration with multidimensional gas
chromatography techniques.

3.3 Multi-dimensional Gas Chromatography with Mass Detec-
tion

In the analysis of volatile compounds in complex real samples, GC often fails as a sep-
aration tool [74]. An effective way to improve separation is to utilise multiple separa-
tion mechanisms within a single analysis. Comprehensive two-dimensional gas chro-
matography (GC×GC) offers up to several orders of magnitude greater peak capacity
than conventional chromatographic methods. The separation capacity is expressed as n1∗n2

where n1 is the peak capacity of the first column and n2 is the peak capacity of the second
column [75].
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3.3 Multi-dimensional Gas Chromatography with Mass Detection

Figure 3.2: GC×GC block diagram with separate ovens and two-stage modulation. Taken
from [4].

3.3.1 Separation

In GC×GC, an entire sample is separated by two columns with different stationary
phases. One of them is non-polar and the other moderately to strongly polar. This allows
for different methods of division. By utilizing chromatographic columns with different selec-
tivity, it is possible to ensure that the various compounds have independent (uncorrelated)
retention times in both dimensions [76, 77]. See Fig. 3.2 for one possible GC×GC system
layout.

3.3.2 Modulation

For effective GC×GC separation, it is crucial to ensure continuous injection of the sam-
ple into the second column to avoid compromising the separation achieved in the first
column. This is achieved using a modulator, which captures a small fraction of the efflu-
ent from the first column, refocuses it, and rapidly introduces it into the second column.
The modulation time along with the separation time in the second dimension is known
as the modulation period and typically ranges from 1 to 12 seconds [78]. The GCxGC-
TOF-MS system that was used to collect the data used in our experiments uses a cryogenic
modulator, with modulation period 10s, that is illustrated in Fig. 3.3.

3.3.3 Detection

GC×GC is commonly combined with a Mass Spectometry as it provides qualitative
and structural information about the monitored analyte, serving as an additional third
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3.4 In-detail description of data used for experiments

Figure 3.3: The concept of the two-stage cryogenic modulation. It involves utilizing a heat-
ing jet represented by the red nozzle and a cooling jet represented by the blue nozzle.
Taken from [4].

dimension in multidimensional separation. TOF-MS is the most popular analyzer used in
combination with GC×GC. TOF-MS is used for the system that gathers the data used for
our experiments.

3.3.4 2D chromatograph

Output from GC×GC is a broad series of conventional chromatograms from the sec-
ond dimension, which are transformed and stacked side by side using software to create
a two-dimensional chromatogram (see Fig. 3.4, step 2). One dimension is represented by
retention time from the first column. The second dimension represents the retention
time from the second column. Visualization of the 2D chromatogram (see Fig. 3.4, step
3) is typically done by representing peaks in a contour plot, using colors, shading, or con-
tours to indicate signal intensity. Occasionally, 3D visualizations are used for presentation
purposes [75].

3.4 In-detail description of data used for experiments

3.4.1 Data creation

The data were created from human skin samples via a GCxGC-TOF-MS as part of
a previous thesis [4]. The thesis studied the molecular profile of the human skin scent
samples for gender classification and compound identification. This could potentially be
used for scent analysis in forensic practice by building an extensive international database
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3.4 In-detail description of data used for experiments

Figure 3.4: Diagram of GC×GC chromatogram formation and visualization. Taken from
[4].

of scent samples and creating accurate classification models. The author of the thesis states
that analyzing VOCs in complex samples such as human scent, traditional GC may not be
an effective separation technique. Therefore, they used a multi-dimensional GCxGC-TOF-
MS.

Chromatographic analysis
The measured data were first processed with the ChromaTOF®proprietary software. In
chromatogram analysis, compounds whose main peak reached a signal-to-noise ratio (S/N)
value greater than 500 were considered. The identification of compounds was based on
the comparison of their mass spectra with the mass spectrum library NIST MS Search
2.0. After an initial manual evaluation of 20 samples, 70 compounds were identified
in almost all human skin scent samples. Note that while each GCxGC-TOF-MS mea-
surement has 2000 x 460 spectra in total, only 70 of these are identified in all measure-
ments. These compounds were automatically searched in the chromatograms by the Chro-
maTOF®software and then manually checked. Total Ion Current (TIC) chromatogram
represents the summed intensity in the entire range of m/z values detected at every point
(retention times in the first and second dimension) in the analysis. In Fig. 3.6, a TIC chro-
matogram is shown. The output of the GCxGC-TOF-MS chromatographic analysis are
spectra for each sample (measurement) that are difficult to distinguish from one another
based on their retention time. The resulting spectra from the system are one-dimensional
and represent the mass-to-charge ratios (m/z) and their relative frequency (Fig. 3.5). These
spectra are used as an input for our classifier.
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3.4 In-detail description of data used for experiments

Figure 3.5: Mass spectrum of a dodecyl ester of 9-Hexadecenioc acid, with its mass-to-
charge ratios on the x-axis and its relative intensity compared to the highest spectrum
peak on the y-axis. The skin scent was sampled from a female subject number 13 with
measurement number 6, executed on column number 1. Top 10 highest peaks are shown
as green dots with their respective m/z value. Only spectra with m/z ratio values up to
300 were retained due to the absence of non-null values after the cutoff.

3.4.2 Compounds dataset

The Compounds dataset contains manually curated mass spectra obtained from 31
GCxGC-TOF-MS human scent samples (measurements) and contains 70 labelled com-
pounds. The dataset was collected for the task of gender classification and contains an ap-
proximately equal number of spectra for each of the 70 compounds.

Data description
The dataset contains 23,430 samples where each sample x ∈ R801 and the first 29 dimen-
sions are equal to zero. The dataset is made up of human skin scent from 40 individuals,
with an equal number of males and females (20 each). The dataset include 70 labelled
compounds (as described in the last subsection). These are the classes used in our ex-
periments. 62% of all samples are taken from female individuals, 32% are taken from
male individuals. In the dataset, we have samples produced by three different settings of
GCxGC-TOF-MS columns. As a result, samples from different settings have different re-
tention times and levels of noise. We have between 300 and 350 spectra per compound
for the majority of compounds, with the exception of four compounds which have a lower
count, specifically 284, 208, 172, and 127.

Retention times
In this dataset, the spectra from multiple GCxGC-TOF-MS chromatograms were manu-
ally checked and labelled. Each spectrum contains the 801-dimensional vector as specified
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3.4 In-detail description of data used for experiments

above. It also contains retention times of the respective GCxGC-TOF-MS chromatogram.
Retention times are measured in seconds. In our experiments, we build two variants of
a SVM model where they differe in the usage of retention times. The first model that
does not utilize retention times takes the training dataset where each sample x ∈ R801.
The second model that utilize retention times takes the training dataset where each sample
x ∈ R803.

Ground truth data format description
For each sample, the connected metadata are included in the sample filename. The meta-
data include description of the spectra, we refer to them as ground truth in the context of
ML. Here is a sample ground truth with description (the sample’s spectrum is visualized
in Fig. 3.5):

system 1 F1 01 Caffeine: sample’s filename

• system 1: The number of GCxGC-TOF-MS system configuration (There are 3 in
total).

• F13: Represents a volunteer’s unique code (F1, . . . , F20 for female and M1, . . . ,M20
for male).

• 06: The order of the individual’s measurement (01, . . . , 31)

• 9-Hexadecenoic acid, dodecyl ester: Represents an annotated compound found
in the sample.

Collecting training data for the detectors setup
Distance-based OOD methods require data from the training split of the Compounds data
to compute distances during inference time. We save data points x ∈ R803 when including
retention times, or x ∈ R801 otherwise. The data labels yi ∈ {0, . . . , 69} associated with
the data points are also saved. Note that the validation split of the Compounds dataset
is used for experiments and thus cannot be used for the score generation. We take 20% of
the training split of the final model (from cross-validation) for the quantitative experiments.
And we take 100% of the training split of the same model for the qualitative experiments.

3.4.3 Test dataset

The Test dataset is one GCxGC-TOF-MS measurement where the ground truth of
individual mass spectra is unknown.
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3.4 In-detail description of data used for experiments

Data description
The Test dataset is a GCxGC-TOF-MS chromatogram with 460 different retention times
t1 on x-axis and 2000 retention times t2 on y-axis. See Fig. 3.6, where we visualize the Test
dataset as a TIC chromatogram by summing across all m/z values. Each point in the chro-
matogram represents a single mass spectrum x ∈ R801. We denote each spectrum as a test-
ing sample. In order to deploy a classification model trained on the Compounds dataset,
we transpose and flatten the data. Then the Test dataset has 920,000 samples where each
sample x ∈ R801. We mask all samples that have zero spectra, as the machine does not
generate data for the entire duration of a measurement. Then the Test dataset has 715,600
samples where each sample x ∈ R801.

Figure 3.6: Test dataset sample, Total Ion Current (TIC) chromatogram of a sample of
human skin scent. Each point in the image is a sum of all mass spectrum values belonging
to the same scan.

Retention times
Similarly as with the Compounds dataset, we have two datasets that differ in the usage
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3.4 In-detail description of data used for experiments

of retention times for our model. Consequently, a test sample x ∈ R801 or x ∈ R803. We
need to calculate retention times according to the GCxGC-TOF-MS system configuration.
The system adjusts the measuring periods depending on an arrangement of the columns.
I.e. a modulation period, the period during which a sample is injected into the second
column, is 10 s. However, for the system, it is known that measuring for more than 6
seconds in the initial phase is not meaningful. So the chromatograph is set up to only
produce outputs for 6 s (not 10 s). This differs throughout the process, and is visualized
in the chromatogram10 with white color. We calculate retention times11 as follows:

Column index Retention time (t1)
0 - 199 t1 = 6× (column index + 1)
200 - 310 t1 = 6× 200 + 8× (column index + 1)
311 - 459 t1 = 6× 200 + 8× 111 + 10× (column index + 1)

Row index Retention time (t2)
0 - 1999 t2 = 0.005× (row index + 1)

3.4.4 Data normalization

We normalize spectra from both datasets with the LMax norm, sometimes also called
the infinity norm (Linf ). Max norm scales each value in the 801-dimensional vector by
its maximum absolute values. If x is the spectrum vector, then the normalized spectrum
vector is y = x/z. Infinity norm LMax is defined as:

LMax : z = ∥x∥∞ = max |xi| (8)

We scale the retention times as follows:

t1 =
t1

3600

t2 =
t2
10

The constants were selected according to the measurement systems found in the data.

10We also see the retention times in the first dimension are not uniform.
11We compute the total duration of the experiment with the computed retention times: 3578 s = 6 s ∗

200+8 s∗111+10 s∗149. TOF-MS produces spectra every 5 ms. We compute the total number of spectra
for the Test dataset as the total duration of the experiment multiplied by the TOF-MS measuring period,
both in seconds: 715600 = 3578÷ 0.005
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4 Methods

In this section, we describe an SVM classifier, followed by description of investigated
OOD detection methods. Since the OOD detection methods were developed for image
data, we use their modified versions that suit our case. The classifier-based OOD detection
methods require a classification model that is pre-trained on some labelled dataset. In our
case, we train an SVM on the training subset of the Compounds dataset. An overview of
the OOD detection is shown in Fig. 4.1.

OOD
detector

Binary
classifier

OutputInput OOD labelsIn-Distribution
classifier

Figure 4.1: High-level OOD detection overview. An OOD detector takes the Compounds
or Test datasets, optionally processed by a ID classifier, to produce OOD scores. A binary
classifier then takes the scores as input and returns OOD labels. The labels denote whether
an input is In-Distribution or Out-Of-Distribution.

Note that distance-based OOD detection methods do not require a pre-trained classifi-
cation model to predict OOD labels. They predict the labels based on the provided data
and a distance function.

4.1 Out-Of-Distribution Problem Statement

Out-Of-Distribution detection is a process of identifying data samples that are from
a different distribution than the distribution the ML model was trained on. ID is the dis-
tribution of the training data and OOD represents data samples with covariance shift or
semantic shift. An instance of covariance shift occurs when comparing images captured
by a camera and animated images. Semantic shift refers to the existence of a class that
is not present in the ID domain. Example of covariance and semantic shifts are shown in
Fig. 4.2, 4.3.
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4.1 Out-Of-Distribution Problem Statement

(a) MNIST contains images of hand-
written digits

(b) SVHN contains images of street
view house numbers

Figure 4.2: An example of a covariance shift between images from MNIST [79] dataset and
SVHN [28] dataset. Covariate shift occurs when the distribution of input data in a ML
model training and testing data differs. The semantics of the datasets are identical as they
both have images of digits. But their domain is different: (a) handwritten digits, and (b)
street view digits.

(a) CIFAR-10 contains images 10 ob-
jects: airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, trucks

(b) SVHN contains images of street
view house numbers

Figure 4.3: An example of a semantic shift between images from CIFAR-10 [13] dataset
and SVHN [28] dataset. Images of SVHN are street view digits, images of CIFAR-10 are
animals or vehicles.

OOD detection is a binary classification task. Let Din, Dout denote two distinct data
distributions. We call Din In-Distribution and Dout Out-Of-Distribution. Consider
a ML model f trained on a dataset drawn from the distribution Din. In test-time, we
deploy f on another dataset that drawn from a mix of Din and Dout distributions. OOD
detector G predicts whether a test-time sample x is In-Distribution or Out-Of-Distribution:

G(x, f) =

{
1 if x ∼ Din

0 if x ∼ Dout
(9)
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4.2 Multi-Class Classification with Support Vector Machines

4.2 Multi-Class Classification with Support Vector Machines

In this subsection, we describe the classification model. This is the first step in the OOD
detection. In the classification task, the goal is to obtain a classifier that is trained on
the Compounds dataset. This trained classifier is used in the next steps of OOD detection.

The output of this step is to obtain: (i) ID classification performance on the Com-
pounds dataset, and (ii) logits extracted from the SVM classifier. SVM’s logits are used
by classification-based OOD detectors that are described in the following subsection. ID
classification performance is reported as part of the OOD detection evaluation. ID
classification denotes the classification of the Compounds data.

Multi-class classification with retention time

 Input spectrum

Retention
Times

Feature
vector

ML model Predicted
substance

803

ML model

 

801

Feature
vector

Predicted
substance

Multi-class classification without retention time

 Input spectrum

Figure 4.4: Multi-class classification for a SVM model, top: without, bottom: with retention
times available. Machine Learning model takes a mass spectrum, optionally extended by
retention times, as the input and predicts one of 70 compounds.

Multi-class classification is an instance of a supervised learning problem in which each
input sample can be associated with a single label that indicates which class it belongs to.
In our case, we assign one of the 70 known classes to a GCxGC-TOF-MS input. The input
is an 801-dimensional or 803-dimensional vector. In Fig. 4.4 is a graphical representation
of the task.

Before we introduce the method we used in the experiments, SVM, we outline other
methods for the problem. A simple classifier can be created with a dot product. We com-
pute the dot products between a test-time data vector and all data vectors from the training
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4.2 Multi-Class Classification with Support Vector Machines

dataset. This results in a vector of dot products from which we select the highest value.
From that we take the associated label from at the index of the highest value.
k-Nearest Neighbors (kNN) first normalizes the data and obtains k nearest neighbors.
For a test-time sample it assigns the class label that is the most frequent among the k
neighbors.
Based on the Bayes theorem, the Naive Bayes Classifier gives the conditional probabil-
ity of an event A given an event B. During training, it calculates class probabilities and
conditional probabilities for each of the values of a spectrum and retention times. In pre-
diction, it applies Bayes’ theorem and iterates through all features to get the most probable
class label for a test-time sample.
These methods (and possible more) are easily interpreted, easy to implement, and do not
require complex training schemes. But they fail to capture complex patterns in the data. In
the Compounds dataset the spectra for the same class (compound) differ quite significantly
and require more complex methods.

CNN is the foundation of all classification-based OOD methods. It would require no
modification to the model in order to run the methods. Building CNN for our data is
technically possible with a small network. CNN in general are known to capture more
complex patterns in the data which is also needed. But given the Compounds dataset size,
it is very difficult to train a CNN that would: (i) not overfit the dataset, and (ii) have
sufficient classification performance. We choose not to use CNN either.

SVM select the optimal separating hyperplane (decision boundary) that separates a n-
dimensional space (801 or 803 in our case) into distinct classes. This decision boundary
is called a hyperplane. Support Vector Machines (SVM) are based on the concept of
maximizing the margin. Where the margin is the minimum distance from the separating
hyperplane to the closest data point from the training dataset. SVM is expected to cope well
with noise or more complex data patterns. We trained a CNN model and found that SVM
model is superior in both classification and OOD detection performance without the need
for complex fine-tuning. SVMs are also easier to implement, easier to interpret and require
less computation. For these reasons, we select the SVM. More details on the SVM are given
in Sec. 4.2.2.
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4.2 Multi-Class Classification with Support Vector Machines

4.2.1 Overall approach

Compounds dataset
SVM

with cross validation

Trained SVM
train

val Classification
performance metrics

Output:

Figure 4.5: In-Distribution classification overview. SVM model is trained on the Com-
pounds dataset divided into train/validation split by a cross-validation. The trained model
and its performance metrics are taken as output for later OOD detection.

We train a multi-class classifier to classify GCxGC-TOF-MS. The input is either a 801-
dimensional vector or a 803-dimensional vector. In the second case, the last two dimensions
represent GCxGC-TOF-MS retention times. The output is a single label yi ∈ Y = {0 . . . 69}
where Y denotes a set of 70 known substances (classes). We implement a Support Vector
Machines (SVM) model for this task. An overview of the classification process is visualized
in Fig. 4.5.

4.2.2 Architecture

Model variants
We obtain both mass spectra and retention times from a GCxGC-TOF-MS chromatogram.
We train two models: (i) SVMwithout access to retention times, and (ii) SVMwith access
to retention time. These models differ by the input’s dimensions. The input is a: (i) 801-
dimensional vector, or (ii) 803-dimensional vector respectively. We train both models with
the same configuration. We report their performance in the Sec. 5.

Support Vector Machines optimization task
Let us formulate the SVM model as an optimization task. For a training dataset T :

T = {(xi, yi)}mi=1 , where xi ∈ Rn, yi ∈ {−1, 1}, (10)

where m is the number of samples in T .
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4.2 Multi-Class Classification with Support Vector Machines

The optimization task, also known as the primary task, is formulated as:

w∗, b∗, ξ∗i = arg min
w,b,ξi

(
1

2
wTw + C

m∑
i=1

ξi

)
subject to wTxi + b ≥ +1− ξi,when yi = +1

wTxi + b ≤ −1 + ξi,when yi = −1
ξi ≥ 0, ∀i

(11)

Where w∗, b∗, ξ∗i are optimization variables that SVM solves and C is a model’s hyper-
parameter that can be fine-tuned. The first term in the optimization task maximizes
the margin (width) of a linear decision boundary 2

wTw
by actually minimizing 1

2
wTw

where wTw denotes a dot product. The decision boundary is a line in 2D feature space,
but is generalizable to higher dimensions. The minimisation task involves the addition of
slack variables ξi, which are summed. The variables allow that some training points may
be mis-classified. A regularization parameter C is used to regulate this. SVM that enables
for mis-classification is called a soft-margin classification. Due to the possible high di-
mensionality of the vector variable w, we solve the dual problem of the optimization task.
This is described in detail in [80].

‘One-vs-all’ classification strategy
We employ the ‘one-vs-all’ classification strategy to adapt a binary SVM for a multi-
class classification. There are several strategies for reducing a multi-class classification to
a multiple binary classification. We use the so-called ‘one-vs-all’ strategy that trains
70 distinct classifiers. Each of them is a binary classifier that predicts whether a sample
belongs to the class yi ∈ Y = {0 . . . 69} or if it belong to the rest of classes Y \ yi.

Probability estimates
For the purpose of OOD detection, the model must produce predictions that represent
a probability distribution. SVM makes its predictions using a decision function that does
not follow a probability distribution. That is, their values do not add up to one. We
compute probability estimates as an extension to the SVM model. We use the method
from [81] implemented in the sklearn library. This uses an improved implementation of
the Platt scaling [82].

The goal of the probabilistic estimation is to calculate the likelihood of a data point x
belonging to the class i:

pi = P (y = i | x), i = 1, . . . , k, (12)

where k is the number of classes. We estimate the likelihoods as rij with pairwise (‘one-
vs-one’) class probabilities:

rij ≈ P (y = i | y = i or j,x) ≈ 1

1 + eA f̂+B
(13)
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4.2 Multi-Class Classification with Support Vector Machines

Where f̂ is a decision value for x. Decision values are calculated by summing the con-
tributions from the support vectors over all combinations of two classes. Although this
technique is referred to as a ‘one-vs-one’ (or pairwise) approach, it can also be used with
our ‘one-vs-rest’ classifier. The parameters A and B are estimated by minimizing the neg-
ative log likelihood of the training data with a 5-fold cross-validation.

After collecting all rij values, there are several proposed approaches to obtain pi, ∀i [81].
We use one such approach and solve the following optimization problem:

min
p

1
2

k∑
i=1

∑
j:j ̸=i

(rjipi − rijpj)
2

subject to pi ≥ 0,∀i,
k∑

i=1

pi = 1

(14)

The implementation [80] guarantees convergence to the unique optimum of this problem.

4.2.3 Training details

In the implementation, we use the Python programming language. And we use the sklearn.svm
Python library for the implementation of the SVM. Specifically, we use the sklearn.svm.SVC
function. This library is internally implemented with the libsvm library [80].

Training parameters
We train the SVM model with the SVC module from the sklearn library. We use the fol-
lowing parameters:

SVC(kernel=KERNEL_FUNCTION,

gamma=GAMMA,

C=C,

decision_function_shape=’ovr’,

probability=True,

break_ties=True,

class_weight=’balanced’)

We consider KERNEL_FUNCTION, GAMMA and C as the hyper-parameters that are fine-tuned.
decision_function_shape=’ovr’ means we use the ‘one-vs-rest’ transformation.
probability=True means that we have to create probabilistic estimates for our model.
break_ties=True means the model break ties according to the confidence values.

The model consists of 70 ‘one-vs-rest’ models and we define different regularization
parameters Ci for each class i. As we set the argument class_weight=’balanced’, we set
the weights for the regularization parameter C based on the counts of a particular class.
We do this to account for small class imbalances of the Compounds dataset.
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4.3 Used OOD detection methods

Stratified 5-fold Cross-Validation
We implement a 5-fold cross-validation to train the models. K-fold cross-validation is
a technique used to evaluate the performance of ML models. It splits the dataset into k
subsets of the same size. Then the model is trained and evaluated k times using a different
subset as the validation set each time. That is, it uses 4 subsets as training set and 1 subset
as the validation set. We prefer this sampling technique over the conventional ‘train-test’
split as we have greater confidence in the model’s performance on unseen data and it is
easier to detect when the model is overfitting. Stratified k-fold cross-validation is a k-
fold cross-validation where each divided subset has an approximately equal proportion of
samples from each target class as the entire set.

Obtaining final model
For the experiments, we need a trained classifier. We get it with the cross-validation. For
each fold, we evaluate the model and save its performance. We choose the model with
the best validation performance as the final model.

Grid Search to fine-tune hyper-parameters
The implementation of the SVM uses these hyper-parameters: (i) KERNEL_FUNCTION, (ii)
optional parameter GAMMA associated with the kernel function, and (iii) a regularization
parameter C. We implement a simple exhaustive method where we iterate over all triplets
(KERNEL_FUNCTION, GAMMA, C) to obtain the best model. We train the model using a triplet
of hyper-parameters and evaluate it with a 5-fold cross-validation to obtain performance
metrics. After searching through all possible triplets, we select the triplet that gives the great-
est performance.

The best model was trained with the linear kernel and C = 1000. The large value of C
implies a lower number of support vectors and enforcing a ‘hard margin classification’. We
use these parameters for all experiments.

4.3 Used OOD detection methods

In this subsection, we describe the OOD detection methods that are used in the experi-
ments. Each method generates OOD scores that are essential for the next step of the OOD
detection. The input for a detection method is: (i) a data sample we want to classify (ii)
the Compounds dataset and (iii) a trained SVM classifier obtained from the previous step
(Sec. 4.2). Whether we use the trained classifier or some statistics derived from the Com-
pounds dataset depends on a specific OOD detector. The resulting score is a single value
that is computed for every input data point.

We adapted eight different OOD detectors for the task:

• MSP detector [7]
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4.3 Used OOD detection methods

Detector name Scoring function Aggregate function Distance function
MSP Softmax Max –
MaxLogit – Max –
KL KL divergence –
Energy-based Exponential LogSum –
Mahalanobis – – Mahalanobis
KNN – – kNN
SSD – – Mahalanobis
NNGuide Exponential LogSum kNN

Table 4.1: Attributes of detectors. Where a function is not defined it is labeled as ‘–’. KL
divergence is a function that combines scoring and aggregate functions.

• MaxLogit detector [17]

• KL detector [17]

• Energy-based detector [10]

• Mahalanobis detector [53]

• Deep Nearest Neighbours detector (KNN) [56]

• SSD detector [55]

• NNGuide detector [59]

In this subsection, we demonstrate how each of them generates OOD scores. The imple-
mentation of these methods is taken from the public code available in the code repositories
of the respective methods. Part of the evaluation script was taken from the NNGuide [59]
public repository. It was modified as follows. Distance-based methods take data points as
input (spectra + retention times) instead of feature vectors. We modified the scaling pro-
cess for the Mahalanobis and SSD score. A public repository with our implementation is
available on GitHub 12.

Following the taxonomy defined in Sec. 2 we divide this subsection into: (i) post-hoc
methods, and (ii) distance-based methods in our method. The third part subsection intro-
duces NNGuide, a detector that represents both post-hoc and distance-based methods.

There are three parameters that determine an OOD detection method: (i) scoring func-
tion, (ii) aggregate function, and (iii) distance function. Scoring and aggregate functions are
parameters for the post-hoc detectors and distance function is a parameter for the distance-
based methods. In Tab. 4.1, we list used parameters for all methods.

12https://github.com/lindepav/OOD detection for GCxGC classification task

38

https://github.com/lindepav/OOD_detection_for_GCxGC_classification_task


4.3 Used OOD detection methods

4.3.1 Post-hoc methods

Overall approach

Input data Trained SVM OOD
scoreLogits OOD scoring

function
Aggregate

function

Post-hoc detector

Figure 4.6: Out-Of-Distribution detection score generation overview for post-hoc methods.
Post-hoc methods produce scores from logits extracted from a trained SVM model. OOD
scoring function and aggregate function are used to derive the OOD score.

MSP, MaxLogit, KL and Energy-based detectors are instances of post-hoc output-based
methods. An illustration of the process of creating OOD scores for post-hoc methods is
presented in Fig. 4.6. These methods differ based on the choice of an: (i) OOD scoring
function and (ii) aggregate function. The following paragraphs explain how a method
calculates the OOD score. The logits are used as an input for all post-hoc methods. We
explain the process of obtaining logits from the SVM model next.

Extracting logits from the SVM model
Logits are input for a post-hoc scoring function. The original methods require logits ob-
tained from a CNN. Therefore, we need to make minor modifications to the implementation.
We extract the output probability estimates from the SVM model (that was trained on
the Compounds dataset) and obtain the logits as is described in Algorithm 1.

Algorithm 1 Convert SVM Probability Estimates to Logits

Require: probs : Prediction probabilities from SVM probability estimates
Ensure: logits : Logits calculated from probabilities
eps← a small constant
probs← max(min(probs, 1− eps), eps) ▷ Clip probabilities for numerical stability

logits← log
(

probs
1−probs

)
▷ Convert probabilities to logits

MSP detector
Maximum Softmax Probability (MSP) [7] takes a data sample (mass spectrum + retention
times) and feeds it to trained SVM. It calculates logits and uses softmax to obtain class
probabilities. Then it takes the maximum and uses it as an OOD score for this sample.

39



4.3 Used OOD detection methods

MSP(x) = max
i

exp (f(xi))∑
j ̸=i

exp (xj)

 , where i, j = {0, . . . , 69} (15)

MaxLogit detector
MaxLogit [17] takes the negative of a maximum from the logits as an OOD score.

MaxLogit(x) = max
c

(f(xc)) , where c = {0, . . . , 69} (16)

KL detector
KL detector [17] computes the Kullback-Leibler divergence between the probability distri-
bution estimate obtained from logits q(xc) and a generated uniform distribution p(xc). In
general, the KL divergence quantifies how much one distribution differs from another. In
the implementation, we compute the KL divergence as the cross-entropy loss (without re-
ductions) between the logits and the generated uniform distribution. The reason for that is
that the computation of cross-entropy loss is less demanding. The cross-entropy is the sum
of the entropy H(p(x)) and the KL divergence between p(x) and q(x). The entropy term
H(p(x)) is constant for each c since the target is fixed and its distribution never changes.
Therefore, we neglect this term.

KL(x) = DKL(p(x)∥q(x)) =
69∑
c=0

p(xc) log
p(xc)

q(xc)
= −

69∑
c=0

q(xc) log q(xc) (17)

Energy-based detector
Energy-based detector [10] uses energy as a scoring function. Unlike softmax confidence
scores, energy scores are theoretically aligned with the probability density of inputs and are
less susceptible to the overconfidence issue. Energy measures the compatibility of a data
point and its corresponding label.

Energy-based detector computes a score for test-time data x with their extracted logits
f(x) using the energy function:

Energy(x, T ) = T · log
69∑
c=0

exp(
f(xc)

T
)

Energy(x, T = 1) = log
69∑
c=0

exp(f(xc))

(18)

In our experiments, we use the temperature T = 1.
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4.3.2 Distance-based methods

Input dataset Distance
function

OOD
score

Compounds
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Distance-based detector

Figure 4.7: Out-Of-Distribution detection score generation overview for distance-based
methods. Distance-based detectors measure distances between input data and reference
training split of the Compounds dataset with a distance function.

Mahalanobis, Deep Nearest Neighbours and SSD are instances of distance-based meth-
ods. An illustration of the process of creating OOD scores for distance-based methods is
presented in Fig. 4.7. These methods differ mainly by the selection of the distance function.
We provide the definitions of the distance function in the following subsections.

For the methods, we load the data points xtrain ∈ R803 or xtrain ∈ R801 and the data
labels ytrain ∈ {0, . . . , 69} from the training split of the Compounds dataset. How we save
these is described in Sec. 3.4.2.

Mahalanobis detector
Mahalanobis [53] fits pre-trained low-level and upper-level features by a class-conditional
Gaussian distribution. We modify this to use the unprocessed data points spectra instead
(mass spectra + retention times) as SVM does not produce these features. Mahalanobis
also uses input pre-processing for testing samples (adding small noise to input) for better
ID and OOD separation. We did not achieve better performance with this, so we omitted
it.

Prior to calculating the Mahalanobis score, we first calculate the empirical class mean
and covariance of the ID training data {(xtrain

1 , ytrain1 ), . . . , (xtrain
N , ytrainN )}:

µ̂i =
1

Ni

∑
j:yj=i

xtrain
j ,where i = {0, . . . , 69}, Ni = occurence of class i

Σ̂ =
1

N

69∑
i=0

∑
j:yj=i

(
xtrain
j − µ̂i

) (
xtrain
j − µ̂i

)⊤
,where N = total number of samples

(19)

For a test-time data point x we compute the Mahalanobis distance as follows:

Mahalanobis’(x) = min
c

(
(x− µ̂c)

⊤ Σ̂
−1

(x− µ̂c)
)
,where c = {0, . . . , 69} (20)
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Mahalanobis score can be derived by taking the negative value of the computed distance.
In the implementation, we first normalize the scores as follows:

Mahalanobis(x) = exp (− (Mahalanobis’(x)/M) /2) , where M = number of classes (21)

Deep Nearest Neighbours (KNN) detector
Deep Nearest Neighbours [56] uses kNN distance instead of Mahalanobis distance. First
we find k-nearest neighbors for a test-time data point x with inner product distances ⟨., .⟩.
The neighbors are computed from the Compounds training split data points. We obtain
only the top k nearest training data points. The KNN score is computed as follows:

KNN (x, k) = −min
j

(
⟨x,xtrain

(j) ⟩
)
,

where j = {1, . . . , k}, and xtrain
(j) is j-th nearest neighbor

(22)

We use the Faiss library that has an efficient implementation of quering the nearest neigh-
bors. In our experiments, we use k = 10.

SSD detector
SSD [55] detector first calculates the empirical class mean and covariance of the Com-
pounds dataset training split similarly to the Mahalanobis detector. However, here we use
only the data points {xtrain

1 , . . . ,xtrain
m } without labels. We set the labels with k-means clus-

tering to y1, . . . ym. Where m is a method’s parameter. If k = 1, we produce artificial labels
to ‘classify’ all training data into one class. In other words, we do not use any clustering. We
compute the class mean and covariance of the ID training data {(xtrain

1 , y1), . . . , (x
train
N , yN)}

as defined in 19.

For a test-time data point x we compute the SSD score as follows:

SSD (x,m) = min
c

(
(x− µ̂c)

⊤ Σ̂
−1

c (x− µ̂c)
)
,where c = {0, . . . ,m}

SSD (x,m = 1) = (x− µ̂)⊤ Σ̂
−1

(x− µ̂) ,

where µ,Σ−1 are mean and inverse covariance of the whole Compounds data

(23)

We use the same normalization as defined in Eq. 21. In our experiments, we use m = 1.

4.3.3 NNGuide detector

NNGuide [59] combines a distance-based score (KNN) with a post-hoc score (Energy).
An illustration of the process of creating OOD scores for NNGuide is presented in Fig. 4.8.
Logits and data points from Compounds training split are extracted in the same way
as for post-hoc and distance-based methods respectively. In our experiments, we use the
temperature T = 1 and k = 10 for kNN distance.
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Figure 4.8: Out-Of-Distribution detection score generation overview for NNGuide [59].
The final score is generated for each input by averaging a post-hoc score with a distance-
based score.

NNGuide score is a product of the energy score (‘base score’), and the KNN score
(‘guidance’ term). The detector scales the Compounds training split data points xtrain

by the Energy scores generated from logits obtained from the Compounds training split
f(xtrain):

Energy(x, T ) = T · log
69∑
i=0

exp(
f(xi)

T
)

xtrainScaled = xtrain · Energy(xtrain, T )

(24)

For a test-time input x we calculate the distance score and the post-hoc score. The dis-
tance score is a changed KNN score as defined in 22. The post-hoc score is define as
the Energy function ( 24):

PostHocScore (x, T ) = Energy(x, T )

DistanceScore (x, k) =
1

k

∑
j

(
⟨x,xtrainScaled

(j) ⟩
)

where j = {1, . . . , k}
xtrainScaled
(j) is j-th nearest neighbor to the scaled training data

(25)

For a test-time input x we calculate NNGuide score by weighting the distance score
DistanceScore (x, k) with the post-hoc score PostHocScore (x, T ):

NNGuide (x, T, k) = PostHocScore (x, T ) ·DistanceScore (x, k) (26)

In our experiments, we use the temperature T = 1 and k = 10 for kNN distance.
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4.4 OOD detection

Test dataset

Binary classification OOD Label

Threshold calculationCompounds
dataset

OOD detector
score

Figure 4.9: OOD binary classification process overview. First, a threshold is obtained from
the validation split of the Compounds dataset. The method produces OOD labels for
the Test dataset with the threshold as a binary classification.

In this subsection, we explain how the OOD scores (Sec. 4.3) are transformed into
a functional OOD detector. The input are the OOD scores obtained from: (i) the validation
split of the Compounds dataset, and (ii) the Test dataset. The output are OOD labels for
each data point in the Test dataset. Each label indicates whether a data point is In-
Distribution or Out-Of-Distribution. See Fig. 4.9 for an overview of this process.

OOD detection uses a threshold-based binary classification. Recall the definition
of an OOD detector G (from Sec. 4.1). The SVM model f (SVM from Sec. 4.2) is trained
on the Compounds dataset. In testing, we deploy f on the Test dataset that is a mixture
of ID and OOD. The detector G predicts whether a testing sample x is In-Distribution
(ID) or Out-Of-Distribution (OOD):

G(x, τ) =

{
1 if x ≥ τ
0 if x < τ

(27)

Here τ is a threshold derived from the validation split of the Compounds dataset.

Threshold calculation
The input are scores obtained from the validation split of the Compounds dataset. The out-
put is a threshold τ . We use the validation split because we know that the data come from
the same distribution on which the SVM model was trained, while the data were not used
for the training itself so we reduce a bias.

We set the threshold so that a high fraction of the Compounds dataset is correctly
classified as ID. In other words, we change the threshold by setting a True Positive (TP)
rate (ID data classified as ID). Alternatively, we can set a False Negative (FN) rate (ID
data misclassified as OOD). The implementation of threshold selection is simple. We sort
the scores in descending order and determine the threshold so that the top percentage of
scores (specified by the TP rate) will be considered as ID.
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4.4 OOD detection

In our qualitative experiments, we set the TP rate at 95% and 99%. See Sec. 5 for
the results. Note that the threshold is different for each OOD detector.

Generating OOD labels with binary classification
The input are scores obtained from a Test dataset and the threshold from the previous
step. The output are OOD labels for each input data point.

We classify the Test data based on 27. If a score is greater than or equal to the threshold,
it is considered In-Distribution (assigned the value 1). Otherwise, it is considered Out-Of-
Distribution (OOD) (assigned the value 0).
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5 Experiments

In this section, we describe a series of qualitative and quantitative experiments per-
formed on the datasets described in Sec. 3. In the specific setting of OOD, we had to
select a strategy accounting for the fact that only ID labeled data were available to us.
For the quantitative experiments presented in Sec. 5.1, we artificially created sets of
in/out-distribution compounds from the Compounds dataset (Sec. 3.4.2.). I.e., we selected
a portion of compounds to be In-Distribution and used them for SVM training and cal-
ibration of distance-based methods, and we marked the rest as Out-Of-Distribution. We
hypothesized, that the performance of both SVM and OOD methods heavily depends
on the in/out-distribution splits of chemical compounds. Therefore, we applied a 10-fold
cross-validation for the in/out-distribution sampling, and report performance accordingly.

In the qualitative experiments presented in Sec. 5.2, we investigated the ‘Test dataset’ –
a single GCxGC-TOF-MS measurement introduced in Sec. 3.4.3. We applied the methods
reported in the quantitative experiments and we mainly interpret the results by eyeballing.

5.1 OOD detection quantitative experiments

In this experiment, we quantitatively compare performance of eight OOD detection
methods. For the evaluation, we use the ID dataset introduced in Sec. 3.4.2. To investigate
performance of the OOD detectors, we synthesise the OOD samples.

5.1.1 Experiment setup

Artificially created sets of in/out-distribution from the ‘Compounds dataset’ are used as
input. We choose an ‘ID-to-OOD ratio’ that denotes a ratio of the Compounds dataset con-
sidered ID, the rest as OOD. With this ratio, we randomly select a subset of compounds
to be OOD by 10-fold cross-validation 13. E.g., for each fold and ID-to-OOD ratio = 0.9, we
randomly select 7 (out of 70) compounds and mark them as OOD and mark the rest as ID.
With this id/out-distribution sets, we train the SVM model (on the ID subset), compute
OOD scores (on both ID/OOD sets) and compute the performance metrics. Finally, we
average the metrics over 10 folds. The evaluation pipeline for a single fold is illustrated in
Fig. 5.1.

Note, that we only split the ID dataset to training and validation subsets, we do not use a
test subset. The reason is that although the validation test is used to find hyperparameters
of the SVM classifier for the classifier-based OOD methods, we believe that it may still
be considered as a testing dataset for OOD detection. Moreover, in case of distance-based

13Note, that we use cross-validation in two different places. First, we use cross-validation in splitting
the compounds into in/out-distribution sets – purpose here is to determine how sensitive the detection
methods are to the choice of OOD compounds. Second, we use cross-validation at the SVM training level
– here the purpose is to get estimates of amount of overfitting of the SVM model on our data.
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5.1 OOD detection quantitative experiments

OOD methods, finding hyperparameters is not required. Therefore, the validation dataset
actually is the test dataset.

Also note, that to evaluate the investigated OOD methods, we apply them to a set
of samples constructed from the validation subset of ID dataset, and the OOD subset.
The number of in/out-distribution samples in the constructed dataset is not equal. We do
not attempt to make the subsets balanced due to a limited availability of labeled data.
In [83], sensitivity of various performance metrics is investigated for binary classification
in unbalanced classification scenarios. In our experiments, as discussed later, we follow
their conclusions and report metrics which give an accurate and intuitive interpretation of
performance of classifiers on imbalanced datasets.

Compute evaluation
metricsTrained SVM OOD detector

score

OOD scores:
- ID set, val split
- OOD set

5-fold cross-validation:
- ID set, train split
- ID set, val split
- OOD set

 AUROC
AUPR
FPR95

10-fold cross-validation:
- ID set
- OOD set

Accuracy
Precision

Recall

Compounds
dataset

Figure 5.1: Evaluation pipeline for the quantitative experiments. Artificially created sets,
using a 10-fold cross-validation, of in/out-distribution compounds from the Compounds
dataset are given as input. An SVM model is trained on the ID set using 5-fold cross-
validation, and its performance metrics (i.e. Accuracy, Precision and Recall) are reported.
The validation split of ID set and the OOD set are fed into the SVM to produce OOD
detection scores. OOD detection metrics, i.e. AUROC, AUPR and FPR95, are calculated
from the scores. Outputs of the pipeline is shown in bold.

The output of this pipeline is: (i) ID classification performance metrics and (ii) evalua-
tion metrics for the OOD detection. The parts of this pipeline are explained in Sec. 4.2, 4.4.
We conduct experiments for two different values for the ID-to-OOD ratio, specifically 90%
and 10%. In Tab. 5.1, we show performance of the SVM: (i) using retention times, (ii)
without retention times. We compare the performance of different detection methods in
Tab. 5.2. Additionally, we conduct an experiment that uses other than a random sampling
for the in/out-distribution sets to evaluate how the selection of compounds we mark OOD
affects the detection performance. The results are in Tab. 5.3.

5.1.2 OOD detection performance metrics

The metrics definitions use the following terms. TP represent correctly predicted positive
instances, True Negative (TN) are correctly predicted negative instances, False Positive
(FP) are instances wrongly predicted as positive, and FN are instances wrongly predicted
as negative.
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5.1 OOD detection quantitative experiments

OOD detection is a threshold-based binary classification. To assess the performance of
a OOD detector (Tab. 5.1, 5.2, 5.3), we use the following metrics. The first metric is Area
Under Receiver Operation Characteristic curve (AUROC). Receiver Operation
Characteristic (ROC) curve shows the trade-off between True Positive Rate (TPR) and
False Positive Rate (FPR) across different decision thresholds. The TPR and FPR are
derived from the scores, and we use them to create the ROC curve. The baseline for
AUROC = 0.5 which represents a random classifier. We choose AUROC instead of metrics
like accuracy because it assesses the classifier’s performance across all possible threshold
values, rather than being dependent on a specific threshold choice. We compute AUROC
by considering the ID samples as the positive class.

Area Under Precision-Recall curve (AUPR) is similar to AUROC but instead of
TPR and FPR it plots precision against recall across different decision thresholds. Our
choice of AUPR performance metric is based on [83], where the metric is claimed to be
suitable for binary classification in unbalanced classification scenarios, which is our case.
The computation process is the same as the ROC curve but TPR and FPR are replaced by
recall and precision measures. The precision-recall curve shows a trade-off between False
Positives and False Negatives. In datasets with a significant imbalance between positive and
negative classes, which is our case, AUPR is more informative than AUROC. The baseline
for AUPR is equal to the fraction of positive classes [83]. We compute AUPRIn by consid-
ering the ID samples as the positive class. Similarly, we compute AUPROut by considering
the OOD samples as the positive class.

FPR95 refers to the FPR at which the TPR of ID samples is at 95%. We use this
metric to simulate a run of a detector on a dataset where we set the threshold TPR at
a fixed value, often 95% (see Sec. 4.4). The objective is to minimize FPR95, unlike AUROC,
AUPRIn and AUPROut, where the objective is a maximization.

5.1.3 Classification performance metrics

The SVM model solves a multi-class classification task. We report the SVM perfomance,
as the ID classification performance. We use three evaluation metrics:

1. Accuracy

2. Average Precision

3. Average Recall

Accuracy is a commonly used metric in the field of OOD detection. It is expressed as:

Accuracy =
Number of Correct Predictions

Total Number of Predictions
(28)

We use a precision and a recall because they offer deeper insights into the model’s per-
formance and diagnostic power. They give a nuanced evaluation by capturing the trade-off
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5.1 OOD detection quantitative experiments

OOD detection performance

performance metric AUROC ↑ FPR95 ↓ AUPRIn ↑ AUPROut ↑
retention times available ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

cl
a
ss
ifi
er
-

b
a
se
d

SVM+MSP 75.92 67.91 70.41 87.10 79.88 74.57 65.17 52.31
SVM+MaxLogit 75.68 67.82 74.15 87.22 79.80 74.54 64.48 52.16
SVM+KL 73.17 66.24 79.70 87.18 78.77 73.80 60.03 51.24
SVM+Energy 75.47 67.73 77.12 88.88 79.73 74.51 63.72 51.96
SVM+NNGuide 71.52 65.12 80.96 91.05 78.47 75.18 58.40 48.00

d
is
ta
n
ce
-

b
a
se
d Mahalanobis 73.03 72.15 77.33 78.00 84.11 83.11 60.02 59.45

KNN 47.32 47.86 96.19 96.49 65.14 65.25 33.61 33.86
SSD 70.15 70.09 79.29 79.49 80.94 80.68 57.49 57.47

ID-classification SVM performance

performance metric Precision ↑ Accuracy ↑ Recall ↑
retention times available ✓ ✗ ✓ ✗ ✓ ✗

98.94 96.13 98.81 96.08 98.82 96.09

Table 5.1: OOD detection methods performance on the compounds classification problem.
An artificially created dataset of in/out-distribution compounds with ID-to-OOD ratio =
0.9 was used, with and without retention times available. Performance of SVM on the
ID classification problem is also reported, as it is informative w.r.t. the performance of
classifier-based OOD detectors.

between False Positives and False Negatives. Recall and precision have different definitions
for a multi-class classification. We use micro-averaged precision and recall:

Average Precision =
1

70

70∑
Class i=1

TPClass i

TPClass i + FPClass i

(29)

Average Recall =
1

70

70∑
Class i=1

TPClass i

TPClass i + FNClass i

(30)

We calculate the evaluation metrics as the average across all 5 folds of the cross-
validation.

5.1.4 Results

First, we compare the SVM model: (i) without retention times, (ii) with retention times.
Our hypothesis is that incorporating retention times as additional features enhances per-
formance for both ID classification and OOD detection. Results in Tab. 5.1 demonstrate
that the performance increases for ID classification and OOD detection tasks 14,when

14KNN detector produces the same performance metrics for SVM model: (i) utilizing retention times,
(ii) not utilizing retention times.
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5.1 OOD detection quantitative experiments

the SVM model utilizes retention times as additional features.

OOD detection performance

ID-to-OOD ratio 0.9 0.1
performance metric AUROC ↑ FPR95 ↓ AUPRIn ↑ AUPROut ↑ AUROC ↑ FPR95 ↓ AUPRIn ↑ AUPROut ↑
SVM+MSP 75.92 70.41 79.88 65.17 83.60 42.28 10.04 99.56
SVM+MaxLogit 75.68 74.15 79.80 64.48 83.61 42.22 10.04 99.56
SVM+KL 73.17 79.70 78.77 60.03 82.84 43.50 9.85 99.53
SVM+Energy 75.47 77.12 79.73 63.72 83.61 42.21 10.04 99.56
SVM+NNGuide 71.52 80.96 78.47 58.40 78.20 51.91 7.63 99.39
Mahalanobis 73.03 77.33 84.11 60.02 93.78 19.84 40.91 99.85
KNN 47.32 96.19 65.14 33.61 53.18 87.52 3.22 98.17
SSD 70.15 79.29 80.94 57.49 92.97 20.55 33.50 99.83

ID-classification SVM performance

performance metric Precision ↑ Accuracy ↑ Recall ↑ Precision ↑ Accuracy ↑ Recall ↑
98.94 98.81 98.82 99.66 99.64 99.65

Table 5.2: Results for 8 OOD detection methods on an artificially created set of in/out
distribution compounds with a random sampling and: (i) ID-to-OOD ratio = 0.9, (ii)
ID-to-OOD ratio = 0.1. The average performance across 10-fold cross-validation is re-
ported. Results are produced by the SVM model that uses retention times as additional
features. Performance of SVM on the ID classification problem is also reported, as it is
informative w.r.t. the performance of classifier-based OOD detectors.

For the next experiment, we want to compare the performance of different detection
methods and see how the performance changes for two in/out-distribution sets specified
by ID-to-OOD ratios. The reported metrics are averages of 10-fold cross-validation.

Different ratios simulate different scenarios for the detection task, when having a high
ratio, i.e. 0.9, most compound from a test-time data are In-Distribution. Similarly for
a low ratio, i.e. 0.1, a minority of compounds are from a test-time data are ID. This re-
sembles the Test dataset used for qualitative experiments (Sec. 3.4.3) as we only have 70
ID compounds and many more OOD compounds. We expect that having SVM trained on
a low number of samples, i.e. 7, will produce better detection performance as the model
should better estimate the distribution of the ID set. We were not surprised by the re-
sults presented in Tab. 5.2 which tells that the AUROC and FPR95 values are higher
(lower respectively) for ID-to-OOD = 0.1. We also carried out experiments with other
ID-to-OOD ratios (0.5, 0.75, 0.95 and 0.98) and identified a consistent pattern that by
incorporating more OOD samples results in higher AUROC and lower FPR95 values 15.
In Tab. 5.2 we also see that for ID-to-OOD = 0.1 we get AUPROut ≈ 99 for all methods,
where the baseline16 has value AUPROut = 90, which is considered a favorable outcome.
Then, AUPRIn > 30 for the Mahalanobis and SSD detectors and only AUPRIn ≈ 10 for
the rest, where the baseline has value AUPRIn = 10. For ID-to-OOD = 0.9, the methods
give satisfactory values of AUPROut but AUPRIn below a baseline, which we consider a

15In order not to overwhelm a reader, we decided not to include the results for other ID-to-OOD ratios
in the thesis.

16The baseline for AUPR is the proportion of positive samples.

50



5.1 OOD detection quantitative experiments

failure. Based on that, we conclude that: (i) distance-based methods, Mahalanobis and
SSD, achieve the best performance, (ii) post-hoc methods, that utilize SVM out-
puts, have a lower performance compared to distance-based methods, and (iii)
OOD detection methods produce satisfactory results on an artificially in/out dis-
tribution set created with the ID-to-OOD = 0.1 ratio and fail on a set created with
the ID-to-OOD = 0.9 ratio.
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(a) ID-to-OOD ratio = 0.9
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Figure 5.2: MaxLogit detector OOD detection scores distribution. The scores were com-
puted on an artificially created set of in/out distribution compounds with a random sam-
pling and, left: ID-to-OOD ratio = 0.9, right: ID-to-OOD ratio = 0.1. It corresponds to
a fold in a cross-validation. OOD scores produced with retention times available. The red
colored crosses indicate where the distributions intersect, an ideal threshold score value.
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5.1 OOD detection quantitative experiments
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(a) ID-to-OOD ratio = 0.9
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Figure 5.3: Mahalanobis detector OOD detection scores distribution. The scores were com-
puted on an artificially created set of in/out distribution compounds with a random sam-
pling and, left: ID-to-OOD ratio = 0.9, right: ID-to-OOD ratio = 0.1. It corresponds to
a fold in a cross-validation. OOD scores produced with retention times available. The red
colored crosses indicate where the distributions intersect, an ideal threshold score value.

We hypothesize, that the reason for the failure of the detection methods is the inability
to distinguish small nuances between some of the spectrums, which stem from the quality
of the spectra and possible the lack of samples. Next, we examine the OOD scores produced
by the methods to further investigate the problem.

An ideal OOD score probability distribution plot for: (i) ID compounds, i.e. blue line,
has a sharp peak on the right indicating that most of the ID compounds are assigned
with large scores, and (ii) OOD compounds, i.e. orange line, has a sharp peak on the left
indicating most of OOD compounds are assigned with small scores. In Fig. 5.2, Fig. 5.3,
we observe two problems: (i) some ID compounds have too low scores, and (ii) some OOD
compounds have too high scores.
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(a) AUROC = 91.48, FPR95 = 55.30,
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Figure 5.4: MaxLogit and Mahalanobis detector OOD detection scores distribution.
The scores were computed on an artificially created set of in/out distribution compounds
with random sampling and, left: ID-to-OOD ratio = 0.9, right: ID-to-OOD ratio = 0.1. It
corresponds to a fold in a cross-validation that gives returns the best results. Their perfor-
mance is denoted under the figures. OOD scores produced with retention times available.
The red colored crosses indicate where the distributions intersect, an ideal threshold score
value.

We suspect that the results are largely impacted by the choice of selected OOD com-
pounds, which we perform at random. We observe that OOD compounds, that receive high
scores, belong to compounds semantically very similar to what we consider ID compounds.
I.e., consider two compounds: ‘9-Hexadecenoic acid, octadecyl ester’ and ‘9-Hexadecenoic
acid, hexadecyl ester’. They differ primarily in the length of the alkyl chains attached to
the ‘9-Hexadecenoic acid’ molecule when forming the respective esters. Consequently, when
we assign an ester of the acid in both id/out-distribution sets, we get high scores for OOD
compounds. In Fig. 5.4, there are the results for the MaxLogit detector, on a validation
set with different choice of OOD compounds, and the detector does not produce such high
scores for OOD compounds, as in Fig. 5.2. As a result, the overall performance is better.
We see the same trend for the Mahalanobis detector. Next, we perform a new experiment
where we select 5 esters of the ‘9-Hexadecenoic acid’ as OOD compounds. This experiment
uses a fixed in/out-distribution sets so we do not use cross-validation.

In Tab. 5.3, there are results for the new experiment. For post-hoc methods, i.e. MSP,
MaxLogit, KL and Energy, and for ID-to-OOD ratio = 0.93, the performance is slightly
better compared to the cross-validation averaged performance but it does not exceed the
performance of the best fold. More importantly, the AUPRIn and AUPROut is above the
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5.1 OOD detection quantitative experiments

OOD detection performance

ID-to-OOD ratio 0.93 0.07
performance metric AUROC ↑ FPR95 ↓ AUPRIn ↑ AUPROut ↑ AUROC ↑ FPR95 ↓ AUPRIn ↑ AUPROut ↑
SVM+MSP 84.95 65.03 94.68 57.94 19.97 88.34 0.96 97.51
SVM+MaxLogit 84.84 64.52 94.65 57.65 19.96 88.32 0.96 97.51
SVM+KL 81.28 68.20 93.04 52.48 18.80 90.19 0.95 97.41
SVM+Energy 84.77 64.52 94.63 57.04 19.96 88.32 0.96 97.51
NNGuide 82.04 76.81 93.74 51.99 51.39 84.49 1.48 98.81
Mahalanobis 71.96 71.10 89.66 53.35 99.44 2.91 83.92 99.99
KNN 59.41 93.14 84.27 29.35 95.64 32.28 37.31 99.92
SSD 69.76 71.24 87.77 52.33 99.38 3.18 83.16 99.99

ID-classification SVM performance

performance metric Precision ↑ Accuracy ↑ Recall ↑ Precision ↑ Accuracy ↑ Recall ↑
98.71 98.68 98.69 99.71 99.71 99.71

Table 5.3: Results for 8 OOD detection methods on an artificially created set of in/out
distribution compounds with compound structure-aware sampling (see 5.1.4 for explana-
tion) and: (i) ID-to-OOD ratio = 0.93, (ii) ID-to-OOD ratio = 0.07. Results are produced
by the SVM model that uses retention times as additional features. Performance of SVM
on the ID classification problem is also included, as it is informative w.r.t. the performance
of classifier-based OOD detectors.

baseline 17, although very slightly, for MSP, MaxLogit, KL, Energy and NNGuide detectors.
In Fig. 5.5, we see the comparison of the MaxLogit detector scores produced: (i) with
random sampling, and (ii) with selecting only esters of a specific acid. The score distribution
for ID compounds is similar but the score distribution for OOD compounds lacks the high
scores, i.e. around MaxLogit score≈ 6, for the new experiment setup. Thus, we confirm, the
choice of OOD compounds has a large impact on OOD detection performance.
We still see quite high scores, i.e. around MaxLogit score ≈ 3, we assume this is caused
by semantical similarities of the acid’s esters with other compound. And our SVM model
is not able to distinguish similar compounds given the quality of the Compounds dataset.
From Tab. 5.3 and Fig. 5.5, we observe that for ID-to-OOD ratio = 0.93, the post-hoc
methods fail, producing too high scores for OOD compounds. We believe the reason for
the failure is overfitting the ID set containing only 5 compounds.

In Tab. 5.3, we see that performance for distance-based methods, i.e. Mahalanobis,
SSD, in the new experiment, is similar to the experiment with random sampling, when
using ID-to-OOD ratio = 0.93. However, when using ID-to-OOD ratio = 0.07 these two
methods achieve AUROC ≈ 99, FPR95 ≈ 3, AUPRIn ≈ 83 and AUPROut ≈ 100 18.
We conclude that distance-based methods are better suited for OOD detection on test
datasets including a lot more compounds than the ID classifier has trained with, and they
perfectly separate the id/ood distribution with a structure-aware sampling, i.e.
the compound are semantically very similar.

17The baseline for AUPRIn = 93 and the baseline for AUPROut = 7.
18The AUROC and FPR95 are not a good performance estimator in this case, due to the class imbalances

in the id/ood sets. We still report them as it is a standard in the OOD detection literature.
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Figure 5.5: MaxLogit detector OOD detection scores distribution. The scores were com-
puted on an artificially created set of in/out distribution compounds with compound
structure-aware sampling (see 5.1.4 for explanation) and, left: (ID-to-OOD ratio = 0.93),
right: ID ID-to-OOD ratio = 0.07. OOD scores produced with retention times available.
The red colored crosses indicate where the distributions intersect, an ideal threshold score
value.

55



5.2 OOD detection qualitative experiments

5.2 OOD detection qualitative experiments

For evaluation, we use the Test dataset that is described in Sec. 3.4.3. This dataset
represents one measurement of a GCxGC-TOF-MS system and it contains a mixture of
ID and OOD samples. There are 715,600 data samples in the dataset. Manually checking
the system’s output for each of the 715,600 data samples is a tedious and prone-to-failures
process. Therefore, we do not have labels for it. In Fig. 5.9 and Fig. 5.10, there are the
visual results of gas chromatograph detector responses after OOD detection. We give our
interpretation of the results in this subsection.

5.2.1 Experimental setup

The Compounds dataset is used to train the SVM model. In the experiments, we pro-
duce two visual results: (i) color coded predictions of gas chromatograph detector response
without OOD detection, and (ii) color coded predictions of gas chromatograph de-
tector response after OOD detection. The evaluation pipeline is visualized in Fig. 5.6
The pipeline steps were explained in Sec. 4.2, Sec. 4.3 and Sec. 4.4. Distance-based meth-
ods, i.e. Mahalanobis, SSD, produce similar results, so we show results only for the Maha-
lanobis detector. Other methods, i.e. MSP, MaxLogit, KL, Energy, KNN and NNGuide,
also produce similar results, and we show results only for the MSP detector.

Trained SVM

Classify

OOD detector
score

OOD scores:
- Compounds, val split
- Test dataset

Detect OOD

OOD labels for
Test data

Predictions of Gas
Chromatograph

without OOD
detection

Compounds dataset
Test dataset

5-fold cross-validation:
- Compounds, train split
- Compounds, val split
- Test dataset

Predictions of Gas
Chromatograph after

OOD detection

Figure 5.6: Evaluation pipeline for the qualitative experiments. Compounds and Test
datasets are given as input. An SVM model is trained on the ID set using 5-fold cross-
validation. It is used to classify the Test dataset and produce chromatogram without OOD
detection. The validation split of the Compounds dataset and the Test dataset are fed
into the SVM to produce OOD detection scores. Chromatogram with OOD detection is
produced with the SVM’s predictions predicted by the detection. Outputs of the pipeline
in bold.
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Figure 5.7: Color coding of chemical compounds used in experiments.

We produce predictions of Gas Chromatograph without OOD detection by
the SVM, trained using 5-fold cross-validation on the Compounds dataset, and classifying
the Test dataset, where we save the predicted compounds labels 19. In order to visualize
the compounds as an image we reshape the predictions to a 2D object that represents 460
different retention times t1 on y-axis and 2, 000 different retention times t2 on x-axis. Each
point corresponds to the predicted compound label, denoted as a number. We flip the 2D
predictions object along y-axis as this visualization is more commonly used. In Fig. 5.8,
a result for the predictions without OOD detection is shown.

We use a custom colormap (Fig. 5.7) that maps numbered labels for compounds to
distinctive colors. Image values correspond to:

• image values 0-69: number of predicted compound (70 total)

• image value 70: Out-Of-Distribution compound

• image value 71: empty measurement

We produce predictions of Gas Chromatograph after OOD detection using
the same processing. But first, we detect OOD compounds, from Test and Compounds
(validation split) datasets OOD detection scores, and mark the associated predicted labels
as OOD compounds (depicted as a white color in the image). In Fig. 5.9, Fig. 5.10, results
for the predictions with OOD detection are shown.

19There are 715, 600 predicted compounds in total.
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5.2 OOD detection qualitative experiments

5.2.2 Results
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(a) w/o retention times (see Fig. A.1)
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(b) w/ retention times (see Fig. A.2)

Figure 5.8: Test sample, color coded predictions of SVM classifier from gas chromato-
graph detector responses plotted as a function of the first (x axis), and the second column
(y axis) retention time. Left: without, right: with retention times available to SVM. For
enlarged see Fig. A.1- A.2

.

From the character of GCxGC-TOF-MS we expect to see clusters of predicted com-
pounds surrounded by OOD compounds, where the majority are OOD compounds. In
Fig. 5.7, is the colormap used in all following visualizations. In Fig. 5.8, you find a com-
parison with predictions of Gas Chromatograph detector responses, where the prediction
were made by an SVM model: (i) without retention times and (ii) with them. The model
without retention times produces smaller clusters of classified compounds while the model
with retention times produce large clusters that are more separated. We hypothesise, that
retention times are valuable features for the SVM model that lead to a better classification
of compounds. From the results presented in Fig. 5.8, we find a less ‘noisy’ chromatogram
for SVM’s predictions using the retention times. In the visualizations, it is also shown that
some predicted compounds are identical for both models. However, there is a great part
of the images that differ. It is difficult to draw any conclusion and reject or accept the
hypothesis without ground-truth, compound labels, that we do not have.
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5.2 OOD detection qualitative experiments
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(b) ≈ 1200 OOD training samples, w/ retention times A.4
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(c) ≈ 480 OOD training samples, w/o retention times A.5
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(d) ≈ 480 OOD training samples, w/ retention times A.6

6 600 1200 2088 3578
0.005

2.5

5.0

7.5

10.0

(e) ≈ 240 OOD training samples, w/o retention times A.7
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(f) ≈ 240 OOD training samples, w/ retention times A.8

Figure 5.9: Test sample, color coded predictions of SVM classifier with MSP OOD
method from gas chromatograph detector responses plotted as a function of the first
(x axis), and the second column (y axis) retention time. Left: without, right: with reten-
tion times available to SVM. Top to bottom: decreasing number of ID samples classified as
OOD samples by a threshold-based binary OOD classifier. For enlarged see Fig. A.3–A.8

.
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5.2 OOD detection qualitative experiments

In Fig. 5.9, there are predictions of gas chromatograph detector responses after OOD
detection, by the MSP method, in which some classification predictions are rejected by
the MSP detector. Which is a post-hoc detection method. We observe that when we utilize
retention times as additional feature for the SVM, we classify more compounds as OOD.
In order to classify compound as in/out-of-distribution, we need to set a threshold. We
assume the provided Compounds dataset, used for training, is not perfect, so we set the
threshold to classify some of the compounds from this dataset as OOD samples at a level
determined by the number of ID samples classified as OOD. The number controls how
much OOD samples is detected. For the model without retention times, we observe that
with a lower number of ID samples classified as OOD, generates clusters we are looking
for. We also observe that when we descrease this number, we get bigger clusters, that are
probably a noise that should be classified as OOD. For the SVM with retention times we
observe, that we classify much less compound as OOD, compared to the other SVM model.
We hypothetize, that the model predicts some compounds as one of ID compounds, based
on the retention times alone, even they are OOD. Inside large clusters of compounds (filled
regions), there are smaller clusters of compounds inside them, i.e. vertical stripes in the red
region, which is something we would like to see. We believe the model can classify some
samples well, while it has problems to classify others, and making the prediction based on
retention times. A classification model that has been trained on a larger dataset is more
likely to produce more accurate outcomes. Since we do not know the exact portion of OOD
samples, it is difficult to gain more insights.

60



5.2 OOD detection qualitative experiments

6 600 1200 2088 3578
0.005

2.5

5.0

7.5

10.0

(a) ≈ 1200 OOD training samples, w/o retention times A.9
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(b) ≈ 1200 OOD training samples, w/ retention times A.10
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(c) ≈ 480 OOD training samples, w/o retention times A.11
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(d) ≈ 480 OOD training samples, w/ retention times A.12
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(e) ≈ 240 OOD training samples, w/o retention times A.13
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(f) ≈ 240 OOD training samples, w/ retention times A.14

Figure 5.10: Test sample, color coded predictions of Mahalanobis OOD method from
gas chromatograph detector responses plotted as a function of the first (x axis), and the
second column (y axis) retention time. Left: without, right: with retention times available
to SVM. Top to bottom: decreasing number of ID samples classified as OOD samples by a
threshold-based binary OOD classifier. For enlarged see Fig. A.9– A.14

.
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5.2 OOD detection qualitative experiments

In Fig. 5.10, similar predictions are visualized, produced by the Mahalanobis detector.
This is an instance of distance-based detectors, and we observe that the results differ
significantly from the MSP detector’s predictions. Distance-based methods do not use
the SVM model to detect OOD compounds, thus it is not surprising that the compounds
predicted as OOD (color coded as white) are identical for SVM with/without retention
times. Based on the images, distance-based methods do not work well on the ‘Test’ dataset,
producing OOD labels only for large retention times, thus later in the measurement. We
believe this should not be the case for the Test dataset measurement.

0.0 0.2 0.4 0.6 0.8 1.0
msp scores
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Compounds dataset
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1200 OOD training samples
480 OOD training samples
240 OOD training samples

(a) MSP detector

0.0 0.2 0.4 0.6 0.8 1.0
mahalanobis scores
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3.5

4.0
Compounds dataset
Test dataset
1200 OOD training samples
480 OOD training samples
240 OOD training samples

(b) Mahalanobis detector

Figure 5.11: MSP and Mahalanobis detector OOD detection scores distribution. The
scores were computed on samples from Test and Compounds datasets. Left: post-hoc MSP,
right: distance-based Mahalanobis detector. OOD scores produced without retention times
available. Thresholds found with different number of ID samples classified as OOD samples:
240, 480, and 1200 are denoted as vertical lines with different colors.

In Fig. 5.11 OOD detection scores distributions, produced by the MSP and Mahalanobis
detector, are presented. We expect to see a sharp peak on the right for the Compounds
dataset scores (blue line), which is true for both detectors. As we do not have information
about the exact probability distribution of the Test dataset, we can only assume there is
a large peak on the left side of the Test dataset (orange line), as well as some adjacent peaks
near the large peak of the Compounds dataset scores (blue line). Vertical lines, representing
the number of ID samples classified as OOD samples by a threshold-based binary OOD
classifier, indicate the binary classifier decision threshold. I.e. the Mahalanobis detector
predicts all compounds as OOD when they have scores >= 0.2, for TPR set at 0.95, which
corresponds to classifying ≈ 1200 ID samples as OOD. Based on prior knowledge about
the Test dataset, we could adjust the threshold to make the ID/OOD separation.
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6 Conclusion

In this thesis, we applied 8 OOD detection methods on the chemical compounds clas-
sification problem. Since only labels for in-distribution samples were available to us, we
artificially created sets of in/out-distribution chemical compounds, and performed a 10-
fold cross-validation on the in/out-distribution selection. i.e., we artificially selected various
portions of compounds to be in-distribution compounds, and we marked the rest as out-
of-distribution.

We performed 2 quantitative experiments on data produced by GCxGC-TOF-MS, an an-
alytic chemistry tool revealing composition of a gas sample. The performance of the OOD
methods ranged from AUROC ≈ 76 to AUROC ≈ 99, depending on the ratio of in/out-
distribution samples in a test dataset. We specifically evaluated the MSP, MaxLogit, KL
and Energy post-hoc OOD methods, all yielding similar performance. The KNN method,
a distance-based method, was the only method that did not give satisfactory results.

Generally, performance of the methods heavily depended on the in/out-distribution split,
i.e. on a particular assignment of compounds to the in/out-distribution sets. This fact is
explained by the physico-chemical similarity of particular groups of chemical compounds.
For example, there is a group of chemical compounds that only differs in the number of
repetitions of a specific chemical element. These compounds appear almost indistinguish-
able in the output of the GCxGC-TOF-MS. Unsurprisingly, as shown in our experiments, if
compounds belonging to such group are scattered between in/out-distribution sets, the per-
formance of OOD detectors is ≈ 10 per cent worse than if they are all assigned to the same
in/out-distribution set.

We further performed a series of qualitative experiments on a single test measurement
consisting of ≈ 720, 000 samples. We evaluated the results by eyeballing, and we believe
that the results support our following conclusion.

Based on our experiments, we believe that OOD detectors are suitable for filtering
out chemical compounds not identified as prospective in human scent GCxGC ToF data
analysis.
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A Qualitative experiments
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Figure A.1: Test sample, color coded predictions of gas chromatograph detector responses,
predictions made without retention times 5.8a
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Figure A.2: Test sample, color coded predictions of gas chromatograph detector responses,
predictions made with retention times 5.8b



6 600 1200 2088 3578
0.005

2.5

5.0

7.5

10.0

Figure A.3: Test sample, MSP OOD method, color coded predictions of gas chromatograph
detector responses, predictions made without retention times, having 1200 ID samples
classified as OOD samples by a threshold-based binary OOD classifier 5.9a
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Figure A.4: Test sample, MSP OOD method, color coded predictions of gas chromatograph
detector responses, predictions made with retention times, having 1200 ID samples classi-
fied as OOD samples by a threshold-based binary OOD classifier 5.9b
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Figure A.5: Test sample, MSP OOD method, color coded predictions of gas chromatograph
detector responses, predictions made without retention times, having 460 ID samples clas-
sified as OOD samples by a threshold-based binary OOD classifier 5.9c
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Figure A.6: Test sample, MSP OOD method, color coded predictions of gas chromatograph
detector responses, predictions made with retention times, having 460 ID samples classified
as OOD samples by a threshold-based binary OOD classifier 5.9d
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Figure A.7: Test sample, MSP OOD method, color coded predictions of gas chromatograph
detector responses, predictions made without retention times, having 240 ID samples clas-
sified as OOD samples by a threshold-based binary OOD classifier 5.9e
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Figure A.8: Test sample, MSP OOD method, color coded predictions of gas chromatograph
detector responses, predictions made with retention times, having 240 ID samples classified
as OOD samples by a threshold-based binary OOD classifier 5.9f
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Figure A.9: Test sample, Mahalanobis OOD method, color coded predictions of gas chro-
matograph detector responses, predictions made without retention times, having 1200 ID
samples classified as OOD samples by a threshold-based binary OOD classifier 5.10a
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Figure A.10: Test sample, Mahalanobis OOD method, color coded predictions of gas chro-
matograph detector responses, predictions made with retention times, having 1200 ID
samples classified as OOD samples by a threshold-based binary OOD classifier 5.10b
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Figure A.11: Test sample, Mahalanobis OOD method, color coded predictions of gas chro-
matograph detector responses, predictions made without retention times, having 460 ID
samples classified as OOD samples by a threshold-based binary OOD classifier 5.10c
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Figure A.12: Test sample, Mahalanobis OOD method, color coded predictions of gas chro-
matograph detector responses, predictions made with retention times, having 460 ID sam-
ples classified as OOD samples by a threshold-based binary OOD classifier 5.10d
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Figure A.13: Test sample, Mahalanobis OOD method, color coded predictions of gas chro-
matograph detector responses, predictions made without retention times, having 240 ID
samples classified as OOD samples by a threshold-based binary OOD classifier 5.10e
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Figure A.14: Test sample, Mahalanobis OOD method, color coded predictions of gas chro-
matograph detector responses, predictions made with retention times, having 240 ID sam-
ples classified as OOD samples by a threshold-based binary OOD classifier 5.10f
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