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Abstract

This thesis investigates the trade-off between performance and complexity with respect to

various image resolutions using Vision Transformers in deep metric learning. The objective

of metric learning is to use deep neural networks to embed images into representative

vectors such that images of the same class cluster together in the feature space while

maintaining separation between different classes. Vision Transformers, among various deep

architectures, have proven efficient at extracting high-level semantics from diverse image

content and are thus employed as the primary models. Nevertheless, high performance

is often accompanied by substantial complexity. Knowledge distillation is utilized as an

optimization technique to enhance the performance of cost-effective models under the

guidance of more complex models. Moreover, image resolution significantly affects the

model’s performance. Therefore, this thesis examines the performance/complexity trade-

off in asymmetric metric learning, where images are processed at different resolutions. The

term resolution refers to either the input image resolution or the resolution of the patches

that are separately processed at the processing stage of Vision Transformers.

Keywords: Deep Metric Learning, Image Retrieval, Vision Transformers, Knowledge

Distillation
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1 Introduction

The essence of metric learning lies in representing images within an embedding space

where semantically similar images are mapped closely together, while dissimilar ones are

positioned farther apart. This representation is crucial for various visual tasks. In image

retrieval, the objective is to find images in a database that match the query’s content,

such as identifying images of the same bird species. For visual localization, images associ-

ated with a specific landmark are represented closely to reflect their proximity within the

environment.

In recent years, particularly since the landmark achievements of convolutional neural

networks (CNNs) in the image recognition task of 2012, deep learning has rapidly domi-

nated the domain of computer vision. The features generated from deep learning models

have progressively overtaken traditional hand-crafted ones, thanks to their powerful repre-

sentational capabilities and advancements in modern computer hardware. Fully convolu-

tional networks have demonstrated superiority over basic, linearly-connected feedforward

networks. Numerous CNN variants, such as VGG and ResNet, have been proposed and

recognized as robust architectures for image feature extraction. However, following the

significant advancements made by transformer architecture in the field of natural language

processing, researchers have begun adapting similar principles to computer vision. The

Visual Transformer (ViT) has emerged as the most successful architecture incorporating

the transformer paradigm for visual tasks, surpassing CNNs by applying an attention

mechanism to patchified image features. Consequently, ViT has become the leading archi-

tecture for general visual tasks. Therefore, this thesis employs ViT as the primary model

for exploration.

Examples in related literature indicate that image resolution plays a significant role

in deep metric learning, particularly in fine-grained recognition tasks. Models trained on

higher resolutions often exhibit enhanced representational capabilities, but this comes with

increased training difficulty. A model that balances low test-time cost with high accuracy

is highly desired. To address this, knowledge distillation emerges as an effective strategy.

Here, a teacher model—usually larger and more complex—is trained first and used to

guide the training of a student model, which is smaller. The objective is to enhance the

student’s performance beyond what it could achieve if trained independently. The student

model mimics the teacher’s output logits to absorb knowledge. However, some recent

studies suggest that this network-wise asymmetric distillation in deep metric learning

can sometimes be effectively replaced by resolution-wise asymmetric distillation. In this

approach, the teacher and student models are architecturally identical but are trained



2 Related work 4

on different resolutions. The student processes images at a lower resolution, significantly

reducing test-time retrieval costs.

1.1 Problem description and objectives

The Visual Transformer is typically trained with a fixed image resolution and patch size.

Research indicates that ViT’s performance diminishes when applied with varying patch

sizes and image resolutions. Additionally, the test-time cost is affected by these two fac-

tors. In the context of knowledge distillation, several aspects merit investigation: if a

teacher model is fixed to a large resolution and a specific patch size, various combina-

tions of image and patch sizes can be considered for the student model. This raises the

question of which combination is most effective in terms of the performance-cost trade-off.

Furthermore, it is crucial to determine which combination benefits most from distillation

compared to training the student model alone. To address these questions, a ViT model

that underperforms with different patch sizes and resolutions is not an ideal benchmark.

One solution is to enhance the flexibility of ViT concerning patch size, enabling stable

performance with input images segmented into various-sized patches. Recent literature

introduced a novel method to make ViT adaptable to different patch sizes. Two key

components are integral to this method: a resizing method that minimizes information

loss after interpolating patch embeddings and a training mechanism that allows ViT to

process varying sizes of patch embeddings. FlexiViT makes it feasible to distill knowledge

from a teacher model to a student model with different image resolutions and patch sizes.

The objectives of this thesis are summarized into several key points:

• Review related work on asymmetric metric learning, its connection to distillation,

and investigate various ViT variants.

• Develop algorithms for both symmetric and asymmetric learning, with implementa-

tion using the PyTorch library.

• Explore the performance/complexity trade-off by examining a range of image reso-

lutions and patch sizes.

2 Related work

2.1 Asymmetric metric learning

Recently, asymmetric metric learning (AML) [1] has been studied to address the test-time

complexity bottleneck posed by symmetric level learning [2, 3, 4]. The asymmetric setup
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imposes a constraint that the representation spaces for the network operating on database

images (a teacher network) and the one for query images (a student network) should be

aligned and compatible. BCT [5] explores this feature compatibility learning issue and

enforces that the features of the query model closely match those in the database model

space. Other efforts [1, 6, 7, 8] have further attempted to improve compatibility across

different models. HVS [6] utilizes neural architecture search to optimize the most effec-

tive model architecture that is aware of and adapts to compatibility requirements. FCT

[9] employs a method where additional information, stored during training, is later used

to adapt existing embeddings to different retrieval tasks without the need for retraining.

Another approach [10], in an unsupervised manner, guides a student model to emulate

the teacher’s contextual image neighbor similarities in its embedding space. Beyond the

feature compatibility problem, it should be noted that traditional asymmetric learning

focuses on the network-wise difference between the teacher and student models. However,

recent research [11] explores the impact of resolution differences using CNNs and finds

that resolution asymmetry optimizes the performance/efficiency trade-off better than ar-

chitectural asymmetry. Inspired by this work, this thesis focuses on resolution asymmetry,

though employing different models for the study.

2.2 Knowledge distillation

Literature has shown that larger image sizes help capture more details, generally lead-

ing to higher performance [12]. However, models trained on larger images often come

with increased computational complexity, posing challenges for deployment in resource-

constrained environments. To address this, a technique for model compression, known as

knowledge distillation (KD) [13], was developed to enable a smaller model to effectively

learn from a large ensemble of models. This process involves the student model mimicking

the teacher’s predictions, allowing for the transfer of knowledge. In KD, a high temper-

ature (T) is used for computing the softmax output of the cumbersome model, enabling

the distilled model to learn soft targets, which effectively regularizes the learning process.

Alternatively, some approaches [14, 15] transfer knowledge by matching the student and

teacher’s attention maps. Another method [16] introduced a noise-based regularizer for

KD to mitigate overfitting. Inspired by GANs [17], Xu et al. [18] developed a new loss

function learning algorithm using a conditional adversarial network. To harness the richer

data information acquired by the teacher model, RKD [19] transfers mutual relations of

data examples, extending KD’s capability to allow the student to potentially outperform

the teacher. MutualNet [20] adopts an innovative approach, dynamically adjusting image
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resolution based on mutual learning to optimize the distilled network.

2.3 Vision transformers

The Transformer architecture [21] has achieved significant success in natural language

processing, thanks to the self-attention mechanism that enables modeling dependencies

in sequences, irrespective of the distance between elements [22, 23]. Recent efforts have

focused on extending its application to image processing. A straightforward idea is to

allow each pixel to attend to every other pixel in the image, but this is impractical due

to high complexity. Parmar et al. [24] attempted to reduce computational costs by

enabling each query pixel to attend only to its local neighborhood, though this approach

loses global information. Another method maintains global self-attention cost-effectively

by using scalable approximations [25]. As a generative model, Image GPT (iGPT) [26]

applies self-attention across all pixels but with low image resolution and color space. A

simpler method [27] divides the input image into 2×2 non-overlapping patches and feeds

them into a Transformer encoder, but this is limited to small-sized images. ViT [28] uses

a similar concept with various patch sizes for medium-resolution images and benefits from

large-scale pre-training. ViT demonstrates effectiveness compared to other methods, and

thus this thesis focuses on this model. One issue with ViT is that changing the patch size

usually requires retraining. Recently, FlexiViT [29] was proposed to enhance flexibility in

terms of patch size, using randomized patch sizes during training and a novel technique

for resizing patch embedding. This aligns well with the thesis’s focus, as varying the patch

size influences complexity and maintains satisfactory accuracy.

3 Background

3.1 Metric learning

Representing input data in an embedding vector space is a desirable choice when dealing

with high-dimensional data characterized by redundancy and noise. The embedded rep-

resentation should reflect meaningful features of the original data. Based on this, some

downstream tasks can be performed: clustering based on data labels, classification by

assigning labels to all data, or image retrieval by searching for similar candidates for a

given query.

In these scenarios, a variety of algorithms have been developed, each characterized by its

approach to learning either the separation boundary or the distributions of the original or

pre-processed data directly. Notable examples include Support Vector Machines, K-Means
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clustering, and EM algorithms. These algorithms function within the data’s embedding

space, where the quality of the representation is crucial. Consequently, the ability to map

matching (or non-matching) data pairs to similar (or dissimilar) representations is critical

and significantly simplifies the clustering process. The mapping function can be custom-

designed, tailored to specific evaluation criteria. The development of such a mapping

function, which maintains the inter-class and intra-class similarities of data, constitutes the

core of a branch of machine learning known as metric learning. Within the context of vision

tasks in metric learning, the term “data points” refers to embedded image representations

(vectors). Here, “metric” broadly denotes the similarity or distance between embedded

input data. Therefore, in the subsequent text, “distance” is used interchangeably with

“metric”.

More formally, we group all data pairs into two sets, denoted as S+ and S−:

S+ = {(xi, xj) ∈ X ×X, where xi and xj are a similar pair}

S− = {(xi, xj) ∈ X ×X, where xi and xj are a non-similar pair}
(1)

In the context of supervised learning, each data point is assigned a class label y. Here,

similarity implies that two data points belong to the same class label:

S+ = {(xi, xj) ∈ X ×X, where yi = yj}

S− = {(xi, xj) ∈ X ×X, where yi ̸= yj}
(2)

The objective of metric learning is to learn a mapping function that minimizes the distance

within classes and maximizes the distance between classes, subject to certain constraints:

minimize
θ

J(θ)

subject to dθ(xi, xj) ≤ ϵ, ∀(xi, xj) ∈ S+,

dθ(xi, xj) ≥ δ, ∀(xi, xj) ∈ S−,

ϵ ≤ δ

(3)

The key constraint is that the distance between data representations from different classes

should be greater than that of representations from the same class. This ensures that

the closest neighbor to a given data point also shares its class (refer to Figure 1). The

objective function, J(θ), which requires minimization, can take various forms. The dis-

tance function, denoted by dθ is our primary focus. The subsequent sections will detail

the different choices of objective functions and distance metrics.
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Figure 1: Feature space of metric learning. Data points are embedded image represen-
tations, with each class represented by a distinct color. Metric learning aims to cluster
representations of the same class closely together while distancing those of different classes.
(taken from [30])

3.1.1 Deep metric learning

In the evolution of machine learning research, there has been a shift from traditional hand-

crafted features to features automatically extracted by neural networks. In the era preced-

ing the dominance of deep learning, data features were computed using well-established

mathematical formulas, with substantial evidence supporting the effectiveness of these

methods. These methods demonstrated significant discriminative power in practical ap-

plications and were relatively inexpensive in terms of computational resources. However,

deep learning has elevated performance by fitting data to more complex functions, utilizing

vast amounts of training data. In recent years, particularly following the groundbreaking

work of AlexNet [31], deep learning has exhibited exceptional representational capabilities

in computer vision tasks. Consequently, numerous studies have proposed replacing tradi-

tional machine learning methods in various scenarios with deep learning approaches. As

a result, metric learning methodologies have been substantially enriched by deep neural

networks.

Although various methods exist for implementing different deep neural network archi-

tectures, the final output from the network must be a single vector serving as a global

descriptor for an image. This vector is utilized to compute the distance function in Equa-

tion (3). In this context, the distance function dθ comprises two components: a network

that maps input examples x to a vector, followed by the computation of a standard dis-

tance function, such as Euclidean distance or cosine similarity. The objective function J(θ)

presents a variety of options and acts as a loss function for updating network parameters.

Below, we introduce two widely used loss functions.
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Figure 2: Two variants of distance function: Euclidean distance and cosine similarity.

(taken from [32])

Contrastive loss

During the forward pass, the network processes a pair of input images, and the loss function

is defined based on the consistency of their classes:

ℓ(xi, xj) =
1

2
yij∥xi − xj∥22 +

1

2
(1− yij) [τ − ∥xi − xj∥2]2+ (4)

where [·]+ = max(0, ·) and yij = 1 if the two images belong to the same class, otherwise

it is 0. For positive pairs (same class), the second term becomes 0, and thus the first term

is minimized, bringing their descriptors closer. Conversely, for negative pairs (different

classes), the first term is eliminated, and the network minimizes the second term, ensuring

the descriptors are sufficiently distant. The margin τ serves as a lower bound, ensuring

that the distance between negative pairs is at least τ .

Triplet loss

Compared to contrastive loss, triplet loss instead takes a tuple of three images as input,

in which one acts as the anchor and the other two as positive and negative candidate

respectively. A candidate is positive if it has the same class as the anchor, and negative

otherwise.

ℓ(xa, xp, xn) =
[
∥xa − xp∥22 − ∥xa − xn∥22 + α

]
+

(5)

Different from contrastive loss, triplet loss pushs positive and negative candidates together

in the same time. Positive points are getting closer to the anchor whereas negative ones

gets far away from it. Here again α acts as a margin to keep negatives far enough.
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Negative mining

In practice, most pairs are negative, and their descriptors are sufficiently distant in the

feature space. This can lead to zero loss values, resulting in no gradient being computed

and consequently slow convergence during training. Random selection methods are not

effective in addressing this issue. Furthermore, if some pairs already yield zero loss and

require no further optimization, they may still be selected in subsequent iterations, which

is inefficient.

In the context of triplet loss, negatives can be categorized into three types based on

their distance from the anchor:

• Hard negatives are those mapped close to the anchor, with a distance even smaller

than that between the anchor and the positive.

• Semi-hard negatives are farther from the anchor than positives but still within the

margin boundary.

• Easy negatives are mapped beyond the margin, resulting in zero loss and eliminating

the need for optimization.

Ideally, easy negatives should be excluded from the selection process during training.

Both hard and semi-hard negatives are targets for optimization, but hard negatives should

be prioritized due to their proximity to the anchor and larger loss values, which aid in

convergence. Therefore, negative mining based on the distance to the anchor is an effective

strategy for selecting training pairs.

For contrastive loss, the absence of an anchor means that negative mining is based on

the mutual distance between positive and negative candidates. Positives are pre-selected

to guide the selection of negatives, and they collectively serve as inputs for the network.
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Figure 3: Two different loss functions and the type of negatives. xr is the reference image,

which performs as the anchor in triplet loss. (taken from [11])

3.2 Neural network models

As discussed in the previous section, deep metric learning leverages the feature extraction

capabilities of neural networks, trained on large datasets. Recent research in network

architecture in the field of computer vision has primarily focused on image classification

tasks. In these tasks, networks are designed to map images to representations that align

with specific class embeddings, with the expectation of achieving high accuracy on bench-

mark datasets. However, this thesis work focuses on metric learning, where the objective

differs: to map images in such a way that the distance between classes is greater than the

distance within a class. To elaborate, the features trained for classification tasks do not

inherently learn clustering abilities. For instance, the distance between two descriptors

from the same class need not be smaller than the distance between one of them and a

descriptor from a different class, as long as they correctly match their respective class

embeddings.

Although a network pretrained on a specific task may not be directly applicable to

a different task, it can still serve as an effective initial point and be fine-tuned for our

purposes. This methodology is known as transfer learning, wherein the robust feature

extraction capabilities of a pretrained neural network are retained, making it a strong

candidate for initial training. The basis for this transferability lies in the fact that trained

networks tend to extract high-level features independent of the objects in the image, which

are generally consistent across various images.

Transfer learning involves adapting the main structure of a model, rather than copying

it entirely, by removing or replacing the last few classification or pooling layers that are

more task-specific. The main architecture serves as the backbone, to which new layers can
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be added if necessary. To elaborate, suppose the backbone outputs a feature map of shape

(B, D, H, W), where B represents the batch size, and D, H, and W correspond to the

number of channels, height, and width, respectively. A pooling layer takes this as input

and outputs a tensor of shape (B, D). Generally, D does not match the number of classes,

necessitating a linear layer to map it to a specific dimension for classification tasks.

The backbone constitutes the primary component of the network, where most oper-

ations occur. Selecting the right architecture is crucial in deep learning. Over the past

years, numerous image models have been developed, each surpassing its predecessors in

terms of complexity, design innovation, and architectural advancements. For instance, ar-

chitectures like ResNet [33] introduced skip connections to mitigate the vanishing gradient

problem, facilitating the training of deeper networks. EfficientNet [34] scaled up CNNs in

a more balanced way across dimensions such as depth, width, and resolution. More recent

architectures, like Vision Transformers, have moved away from traditional convolution-

based methods, employing self-attention mechanisms to process images, demonstrating

impressive performance across various tasks. Subsequent sections will delve into more

details about some of these prominent architectures.

3.2.1 Convolutional neural networks

VGG

VGGNet [35], developed by Simonyan et al. in 2014, emerged as a revolutionary archi-

tecture at that time. Unlike previous CNNs, the authors focused on an often-overlooked

aspect of CNN design: depth. In VGGNet, small 3×3 convolution kernels are utilized

in all convolutional layers. A sub-brick comprises 2 or 3 convolutional layers followed by

non-linearity activations, and is concluded with pooling layers. By stacking approximately

4 to 5 such sub-bricks, the main structure of VGGNet is formed, serving as the feature

extraction branch. Subsequently, a few dense layers are appended to its end to ensure

the output has the correct number of channels as required. This practice of dividing the

model into two distinct modules has since become a standard in computer vision. This

work demonstrated that increasing the depth of CNNs enhances performance in image

recognition tasks.
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Figure 4: Visualization of the VGG architecture: As the network depth increases, feature

maps expand in the depth dimension while their width and height decrease. The output

from the feature extraction branch is then processed by the classification branch. (taken

from [36])

ResNet

As previously discussed, deep models have significantly advanced many visual recognition

tasks. However, simply adding more layers does not always enhance the model. One

issue encountered was the vanishing/exploding gradients problem, which hindered conver-

gence. Effective solutions, such as layer normalization and weight initialization, have been

demonstrated to mitigate this issue to a certain degree. Another problem, identified by

[33], is the degradation problem: accuracy saturates and then rapidly declines as network

depth increases, leading to higher training errors in deeper models.

ResNet [33] addresses this issue by redefining layers to learn residual functions in re-

lation to the layer inputs. If the original mapping to be learned is H(x), ResNet instead

learns F(x) := H(x)−x. Consequently, the original mapping is transformed into F(x)+x.

It has been shown experimentally that optimizing the residual mapping is easier than op-

timizing the original mapping. For implementation, a ”shortcut connection” is employed:

retaining x, bypassing a few layers, and then adding it to the output, as depicted in the

Figure 5
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Figure 5: Skip connection in ResNet. (taken from [33])

This skip connection is a straightforward yet effective technique for training very deep

networks. In their original work, ResNet models with hundreds or even thousands of layers

could be trained effectively without increasing training error or compromising accuracy.

3.2.2 Transformer architecture

The Transformer architecture, based on the attention mechanism, was first proposed in

2017 by Vaswani et al. [21]. Originally designed for sequence-to-sequence models in natural

language processing, it efficiently learns language semantics along the temporal dimension.

The key feature is the self-attention mechanism, which functions like a query in a soft-

version dictionary, assessing a representation’s importance based on the inter-relationships

within the sequence, thus maintaining long-term memory. Self-attention operations are

performed in each Transformer block, and by stacking several blocks, a potent model for

sequence input in language processing tasks is constructed.

Subsequent literature has demonstrated that the Transformer can be effectively adapted

for computer vision tasks. Among these studies, the most notable model is the Vision

Transformer [28], which segments a single image into spatially non-overlapping patches

treated as sequential inputs for the Transformer block. Experiments have shown its supe-

riority over CNN, efficiently leveraging attention benefits by treating images as sequential

input, thus enhancing the learning of high-level spatial information.

In the following sections, we will first introduce the self-attention mechanism and then

explain how the Transformer works. Finally, we will describe the concept of the Vision

Transformer.

Self-attention mechanism

Given an input sequence, where each unit is an embedding vector, we produce a new

sequence of the same length. Each output vector is a weighted sum of all input vectors,
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with the weights computed using the dot product of each vector with all other vectors

in the input. The advantage of using the dot product is that it effectively captures the

mutual relationships between two vectors.

Figure 6: The output vector for a specific position is obtained by calculating a weighted

sum of all input vectors. The weights are determined by the dot product between the

input vector at this position and all other input vectors. (taken from [37])

Mathematically, we denote the input sequence by x1, x2, x3, x4, x5, x6 and output se-

quence by y1, y2, y3, y4, y5, y6, then the self-attention operation is:

yi =
∑
j

wijxj

w′
ij = xTi xj

wij =
expw′

ij∑
j expw

′
ij

(6)

If xi and xj are semantically close, the dot product result will be significant, thus substan-

tially influencing the output value. A softmax activation is employed to keep the values

within a small, positive range. These computations are efficiently executed in a vectorized

routine, which also benefits GPU utilization. A key feature of this mechanism is that it

uses only the input sequence for weights, with all operations confined to this set. This

is the rationale behind the term ”self-attention”: each vector attends to all other vectors

from the same set in a distinct manner.

Another feature of this mechanism is the treatment of all vectors from three distinct

perspectives: query, key, and value. First, when a vector is used in the weighted sum that

ultimately yields the output, it is termed the value. Second, when it corresponds to the

current output and is matched against every other input vector, it is known as the query.

Third, the vector against which the query is matched is referred to as the key. These terms

are derived from conceptualizing the mechanism as a type of soft version of a dictionary.
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In a standard dictionary, retrieving the content provides the exact value corresponding to

a key. However, in this soft version, the retrieved result is a weighted sum of all values

in the dictionary, with weights computed based on mutual dependency. Hence we treat

attention as a soft dictionary:

• Key, query, and value are all represented as vectors.

• Every key matches the query to a certain degree, as indicated by their dot product.

• A mixture of all values is returned, with the mixture weights being the softmax-

normalized dot products.

Attention with query, key and value from the same set is hence called self-attention.

Linear transformations

To enhance the capability of self-attention, transformations are applied to the three roles

of key, query, and value. Rather than employing three separate vectors for these roles, a

single vector is transformed using three different matrices to generate q, k and v:

ki = Kxi + bk

qi = Qxi + bq

vi = V xi + bv

(7)

Here, Q, K and V are linear matrices containing learnable weights that enable the single

vector to behave differently. This approach introduces additional parameters in the self-

attention layer, thereby increasing its flexibility.

Multi-head attention

The concept of multi-head attention arises from the recognition that different embeddings

relate to each other through various relationships. For instance, in natural language pro-

cessing, within the sentence “this restaurant was not too terrible” the word “terrible”

is a descriptor of “restaurant” while “not” conveys opposition to “terrible.” Traditional

self-attention, however, treats the contribution of these words to “terrible” uniformly. To

enable the network to model these diverse types of relationships, self-attention can be di-

vided into multiple “heads.” Each head employs its own set of transformations Qr,Kr, V r,

where r denotes the rth head, allowing for varying levels of attention. Multi-head attention

is computed in parallel, resulting in a concatenated output vector.
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Transformer as a complete architecture

A layer incorporating all the aforementioned operations constitutes a self-attention layer.

To develop a comprehensive model, multiple self-attention layers must be stacked system-

atically. Additionally, it is common to include pooling layers at the end of the stack to

generate the final output for various tasks. For example, in classification tasks, global

sum pooling is effective for extracting global information. This entire network structure

is referred to as the Transformer model. Essentially, any sequence-based model that pre-

dominantly utilizes self-attention to transmit information along the temporal dimension

can be classified as a Transformer model.

Figure 7: The Transformer architecture. (taken from [21])

Positional information

So far, the only issue we need to address with the Transformer model is its lack of inherent

“sequential” information, despite processing sequence data. Consider a scenario where we

permute the input words into a different order, creating completely different meanings.

In such a case, the self-attention layers would produce equivariant vectors. However, the

global pooling layer would render these vectors invariant, ultimately leading to an identical
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final output label. Therefore, it is crucial for the Transformer block to encode sequential

information. To break this equivariance, several methods have been developed:

• Positional Embedding: This approach assigns an embedding vector to every position

in the sequence, similar to assigning embedding vectors to each word in the vocab-

ulary. Each position has a unique embedding vector, distinct from others. These

positional embedding vectors are added to the word embeddings. While simple to

implement, this method cannot assign vectors to positions in sequences longer than

those on which the model was trained.

• Positional Encoding: This technique addresses the limitations of positional embed-

ding by converting fixed-length discrete representations into continuous representa-

tions. Each dimension of a positional vector takes a value from a periodic function.

The number of functions used corresponds to the number of dimensions in the vec-

tor. Therefore, positional encoding vectors can theoretically represent an infinitely

long input sequence.

Vision Transformer

The transformer architecture, initially designed for and becoming the standard in natural

language processing due to its proficiency in learning sequential information, was adapted

for computer vision tasks by Dosovitskiy et al. [28]. This adaptation led to the creation

of the Vision Transformer (ViT), which demonstrates excellent performance compared to

convolutional networks while requiring fewer computational resources for training.

The core concept involves dividing an image into several non-overlapping patches and

transforming them into vector representations through linear mapping. These vectors then

serve as inputs for the transformer blocks. In this approach, image patches are treated

similarly to tokens (words) in NLP applications: each embedded image patch maintains

semantic relations with all other patches, and the order of these patches is significant.

This process closely mirrors the behavior of words in a sentence, making the embedding

of image patches in computer vision as straightforward as embedding words in NLP.
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Figure 8: The Vision Transformer Architecture: The input image is split into a sequence

of fixed-size patches. These patches are then linearly projected into embedding vectors,

which are fed into the standard Transformer encoder. (taken from [28])

As depicted in the figure, ViT closely retains the original transformer architecture,

with the addition of extra learnable classification tokens to the sequence. A notable

characteristic of ViT is its performance when trained on mid-sized datasets without strong

regularization, where it tends to achieve modest accuracies compared to state-of-the-art

CNNs like ResNet. Transformers, lacking certain inductive biases such as translation

equivariance and locality inherent in CNNs, often struggle with effective generalization

in scenarios with limited training data. However, with substantially larger datasets, the

scale of data compensates for the disadvantages posed by the lack of inductive biases.

Consequently, ViT outperforms CNNs in tests when trained on large datasets.

3.3 Image retrieval

Image retrieval, considered a test-time task, utilizes models trained during metric learning.

Techniques like k-means or other nearest neighbor search algorithms assist in finding the

most similar images from a database given a query image.

In practice, two critical aspects are evaluated to determine the efficiency of the retrieval

result: test-time (query-time) complexity (measured in GLOPS) and retrieval accuracy.

GLOPS, or floating point operations per second, calculates the number of operations

executed each second, directly reflecting the time taken during testing. Retrieval accuracy

is gauged using mean Average Precision (mAP) across all database images, ranked by

their similarity to the query. To compute mAP, two further criteria are used: Recall@k

and Precision@k for the top-K selected candidates based on ranked similarity.
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Figure 9: Recall and precision in metric learning. (taken from [38])

• Recall@k measures the proportion of relevant items retrieved from all available rel-

evant items in the database, serving as a measure of completeness.

• Precision@k evaluates the fraction of retrieved items that are relevant, acting as a

measure of accuracy.

These two metrics, Recall@k and Precision@k, depend on the number of ranked candidates

in the database. By iterating k from 1 to the total number of database images, a series

of values for these metrics is obtained. The average precision (AP) is then defined as the

area under the precision-recall curve, which can be computed as follows:

AP =
N∑
k=1

prec(k)∆recall(k) =
N∑
k=1

prec(k)
rel(k)

T
(8)

Here, Mean Average Precision (mAP) is the mean of AP over various queries. In the work

presented in this thesis, mAP is computed across all database images, each selected as a

query once.

In traditional image retrieval systems, query and database images are treated equally,

compared using identical features and representations. Both query and database images

undergo processing using the same network architecture and at the same resolution, a

method known as symmetric retrieval. However, when computational resources are con-

strained or fast retrieval is essential, this approach may present limitations due to network

or image resolution constraints. An alternative, more efficient strategy involves treating

query and database images differently, such as utilizing distinct networks or processing

them at different resolutions.
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• Network-wise asymmetry: Here, query images are processed using a smaller network

architecture compared to that used for database images. For query processing,

a more compact or computationally lighter network is chosen to facilitate faster

search times. Conversely, the database images are processed using a more complex

and powerful network, providing richer and more accurate feature representation.

• Resolution-wise asymmetry: This involves processing images at varying resolutions

during retrieval. Database images are stored and processed at a higher resolution to

encapsulate greater detail, while query images are processed at a lower resolution for

speedier processing. This method is particularly advantageous in mobile applications

where query images are captured by lower-resolution cameras, or in scenarios with

limited bandwidth.

Given the significance of resolution in fine-grained image recognition tasks, this thesis

primarily concentrates on exploring and implementing resolution-wise asymmetry.

3.4 Knowledge distillation

Enhancing the performance of machine learning algorithms typically involves training

multiple models for the same target and then aggregating their predictions. However,

this ensemble approach can be cumbersome and computationally expensive. An efficient

alternative proposed in the literature is knowledge distillation (KD), wherein a teacher

model transfers its learned ”soft-knowledge” to a student model, which typically incurs

a lower inference cost. Unlike traditional label-guided supervised learning, where the

model directly learns from data distributions, KD enables the student model to mimic the

output logits of the teacher model. This teacher model is pretrained on the same dataset

but possesses greater complexity.
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Figure 10: Knowledge Distillation: In addition to utilizing data labels, the student model

employs the teacher’s output logits as guidance for knowledge distillation. (taken from

[39])

Connection to asymmetric retrieval

In the context of asymmetric retrieval, as previously discussed, a challenge arises when the

model trained on lower resolution images exhibits less efficacy compared to one trained on

higher resolution, thereby constraining retrieval accuracy. Knowledge distillation offers a

solution to this problem. By applying KD, the student network can acquire the robust

feature extraction capabilities of the teacher network, thus enhancing prediction accuracy

even when operating on lower resolution images.
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4 Benchmark dataset

In this section, we introduce the benchmark dataset used for evaluating the complex-

ity/performance trade-off in metric learning. The Caltech-UCSD Birds-200-2011 (CUB-

200-2011) dataset [40] is the most widely used for fine-grained visual categorization tasks.

It comprises 11,788 images across 200 different bird categories. The dataset’s original

training and testing split is approximately 50%, with 5,994 images for training and 5,794

for testing. Each image in the dataset is accompanied by a categorical label, a bounding

box, and even natural language descriptions, making it suitable for various vision tasks,

including classification, image generation, image retrieval, and multi-modal tasks, among

others.

Figure 11: Examples of images from the CUB-200-2011 dataset. Each image depicts birds

from the same category, captured against diverse background environments. (taken from

[40])

In standard metric learning setups, the classes seen during training are usually different

from those used for testing. This approach assesses how well the trained representations

perform on unseen classes, adding an extra level of difficulty distinct from image classifica-

tion tasks, where the testing phase uses the same class pool as training. To accommodate

this requirement, we use the first half of the classes for training and the latter half for

testing to maintain a balanced train-test division.
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5 Methods and implementation details

This project aims to explore two test-time tasks:

• Conventional symmetric retrieval, where both the query and the database images

are processed using the same network at identical resolutions. This task involves

pre-training several teacher models operating at different resolutions using Vision

Transformer architectures. We will then report on the symmetric retrieval perfor-

mance and test-time complexity, considering two dimensions: image resolution and

patch size. This analysis will aid in selecting an appropriate teacher model for asym-

metric distillation.

• Asymmetric retrieval, where the query and the database images are processed us-

ing different networks, specifically at small and large resolutions, respectively. Our

focus for the network difference is primarily on the resolution-wise aspect. Two iden-

tical model architectures trained at different resolutions will have distinct weights,

thus differing from each other. As indicated by previous work [11], this resolu-

tion asymmetry proves to be a more effective approach for optimizing the perfor-

mance/efficiency trade-off compared to architecture asymmetry.

A clarification regarding the term “resolution-wise” asymmetry and its implications for

the performance/efficiency trade-off is necessary. This term encompasses two dimensions

of adjustment: altering the image resolution (size) and varying the patch size of the image.

Both modifications impact the complexity of the process. Therefore, in this thesis, the

term “resolution” may refer to either image resolution adjustments or changes in patch

size, depending on the context.

In the following sections, we detail the methodologies for both symmetric and asymmet-

ric learning. The implementation is conducted using the PyTorch library. Before delving

into these details, it is necessary to define some mathematical representations for clarity.

Given an input image x at resolution r, which can be either a query or a database image,

we feed it into a network f to obtain the embedded vector. The network is parameterized

by its weights θ and patch size p. The output vector for the input image is then formulated

as follows:

v = f(xr; θ, p) (9)
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5.1 Symmetric metric learning with identical resolutions for query and

database images

Image retrieval is a test-time task that leverages a network trained for metric learning.

In this process, image representations from the same class are brought closer, thereby

facilitating more effective nearest neighbor search. This section outlines the symmetric

training approach, focusing on calculating the similarity between a query image q and

a database image x. The feature vectors for both images are extracted using the same

network f , as detailed below:

vdb = f(xr; θ, p)

vq = f(qr; θ, p)
(10)

5.1.1 Model used

As previously mentioned, the Vision Transformer (ViT) divides the input image into sev-

eral non-overlapping small patches, each with a shape of (ps, ps, 3). These are then linearly

projected to obtain a 1-D vector of shape (1, num dimensions) for each patch. Here,

num dimensions is set to 386 and 768 for small and base sizes, respectively. These patch

embeddings function similarly to embedded words in transformers for language tasks. This

patchification results in a sequence of vectors, to which a positional embedding vector is

added for each, incorporating information about their positions in the sequence. Similar

to BERT’s class token [41], a learnable embedding is also added to the sequence of em-

bedded patches. The sequential patch embeddings then serve as input to the transformer

encoder. The output shape is (B,num patches+1, D); however, a single vector is required

as the global feature for each image. Various aggregation methods have been explored,

including the CLS token, the mean of the patch features alone, and the mean including

the CLS token. In practice, it is found that using the output CLS token alone provides

the best image representation. During training, both the patch size and image size are

fixed, eliminating the need for interpolation in resizing patch embeddings and positional

embeddings.

In the case of using FlexiViT, every forward pass detail remains identical to the standard

ViT, with two exceptions: the use of a variety of different patch sizes from a predefined

pool (40, 30, 24, 20, 15, 12, 10) with certain probabilities during training, and a distinct

patch embedding resizing technique — PI resize — as outlined in the original work [29].

Unlike the standard ViT, FlexiViT defines an underlying patch size of 32×32 and a position

embedding size of 7×7. Upon receiving an input image, FlexiViT selects a patch size at

random from the pool to PI resize the patch embedding. This alters the sequence length
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and, consequently, the positional embeddings. FlexiViT employs bilinear interpolation,

consistent with the standard ViT, to resize position embeddings. The final output vectors

of both models are L2-normalized to mitigate scale issues during neighbor searching in

retrieval tasks.

For weight initialization, there are two options: pre-training on either the 1k subset or

the 21k subset of ImageNet [42]. The latter, being more extensive, provides a richer infor-

mation source. Models pre-trained on the 21k subset generally exhibit higher performance

and better generalize to other datasets.

5.1.2 Algorithms for metric learning

In metric learning, the objective is to minimize intra-class distances while maximizing

inter-class distances. To this end, three distinct roles are assigned to all image instances

in the training set. Each image serves as an anchor once, with those belonging to the

same class as the anchor being designated as positives, and those from different classes as

negatives. Triplet loss, defined based on these three roles, is utilized to optimize model

parameters. Prior to the forward pass, a negative mining procedure is necessary for the

given anchor to select candidate images for these roles. Negative mining is based on

distance, favoring hard or semi-hard negatives that are close to the anchor due to their

higher probability of selection. Positives are chosen within the batch, and the entire

training set is pre-permuted to ensure each batch contains a fixed number of positives and

negatives.

As feature representations shift in the space with each iteration due to weight updates,

some instances previously categorized as negatives may no longer be negatives, necessitat-

ing the re-computation of negative mining. This re-computation is performed at the end

of each epoch rather than after each optimization step.

5.1.3 Data pre-processing

Data preprocessing is a crucial step before training, involving image transformation that

encompasses various data augmentation techniques and resizing the input image to a

specified fixed resolution. These transformations enhance the model’s generalization ca-

pability and aid in mitigating overfitting. In the following sections, we detail the distinct

transformations employed for the training and testing datasets:

• In line with standard protocol [12, 43, 44], the transformation during training in-

cludes a random crop [45] followed by a random horizontal flip with a probability of

0.5.
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• For testing, the transformation is a center crop. It is important to note that this pro-

cess should not include any randomness to ensure that the representations produced

by different experiments are comparable.

Additionally, all images are standardized to achieve a mean value of 0 and a standard

deviation value of 1, thereby addressing the scale issue inherent in the original data.

5.2 Resolution-wise asymmetric metric learning

For the asymmetric learning experiments, we initially utilize the models trained during

symmetric training and evaluate their performance across various resolutions and patch

sizes. Specifically, database images are processed at a higher resolution, while query

images are processed at a lower resolution. In addition to the difference in image size,

the disparity in patch size is also incorporated into the experiments. Mathematically, the

networks extract image features as follows:

vdb = f(xrdb ; θ, pdb)

vq = f(qrq ; θ, pq)
(11)

where rdb ̸= rq and pdb ̸= pq in the asymmetric setup. Both the reduction in image size

and the increase in patch size contribute to more representative descriptors, leading to

different combinations that result in varying accuracy/complexity trade-offs.

As for knowledge distillation, initializing the student network with the teacher network’s

weights is crucial to ensure compatibility in the feature space. The teacher’s parameters

are frozen, providing consistent guidance without any randomness:

vdb = f(xrdb ; θt, pdb) vq = f(qrq ; θs, pq) (12)

The student network’s parameters θs initially duplicate the teacher’s parameters θt, but

they are updated during training, leading to θs ̸= θt. Optimizing the student network

requires an effective distillation loss. While the straightforward choice is the absolute

regression loss, which calculates the L2 distance between the student’s and teacher’s output

logits, incorporating relational information from the data into the loss terms often yields

better results. This thesis utilizes a modified relational loss based on images’ coupled

augmentations, as proposed in previous work [11].



5 Methods and implementation details 28

Figure 12: Coupled augmentations: The output embeddings from both networks are used

to compute relational and absolute losses. (taken from [11])

Coupled augmentations involve dividing images for the student model in the same

manner as for the teacher model, ensuring that each pair of corresponding image segments

shares similar semantic content up to scale of resolutions. Both models process their

respective image segments to produce output embeddings, with an equal number of image

segments, which are then used to compute both the absolute regression term and the

relational loss simultaneously:

l1rel =
∑
i ̸=j

(MSE(ti, tj)−MSE(ti, sj))
2

l2rel =
∑
i ̸=j

(MSE(ti, tj)−MSE(si, sj))
2

labs =
∑
i=j

MSE(ti, si)

l = l1rel + l2rel + labs

(13)

where ti and si represent the embedded feature vectors from the teacher and student mod-

els for the ith image segment, respectively. l1rel and l2rel serve as the relational components

of the distillation loss, while labs acts as the absolute term. The final loss is a summation of

them. This loss function, by enabling the student to learn the inter-segment relationships

captured by the teacher network, outperforms the pure absolute distillation loss.
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6 Experiment results with symmetric metric learning

6.1 Comparison between CNN and ViT

Previous work [11] investigated the performance/complexity trade-off using the ResNet

architecture, a prominent CNN in vision tasks. However, as previously discussed, the

Vision Transformer (ViT) has demonstrated superior performance in certain scenarios. In

this section, we conduct comparative experiments between ResNet and ViT to identify

scenarios where ViT outperforms CNNs in terms of efficiency.

Both networks follow identical training and testing procedures, with their architec-

ture being the only difference. For ResNet, both the 50-layer and 18-layer versions are

employed. It is important to note that previous work [11] incorporated an additional

whitening layer to achieve a specific output dimension, a step not required in ViT due

to its CLS token output. Therefore, to maintain a fair comparison, this linear layer is

omitted in our experiments. FlexiViT, as an alternative to the standard ViT, is utilized

for its convenience in varying patch sizes during testing, which circumvents the need for

re-training the standard ViT with different patch sizes.

Figure 13: Comparison of symmetric accuracy and extraction cost for FlexiViT-B,

FlexiViT-S, ResNet18, and ResNet50 at 480 image resolution. The FlexiViT models

are trained and evaluated using various patch sizes: 40, 30, 24, 20, 15, 12, 10. A cross-

dashed line indicates the FlexiViT setups that outperform ResNet in terms of the perfor-

mance/complexity trade-off.
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Figure 14: Comparison of symmetric accuracy and extraction cost for FlexiViT-B,

FlexiViT-S, ResNet18, and ResNet50 at 240 image resolution. The FlexiViT models

are trained and evaluated using various patch sizes: 40, 30, 24, 20, 15, 12, 10. A cross-

dashed line indicates the FlexiViT setups that outperform ResNet in terms of the perfor-

mance/complexity trade-off.

As illustrated in Figures 13 and 14, FlexiViT generally achieves significantly better

retrieval accuracy. However, when the patch size is too small relative to the image size,

the complexity greatly increases, exceeding the requirements for query-time speed. In

every combination of model size and patch size, there is always a FlexiViT model that

outperforms in accuracy while maintaining a query extraction cost comparable to, or even

lower than, ResNet. For instance, at an image resolution of 240, FlexiViT-S/24p outper-

forms ResNet18 by 53% with nearly the same extraction cost. Compared to ResNet50,

several FlexiViT setups are more efficient at resolution 480, including FlexiViT-S/20p,

FlexiViT-S/24p, and FlexiViT-S/30p, all offering higher accuracy at a lower cost.

Given these results, we observe that the ViT model is superior to the most commonly

used CNNs in our task when evaluated in a properly optimized setup in terms of the

performance/complexity trade-off.

6.2 Transferability of ViT pretrained on ImageNet - no fine-tuning

Transfer learning [46] is a technique in machine learning where a model developed for a

particular task is reused as the starting point for a model on a different task. Essentially,

it involves taking a pre-trained model (a model trained on a large dataset) and fine-tuning

it with a smaller dataset for a different but related problem. Throughout our experiments,

we take the advantage of transfer learning to initialize our models as good starting point for

training. In computer vision field, the most widely used pre-trained source is ImageNet
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[42], a large visual database designed for use in visual object recognition research. It

contains a larger variety of high resolution images compared to previous image databases.

Two subsets of it named ImageNet-1K (with 1,000 categories) and ImageNet-21K (with

around 21,000 categories) are used to see how well the pre-trained model when transferred

to our image retrieval task.

Figure 15: FlexiViT-B, pretrained on ImageNet-1k and ImageNet-21k, is utilized to eval-

uate retrieval accuracy. Even without fine-tuning on the CUB-200-2011 dataset, the pre-

trained models demonstrate satisfactory results with ImageNet-1k and excellent results

with ImageNet-21k. Furthermore, pretraining on the larger-scale dataset, ImageNet-21k,

is observed to significantly enhance performance.

FlexiViT VS standard ViT

In the previous section, we observed that a FlexiViT model pretrained on ImageNet can

be directly used to initialize a model for metric learning on our retrieval dataset. This

property also holds true for the standard ViT model, with the notable difference being

the absence of flexibility in terms of patch size.
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Figure 16: Standard ViTs lack flexibility in patch size. However, FlexiViT can be trained

to offer this flexibility with minimal performance loss.

As depicted in Figure 16, within our retrieval dataset, the standard ViT demonstrates

optimal performance only at its trained patch size. Its performance degrades significantly

when evaluated with different patch sizes. In contrast, FlexiViT maintains consistent

stability across a variety of patch sizes, due to the PI resize technique and exposure to

various patch sizes during pre-training.

6.3 Gains brought by flexible training with PI resize

Although literature indicates that FlexiViT maintains competitive stability with respect

to patch size compared to the standard ViT on the ImageNet image classification bench-

mark, it remains to be seen whether its flexible training approach and the PI resize trick

are equally effective in metric learning tasks. To investigate this, we plan to conduct com-

parative experiments by fine-tuning both a standard ViT and a FlexiViT under identical

conditions.

Experiment setup

To ensure a fair comparison, four models with the same architecture and complexity (ViT)

are established prior to training. A consistent image resolution of 240 is used to eliminate

scale bias. For initialization, two models are based on pretrained weights from ViT-B/16

and the other two from ViT-B/30. During training, we maintain both flexible and fixed

training regimes for the models initialized from the same weights. The details of the setup

are summarized in the table:
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Model ID

Setup
ViT Size Init Training Mode

1 B ViT-B/16-i21k Fixed patch size(16)

2 B ViT-B/16-i21k Flexible training + PI resize

3 B ViT-B/30-i21k Fixed patch size(30)

4 B ViT-B/30-i21k Flexible training + PI resize

Table 1: The setups for training 4 models to compare the benefits from FlexiViT.

The decision to initialize separate models with identical weights but employ different

training modes aims to determine whether flexible training, as in FlexiViT, contributes

to stability with respect to patch size compared to standard ViT training in our metric

learning task. The evaluation metric used in this context is mean Average Precision.

Results and analysis

All training sessions reached convergence after approximately 30 to 50 epochs, followed

by a tendency to overfit. Consequently, we monitored the mean Average Precision (mAP)

on the test set after each epoch and saved the best-performing model. The results are

depicted in the figure below.

Figure 17: After training, FlexiViT shows satisfactory stability in patch size compared

with standard ViT.

For ViTs initialized and trained on specific patch sizes, the evaluation performance

improved by 15% to 30%. However, limitations become apparent when evaluated on

patch sizes different from those used during training. In contrast, models trained with

flexible patch sizes using the PI resize technique exhibited equal or improved performance
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across all patch sizes, underscoring the clear advantages of this approach.

Impact of initialization

As discussed in the background, a good initialization always generate a better trained

model. Using pre-trained weights trained on a benchmark dataset during initialization is

a key point in transfer learning. In this section we compare the impact of initialization

using different weights: from ViT-B/16 and ViT-B/30 which are trained in a fixed patch

size (16 and 30 respectively) and from FlexiViT which is trained for uniformly-distributed

patch sizes.

As established in the background section, effective initialization typically leads to

better-trained models. Utilizing pre-trained weights from a benchmark dataset during ini-

tialization is a pivotal aspect of transfer learning. In this section, we examine the impact

of initialization using different weights: those from ViT-B/16 and ViT-B/30, pre-trained

with fixed patch sizes of 16 and 30 respectively, and those from FlexiViT, which is pre-

trained with uniformly-distributed patch sizes. ImageNet-i21k is used as the pre-trained

source.

Figure 18: Fine-tuning FlexiViT-B models using three different initializations: standard

ViT-B/16, standard ViT-B/30, and FlexiViT-B. The model fine-tuned with FlexiViT-B

as the initial weights exhibits the best performance.

Although FlexiViT exhibits considerable flexibility in patch size, our experiments indi-

cate that without proper initialization, the model may not achieve optimal performance.

The adaptability of FlexiViT, developed through pre-training on ImageNet-21k, can be ef-

fectively transferred to fine-grained datasets in metric learning tasks, playing a significant

role during fine-tuning training.
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6.4 Resolution sensitiveness

In this section, we investigate the resolution sensitivity of Vision Transformers, specifically

how standard ViT and FlexiViT perform when trained on one image resolution and tested

on various others. This analysis aims to understand the performance gap across different

image resolutions and determine if FlexiViT’s flexible training approach provides greater

stability with respect to image size.

We train both standard ViT and FlexiViT on the CUB-200-2011 dataset using four

distinct resolution setups: 480, 360, 240, and 120. For standard ViT, the training patch

size is fixed at 15, while for FlexiViT, a range of patch sizes (40, 30, 24, 20, 15, 12,

10) is employed. Both training and testing are conducted symmetrically, with query and

database images sharing the same resolution. The testing transformation is consistent

and deterministic: images are first rescaled so that the shorter edge matches the specified

size while maintaining the original aspect ratio, followed by a central crop to capture the

primary content.

To ensure a fair comparison between standard ViT and FlexiViT, we use base-sized

models and initialize both with weights pretrained on ImageNet-21k for 300 epochs. All

other training parameters are kept consistent across the models.

Figure 19: Each subplot compares the symmetric performance of two FlexiViT-B models

trained at different resolutions.

In Figure 19, we present the results for FlexiViT. Each subplot illustrates the symmetric

testing performance across various combinations of resolution and patch size for two models

trained at different resolutions. The first observation is that FlexiViT generally exhibits

the expected stability with regard to patch size. However, this stability diminishes to
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some extent when trained on smaller resolutions. Secondly, models trained at resolutions

of 480, 360, and 240 show no significant differences. This is evidenced by the overlapping

performance curves when tested on varying resolutions. A model trained at 480r can be

effectively used at 360r without any additional training. The only deviation occurs with

the 120r training, which yields slightly inferior performance on larger resolutions, though

the gap is minimal and can be considered negligible.

Figure 20: Each subplot compares the symmetric performance of two ViT-B/16 models

trained at different resolutions.

In Figure 20, we present the results for a standard ViT model trained with a patch

size of 15. It is evident that ViT achieves its best performance around its trained patch

size. Contrary to FlexiViT, ViT models trained on resolutions of 480r and 360r exhibit

similar performance. However, reducing the image resolution to 240r and 120r leads to a

more pronounced drop in accuracy. Notably, the model trained at 120r demonstrates sig-

nificantly reduced accuracy when evaluated on patch sizes larger than 24. This highlights

the compounded negative impact of the inflexibility and increasing patch size in standard

ViT.
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Figure 21: Each subplot compares the symmetric performance of FlexiViT-B and ViT-

B/16 models trained at the same resolution.

In Figure 21, we compare the performance of FlexiViT and ViT. Across each tested

resolution, FlexiViT consistently outperforms ViT, notably on patch sizes not seen dur-

ing ViT’s training. An important observation is that standard ViT is more sensitive to

changes in image resolution compared to FlexiViT. When image size is reduced, FlexiViT

experiences less performance decline than ViT.

From the experiments conducted, we draw the following conclusions:

• Using high resolution is beneficial. Processing database images at larger resolutions

is advantageous for capturing more image details.

• FlexiViT demonstrates greater stability with image resolution compared to ViT

trained on a specific patch size. The PI resize technique in FlexiViT provides flexibil-

ity not just in terms of patch size, but also to a certain extent with image resolution.
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7 Experiment results with asymmetric metric learning

In the earlier section on symmetric metric learning, we trained several FlexiViT models

at multiple image scales to determine the optimal teacher model setup for guiding the

student’s training. The findings indicated that increasing image resolution and decreas-

ing patch size significantly enhances model performance, albeit at the cost of increased

complexity. However, for a teacher model used to extract feature representations from

database images, runtime cost is not a primary concern, as it is not involved in test-time

retrieval. Therefore, we selected the model trained at an image resolution of 480 as the

teacher model. For this model, database images are patchified with a small patch size

(15) to yield strong descriptors. We employed knowledge distillation, supplemented with

extra data augmentation, to enhance the asymmetric performance of the student model,

as detailed in Section 5.

7.1 Asymmetric testing

Prior to delving into the effects of distillation, we evaluated the asymmetric performance by

directly applying the teacher model to queries with various combinations of image size and

patch size. Furthermore, we conducted a fair comparison with the ResNet50 architecture.

For this purpose, a small-sized FlexiViT was chosen due to its runtime complexity, which

is comparable to ResNet50, as discussed in Section 6.1. The results are presented in Figure

22.

Figure 22: Comparative analysis of asymmetric retrieval performance: The solid circles

indicate the configuration for database images. Each diamond shape represents the asym-

metric performance and complexity corresponding to queries with specific image resolution

and patch size.

The first observation is that FlexiViT offers a flexible means to balance runtime com-
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plexity and accuracy. For instance, by adjusting the patch size from 15 to 20 at an image

size of 360, FlexiViT surpasses ResNet, achieving 22.55% higher accuracy and 37.64% less

complexity.

Secondly, the asymmetric gains in ResNet are not as pronounced: merely increasing the

resolution of database images does not significantly enhance ResNet’s performance in most

cases. In contrast, FlexiViT substantially benefits from asymmetric retrieval in scenarios

where there is a large disparity in image size between query and database images. However,

when the difference in image size is minimal, the gains are negligible. This aligns with

our findings in Section 6.4, where no significant performance discrepancy was observed

between FlexiViT models trained at resolutions of 480 and 360.

7.2 Distillation results in asymmetric learning

In this section, we investigate the potential gains of employing knowledge distillation

(KD) as a supervised method to aid the training of the student network in resolution-

wise asymmetric metric learning. The supervisory information stems from the teacher’s

representations, not image labels. Section 6.4 revealed a decline in patch size stability

when FlexiViT was trained and evaluated at lower resolutions, such as 120, possibly due

to significant loss of image details. KD, focused on resolution rather than architecture,

presents a viable solution to enhance student performance by leveraging resolution ad-

vantages learned from the teacher. Consistent with the approach in the previous section

without distillation, a small-sized FlexiViT is again utilized. For comparison, we use Flex-

iViT trained at three different resolutions: 360, 240, and 120, and conduct asymmetric

testing, maintaining a database resolution of 480.

Figure 23: Evaluating the impact of knowledge distillation on student performance: Base-

line models, trained at resolutions other than 480, perform asymmetric testing to assess

performance simultaneously.
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As shown in Figure 23, we apply distillation from a fixed teacher to multiple students

with varying complexity levels. This is achieved either by maintaining the same patch size

while reducing image size or by simultaneously increasing patch size. The effectiveness of

distillation is assessed by comparing it with baseline models. We observe that distillation

indeed boosts student performance significantly when there is a substantial resolution gap.

However, the situation differs when distilling to a model operating at a resolution of 360.

Due to the resolution-stable characteristic of FlexiViT, as concluded in Section 6.4, the

teacher and student exhibit similar performance, leaving little room for distillation to be

effective.
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8 Conclusion

Image retrieval is a rapidly advancing area in computer vision with practical applications

in fields such as Google Image search, robotics localization, recommendation systems,

and more. The cost of query time and retrieval accuracy are crucial evaluation metrics

for different algorithms. Deep neural networks have become a mainstay for extracting

potent image descriptors, facilitating effective similarity searching. Recent developments

have focused on efficient deep models that strike a balance between performance and

accuracy/complexity trade-offs.

In this thesis, I utilize the renowned self-attention-based model, Vision Transformer

(ViT), for metric learning. ViT capitalizes on the relationships between image patches,

allowing each patch to attend to others and capture higher-level semantics, thus produc-

ing embedding vectors that accurately describe image contents. While standard ViT is

trained with a fixed patch size, its flexible counterpart, FlexiViT, allows for variable patch

sizes without significant performance loss and is thus chosen as the primary model. I

investigated the accuracy/complexity trade-off with FlexiViT by varying image resolution

and patch size, and compared its performance with one of the most robust CNNs, ResNet,

to demonstrate the superiority of transformers in metric learning tasks.

Generally, high image resolution and small patch sizes yield excellent accuracy at the

expense of increased model complexity. Knowledge Distillation (KD) is an effective opti-

mization technique that enhances the performance of cost-effective networks by leveraging

high-cost model representations for guidance. During symmetric metric learning, I ex-

perimented with various FlexiViT setups and selected the best-performing model as the

teacher for knowledge distillation. In my work, KD is applied to resolution-based asym-

metric metric learning, where query images are resized to a lower resolution than database

images. Experiments in the last section have demonstrated the indispensable benefits of

KD for Vision Transformers in certain scenarios.
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