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Study Programme: Electrical Engineering and Information Technology

Specialization: Information Science and Computer Engineering

Supervisor: prof. Ing. Jan Faigl, Ph.D.

Prague, December 2023



Copyright

The works presented in this doctoral thesis are protected by the copyright of IEEE and
Springer Nature. They are presented and reprinted in accordance with the copyright agree-
ments with the respective publishers. Further copying or reprinting can be done exclusively
with the permission of the respective publishers.
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Abstract

Understanding mobile robots’ traversability over terrains is a crucial component of outdoor
autonomous systems, since knowledge of their traversability helps robots to plan safe, fast,
and energy-efficient paths. In deployments such as agriculture, forestry, or environment moni-
toring, a mobile robot can encounter terrains with a priori unknown traversability. The visual
appearance and geometry of these terrains might be misleading, such as tall grass that appears
as a rigid obstacle when only geometry is considered. The Thesis addresses these challenges by
designing a self-improving traversability assessment system. The designed system follows the
near-to-far paradigm, where the robot’s prior traversal experience is extended to untraversed
terrains based on similarities in visual appearance and geometry. The Thesis is presented as
a collection of four core publications that address three identified research challenges. The
first challenge is focused on learning the traversal experience in a self-improving system, and
represents a building block to solve the following challenges. The second challenge focuses
on active traversability learning in mobile robot exploration, where the self-improving nature
is realized by online decision-making concerning both where to learn the traversability and
where to explore the spatial model. The third challenge extends the notion of traversability
and thus the scope of the self-improving system through the description of the force to pass
through the non-rigid obstacles.

Keywords: Mobile Robotics, Terrain, Traversability, Active Learning, Exploration.

iv



Abstrakt

V nasazeńı autonomńıch mobilńıch robot̊u je kritické porozumět pr̊uchodnosti robotu terénem,
kteréžto pomáhá robotu plánovat bezpečně, rychle, a energeticky nenáročné cesty. Při ap-
likačńım nasazeńı v zemědělstv́ı, lesnictv́ı, nebo monitorováńı prostřed́ı může robot nalézt
terény, jejichž pr̊uchodnost neńı předem známá. Vizuálńı a geometrická podoba takových
terén̊u může být nav́ıc matoućı, jak lze pozorovat na př́ıkladu vysoké trávy, jej́ıž známá ge-
ometrie nasvědčuje tomu, že takový terén je nepr̊uchoźı překážkou. V této Práci se navrhuje
nasadit v takových prostřed́ıch samo se zlepšuj́ıćı systém pro ohodnocováńı pr̊uchodnosti
terénem. Navržené systémy př́ısluš́ı k bĺızko-dalekým metodám, které rozšǐruj́ı předchoźı
zkušenost robotu s pr̊uchodem terénem na zat́ım neprojité, vizuálně podobné terény. Práce je
prezentována jako kolekce čtyř jádrových praćı, které řeš́ı tři identifikované výzkumné výzvy.
Prvńı výzva je zaměřena na učeńı v samo se zlepšuj́ıćım systému ze zkušenost́ı robotu s
pr̊uchodem terénem, a prezentuje bloky k řešeńı následuj́ıch části Práce. Druhá výzva je
zameřena na aktivńı učeńı pr̊uchodnosti v robotickém pr̊uzkumu, kde se samo se zlepšuj́ı
vlastnost systému realizuje v online rozhodováńı kde se učit pr̊uchodnost a kde prohledávat
prostřed́ı. Třet́ı výzva rozšǐruje koncept pr̊uchodnosti na popis śıly nutné k pr̊uchodem pod-
dajnými překážkami.

Kĺıčová slova: Mobilńı robotika, Terén, Pr̊uchodnost, Aktivńı učeńı, Pr̊uzkum.
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Chapter 1

Introduction

The recent advancements in autonomous operation on indoor, urban, and onroad tasks
such as autonomous delivery [1] and driving [2] provide a strong foundation for autonomous
operation in more complex, offroad environments. During the 2019–2021 period, the research
of off-road autonomy was driven by the DARPA Subterranean Challenge [3], a competition
focused on search in underground structures, tunnels, and caves. The addressed underground
environments are characterized by hard-to-traverse terrains, deteriorated sensing, and oper-
ator access being limited by signal attenuation. However, underground autonomy lacks the
additional complexity induced by the vegetation that is prevalent on the surface. Hence,
the further generation of mobile robotics challenges lies in autonomous agriculture, forestry,
and remote environment monitoring. These tasks remain largely unsolved since they require
long-term operation in complex, outdoor environments with limited or no human oversight. In
particular, complex vegetated environments make it crucial to achieve a high degree of robust-
ness in the robot’s autonomous decision-making. Within the decision-making, the assessment
of the robot’s ability to traverse the environment, denoted as traversability, is vital since un-
derstanding the robots’ traversability over terrains enhances the decision-making, guiding the
robots over safe routes that permit high velocity and low energetic expenditure.

Mobile robots should assess the traversability of each terrain before coming into contact
with it, otherwise the robot risks invalidating its plan during the execution. In complex envi-
ronments such as the forests or caves in Figures 1.1a and 1.1b, an expert-defined traversability
model might omit some terra-mechanical properties that are not obvious given the robot’s
sensor modalities. Even high-fidelity foothold planners such as the local planner used by Bel-
ter [4] assume properties such as terrain rigidity or friction. However, it is difficult to ascertain
whether a terrain is rigid and thus whether it can support the robot using only the terrain’s vi-
sual appearance and geometry observable from a distance. Near-to-far models [5], [6] address
these challenges by approximating the traversability as a black-box function of the terrain’s
appearance and geometry learned based on the robot’s prior experience of traversing similar-
appearing terrains prevalent in the environment. Hence, near-to-far models extend the prior
traversal experience to untraversed terrains that look similar to those areas already traversed
by the robot.

The research presented in the Thesis1 aims to build near-to-far traversability predictors
suitable for outdoor deployments in agriculture, forestry, or remote inspection. The Thesis
is presented as a collection of four core publications, which contribute to the following three
research challenges.

1Further on, this work is referred to as the Thesis, which is authored by the Author.
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Figure 1.1: (a–b) Considered challenging environments for traversability assessment. (a)
Vegetation with different rigidity and through-traversability, depending on the time of the year
and other conditions. (b) Cave with deteriorated sensing and operator access limited by signal
attenuation. Originally presented in [R7]. (c–e) The self-improving traversability assessment
system with active learning. (c) A priori the deployment, the robot has no information about
the terrains (unknown terrains in black) and plans to traverse the short and tall grass (goal
and planned path in purple). (d) After traversing the short and tall grass (traversed path in
black), the robot has learned their respective traversabilities (easy in green, hard in orange)
and extrapolates the experience to similar appearing terrains. Next, it plans to traverse over
the tree stump. (e) The robot has learned that it cannot traverse over the tree stump, and
thus it has avoided the identified obstacle (in red). Next, the robot can traverse one of two
terrains: tall grass with known traversability or unknown bush. Since the robot learns the
traversability actively, its next goal is to traverse over the bush terrain and thus experience
and learn its traversability.
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Figure 1.2: A hexapod walking robot traversing rough terrains. The robot pairs the experi-
enced traversal cost to the respective terrain appearance to update its traversability model.
Images originally presented in [C1]. © 2018 IEEE.

• Self-improving Terrain Traversability Assessment. Missions in outdoor agri-
culture, forestry, or ground surveillance require long-term autonomous operations in
environments where the robot can encounter terrains that are a priori unknown. There-
fore, the robot should learn the near-to-far traversability model incrementally from the
traversal experience accrued during the deployment. The first research challenge is to
design such self-improving terrain traversability predictors, which can adapt or learn
from scratch in a new environment, as demonstrated in Figures 1.1c and 1.1d. An
example of such a model is presented by Sofman et al. [5], who propose an approach
for self-supervised online learning of a model inferring Light Detection and Ranging
(LIDAR)-observed traversability from overhead imagery.

Hence, the first core publication2 [C1] builds a near-to-far traversability predictor with
different learning and inference viewpoint, which is motivated by traversal assessment
over Unmanned Aerial Vehicle (UAV)-observed terrains. The scenario is simulated on a
laboratory test track traversed by the hexapod walking robot shown in Figure 1.2. The
paper investigates the suitability of a set of approaches for terrain description and learn-
ing within the near-to-far context, focusing both on incremental and non-incremental
scenarios. Besides, [C1] presents a building block for a set of Author’s non-core publica-
tions that address the following aspects of self-improving traversability assessment, such
as the deployment of traversability models in path planning [R1, R2], comparison of
incremental learning algorithms [R3, R4, R5], transfer of traversal experience between
walking patterns of a hexapod walking robot [R6, R7, R8, R9], influence of the executed
motion [R10], and time-series representation of traversability [R11].

• Online Traversability Learning in Mobile Robot Exploration. Next, the self-
improving nature of the traversability assessment is extended within mobile robot ex-
ploration. Mobile robot exploration is an active perception task where one or multiple
robots build a map of a priori unknown environment, which is addressed with the ad-
ditional complexity that the traversability model of the local terrains is also a priori
unknown. The novelty is that traversability learning is approached as an active per-
ception problem integrated into the exploration mission. The robot actively creates
both the spatial map and traversability model guided by the approximated informa-
tion gained by interacting with the environment at different sites where new areas can
be observed or novel traversal experience can be gained, as illustrated in Figure 1.1e.
A similar problem is addressed by Karolj et al. [7], who combine spatial exploration with
active learning of an underlying spatial magnetism model. The main difference from the
addressed problem is that the magnetism model learned in [7] is a function of position,

2The core publications of the Thesis are marked as [C#], while the Author’s non-core publications related
to the Thesis are marked as [R#].
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(a) (b)

Figure 1.3: Experimental deployments of online traversability learning in mobile robot explo-
ration. As part of the exploration mission, the robot is tasked to learn its traversability over
the terrains in the environment. Images originally presented in (a) [C2] and (b) [C3].

while the near-to-far traversability model is a function of terrain appearance. Hence,
the robot can learn the traversability over a particular terrain type at multiple sites in
the environment, with the additional complexity of the traversability model affecting
the robot’s path planning.

The challenge is addressed in two core publications that combine mobile robot explo-
ration and active online traversability modeling into a singular robotic system deployed
to learn the traversability of mobile walking robots shown in Figure 1.3. In [C2], the
traversability learning and mapping are combined in a myopic manner. Then, the sce-
nario is extended in [C3], where a non-myopic system that can learn multiple traversabil-
ity models is presented.

(a) (b)

Figure 1.4: Demonstration of the force-to-pass-through model for traversability assessment
in an indoor environment. (a) A robot walking through a traversable obstacle in the form
of purple fabric. (b) Traversability assessment projected on robot vision. The purple fabric,
which is predicted as traversable and thus a valid area for planning the robot’s path, is
overlayed in blue geometry visualization, while non-traversable areas are in red and orange,
and traversable flat ground is in green. Images originally presented in [C4].

• Traversability Through Non-rigid Terrains. The third research challenge builds
on the self-improving traversability assessment addressed in the previous challenges by
focusing on a particular class of terrains such as tall grass that appears as a rigid obstacle

4



based on its geometry. However, such a terrain may traversed through if enough force
is exerted by the robot. In the literature, potentially non-rigid terrains are addressed
using a haptic antenna [8] or end-to-end learning [9].

In the fourth core publication [C4] of the Thesis, it is proposed to learn a model of
the force needed to pass through terrains. The model’s predictions are used to deter-
mine the traversability through the potentially traversable terrain based on their visual
similarity to the terrains the robot has previously attempted to traverse, as demon-
strated in Figure 1.4. Compared to the state of the art, the novelty of the proposed
solution is in exploiting the effect of the particular terrain on the traversal experience
by modeling the terra-mechanical property, which is robot-agnostic. Thus, while the
force model is learned from a particular robot’s experience interacting with the obstacle
using a force sensor, the learned model can be used to determine the traversability of an
arbitrary robot assuming the robot’s ability to exert forward force is known. Moreover,
the proposed approach is deployed in an exploration scenario where it is learned online
from a few samples only, compared to the large dataset required by the state-of-the-art
end-to-end approach [9].

The structure of the Thesis is as follows. First, a brief overview of the state-of-the-art
traversability assessment is provided in Chapter 2. Then, the three research challenges and
the Author’s related publications are described in Chapters 3 to 5, respectively. Chapter 6
concludes the Thesis and outlines the continuation of the presented work. Appendix A lists
the author’s publication with citations extracted from the Web of Science. The full texts of
the four core publications are presented in Appendices B.1 to B.4.

5



Chapter 2

Terrain Traversability Assessment

The topic of the Thesis is learning mobile robot traversability from experience, with a par-
ticular focus on building self-improving traversability predictors, online active learning of
traversability in mobile robot exploration, and learning traversability through non-rigid ter-
rains. Although the reader is referred to the core articles for the detailed review of the state
of the art, the next paragraphs provide a short overview of terrain traversability modeling for
the convenience of the reader.

Terrain traversability is essential information for mobile robots that are tasked to execute
autonomous missions, since they need to understand their ability to traverse the deployment
areas. The analysis of such areas yields two types of information. First, it is crucial to
identify which areas can be traversed, and which should be avoided outright. Next, the robot
selects the traversable areas that provide the best path to its goal considering the path safety,
speed, and cost to traverse. The state of the art concerns both problems, often addressing
them concurrently. Papadakis [10] presents a taxonomy of the state of the art that splits
the approaches into exteroceptive, further divided into geometry-based and appearance-based3,
proprioceptive, based on awareness of self-movement and positions, and hybrid, which combine
the former two.

The main advantage of exteroceptive approaches is using the terrain’s visual and geomet-
ric appearance to assess the traversability over terrains from a distance, either by assigning a
semantic class or a cost value. Hence, exteroceptive methods are particularly suited to plan-
ning, where a decision is needed before traversing the terrain. Moreover, geometric indicators
such as terrain roughness, slope, or step height benefit from straightforward interpretation
and thus are used to directly assess the traversability of an observed terrain. However, in the
literature, the definition of such descriptors is not unified, as demonstrated by the differences
in roughness computation reported in [11]–[13]. Besides, different feature types are combined
together to improve the terrain descriptive ability, including roughness and Eigen-statistics
of point clouds [14], [15], or elevation features and hue-saturation histograms [16]. Visual ap-
pearance is particularly relevant when dealing with vegetation with uncertain rigidity, which
might be difficult to assess only from geometry, or in settings limited to overhead imagery
where the geometric information is not available or very coarse. In vegetation assessment,
semantic segmentation over camera images benefits from publicly available off-road datasets
RUGD [17] and RELLIS-3D [18]. Bird’s Eye View (BEV) approaches exploit that top-down
view projection of geometric or visual data is well-applicable to Convolutional Neural Network
(CNN) models such as the semantic traversability segmentation proposed in [19]. Outside of
the human-visible spectrum, thermal data [20] and LIDAR sensor reflectance or permeabil-

3In the remainder of the Thesis, the term visual appearance is preferred, since terrain geometry can be
considered a component of terrains’ appearance, which could invite confusion.

6



ity [21], [22] assess slippery terrains and vegetation, respectively.
Unlike the visual and geometric appearance, which are based on the robot’s exteroception

and observed from afar, the robot-experienced difficulty of traversing a terrain is primarily
captured by the robot’s proprioception, which is its awareness of self-movement and position.
Proprioceptive measures are based on robot velocity, energy consumption, vibration, or sta-
bility. Cost of Transport (CoT) [23] is a measure of energy efficiency of motion originating
in biology [24], defined as power consumption over velocity. For wheeled robots, the ride
quality can be measured in terms of body vibration, which has adverse effects on the robot’s
structural integrity, localization, and map quality. Besides, combined visual-vibration models
are used to classify terrain types in [25], [26]. Describing stability is of particular interest
for multi-legged robots, which can remain statically stable when standing on at least three
legs. Static Stability Margin [27] and Dynamic Stability Margin [28] describe the stability of
a multi-legged robot as the distance between the projection of its center of gravity and the
closest point on its support polygon defined by its footholds.

Isolated robot-captured experience cannot be used in path planning, since it is limited
to the already traversed areas, while the planner needs to assess the difficulty of previously
untraversed terrains from a distance. Near-to-far approaches learn to infer a traversability
indicator characterized by near-robot observations (including robot proprioception) from the
far remote observation of the terrain. For instance, Sofman et al. [5] use overhead scans
and long-range data to infer traversal costs computed from short-range dense point clouds,
while Bekhti [6] proposes to infer vibration from terrain images. Besides, Inverse Reinforce-
ment Learning (IRL) is used to learn a traversal cost model from human demonstrations,
yielding a cost model inducing behavior close to the demonstrated human policy [2]. A recent
example [29] addresses IRL convergence issues by using cost with Conditional Value at Risk
(CVaR), a metric that computes the mean value over a specified tail of a distribution.

Since the Thesis is motivated by instances where geometry and visual appearance without
additional context are not sufficient to determine terrain traversability, the robot’s propri-
oceptive experience is approached as a traversal cost function of the visual appearance and
geometry learned separately for each environment. Therefore, the approaches presented in the
Thesis subscribe to the near-to-far paradigm, where the robot’s traversal experience captured
in the particular environment is used to adapt the traversability model.

7



Chapter 3

Challenge 1: Self-improving Terrain
Traversability Assessment

Near-to-far approaches such as [5], [6] model the robot’s traversability based on its previous
experience traversing similar appearing terrains. The Thesis addresses near-to-far predictors
in deployments where terrains with novel traversal experience can be encountered. The first
research challenge of the Thesis is to build self-improving near-to-far predictors that learn
incrementally when a priori unknown terrains are traversed.

The first core publication [C1] is focused on near-to-far models in settings with different
learning and inference viewpoints.

[C1] M. Prágr et al., “Cost of transport estimation for legged robot based on terrain fea-
tures inference from aerial scan,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2018, pp. 1745–1750. doi: 10.1109/IROS.2018.8593374.
Full text available in Appendix B.1.

The therein presented work is motivated by large-scale traversability assessment from an
UAV, where the traversability model learned using the robot’s low-to-ground viewpoint is
used to predict traversal cost over terrains observed from a different, top-down viewpoint.
The groud-to-aerial setup is created by first guiding a hexapod walking robot over a set of
terrains of varying difficulty, geometry, and visual appearance. The data captured by the
robot are used to learn the traversability model, which is then used to evaluate the traversed
terrains using data captured from a viewpoint elevated above the test track. The primary
contribution towards the self-improving traversability assessment is benchmarking the perfor-
mance of several incremental and non-incremental regressors, namely non-incremental Sup-
port Vector Regression (SVR) [30], non-incremental regression trees, incremental Hoeffding
trees [31], which discretize the traversal cost into 10 classes, and the Incremental Gaussian
Mixture Network (IGMN) [32]. Further, several combinations of visual and geometric terrain
descriptors are used to learn the traversability models. A combined terrain color and shape
descriptor paired with either the IGMN or regression trees is the best performer in the incre-
mental and non-incremental setups, respectively, suggesting that both visual appearance and
geometry are of use for viewpoint-robust terrain evaluation. Within [C1], the contributions
of the Author are in benchmarking the features and learning approaches.

The first core publication presents a building block for further contributions to self-
improving near-to-far traversability prediction. In the non-core publication [R1], the IGMN
predictor identified as the best incremental performer in [C1] is used in a path planning sce-
nario. Figure 3.1 illustrated the changes to the cost efficient path induced by incremental

8
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(a) Grid (b) Rough terrain (c) Initial

(d) After turf (e) After flat (f) After fabric

Figure 3.1: Illustration of the incremental learning of CoT. (a) 0.12 m2 sized squared cell grid
over an overhead scan with the (b) rough terrain highlighted and its (c–f) CoT annotations
with the planned path over the track. The annotations correspond to the four models sampled
(c) at the beginning of the run; after traversing (d) the artificial turf; (e) the flat polyvinyl
chloride flooring; (f) and the black fabric. Plots originally presented in [R1].

updates to the traversal cost model. Besides, a multi-goal path planning scenario is addressed
in the non-core publication [R2]. Locally-weighted Projection Regression (LWPR) [33], an in-
cremental approach popular for its performance in high dimensional spaces, is used to assess
traversability from overhead imagery in multi-goal inspection. The sequence of goal visits is
modeled as an instance of the Traveling Salesman Problem (TSP) where the distance matrix
is computed with respect to (w.r.t.) the predicted traversal costs.

Since IGMN used in [C1] and [R1] has quadratic time complexity w.r.t. the input di-
mensionality, the next set of contributions focuses on alternative approaches for traversabil-
ity learning. The non-core publications [R3] and [R4] investigate using Self-organizing Map
(SOM) [34] and Growing Neural Gas (GNG) [35] for traversability learning, respectively.

The performance of additional incremental learning approaches is investigated in [R5],
which extends the benchmarking in [C1] with a focus on incremental learning. The evaluation
is computed over robot training data organized as individual trails over the testing track,
which are used to learn the individual regressors. The presented benchmarking uses a novel
setup where predictions over an observed area larger than the trails are considered since they
represent a more realistic path-planning scenario where the robot must infer the cost over
yet untraversed areas. Consequently, the robot-experienced costs are not available for the
untraversed areas, a setup that prohibits using the experienced costs as the ground truth.
Instead, the predictions of a reference non-incremental Gaussian Process (GP) regressor [36]
are treated as the ground truth for the evaluated incremental predictors. Since the GP
regressor infers not only the prediction mean, but also the prediction variance, the incremental
regressor prediction is reported as correct if it falls into the 95 % confidence interval of the GP
reference model. Moreover, a qualitative evaluation focuses on the suitability of the predicted
cost maps for path planning.

Besides the baseline IGMN, the Author tested GNG, Improved Self-organizing Incremen-
tal Neural Network (ISOINN) [37], LWPR, and Bayesian Committee Machine (BCM) [38]
with GP regressor experts (BCM-GP). IGMN, ISOINN and LWPR are the best performers,
providing both good correctness and cost maps, while GNG suffers from concept drift. BCM-
GP performs poorly, contradicting the initial intuition given by its deployment in exploration,
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Figure 3.2: The transfer of traversal experience between motion gaits of a hexapod walking
robot. The transfer is based on the assumption that if the robot has a similar experience
when traversing the green and gray terrains using the first gait (denoted teacher, the source
of the traversal experience transfer), but its experience is limited to only one of the terrains
(green) with another gait (denoted student, the target of the traversal experience transfer),
the experience with the student gait would also match on both the green and gray terrains.
Schema originally presented in [R8]. © 2022 IEEE.

which can be attributed to the active perception in exploration where the robot learns until
all observed terrains are sufficiently known.

The next set of contributions addresses that the robot’s experience is closely tied to the
particular motion executed by the robot or its configuration. The non-core publications [R6,
R7, R8, R9] are focused on transferring knowledge between individual robots and their con-
figurations. In particular, in [R8], it is proposed to transfer experience between the walking
gaits of a multi-legged robot using a system of Gaussian Mixture Model (GMM) regressors.
The proposed system is designed to infer terrain-gait combinations that were not experienced
in learning, as overviewed in Figure 3.2.

In [R10], the feature description of the traversed terrain is extended by a feature description
of the motion executed by a hexapod walking robot. The robot’s plans are constrained by a
simplified mask of the robot’s footholds, which is applied to the robot’s position at the start
and end of the planned motion. The individual constraints are designed to ensure the robot’s
pose stability, constraining the relative elevation of different footholds in the goal state and the
relative elevation of individual footholds between the start and end state. For valid motions,
a near-to-far model is learned that infers stability-based traversal cost from a combination
of terrain descriptors and novel descriptors of motion. The design of the motion descriptors
follows the experimental verification that forward motion is preferable over turning, and that
uphill and downhill locomotion might exhibit different robot stability. Hence, the descriptors
capture the slope (relative elevation) of the planned path over traversed terrain and indicate
turning.

Since the experience-based traversability is computed from a sequence of robot’s propri-
ceptive measurements while the robot gradually moves over the traversed area, at each point
of the traversal the robot may experience different terra-mechanical properties related to the
terrains under its footprint. Borders between multiple terrain types are of particular interest,
since they can exhibit different properties than any of the two terrains altogether. These
properties of terrain traversability suggest that the traversability inference mechanism would
benefit from modeling the succession of the traversed terrains. In the contributed [R11], it is
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Figure 3.3: Illustration of traversability assessment with time series. (a) Visualization of a
hexapod walking robot traversing the modeled 10 s long segment, (b) the associated power con-
sumption and terrain descriptor signals, (c) segment discretization into ten 1 s long intervals
visualized over the power consumption signal, (d) all the power consumption measurements
captured over the segment, and (e) the ground truth energy cost of the segment computed
as an integral over the sampled power consumption values. Plots originally presented in the
talk given for [R11].

proposed to model the terrain traversal as a time series. The traversal is split into 10 s long
segments, represented as sequences of regularly sampled points carrying the robot’s sampled
proprioceptive signals and terrain descriptors observed at the respective point locations. Fig-
ure 3.3 shows a time series segment and the associated signals. The proprioceptive signals
are used to characterize an energy consumption-based cost, which is cumulative with distance
and thus suitable for time series modeling. The terrain feature signals are used to predict
the segment’s traversal cost and to classify the segment points using a GNG model. The
time-series models with different point granularity (11 points in 10 s shown in Figure 3.3c) are
compared to a non-series baseline, and the time series representing the traversal at 2.5 Hz (26
points in 10 s) perform the best.
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Chapter 4

Challenge 2: Online Traversability
Learning in Mobile Robot Exploration

The challenge addressed by the two core publications [C2] and [C3] is to actively learn the
robot’s terrain traversability model as a part of its exploration mission. Mobile robot ex-
ploration is an active perception task where one or multiple robots build a spatial map of a
priori unknown environment, which helps the robot reason how to navigate the environment.
Frontier-based exploration is considered the fundamental approach to spatial exploration [39].
It is based on following frontiers, the borders between the observed traversable areas and the
unknown space [40]. Alternatively, the probabilistic representation of the cell occupancy on
occupancy grids is used to select an exploration strategy that maximizes the approximate
information gain about the grid [41], [42], and Cauchy-Schwarz quadratic mutual information
may be employed to compute the information gain efficiently [43]. Besides, robot location
uncertainty may be incorporated into information-based exploration approaches as the local-
ization uncertainty represented using the differential entropy of the robot position Gaussian
distribution [41], [44], [45].

The addressed problem of active traversability learning is related to modeling phenomena
underlying the environment such as the spatial distribution of temperature [46], spread of
gas [47], or spatio-temporal models of ocean salinity [48]. In the co-authored non-core publi-
cation [R12], the signal strength in subterranean environment is modeled as a function of the
relative position w.r.t. the transmitter and a feature descriptor of the environment geometry.
Active spatial-based modeling is an example of informative path planning [49], a problem to
find the most informative path through the environment [50] subject to constraints such as an
energy budget [51]. Informative path planning approaches can be broadly divided into myopic
methods, which are greedy and plan only concerning the next goal, and non-myopic methods,
which consider longer horizons. For example, in frontier-based exploration, a myopic explorer
navigates towards the closest frontier, while a non-myopic explorer plans a path that visits
all the frontier representatives [52].

In the state of the art, active learning of traversability is proposed by Mayuku et al. [53]
who learn to infer vibration traversability from images with self-supervised data gathering,
but the therein prosed system is not considered within the exploration or online learning
contexts. Outside of traversability modeling, closest to the addressed problem is the method
proposed by Karolj et al. [7], who combine frontier-based exploration with active learning of
an underlying spatial magnetism model. However, while the state of the art regarding the
simultaneous map and model exploration is, to the best of the Author’s knowledge, limited to
spatial-based models, it is desirable to infer traversability from terrain appearance or geometry
as presented in the core publications in the following paragraphs.
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Figure 4.1: A visualization of active traversability learning in mobile robot exploration. The
possible learning and exploration goals are depicted over an elevation grid map where easy
terrains are in blue, difficult terrains are in red, and untraversable areas are in gray. The
robot can navigate either to spatial exploration goals at the borders of the traversable mapped
environment and unknown space (blue spheres) or traversability model learning goals located
at yet untraversed terrains (red spheres). Given the myopic decision-making employed in
the first proposed system, the robot would select the traversability exploration goal. Figure
originally presented in [C2].

The first core publication addressing the second challenge [C2] leverages the work on
incremental traversability learning in an active learning scenario.

[C2] M. Prágr et al., “Online incremental learning of the terrain traversal cost in au-
tonomous exploration,” in Robotics: Science and Systems (RSS), 2019. doi: 10.15607/
RSS.2019.XV.040. Full text available in Appendix B.2.

In the proposed system, the robot creates its traversability model online from its experience
of terrain traversal captured while pursuing cost model exploration goals as a part of an
environment exploration strategy. In the exploration, the robot thus seeks both the spatial
exploration goals in the form of frontiers, and cost exploration goals in the form of the sites
that are the most informative w.r.t. the traversability model, both of which are visualized in
Figure 4.1. The traversability inference and goal identification are done via a GP. However,
unlike Luo and Sycara [46] or Karolj et al. [7], the model infers the costs based on terrain
appearance, not its position in the environment. Besides, since GP regression learning time
complexity scales cubically with the number of training samples, the training set is split
incrementally into fixed-sized experts that are combined into a product-of-experts using the
BCM. The cost model and spatial exploration are combined in a myopic manner, with the
robot seeking the cost learning goals first so that it limits planning over terrain with unknown
traversability. The contributions of the Author are particularly focused on the terrain feature
description, the traversability inference using BCM-GP, the cost-learning goal identification,
and the integration of the learning goals into the exploration strategy.

An explorer that aims to use non-myopic decision-making must address how to combine
the expected information gained from the different models. A similar issue is addressed in
mobile robot exploration with position uncertainty, where the robot aims to remain certain of
its position since poorly localized measurements are of limited utility for mapping. In [41] and
[44], the total exploration utility is a linear combination of the occupancy uncertainty, repre-
sented by Shannon’s discrete entropy computed from cell obstacle probabilities, and the robot
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localization uncertainty, represented using the differential entropy based on its position distri-
bution. Carrillo et al. [45] argue that combining Shannon’s discrete and differential entropies
is not desirable due to scaling issues, and they propose to use the Rényi entropy [54] of the
occupancy grid weighted by the localization uncertainty. The issue of combining discrete and
differential entropies is also prevalent for terrain learning in exploration, since the grid-based
spatial models yield the discrete entropy, while the traversal cost regressors yield differential
entropy. The solution proposed by Carrillo et al. [45] is designed for weighting by position
uncertainty and thus is not suitable for the traversability learning scenario. In [C2], the issue
is avoided by opting for an exploration strategy where one of the models is dominant. In
scenarios with several models with no clear hierarchy, the approach proposed in [C2] cannot
be used.

The next core publication [C3] addresses the non-myopic scenario with multiple models.

[C3] M. Prágr et al., “Autonomous robotic exploration with simultaneous environment
and traversability models learning,” Frontiers in Robotics and AI, vol. 9, 2022. doi:
10.3389/frobt.2022.910113. Full text available in Appendix B.3.

The proposed system, which is overviewed in Figure 4.2a, considers a path to improve both
the spatial and multiple traversal cost models, each corresponding to a particular configuration
of a multi-legged robot’s gait. The issue of combining the two incompatible measures of
uncertainty is avoided by using a policy that links the informative sites separately identified for
spatial and cost exploration. During the exploration, the spatial model and each cost model
provide a set of goals to visit, representing frontier areas and terrain types with uncertain
traversal costs. Since similar terrains may be prevalent at multiple locations, each terrain
type goal may be represented by multiple learning sites. For each goal, visiting one of the
sites is sufficient, and hence the exploration site sequence is selected as a solution of the open-
ended Generalized Traveling Salesman Problem (GTSP) [55], a variant of the TSP where
nodes (learning sites) are grouped into exclusive and exhaustive sets (goals) and the problem
is to visit each set. An example instance of the GTSP for system with one traversability
model is shown in Figure 4.2b.

The individual terrain-gait models are based on GP regressors, and the size of their respec-
tive learning sets is limited by accruing experience only when unknown terrain is encountered
or erroneous prediction is experienced. Each terrain-gait model also comprises an Incremental
Growing Neural Gas (IGNG) [56] employed to cluster similar-appearing terrains and thus to
create the set of learning goals for each terrain-gait model. The contributions of the Au-
thor are in building the cost learning modules, terrain type identification and learning goal
selection, and in designing the combined exploration policy.
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Figure 4.2: (a) An overview of the non-myopic exploration system with online active
traversability model learning. The robot builds an environment color-elevation model us-
ing its sensor measurements, which are used to determine areas that can be traversed by the
robot. For each motion gait of the hexapod walking robot, the terrain appearance is paired
with the respective traversal experience to learn the gait-cost models, which are used to plan
the exploration path. During the exploration, the robot navigates to goals independently de-
termined to explore the spatial model and each gait-cost model. The sequence of goals to visit
is determined as a solution to an instance of the GTSP. Schema originally presented in [C3].
(b) Illustration of the open-ended GTSP to determine site sequence to sample unknown ter-
rains’ traversability and visit frontier locations. In the environment, there are two frontier
locations and three terrain types: dark, medium, and light. The medium and light terrains
have unknown traversability, and thus should be visited to learn their respective traversabili-
ties. The traversability of the dark terrain is known, and therefore the dark terrain does not
have to be visited and is excluded from the GTSP instance. The traversability of each terrain
can be learned at multiple sampling sites (small circles), and it is sufficient to visit only one
site per each terrain. The regions covering a particular terrain can be disconnected, as is the
case for the medium terrain. Unlike the terrains, each frontier location corresponds to exactly
one sampling site. The GTSP problem is to visit exactly one site per set (terrain/frontier),
and thus the inter-set edges are considered (edges simplified as Euclidean in the schema, in
reality affected by traversal cost). The shortest exploration path (path edges in black, other
edges in light blue) hence covers one site for each frontier and unknown terrain type.

15



Chapter 5

Challenge 3: Traversability Through
Non-rigid Terrains

Terrains such as tall grass are not rigid and thus might be traversable given enough force
exerted by the robot. However, in a geometric model, such terrains appear as obstacles.
While assuming non-rigid objects to be non-traversable leads to safe behavior since poten-
tial obstacles are avoided, the resulting decision-making is suboptimal and might prevent the
robot from reaching areas separated by such apparent barriers. In the state of the art, a
similar problem is addressed by Baleia et al. [8], who use a haptic antenna to determine the
traversability of potentially traversable obstacles. When the robot encounters an unknown
obstacle, it recalls the k-nearest appearing obstacles to decide whether the obstacle can be
moved through or avoided. When neither decision can be made with sufficient confidence, the
antenna is used to assess the obstacle, further expanding the robot’s memory. Besides, poten-
tially traversable terrains are addressed in the self-supervised, end-to-end system presented
by Kahn et al. [9]. The therein proposed system uses a random walk policy to collect a dataset
of collision, bumpiness, and position events using its Inertial Measurement Unit (IMU) and
wheel odometry. The robot learns to predict the events given input image and action. The
learned models can be exploited in navigation through potentially traversable terrains with-
out relying on a Simultaneous Localization and Mapping (SLAM) system w.r.t. an arbitrary
reward function that considers the collision, bumpiness, and position events.

In the fourth core publication [C4], it is proposed to model the traversability through
potentially obstructing obstacles as the force needed to pass through.

[C4] M. Prágr et al., “Autonomous exploration with online learning of traversable yet
visually rigid obstacles,” Autonomous Robots, vol. 47, pp. 161–180, 2023, Springer. doi:
10.1007/s10514-022-10075-4. Full text available in Appendix B.4.

Assuming the robot’s ability to exert force forwards is known, the proposed force model
provides the robot with information that enables navigation through non-rigid obstacles as
visualized in Figure 5.1. The force is sampled by a robot using a bumper device, and the
force measurements are connected to terrain appearance descriptors to infer the force needed
to pass through yet unsampled terrains. Hence, the robot learns whether it can pass through
obstacles that appear rigid but might be traversed through given sufficient force. Since the
force required to pass through is a property of the terrain and is independent of the robot
type, the obstacle traversability learning is robot agnostic. The maximum force that can be
exerted in forward motion by each robot is treated as the robot’s traversability parameter.

The force to pass through the obstacles is modeled using a GP. The GP is learned incre-
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Figure 5.1: A visualization of a robot using the prosed system for assessment of non-rigid
obstacles. The southern goal (S) can be reached over flat ground. The northern goal (N)
cannot be reached since it is hidden behind a rigid obstacle. The eastern goal (E) can be
reached through an obstacle that has been deemed non-rigid and thus traversable based on
previous experience with similar terrains. The schema is part of a figure originally presented
in [C4].

mentally during the deployment, selecting samples based on the estimated information gained
by interacting with the observed terrains in the environment. Unlike in [C2], where the expe-
rience is collected continuously, the collected experience is limited to the obstacles and thus
relatively sparse. Hence, similarly to [C3], a single GP regressor is used that is continually
relearned. The traversability model is deployed both in an outdoor environment with real
vegetation, and on a hexapod walking robot in an indoor autonomous escape scenario where
the robot is trying to find a path out of an arena enclosed by apparent obstacles, some of which
are traversable. In the escape scenario, the robot is set to explore the environment to build
a complete traversability map of an unknown environment with areas “hidden” by non-rigid
terrains visually appearing as obstacles. There, the system demonstrates online learning and
decision-making based on the expected information gained from visiting and interacting with
the obstacles. Since the goal of the robot is to escape the constraints of the given area, the
obstacle and spatial exploration are combined in a myopic manner. However, unlike in [C2],
where traversability goals are preferred over spatial exploration, the robot tries to “escape”
the environment by seeking the spatial exploration goals first and resorts to learning the ob-
stacle rigidity only when it recognizes it is enclosed by obstacles with unknown rigidity. The
Author’s contributions are particularly focused on the force-based traversability model, its
incremental learning, the identification of the learning goals, and the integration of active
model learning into the exploration scenario.

The main difference between the state-of-the-art [9] and [8], and the core publication [C4]
is twofold. First, compared to [9], which is learned using a random-walk data collection, the
developed solution requires only few samples to connect a particular terrain appearance with
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the force to pass through. Besides, the developed solution aims to model a robot-agnostic
terrain property, which is not the case for the end-to-end system proposed in [9]. Second, the
solution is designed to operate over a geometric map of the environment and can operate in
online learning in mobile robot exploration. Hence, the force model can be integrated into
the non-myopic multi-model learning system proposed in [C3].
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Chapter 6

Conclusion

The Thesis is motivated by deployments without prior learning in environments where geo-
metric and visual appearance alone is not sufficient to assess the terrain traversability due to
ambiguity or changing conditions. There, establishing an inference mechanism that learns to
predict the future traversal experience from the appearance is desirable. Hence, the aim of
the Thesis is to create a near-to-far system capable of online, active learning of mobile robot
traversability. The Thesis is presented as a collection of four core publications focused on
three research challenges.

The first challenge concerns building the self-improving terrain traversability assessment
model from the mobile robot experience. The target system addresses environments where
the robot encounters terrains with a priori unknown traversability, and hence must adapt
its traversability assessment model incrementally. The first core publication [C1] concerns
near-to-far predictor where the learning and prediction viewpoints differ, and compares a set
of geometric and visual appearance terrain descriptors, and non-incremental and incremental
learning approaches. [C1] opens a research stream comprising a set of non-core publications
concerning the use of incrementally learned traversability in path planning [R1, R2], bench-
marking incremental learning in near-to-far traversability assessment [R3, R4, R5], transfer
of traversal experience between mobile robots and their configurations [R6, R7, R8, R9],
motion characterization in traversal assessment [R10], and time-series-based traversability
modeling [R11].

The second challenge extends the self-improving nature of the traversability learning sys-
tem through active traversability model learning during mobile robot exploration. In the
active learning scenarios, the robot solves the decision-making problem where to learn to
improve the model. Similarly, in mobile robot exploration, the robot is deployed in an envi-
ronment that is at least partially unknown and tasked to move around to build a map of its
surroundings. Since in exploration, it is likely that the traversability model is also a priori
unknown, the robot is tasked to move between different sites to either map new areas or expe-
rience the traversal over novel terrains. The challenge comprises two core publications. The
second core publication of the Thesis [C2] presents a system for online incremental learning of
a terrain traversal cost in autonomous exploration. The explorer seeks both the frontier areas
of the spatial model, and the cost learning goals in the form of areas deemed the most informa-
tive by the incrementally learned GP cost regressor. The cost model and spatial exploration
are combined in a myopic manner, with the robot seeking the cost learning goals first so that
it limits planning over terrain with unknown traversability. The third core publication [C3]
addresses the myopic nature of the preceding systems. Since it is desirable to avoid combining
the measures of informativeness of the cost prediction and spatial models, a policy is used
that combines informative sites separately identified for spatial and cost exploration. The
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sequence of sites to visit, and thus the informative path, is determined as a solution of the
GTSP.

The third challenge addresses that the prior contributed work assumes that observed ob-
stacles are rigid and thus non-traversable. However, some terrains with obstacle-like geometry,
such as tall grass, might be actually traversable if enough force is exerted by the robot. In
the fourth core publication [C4], it is proposed to learn a model of the force needed to pass
through the apparent obstacles. Since the model describes the resistance of the terrain, the
resulting traversability model is robot agnostic, assuming that the maximum force that can
be exerted by each particular robot is known. The active learning of the proposed model
based on estimated information gained by interacting with the obstacles is demonstrated in
an exploration scenario similar to [C2] and [C3].

6.1 Possible Extensions

The overviewed publications present the building blocks for self-improving traversability mod-
els. The individual publications concern incremental learning, extend the modality of the
learned traversability phenomenon w.r.t. motion characterization and non-rigid terrains, or
concern traversability learning in path planning and exploration. The individual components
provide various areas that can be further refined. For instance, the presented contributions
assume that the cost model is learned incrementally from scratch, while in practical scenar-
ios, the model might be partially known and needs only limited adaptation, posing a transfer
learning problem. Besides, there is a rich set of possible extensions of modalities of traversabil-
ity. The contribution regarding non-rigid, potentially traversable obstacles can be followed by
addressing non-rigid ground that might prove untraversable although it appears traversable,
which is an inverse of the problem addressed in [C4]. Furthermore, both types of non-rigid
terrains are likely to change their appearance and terra-mechanics after robot traversal, which
might affect multi-robot teams.
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ration using a utility function based on Rényi’s general theory of entropy,” Autonomous
Robots, vol. 42, no. 2, pp. 235–256, 2018. doi: 10.1007/s10514-017-9662-9.

[46] W. Luo and K. Sycara, “Adaptive sampling and online learning in multi-robot sensor
coverage with mixture of Gaussian processes,” in IEEE International Conference on
Robotics and Automation (ICRA), 2018, pp. 6359–6364. doi: 10.1109/ICRA.2018.
8460473.

[47] C. Rhodes, C. Liu, and W.-H. Chen, “Informative path planning for gas distribution
mapping in cluttered environments,” in IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), 2020, pp. 6726–6732. doi: 10.1109/IROS45743.
2020.9341781.

[48] K.-C. Ma, L. Liu, H. K. Heidarsson, and G. S. Sukhatme, “Data-driven learning
and planning for environmental sampling,” Journal of Field Robotics, vol. 35, no. 5,
pp. 643–661, 2018. doi: 10.1002/rob.21767.

25

https://doi.org/10.1007/s00521-010-0428-y
https://doi.org/10.1007/s00521-010-0428-y
https://doi.org/10.1162/089976600300014908
https://doi.org/10.1109/CIRA.1997.613851
https://doi.org/10.1023/A:1008936413435
https://doi.org/10.1109/IRDS.2002.1041446
https://doi.org/10.1109/IRDS.2002.1041445
https://doi.org/10.1109/IRDS.2002.1041445
https://doi.org/10.1109/ICRA.2015.7139865
https://doi.org/10.1109/ICRA.2015.7139865
https://doi.org/10.15607/RSS.2005.I.009
https://doi.org/10.1007/s10514-017-9662-9
https://doi.org/10.1109/ICRA.2018.8460473
https://doi.org/10.1109/ICRA.2018.8460473
https://doi.org/10.1109/IROS45743.2020.9341781
https://doi.org/10.1109/IROS45743.2020.9341781
https://doi.org/10.1002/rob.21767


[49] A. Singh, A. Krause, C. Guestrin, W. Kaiser, and M. Batalin, “Efficient planning of
informative paths for multiple robots,” in International Joint Conference on Artifical
Intelligence, 2007, pp. 2204–2211.

[50] G. A. Hollinger and G. S. Sukhatme, “Sampling-based motion planning for robotic
information gathering,” in Robotics: Science and Systems (RSS), 2013.

[51] J. Binney and G. S. Sukhatme, “Branch and bound for informative path planning,” in
IEEE International Conference on Robotics and Automation (ICRA), 2012, pp. 2147–
2154. doi: 10.1109/ICRA.2012.6224902.
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• M. Prágr et al., “Online incremental learning of the terrain traversal cost in autonomous
exploration,” in Robotics: Science and Systems (RSS), 2019. doi: 10.15607/RSS.2019.
XV.040. [C2].

Listed as A* in CORE 2018; citations: 5 in Web of Science, 5 in Scopus, 22 in Google
Scholar; the citations listed in Web of Science follow.

1. V. Karolj et al., “An integrated strategy for autonomous exploration of spatial
processes in unknown environments,” Sensors, vol. 20, no. 13, 2020. doi: 10.

3390/s20133663

2. H. Azpurua et al., “Three-dimensional terrain aware autonomous exploration for
subterranean and confined spaces,” in IEEE International Conference on Robotics
and Automation (ICRA), 2021, pp. 2443–2449. doi: 10.1109/ICRA48506.2021.

9561099

3. M. Sivaprakasam et al., “Improving off-road planning techniques with learned costs
from physical interactions,” in IEEE International Conference on Robotics and Au-
tomation (ICRA), 2021, pp. 4844–4850. doi: 10.1109/ICRA48506.2021.9561881

4. A. Kurobe et al., “Audio-visual self-supervised terrain type recognition for ground
mobile platforms,” IEEE Access, vol. 9, pp. 29 970–29 979, 2021. doi: 10.1109/

ACCESS.2021.3059620

5. H. Azpurua et al., “A survey on the autonomous exploration of confined subter-
ranean spaces: Perspectives from real-word and industrial robotic deployments,”
Robotics and Autonomous Systems, vol. 160, 2023. doi: 10.1016/j.robot.2022.

104304

28

https://doi.org/10.1109/ACCESS.2020.2992794
https://doi.org/10.1007/s42235-020-0041-4
https://doi.org/10.3390/en14020433
https://doi.org/10.3390/en14020433
https://doi.org/10.1088/1748-3190/ac6847
https://doi.org/10.1007/s13042-022-01649-w
https://doi.org/10.1007/s13042-022-01649-w
https://doi.org/10.1016/j.robot.2022.104304
https://doi.org/10.1016/j.robot.2022.104304
https://doi.org/10.15607/RSS.2019.XV.040
https://doi.org/10.15607/RSS.2019.XV.040
https://doi.org/10.3390/s20133663
https://doi.org/10.3390/s20133663
https://doi.org/10.1109/ICRA48506.2021.9561099
https://doi.org/10.1109/ICRA48506.2021.9561099
https://doi.org/10.1109/ICRA48506.2021.9561881
https://doi.org/10.1109/ACCESS.2021.3059620
https://doi.org/10.1109/ACCESS.2021.3059620
https://doi.org/10.1016/j.robot.2022.104304
https://doi.org/10.1016/j.robot.2022.104304


A.2 Related Non-core Publications

A.2.1 Conference Proceedings Listed in Web of Science

• J. Faigl and M. Prágr, “On unsupervised learning of traversal cost and terrain types
identification using self-organizing maps,” in International Conference on Artificial Neu-
ral Networks (ICANN), Springer, 2019, pp. 654–668. doi: 10.1007/978-3-030-30487-
4_50. [R4].

Listed as B in CORE 2018; citations: 3 in Web of Science, 5 in Scopus, 9 in Google
Scholar; the citations listed in Web of Science follow.

1. D. C. Guastella and G. Muscato, “Learning-based methods of perception and nav-
igation for ground vehicles in unstructured environments: A review,” Sensors,
vol. 21, no. 1, 2021. doi: 10.3390/s21010073

2. L. Gan et al., “Energy-based legged robots terrain traversability modeling via deep
inverse reinforcement learning,” Robotics and Automation Letters, vol. 7, no. 4,
pp. 8807–8814, 2022. doi: 10.1109/LRA.2022.3188100

3. P. Xu et al., “Learning physical characteristics like animals for legged robots,”
National Science Review, vol. 10, no. 5, 2023. doi: 10.1093/nsr/nwad045
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Cost of Transport Estimation for Legged Robot Based on Terrain
Features Inference from Aerial Scan

Miloš Prágr Petr Čı́žek Jan Faigl

Abstract— The effectiveness of the robot locomotion can be
measured using the cost of transport (CoT) which represents the
amount of energy that is needed for traversing from one place to
another. Terrains excerpt different mechanical properties when
crawled by a multi-legged robot, and thus different values of the
CoT. It is therefore desirable to estimate the CoT in advance and
plan the robot motion accordingly. However, the CoT might not
be known prior the robot deployment, e.g., in extraterrestrial
missions; hence, a robot has to learn different terrains as it
crawls through the environment incrementally. In this work,
we focus on estimating the CoT from visual and geometrical
data of the crawled terrain. A thorough analysis of different
terrain descriptors within the context of incremental learning
is presented to select the best performing approach. We report
on the achieved results and experimental verification of the
selected approaches with a real hexapod robot crawling over
six different terrains.

I. INTRODUCTION

Autonomous robots are being deployed in long-term data
collection missions in environments with limited or no prior
information about the particular terrain the robots are facing
to, e.g., in extraterrestrial missions [1]. However, efficient
locomotion over a particular terrain greatly influences the
mission effectiveness. It is even more prominent with multi-
legged robots due to their enhanced traversability capabilities
to reside over terrains of different types.

Regarding locomotion of the particular robot, terrains can
be distinguished by the traversability cost metric [2] that can
be a simple binary division between passable and impassable
terrains [3]. Alternatively, there are more elaborating scores
such as the Cost of Transport (CoT) [4], [5], which represents
a measure of the effectiveness of the robot locomotion.
Therefore it is desirable to study the terrain traversability
estimation to support mission planning and improve the real-
time robot performance in accomplishing its mission goals.

Note, the CoT is inherently a continuous measure influ-
enced by many factors, e.g., terramechanical properties of the
terrain, robot morphology, and even seasonal and weather
condition changes in long-term missions. Besides, terrains
that the robot encounters might not be known in advance, and
therefore, a simple classification using a set of pre-learned
classes to estimate the CoT is not sufficient for a real-world
deployment. Hence, self-learning mechanisms are necessary
to estimate the CoT in yet untraversed areas correctly.
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(a) CoT estimates

(b) Colored height map (c) Multiple artificial terrains

Fig. 1: Multi-Terrain setup and its perceived representation.

In this work, we are concerning the traversability cost
estimation for a small hexapod crawling robot using extero-
ceptive data. A relatively slow speed of crawling robots limits
their capability to map a given area fully. Moreover, an easily
obstructive close-to-ground viewpoint makes the mapping
even more challenging. Nevertheless, a robot capable of
traversing an unknown terrain may observe both the terrain
appearance and terramechanical properties, and thus it can
incrementally build the terrain model describing its CoT.

On the other hand, unmanned aerial vehicles (UAVs)
do not suffer from these problems. From a relatively high
altitude, a UAV can observe a larger portion of the terrain.
Also, a typical UAV often moves faster than most of the
ground vehicles of similar size. For these reasons, UAVs can
be utilized for mapping unknown terrains, which in turn, may
help the robot to improve the mission efficiency.

However, the ground crawling robot and the UAV observe
the terrain with a different perspective, and therefore, it is not
possible to simply infer the CoT over the terrain observed by
the UAV based on the model learned by the ground robots if
arbitrary descriptors are used. Hence, construction of such
a model together with a selection of suitable feature set
for the desired inference is the main goal of this work. In
particular, we aim to develop incremental learning of the
model to estimate the CoT based on the experience of the
hexapod crawling robot with the terrain that can be further
utilized for inference of the CoT using aerial terrain view.
Such an inference may lead to the annotated aerial terrain
cost map as it is visualized in Fig. 1. In this paper, we report
on the achieved results towards this challenging goal which
is addressed as a thorough experimental analysis of a set of
terrain characterization features and learning methods used
in the literature for terrain classification from visual and
scene geometric data and application of these methods in
the problem of the CoT learning and estimation.

The paper is structured as follows. An overview of the
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related approaches on the terrain classification and terrain
features is in Section II. A description of the proposed
inference learning framework, terrain model, and features
utilized in the herein reported evaluation is presented in
Section III. Section IV details the experimental set-up and
reports on the achieved results. Finally, conclusions are
drawn in Section V.

II. RELATED WORK

Numerous methods on terrain traversability analysis [2],
[6] have been presented in recent years that aim to evaluate
the terrain properties mostly from geometric data and assign
each area a number that characterizes local properties of
the terrain geometry. On the other hand, traversability cost
metrics [4], [5], like the Cost of Transport (CoT), are more
general metrics that incorporate the own robot experience
with traversing the terrain. The value of the CoT is inher-
ently continuous. Even though it can be estimated from the
results of the terrain classification, the classification relies
on a discrete set of pre-learned classes which might not
be available or might get irrelevant during the mission,
e.g., in extraterrestrial environments or long-term missions.
Therefore we are interested in the CoT regression.

The terrain description methods rely on extraction of
terrain characterization features that can be roughly catego-
rized into appearance-based visual features, geometric-based
features, and methods combining both approaches. Moreover,
the approaches can be further categorized based on whether
the feature is dependent on the current robot viewpoint,
and whether the feature makes use of color information.
For example, approaches extracting features from images
are inherently viewpoint dependent. In contrast, approaches
using the extraction of features from point clouds or aerial
scans are position independent. Further, the color information
can be valuable for discriminating terrain types; however, it is
strongly influenced by the illumination and seasonal changes.

The appearance-based features include approaches to clas-
sify terrains based on different colors or textures. The
authors of [7] introduce classification based on a simple two-
dimensional feature which uses mean color components of
superpixels in the Lab color space combined with the SVM
classifier. Bayes decision rules with Gaussian mixture models
on the RGB color space is used in [8]. Regarding the texture
recognition, methods using frequency-based approaches re-
lying on wavelet filters [9], [10], Gabor filters [11], or more
recent approach on Steerable Pyramid Masks [12] can be
used. A survey on visual terrain classification from a monoc-
ular camera is presented in [13]. Further, hybrid approaches
utilizing RGB-D camera [14] and stereo camera [15] use a
combination of the appearance and geometrical features.

The main advantage of the geometrical terrain features is
that they are not affected by illumination changes. However,
they can suffer from a low density of the point cloud in a
far distance to the robot which is limiting especially for a
vast number of approaches that compute statistics based on
normals [16]–[19] where point normals are mostly computed
by fitting a plane to a local neighborhood of the investigated

points. Point-cloud density [20], view-point, and point cloud
centroid relations [18], [19] or minimal and maximal curva-
ture of estimates for local neighborhood [21], or histogram
based features [22] are being used. Features extracted from
LIDAR data are used in [23] with a random forest classifier
to differentiate vegetation and estimate the soil plane using
the geometrical, reflectance, and color information.

In [24], a set of 13 features is proposed to describe terrain,
vegetation, and other objects in an agricultural environment.
The set is computed from the local neighborhood of the
interesting point and divided into four height features based
on the z coordinate, four shape features based on princi-
pal component analysis, three orientation features based on
normal vectors of the local plane, a distance feature, and a
reflectance feature. However, the classifier is trained by SVM
from labeled data [24]. Moreover, the approach requires
the z-coordinate of the point cloud to be orthogonal to the
surface which is made by fitting a global ground plane to
the dataset, which may bias the results in a more structured
environment.

A self-supervised approach is presented in [25] to teach
a terrain classifier from geometric data using the propri-
oceptive data. However, the approach uses a pre-learned
proprioceptive classifier which differentiates only between
several terrain classes.

The most similar approach to the herein addressed problem
of the assignment of the traversability data to the aerial
scan has been presented in [20]. The authors proposed a
self-supervised learning approach with a Gaussian mixture
model. The traversability cost is estimated from the geomet-
rical clues in the LIDAR data to infer the traversability cost
in a map obtained by an aerial recon.

Based on the presented literature survey, we have identified
a set of appearance-based and geometric-based features with
different properties that are commonly used in the terrain
classification, and we adapt these for the CoT regression
presented in this paper. Description of the used features is
presented in the following section. Besides, we can con-
clude that the incremental regression and estimation of the
traversability value for the observed but yet untraversed areas
is still a largely unexplored topic.

III. INFERENCE LEARNING FRAMEWORK

The main goal of this paper is to report on a thorough anal-
ysis of terrain characterization features used in the inference
of the CoT perceived by the hexapod crawling robot to the
aerial scan. This section describes the used framework for
the extraction of the terrain features and CoT learning, i.e.,
the utilized terrain features, the learning procedure, and the
sampling strategy for the inference learning. The individual
building blocks are described in the following sections.

A. Terrain Characterization Features

Based on the literature survey and preliminary results, we
consider the following features for benchmarking. We select
the features that are computationally inexpensive, so that can
be utilized on various mobile robotic platforms. Moreover,
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we only use descriptors that are viewpoint robust under the
herein described conditions.

1) Appearance-based features: Two point cloud based
color features and a texture recognition using wavelets [9]
have been selected. For the color features, both the RGB
and Lab color spaces have been considered with either
channel values of the sampled point (denoted as Point in
the reported results) or a channel mean of the points in
a r = 0.2 m spherical neighborhood (denoted as Mean
in the reported results). As the feature is purely based on
color, it is robust to viewpoint changes; however, less to
illumination changes. During the preliminary evaluation, the
wavelet features exhibit low performance presumably due to
a large viewpoint change between the robot and the aerial
scan, and they have been left out of the comparison.

2) Geometric-based features: We use a modified version
of the terrain feature sets presented in [24]. In particular, we
have used 11 out of 13 features, namely the shape feature,
height feature, orientation feature and all of them combined
in a full feature, leaving out the reflectance and distance
features as those do not suit our experimental setup. The
ground plane and normal are estimated by fitting a plane
to the k = 5 nearest neighbors of the sampled point. We
consider the utilized geometric features to be viewpoint
robust. As the coordinate frame is based on the global ground
plane estimate, the height feature and shape features are
robust to viewpoint changes under the assumption that the
aerial scan captures the area with sufficient precision. The
orientation feature robustness depends on the quality of the
aerial scan, although different descriptor values are assigned
to the terrains sloped in different directions. A spherical
region with r = 0.3 m radius is considered when querying
the neighborhood of the sampled point.

B. Learning algorithms

We have considered four approaches on top of the utilized
terrain features that are capable of regression from which two
of them support incremental online learning.

1) Support Vector Regression: (SVR) [26] is a maximum-
margin regression algorithm, here utilized with the radial
basis function kernel.

2) Regression Tree: which uses recursive partitioning with
the depth d = 5.

3) Incremental Gaussian Mixture Network Model:
(IGMN) [27], [28] is an online incremental learning ap-
proach, which creates and updates the Gaussian mixture
model based on streamed data points. The IGMN allows a
full prediction of the data point based on an incomplete input
of any kind. We used our implementation of the Fast-IGMN
that is an improvement of the IGMN presented in [28].
The Fast-IGMN improves the IGMN time complexity to
O(NKD2), where N is the number of data points, K
is the number of components, and D is the data point
dimensionality. Experimentally, we parametrized the IGMN
with the k = 10 components, grace period vmin = 100,
minimal accumulated posterior spmin = 3, and scaling factor
δ = 1.

4) Hoeffding Tree: or Very Fast Decision Tree Learner
(VFDT) [29] is an online incremental decision tree learning
algorithm that utilizes Hoeffding bound to create the output
asymptotically identical to that of the conventional learner.
We used a slightly modified VFDT implementation of [30].
However, unlike the other utilized approaches, Hoeffding tree
is used with a discrete number of classes, i.e., k = 10.

C. Sampling and Learning
This section explains how the above-selected terrain fea-

tures and learning algorithms (forming building blocks) are
combined in an inference learning framework that estimates
the CoT in the aerial scan of the terrain. Our model has two
major life stages: (i) the learning phase, when the robot learns
the model based on the RGB-D input and pairs it with the
CoT; and (ii) the inference phase, where the learned model
is used to evaluate the terrain observed from the aerial scan.

The framework operates on individual datasets consisting
of georeferenced RGB-D, i.e., the color RGB and depth
images from the robot and georeferenced RGB-D aerial scan
of the whole environment. Besides, the ground robot collects
the power readings used for estimation of the CoT [5] as

CoT =
P

mg v
, (1)

where P is the instantaneous power consumption, m is the
weight of the robot, g = 9.81 ms−2 is the gravitational
acceleration, and v is the robot speed. In the regression task,
we understand the CoT to be a function of the robot type,
the robot gait, and the local terrain property. However, the
experimental platform and locomotion gait are fixed; hence,
the CoT is estimated only from the local terrain property.
Note that the evaluated aerial scan is independent of the
robot trajectory, i.e., the robot learned model can be applied
to a different location; however, for the herein presented
benchmarking, it is necessary that the trajectory of the robot
is contained within the aerial scan.

It is essential to address the fact that the robot knows
the CoT only after it successfully traverses the terrain and
estimates its velocity from the georeferenced data. Therefore,
we introduce feature storage that maintains a dictionary of
the georeferenced features extracted from the robot field of
view to deal with this delay in the acquisition of the RGB-
D–CoT pairs that are necessary for the learning phase. Thus,
whenever an arbitrary location is reached by the robot, the
feature storage is queried, and all features located sufficiently
close, i.e., in a spherical region with r = 0.2 m, are passed
to the learning framework together with the measured CoT
of the current location. The temporary feature storage is of
limited size, and it is randomly pruned when its capacity
overflows. Hence, the robot is not creating a persistent feature
map of the environment that would grow over time, and it
incrementally learns the forthcoming terrain.

During the learning phase, points in front of the robot
are sampled according to the scheme described above. The
obtained features are then used for learning of the CoT
model. In the case of the incremental learning, the features
are first used to query the model for the value of the CoT.
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(a) The rough terrains.
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(b) CoT estimation for different variants of appearence-based features using the IGMN.
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(c) CoT estimation for different variants of geometric-based features using the IGMN.
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(d) Comparison of CoT estimation using the RGB-M-Shape feature and different learning algorithms.
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(e) Comparison of CoT estimation for different variants of combined appearence and geometric features using
the IGMN.
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(f) Comparison of CoT estimation for different variants of combined appearence and geometric features using
Regression Tree.

(b-f) Learned and predicted values of the CoT in time for different combination of features and learning
algorithms. The first six terrains (parts) represent the learning phase. The following six parts represent the
inference phase.

(g) The used hexapod robot.
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Fig. 2: Experimental Hardware, Setup, and Results.

For the inference phase, the robot is virtually walked along
the same known trajectory while sampling points from the
aerial scan, which is necessary for the evaluation purposes.
The robot stores the geolocated features in the same manner
as in the learning phase. Similarly, when an arbitrary location
is reached, the feature storage is queried, and all features
located sufficiently close are considered. These features are
then used to query the CoT model for the particular value of
the CoT. Additionally, for the incremental learning enabled
approaches, the model is further taught by these features
combined with the measured CoT.

IV. EXPERIMENTAL EVALUATION

In this section, we report on the experimental results and
verification of the proposed inference learning framework
with terrain features benchmarking using real hexapod crawl-
ing robot. The reported results are organized as follows.
First, the robotic platform and the experimental set-up are
introduced. After that, the results themselves are presented
and discussed.

A. Hexapod Crawling Robot

The used robot is an electrically actuated low-cost hexapod
crawling robot depicted in Fig. 2g. It has six legs, each with
three joints attached to the trunk which hosts the electronics
and sensory equipment. The RGB-D ASUS Xtion Pro Live
camera has been utilized for the terrain perception and the
Hall-effect-based current sensor for estimation of the robot
instantaneous power consumption. The camera provides the
data with 30 Hz frequency, and the power consumption data
are provided with 62 Hz frequency. The locomotion over the
rough terrain is performed by the adaptive motion gait [31],
which uses the estimation of the ground-reaction forces based
on the position data provided by the joint actuators.

B. Experimental Setup and Terrains

The experimental data have been obtained on the labo-
ratory test-track consisting of three-meter length path over
different surfaces. Six experiments, each with different ter-
rain and three trials, have been performed. The terrains with
the increasing difficulty of traversing are: PVC flooring (flat),
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TABLE I: Error Rates for Individual Terrain Characterization Features

Learning Feature Error Learning Feature Error Learning Feature Error
Color Geom. Mean Var Color Geom. Mean Var Color Geom. Mean Var

Hoeffding RGB-M Shape 7.4 69.8 IGMN None Ori 8.7 57.4 Reg Tree Lab-P None 6.4 37.9
Hoeffding None Height 7.4 56.7 IGMN RGB-M None 5.7 44.5 Reg Tree Lab-P Shape 7.1 70.9
Hoeffding Lab-M None 8.2 86.1 IGMN RGB-M Height 6.6 39.0 Reg Tree None Ori 8.1 60.3
Hoeffding Lab-M Shape 8.6 77.0 IGMN RGB-M Ori 5.8 43.6 Reg Tree None Set 7.9 59.0
Hoeffding Lab-P None 8.9 102.2 IGMN RGB-M Set 7.8 38.9 Reg Tree None Shape 6.9 77.2
Hoeffding Lab-P Shape 7.7 57.3 IGMN RGB-M Shape 5.7 38.4 SVR RGB-M Shape 6.8 76.3
Hoeffding None Ori 9.0 112.2 IGMN RGB-P None 7.3 59.4 SVR None Height 7.8 73.9
Hoeffding RGB-M None 8.1 70.1 IGMN RGB-P Shape 6.7 40.4 SVR Lab-M None 7.1 81.5
Hoeffding RGB-M Height 7.4 59.8 IGMN None Set 9.0 58.5 SVR Lab-M Shape 7.9 64.9
Hoeffding RGB-M Ori 7.9 66.0 IGMN None Shape 8.4 44.9 SVR Lab-P None 6.7 63.8
Hoeffding RGB-M Set 9.3 87.9 Reg Tree RGB-M None 6.3 51.5 SVR Lab-P Shape 7.8 68.7
Hoeffding RGB-P None 7.7 63.5 Reg Tree RGB-M Height 6.4 48.4 SVR None Ori 7.6 79.9
Hoeffding RGB-P Shape 8.3 72.5 Reg Tree RGB-M Ori 5.8 47.5 SVR RGB-M None 7.2 74.8
Hoeffding None Set 8.6 76.2 Reg Tree RGB-M Set 6.8 63.3 SVR RGB-M Height 7.7 74.0
Hoeffding None Shape 9.1 82.5 Reg Tree RGB-M Shape 5.9 49.6 SVR RGB-M Ori 7.4 77.2
IGMN None Height 9.0 37.9 Reg Tree None Height 7.3 58.6 SVR RGB-M Set 7.7 78.1
IGMN Lab-M None 5.7 38.3 Reg Tree RGB-P None 6.2 41.5 SVR RGB-P None 7.0 75.5
IGMN Lab-M Shape 9.4 147.2 Reg Tree Lab-M None 6.9 66.6 SVR RGB-P Shape 6.9 70.7
IGMN Lab-P None 7.5 39.6 Reg Tree RGB-P Shape 6.6 58.7 SVR None Set 7.7 78.3
IGMN Lab-P Shape 7.2 67.6 Reg Tree Lab-M Shape 6.1 46.0 SVR None Shape 7.3 73.7

turf-like carpet (grass), and semi-transparent soft black fabric
(black) represent different flat terrains. Then, wooden blocks
covered with the turf-like carpet (grass rough), wooden
blocks covered with the black fabric (black rough), and bare
wooden blocks (blocks) are considered as the rough terrain
scenarios. The wooden blocks are 10×10 cm large with
variable height and slope. The three rough terrain setups are
shown in Fig. 2a. The same turf-like carpet and black-fabric
have been used for the flat and the rough terrain setups.

The robot has been remotely guided over the course of
the test-track while collecting visual and power consumption
data. The visual data have been then processed using the
incremental localization technique [32] to extract localization
information that has been further used to estimate the robot
velocity and for calculation of the CoT according to (1).

The collected data represent an unbiased belief of the robot
about the traversability of the selected terrains. Besides, an
aerial scan has been captured for each terrain type from the
elevated camera to allow dense reconstruction of the whole
track course simulating an aerial scan.

C. Results and Discussion

First, the individual trials over different terrains have been
merged into a single pass dataset with six terrains each
repeated two times as it is visualized in Figs. 2b-2f. Then,
the proposed framework has been used according to the
description presented in Section III-C. The algorithm has
learned on the first six terrains, whereas the CoT value for
the following terrains has been inferred from the aerial scan.
The incremental learning approaches learn from, but also
return the evaluation, for all the terrains, i.e., the terrains
used in both the learning and inference phases.

The quantitative measures of the mean error between
the predicted and ground-truth CoT, and its variance are
reported for all tested combinations in Table I. Additionally,
some of the results are visualized in Fig. 2h. Note that the
measure is computed from all the returned values and for the
incremental learning approaches, the metric includes results

TABLE II: Walk- and Environment-scan Correlation Rates for the RGB
Mean Shape feature. For each of the examined terrain type pairs the metric
is computed from 1000 randomly selected points. Each point is represented
by the RGB-Means Shape descriptor computed from the environemnt scan,
and the same descriptor computed from the walk scan. Then each dimension
of the descriptor is reported separately, i.e., the correlation for one dimension
in one terrain type is computed from 2 1000-length vectors. A median of
the individual dimension correlations is also reported.

Terrain Type Individual Feature Building Blocks Full Feature
Shape RGB Means Median

Grass Flat 0.62 0.40 0.34 0.66 0.66 0.47 0.64 0.62
Grass Rough 0.31 0.33 0.29 0.19 0.78 0.75 0.58 0.33
Black Flat 0.56 0.46 0.42 0.53 0.86 0.85 0.84 0.56
Black Rough 0.36 0.48 0.38 0.36 0.74 0.75 0.75 0.48
Flat 0.63 0.51 0.43 0.78 0.09 0.03 0.08 0.43
Cubes 0.55 0.34 0.31 0.47 0.79 0.80 0.78 0.55

returned on the first six learning terrains.
The preliminary analysis has shown a low quality of the

results provided by the Hoeffding trees and SVR learning
algorithms. Therefore, the qualitative evaluation is focused
on the best performing terrain features using the IGMN
and Regression Trees. From the quantitative comparison, the
best performing features are the sole appearance-based the
LAB Mean feature and RGB Mean feature together with the
geometric-based Shape feature.

A good performance of the sole Lab Mean feature (see
Fig. 2b) is not surprising partially because of the experimen-
tal setup where the four well distinguishable colors appear
on the terrains. Besides, only a little difference between the
CoT values for three out of six terrains, namely flat, grass and
grass rough, has been observed, which is correct behavior as
we are not interested in the terrain classification, but rather
in the CoT estimation. The CoT over the wooden blocks is
less uniform, with low-cost areas being similar to the flat
or grass datasets and high-cost peaks. Finally, the black and
rough black datasets are the most costly with the high-cost
peaks. Presumably, it is caused by the inability of the robot
to find a proper grip on the fabric covered terrain. The made
observations comply with the CoT map presented in Fig. 1,
where the blocks have assigned a range of different costs,
whereas the black fabric is assigned the high costs only.

From the further qualitative analysis, we can see that
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the standalone geometric features do not perform well (see
Fig. 2c). However, the combination of the color and shape
feature provides, in our opinion, the best results as the
combination is able to better cope with the high peaks and
low values of the CoT. In Table II, we present the aerial-
ground scan correlation of the RGB Mean Shape feature.
Although the individual feature dimensions do not exhibit
a high correlation for all the terrains, for each terrain,
there is at least one dimension with considerable correlation.
The comparison of different models favors the IGMN setup
in both quantitative and qualitative measures (see Fig. 2d,
Fig. 2e, and Fig. 2f). It is most likely due to its incremental
learning property that allows the model to adapt quickly to
CoT changes.

A rather interesting property of our datasets is that at
the far end of each examined terrain, there is usually a
section of a flat ground that has been traversed by the robot.
Such a border represents a change of the terrain type. When
investigating the recovered data, it is possible to observe
that the most of the good performing setups are capable of
reacting on such a terrain change and presume a lower value
of the CoT in that region.

V. CONCLUSION

In this paper, we present a framework for model learning
the CoT in a two-viewpoint setups, where the model is firstly
learned by a small ground hexapod crawling robot, which
can observe not only the exteroceptive terrain properties
but also its associated CoT, and then the model is used
for CoT inference from an aerial scan to yet untraversed
areas. From a set of several feature setups, we chose the
best performing combination of the RGB Mean and Shape
feature which forms the descriptor of only seven dimensions.
Several learning setups have been evaluated and based on the
achieved results, the incremental Gaussian mixture and post-
estimation regression trees suit best the selected features.
In future, we aim to utilize this system in planning tasks
and explore the transferability of the terrain traversability
evaluation between different robotic platforms.
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Online Incremental Learning of the Terrain
Traversal Cost in Autonomous Exploration

Miloš Prágr Petr Čı́žek Jan Bayer Jan Faigl

Abstract—In this paper, we address motion efficiency in
autonomous robot exploration with multi-legged walking robots
that can traverse rough terrains at the cost of lower efficiency
and greater body vibration. We propose a robotic system for
online and incremental learning of the terrain traversal cost
that is immediately utilized to reason about next navigational
goals in building spatial model of the robot surrounding. The
traversal cost experienced by the robot is characterized by
incrementally constructed Gaussian Processes using Bayesian
Committee Machine. During the exploration, the robot builds the
spatial terrain model, marks untraversable areas, and leverages
the Gaussian Process predictive variance to decide whether to
improve the spatial model or decrease the uncertainty of the ter-
rain traversal cost. The feasibility of the proposed approach has
been experimentally verified in a fully autonomous deployment
with a hexapod walking robot.

I. INTRODUCTION

Multi-legged walking robots are capable of rough ter-
rains traversal, either by leveraging detailed foothold position
plans [2, 37], or reactively utilizing tactile information [4, 10].
On the other hand, the robots may suffer from poor energy
efficiency [13] and low stability [18]; hence, they can benefit
from traversal cost prediction of the observed terrains. In
unknown environments, the robot may encounter previously
unobserved terrain types, and therefore, it needs to explore
and actively update its terrain traversal cost model to improve
its performance as the perception is active by nature [1].

We propose to address autonomous robotic exploration as
a problem to simultaneously create a spatial model of the
unknown environment together with incremental learning of
the traversal cost model. The spatial model is employed to
reason about untraversable areas, but incrementally learned
traversal cost characterizes the robot experience with its lo-
comotion effectiveness over traversable terrains. Thus, the
learned model is employed in the extrapolation of the traversal
cost assessment to observed but not yet visited areas, to
intentionally avoid hard-to-traverse areas.

The spatial frontier-based exploration [35] can be utilized to
navigate the robot towards passable areas at the boundary of
the explored space. However, there is not an easily distinguish-
able boundary in exploring some underlying phenomena such
as the terrain traversal cost. Therefore, model confidence can
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Fig. 1. Visualization of reasoning about possible navigational goals in
the spatial frontier-based (blue spheres) exploration combined with building
terrain traversal cost model (jet color coding). The robot selects to actively
improve its traversal cost model for areas with low model confidence (red
spheres). The model is instantly utilized in path planning, and thus the robot
avoids areas that are believed to be hard-to-traverse.

be used to reason about active navigation towards areas with
low model fidelity [29, 34]. An example of such reasoning
within the proposed approach is visualized in Fig. 1.

The confidence of the terrain traversal cost model can be
obtained using Gaussian Process (GP) regression, a nonpara-
metric generalization of the linear regression which can extrap-
olate both the predictive mean and variance. The GP regression
has been used in spatial exploration with a continuous spatial
occupancy [20, 26] or terrain elevation models [32]. However,
the GP regression suffers from cubic learning time complexity,
and the Bayesian Committee Machine (BCM) with the GP
regressors in frontier-based exploration [14] has been utilized
to create spatial occupancy representation [33].

Motivated by recent advancements on the GPs and BCM,
we propose to use the Robust BCM (RBCM) [8] for in-
cremental construction of the terrain traversal cost model in
the exploration of unknown environments. The robot thus
alters navigation towards frontiers of the spatial exploration
and areas with low confidence of the traversal cost model
that is characterized by a high predictive variance; while
simultaneously exploiting the learned model to avoid costly
terrains.

In this paper, we describe the developed robotic system that
represents an integrated framework with complete pipeline of
sensing, model building, informed planning, and execution that
has been experimentally verified in autonomous experiments.
Regarding the existing work, we consider the main contribu-
tions of the presented approach as follows.
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• Robotic system with active improvements of the terrain
traversal cost model deployed in the autonomous explo-
ration of the spatial model and the traversal cost model.

• Experimental validation of the proposed system in au-
tonomous exploration with the hexapod walking robot.

• Deployment of online incremental learning of the un-
derlying traversal cost model using the RBCM with GP
regressor experts over the terrain feature descriptor space.

• Experimental evaluation of (fast) incremental learning
approaches within the addressed terrain traversal cost
modeling task.

The rest of the paper is structured as follows. Related
approaches on terrain traversal cost model and characterization
are overviewed in the following section. A brief description
of the used RBCM is presented in Section III. The main parts
of the proposed framework are described in Section IV and
results on its experimental validation are reported in Section V.
The paper is concluded in Section VI.

II. OVERVIEW OF THE EXISTING TERRAIN TRAVERSAL
COST AND TERRAIN CHARACTERIZATION APPROACHES

Robots autonomously navigating in rough terrains must
identify and avoid risks such as possible robot damage or
energy wasting due to low efficiency. The risk and efficiency of
the terrain traversal can be defined by characterizing remotely
observed terrains or by examining the robot experience of
the actual traversal. Observed geometrical and appearance
properties of the perceived environment can be used for a
remote characterization but the traversal cost defined as the
level of risk and locomotion efficiency needs to be based on
the robot traversal experience with the terrain.

Geometric properties such as height [13, 28], slope [6],
or roughness [16] are directly connected to the viability of
the terrain traversal. Multiple geometric properties can be
used to detect unpassable areas and describe safe terrains,
e.g., by a combined danger index in [28]. The appearance
descriptors leverage the frequency domain or the colors of
the observed areas. In [27], Gabor filters are used to describe
overhead imagery, while voxel color information is directly
utilized in [3], and color and reflectance vegetation indices are
reviewed in [36]. Appearance and geometric descriptors may
not only directly define the terrain traversal feasibility but can
also be used to learn alternative terrain characterizations such
as the terrain classification and robot experience.

Terrain classification is a task to assess the terrain into a
set of discrete terrain classes based on human labeled terrain
types [21] or to cluster unlabeled terrains [11]. Individual ter-
rain types can carry information about the terrain traversability,
e.g., an unpassable obstacle class [5]. Terrain classification
can be based on geometrical and appearance properties of
remotely observed terrains [16] but also on proprioceptive
sensing [11]. A combination of the appearance and vibration
terrain characterization is, for example, utilized in [19, 21].

Experience with the terrain traversal can be characterized
as the observed difficulty of the robot with walking over
the traversed terrain, and it can encode the tradeoff between

various measures of the traversal efficiency. The Static Sta-
bility Margin [18] and the Dynamic Stability Margin [17]
measure the stability of the multi-legged robot by observing
its support polygon, i.e., the polygon defined by its footholds,
and projection of the center of gravity. The concept of robot
stability is also related to the vehicle vibration, which may
decrease the perception accuracy, and eventually damage the
robot construction. Alternatively, the terrain traversal experi-
ence can be encoded in a performance measure such as the cost
of transport that is defined as the ratio between the consumed
energy and velocity of the robot [15, 31].

The proposed framework (described in Section IV) is tai-
lored to employ any continuous experience-based performance
measures, but for our herein presented particular setup with
hexapod walking robot, the terrain traversal risk is character-
ized as the experienced stability of the robot over a predefined
time window. However, such a traversal risk is a particular
instance for the system deployment, and thus its description
is dedicated to Section V.

III. GAUSSIAN PROCESS REGRESSION

A brief overview of the Robust Bayesian Committee Ma-
chine (RBCM) inference mechanism is presented here together
with a summary of the GP regression and BCM with GP
regressor experts to make the paper more self-contained.

GP regression is a non-parametric generalization of the
linear regression and for given noisily observed function f(x)

y = f(x) + ε, ε ∈ N (0, σ2), (1)

the GP is defined as a distribution over functions [25]

f(x) ∼ GP(m(x),K(x, x′)) (2)

characterized by its mean m(x) and covariance K(x, x′) as

m(x) = E [f(x)] , (3)
K(x, x′) = E [(f(x)−m(x)) (f(x′)−m(x′))] , (4)

for any pair of (x, x′) out of the input space X . Given
the training data (X, y) = {Xi, yi}ni=1 with the size n, the
predictive equations of the latent values f∗ for the test data
X∗ can be determined as

µ(X∗) = K∗
[
K + σ2I

]−1
y,

(σ(X∗))
2 = K∗∗ −KT

∗
[
K + σ2I

]−1
K∗,

(5)

where the notation for (σ(X∗))
2 is abused to improve the

readability and clarity of the equation, and K,K∗, and K∗∗
are covariance matrices defined as

K = K(X,X),K∗ = K(X,X∗),K∗∗ = K(X∗, X∗). (6)

The GP regression has cubic learning time complexity O(n3),
which limits its application in tasks such as the robotic explo-
ration, and therefore, less demanding approach is desirable.

The BCM [30] is a product of experts approach that allows
combining GP regressors learned on multiple datasets. Since
each of the GP regressors can be constructed independently,
the learning time complexity of the BCM with GP regressors
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Fig. 2. Overview of the proposed system for online incremental learning of the terrain traversal cost in autonomous spatial exploration.

is O((n/k)3k), where k is the number of equally sized
components of the size m, i.e., n = km. In practice, the size of
a single component m is significantly smaller than n, and thus
its processing time can be considered constant. Thus for a fixed
m and m� k we can consider O(m3k) ∼ O(k) and since k
is proportional to n, the total complexity of k regressors can
be approximately bounded by O(n), a notable improvement
over the original O(n3). The predictive equations of the BCM
with k Gaussian regression experts can be defined as

µBCM(X∗) = (σBCM(X∗))
2

k∑
i=1

(σi(X∗))
−2µi(X∗),

(σBCM(X∗))
−2 = (1− k)(K∗∗)

−1 +
k∑

i=1

(σi(X∗))
−2
,

(7)
where µi(X∗) and (σi(X∗))

2 are the means and covariances
of the individual experts. The BCM has been further improved
as the Robust BCM (RBCM) in [8]. The RBCM weights the
individual experts based on the predictive power of each expert
at X∗ and the RBCM predictive equations are

µRBCM(X∗) = (σRBCM(X∗))
2

k∑
i=1

βi(X∗)(σi(X∗))
−2µi(X∗),

(σRBCM(X∗))
−2 =

=

(
1−

k∑
i=1

βi(X∗)

)
(K∗∗)

−1 +
k∑

i=1

βi(X∗)(σi(X∗))
−2,

(8)
where the weight βi of the expert i at X∗ is defined as

βi(X∗) = 0.5
(
log(K∗∗)− log((σi(X∗))

2)
)
. (9)

Thus, βi(X∗) is the difference in the differential entropy
between the prior p(f∗|x∗) and posterior pi(f∗|x∗, Xi), where
Xi is the training dataset of the i-th expert.

IV. AUTONOMOUS EXPLORATION WITH ONLINE
INCREMENTAL TERRAIN TRAVERSAL COST LEARNING

In the addressed problem, we are motivated to build a fully
autonomous system capable of operating in a priory unknown

environment and without prior knowledge about the traversal
cost. We consider the proposed system within an autonomous
exploration setup to simultaneously build a spatial model of
the operational environment together with the traversal cost
model that is learned incrementally to increase confidence in
the cost estimation. Thus, during the exploration, the robot
reasons how to improve the spatial and traversal cost models
while it leverages on the experience accumulated in the incre-
mentally learned traversal cost model in navigating towards
spatial frontiers and avoiding costly terrains. The whole system
consists of individual modules to build the spatial environment
model, mark unpassable terrains, learn the terrain traversal cost
model characterizing traversable terrains (continuously utilized
in the determination of the next exploration goal), navigation
to the selected goal, and locomotion control.

The overall system architecture can be divided into four
main parts that are depicted in Fig. 2. Exteroceptive signals
are processed in the environment representation to localize the
robot and build a map of the robot surroundings together with
extracting terrain shape and appearance feature descriptors
that are further utilized in traversal cost model inference.
The traversal cost modeling includes the incremental learning
of the traversal cost model using the robot proprioceptive
experience coupled with the terrain descriptors. Besides, non-
traversable parts of the environment are labeled as areas with
infinite traversal cost based on the geometric features of the
created terrain elevation map to avoid unnecessary model-
based traversability assessment of unpassable areas.

The traversal cost model is employed in model inference
to build a cost map of reachable areas of the environment
together with the confidence of the estimated cost that is
utilized in the selection of the next exploration goal towards
which the robot is navigated. The system continuously gathers
new measurements and updates the current navigational goal
until no exploration goal is determined. A detailed description
of the individual parts of the system follows.

A. Environment Representation

The environment is represented as the colored 2.5D eleva-
tion grid map denoted M2.5D (see Fig. 3a), which utilizes an
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    Traversable      Non-Traversable
Traversability Assessment

   0.0 0.02   
RBCM Predictive Mean
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RBCM Predictive Std

(a) M2.5D (b) Mtrv (c) Traversal cost in Mcost (d) Traversal cost confidence ofMcost

Fig. 3. Colored elevation grid map M2.5D (a); traversability grid map Mtrv (b); traversal cost grid map Mcost (c); and the respective confidence of the
traversal cost model (d). Note, Mcost characterizes only the traversable areas.

underlying quadtree data structure. Each cell ν ∈M2.5D stores
elevation and RGB color information, and it is further char-
acterized with the five-dimensional geometric and appearance
terrain feature descriptor desc(ν) that is a modification of the
terrain descriptor used in [23]. The used geometric part of the
descriptor, which is designed to distinguish the unstructured,
linear, and planar shape [16] of the terrain, is defined as

s1 =
λ1
λ3
, s2 =

λ2 − λ1
λ3

, s3 =
λ3 − λ2
λ3

, (10)

where λ1 < λ2 < λ3 are the eigenvalues of the covariance
matrix of the elevation and spatial values in the spatial δdesc-
neighborhood of the cell ν. The residual sum of the squares
feature utilized in [16, 23] is relaxed, and the two-dimensional
appearance part of the descriptor is the δdesc-neighborhood
channel means of the ab channels of the Lab color space. For
further information on the performance of individual descriptor
parts and their combinations, we kindly refer the reader to [23].

B. Traversal Cost Modeling

The main role of the traversal cost modeling is to incre-
mentally learn the traversal cost model based on the terrain
feature descriptors. The particular cost value captures the
real robot experience with the particular terrain type and it
is measured by proprioceptive sensing. The model consists
of the RBCM with GP regressor experts learned to allow
inferring the traversal cost observed by the robot from the
geometric and appearance description of the terrain. Thus, the
RBCM is augmented with the terrain descriptors paired with
the traversal cost experienced over the said terrain. Since the
RBCM with a single expert would behave similarly to the
GP; therefore, the maximal size of expert mmax is specified
as a tradeoff between the computational requirements and
achieved precision of the model. The RBCM experts are
constructed incrementally, and a new expert is allocated every
mmax observations. In particular, mmax = 50 is selected so
that a new expert is allocated approx. once per minute because
of the robot locomotion speed. Each expert thus consists of
spatially neighboring terrains. In addition, we further specify
the minimal number of observations mmin to consider the
particular expert in the inference, because small experts may
negatively spoil it with their high confidence.

In addition to the model learning, unpassable terrain areas
are marked at this stage, and the M2.5D grid map is trans-
formed into the traversability grid mapMtrv. Inspired by [37],

we determine untraversable cells using step height defined as
the maximum elevation difference of the neighboring cells.
Thus, based on the motion capabilities of the particular robot,
we specify the maximum hmax for traversable cells, and thus
cells with the step height above hmax are considered un-
traversable. Besides, considering the embodiment of the robot,
we further mark cells in the δimpassable-radius neighborhood of
such an untraversable cell also as untraversable, see Fig. 3b.

C. Model Inference

In the model inference part of the framework, the traversal
cost grid map Mcost is created combining M2.5D, Mtrv, and
the current learned terrain traversal cost model. Each cell ν′ ∈
Mcost characterizes the inferred traversal cost accompanied
with the traversal cost model confidence over the traversable
regions represented byMtrv, see Figs. 3c and 3d, respectively.
In general, the resolution of Mcost can differ from M2.5D as
the resolution affects the level of details achieved in spatial
exploration, model exploration, but also path planning, and
the most suitable resolution of the individual maps depends
on the sensor resolution and the size and step length of the
robotic platform. It might be necessary to resample maps
using terrain descriptors of M2.5D and model inference for
each grid cell that is traversable according to Mtrv. Thus, for
each traversable grid cell ν′ ∈ Mcost, the closest grid cell
ν ∈ M2.5D is determined and its terrain descriptor denoted
desc(ν) is inferred. The model inference is employed for each
traversable cell ν′ ∈ Mcost to estimate the cost using the
traversal cost model prediction mean for the descriptor desc(ν)

µ(ν′) = µRBCM(desc(ν)), (11)

and the model confidence is determined as the square root of
the traversal cost prediction variance for desc(ν)

σ(ν′) = σRBCM(desc(ν)), (12)

where high σ(ν′) signifies low model confidence.

D. Exploration

The exploration module selects the next navigational goal
location towards which the robot navigates. Different strategies
to tradeoff the spatial exploration with the model improvement
can be designed, but the proposed approach combines spatial
frontiers and traversal cost model exploration. The employed
strategy greedily improves the traversal cost by navigating to
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Algorithm 1: Autonomous exploration with online incremental terrain traversal cost learning
Input: δdesc, hmax, δimpassable,mmin, rspatial, δscore, λscore – Parameters of the terrain characterizing descriptors, traversability

map, terrain traversal cost map and navigational goals.
repeat1

M2.5D ← getSpatialModel(δdesc) // Using exteroception, e.g., RGB-D data2

Mtrv ← getTraversabilityMap(M2.5D, hmax, δimpassable) // Mark untraversable areas using [37]3

RBCM← getTravelCostModel(mmin) // Get experts, each with at least mmin observationss4

Mcost ← inferModel(RBCM,M2.5D,Mtrv)5

νspatial ← getBestSpatialGoal(M2.5D,Mcost,Mtrv, rspatial) // Using cost (11) and (14)6

(νcost, score(νcost))← getBestCostGoal(Mcost,Mtrv, δscore) // Using (12) and (15)7

ν∗ ← selectNextGoal(νspatial, νcost, score(νcost), scoreThreshold) // Select the next goal using (16)8

path(νr, ν
∗)← findPath(Mcost, νr, ν

∗) // Path from the current robot position νr to the goal ν∗9

setNavigationWaypoints(path(νr, ν
∗)) // Set the path as the next navigational waypoints10

until ν∗ is ∅11

getBestSpatialGoal(M2.5D,Mcost,Mtrv,rspatial):
Fspatial ← clusterFrontiers(M2.5D) // Cluster frontiers using (13)1

Nspatial ← assignReachableCells(Fspatial,Mcost,Mtrv, rspatial) // Place reachable frontiers on Mcost2

return Dijkstra(Nspatial,Mcost) // Select the cheapest goal to reach using (14)3

getBestCostGoal(Mcost,Mtrv,δscore):
forall reachable ν ∈Mcost do1

Σ← {} // Compute score for all reachable cells2

forall ν′ ∈Mcost where ‖(ν, ν′)‖ < δscore do3

Σ← Σ ∪ σ(ν′) // Collect uncertainties for all cells in neighborhood using (12)4

score(ν)← median(Σ) // Compute the score using (15)5

return (argmax(score),max(score)) // Select the reachable cell with the highest score6

terrains that are considered unknown. If the observed terrains
are sufficiently known, the robot explores the spatial frontiers.

Spatial goal locations are determined as means of clustered
frontiers (representatives), where each cluster is a single con-
nected component of the selected frontier cells. The number
representative nr of a single component is determined as [9]

nr = 1 +

⌊
f

D
+ 0.5

⌋
, (13)

where f is the current number of frontier cells and D is
the sensor range (in the number of grid cells). The set of
frontier cells Nspatial ⊂ Mcost is created by assigning a
reachable, and thus traversable cell ν ∈Mcost that is incident
with an unexplored cell. Moreover, frontier cells closer than
rspatial = 0.4 m to the current robot position νr are also
ignored to avoid navigating to goals that the robot cannot
observe en-route. The best spatial goal νspatial is selected as
the representative with the lowest cost to be reached from
the current robot position νr. The cheapest to reach spatial
exploration goal is determined using Dijkstra’s algorithm with
the traversing cost c(νi, νj) between two neighborhood cells
νi, νj ∈Mcost based on the cost prediction (11) and Euclidean
distance ‖(νi, νj)‖ between the centers of the corresponding
grid cells νi and νj as

c(νi, νj) = ‖(νi, νi)‖ (µ(νi) + µ(νj)) /2. (14)

Dijkstra’s algorithm is preferred since we need to determine
the cost to reach all representatives, but the closest is selected.

The goal locations for the traversal cost model are grid cells
ν ∈Mcost with a high model uncertainty that is considered as
the score(ν) over δscore spatial neighborhood to characterize
the level of details in the model exploration. The value of
score(ν) for a cell ν ∈ Mcost is defined as the median of
the traversal cost predictive standard deviation (12) of the
neighboring cells

score(νi) = median{σ(νj) | ‖(νi, νj)‖ < δscore}. (15)

The cell with the highest score is selected as the next naviga-
tional goal locations for exploring the traversal cost model.

Then, a particular exploration strategy is employed, which
in our case is a preference of the model learning. Thus, the
robot prefers to explore unknown terrains (if any has been
observed) and the next navigational goal is the center of the
grid cell ν∗ selected using the decision rule

ν∗ =


νcost if score(νcost) > λscore,

νspatial if a reachable spatial goal location exists,
∅ otherwise,

(16)
where λscore is the threshold model confidence to do not
consider further improvement of the traversal cost model. The
particular value λscore needs to be set to fit the traversal costs
range and variance observed by the utilized robotic platform.

Finally, once the navigational goal ν∗ is determined, the
cheapest path is computed by Dijkstra’s algorithm using (14)
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and such a path is used to navigate the robot towards the goal.
Since the robot collects new information during its navigation
in the environment, and thus it improves its spatial and
traversal cost model continuously, it is desirable to perform
the decision-making at a high rate to quickly exploit new
knowledge about the environment. Both the spatial model and
traversal cost model are independently updated in separate
execution loops defined by the maximal processing speed
of the localization and model learning. The exploration loop
needs to build (update) the traversability mapMtrv and infer a
new traversal cost mapMcost based on the spatial mapM2.5D.
Besides, the updated RBCM-based traversal cost model is
employed to determine new goals and plan the paths.

A summary of the exploration loop with the individual
parts of the model usage is depicted in Algorithm 1 together
with the list of parameters that are specified for the particular
experimental deployment in the following section.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed system for autonomous exploration with
online and incremental learning of the terrain traversal cost has
been experimentally validated in two scenarios. First, we com-
pare the performance of the RBCM with GP regressor experts
to pure GP regression on a dataset captured by the utilized
robot. Second, we deploy the system in a fully autonomous
exploration to demonstrate the online model learning and its
benefit for avoiding costly terrains experienced by the robot.

Fig. 4. The utilized hexapod walking robot and the laboratory test track.

The system is deployed on a small hexapod walking robot
operating on a laboratory test track with rough terrains (see
Fig. 4). The developed system consists of several modules and
implementations overviewed in Table I. The substantial part
of the proposed approach is the traversability cost determined
from the proprioceptive measurements. Based on the review
of existing work (see Section II), we chose stability based
traversal cost computed as the variance of the roll angle of
the sliding window spanning the robot gait cycle duration of
10 s. We found out that a high roll variance indicates the robot
cannot find firm footholds, which decreases its speed, risks
damage to its body, and also hampers the perception accuracy.

The robot has been deployed in the laboratory test track
with six selected terrains denoted flat, grass, carpet, cubes,
ramp, and stairs that display specific interaction properties
when traversed by the hexapod walking robot as follows.
• PVC flooring (flat) represents an easy to traverse terrain.
• Turf-like carpet (grass) and red carpet (carpet) are soft

terrains with faint response to the foot contact.

• Wooden blocks (cubes) with different height and slope
with the base of 10×10 cm represent a harder to traverse
rough terrain mock-up with the overall size of 2.3×1.2 m.

• Hard to traverse ramp (ramp) and wooden stairs (stairs)
with 4 cm steps inducing vibrations due to slippage.

TABLE I
INDIVIDUAL PARTS OF THE DEVELOP ROBOTIC SYSTEM

Part / Module Used Setup / Utilized Implementation

Robot Hexapod walking robot with six legs each with
three actuated joints. The robot dimensions are about
45×40 cm when standing in a default configuration,
and we set hmax = 0.2m and δimpassable = 0.25m.

Locomotion
control

We employ the available approach [10] with the mean
walking velocity of the robot around 0.05ms-1. The
robot employs the follow the carrot algorithm with
20 cm distance threshold for the path following.

Exteroception,
Proprioception

Intel RealSense D435 (RGB-D imagery, 640×480 at
15Hz), Intel RealSense T265 (localization 200Hz).

Computational
resources

Intel Core i7-8650u CPU with 16GB RAM, Ubuntu
18.04, and implementation in ROS Melodic [24].

Environment
map

Mcost grid map with the grid cell size 10 cm, which
roughly corresponds to the robot step length for a
single gait cycle, and thus we chose δdesc = 0.2m
and δscore = 0.5m to prefer larger patches of terrains.

Traversability
cost

The variance of the roll angle θroll over the sliding
window 10 s long.

A. Comparison of the RBCM and Pure GP-based Regression

In this experiment, we compare the performance of the
herein utilized RBCM with GP regressor experts with the pure
GP-based regression using real dataset collected by the used
robot in the laboratory test track. We are specifically focused
on the evaluation of the prediction abilities and computational
requirements in the online incremental learning setup, and
therefore, we consider six learning setups: the RBCM with
Exponential, Matérn 3/2, Matérn 5/2, and RBF kernels; In-
cremental Gaussian Mixture Network (IGMN) [22], which is a
representative of a broader set of fast incremental approaches;
and pure GP learned using all the available observations, which
serves as the baseline approach that is however expected to
be computationally demanding. The individual GP experts
and the pure GP model are learned using the GPy frame-
work [12], and each of the individual experts is optimized
using the limited memory Broyden-Fletcher-Goldfarb-Shanno
with boundaries (L-BFGS-B) [7] limited to 200 steps.

All the methods are evaluated on the dataset containing 292
data points of terrain descriptors paired with the corresponding
stability based traversal cost which ranges in [0.005, 0.050],
with a considerable variance over the wooden stairs. The
dataset comprises two human operated runs over the laboratory
test track. Each model is incrementally learned on the dataset;
i.e., a single observed data point is added to the model at
each learning step. Besides, at each step, the models are used
to predict the traversal cost for the whole dataset, and the pre-
diction is compared to the set of the collected measurements.
Since the selected traversal cost encodes the robot experience
with traversal of terrains, it cannot be obtained without the
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(a) The learning time observed in the RBCM experimental verification.
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(d) The model confidence represented as the model prediction standard
deviation. Note, GP uses the alternative scale.

Fig. 5. Results of the comparison of the RBCM and Pure GP-based regression.

measurement noise caused by the robot motion, and thus the
set is considered to represent the traversal cost ground truth.
We also report the time to learn and predict the traversability
costs of the whole dataset. We have processed the dataset in
100 learning-and-prediction trials, and report the mean value
to profile the proposed system and mitigate the effects of OS
scheduling, garbage collection, etc. The computational times
to learn the individual models, the inference times, and to
predict means and standard deviations are reported in Fig. 5.

The results indicate that the fastest learning method is the
IGMN, which fuses a new observation with O(1), although

the theoretical time complexity of the RBCM is the same
for the constant mmax, as only one expert of the limited size
needs to be retrained. The GP has the fusing complexity
O(n3) since it retrains the whole model at each time step.
The inference times reported in Fig. 5b slowly increase for
the RBCM as the number of experts gradually increases.
The evolution of the Root Mean Squared Error (RMSE) is
shown in Fig. 5c. The peaks in the RBCM correspond to
the influence of the newly inserted small experts with a low
number of observations, which are overly confident due to
a few observations. Thus, it is desirable to set the expert
minimum size mmin in the inference. At the end of the testing
trail, the IGMN provided similar results to most of the RBCM
variants, but the GP learned the best representation of the
terrain costs; however, the RBCM models outperform the GP
before the second traverse of the experimental mock-up when
the robot revisits already visited areas. Even though the IGMN
performs similarly to the RBCM, its main drawback is that it
does not predict model confidence. The results in Fig. 5d show
that the predictive standard deviation of the RBCM models
is considerably lower than that of the GP. Both the RBCM
and GP exhibit similar behavior when the predictive standard
deviation is lowered by adding observations, and the predictive
standard deviation for unobserved terrains is higher than the
predictive standard deviation for rough terrains with varied
traversal cost measurement.

In conclusion, the RBCM with GP regressor experts pro-
vides similar performance to the GP regressor regarding both
performance indicators, the RMSE, and the model confidence
observed on the verification dataset. Moreover, the RBCM
learning is less computationally demanding and can satisfy
the real-time requirements of the online deployment with the
real walking robot. On the other hand, the RBCM inference
time is higher, resulting in a tradeoff between the complexity
of learning and inference, with a preference on the learning
speed in the herein presented deployment. The best performing
RBCM with the size mmax = 50, mmin = 25 and the
exponential kernel is utilized in the autonomous exploration
deployment reported in the following section.

B. Autonomous Exploration

In the experimental deployment of the proposed system in
fully autonomous exploration, the laboratory test track has
been surrounded by boards and boxes to guarantee the ex-
ploration is finished within a reasonable time. The considered
terrains for this experiment are the flat ground, the wooden
cubes, the artificial grass, and red carpet. During the exper-
iment, the robot has been placed in the arena and requested
to explore the whole area and build the terrain traversal cost
model. The verification of the system performance is made by
observing the robot behavior and profiling the implementation.

During the operation, the proposed system fully exploits the
computational resources. The update rate and CPU usage for
each individual part of the system are reported in Table II.
The majority of the resources has been consumed by the
implemented exploration node that is responsible for the
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(a) Situation after partial creation of the first model component. The robot
chooses to explore the traversal cost over the wooden cubes.

(b) The robot revisits the wooden cubes to improve its model.

(c) The robot has explored the traversal cost model over all terrains it has
observed so far, and thus the system switched to the spatial exploration.

Fig. 6. Evaluation of the traversable terrain at partial time instants of the
autonomous exploration. From left: the robot position on the test track,
predicted traversal cost, and confidence of the traversal cost model.

construction of Mcost and exploration. At the beginning of
the experimental trail, the exploration node took 1.1 s to plan
a new path for a map of 219 traversable cells, in the middle
of the experiment it took 10.0 s for 793 traversable cells, and
at the end 23.2 s for a map with 910 cells. The speed of the
M2.5D update fluctuated based on the number of concurrently
updated nodes. However, the performance of the exteroception,
proprioception, model learning, and locomotion control have
been stable.

TABLE II
PERFORMANCE OF THE AUTONOMOUS EXPLORATION

Process CPU usage∗ Update rate

Exteroception 36% 15Hz

Proprioception - Traversal cost calcu-
lation

54% 200Hz

M2.5D andMtrv construction and ter-
rain descriptors calculation

98% 1–30Hz+

Model learning 61% 1Hz

Mcost inference and exploration 450% 0.05–1Hz

Locomotion control 19% –

∗ Maximal CPU usage 800% (4 cores with Hyper-threading)
+ Depending on the size of the map update

The exploration deployment has been performed several
times with similar behavior. The hexapod walking robot has
been deployed using either the adaptive motion gait [10],
which is designed to traverse rough terrains, or with the
regular gait, which is faster but less capable on rough terrains.
The value of λscore has been set to 0.001 and 0.0005 for the
adaptive and regular gait, respectively.

The behavior of the robot in the selected showcase situations
is documented in Fig. 6, and the complete evolution of the spa-
tial and traversal cost models over one trial is presented in the
accompanying video. Altogether 11 experts with mmax = 50
have been created in the total during this trial. At the beginning
of each experiment, the robot is located on the flat ground and
it is allowed to freely explore the environment. As the robot
did not yet traverse any terrain, the terrain traversal cost and
the model confidence are both uniform, and the robot chooses
to go towards the nearby spatial goal. After the first model
component is created, the robot typically explores some area
with a low model confidence (represented by a high predictive
standard deviation), e.g., the wooden cubes or the centrally
located artificial grass, see Fig. 6a. Occasionally, the robot
briefly samples traversal cost over a terrain type, and continues
on to explore another terrain that is unknown. In such a case,
the robot may return to the first terrain to further improve its
model, see Fig. 6b. If the robot has observed all the readily
available terrains, it continues with spatial exploration, see
Fig. 6c. Although it is not possible to provide ground truth
for the learned model, because it depends on the particular
trial, the robot has always identified the flat ground, artificial
grass, and red carpet as an easy to traverse, and the rough
wooden cubes as hard to traverse.

Based on the experimental deployment, we can conclude
that the robotic system presented in this paper is capable of
exploiting both the spatial and traversal cost model explo-
ration, and selects the one that suits its currently accumulated
knowledge with the preference towards traversal cost model
exploration. The system is also capable of making informed
decisions and intentionally avoid hard-to-traverse areas.

VI. CONCLUSION

In this paper, we present a robotic system for spatial
exploration that is combined with the exploration of underlying
traversal cost model over traversable terrains that is enabled by
employing the Robust Bayesian Committee Machine (RBCM)
with GP regressor experts, which learning part is less compu-
tationally demanding than the pure GP regressor, and thus it
is more suitable for online decision-making. The additional
advantage of using the RBCM (e.g., in comparison to the
IGMN) to create the terrain traversal cost model incrementally
is that it provides both the predictive mean and variance for
the observed terrains, and thus allows the robot to explore
areas of low model fidelity. The proposed approach has been
deployed in the developed robotic system and verified in
a fully autonomous exploration with the hexapod walking
robot. The reported experimental results support the robot
is capable of exploiting the spatial knowledge and make
informed decisions and intentionally avoid hard-to-traverse
terrains during the exploration. We aim to extend the approach
by incorporating a combined probabilistic representation of
the terrain traversal feasibility and terrain traversal cost, and
also consider intended robot maneuvers, because the terrain
traversability differs based on the particularly performed robot
maneuver.
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[37] P. Čı́žek, D. Masri, and J. Faigl. Foothold Placement
Planning with a Hexapod Crawling Robot. In IROS,
pages 4096–4101. IEEE, 2017. doi: 10.1109/IROS.2017.
8206267.
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Autonomous robotic exploration
with simultaneous environment
and traversability models
learning

Miloš Prágr*, Jan Bayer and Jan Faigl

Computational Robotics Laboratory, Faculty of Electrical Engineering, Czech Technical University in
Prague, Prague, Czechia

In this study, we address generalized autonomous mobile robot exploration of

unknown environments where a robotic agent learns a traversability model and

builds a spatial model of the environment. The agent can benefit from the

model learned online in distinguishing what terrains are easy to traverse and

which should be avoided. The proposed solution enables the learning of

multiple traversability models, each associated with a particular locomotion

gait, a walking pattern of a multi-legged walking robot. We propose to address

the simultaneous learning of the environment and traversability models by a

decoupled approach. Thus, navigation waypoints are generated using the

current spatial and traversability models to gain the information necessary to

improve the particular model during the robot’s motion in the environment.

From the set of possible waypoints, the decision on where to navigate next is

made based on the solution of the generalized traveling salesman problem that

allows taking into account a planning horizon longer than a single myopic

decision. The proposed approach has been verified in simulated scenarios and

experimental deployments with a real hexapod walking robot with two

locomotion gaits, suitable for different terrains. Based on the achieved

results, the proposed method exploits the online learned traversability

models and further supports the selection of the most appropriate

locomotion gait for the particular terrain types.

KEYWORDS

mobile robot exploration, active learning, traversability, multi-legged robot,
locomotion gait

1 Introduction

The presented online terrain learning approach is motivated by long-term missions

where autonomous robots would improve their operational performance in navigating a

priori unknown environments. Some difficult to traverse terrains, such as large rocks, can

be identified as obstacles using an observed geometric model of the environment.

However, areas which appear flat and thus easy to traverse may, in practice, be hard

to traverse due to their terra-mechanical properties, as experienced by NASA’s Mars

Rover Spirit stuck in soft sand (Brown and Webster, 2010). In the presented approach,
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individual terra-mechanical properties are assumed to be

partially unknown, and we learn a black box model to assess

the traversability in a particular environment from the terrain

appearance (Prágr et al., 2018). Since the scope of the functional

relation between the terrain appearance and traversability might

be limited to a particular environment, we advocate that on long-

term deployments and exploration missions, the terrain models

are learned online incrementally (Prágr et al., 2019b) as a part of

the mission (Prágr et al., 2019a). Hence, we focus on the

exploration of the environment and its terra-mechanical

properties represented as the traversal costs that characterize

the difficulty of traversing the individual terrains, as visualized in

Figure 1. In particular, we consider multi-legged walking robots

that can traverse various terrains with different traversal costs

(also depending on the particular locomotion gait used), which

provide a representative case for demonstrating the benefits of

traversability assessment learned online. Compared to the

previous work, the presented approach addresses the different

locomotion gaits of the robot and distinguishes individual

terrain-gait traversal cost models. In addition, the proposed

exploration strategy provides a non-myopic (Zlot and Stentz,

2006) solution that takes into account both the spatial

exploration and learning of the traversal cost models.

In the proposed approach, the impassable parts of the

explored environment are determined by the geometric

models using a grid-based elevation map (Bayer and Faigl,

2019). The individual terrain-gait traversal cost models are

near-to-far predictors that infer the time to traverse over the

traversable areas from their appearance and are learned using the

robot’s previous experience accrued when traversing similar-

appearing terrains using a particular gait. The traversal cost

models comprise Gaussian process (GP) regressors

(Rasmussen and Williams, 2006), which predict the traversal

costs from the terrain appearance, and growing neural gas

(GNG) (Fritzke, 1994) terrain type clustering schemes used to

identify similar-appearing terrains. The geometric and traversal

cost models are incrementally constructed while exploring the

mission environment. The geometric model is continually built

from the robot’s exteroception, whereas each traversal cost model

accumulates the costs experienced by the robot when moving

using the respective locomotion gait. During the deployment,

each model continually provides a set of exploration goals to be

visited to learn (improve) the model. For several possible goal

locations, the exploration strategy is to determine a sequence of

the navigational goals to be visited that is addressed as a solution

of the Generalized Traveling Salesman Problem (GTSP) (Noon,

1988) to provide a non-myopic solution considering the so-called

TSP distance cost (Faigl and Kulich, 2013).

The remainder of the article is organized as follows. In

Section 2, we present an overview of the related approaches in

mobile robot exploration and traversability assessment. Section 3

formally defines the studied problem of mobile robot exploration

with a priori unknown terrain traversal cost assessment. The

proposed exploration with online traversal cost learning is

presented in Section 4. Section 5 reports on the performed

experimental results in simulations and real-world

experimental deployments with a multi-legged robot

controlled by two motion gaits. In Section 6, we discuss the

strong points and limitations of the proposed approach. Section 7

concludes the study.

2 State of the art

This section presents an overview of works related to the

proposed approach. First, we focus on the traversability

assessment approaches. Then we survey mobile robot

exploration and environment modeling.

FIGURE 1
(A)Hexapodwalking robot (courtesy of Forouhar et al. (2021)) (B) and its deployment using the proposed approach. The visualized planned path
is to visit determined exploration goals for the spatial (in blue) and traversal cost models (in red). The spatial exploration goals are located close to the
boundary of the already explored part of the environment. The traversal cost exploration goals correspond to sites where the terrain traversal cost
model can be improved. Since the cost model is already partially learned, the red-tinted turf is known to be hard to traverse, and thus the robot
prefers the green-tinted pavement, which is relatively easy to traverse. The yellow-tinted terrain is yet to be experienced by the robot and thus carries
the terrain learning goal indicated by the red waypoint. The not-yet-observed area is gray.
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2.1 Mobile robot traversability

Two main questions emerge when reasoning about robot

traversability over terrains. First, can the terrain be safely

traversed, or should it be avoided? Second, if the terrain is

passable, how does it compare to other terrains, i.e., is it

easier and safer to traverse? Note that for the sake of clarity,

we further denote the binary (true/false) traversability,

which determines whether an area is an impassable obstacle

or passable terrain, as terrain passability. In contrast, the relative

comparison of the traversal difficulty over passable terrains is

denoted as assessing the traversal cost. The term traversability is

used to describe the notion in general, including both the

passability and traversal cost. A review of mobile robot

traversability assessment methods can be found in Papadakis

(2013), and an overview of learning-based methods for ground

robot navigation is in Guastella and Muscato (2021). Hence, we

focus on works relevant to how traversability is approached in

this study.

The passability discrimination can be directly incorporated

in mapping in the form of occupancy cell grids (Moravec and

Elfes, 1985), Gaussian mixtures (O’Meadhra et al., 2019), GP

models (O’Callaghan et al., 2009), or Hilbert maps (Ramos and

Ott, 2016). The distinction of terrain passability can be

understood as an instance of terrain classification, where

terrains are assigned individual classes, and each class carries

presumed terra-mechanical properties. For example, some

classes can be considered hard-to-traverse vegetation or

obstacles (Bradley et al., 2015). In addition to terrain

classification, terrains can be assigned continuous values

describing some observed terrain property such as roughness

(Krüsi et al., 2016; Belter et al., 2019), slope (Stelzer et al., 2012),

or step height (Homberger et al., 2016; Wermelinger et al., 2016).

For continuous measures, passability can be based on

thresholding the value, as in Stelzer et al. (2012), where the

passability is determined by individually thresholding terrain

slope, roughness, and step height. Moreover, classes may

correspond to a particular robot configuration, such as in

Haddeler et al. (2020), where the authors classify terrains into

modes of wheeled-legged locomotion.

In instances where the terra-mechanical properties are

unknown and thus terrains’ appearance and geometry features

are not sufficient to determine their traversability, the

traversability can be based on the robot’s prior experience

with similar terrains. The experience-based measures can be

derived from the robot proprioception and described using

stability (McGhee and Frank, 1968; Lin and Song, 1993),

slippage (Gonzalez and Iagnemma, 2018), vibrations (Bekhti

and Kobayashi, 2016), velocity, or energy consumption

(Kottege et al., 2015). The experience-based approaches

describe the traversal cost only over passable terrains since the

traversal is needed to acquire the robot experience. An exception

worth mentioning is haptic sensing to determine obstacle

passability (Baleia et al., 2015), which, however, still relies on

the direct interaction of the robot with the terrain.

Since the experience-based approaches use on-location robot

experience, they are difficult to use directly in path planning

where it is necessary to evaluate terrain traversability from a

distance using only exteroceptive measurements. Near-to-far

approaches pair traversability indicators that can be observed

only near the robot (such as proprioception or dense short-range

measurements) with terrain appearance and geometry that can

be observed from farther distances and thus learn to predict

traversability from the long-range measurements. Sofman et al.

(2006) incrementally learned the relation between dense laser-

based features characterizing ground unit traversability and

overhead features that can be used to assess traversability

from aerial images, whereas Bekhti and Kobayashi (2016)

learned to predict vibration-based traversability from terrain

texture. Quann et al. (2020) proposed an energy traversal cost

regressor considering both terrain position and appearance. In

addition, Mayuku et al. (2021) proposed a self-supervised

labeling approach for a near-to-far scenario, where vibration-

based traversal cost is inferred from image data, and the self-

supervised data gathering is based on identified terrain classes.

Following the approaches in the literature, we assume that

terrain is rigid, and it is possible to distinguish passable terrain

and non-traversable obstacles from the terrain geometry using a

step height similar to Stelzer et al. (2012), or Wermelinger et al.

(2016). Hence, this study focuses on modeling the traversal cost

over the determined passable terrains. Moreover, we are

motivated by the online cost assessment in mobile robot

exploration, where the computational requirements are

crucial. Therefore, we avoid high fidelity models, which

besides being costly to compute also rely on plan execution

with high precision (such as deterministic foothold placement),

whichmight not be available in practice. The traversal cost is thus

learned as a black box near-to-far model that uses terrain

appearance to predict the time to traverse over terrains. Since

the scope of the relation between the terrain appearance and

traversability might be limited to a particular environment, we

incrementally learn the cost predictor by sampling the robot’s

experience with traversing individual terrains. Similar to the

classification in Belter et al. (2019), a color histogram is

selected as the terrain appearance descriptor because it is

simple to compute and the histograms are sufficiently

descriptive to capture multi-colored terrains. Furthermore, we

consider locomotion gaits of the employed hexapod walking

robot that are suitable for different terrains. Thus, the passable

terrain is a terrain traversable by at least one gait, and obstacles

are terrain parts that none of the gaits can traverse. We propose a

decoupled approach that predicts the traversal cost for each gait

independently, and the robot then selects the most cost-efficient

gait for each terrain.

Regarding the existing methods, the proposed approach is

closest to Haddeler et al. (2020), where modes of the wheeled-
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legged robot are switched. In addition, the proposed approach is

also close to the self-supervised, near-to-far traversability-

learning approach proposed by Mayuku et al. (2021). In that

regard, the primary contribution of the proposed approach is the

integration of active traversability learning in mobile robot

exploration, where the robot plans a non-myopic path to

improve both the spatial and traversal cost models learned

online during the deployment.

2.2 Mobile robot exploration and
environment modeling

Mobile robot exploration is an active perception problem

that concerns behaviors where the robot seeks to build a model of

a priori unknown environment. The exploration entails the robot

seeking areas that are in some capacity unknown to construct a

map of the environment. The exploration thus inherently

combines localization, navigation, and planning (Schultz et al.,

1999) to decide where the robot should go next. Steering the

robot navigation to not-yet-observed areas yields frontier-based

exploration (Yamauchi, 1997), where the frontiers represent

boundaries between the observed traversable area and the

unknown space represented on an occupancy grid (Moravec

and Elfes, 1985). Recently, in the octree-based environment

model, frontiers are represented as mesh faces with few

neighbors (Azpúrna et al., 2021).

Bourgault et al. (2002) and Makarenko et al. (2002) exploit

the probabilistic representation on such an occupancy evidence

grid and navigate to maximize the approximated occupancy

information gain. Charrow et al. (2015) proposed to use

Cauchy–Schwarz quadratic mutual information to speed up

the information gain computation. In addition, approaches

that rely on non-grid-based representation for navigation,

such as meshes and topological maps, may retain cell or voxel

grids to quantify the information gain (Dang et al., 2020).

In addition to mapping, robots also build models of

environment-underlying phenomena that can be temperature

models (Luo and Sycara, 2018) or spread of gas (Rhodes et al.,

2020). The environment phenomenon can be considered spatial,

and the goal is thus to learn the mapping from the position in the

environment to the value of the phenomenon. Furthermore, a

spatiotemporal model can be considered (Ma et al., 2018) that

would require repeatedly visiting particular areas to build the

temporal model, which might be needed for changing

environments (Krajník et al., 2017).

Spatial-based modeling can be considered as informative

path planning (Singh et al., 2007), where the goal is to find

the most informative path through the environment (Hollinger

and Sukhatme, 2014) subject to a particular constraint such as the

robot energy budget (Binney and Sukhatme, 2012). Informative

path planning approaches can be broadly divided into myopic

and non-myopic methods. The myopic methods are greedy and

plan only with regard to the next goal, whereas non-myopic

methods plan with a longer horizon. For example, in the context

of frontier-based mobile robot exploration, seeking the closest

frontier is myopic, contrary to path planning to visit all the

representatives of the frontiers that is non-myopic (Faigl et al.,

2012).

Like seeking frontiers in spatial exploration, the explorer

learning an underlying model must actively locate sites to

sample novel information. Hence, GP regressors (Rasmussen

and Williams, 2006) are particularly suited for active learning

because it is relatively straightforward to identify uncertain

regions where the model should be improved. GP prediction

uncertainty is characterized by the differential entropy of the

predicted normal distribution, leading to the characterization

of information gained by observing individual areas. However,

in practice, directly computing the information gained by

possible observations is not feasible due to the number of

possible actions, especially for a long planning horizon.

Hence, various approximations and sampling strategies have

been proposed.

Pasolli and Melgani (2011) proposed to either directly seek

the most uncertain samples signified by the highest prediction

variance or to select areas that are the most remote in the feature

space given the GP hyper-parameters. In Viseras et al. (2019), the

robot selects paths with high average entropy per sampling to

tradeoff informativeness and the number of samplings. Martin

and Corke (2014) proposed to set the mean function of a GP

traversal cost regressors to zero, thus motivating a robot to

traverse unknown areas where the predictions are close to the

zero mean. TheGPUpper Confidence Bound (GP-UCB) (Srinivas

et al., 2010) is an exploration–exploitation method that combines

seeking the most uncertain areas with improving the model

around the highest value. It can be used when the learner is

interested in finding extreme values of the modeled

phenomenon, such as temperature (Luo and Sycara, 2018; Shi

et al., 2020). In addition, a depth-first variant of theMonte Carlo

Tree Search (MCTS) to select anytime informative paths can be

employed to consider both differential entropy and upper

confidence bound to model sampling informativeness

(Guerrero et al., 2021).

Karolj et al. (2020) computed a path to the closest spatial

frontier that visits all local sampling locations for a magnetism

model by solving the Traveling Salesman Problem (TSP) over the

respective goal locations. In localization in mapping, Ossenkopf

et al. (2019) note that occupancy information gained at an

unknown location holds little value and thus weight the

occupancy gains by a pose uncertainty (Vallvé and Andrade-

Cetto, 2015). Hence, the explorer must address how to combine

the occupancy and pose uncertainties. In Bourgault et al. (2002)

and Stachniss et al. (2005), the total exploration utility is a linear

combination of the occupancy uncertainty and the robot

localization uncertainty represented using the differential

entropy based on its position distribution. In Carrillo et al.
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(2018), it is argued that combining Shannon’s discrete and

differential entropies is neither practical nor sound because

the differential entropy is neither invariant under a change of

variable nor dimensionally correct. Therefore, both quantities

may differ significantly in value. Consequently, Carrillo et al.

(2018) proposed to use the localization uncertainty to weigh the

Rényi entropy (Rényi, 1961) of the occupancy grid.

Based on the literature review on exploration approaches, we

propose to generalize the previous work (Prágr et al., 2019a)

toward a non-myopic approach. The therein proposed method

combines active learning of traversal cost over terrains with

spatial exploration using a greedy approach. The

approximated spatial information gains and cost models are

derived from Shannon’s discrete and differential entropies,

respectively. Considering the reasoning of Carrillo et al.

(2018), we avoid a direct combination of these two values in

this study. In addition, we aim to build a modular system that

supports the learning of models that range from the spatial map

and cost predictors used in this study to temperature and

pollution models. Hence, instead of creating a combined

information gain utility function using the Rényi entropy,

which is suitable for the combination of a map and robot’s

localization model used by Carrillo et al. (2018), we elect to use a

policy that combines the spatial exploration and cost learning

goals (and goals reported by any additional model), similarly to

the approach proposed by Karolj et al. (2020).

However, unlike the therein-built magnetismmodel, a spatial

GP, we assume that the terrain traversal cost correlates with the

terrain appearance. Therefore, the GP regressor infers the cost

from the terrain feature descriptors instead of the terrain

location. Consequently, rather than terrains nearby, sampling

the cost to traverse an unknown terrain primarily affects the

predictions over similarly appearing terrains close in the feature

space. The affected terrains are determined using a terrain

clustering scheme. Incremental growing neural gas (IGNG)

(Prudent and Ennaji, 2005) is used to continually construct

the terrain class structure, in which each class is assigned

traversal cost and sampling reward (information gain) based

on the GP’s predictions. As a result, we model the computation of

the goal visit sequence as an instance of the Generalized TSP

(GTSP) (Noon, 1988) (also called the Set TSP), which is a variant

of the TSP where nodes are grouped into mutually exclusive and

exhaustive sets. The problem is then to visit each set instead of

visiting each node. In the context of the proposed exploration

approach, the individual nodes correspond to possible sampling

locations, and the sets are either terrain classes extracted from the

cost prediction model or places where the robot can observe areas

unknown to the spatial model.

The problem of mobile robot exploration with traversal cost

learning is defined in the next section, whereas the strengths and

weak points of the proposed approach are further discussed in

Section 6.

3 Problem specification

The addressed exploration using an autonomous hexapod

walking robot combines spatial exploration with active learning

of terrain traversal cost models. The environment is modeled as a

2D grid W ⊂ R2 with cells ] ∈ W with size d] corresponding to

the size of the robot foothold. The position of the robot probot is

discretized as ]robot within the grid that is at the center of the

robot’s circular footprint with radius rrobot covering all the

potential robot’s footholds, as shown in Figure 2. Any path ψ

can be decomposed to a sequence of neighboring cells as follows:

ψ � ]1, ]2, . . . , ]n( ),
s.t.

∀i ∈ 1, . . . , n: π ]i( ) � 1,
∀i ∈ 1, . . . , n − 1: ]i+1 ∈ 8nb ]i( ),

(1)

where n is the number of cells in the respective sequence, the

function 8 nb(]) lists the cells in the 8-neighborhood of ], and
π(]) = 1 indicates that the cell ] is passable. In addition, the robot

can use a discrete set of walking gaitsG, and it is assumed that the

gait changes occur instantaneously at the particular grid cells

] ∈ W.

The robot desires to move through the environment as

efficiently as possible with respect to (w.r.t.) the cost C.

Therefore, it moves along the cheapest path between ] and ]′.

ψp ], ]′( ) � argminψ∈Ψ ],]′( )C ψ( ), (2)

where Ψ(], ]′) is the space of all paths from ] to ]′. The cost C(ψ)
of traversing ψ represents a generic path cost such as time to

traverse or expected consumed energy; without the loss of

generality, the time to traverse is the cost of choice in this

study. It is assumed that the cost is additive, thus permitting

to combine the costs of two consecutive path segments ψa and ψb

into the cost of the combined path ψa ⊕ ψb as follows:

FIGURE 2
Footprint around the robot position covers the cells with
potential multi-legged walking robot footholds.

Frontiers in Robotics and AI frontiersin.org05

Prágr et al. 10.3389/frobt.2022.910113
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C ψa ⊕ ψb( ) � C ψa( ) + C ψb( ), (3)

where ⊕ denotes the concatenation of the paths. The cost of a

path is decomposed to the sequence of costs to traverse from

passable cell ]a to its neighbor ]b.

C ψ( ) � ∑n−1
i�1

‖ ]i, ]i+1( )‖c ]i, ]i+1( ), (4)

where ‖(]a, ]b)‖ is the Euclidean distance between the cells

(i.e., either d] or
�
2

√
d]), and c (]a, ]b) is the per-meter cost of

traversing from ]a to ]b.
In the spatial exploration, the robot builds the geometry

model P, which provides the cell passability assessment π(]). It is
assumed that the geometry is sufficient to distinguish the

passable areas; hence, the passability model P is constructed

directly from the continually streamed exteroceptive

measurements (observed point clouds zpcd).

3.1 Traversal cost modeling

The traversal cost is assumed to be too complex to be assessed

only from the terrain geometry. In this study, the task is to learn a

traversal cost predictor C that models the cost as a function of

terrain appearance. The cost assessments are used in path

planning w.r.t. (4). In addition, the cost model is also

responsible for selecting the gaits suitable for the particular

terrains traversed by the robot. Since the robot position is

abstracted as the center of its circular footprint, the

predictor’s per-meter-cost predictions are conservative

estimates that take into account all the cells on the footprint.

The cost predictor is learned online during the exploration from

the robot experience, which comprises the cost zc experienced by

the robot when traversing terrain described by the terrain

appearance descriptor ta using gait g.

The learned model is compared to the uninformed baseline

that represents a robot that only explores the spatial map and

does not learn the cost models and thus uses the optimistic flat

cost model.

ĉ ]a, ]b( ) � 1
vmax

, (5)

where vmax is the maximum robot velocity over all g ∈ G.

Notice that, in planning, the particular value of vmax is not

relevant as long as it is positive because it only scales the total

cost, thus not affecting the planning decisions. The baseline

selects the gaits reactively, using the fast gait capable of

reaching vmax by default and switching to slower yet

rough-terrain-capable gaits when the robot gets stuck on

the traversed terrain.

The proposed approach is evaluated in model scenarios as

follows. First, the robot is set to explore the environmentW, and

it incrementally learns the model C. Then the learned and

baseline models are used in navigating the robot between a set

of benchmark coordinates inW and the total cost C experienced

by the robot (i.e., the time needed to move between the

coordinates) using the particular model is considered to be

the benchmark value.

4 Proposed system for active terrain
learning in exploration

In this section, we describe the proposed system for active

terrain learning and exploration, which is overviewed in Figure 3.

During the exploration, which yields the spatial geometric

passability model P, the goal of the robot is also to learn the

traversal cost model C. The geometric passability model P
describes the shape of the environment and thus areas

passable by the robot. The traversal cost model is decomposed

into the set of models C � CG � {Cg}g∈G, where each traversal

cost model Cg predicts the costs associated with traversing the

passable terrain using the gait g ∈ G. The respective cost

predictors are Gaussian process (GP) regressors (Rasmussen

and Williams, 2006), which use terrain appearance to infer

the robot-experienced traversal cost accrued during the

deployment. Each GP is coupled with the incremental

growing neural gas (IGNG) (Prudent and Ennaji, 2005) that

clusters similarly appearing terrains and hence identifies terrain

types not yet visited by the robot. The exploration problem is

modeled as an open-ended instance of the generalized traveling

salesman problem (GTSP) (Noon, 1988), a variant of the TSP

where the vertices are organized in disjoint sets, and each set is

visited once. In this study, each set corresponds to an exploration

or learning goal (a set of sampling sites) yielded by the spatial or

cost model.

In the rest of the section, we describe the exploration process.

The symbols used in the description are listed in Table 1. First, we

show how the GTSP is used to find the exploration path. Then we

show the geometric environment model in detail and the related

passability modelP, the traversal cost models Cg, and their use to
find the exploration goals.

4.1 Exploration

The robot explores the passability model P and learns the

traversal cost models CG by visiting the exploration ΓP and

cost learning ΓCG goals, which are continually yielded by the

respective models. Each goal γ ∈ ΓP ∪ ΓCG is associated with a

set of sites (cells) γ � {]i}|γ|i�0 where the robot can improve its

models by sampling the respective goal. The robot needs to

visit one of the corresponding locations to sample the goal.

Geometric model goals γ ∈ ΓP are located at singular sites γ =
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{]}, where the robot can improve the spatial model by

observing new areas. Each traversal cost model goal

γ ∈ ΓCG, where ΓCG � ∪g∈GΓCg, is associated with a set of

sites γ � {]i}|γ|i�0 at which the robot can improve the model

by experiencing novel gait-terrain costs. The areas covered by

the individual goals in a given cost model are designed to be

disjoint. Thus, sampling the traversal cost model at a site

corresponding to the goal 2γC
g ∈ ΓCg provides no, or severely

limited, information regarding the traversal cost model at a

site corresponding to a different goal 1γC
g≠1γC

g. On the other

hand, the passability and traversal cost models are considered

independent. Sampling at one particular site might improve

both models since the robot can observe previously unseen

areas while experiencing untraversed terrain. However, two

cost models cannot be improved at once since the robot can

only experience the cost for the currently used gait.

Given the current robot position ]robott and modelsPt and CGt
at any time t during the exploration, the robot selects a shortest

exploration path ψE(probot
t ,Pt, CGt ) that visits at least one site

corresponding to each goal. The path planning is modeled as an

instance of the GTSP, where vertices (sites) are organized in

disjoint sets (goals), and each set is visited exactly once. The

distance matrix D describes the costs of paths between the

individual sites, including the distances between the current

robot position and the goal sites.

D ], ]′( ) � Ĉ ψp ], ]′( )( ). (6)

A total of two transforms are applied to the distance matrix D

to create an open instance of the GTSP. First, the robot does

not need to return to its current position after exploring the

environment. Hence, the problem is transformed by setting

the cost to reach the current robot position from any goal as

zero ∀γ ∈ ΓP ∪ ΓGC ,∀] ∈ γ: D(]γ, ]robot) � 0. Second, we apply

the Noon–Bean transformation (Noon and Bean, 1993) to

transform an instance of the GTSP into an instance of the TSP.

The open instances of the transformed TSP are solved by the

LKH solver (Helsgaun, 2000), a heuristic solver with

asymptotic time complexity bounded by O(m2.2), where m

is the number of vertices, which has been found sufficient for

updates with tens of goal sites. The solver returns the sequence

FIGURE 3
An overviewof the proposed exploration system. The robot uses the RGB-D data to build the color elevationmodel of the environment inwhich
it identifies the passable areas (Algorithm 2). The terrain appearance stored in themodel is paired with the costs experienced by the robot to learn the
traversal cost models for the individual locomotion gaits (Algorithm 5 and Algorithm 6). The cost predictions for the individual gaits and the terrain
passability are used to plan the exploration path in a TSP sequence (Algorithm 1) over every goal reported by the geometric and costmodels. The
robot navigates to the first goal in the sequence (Algorithm 4).
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of sites (]robot, ]0, ]1, . . . , ]n) to be visited through the

environment, see Figure 4A, where n is the number of

goals and each site ]i corresponds to a different goal. The

robot navigates toward the first site of the sequence and its

current exploration goal ]pE becomes ]pE � ]0, see an example of

the path in Figure 4B.

The plan is recomputed on-demand either when there is a

change in the goal set or as a result of reaching the current goal.

Moreover, upon reaching a cost model goal, the robot switches to

the model’s respective gait genforced and is forced to move forward

for Δtsample (or until an obstacle is reached) to sample the

traversal cost over the terrain. The exploration ends when

TABLE 1 Used symbols.

Description Symbol Description Symbol

World grid map model W Grid map cell ]

Grid map cell size d] Current robot position ]robot

Robot footprint radius rrobot Cell ] passability π(])

Path ψ Optimal path ψp

Walking robot gait g Robot gait set G

Cost (time to traverse) C Per-meter cost c

Geometric passability model P Cost model C
Measured cost zc Maximum robot velocity vmax

Colored elevation grid map M2.5D Robot sensor range rsensor

Terrain appearance desciptor ta Descriptor radius rhist

Spatial clustering radius cradius Cluster min cells cmin cells

Cost model, all gaits CG Cost model, particular gait Cg

Cost prediction, all gaits ĉ Cost prediction, particular gait ĉCg

Distance transform per-meter loss closs Cost measurement variance σ2sense

Cost measurement filter initial variance σ20

GP regressor R GP learning set L
GP prediction mean μ̂c GP prediction variance σ̂c

2

Prediction uncertainty/GP entropy H High cost in cost transform chigh

Min learning set size nmin
L GP model noise variance σϵ2

Exponential kernel length scale l Exponential kernel output variance σs

Maximum allowed cost cmax

Terrain class model T Terrain class T

Approximated cost information gain IC Terrain class uncertainty threshold HGT
C

Min GT terrain type size mT Sampling lattice S

Sampling lattice point pS Sampling lattice size dS

Goal set Γ Goal γ

Passability goal set ΓP Cost goal set, all gaits ΓCG

Cost goal set, particular gait ΓCg TSP distance matrix D

Current exploration goal ]pE Current exploration path ψE

Enforced sampling gait genforced Gait sampling duration Δtsample

IGNG structure Ω IGNG measurement x

IGNG neuron set Ωneurons IGNG connection set Ωconnections

IGNG neuron ω IGNG adaptation threshold σIGNG

IGNG winner warp rate ϵIGNG1 IGNG neighbor warp rate ϵIGNGnb

IGNG neuron mature age aIGNGmature IGNG connection maximum age aIGNGmax

Terrain type erosion steps nstepserode
Terrain type dilation steps nstepsdilate

Terrain type dilation size nsizedilate
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every model reports zero goals. The exploration process is

summarized in Algorithm 1.

Algorithm 1. Exploration.

4.2 Environment geometry & passability
model

The grid environment W is represented by the colored

elevation grid map M2.5D with the cell size d]. The grid map

is built online during the exploration according to Algorithm 2

using the robot’s range measurements and RGB camera images.

The elevation at each cell ] ∈ M2.5D is obtained by fusing the

localized range measurements zpcdi into the grid map using an

one dimensional Kalman filter, as described in Fankhauser et al.

(2014) or Bayer and Faigl (2020). The localization of the robot,

and also the localization of the range measurements, is

considered to be solved by the Intel RealSense T265 tracking

camera, which estimates the robot’s full six DOF pose based on

visual simultaneous localization and mapping supported by an

inbuilt inertial measurement unit1. The grid map is used as a

model of the terrain geometry to identify passable places. It also

captures the color of the terrain texture that is processed to

compute the terrain appearance descriptors.

Algorithm 2. Spatial exploration.

We define the passability of the cell ] ∈ M2.5D as the

probability π(]) that the cell ] can be traversed by the robot.

The probability itself is based on the observed roughness of the

terrain computed based on Bayer and Faigl (2021) as follows:

ρ ]( ) � max
]′∈8nb ]( )

Δ ], ]′( ), (7)

where 8 nb(]) is the 8-neighborhood of the cell ], and the step

height Δ(]a, ]b) is as follows:

Δ ]a, ]b( ) � |elevation ]a( ) − elevation ]b( )|, (8)

where elevation(]) denotes the estimated height of the terrain at

]. The probability that the robot can pass a cell ] is as follows:

π ]( ) 0 if ρ ]( )> ρobstacle
1 otherwise

{ , (9)

where the threshold ρobstacle represents the lowest obstacle to be

detected. An example of the grid map is shown in Figure 5A.

In active perception scenarios, the information about the

terrain model M2.5D gained by observing the cell ]′ is evaluated

FIGURE 4
An example of a planned exploration path. (A)Global path over the sequence of goals determined by the TSP solver; (B) the local path to the first
goal.

1 In the simulated experiments, the localization is provided by the
simulator.
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by entropy based on the known passability. Since the distribution

of the passability is binary and depends on the 8-neighborhood of

the cell, information gained by observing ]′with unknown height
is approximated as follows:

IP
cell ]′( ) ≈ k ]′( ) + 1

9
, (10)

where k(]) is the number of the unknown cells in the

neighborhood of ]. Thus, the expected information gained by

perceiving the terrain from the position of the cell ] can be

expressed as follows:

IP
model ]( ) � ∑

]′∈δ rsensor ,]( )

IP
cell ]′( ) if observable ], ]′( )

0 otherwise
{ , (11)

FIGURE 5
Illustration of the color-geometric and cost models. (A) Visualization of the online built geometrical model with marked passability and clusters
based on the cells with non-zero information according to the shown color legend; (B) terrain appearance descriptor calculated as a histogram of
cell colors. The costs used in path planning; (C) minimal cost over gaits after the distance transform; (D) respective cheapest gait (gaits in red and
purple). (E) Colors used to build the color histogram terrain appearance descriptor; (F) measured costs used for learning the GP (adjusted by
hyperbolic tangent), visualized over the terrain appearance; (G) raw GP cost prediction; (H) GP prediction uncertainty. (I) Terrain clusters (arbitrary
colors used to distinguish clusters); (J) information gained with terrain learning goals (goal colors corresponding to clusters); (K) cluster costs used in
planning.
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where δ(rsensor, ]) is the sensor range rsensor-large neighborhood
of ]; the function observable (], ]′) returns true if and only if the
cell ]′ is observable from ], which is determined by casting a ray

from ] to ]′ in the current elevation map M2.5D. Using all the

cells with non-zero entropy in the TSP formulation is

computationally intensive. Thus, we propose to spatially

cluster the entropy to generate a limited number of spatial

entropy representants by Algorithm 3.

Algorithm 3. Cluster entropy representatives

In addition to the terrain geometry, the grid mapM2.5D also

carries the terrain texture calculated by the following approach.

Each cell is provided a 10-bit color by projecting the camera

image to the map M2.5D. Then the color space is shrunk to

nine different colors, defined by color prototypes listed in

Figure 5B. The relative amount of the cell colors within the

radius rhist matched to the selected color prototypes are used

to build a 9-dimensional terrain appearance descriptor ta(])
for each cell ] ∈ M2.5D, which is visualized as a color

histogram in Figure 5B.

4.3 Traversal cost model

The cost model C predicts the per-meter traversal cost c over

observed areas deemed passable by the geometric passability

model P. The traversal cost model predicts the traversal cost

from terrain appearance. Since the robot position is abstracted as

the center of its circular footprint, the C’s per-meter-cost

predictions are conservative estimates that take into account

all the cells on the footprint.

ĉ ]a, ]b( ) � max]′∈δ rrobot ,]a( )ĉ ]′( ), (12)

where δ(r, ]) lists all cells within the r-radius of cell ], and ĉ(]) is
the C cost estimate over cell ]. An example of the traversal cost

assessment is depicted in Figure 5C.

The cost ĉ is reported for the whole model set

C � CG � {Cg}g∈G, since it is the best gait-terrain cost.

ĉ ]( ) � ming∈GĉCg ]( ), (13)

where each gait-terrain cost ĉCg is the prediction of the

particular model Cg. In addition, when navigating through

the environment, the robot selects its gait w.r.t. the

minimization in Eq. 13, as depicted in Algorithm 4. An

example of gait selection is visualized in Figure 5D. A

distance transform with closs per-meter-loss is used over the

cell grid with the best-gait costs ĉ(]) to dissuade the robot

from navigating areas near terrain boundaries where frequent

gait changes are likely.

Algorithm 4. Navigate

Each gait-terrain model Cg comprises the cost regressor

R and the terrain type clustering T . In R, we use GP

regression to predict the traversal costs because it provides

the predicted values and models the prediction uncertainty.

Each traversal cost regressor R is learned from the learning

set L of the paired terrain descriptors and the respective

traversal costs observed when using the particular gait g that

are depicted in Figure 5E and Figure 5F, respectively. The

particular learned cost regressor R is used to predict the

normal distribution of the traversal cost at queried terrain

descriptor ta as follows:

N μ̂c, σ̂c
2( ) ta,R( ) � predict ta,R( ). (14)

The cost prediction (visualized in Figure 5G) is the expected

value.

ĉ ta,R( ) � E N μ̂c, σ̂c
2( ) ta,R( )( ) � μ̂c ta,R( ), (15)

and the uncertainty of the prediction (shown in Figure 5H) is

characterized by the differential entropy.

H N μ̂c, σ̂c
2( ) ta,R( )( ) � 1

2
log 2πeσ̂c

2 ta,R( )( ). (16)

The prediction uncertainty is used to approximate the

information gain IC associated with sampling the individual

observed terrains, thus identifying areas the robot needs to

visit to improve the traversal cost model.

The terrain type clustering T identifies the distinct terrain

types (terrain descriptor clusters) in the environment. The terrain

class set T is designed to be disjoint regarding the prediction

model. Thus, sampling the traversal cost model at a cell

corresponding to one terrain class provides no, or severely

limited, information regarding the traversal cost model at a

location corresponding to a different class. In particular,
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following Pasolli and Melgani (2011), the classes are selected to

be mutually distant in the terrain descriptor space. Each observed

cell is assigned the closest terrain class as the closest class in the

descriptor space.

Tp ]( ) � argminT∈T ‖ta ]( ), ta T( )‖, (17)

where ta(T) is the appearance assigned to the terrain class

T ∈ T . Since, on small terrain classes, it might not be possible

to acquire enough samples to learn the traversal cost with

sufficient certainty, we apply class erosion as described in

Supplementary Appendix S1. The erosion output is the

learning class assignment T and the planning class

assignment T̂. We avoid computing the cost prediction for

every cell independently2 and report the Cg prediction over a

particular area as the cost to traverse over its respective terrain

type.

ĉCg ]( ) � ĉ ta T̂ ]( )( ),R( ) if T̂ ]( ) ≠ ∅,
cmax otherwise,

{ (18)

where the maximum cost cmax is reported for cells with no class

(i.e., eroded) ∅.

The rest of this section describes how the traversal cost

experience used to learn the models is measured, how the GP

regressor is learned, and how the terrain type clustering is used to

identify the locations where to improve the cost model.

4.3.1 Traversal cost measurement

The measured traversal cost describes the time needed to

traverse between cells as zc (], ]′). Since the distance between

2 cells is significantly lower than the robot stride length, the cost

is smoothed over path segments (cell sequences) with a fixed

duration. In particular, the per-meter cost c is continually

measured as the inverted robot velocity v−1 over the path

segment traversed by the robot in the last Δ t s.

v−1 ψs( ) � T ψs( )
‖ψs‖

, (19)

where ‖ψs‖ is the length of the segment in meters and T(ψ) is the

measurement duration that is fixed to Δt. If the robot had not

changed its gait on the segment, the cost is reported to the

particular model Cg as the cost to traverse the midpoint of the

segment as zc(]�|ψs|/2�, ]�|ψs|/2�+1). In addition, to remove potential

cost spikes, the cost is further smoothed using a moving average

window of the same (Δt) duration. Since the inverse velocity is

unbounded and has both high values and high variance for a

stuck robot, the cost to be used by the predictor is transformed as

follows:

c � chigh tanh
1

chigh

v−1

vmax
−1( ), (20)

where the maximum robot velocity vmax (maximum from all

g ∈ G) scales the cost of the robot moving over an ideal terrain

to 1, and the high cost chigh, which should only be experienced

by a stuck robot, is used in the transform to bound the cost

values.

4.3.2 Gaussian process traversal cost
regressor

The employed GP regressor predicts both the prediction

mean and variance making it suitable to model the prediction

distribution as in (Eq. 14). Its description is dedicated to

Supplementary Appendix S2 to make the study self-contained.

GP regressor is learned only if there are at least nmin
L learning

pairs in L to avoid learning overconfident predictors at the

beginning of the exploration. The learning is summarized in

Algorithm 5.

Algorithm 5. Traversal cost model learning.

The covariance function used in this work is the squared

exponential kernel.

K x, x′( ) � σs
2 exp −1

2
x − x′( )2

l2
( ), (21)

where σs2 is the output variance, and l is the length scale. We

consider that the robot’s cost and feature models have known

ranges based on (Eq. 20) and the histogram descriptor,

respectively. Therefore, similar to Karolj et al. (2020), the

kernel hyperparameters l and σs2 and GP’s σϵ2 have fixed

values that we consider to be dependent on the system

parameters.

The GP is continually relearned when new observations

using the particular gait g are experienced. The learning

complexity can be bounded by O(n4), where n is the

number of training points. The size of the learning set L is

limited by using at most one training point corresponding to

each cell in M2.5D and by storing measurements only when

2 In practice, for small environments, it is feasible to compute the
prediction for every cell, and we do so for visualization as depicted
in Figure 5G and Figure 5H.
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they are novel and thus likely to improve the model. Hence,

the relative traversal cost c(]) experienced at cell ] is paired

with the appearance descriptor ta(]) of the respective

traversed terrain, and when building the learning set L, the
model reports the pair (ta(]), c(])) for each cell where both

values are available.

Since the robot keeps only one measurement for each cell,

each novel cost measurement zc (], ]′) experienced when using

the gait g is allocated to the grid map cell ] and its neighbors in

8 nb(]), and the traversal cost c(]) at the cell ] is modeled using

the Kalman filter with the estimated value and covariance as

follows:

ck � σ2senseck−1 + σ2k−1z
c
k

σ2sense + σ2k−1
, σ2k �

σ2senseσ
2
k−1

σ2sense + σ2k−1
, (22)

where zck is the kth cost measurement at ] and σ2sense is its

variance. The filter is initialized by the first cost observation zc0 at

the respective cell, and the initial filter variance is σ20.

In total, two cases are considered as situations when the

cost is novel, and thus the model should be improved by

storing the cost w.r.t. (Eq. 22): 1) when the prediction is

erroneous and 2) when the prediction is uncertain. For the

former, the cost experienced at the cell ] is accumulated if the

measured cost zc is out of the approximate 95% confidence

interval |μ̂c(ta(])) − zc|> 2σ̂c(ta(])) of the prediction at ]. For
the latter, the approximated information gain of the

prediction is considered, and the robot accrues

measurements when there is a potential of information

gain IC(T(]))> 0, which computation is described in the

following paragraphs.

4.3.3 Terrain type clustering and goal
identification

The traversal cost exploration goals ΓCg are selected by the
robot as areas where the model can be improved and thus are

the areas where the traversal cost model is uncertain. Each

goal represents a terrain class where the robot can sample

novel information about the cost model. The overall

approach to goal identification is summarized in

Algorithm 6.

Algorithm 6. Terrain type clustering, goal identification, and

cost identification.

Algorithm 7. Cluster.

The clustering scheme presented in Algorithm 7 is based on

the IGNG, described in Supplementary Algorithm S1, to make

the study self-contained. In the neural gas, each neuron is a

terrain prototype ta(T) in the descriptor space that represents a

terrain class T. When separating the classes, the intuition is that

for exponential kernels, the length scale describes the range from

the data where the model can reliably extrapolate, as used, for

example, in Karolj et al. (2020). Hence, new classes are inserted

into the neural gas when the distance from all prototypes exceeds

σIGNG = 2l. The neural gas is constructed incrementally by

repeated adaptation using the appearance descriptors in the

environment, where the size of each adaptation batch is

limited to nIGNG descriptors that are randomly sampled from

all the descriptors, and the yielded terrain classes can be seen in

Figure 5I.

Algorithm 8. Compute information gain.

The terrain classes for which the cost model can be improved

are identified using the cost regressor R-predicted traversal cost

distributionN (μ̂c, σ̂c2)(ta(T)) at the class prototypes ta(T). The
traversal cost exploration goals are selected according to

Algorithm 8 as the classes where there is potential for

TABLE 2 Gait parameterization.

Gait parameter/gait Fast gait Tall gait

Gait cycle duration (s) 1.10 2.90

Step height (m) 0.04 0.07

Maximum forward speed (ms−1) 0.05 1.25e − 2
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Appendix B.3 – Prágr et al.: “Autonomous Robotic Exploration with Simultaneous Environment
and Traversability Models Learning” [C3], referenced on page 14.

61



TABLE 3 System parameterization.

Symbol Parameter Unit Value, split by environment

Real/Small Sim. Large Sim.

d] Grid map cell size m 0.05 0.10

rsensor Sensor range m 2.5 10.00

cradius Spatial clustering radius m 0.50 2.00

cmin _cells Spatial clustering, min cells per cluster - 10 10

rrobot Robot footprint radius m 0.25 0.40

ρobstacle Roughness passability threshold m 0.25 0.25

rhist Histogram descriptor radius m 0.25 0.30

Δt Cost measurement window duration s 5.00 1.00

vmax Maximum robot velocity m s−1 0.05 0.25

closs Cost distance-transform per-meter loss − 10.00/15.00* 7.5

chigh High cost for cost transform − 20.00 20.00

cmax Maximum cost for path planning − 20.00 20.00

σsense Kalman filter cost measurement variance − 0.10 0.10

σ20 Kalman filter initial variance − 1.00 1.00

σs GP output variance − 1.00 1.00

σϵ GP observation noise − 0.50 0.50

l GP length scale − 0.40 0.40

nmin
L Minimum learning set size − 25.00 25.00

nstepserode
Cluster erosion steps − 2.00 2.00

mT Minimum size of a ground truth cluster − 10.00 10.00

dS Cost-model sampling lattice cell size m 0.44 0.44

nstepsdilate
Cluster dilation steps − 3.00 3.00

nsizedilate Cluster dilation size − 2.00 2.00

ϵIGNG1 GNG warp scale winner − 1.00e − 3 1.00e − 3

ϵIGNGnb GNG warp scale neighbor − 1.00e − 5 1.00e − 5

aIGNGmature GNG age mature − 1.00e2 1.00e2

aIGNGmax GNG max edge age − 50.00 50.00

nIGNG GNG learning batch size − 5.00e3 5.00e3

Δtsample Cost sampling duration s 30.00 12.00

Δtfallback Stuck fallback duration s 30.00 3.00

* Different value used in small simulation/real deployment.

TABLE 4 System operation frequencies.

Module Frequency Condition

Elevation mapping 5.00 Hz

Spatial goal identification 0.33 Hz

Cost measurement 20.00 Hz Only if using the respective gait

Cost learning 0.10 Hz Only if not already running

Goal identification 0.10 Hz

Goal sequence planning 1.00 Hz Only after goal set change or reaching a goal

Path planning 1.00 Hz Only after goal set change or reaching a goal
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information gain; see the visualization in Figure 5J. The gain is

approximated from the prediction entropy.

IC T( ) ≈ max H σ̂c
2 ta T( )( )( ) −HGT

C L( ), 0( ), (23)

whereHGT
C is a threshold value associated with the uncertainty of

the experienced traversal costs. The robot learns when there is

potential of information gain IC > 0, and no information can be

gained at eroded cells IC(∅) � 0. We set the threshold value

based on the highest prediction uncertainty for terrains that are

considered certain since they cover cells that are already in the

learning set as follows:

HGT
C L( ) � max

T∈T : | ]∈M2.5D : T ]( )�T{ }∩L|>mT

H σ̂c
2 ta T( )( )( ), (24)

where we avoid overconfident GP-predictions for barely sampled

terrains by allowing only terrain classes with at leastmT observed

ground truth cost values. The threshold equals the maximum

value over such ground truth terrain classes.

Algorithm 9. Identify goals.

The sampling locations (visualized, for example, in Figure 5J)

corresponding to the terrain class are sampled along a lattice S

with the cell size dS ≫ d], as depicted in Algorithm 9. For each

lattice point pS, the closest cell ] in δ(
�
2

√
dS
2 , pS) radius that is not

associated with a traverability measurement and that is

informative with IC(T(]))> 0 is reported as a sampling site; if

no such cell exists, no site is reported for the lattice point. Since

only cells without measurements are considered, it is possible for

small terrain classes to run out of cells before reaching mT

measurements. In such a case, the class is considered too

small to learn and is no longer reported as a goal, and it is

pruned from the class set. In addition to the goals, the traversal

cost ĉCg(]) (visualized in Figure 5K) is also reported for the ]′s
prototype ta(T̂(])) w.r.t. (Eq. 13) according to Algorithm 10.

Algorithm 10. Set planning cost.

5 Experimental evaluation

The proposed exploration with active terrain learning has

been examined in simulated trials and real experimental

FIGURE 6
(A) 3D scan of the university campus at Charles Square in Prague, (B) section of the courtyard, and the respective simulated environment (C)
color and (D) relative traversability (light areas easier to traverse). The red bounding box represents the area where the robot should explore. The blue
points are the points to be visited by the robot in the first test tour.
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deployments using a hexapod walking robot. The simulated

and real scenarios have been set up so that the robot first

explores the environment and learns the cost models using the

proposed method and, in some tests, a selected baseline

method. Then the performance has been evaluated and

compared with the baseline approach by navigating the

robot over a sequence of benchmark waypoints using the

respective traversal cost models of the environment learned

during the exploration.

The hexapod walking robot, which can be seen in Figure 1, is

used in the real deployment, and the simulation is parameterized

to mimic the robot’s motion and sensory capabilities. The robot

has six legs, each comprising three Dynamixel XM430-W350

servomotors. The robot is equipped with the Intel RealSense

D435 camera used to construct the colored environment model

and the Intel RealSense T265 localization camera. The onboard

computation is provided by the Intel NUC 10i7FNK with Intel

Core i7 10710U accompanied with 64 GB memory, running

Ubuntu 18.04 with ROS Melodic (Quigley et al., 2009). The

robot locomotion is facilitated by a blind adaptive motion gait

(Faigl and Čížek, 2019). The robot uses two particular gait

configurations, see Table 2: The fast gait suitable for flat, even

FIGURE 7
Environment assessment after the simulated scenario run with regards to both gaits; (A) dominant color in the histogram feature; (B) merged
cost used for planning; (C) selected gait (fast in red, tall in purple); (D) costs used for learning the fast gaitmodel [adjusted by hyperbolic tangent in (Eq.
20)], visualized over the terrain appearance; (E) clusters used in the fast gait model (arbitrary colors used to distinguish clusters); (F) fast gait cost
predictions assigned by the dilated clusters; (G) costs used for learning the tall gait model [adjusted by hyperbolic tangent using (Eq. 20)],
visualized over the terrain appearance; (H) clusters used in the tall gait model (arbitrary colors used to distinguish clusters); (I) tall gait cost predictions
assigned by the dilated clusters; (J) exploration run; (K) test-tour run using the baseline model without the learned traversal costs; (L) test-tour run
using the learned traversal costs. The development of the path through the fully discovered simulated environment during the exploration; (M) at the
beginning of the exploration, the robot uses flat costs and thus does not avoid difficult terrains; (N) after learning the costs for the fast gait, the robot is
too cautious and avoids going near the costly turf; (O) after learning the tall gait costs, the robot is less cautious and is willing to walk near difficult
terrain.
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surfaces, and the tall gait that performs better than the fast gait

over rough terrain but otherwise is slower. The robot is equipped

with a reflex that detects that the robot is stuck with costs

exceeding cmax and switches over to the tall for Δtfallback
seconds to avoid the robot getting stuck when using the

baseline model or at the beginning of the learning process.

The parameterization of the proposed method can be found

in Table 3, and the operating frequencies of the proposed

method’s processes are depicted in Table 4.

5.1 Simulated scenarios

The simulated scenarios are based on a courtyard

environment captured by four 3D scans obtained using Leica

BLK 360 3D scanner and visualized in Figure 6A. The scanner

has standard deviation of 4 mm at 10 m and 7 mm at 20 m. The

scans total approx. 1.4×108 points.

In total, two virtual environments are created using the scan:

small and large. The small environment represents a small

section of the courtyard, where the simulated robot mimics

the real robot’s speed and sensory equipment. It is used to

test the benefit of the individual components of the proposed

approach by comparing them to baseline methods where the

particular component is removed or simplified. The large

environment comprises terrain segments observed in the scan

that are rearranged to create a larger, artificial environment with

obstacles where different exploration algorithms are compared

using a faster robot with an extended sensor range.

5.1.1 Small environment

The small environment is concerned with a section of the

environment that is detailed in Figure 6B. We have created a

simulation model of the environment containing several types of

pavement (gray and red) and turf (green, brown), shown in

Figure 6C. The turf is modeled as hard to traverse and can get the

robot stuck for the fast gait, whereas the pavement does not

impede the robot, see Figure 6D.

First, to demonstrate the benefits of using a cost model

learned from prior experience, the robot is tasked to execute

two tours in the environment using the learned cost model and a

flat-cost baseline model. Second, the utility of exploring along the

proposed GTSP-derived path is demonstrated by comparing its

time to explore the environment with a greedy, myopic baseline,

which drives the robot to the cheapest goal to reach w.r.t. the so

far learned costs.

The first tour comprises four waypoints. The robot starts at

the bottom-left point and executes the tour counter-clockwise

until reaching the start location again. The two particular areas

are designed to demonstrate the utility of the learned model: 1)

the segment between the bottom-right and top-right waypoints

where the robot can choose either a direct route over the turf or a

longer path over the pavement and 2) the area around the top-left

waypoint where the turf cannot be avoided and thus the robot

needs to switch to the tall gait. The second tour comprises

20 points randomly sampled in the environment, and it serves

to demonstrate the performance of the learned model over a tour

that was not handcrafted.

TABLE 5 Performance as the time (total cost) in seconds to traverse.

Small virtual environment, tour 1 (mean ± std of 25 runs)

Method/Time [s] Segment 1 Segment 2 Segment 3 Segment 4 Full tour

Baseline 79.99 ± 0.00 239.59 ± 6.62 133.20 ± 6.76 177.59 ± 13.04 630.39 ± 21.06

Gait selection 80.00 ± 0.00 275.00 ± 8.06 125.49 ± 7.39 164.00 ± 7.39 644.50 ± 7.34

Proposed 80.00 ± 0.00 119.99 ± 0.00 112.40 ± 4.27 142.40 ± 4.27 454.80 ± 4.27

Small virtual environment, tour 2 (25 runs) Small virtual Environment, exploration (5 runs)

Method/Time [s] Full tour Environment Time [s]

Baseline 2748.00 ± 30.59 GTSP 1382.68 ± 241.47

Gait selection 2523.12 ± 39.48 Greedy 1547.16 ± 203.71

Proposed 2271.99 ± 33.38

Large virtual environment (mean ± std of 5 runs) Real deployment

Method Full tour time [s] Exploration time [s] Test Time [s]

Proposed 554.00 ± 13.56 1167.15 ± 163.69 Test Segment, baseline 454.00

Spatial-only 859.99 ± 156.02 545.40 ± 137.43 Test Segment, proposed 143.00

Exploration, proposed* 1364.00

* The similarity between the real and simulated times to explore is coincidental.
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In addition to the proposed approach and the baseline, in

the simulated tests, we also deploy a hybrid gait selection

approach that chooses its gait using the proposed model but

does not plan its path w.r.t. the predicted costs and walks

directly to the next waypoint. Unlike the baseline approach,

which switches to the tall gait when stuck and repeatedly tries to

switch back to the fast gait, the hybrid gait selection approach

switches gaits only when approaching or leaving the terrain

identified as hard to traverse by the model. Hence, it should

outperform the baseline over longer sections on difficult

terrains, where the baseline is slowed down by trying to

switch back to the fast gait.

The simulation environment consists of the Intel i7-9700

3.00 GHz with 32 GB memory running Ubuntu 18.04 with ROS

Melodic. Since the captured environment comprises terrains that

might slow down the robot because they are somewhat non-rigid,

instead of using a geometry-based simulator such as Gazebo,

which cannot model such terrains, we elect to build a virtual

environment over a simple simulator using real-world data. The

simulation is performed using the simple two dimensional robot

simulator (STDR)3 within the ROS ecosystem. On top of the

simulator, we have implemented an interface that simulates the

robot’s RGB-D camera, which assigns each point in the robot’s

simulated exteroceptive measurements color based on the point’s

FIGURE 8
Large simulated environment (A) color and (B) relative traversability, (C) and the test tour through the environment, which starts at the starred
node and is counter-clockwise. The built maps of the large simulated environment: (D) geometric map and (E)merged costs used for planning after
exploration using the proposed approach; merged costs ofter exploration using the spatial-only model while (F) avoiding and (G) traversing rough
terrain, respectively.

3 http://stdr-simulator-ros-pkg.github.io
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position in the environment color map shown in Figure 6C and

filters the measurements to contain only points within the 87 deg

wide field of view of the simulated RGB-D camera. The terra-

mechanical properties are simulated by slowing down the robot

over the individual traversed terrains w.r.t. the performance

observed over such terrain in a real-world deployment, as

shown in Figure 6D.

In the evaluation, the robot first explores and learns the

models shown in Figure 7A to Figure 7I. An example exploration

path can be seen in Figure 7J. The robot learns that the turf,

which appears either green or brown, cannot be traversed by the

fast gait and thus selects the tall gait over that terrain type. On the

other hand, the pavement does not hinder the fast gait, which is

considerably faster and thus preferred.

Although the two gait models create the terrain clusters

independently, the clusters in Figure 7E and Figure 7H differ

only in cluster indices used in the internal representation (each

index is associated with a different color in the visualization). It

can be observed that the robot does not use any clusters

associated with the red line on the pavement, either removing

the thin cluster outright in the erosion or pruning the small

erosion remains after the robot finds out that it cannot get

enough samples to learn such a small terrain.

In the particular exploration run shown in Figure 7J, the

robot first walks along the left side of the exploration bounds,

learning the fast gait costs for both the pavement and turf and the

tall gait cost over the turf. Then the robot learns the tall gait cost

over the pavement while clearing the spatial exploration goals.

During the exploration, it can be seen that the robot avoids

walking over the remaining turf, only approaching it at the very

end of the exploration. Thus, the robot needs only to enter and

not leave the turf (minimizing the time on the costly terrain) to

reach the goal that lies on the turf.

The test runs using the baseline, and the learned model over

the first tour are shown in Figure 7K and Figure 7L, respectively.

In addition, the development of the tours that would be used at

different points during the exploration can be seen in Figure 7M

through Figure 7O. In the baseline test, the robot walks directly

between the waypoints and only switches to the tall gait after

getting stuck. On the other hand, when using the learned model,

the robot avoids the turf if possible and switches to the tall gait

before entering the turf while pursuing the top-left goal.

The performance over 25 simulated trials (five exploration runs,

each with five tour tests for the tour tests; 25 runs for the simulated

exploration tests) can be observed in Table 5. On the first tour, the

hybrid gait selection approach is slower than the reactive baseline. In

the authors’ opinion, it is caused by the conservative (large) value of

rrobot, which compels the robot to use the slow tall gait on the border

between the rough terrain and pavement, whereas the reactive

approach only tries to switch back to the fast gait (which is its

main disadvantage when compared to the hybrid approach) a few

times on the short rough terrain segment. Nonetheless, the proposed

learned model knows to avoid such areas and performs better or the

same as the other approaches over every tour segment. Hence, the

results suggest that robot benefits fromusing the learned costs in path

planning. Over the second tour, the robot performs similarly. The

learned model outperforms the baseline when moving around or

over the turf. Both approaches exhibit similar travel times when the

direct path between the waypoint leads only over the pavement.

Unlike over the first tour, the hybrid gait selection performs better

than the baseline approach, presumably due to longer sections over

hard-to-traverse terrains on the second tour. The proposed approach

consistently outperforms the baseline and hybrid gait selection

approaches; we conclude that the robot benefits from using the

learned model.

In addition to the tour tests, the results suggest that the robot

benefits from using the non-myopic GTSP planner compared to

the myopic greedy approach. Even though the performance of

the two approaches appears relatively close, the Mann–Whitney

U Test (Mann and Whitney, 1947) rejects the null hypothesis of

the same exploration time distribution at 99.5% confidence

against both the two-sided and the relevant one-sided

alternative. In the authors’ opinion, the high variance in the

observed exploration times can be attributed to the effect of

random chance in exploration since neither myopic nor non-

myopic approaches are informed about the terrains in

unexplored areas. However, the myopic explorer is more likely

to make a bad decision, such as not clearing some of the goals in a

particular area that needs to be visited later. Therefore, the

proposed non-myopic approach performs better overall.

5.1.2 Large environment

The large environment is an artificial 20 × 25 m outdoor/

indoor scenario. The map comprises patches from the courtyard

FIGURE 9
The 2m × 6m large deployment area with a green artificial
turf. The area boundary is in red, and the waypoints of the test tour
are depicted in blue. The shown robot is at the starting position.
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scan rearranged as shown in Figure 8. Given the size of the

environment, the robot is sped up five times. The cell size is

increased to 0.1m, and other parameters are adjusted

accordingly, see Table 3. In addition, the robot uses an

omnidirectional sensor with the increased range of 10 m,

which expands the range of terrains that can be observed

without the respective terrain’s traversal. To accommodate the

simulation of the increased sensor range, the virtual environment

is run on AMD Ryzen Threadripper 3960× 3.8 GHz with 48 GB

memory running Ubuntu 18.04 and ROS Melodic, using STDR

in the same manner as for the small environment.

Similar to the small environment, the robot is first set to

explore the environment and then is tasked to visit the set of

waypoints shown in Figure 8C. The proposed algorithm is

FIGURE 10
Environment evaluation and the real robot exploration run; (A) dominant color in the histogram feature; (B)merged cost used for planning; (C)
selected gait (fast in red, tall in purple); (D) costs used for learning the fast gait model (adjusted by hyperbolic tangents), visualized over the terrain
appearance; (E) clusters used in the fast gait model (arbitrary colors used to distinguish clusters); (F) fast gait cost predictions assigned by the dilated
clusters; (G) costs used for learning the tall gait model (adjusted by hyperbolic tangents), visualized over the terrain appearance; (H) clusters
used in the tall gait model (arbitrary colors used to distinguish clusters); (I) tall gait cost predictions assigned by the dilated clusters; (J) exploration
run; (K) test-tour run using the baseline model without the learned traversal costs; (L) test-tour run using the learned traversal costs.
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compared to a spatial-only baseline approach, which learns the

cost models only as a result of experiencing cost while pursuing

spatial exploration goals. The spatial-only changes the gaits in a

reactive fashion when stuck and hence only learns the model for

the tall gait if it enters the difficult green or brown turf during the

exploration.

The quantitative results for the large environment are

shown in Table 5. Since the proposed approach actively

tries to sample every terrain type, it is slower to explore the

whole environment. However, the proposed approach

performs better in the tour evaluation. Closer examination

suggests that while the tour times of the proposed approach

remain similar in all trials, the spatial-only times vary wildly

since the learned models differ based on which terrains the

robot has traversed during the exploration. This randomness

can be attributed to differences in simulation and plan

execution. In addition, Figures 8D–G shows the learned

maps for the proposed model, and for the spatial-only

model in both the cases when the rough terrain was and

was not traversed. For the case when a rough terrain was

traversed by the spatial-only model, the costs differ between

the individual rough areas. However, the ground truth costs

shown in Figure 8B suggest that they should be the same, as is

the case for the proposed model. Likely, this is caused by the

robot traversing only the brown-green rough terrain located

on the left of the environment. The green terrain, located in

the center and right of the environment, appears somewhat

similar to the brown-green terrain. Hence, the robot considers

it to be difficult to traverse to a certain degree. However, since

the spatial-only model does not deliberately sample the

terrains, the model’s guess differs somewhat from the exact

cost to traverse the particular terrain, decreasing the fidelity of

the predictions.

Overall, the presented results suggest that the proposed

approach presents a tradeoff in terms of exploration and

execution time: the longer time spent exploring the

environment and learning the cost models provides the robot

with better cost maps, which shorten the time to navigate the

environment after it is explored. It should be noted that since the

behavior of the spatial-only model is affected by random chance

(differences in simulation and plan execution), it can provide

models as good as the proposed approach. However, there is no

guarantee that this would happen regularly, whereas the

proposed approach has returned high fidelity maps in every

test case.

5.2 Real robot experimental deployment

The viability of the proposed approach is demonstrated in the

real experimental deployment, where the robot explores an

indoor 2 × 6 m area visualized in Figure 9. The office-like

environment comprises flat synthetic terrain that is easy to

traverse but appears to the robot differently colored at

different locations since it is glossy and carries the color of

nearby objects located next to the arena. When building the

colored elevation map M2.5D, we use the first color observed at

each location to account for the issue. In addition to the flat

terrain, a green artificial turf is placed in a part of the test area to

provide a relatively hard terrain to traverse. The robot interacts

with the real terrains similarly to the simulation: the fast gait may

get stuck on the turf but is faster than the tall gait over the flat

parts of the arena. During the experiment, the robot is set to

explore the area; even though it can leave the bounds of the 2 m ×

6 m large area, it does not pursue goals located outside of the

bounds.

Figure 10 shows the maps learned in the experimental run,

which is also presented in the accompanying Supplementary

Video S1. A colored map of the environment is depicted in

Figure 10A. The overall costs and selected gaits through the

environment are shown in Figure 10B and Figure 10C,

respectively.

During the experimental deployment, the robot first

learns the largest gray appearing flat terrain using the fast

gait. Then it learns on the turf for both gaits and returns to the

gray area to learn for the tall gait. Afterward, the robot

pursues the yet unvisited spatial goals and smaller off-

color terrain clusters that appear near the environment

boundary and are caused by the glossy floor that carries

the color of the nearby objects.

Compared to the simulation, the robot needs a larger amount

of the measurements to learn the terrains (see Figure 10D and

Figure 10G), and there are more terrain clusters (see Figure 10E

and Figure 10H). It suggests that the real environment is noisier

and contains multiple differently colored areas, which is in line

with our observations regarding the glossy floor material.

Nevertheless, the traversal costs learned by the robot for the

individual gaits (see Figure 10F and Figure 10I) are within

expectations, as is the overall planning cost depicted in

Figure 10B and gait selection visualized in Figure 10C.

The test run scenarios are set up similarly to the tours

used in the simulated test; the robot is placed in front of the

hard-to-traverse turf and tasked to reach a goal location

behind the hard-to-traverse terrain, slightly out of the

exploration bounds, see Figure 9. The paths shown in

Figure 10K and Figure 10L show that when using the

baseline without the learned model, the robot tries to

reach the goal directly over the turf, gets stuck, and needs

to switch to the slow tall gait. On the other hand, when using

the learned model, the robot avoids the hard-to-traverse areas

and reaches its goal quickly using the fast gait. The

performance in the presented run can be seen in Table 5.

Overall, we conclude that the real deployment confirms that

the robot can actively learn the traversability as a part of the

exploration mission and benefits from using such learned

models.
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6 Discussion

The presented exploration system is proposed as a

combination of spatial geometric modeling and learning

terrain-gait traversal cost models. However, the system is

designed to support additional models that do not describe

the robot’s traversal cost. Moreover, since the models are kept

separate, there is no need to use the same feature set for each of

them. Therefore, the approach is compatible with spatial

models such as magnetism models (Karolj et al., 2020) or

GP-based occupancy (Wang and Englot, 2016). The only

requirement for a model is that it produces a set of

learning goals in the environment that are resolved once

particular information is sampled. Hence, the proposed

system can be extended by including additional

traversability models, such as modeling the passability of

potentially non-rigid obstacles.

In addition, we approach the traversal cost prediction so that

it supports any cost model that is additive along the traversed

path, such as time to traverse or consumed energy. Besides,

individual cost predictors describe the gaits of a hexapod walking

robot, but they can also describe any discrete set of robot

configurations. Hence, the approach is viable for any mobile

robot that describes its motion experience using an additive cost

and can also be used to model the energy a tracked robot

consumes, for example, with adjustable flippers. A particular

limitation of the cost modeling used in the presented approach is

that we assume that the individual gaits are switched for free

w.r.t. the cost (i.e., instantaneously for cost modeled as the time to

traverse), whereas in practice, the gait requires some time to

exhibit its properties. In this study, we leave the question of how

to predict gait-change cost open for future work.

The used cost model goal generation stems from the idea that

adding new observations does not increase GP uncertainty if the

hyper-parameters are fixed (Rasmussen and Williams, 2006).

Therefore, sampling new measurements should not increase

uncertainty and thus not spawn new goals in areas containing

none. In practice, even though we use fixed GP hyper-

parameters, the non-increasing nature of the uncertainty does

not strictly hold for the approximated information gain since, in

addition to the GP hyper-parameters, the information gain also

depends on the terrain clusters and the costs and descriptors in

the learning set, all of which might drift during the exploration.

However, the robot behavior demonstrated in both evaluation

setups shown in Figure 7J and Figure 10J suggests that the

assumption holds in general. The robot clears the areas

corresponding to the individual terrains (goals) and is not

compelled to return to previously visited areas.

The primary limitation of the proposed approach is identified

in its inability to compare the utility of the goals originating from

the different models.We are motivated to build amodular system

that would support different model types; therefore, the proposed

decoupled approach considers each goal equally valued,

regardless of the source model. This limits how the models

are used since the goal utility, such as the information gain, is

relegated to be used only inside the particular model to determine

which environment features (locations or terrain types) are goals

to use in creating an instance of the GTSP. The proposed

approach provides a non-myopic solution to visit the goals

reported by the individual models, where the models are also

non-myopic since each can report multiple goals. Myopic models

that would report their respective highest utility goal (potentially

with multiple sampling sites) can be used. However, similarly to

the myopic planner with the results reported in Table 5, the time

to explore would likely increase since the GTSP planner would

lack the information on where to go after the current goals are

sampled, and thus the exploration path would often change

significantly. Integrating goal utility into the decoupled

planning and using alternative utility functions such as the

GP-UCB remains the subject of future work.

7 Conclusion

In this study, we present a system for autonomous mobile

robot exploration that incorporates active learning of traversal

cost models in addition to spatial model building. During the

exploration, the robot builds the spatial geometric model of

the environment and learns the traversal cost models, each

comprising a Gaussian process regressor and a growing neural

gas terrain clustering scheme. The geometric model is used to

determine areas passable by the robot, while the cost models

predict the traversal costs over the passable terrains from the

terrain’s appearance. Each cost model corresponds to a

particular hexapod walking robot locomotion gait. The

robot approaches exploration in a decoupled manner,

creating a set of goals for the spatial exploration and for

each traversal cost model. The exploration path is planned by

solving an instance of the generalized traveling salesman

problem over the goals that are sets of possible sites of

visits to improve the particular model. The proposed

system has been evaluated in simulation setup and real

experimental deployment with two different walking gaits.

The results suggest that the proposed system yields the robot

to explore the environment and learn the traversal cost

models. The learned models benefit the robot’s operation in

the environment. In future work, we plan to model the gait

change costs, include additional traversability models such as

obstacle rigidity, and extend the proposed approach to

support goal utility and exploration–exploitation models.
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Abstract
This paper concerns online learning of terrain properties combining haptic perception with exteroceptive sensing to reason
about forces needed to pass through terrains that visually appear as untraversable obstacles. Terrain learning is studied within
the context of autonomous exploration. We propose predicting the traversability of potentially obstructing terrains by active
perception to establish a connection between the observed geometric environment model and deliberately sampled forces to
pass through the terrain using a haptic sensor that probes the terrain in front of the robot. The developed solution uses aGaussian
Process regressor in online learning and force prediction. The robot is navigated by following the information gain to improve
traversability and spatial models. The proposed approach has been experimentally verified in fully autonomous exploration
with a multi-legged walking robot. The robot is navigated through visually looking obstacles and explores “hidden” areas
while following the expected information gain to explore the terrain properties of the mission area.

Keywords Mobile robot · Exploration · Active perception · Haptic sensing · Gaussian Process regression

1 Introduction

Terrain properties like appearance and geometry can be used
to reason about the traversability of mobile robots by assign-
ing terrain classes (Bradley et al., 2015), computing a terrain
traversal cost function (Sofman et al., 2006), or discriminat-
ing untraversable terrains (Stelzer et al., 2012). Further, we
reason about terrains that appear untraversable due to their
geometrical properties. These visually appearing obstacles
can be traversable, such as sparse vegetation or a curtain-
covered doorway, which appear as a wall when presumed to
be rigid. Assuming a non-rigid terrain is a rigid obstacle to
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avoid leads to safe behavior. However, in autonomous explo-
ration, such behavior might be overly cautious and results in
an incomplete terrain model if the robot is prevented from
visiting areas separated by terrain that appears untraversable
yet can be traversed by the robot.

In this paper, we propose to use both exteroceptive and
haptic sensing to actively learn to predict the traversability
of potentially obstructing obstacles. A haptic sensor (3D-
printed bumper) is used to sample the force needed to pass
through these visually appearing obstacles. A Gaussian Pro-
cess (GP) regressor (Rasmussen & Williams, 2006) exploits
the obstacle appearance in online learning and predicts the
forces required to be generated by the robot to pass through
an obstacle. The proposed method is demonstrated in a
real-world autonomous exploration scenario where a multi-
legged walking robot actively learns terrains that can be
passed through. Besides exploring the unobserved areas, the
robot actively collects information about the force predic-
tion model driven by the expected information gain from
interaction with potential obstacles. An example of the robot
decision-making using the proposed model is visualized in
Fig. 1.

Regarding the existing work, including our previous work
on terrain learning (Prágr et al., 2018b, 2019), the main con-
tributions of the presented work are considered as follows.
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Fig. 1 A visualization of autonomous decision-making in the pro-
posed terrain learning approach; untraversable terrains are in the red
and orange, while the green and blue areas can be traversed. For the
“blue obstacles”, the robot has already learned that such visually appear-
ing obstacles can be traversed through. (top) The circular black targets
represent possible exploration goal locations. The southern (S) goal is
reachable over terrain that appears traversable, while both the north-
ern (N) and eastern (E) goals are located behind obstacles. However,
the eastern goal is considered reachable, visualized by the green path
from the current robot’s location to the possible goal location. (mid-
dle) Robot walking through a traversable obstacle in the form of purple
fabric. (bottom) Projection of the traversability on robot vision a few
moments before traversing the fabric. Since the robot has learned that
the purple fabric (shown at the northeast of the view) is traversable, the
robot plans a path through it (Color figure online)

– Model characterizing the force needed to pass through
terrains (obstacles), incrementally learnable using exte-
roceptive and haptic measurements.

– Proposed model’s capability to exploit observations
about terrain traversability that visually appears to be
rigid, but for which the experienced haptic interaction
provides evidence of its traversability.

– A robotic system with active haptic perception using
information-theoretic estimation of the expected infor-
mation gain of the object touching to ensure traversability
of terrains that visually appear impassable.

– Experimental evaluation of the developed incremental
model learning and online prediction in an autonomous
robotic exploration scenario with a real hexapod walk-
ing robot. The model’s incremental learning capacity is
exploited in online
decision-making based on the expected information gain
from visiting and interacting with terrain obstacles.

– Experimental evaluation of the developed incremental
model learning with real outdoor vegetation.

The rest of the paper is structured as follows. Section2
provides a brief review of the most related approaches that
concern terrain traversal by unmanned ground vehicles and
mobile robot exploration. Section3 specifies the problem
of mobile robot exploration of the environment with ter-
rains that appear untraversable yet can be traversed. The
proposed learning and modeling of such environments and
the autonomous exploration framework to build a complete
traversability map of the unknown environment with areas
“hidden” by non-rigid terrains visually appearing as obsta-
cles are proposed in Sect. 4. The employed haptic sensor is
overviewed in Sect. 5, together with the reported evaluation
results from the real experimental deployment of the pro-
posed system. Section6 concludes the paper.

2 Related work

In this section, a short survey of the related work is provided.
First, we focus on approaches concerned with describing ter-
rain traversability, and the herein presented work is placed in
their context. Second, we provide a short overview of robotic
exploration.

2.1 Terrain traversability

It is not desirable to enter areas that would bar mobile robots
from continuing their missions by damaging the robot, such
as by falling off a high cliff or impeding further motion as it
happened by getting stuck in soft sand (Brown & Webster,
2010). Besides, avoiding terrains that do not pose an imme-
diate danger to the robot but are hard to traverse is desirable.
Such terrains may cause unnecessary energy consumption
or slowly wear the robot body. Thus, autonomous mobile
robots have to consider local terrain properties during navi-
gation through the operational environment. A rich body of
literature reports on systems concerning terrain traversabil-
ity. An extensive review and taxonomy of such approaches
can be found in Papadakis (2013).

The terrain traversability can be described either by clas-
sifying the terrains into a set of terrain classes (Belter et al.,
2019; Giguere & Dudek, 2008; Kragh et al., 2015; Rothrock
et al., 2016), or by assigning a continuous traversability score
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to the observed terrain properties (Kottege et al., 2015), such
as terrain appearance and geometry (Prágr et al., 2018a; Prágr
& Faigl, 2019). A common yet straightforward approach is
to classify terrain either as an untraversable obstacle or a
free traversable space. Stelzer et al. (2012) use geometric
terrain properties to classify terrain as untraversable or free
and compute a continuous index to describe the traversability
of the latter class. In Kragh et al. (2015), the Support Vector
Machine (SVM) classifier learns three classes (ground, veg-
etation, and object) in an agricultural environment; while 40
hand-labeled terrain classes are used in Bradley et al. (2015),
where some of them are denoted as obstacles.

Terrain traversability scores are computed directly from
remotely observed terrain appearance and geometry or
describe the difficulty or energy consumption previously
experienced by the robot when traversing over the respective
terrain. Sofman et al. (2006) use overhead imagery to learn
traversability log-scale score based on ground LiDAR data.
Overhead features are utilized to predict the energy required
to traverse various outdoor terrains in Prágr et al. (2020). The
cost of transport, an energy-over-velocity cost originating
in biology (Tucker, 1975), is modified for use with battery-
powered robots in Kottege et al. (2015). McGhee and Frank
(1968) propose to measure the stability of a multi-legged
robot in terms of its foothold support polygon. Furthermore,
Prágr et al. (2019) learn to predict stability based on inertial
measurements of the robot shaking in an active perception
scenario.

Terrain geometry, which can serve as a traversability indi-
cator, can be characterized in terms of its slope (Brunner
et al., 2013; Gu et al., 2008), step height (Homberger et al.,
2016), or roughness (Belter et al., 2019; Krüsi et al., 2016).
The terrain shape is described based on the Eigen-statistics
of the point cloud covariance matrix in Lalonde et al. (2006)
and Kragh et al. (2015). Approaches that consider terrain
color use the HSV (Sofman et al., 2006) or Lab (Otsu et al.,
2016) color space to avoid illumination sensitivity of the
RGB color space. Cunningham et al. (2019) propose to use
thermal imagery to predict slip during Mars rover missions.

Autonomous robots operating in outdoor environments
might encounter hard-to-traverse-vegetation, and thus atten-
tion is given to such terrains (Bradley et al., 2015; Sofman
et al., 2006).Ünsalan andBoyer (2004) compared indices that
characterize vegetation using a LiDAR sensor. In Petrou et al.
(2015), the vegetation height is classified using overhead
imagery. The elevation of the supporting terrain occluded by
the vegetation is estimated using a GP model of the vegeta-
tion height and foothold supports in Homberger et al. (2019).

Furthermore, mobile robots may also be deployed in envi-
ronments with dynamic obstacles such as closing doors or
moving people. Approaches to handle such dynamic envi-
ronments may either filter out dynamic objects and extract
a static map (Burgard et al., 1999), or use spatial-temporal

maps to represent and predict changes in the environment
such as a door being closed or opened (Biber & Duckett,
2005; Halodová et al., 2019). However, to the best of the
authors’ knowledge, none of the existing dynamic environ-
ment approaches is designed to handle terrain that appears
like a non-moving obstacle for the whole time while it can
be passed through with sufficient forward force.

In Baleia et al. (2015), a haptic antenna is used to clas-
sify the traversability of visually untraversable yet possibly
traversable objects. The therein proposed traversability pre-
dictor is used in a self-supervisedmanner.Upon encountering
a potential obstacle during its mission execution, the robot
recalls the k-nearest appearing obstacles using a feature
similarity metric. The robot computes its confidence levels
regarding the obstacle being traversable and untraversable
and decides whether to move forward or avoid the obstacle.
If neither the obstacle traversability nor non-traversability
can be observed with sufficient confidence, the robot uses
the antenna to assess the obstacle and expand its memory.

Kahn et al. (2021) present a self-supervised, end-to-end
learning system to navigate potentially traversable terrains
that appear untraversable without relying on a Simultaneous
Localization and Mapping (SLAM) system. The robot uses
a random walk policy to collect a dataset, where it identifies
collision, bumpiness, and position events using its Inertial
Measurement Unit (IMU) and wheel odometry. The robot
learns to predict the events given input image and action. The
learnedmodels can be exploited in navigation with respect to
(w.r.t.) an arbitrary reward function that considers the three
event types.

In the herein presented work, we aim to build both the
observed geometric model of the environment and a model
that predicts the traversability of potentially obstructing ter-
rains by a small amount of data provided by a haptic sensor
correlated with exteroceptive sensing. Compared to Baleia
et al. (2015) and Kahn et al. (2021), we characterize the
force needed to pass through potential obstacles, and hence
the proposed approach is robot agnostic. Unlike the method
proposed by Baleia et al. (2015), which focuses on classify-
ing objects encountered during the robot mission that can be
avoided when deemed untraversable, we address relatively
large, obstacle-like terrains that might block access to addi-
tional sections of the environment.

Besides, considering the previous work on learning using
collected data (Kahn et al., 2021), the proposed system is
employed in autonomous exploration with the additional
complexity of incremental learning of the force to pass
through obstacles on the robot during the deployment. Based
on the visual appearance, the force predictions are utilized in
online decision-making to discriminate the objects the robot
cannot traverse and identify unknown obstacles the robot
should sample next. Since our approach is focused on learn-
ing the force, it samples and learns only on terrains that are
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unknown and thus informative.Weuse a learningmethod that
requires tens of samples and can be used online, directly on
the robot during the exploration.Thus, the proposed approach
uses much less data than general approaches such as Kahn
et al. (2021), which rely on long-term data collection and
offline processing.

Because we employ the proposed approach in the explo-
ration context, an overview of mobile robot exploration
approaches is presented in the following paragraphs.

2.2 Mobile robot exploration

Mobile robot exploration is an active perception scenario
where one or a group of mobile robots build a model of
themission environment. In frontier-based exploration (Faigl
& Kulich, 2015), the robot follows frontiers, the bound-
aries between the observed traversable and not yet observed
areas (Yamauchi, 1997). Alternatively, the probabilistic
representation of the cell occupancy in the occupancy
grids (Moravec & Elfes, 1985) can be used in the exploration
strategy that maximizes the information gain (Bourgault
et al., 2002;Makarenko et al., 2002). Beside gridmaps,Gaus-
sian Processes (GPs) (Ruiz &Olariu, 2015; Vasudevan et al.,
2009),GaussianMixtureModels (GMMs) (O’Meadhra et al.,
2019), or Hilbert maps (Ramos & Ott, 2016) can be used to
create continuous maps that are not resolution-dependant.
Since the GP regressors provide predictive variance for their
queries, they are particularly suited for active perception sce-
narios. Jadidi et al. (2018) use a GP-based representation to
construct frontier maps, while the GMM is used in Tabib
et al. (2019).

Exploration is not limited to building maps and geomet-
ric models but may also concern modeling a phenomenon
underlying the spatial environment such as temperature (Luo
& Sycara, 2018). In informative path planning (Singh et al.,
2007), the goal is to find the most informative path subject
to a particular constraint, such as the robot energy budget.
Hence, the robot explores as much of the environment as
possible while avoiding battery depletion that would lead to
its immobilization, as noted in Tiwari et al. (2019), where
a framework for operation range estimation is presented to
support robots ranging frommulti-rotor fliers to ground vehi-
cles.

When the goal is to find extrema of the modeled phe-
nomena, exploration-exploitation tradeoff-based approaches
such as Gaussian Process Upper Confidence Bound (Srini-
vas et al., 2010) can be utilized. Furthermore, the active
learning of the underlying model can be combined with
the traditional geometric exploration (Prágr et al., 2019).
For example, the robot localization model can be incorpo-
rated into information-based exploration approaches, such as
the localization uncertainty represented using the differential
entropy of the robot position distribution by directly adding

it to the mapping uncertainty (Bourgault et al., 2002; Stach-
niss et al., 2005). However, since the differential entropy
differs from the Shannon entropy of the binary cell occu-
pancy distribution in scale, particularly when considering
dynamic environment size, Carrillo et al. (2018) argue that it
is not desirable to combine them directly and employ Rényi
entropy (Rényi, 1961) to create an uncertainty utility func-
tion.

In this paper, we present a combination of the spatial
map exploration with the active building of the obsta-
cle traversability model characterized as the force to pass
through. The proposed approach is demonstrated within
autonomous robotic exploration, in an escape-like scenario,
where the robot first explores all areas accessible without
interacting with obstacles. Only when no such areas are
available does it actively learn the obstacle traversability.
Consequently, the robot selects the exploration goals inde-
pendently for the respective models. Hence, even though
the spatial and prediction models yield information gains in
Shannon’s discrete and differential entropy, respectively, we
circumvent the need to combine these two quantities.

3 Problem specification

We address mobile robot exploration in environments where
obstacles can be non-rigid and passable by the robot. The
robot is tasked to explore an environment modeled as the grid
map M2.5D , where each cell ν corresponds to a foothold of
the hexapod walking robot used in the experimental verifi-
cation. Hence, the cell size dν corresponds to the foothold
size. The robot moves through the environment along a path
ψ that can be expressed as

ψ = (ν1, ν2, . . . , νn),

s.t.

∀i ∈ 1, . . . , n : p(νi ) = 1,

∀i ∈ 1, . . . , n − 1 : νi+1 ∈ 8nb(νi ),

(1)

where 8nb(ν) is the 8-neighborhood function on the grid,
and p(ν) returns the probability that the cell ν is passable,
denoted as the robot’s traversability.

Flat areas are considered traversable, and the environment
geometry is used to determine areas that appear as obstacles.
Since obstacles may be non-rigid, the robot’s traversability
through such areas cannot be determined only by geometry.
Rather, an obstacle is traversable if the robot can exert force
sufficient to pass through. Hence, the robot’s traversability
through a grid cell ν that appears as an obstacle is

p(ν) =
{
0 if F(ν) > Ftrav,

1 otherwise,
(2)
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where F(ν) is the force needed to pass through the cell ν, and
the threshold Ftrav is the maximum force that can be exerted
by the robot when trying to pass through the obstacle.

In the explored environment, the force to pass through the
obstacles is not known for the individual obstacles. How-
ever, it is assumed the force is similar for similar-appearing
obstacles, and thus the robot can predict the force needed
to pass through the obstacles described by their respective
appearance descriptors A as

fpredict : A → F̂ . (3)

Besides, while we assume that the appearance description is
sufficiently discriminative to distinguish the obstacles in each
individual explored environment, similar-appearing obsta-
cles in different deployments may have different rigidity.
For example, dry summer grass is easier to traverse than
wet grass prevalent during spring, even though they appear
similar. Hence, the robot learns the rigidity predictor fpredict
online during the exploration, starting from scratch for each
deployment.

Since the task of the robot is to explore the environment
where some areas may be reached only by traversing through
the non-rigid obstacles, the portion of the environment that
is explored is the benchmark value. The proposed method is
thus evaluated and compared to a baseline model that con-
siders the obstacles untraversable.

4 Proposed traversability model

The proposed method to characterize the traversability of
apparent yet potentially traversable obstacles is presented as
a part of the autonomous exploration. The robot is equipped
with a haptic bumper sensor to experience the possible
traversability of particular terrain areas. The traversability
of obstructing obstacles the robot can walk through is char-
acterized by sampling the force needed to pass through
the obstacle. These haptic measurements are considered the
traversability ground truth. The robot incrementally learns a
Gaussian Process (GP) regressor (Rasmussen & Williams,
2006) employed to predict the force to pass through from the
appearance of the apparent obstacles and thus to assess the
traversability of the obstacles.

The idea of the proposed traversability model is demon-
strated in an exploration-exploitation scenario set up as a
robotic escape mission. The robot first explores the areas
observed by the exteroception that appear traversablewithout
interacting with apparent obstacles. After all such reachable
areas are explored, the robot actively uses its haptic sen-
sor to learn a model of obstacle traversability (force model
exploration). Furthermore, when the robot learns that some
apparent obstacle is traversable, it reverts to exploring the

area thatmay lie behind such obstacles (forcemodel exploita-
tion).

The relation of the proposed terrain model, its learning
based on the measured sensory input, and the
decision-making in the exploration setup is depicted in Fig. 2.
It principally works as follows. The exteroceptive part is
responsible for continuously building an elevation map of
the robot’s surroundings using RGB-D sensory input. Fur-
ther, the exteroceptive model identifies the areas that appear
untraversable by the robot from terrain geometry. The geo-
metric properties of the terrain are then passed to the learning
module. The haptic module accumulates measurements of
the force needed to pass through the apparent obstacles
as the force experienced by the haptic sensor during the
mission. These ground-truth force measurements are also
passed to the learning module, which pairs the respective
appearance characterization from the exteroceptive model
with these experienced haptic observations. Themodule real-
izes online learning and prediction of the force, and thus the
traversability for the observed yet untraversed terrains. The
exteroceptive model is updated with these traversability pre-
dictions to allow traversal through non-rigid obstacles. In
exploration, the robot uses information gain predictions pro-
vided by the exteroceptive and learning parts to select the
next exploration goal.

The cell traversability p̂(ν) is reported based on the inputs
from the haptic, exteroceptive, and learning modules. The
cells with traversability measurements phaptic(ν) are con-
sidered ground truth and reported as p̂(ν) = phaptic(ν),
regardless of the other modules. If there is no ground truth
traversability reported for the cell by the haptic model, its
geometric traversability pgeom(ν) provided by the extero-
ceptive module is used. If such cell appears traversable,
the traversability is set to p̂(ν) = pgeom(ν) = 1. For
cells marked as potential obstacles with pgeom(ν) = 0, the
traversability is assessed by the learning module, reporting
the traversability prediction ppredict (ν). Finally, unobserved
cells are reported as traversable p̂(ν) = punobserved = 1
to allow traversal of such areas, which is desirable since
cells hidden directly behind traversable obstacles cannot be
observed before traversal. The traversability assesment can
be summarized as

p̂(ν) =
{

phaptic(ν) if phaptic(ν) is known
ppredict (ν,P) if pgeom (ν) is known and pgeom (ν) = 0

1 otherwise
. (4)

The individual exteroceptive and haptic models, traversabil-
ity predictions, and the terrain learning process are detailed in
the following sections. The symbols used in the description
are overviewed in Table 1.
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Fig. 2 Individual modules employed in building the traversability model and its usage in the autonomous exploration

4.1 Exteroceptive model

Robot’s visual and depth perceptions are utilized to construct
a colored elevation map M2.5D , see Fig. 3a. The elevation
map is a grid map with the squared cell of the size dν , and
its underlying representation is based on a memory-efficient
quadtree data structure (Bayer & Faigl, 2020). For each cell
ν ∈ M2.5D , the geometrical traversability model (visualized
in Fig. 3b) provides pgeom(ν), the probability that the robot
can traverse the cell ν, by comparing local differences of
height to the threshold ttrav

pgeom(ν)

⎧⎨
⎩
0 if max

ξ∈8nb(ν)
�(ν, ξ) > ttrav

1 otherwise
, (5)

where 8nb(ν) is the 8-neighborhood of the cell ν, the par-
ticular value of ttrav depends on the kinematics of the used
robot. The step height �(νa, νb) is defined as

�(νa, νb) = |elevation(νa) − elevation(νb)|, (6)

with elevation(ν) denoting the estimated height of the ter-
rain at the cell ν. Note that all the results presented in this
paper are for ttrav = 12cm based on the kinematics con-
straints and motion gait of the utilized hexapod walking
robot.

The information about the geometric traversability model
gained by observing an unknown cell ξ is approximated as
the entropy of the binary distribution pgeom that depends on
the 8-neighborhood of the cell. Since the knowledge whether
one cell is traversable corresponds to one bit, the information
gained by observing ξ with unknown height is approximated
as

I cellgeom(ξ) ≈ k(ξ) + 1

9
, (7)

where k(ξ) is the number of the unknown cells in the neigh-
borhood of ξ . Thus, the expected information gained by
perceiving the terrain from the position of the cell ν is

Imodel
geom (ν) =

∑
ξ∈δ(ν,δsensor)

{
I cellgeom(ξ) if observable(ν, ξ)

0 otherwise
,

(8)

where δ(ν, δsensor) is the neighborhood of ν defined by the
sensor range δsensor, which value depends on the used sensor,
e.g., δsensor = 2 m. The function observable(ν, ξ) returns
true if the cell ξ is observable from ν, which is determined
by casting a ray from ν to ξ in the current elevation map
M2.5D . An example of the information gain of the geometric
traversability model is depicted in Fig. 3c.
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Table 1 Used symbols

Description Symbol Description Symbol

First introduced in Sect. 3

Environment gridmap M2.5D Gridmap cell ν

Cell size dν Path ψ

Cell traversability p Cell grid 8-neighborhood 8nb

Force to pass through F Maximum force exerted by robot Ftrav
Terrain appearance A Force prediction function fpredict

First introduced in Sect. 4

Reported traversability p̂ Ground-truth haptic traversability phaptic

Apparent geometric prediction pgeom Predicted traversability ppredict

Unobserved-cell traversability punobserved

First introduced in Sect. 4.1

Step height � Maximum allowed step height ttrav

Information gained by observing a cell I cellgeom Information gained by observing from a cell Imodel
geom

Cell δ neighborhood δ Sensor range δsensor

Spatial goal cluster radius dcl Spatial goal minimum cluster size nthrcl

Spatial goal set Ggeom

First introduced in Sect. 4.2

Force measurement zforce k-th force measurement at cell zforcek

Force reported at cell after k measurements Fk Force uncertainty at cell after k measurements σ 2
k

Bumper sensor measurement uncertainty σ 2
sensor

First introduced in Sect. 4.3

Traversability predictor P Mono-color appearance descriptor AAB

Force prediction mean μF Force prediction variance σ 2
F

Approximated predictor information gain Ipredict

First introduced in Sect. 4.4

GP model noise variance σ 2
n Exponential kernel output variance σ 2

exp

Exponential kernel lengthscale lexp

First introduced in Sect. 4.5

Planning cost c The cheapest path ψ∗

Exploration goal ν∗
explore Spatial exploration goal ν∗

geom

Predictor exploration goal ν∗
predict Predictor initialization goal ν∗−�

predict

Predictor learning goal ν∗−I
predict Minimum prediction goal information Ithrpredict

First introduced in Sect. 5.3

Histogram appearance descriptor Ahist Histogram descriptor radius rhist

Some single-use symbols are omitted for simplicity
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(a) (b) (c)

Fig. 3 Example of a the colored elevation grid map (obstacles colored,
the ground is in the light blue); b the potential obstacles determined
solely on their geometric properties (obstacles are in the red, traversable
terrain in the green, and cells too close to obstacles in the yellow); and

c the information gain of the geometric model indicating terrain areas
with unsure spatial traversability because of lack of strong evidence
from exteroceptive measurements (Color figure online)

In an active perception scenario, the goal locations Ggeom

to improve the geometric traversability model are selected as
a subset of cells with non-zero information gain according to
Algorithm 1.

4.2 Haptic model

The haptic model uses measurements provided by the
bumper sensor to predict the traversability of the observed
obstacles that can be non-rigid. In particular, the sensor mea-
sures the force F(ν) needed to pass through the obstacle at
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(a) (b) (c)

Fig. 4 a Example of haptic based traversability ground truth perceived by the robot as the measured force to pass through the obstacle. b The
traversability prediction of the potential obstacles as the predicted force to pass through the obstacle and c the respective prediction differential
entropy

cell ν. Since the haptic sensor utilizes a high sampling fre-
quency, multiple different measurements are acquired for a
single cell ν. Therefore, each cell uses a Kalman filter that
fuses the measurements as

Fk(ν) =σ 2
sensorFk−1(ν) + σ 2

k−1(ν)zforcek (ν)

σ 2
sensor + σ 2

k−1(ν)
,

σ 2
k (ν) = σ 2

sensorσ
2
k−1(ν)

σ 2
sensor + σ 2

k−1(ν)
,

(9)

where Fk(ν) is the value reported by the haptic model for
the cell ν after k measurements were assigned to the cell,
zforcek (ν) is the k-th measurement assigned to the cell, σ 2

sensor
is the bumper sensor measurement uncertainty, the initial
force at the cell F0(ν) equals the first measurement assigned
to the cell, and the initial filter variance is σ 2

0 (ν) = 1. An
example of the acquired traversability experience projected
onto the elevation map (visualized in Fig. 3) is shown in
Fig. 4a.

The haptic sensor is considered to provide the ground truth
traversability measurements. Therefore, a binary value of the
traversability phaptic is utilized for cells where the ground
truth measurements are available, with the traversability of
the cell ν traversed by the haptic sensor being determined
w.r.t. (2).

4.3 Traversability prediction

The ground-truth force measurements reported by the hap-
tic module are limited to the particular obstacles the robot
has interacted with. Hence, the ground truth traversability is
relatively sparse. Therefore, the traversability learningmod-
ule combines the exteroceptive and haptic information about
the environment and determines the traversability for each
observed cell ν where the ground truth is unavailable. The
traversability predictor P is learned from the haptic experi-
ence that is extrapolated using the appearance A perceived
by exteroceptive sensing.

The learning module learns to predict the force to pass
through the observed potentially untraversable cell ν using
its appearance. The terrain description A(ν) of each poten-
tially untraversable cell ν is based on its color appearance.
We advocate the use of simple descriptors, which are easy
to compute and read. In scenarios with large, mono-color
obstacles, we use a pair of the cell’s a and b colors in the Lab
color space computed from the RGB-colored elevation grid,
as shown in Fig. 3a,

AAB(ν) = (a, b). (10)
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The traversability predictor P is learned from each observed
potentially untraversable cell ν that carriers the haptic force
measurement F(ν) as

P ← learn({(A(ν), F(ν)}{ν}). (11)

It predicts the force to pass through the potentially
untraversable cell ν distributed as

N (μF (ν,P), σ 2
F (ν,P)) ← predict(ν,P), (12)

where the force prediction mean μF (ν,P) determines the
traversability prediction ppredict (ν,P) considering the force
threshold Ftrav as in (2). Besides, if the predictorP has not yet
been learned, it assesses cells as untraversable. An example
of the traversability prediction over the elevation grid map of
the environment is shown in Fig. 4b.

The predicted distribution is utilized to estimate the
expected information gain associated with sampling cells
of unknown haptic traversability ground truth to steer the
robotic exploration towards collecting the required informa-
tion to improve the traversability model. The information
expected from the haptic measurement at the cell ν with
unknown haptic traversability phaptic(ν) is approximated as
the differential entropy of the respective predicted distribu-
tion (see Fig. 4c)

Ipredict (ν,P) ≈ H(N (μF , σ 2
F )) = 1

2
log(2πeσ 2

F (ν,P)).

(13)

Notice that for cell ν with the known haptic traversability
ground truth phaptic(ν), the ground truth with σ 2

F = 0 is
considered instead of the prediction, and thus no additional
information can be gained, and the differential entropy at any
such cell is undefined.

4.4 Gaussian process regressor

The traversability prediction is based on a GP regressor,
briefly described here to make the paper self-
contained. Given an observed function f (x) with the noise
ε

y = f (x) + ε, ε ∈ N (0, σ 2
n ), (14)

GP is a distribution over the functions (Rasmussen &
Williams, 2006)

f (x) ∼ GP(m(x), K (x, x ′)) (15)

where m(x) and K (x, x ′) are mean and covariance, respec-
tively, defined as

m(x) = E [ f (x)] , (16)

K (x, x ′) = E
[
( f (x) − m(x))

(
f (x ′) − m(x ′)

)]
. (17)

Given the train data X and the test data X∗, the latent
values f∗ at X∗ are

μ(X∗) = K (X , X∗)
[
K (X , X) + σ 2

n I
]−1

y,

(σ (X∗))2 = K (X∗, X∗)

− K (X , X∗)T
[
K (X , X) + σ 2

n I
]−1

K (X , X∗),
(18)

where K (X , X ′) is the covariance function. In this work, the
used covariance function is the exponential kernel

K (x, x′) = σ 2
exp exp

(
− 1

l2exp
‖x − x′‖

)
. (19)

In the considered exploration scenario, the model is
learned online using only the available onboard compu-
tational resources of the robot. Hence, it is necessary to
consider the computational requirements as the computa-
tion of GPs can generally be demanding. Therefore, the GP
regressor is relearned from the accumulated traversability
observations and terrain appearance with a fixed rate of 0.03
Hz. The real performance of the proposed terrain learning
model is reported in Sect. 5 within the autonomous explo-
ration that is briefly described in the following section.

4.5 Exploration scenario

The proposed terrain traversability approach with haptic and
exteroceptive sensing is intended to model the robot’s opera-
tional environment where some parts can look like obstacles
in exteroceptive data but can be traversed. Since the robot
environment is represented by the gridmapM2.5D , the robot
plans its paths through the environment w.r.t. the cost

c(νa, νb) = ‖(νa, νb)‖ + cd(M2.5D), (20)

where νa and νb are two cells that are 8-neighbors, the norm
‖(νa, νb)‖ is the respective Euclidean distance between the
cells’ centers, and cd is a non-negative cost. The cost cd
decreases with the distance from the closest untraversable
cell to penalize robot presence close to the obstacles as
in (Bayer & Faigl, 2019). The path cost c (20) is used to
assess a cost of path ψ , and select the shortest path in the
environment as
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ψ∗(νstart , νgoal) = argminψ∈�(νstart ,νgoal )
c(ψ),

c(ψ) = ∑|ψ |−1
i=1 c(νi , νi+1),

(21)

where �(νstart , νgoal) is the set of all possible paths from
νstart to νgoal , and the path ψ ∈ �(νstart , νgoal) is a path
starting at νstart and ending at νend . The cheapest path ψ∗ is
determined using the A* algorithm.

The exploration mission is considered as an escape-like
scenario. The exploration procedure is overviewed in Algo-
rithm 2, and it works as follows. The robot first explores the
areas accessible without interacting with apparent obstacles.
Only after all reachable areas are explored, the haptic sensor
is actively used to learn the model of obstacle traversability.
The exploration strategy selects the goal as

ν∗
explore =

{
ν∗
geom if ν∗

geom exists

ν∗
predict otherwise

, (22)

where the geometric exploration goal ν∗
geom is selected if

it is possible to gain any additional information about the
geometric model. The prediction model improvement goal
ν∗
predict is selected otherwise. In particular, the robot selects

the closest geometry exploration goal as

ν∗
geom = argminνgeom∈Ggeom

c(ψ∗(νrobot , νgeom)), (23)

where νrobot is the cell corresponding to the current robot
position. The goal to improve the prediction is selected either
as the cell with the highest potential information gain about
the prediction model, or the closest potentially untraversable
cell if the prediction model is not yet learned

ν∗
predict =

{
ν∗−I
predict if P is learned

ν∗−�
predict otherwise

, (24)

where the cell with the highest information gain potential is

ν∗−I
predict = argmaxν∈M2.5D |pgeom (ν)=0 Ipredict (ν,P), (25)

and the closest potentially untraversable cell is

ν∗−�
predict = argminν∈M2.5D |pgeom (ν)=0 c(ψ

∗(νrobot , ν)). (26)

Note that the area in the vicinity of the prediction goal is tem-
porarily cleared as traversable in M2.5D to allow the robot
to approach the sampling location. Finally, the robot does
not pursue prediction goals associated with less than Ithrpredict
information gained. Therefore, when there are no geometric
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Fig. 5 a The hexapod walking robot used in the experimental deploy-
ment, b its rear-facing sensor rig, c and the hinge mechanism of its
haptic bumper sensor

exploration goals and sampling no potentially untraversable
cell is associated with more than Ithrpredict information gained,
the exploration stops.

5 Experimental results and discussion

The proposed system for active terrain traversability learning
using visual and haptic cues has been experimentally verified
in two scenarios. First, the robot is deployed in an escape-
like exploration scenario to demonstrate active learning of
passing through obstacles and thus explore areas that would
remain inaccessible if only visual sensing would be used.
The robot is deployed in an indoor office arena containing
rigid obstacles the robot cannot traverse and non-rigid obsta-
cles the robot can pass through. In the second scenario, we
showcase the predictor in an outdoor setting with realistic
vegetation.

Prior to the results from each scenario, a brief description
of the utilized robot and its sensors are presented in Sect. 5.1.
The two deployment scenarios are individually presented in
Sects. 5.2 and 5.3, respectively. The results are further dis-
cussed in Sect. 5.4.

5.1 Robot and sensory equipment

The proposed system is deployed on the hexapod walk-
ing robot (Faigl & Čížek, 2019) shown in Fig. 5a. The

robot has six legs attached to its trunk, each comprising
three Dynamixel AX12 servomotors. The robot, including
its legs, can fit into a square with the side length of about
40 cm. The robot is equipped with exteroceptive sensor rigs
to localize the robot and build the colored elevation map.
The forward-facing rig comprises the Intel RealSense D435
RGB-D camera (D435 for short). The rear-facing camera rig
holds another D435 and the Intel RealSense T265 tracking
camera (T265 for short), see Fig. 5b. The localization using
the rear-facing T265 is selected to avoid losing tracked fea-
tures when the robot approaches obstacles.

The robot carries a haptic sensor designed as a bumper
mounted on a parallelogram hinge, see Fig. 5c. The sensor is
based on the Dynamixel XM430 servomotor that is actuated
and set to return to a pre-set position. The servomotor pro-
vides torque measurements that are paired with the tabulated
force values obtained by letting the bumper push on a force
sensor prior to the deployment. The measured force values
allow us to transform the bumper into a sensor measuring the
force to pass through obstacles. The sensor has been indi-
vidually calibrated for each presented experiment to avoid
eventual bumper changes. The traversability threshold has
been set to Ftrav = 2 N.

Furthermore, the robot is equipped with two simple
reflexes that help to sample the obstacle rigidity and traverse
through non-rigid obstacles that can impede its visual sen-
sors. First, when the robot gets close, within 0.25 m, to an
obstacle, it tries to pass through by walking forward. The
behavior is stopped either 10 s after leaving the obstacle
vicinity or by triggering the second reflex when the bumper
observes values higher than Ftrav. In such a case, the robot
samples the obstacle for 2 s to ensure that the observed value
is not an outlier caused by bumper motion. Then, the robot
engages a backward motion for 8 s to clear the obstacle.

The onboard computational resources are the Nvidia Jet-
son TX2 with 8 GB RAM running Robot Operating System
(ROS) Melodic (Quigley et al., 2009) that demonstrated
sufficient computational power according to the real compu-
tational requirements overviewed in Table 2. The proposed
system is parametrized, as in Table 3. Similar to the explo-
ration strategy proposed in Karolj et al. (2020), we use fixed
values of the kernel hyper-parameters instead of optimizing
them when recomputing the GP because the optimization
process is computationally costly and thus not suitable for
online deployments. We exploit that the ranges of the fea-
ture descriptors values and measured forces remain the
same between the individual deployments and set the hyper-
parameters empirically. In particular, the feature sensitivity
can be adjusted via the kernel lengthscale with the intuition
that it is possible to extrapolate roughly within the length-
scale distance of the known data. The kernel output variance
is set so that the already sampled terrains report prediction
entropies that are considered known w.r.t. Ithrpredict.
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Table 2 System performance Component Update Rate [Hz] CPU usage (%)

Exteroception (each D435) 1 25

Tactile sensing 300 4

Localization 200 7

Map building 2 7

Path planning 5

Feature description 1 6

Learning and prediction 0.03 13

Locomotion 10 3

Table 3 System parametrization

Symbol Description Value Reasoning

ttrav Obstacle detection step height 0.12 m Robot step height

δsensor RGB-D sensor range 2 m Properties of the sensor

dν Size of the squared grid cell of M2.5D 0.05 m Size of the robot foothold

dcl Geometric goal cluster radius 1 m Twice size of the robot

nthrcl Geometric goal minimum cluster size 10 Set empirically

σ 2
sensor Bumper sensor uncertainty in Kalman fuser 0.01 Bumper sensor calibration

σ 2
n Gaussian Process noise variance σ 2

n 0.1 Set empirically

σexp Gaussian Process exponential kernel σ 2
exp 1 Set empirically

lexp Gaussian Process exponential kernel (simple features) lexp 1 Set empirically

Gaussian Process exponential kernel (histogram features) lexp 0.4 Set empirically

Ftrav Maximum force to push through obstacle 2 N Properties of the robot

Ithrpredict Miminum prediction model MI 0.26 nat Set empirically (σ 2
F ≈ 0.1)

rhist Color histogram descriptor radius 0.15 m Half of the bumper width

5.2 Exploration scenario

In the exploration scenario, the robot has been deployed in an
arena split into three sections, see Fig. 6. The approximate
size of the arena is 35 m2. The robot cannot see the other
sections of the arena from each section. The robot starts in a
small arena section located in an office roomwith rigid brown
wooden obstacles, rigid white walls, and purple fabric.

The fabric can be traversed to access a corridor containing
the second and third arena sections. The two sections in the
corridor contain similar obstacles as the first section. The cor-
ridor sections are divided by another purple fabric, enabling
the robot which has already learned individual terrains’ rigid-
ity to identify the fabric as a traversable area. The goal of the
experimental deployment is to explore all three sections and
thus prove the ability of the proposed approach to sample and
learn the force to pass through the individual obstacle types.
The force sensor calibration in the exploration scenario is
based on the values depicted in Table 4, which are used to
compute a cubic spline to create a function of the force based
on the torque measurements.

Fig. 6 The robot a in the first arena section, b leaving the second
section, c exploring the third section; and d the map projection of the
three respective image vision cones in the red, green and blue (Color
figure online)
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Table 4 Bumper sensor calibration values

Torque (Nm) 0 0.17 0.34 0.51 0.60 0.79 10∗

Force (N) 0 1.05 2.02 3.10 4.09 6.34 10 × 104

∗A limit value used in interpolation; not actually measured

Particular maps showing the arena before the first sam-
pling of the traversable fabric in the first section, during the
exploration of the second section, and near the end of the
experiment are shown in Figs. 7, 8, and 9, respectively. Note,
a video of the therein depicted experimental run is also pre-
sented in Online Resource 1.

The robot behaved similarly in five deployment runs, of
which we choose two particular runs to report the robot’s
behavior here. After exploring the initial section, the robot
samples the obstacles. In general, if the robot has sampled the
wall or a wooden obstacle first, it chooses to sample the pur-
ple curtain second, since its color in the Lab descriptor space
is distant from the colors of the rigid obstacles and thus it has
a high prediction model uncertainty. Hence, the robot walks
through the curtain and enters the second section of the arena.
There, the robot resumes spatial exploration andmay attempt
to traverse obstacles it considers traversable based on its pre-
vious experience. Since the robot has not necessarily sampled
all the obstacles available in the first area, its traversability
predictions might be too optimistic. It is expected behavior
as it is a result of the incremental nature of the learning pro-
cess. Nevertheless, the robot obtains new force ground truth
when it attempts to traverse obstacles erroneously consid-
ered as traversable, thus further aiding the learning process
as demonstrated in the alternative experimental run where
the robot sampled the traversable fabric first, see Fig. 10.

The differences between the two experimental runs in the
proportional representation of predictions considered as sure
with regards to the uncertainty threshold Ithrpredict, and of the
predictions thresholded as either traversable or untraversable

Fig. 8 The a traversability and b color features in the arena during the
exploration of the second section (Color figure online)

Fig. 9 The a traversability and b color features near the end of the
experiment (Color figure online)

Fig. 7 The traversability a as seen from the robot and b its overview,
and c color features in the arena before sampling the traversable fabric in
the first section. Note, an obstacle is cleared as traversable even though

the robot has not yet learned its rigidity because it needs to approach
the obstacle to learn its traversability (Color figure online)
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Fig. 10 The predicted traversability in the experimental run where the
robot has sampled the traversable fabric first: a overly optimistic pre-
dictions after sampling the fabric and b corrected predictions after the
robot has sampled other obstacles due to trying to traverse through them
while exploring the corridor section

w.r.t. Ftrav, can be seen in Fig. 11a, b, respectively. The evo-
lution of the prediction entropy distribution is depicted in

Fig. 12. It can be seen that although the robot predicts a large
portion of obstacles as traversable after only sampling the
purple fabric in Fig. 11b, a large portion of these predic-
tions is not sure. After the robot learns that some terrains are
rigid by sampling them in the second area, sure untraversable
predictions emerge, even though some uncertain traversable
predictions remain, particularly in the first section of themap.

5.3 Outdoor scenario

In the outdoor scenario, the proposed system has been
deployed in several locations in the Prokop Valley in Prague,
CzechRepublic. The bumper is used to collect the haptic data
for several terrains in the area, which are paired with feature
descriptors of the respective terrains. The bumper sensor cal-
ibration is depicted in Fig. 13.

(a) (b)

Fig. 11 Evolution of the predictions for potentially untraversable cells a in the main presented experimental run and b in the experimental run
where the robot has sampled the traversable fabric first

(a) (b)

Fig. 12 Evolution of the predicted differential entropies for potentially untraversable cells in a the main presented experimental run; and in b the
experimental run where the robot has sampled the traversable fabric first
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Fig. 13 Calibration data of the bumper sensor for the outdoor exper-
iment. A cubic polynomial is fitted to the collected torque and force
measurements

Fig. 14 The terrains used in the outdoor experiemnts: a sparse grass, b
dense grass with hay, c tree trunk, d rocks

The terrains consist of several types of grass with varying
density and appearance (some of them traversable), and a
rigid tree trunk and rocks, see Fig. 14.

Since the terrains are more complex than in the indoor
exploration, similarly to Belter et al. (2019), we utilize an
alternative terrain descriptor in the outdoor scenario. The out-
door descriptors Ahist are based on color histograms, where
each cell ν ∈ M2.5D is provided a 10-bit color by project-
ing the camera image to the M2.5D . Then, the color space is
shrunk to 8 different colors: white, black, grey, blue, green,
red, brown, and magenta. The relative amount of the cell
color prototypeswithin the radius rhist given by the half of the
bumper size is used to build an8-dimensional color histogram
for each cell ν ∈ M2.5D as illustrated in Fig. 15. Besides,
since the appearance descriptors differ from the indoor exper-
iment in both scale and dimensionality, we adjust the kernel
lengthscale, see Table 3.

Fig. 15 The area (red circle) around a point of interest (red marker)
signifying the cells used to compute the histogram terrain descrip-
tor, projected on the elevation map with localized color measurements
(Color figure online)

The measurements from each terrain are split into testing
and training sets. The algorithm is incrementally presented
with training sets for the individual terrains, simulating a
robot learning the terrains in a sequence. Table 5 shows the
predictions on the respective testing sets in three alternative
training sequences. The results suggest that after being pre-
sented with the particular terrain, the robot learns the terrain
and reports entropy below the uncertainty threshold Ithrpredict;
hence, marking the terrain as known.

5.4 Discussion

Based on the experimental deployment, we can conclude that
the proposed robotic system actively learns traversable obsta-
cles and can explore areas hidden behind such obstacles and
thus explore a greater portion of such environment than a
system considering all obstacles as untraversable. Unlike the
state-of-the-art approaches that consider mobile robot inter-
action with non-rigid obstacles (Baleia et al., 2015; Kahn
et al., 2021), the herein proposed system concerns mobile
robot exploration, and the reasoning about the traversability
of non-rigid obstacles is done in the context of the environ-
ment geometric map, which is built online as a part of the
exploration process.

The difference is further manifested in the selected learn-
ing approach, where Kahn et al. (2021) uses an end-to-end
network learned from a large amount of data gathered
using a time-correlated random walk policy. Besides, visual-
tactile sensing considered by Pearson et al. (2021) combines
tactile whisker sensors with visual perception for place
recognition inMultimodal Predictive CodingNetwork (Mul-
tiPredNet), a bio-inspired approach that comprises visual,
tactile, and multi-sensory modules. While such approaches
provide significant advantages in the form of navigation
policy learning and crossmodal reconstruction, respectively,
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the herein proposed approach is focused on the problem of
apparent-yet-non-rigid obstacles inmobile robot exploration.
Hence, it learns only in areas associated with the high infor-
mation gain concerning the prediction model and can learn
online during the mission itself.

6 Conclusion

Wepresent a system for online learning of the force needed to
pass through obstacles employed in autonomous exploration
to assess traversability in an environment with terrain that
appears untraversable yet can be traversed. The robot actively
learns the geometric model of its surroundings with model
learning to predict the traversability of potentially obstructing
terrains using a haptic sensor. Gaussian Process regressor is
utilized for the force prediction representing the traversabil-
ity of the potentially obstructing terrains. The robot actively
navigates based on expected information gain from both
the traversability predictor and the geometric model. The
proposed system has been deployed in a fully autonomous
experiment in an arena where the robot passed through an
occluding non-rigid obstacle showing that the traversabil-
ity properties have been successfully learned. Besides, we
also show the performance of the predictor in an environ-
ment with real vegetation. The experimental results suggest
that the robot successfully navigates an environment with
non-rigid obstacles, chooses to explore areas that provide
information for the rigidity and spatial models, and can dis-
criminate different natural terrains.

In the future, we aim to develop a unified framework
to combine traversal costs of visually traversable terrains
and apparent obstacles, thus adding a class of exploration
goals. Furthermore, we intend to generalize the proposed
robot-terrain interaction modeling to encompass traversable
obstacles, rigid appearing terrains that do not support the
robot, and terrains that change appearance after physical
interaction. The exploration could also be focused on con-
straints such as the robot’s battery capacity. Such extensions
lead to deploying the proposed approach in non-myopic sce-
narios, where the robot considers its plans further than the
immediate next navigation goal (waypoint). Hence, we aim
to exploit multi-goal path planning (Faigl & Kulich, 2013)
for such extended exploration scenarios.
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