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Chapter 1

Introduction

Combinatorial Optimization, a crucial field in both theoretical and applied mathe-
matics, plays an integral role in various disciplines, from Operations Research to com-
puter science. This field is dedicated to finding the optimal solution from a finite set
of possibilities, often in complex scenarios with a vast array of potential solutions. Its
significance extends across various sectors, including transportation, production, and
scheduling, establishing itself as a critical component in decision-making and problem-
solving processes.

The challenges in Combinatorial Optimization, particularly the complexity of prob-
lems and the computational resources required to solve them necessitate the continual
development of effective solvers. These algorithms and tools are designed to navigate
complex solution spaces efficiently, seeking optimal or near-optimal solutions within
practical timeframes.

This thesis aims to develop a comprehensive, modular, and extensible framework
that facilitates the integration of multiple research benchmarks, problems, and solvers
from various libraries into a single system for Combinatorial Optimization. The goal
is to provide a user-friendly environment where users can quickly integrate, run, and
compare different custom solvers, focusing on Genetic Algorithms and Constraint Pro-
gramming on various complex problems, validating the solutions, and visualizing them.
The scope of the thesis includes an in-depth study and implementation of reference
solvers for Resource-Constrained Project Scheduling (RCPSP), multi-mode RCPSP, Job
Shop Scheduling Problems, Strip Packing Problems, and Bin Packing Problems. This
approach enhances the understanding of solver capabilities and significantly contributes
to the field by providing an efficient means to assess and compare various Combinatorial
optimization techniques.

The research methodology of this work adopts a broad rather than a deep approach.
The primary focus is to create a framework that is not only extensive in its capabilities
but also user-friendly and intuitive to use, which we demonstrate in various parts of
this work. This approach aims to enable simple integration of new solvers and problems
and inter-solver comparability. In terms of experiments, we emphasize demonstrating
the features and potential of the framework, and only then do we compare our RCPSP

1



2 Chapter 1. Introduction

and 2D Strip Packing Problem solvers with state-of-the-art solutions. On top of these
experiments, we also concluded one user testing to receive feedback on user experience.
Through this methodology, the research aims to highlight the framework’s ability to
serve as a valuable tool in exploring and understanding the landscape of combinatorial
problems and their respective solving techniques.

We provide an introduction to the problems covered in the framework in Chapter 2,
the framework itself is covered in Chapter 3, and the solvers implemented in the frame-
work are described in Chapter 4. We present the experiments concluded in Chapter 5
and attach the user guide in Appendix I.



Chapter 2

Operations Research Problems

In this section, we will introduce the topics this work deals with. We start with the
most broad one: Operations Research, and make our way through describing Optimiza-
tion Problem and end up with specific Scheduling and Cutting & Packing Problems on
which we demonstrate the capabilities of General Optimization Solver. The models used
for solving problems outlined in this chapter, including the discussion on their complexity
and other algorithms from literature, are described in Chapter 4.

The specific problems explained in this chapter are (Multi-Mode) Resource Con-
strained Project Scheduling Problem, Job Shop Scheduling Problem, Strip Packing Prob-
lem, and Bin Packing Problem.

2.1 Operations Research

Operations Research (OR, [1]) is a mathematical field that sets out to either de-
cide feasibility or to find a best available solution, that is, schedule that maximizes or
minimizes the objective criterion (profits, costs, efficiency) given the corresponding con-
straints hold, employing mathematical and analytical methods. Examples of fields in
which OR is used are the following. In production, operations research is applied to min-
imize material waste. In Scheduling, it ensures acceptable shift schedules that conform
to law and collective agreements [2]. In resource allocation, operations research is used
for making decision whether the tasks are better assigned with multiple junior workers
or only one more skilled worker. In transportation, operations research aims to fulfill
demand in the shortest time while minimizing warehouse capacities needed with just-
in-time delivery. Formally, this is done by defining an objective function and constraints
the solution must conform to. Written as

Maximize / minimize: Objective Function
subject to: Constraints

The model can be either feasible if there is at least one solution that satisfies all
the constraints or infeasible otherwise. If a solution is found, it is called optimal if the

3



4 Left

objective value is the best possible (maximum or minimum). However, the ability to find
these optimal solutions and the time needed depends on the represented model’s quality
and completeness.

Operations research significantly affects the real-life industry, quantifying practical
problems and determining the best solution given real-life constraints. Note that there
is still a difference between the theoretical and practical optimal solutions as the models
may not capture the whole real-world environment.

Some subfields of OR are Linear Programming and Combinatorial Optimization. In
Linear Programming the constraints are defined as linear inequalities and the variable
domains are continuous. Whereas for Combinatorial Optimization, the constraints can
be much more complex, and the domains of some variables can be discrete.

This work deals with Combinatorial Optimization problems. We describe Combina-
torial Optimization and specific branches and problems in the following sections.

2.2 Combinatorial Optimization
Combinatorial Optimization (CO, [3]) is a subfield of OR focused on solving prob-

lems characterized by discrete, often finite, domains. Similarly to OR, CO finds an ob-
jective solution subjected to specific rules and constraints. Typical applications include
Scheduling, which aims to create efficient timetables under legal and contractual con-
straints, and packing problems, where it looks for the best space placement of items
within given limitations.

2.3 Scheduling
Scheduling [4] is an CO discipline focused on the optimal allocation of resources over

time. The primary goal is to generate a schedule that optimizes certain objective, such
as minimizing total operation time, reducing costs or penalties, or maximizing resource
utilization.

Scheduling considers a wide range of constraints like resource capacity constraints,
time constraints, resource constraints, precedence constraints, task setup constraints,
and others to which the resulting schedule must conform.

• Capacity constraints ensure that the workload does not exceed the capacity of the
resources (like machines or workers). For example, a machine can only handle a
certain number of tasks simultaneously.

• Time constraints include release dates, deadlines (when the job has to be com-
pleted), or due dates (when the job should be completed). Schedules must be
designed to complete tasks within the specified time frames.

• Resource constraints refer to the limitation of resources, such as human resources,
machinery, or materials. The schedule must account for the availability of these
resources.
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• Precedence constraints define an order in which specific tasks must be completed.
The tasks later in the order can not be started unless the preceding tasks are
finished.

• Setup time and cost constraints specify the effect of changing from one task to
another.

Scheduling covers multiple sub-problems. To create a notion of possible problems,
we show some basic examples. The formal typology is provided later on in the work.

• Single-machine Scheduling: Tasks are scheduled on a single machine or resource.
The focus is on optimizing the order of tasks to minimize delays or maximize
throughput.

• Parallel-machine Scheduling: Multiple identical or different machines are involved,
and tasks must be distributed among them efficiently.

• Job shop Scheduling: Involves multiple machines with different tasks, where each
task requires a specific sequence of operations to be performed on different ma-
chines.

• Flow shop Scheduling: Similar to Job Shop Scheduling, but with a fixed order of
machines for all tasks.

Solutions to Scheduling problems differ significantly. Exact methods guarantee the
best possible schedule but are mostly not applicable in practice because of the NP-
complex nature of these problems. On the other hand, heuristic and metaheuristic ap-
proaches find good solutions within a reasonable timeframe, which is especially important
for complex or large-scale problems.

The following section introduces Graham’s notation, a classification system for
Scheduling problems.

2.3.1 Graham’s notation

Graham’s notation [5] is a classification system for describing and categorizing dif-
ferent types of machine Scheduling problems that became a standard way of describing
them.

Graham’s notation classifies Scheduling Problems by “resources | tasks | criterion”
configuration, often referred to as “𝛼|𝛽|𝛾”.

Following lines explain the meaning of each.
𝛼 describes machine resources. Graham introduces set of options {1 - single machine,

P - identical parallel machines, Q - uniform parallel machines, R - unrelated parallel
machines, O - open shop, J - job shop, F - flow shop}. Optionally, specifying 𝛼2 as
number of resources is permitted.

𝛽 describes task characteristics. Some of the task characteristics are:

• 𝑝𝑟𝑒𝑐 specifying that there are precedence relations,
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• 𝑝𝑚𝑡𝑛 specifying that preemption (job splitting) is allowed. Preemption happens
when job is interrupted and resumed at a later time

• 𝑟𝑗 specifying release dates, the first available time slot on which the activity may
start

• {𝑝𝑗 , 𝑝𝐿 ≤ 𝑙𝑗 ≤ 𝑝𝑈 , } specifying uniform processing time, bounded processing time

• 𝑑𝑗 , 𝑑𝑗 specifying deadline (when activity needs to be finished) and due date (when
activity should be finished) of the activity

𝛾 specifies optimality criterion: schedule length 𝐶𝑚𝑎𝑥, completion time
∑︀

𝑗∈𝐽 𝐶𝑗 ,
maximum lateness 𝐿𝑚𝑎𝑥 = max𝑗∈𝐽(𝐶𝑗−𝑑𝑗), tardiness 𝑇𝑚𝑎𝑥 = max𝑗∈𝐽(max(0, 𝐶𝑗−𝑑𝑗)).

For example, a Scheduling Problem described as 𝑃 |𝑝𝑟𝑒𝑐, 𝑝𝑗 = 1|𝐶𝑚𝑎𝑥 would be in-
terpreted as a problem involving identical parallel machines with precedence constraints
and unit processing times per job, with the objective of minimizing the makespan.

The Graham’s notation unfortunately does not specify 𝛼 for project scheduling. The
extension of Graham’s notation for project scheduling is defined in [6]. It extends 𝛼 with
{PS - project scheduling, MPS - multi-mode project scheduling}.

The subsections following this one describe specific Scheduling Problems this work
deals with.

2.3.2 Resource Constrained Project Scheduling Problem
(PS|prec|Cmax)

Resource Constrained Project Scheduling Problem (RCPSP) is NP-hard problem [7]
defined by a set of activities J = {0, 1, ..., n, n + 1} with precedence dependencies. The
activities must be scheduled within the limited capacities of resources 𝑅𝑘∈𝐾 , K = {1,
..., k}. Resource capacity amounts to “how much work” can given resource support at a
given time in the case of standard RCPSP. Each activity has a processing time 𝑝𝑗 and
requires specific resources 𝑟𝑗,𝑘 to be completed.

The goal is to find an optimal schedule that minimizes project completion time (the
end time of the terminal activity) 𝐶𝑚𝑎𝑥 while respecting resource constraints.

The RCPSP solution - schedule starting and terminating at 0-processing time
dummy activities 𝑗0 and 𝑗𝑛+1 respectively - is a list of activities containing their starting
times 𝑠𝑗 .

There are multiple specifications of possible RCPSP variants ([8], [9]):

• resource type - the resources themselves may have different constraints. Some of
the most well-known are

– renewable - The resource’s capacity is consumed only during the execution
of activity requiring that resource. After the activity ends, the resource’s
capacity is renewed. The sum of resources needed by activities at a particular
time 𝑡 must be lower or equal to the resource’s 𝑘 capacity 𝑅𝑘. A good example



2.3. Scheduling 7

of renewable resources is workers - they finish the job within a predefined
period and are free to work on another job.

∑︁
𝑗∈𝐽 |𝑠𝑗≤𝑡<𝑠𝑗+𝑝𝑗

𝑟𝑗,𝑘 ≤ 𝑅𝑘 ∀𝑘 ∈ 𝐾,∀𝑡 ∈ {0, ..., 𝐶𝑚𝑎𝑥} (2.1)

– non-renewable - The part of the resource’s capacity consumed by a specific ac-
tivity 𝑗 is never renewed. No more activities can use this resource once the ac-
tivities use all the resource capacity. An excellent example of a non-renewable
resource is money in cases when the whole budget is already available at the
start of the job.

∑︁
𝑗∈𝐽

𝑟𝑗,𝑘 ≤ 𝑅𝑘 ∀𝑘 ∈ 𝐾 (2.2)

– doubly constrained - There are capacity constraints for each given period and
the total resource life span. This constraint can hold in cases where the budget
is known, but the whole budget is not available at the beginning, but the parts
of the budget are rather received throughout the delivery of the project.∑︁

𝑗∈𝐽 |𝑠𝑗≤𝑡<𝑠𝑗+𝑝𝑗

𝑟𝑗,𝑘 ≤ 𝑅period
𝑘 ∀𝑘 ∈ 𝐾,∀𝑝𝑒𝑟𝑖𝑜𝑑 ∈ 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 (2.3)

∑︁
𝑗∈𝐽

𝑟𝑗,𝑘 ≤ 𝑅total
𝑘 ∀𝑘 ∈ 𝐾 (2.4)

• maximum allowed completion time - The project may have another constraint for
maximum allowed completion time T specified. The schedule becomes infeasible
for schedules with 𝐶𝑚𝑎𝑥 > 𝑇 . In some scenarios, the objective may be to maximize
the revenue during the maximum allowed completion time.

𝐶𝑚𝑎𝑥 ≤ 𝑇 (2.5)

• activity release date 𝑟𝑖 and deadline 𝑑𝑗 - The constraint specifies the time range
when a specified activity can be finished. For example, with a rented-out machine,
we know the delivery of the machine and the time when we need to return it;
neither is free to be changed.

𝑟𝑗 ≤ 𝑠𝑗 ∧ 𝑠𝑗 + 𝑝𝑗 ≤ 𝑑𝑗 ∀𝑗 ∈ 𝐽 (2.6)

• number of activity modes - Activity can have more than one mode with various
processing times and resource requirements specified. If multiple modes for a spe-
cific activity are specified, the model selects only one mode to be executed which
has the. This RCPSP variant is called MM-RCPSP, denoted as MPS|prec|Cmax.
A good example is task assignment. One senior executive can do the job quickly,
but it will be expensive. On the other hand, a team of junior workers will do it for
a longer time but for a cheaper price.
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Figure 2.1: Gant chart visualizing an example schedule of 3 jobs J1, J2, J3 each with three
operations scheduled on 3 different machines, [12].

• objective function used - By default, the goal is to find the schedule minimizing
the project completion time. Other possible objectives may be the maximization
of project profit or the minimization of penalties for missed activity deadlines.

2.3.3 Jobshop Scheduling Problem (J||Cmax)

Job Shop Scheduling Problem (JSSP, [10], [11], [12], see an example in Figure 2.1)
is NP-hard optimization problem [13] that involves scheduling a finite set of different
jobs 𝐽 = {1, ..., 𝑛} on a finite set of machines 𝑀 = {1, ..., 𝑛}. The machines are
shared and the jobs are competing for them. Each job 𝑖 consists of multiple operations
𝑂𝑖 = (𝑂𝑖1, ..., 𝑂𝑖𝑛). Each operation needs to be processed during an uninterrupted time
period. Such operation 𝑂𝑖𝑗 , 𝑗𝑡ℎ of a job 𝑖, is assigned a machine 𝑚 ∈𝑀 , processing time
𝑝𝑖𝑗 , and must be executed in a correct technological order given by a job operations. Each
machine can handle, at most, one activity at a time and no two operations assigned to
the same job can run at the same time. The objective is to minimize the makespan of
the schedule (set of completion times), i.e., the total time required to complete all jobs.

2.4 Cutting & Packing

Cutting & Packing Problems are two types of optimization problems that are closely
related. In case of cutting (cutting coil wire into smaller parts) we want to minimize the
cost of the material used and the amount of left over material (maximize the amount of
material that is used for the products). In case of packing (packing packages into logistic
container) we want to minimize the packing space used (and prevent whatsoever wasted
space at all cost).

The Cutting & Packing Problems can be divided by number of characteristics [14],
we focus on three ways of sub-problem specification.
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Figure 2.2: A general view of the rectangular 2D-SPP [17].

• Dimensionality - Depending on dimensionality of the input, we differ mainly be-
tween 1D (cutting coil wire), 2D (furniture or clothing production) or 3D (container
packing). We cover 1D and 2D problems in this work.

• Shape - Different use-cases require different item shapes - rectangles, circles, hexagons,
etc. in 2D, or corresponding shapes in 3D. We assume rectangles in 2D for this
work.

• Rotation - In higher dimension problems, the orientation matters as well. In basic
scenarios, and in this work, we assume original orientation (no rotation allowed)
and one rectangular rotation (0°and 90°).

In the following sections, we describe Cutting & Packing sub-problems we deal with
in this work: 2D Strip Packing and Bin Packing (both 1D and 2D).

2.4.1 Strip packing

Strip packing [15] is NP-hard [16] hard packing optimization problem where a set
of items of different sizes and shapes must be packed into a strip or container of fixed
width without overlapping. The goal is to minimize the strip’s height or to maximize
space utilization. In this paper, we scoped the focus down on subproblems with 2D
rectangular items J = {1, ..., n} with height ℎ𝑗 and width 𝑤𝑗 specified for each, called
2D Strip Packing (2D-SP). In some cases, we allowed for item rotation. These items are
meant to be placed into a strip with a predefined width W, while minimizing its height
H. We provide example in Figure 2.2.
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2D Level Strip Packing

Two-dimensional level strip packing ([15], [17]) is a variant of 2D-SP Problem where
items’ bottoms must be aligned on the so-called levels. Levels are virtual shelves placed on
certain strip heights. The level’s vertical placement is defined by the addition of the tallest
rectangle placed on previous level plus the vertical placement of that previous level. The
objective is to find an arrangement that minimizes the total strip area required to pack
all items. This approach searches much more restricted search space, but often produces
solutions with objective value quite close to the similar solutions of the unrestricted
packing problem.

2.4.2 Bin Packing

Similarly, Bin packing [15] is a NP-hard [18] packing optimization problem where
items of different sizes and shapes must be packed into rectangular bins of fixed width
without overlapping. The goal is to minimize the number of bins used. Bin packing
sub-problems are

1. 1D Bin Packing (1D-BP) Problem, where the items and bins have the same width
and thus only the height is evaluated. Imagine manufacturing example with com-
ponents of different lengths (2 meters, 4 meters, 3 meters, etc.) needed to be cut
from a standard material length of 10 meters.

2. 2D Bin Packing (2D-BP) Problem, where 2D items are meant to be placed into 2D
rectangular bins. 2D-BP is similar to Strip Packing, but it introduces constraint
on bin height and as a result it expects more than 1 bin to be used
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General Optimization Solver

The following chapter describes the architecture of the General Optimization Solver
framework, which is the core part of this work. The discussed framework is available on
https://github.com/Omastto1/General-Optimization-Solver.

3.1 Overview
The motivation for this work is to offer the end user a comfortable way to integrate

multiple custom solvers for benchmarking into one system. That is: load the desired in-
stance in whatever format, select the solver (or multiple ones), find the solution, validate
and visualize the solution, and compare the solution to the reference, other configura-
tions, or possibly other solvers executions from the past.

The framework is divided into 3 logical parts: Parsing, Instance, and Solver.
The first part, Parsing, consists of multiple small parsers, each implemented for

specific benchmark file format. They load the input instances and its reference solutions
into an internal format defined in the instance part.

The instances form a hierarchy of the core classes representing CO problems. Classes
store problem-specific parameters. Through the instance, the user interacts with the
whole framework.

In the solvers, there are Constraint Programming and Genetic Algorithm models
implemented, each in its own class that requires ‘_solve‘ method implementation in
place.

For the Constraint Programming solvers and Genetic Algorithm solvers, we used
the Python API for IBM ILOG CP Optimizer and python library pymoo, respectively.

3.2 Simple user flow
The interaction with the framework should require only a minimum amount of steps.
Below, we show the example user flow of 1D-BP Problem on a benchmark, solved

with a Genetic Algorithm implemented in pymoo that we provide with a simple fitness
function.

11
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We provide and discuss the solvers implemented in the framework in the Chapter 4.

1. In Python, import one of ‘load_raw_instance‘ or ‘load_raw_benchmark‘ functions
from the ‘src.general_optimization_solver‘, and executes the function to load the
input data from the specified instance/benchmark path.

from src.general_optimization_solver import load_raw_benchmark

benchmark = load_raw_benchmark("path_to_benchmark")

The framework provides functions to load instances already stored in the inter-
nal .json framework format - ‘load_instance‘ and ‘load_benchmark‘. These .json’s
dumped by framework are, by default, stored in ‘data/{benchmark_name}‘

2. Specify Genetic Algorithm, fitness function, and termination criterion. In our case
we alter only the size of the Genetic Algorithm population. The fitness function
assigns the rectangle to the bin specified in the corresponding gene. The Genetic
Algorithm run ends after evaluating 100 generations.

from pymoo.algorithms.soo.nonconvex.ga import GA

algorithm = GA(
pop_size=100

)

def fitness_func(instance, x, out):
bins = {}
for idx, bin_idx in enumerate(x):

bin_idx = int(bin_idx)
bins[bin_idx] = bins.get(bin_idx, 0) + instance.weights[idx]

out["F"] = len(bins)

return out

termination_criteria = ("n_gen", 100)

3. Specify solver with corresponding Genetic Algorithm, fitness function and termi-
nation criteria.

solver = BinPacking1DGASolver(algorithm, fitness_func, term_criteria)

4. Execute the solver on provided benchmark.

solver.solve(benchmark)
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5. Optionally, generate markdown table with lower bound deviance for each solver-
instance pair, or average deviance for each solver-benchmark pair, and dump data
into predefined path inside framework directory.

comp1 = benchmark.generate_solver_comparison_markdown_table()
comp2 = benchmark.generate_solver_comparison_percent_deviation\

_markdown_table()
benchmark.dump(f"example_output_dir")

3.3 Project structure

The project uses four main directories - ‘raw_data‘ and ‘data‘ for storing raw and
unified .json data, respectively, ‘src‘ for framework implementation and ‘examples‘ pro-
viding examples of how to use the framework.

General_Optimization_Solver

data

examples

raw_data

src

By default, the raw data should be stored in the ‘raw_data/{problem_type}/{benc
hmark_name}‘ directory. Although it is not forced, we recommend keeping the problem
type-benchmark name directory division approach. The .json framework dump is by
default saved into ‘data‘ directory. As in previous case, this is not a requirement and the
user can specify his own path in the framework directory and pass it as parameter to
‘dump‘ method.

General_Optimization_Solver

data

RCPSP

j30.sm

j301_1.json

raw_data

RCPSP

j30.sm

j301_1.sm
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The source code of the General Optimization Solver framework is divided into mod-
ules related to specific optimization problems (RCPSP, 2D-SP, etc.), ‘common‘ module
defining abstract Genetic Algorithm, Constraint Programming solver, and generic in-
stance and benchmarks classes, and ‘general_optimization_solver.py‘ which defines the
data loading functions as the entry point for the framework.

Each optimization problem module comes with problem specific input data parsers
(‘j30.py‘ and ‘patterson.py‘ in this example), problem interface ‘problem.py‘ and ‘solvers‘
directory containing solvers implemented to solve the problem instances.

General_Optimization_Solver
src

common

optimization_problem.py

solver.py

rcpsp

j30.py

patterson.py

problem.py

solvers

solver_cp.py

solver_ga.py

general_optimization_solver.py

In the following sections, we will describe the data structure used for handling the
problem instances and describe the specific parts of the framework - Parsing, Instances,
and Solvers. In the chapter after, we are going to describe the models used for specific
OR problems discussed in this work.

3.4 Data structure

In order to sanitize different input formats and handle them in the same way, we
have come up with a unified data format for storing the single instances. The instances
are stored in the format described below into the ‘json‘ file. The instances are saved either
after solver execution or after the ’{instance}.dump‘ function call. The internal instance
history is updated every time the user executes a new solver evaluation. Optionally, the
user can dump the instance after each solver run. Similarly for benchmarks, all instances
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are dumped into corresponding file when prompted.

{
"benchmark_name":
"instance_name":
"instance_kind": // One of "RCPSP", "MM-RCPSP", "JOBSHOP",

// "2DSTRIPPACKING", "1DBINPACKING", "2DBINPACKING"
"data": { ... } // Problem-specific dictionary of parameters
"reference_solution": {

"feasible": // One of true/false
"optimum": // Either known optimum integer of 'null'
"cpu_time": // Time (s) to find the optimum if available,

// otherwise key not present
"bounds": { // Present if no 'optimum' is known.

// Stores 'lower' and 'upper' referential bound.
"lower":
"upper":

}
}
"run_history": [ // List of dictionaries with instance run history

{
"timestamp": // Timestamp of run

// e.g. "2023-06-01 15:37:49.763827"
"solver_type": // One of "CP" / "GP"
"solver_name": // Custom solver name given by a user
"solver_config": {

"TimeLimit":
"NoWorkers":
"SolverVersion":

}
"solve_status": // "Optimal" / "Feasible" / "Infeasible"
"solve_time": // Time spent solving the instance

// (can be limited by for CP)
"solution_value": // Best objective value found
"solution_info": // solver specific string solution desc.

// for a given best solution
"solution_progress":// List of pairs containing ,
[ // the obj. value, obj. value encounter

[..., ...], // time, # generation (GA)
...

]
},

]
}
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3.5 Parsing
This section discusses parsers. The aim of the parser module is to provide the user

with a set of functions parsing different input formats. Each parser contains an input
loader and a solution loader which initiates the corresponding problem class.

To add an implemented parser into framework (described in detail in Section B),
add a new conditional branch specified for a given parser name in the ‘src.general_opti
mization_solver.load_raw_instance‘ function and load the instance as follows:

load_raw_instance("instance_path", "solution_path", "instance_format")

So far, the framework contains these parsers

• RCPSP

– PSPLIB[19] - j30.sm, j60.sm, j90.sm, and j120.sm under the “j120” format
parameter

– Patterson[20] - sD [21], CV [22], NetRes [23], etc.; use “patterson” when load-
ing

• MM-RCPSP

– PSPLIB[19] - j10.mm, c15.mm, and c21.mm under the “c15” format param-
eter, use “c15”

– MMLIB[24] - MMLIB50, MMLIB100, MMLIB+ - “mmlib” format

• JSSP 1 - “jobshop” format

• 2D-SP Problem 2 (load with “strippacking” format parameter)

– ZDF[25] - number of elements on the first line, width of strip on the second
line, (index, width, heigth) triple on following lines - “strippacking”

– BKW[26] - Json with “Objects” (1 strip) and “Items” (rectangles) keys -
“bkw”

• 1D-BP Problem - first line containing number of items, second line containing
capacity of each bin, third and later bins containing items weights

• 2D-BP Problem - extension of 1d bin packing - Second line contains width and
height of each bin, each row starting from the third one contains width and height
of the items

1First row contains the number of jobs and the number of machines pair. Then there are ‘number
of jobs‘ rows, with each containing ‘number of machines‘ pairs. Each pair contains the machine that is
meant to be run and the processing time of that task. The ‘4 95‘ pair in the third column and the first
row means that as the third task for the first job, the fifth machine (we are using zero-based indexing)
is meant to run for 95 units of time.

2The first row containing the number of units meant to be placed inside a strip, the second row
containing the width of a strip and ’number of units’ rows with triple - units index, unit height, unit
width



3.6. Handling instances 17

3.6 Handling instances
The instance module is the crucial part for the work with the framework. The

only thing not being handled by the instance class is importing. Everything else, like
validation, visualization, and result comparison, is handled by the instance class itself.

The instance module is a hierarchy of the core classes representing CO problems. The
parent class ‘OptimizationProblem‘, which is abstract instance, is implemented in the ‘s
rc.optimization_problem‘ module. There are 6 other modules (‘binpacking1d‘, ‘binpack-
ing2d‘, ‘jobshop‘, ‘mm-rcpsp‘, ‘rcpsp‘ and ‘strippacking2d‘ each containing ‘problem.py‘
module) with classes representing specific problems.

The ‘OptimizationProblem‘ parent class contains general parameters common to all
other problem’s classes. These parameters are ‘benchmark_name‘, ‘instance_name‘, ‘in-
stance_kind‘ (“RCPSP”, “MM_RCPSP”, “JOBSHOP”, “2DSTRIPPACKING”, “1DBIN-
PACKING” and “2DBINPACKING”), ’solution’, ’run_history’ and problem specific
’data’ dictionary. Note that the ‘OptimizationProblem‘ class structure clones the in-
ternal json container data structure.

Furthermore, the ‘OptimizationProblem‘ class implements the logic for ‘dump‘,
which exports the class parameters into json stored in the ‘data/{benchmark_name}/‘
directory, ‘compare_to_reference‘ which compares the objective value of just executed
solver and is automatically executed after each solver execution, the logic for skipping
the instance solver execution if the last run has already found an optimal solution and
logic for updating the ‘run_history‘ variable.

The problem-specific instance inheritants specify the problem type-specific methods
- ‘validate‘, ‘visualize‘, and the variables specific for the OR problem. In case of RCPSP,
the instance stores number of activities, number of renewable resources and their capac-
ities, list of activity processing times, resource requests and predecessors. The problem
specific classes are, of course, further extensible for other problem specifications. This is
already used in the ‘MM-RCPSP‘ class which extends ‘RCPSP‘.

3.6.1 Benchmark

In order to work with the benchmarks as a whole, there is also the ‘Benchmark‘ class
implemented in the ‘src.common.optimization_problem.py‘ module. ‘Benchmark‘ works
as a wrapper of multiple ‘Instance‘ instances. It contains the ’dump‘ method, which saves
all the instances into their corresponding locations and methods for comparing solvers
performance on the benchmark as a whole, or on specific instances - ‘generate_solver_
comparison_markdown_table‘ and ‘generate_solver_comparison_percent_deviation_
markdown_table‘. The ‘dump‘ method is called by default after each ‘solve‘ benchmark
execution.

3.7 Solvers
Solvers are the place where the integration occurs. So far, the supported solver

integrations are either Python API for IBM ILOG CP Optimizer for Constraint Pro-
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gramming or the Multi-objective Optimization library pymoo for Genetic Algorithms
and similar, see Figure 3.1.

Figure 3.1: Hierarchy of solvers in the framework. The rightmost solvers visualizes extensibility
of the module.

In both Constraint Programming and Genetic Algorithm cases, the user provides a
model in a ‘_solve‘ method defined in a solver class that inherits either from CPSolver
of GASolver. The method needs to accept, among other things, instance variable and
validate and visualize flags.

def _solve(self, instance, validate=False, visualize=False, *args):
pass

In case of Constraint Programming, the built-in ‘_solve‘ method defines a Con-
straint Programming Model with specified variables, constraints and objective method.
When instantiating a CPSolver, the user can also specify some Constraint Programming
Optimizer parameters - time limit, number of workers and log verbosity.

In case of Genetic Algorithm, the user needs to implement a wrapper around a
pymoo ‘Problem‘ class in the ’_solve‘ method. The GASolver class is instantiated with
a pymoo algorithm config, fitness function and termination criteria. For example, see
Section 3.1.

This has been the architecture chapter. In the next one, We will speak about the
individual solver models in detail.
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Solvers

In this chapter, we discuss the specific solver models implemented in the General
Optimization Solver framework. The solvers cover the typical Combinatorial Optimiza-
tion problems (Scheduling and Cutting & Packing in particular) - RCPSP, MM-RCPSP,
Job Shop Problem, 2D Strip Packing and 1D Bin Packing.

The framework contains a hierarchy of problem-solver classes. Currently, the frame-
work supports Constraint Programming(CP) and Genetic Algorithm(GA) solvers. CP
solvers have been selected thanks to their flexible and intuitive approach to modeling
constraints. On the other hand, GA, in most cases, requires only fitness method to be
replaced, and as such, is highly modular and allows for great extensibility and interop-
erability. For CP models, we used the Python API for IBM ILOG CP Optimizer and for
GA’s we have used python library pymoo.

In the subsequent sections, we will provide an in-depth analysis of each specific
solver implemented within our framework. In the first section, we will cover the CP
models implemented in the framework, and in the second section, we will present GA
fitness functions and configurations.

4.1 Constraint Programming

Constraint Programming represents one of the closest approaches computer science
has yet made to the Holy Grail of programming: the user states the problem, the computer
solves it.[27]

Constraint programming (CP, [28]) is a subfield of OR. It is a programming paradigm
providing tools and methods to solve problems defined in an almost human language in
a declarative way, specifying what constraint the solution should hold rather than how
these constraints should be enforced.

Among the methods used by constraint programming are search algorithms (back-
tracking, FDS [29]), consistency techniques (AC-3), and consistency propagation algo-
rithms.

Contrary to Linear programming, which uses linear inequality constraints only, CP

19
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offers more powerful symbolic constraints - such as ‘endBeforeStart‘ (forcing precedence
between two intervals by prohibiting the previous task from starting after the successor
task), ‘noOverlap‘ (prohibiting the execution of two specified tasks at the same time) or
‘alternative‘ (providing support for one out of several task choice, or so-called ‘optional‘
tasks).

Overall, instead of specific algorithms, CP relies on search. However, more expressive
high-level constraints allow modeling to be more accessible and the number of variables
smaller than LP.

In this work, we do not focus on improving methods used by Constraint Program-
ming, but rather on providing models for multiple different problems to the solver de-
scribed in the next section.

4.1.1 IBM ILOG CP Optimizer

IBM ILOG CP Optimizer [30] is a powerful tool for solving complex optimization
problems. It is particularly known for its Constraint Programming capabilities, a method
for solving combinatorial problems like scheduling, planning, and resource allocation.

In the last ten years, the CP Optimizer average speed has increased ten-fold [31]. In
addition to its simple and intuitive way of modeling the problem, the software enables
non-expert users to achieve results comparable with the state-of-the-art methods while
being scalable to more than (106) activities compared to (103) possible with the most
classical benchmarks [31].

Ongoing performance improvements of the state-of-the-art combinatorial solvers,
such as Gurobi for Integer Linear Programming (ILP) and CP Optimizer for Constraint
Programming (CP), make these approaches applicable to increasingly larger problems.
Combined with the fact that formulating a given problem using either ILP or CP and
running the dedicated solver is usually much less time-consuming than creating a hand-
crafted branch-and-bound algorithm or a heuristic that performs well enough.

Below we list variable types and high level constraints provided by the solver that
are used in our solvers. In the models, we make the constraints bold to highlight them.

The variable types are:

• Integer variable represents a single integer. Optionally, the user can specify in-
clusive lower and upper bounds of variable’s domain.

• Binary variable represents a single binary value, which is a special case of an
integer variable with a domain {0, 1}.

• Interval variable represents an interval of time or a range of consecutive integers.
It’s particularly useful in Scheduling Problems to represent the processing time of
tasks or activities.

Among the most used constraints are:

• pulse - cumulative function between start and end of the interval variable - allows
resource constraints to be formulated. Compare the difference between explicit
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formulation in the problem definition (Equation 2.1) and the way how the same
constraint can be defined imiplicitly without enumerating through the time with
the Python API for IBM ILOG CP Optimizer (Equation 4.2),

• end_before_start - forces the first interval variable to end before the other one
starts (Equation 4.3),

• alternative - prohibits any multiple of interval variables given from being sched-
uled, only one alternative interval variable is allowed to be scheduled (Equation 4.5,

• presence_of - binary function returning 1 only if interval variable is scheduled,
0 otherwise (Equation 4.6),

• no_overlap - prohibits multiple interval variables from overlapping each other
(Equation 4.14),

• end_of - returns value of the end of the interval variable, it is used for objective
specification or for limiting maximum value of a set of interval variables (Equa-
tion 4.1).

Following subsections list different Combinatorial Optimization problem models.

4.1.2 RCPSP

Below we describe CP solver for Scheduling Problems covered in this work, starting
with a model of RCPSP, as described in Section 2.3.2.

Model assumes n + 2 (additional 2 activities include 0-processing time dummy
start and end activity) activitites 𝑗 ∈ 𝐽, 𝐽 = {0, 1, ...., 𝑛, 𝑛+1} with following input vari-
ables. Predecessors 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑗 , activity processing times 𝑝𝑗 and amount of renewable
resource 𝑘 needed for activity 𝑗 to be executed 𝑟𝑗,𝑘. The model uses jobs instead of
activities, but the meaning is the same.

CP optimizer model uses following variables to finish the schedule:

𝑗𝑜𝑏𝑗 interval variable representing time interval when 𝑗𝑜𝑏𝑗 , 𝑗 ∈ 𝐽 , is scheduled.

It aims to minimize the maximum completion time of all activities in a project
schedule.

Minimize : max
∀𝑗∈𝐽

(end_of(𝑗𝑜𝑏𝑗)) (4.1)

The model contains two key constraints:

1. capacity constraint:
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∑︁
𝑗∈𝐽

(𝑝𝑢𝑙𝑠𝑒(𝑗𝑜𝑏𝑗 , 𝑟𝑗,𝑘)) ≤ 𝑅𝑘 ∀𝑘 ∈ 𝑅𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 (4.2)

which ensures that the resource usage remains lower than the available capacity
at any point in time, and

2. precedence constraint:

𝑒𝑛𝑑_𝑏𝑒𝑓𝑜𝑟𝑒_𝑠𝑡𝑎𝑟𝑡(𝑝𝑟𝑒𝑑, 𝑗𝑜𝑏𝑗) ∀𝑝𝑟𝑒𝑑 ∈ 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑗 , ∀𝑗 ∈ 𝐽 (4.3)

which ensures that activity 𝑗 cannot start before any predecessor activity is com-
pleted. The variables in the model represent the activities in the project, with each
activity defined as an interval variable with a specific processing time.

4.1.3 Multi-Modal Resources Constrained Project Scheduling Prob-
lem

Following is the CP model of MM-RCPSP.
Model assumes n + 2 (two additional activities include 0-processing time dummy

start and end activity) activities 𝑗 ∈ 𝐽, 𝐽 = {0, 1, ...., 𝑛, 𝑛 + 1} with activity modes
𝑀𝑗 , predecessors 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑗 , mode processing times 𝑝𝑗,𝑚 specific for each activity
and mode and amount of renewable resource 𝑘 needed for activity’s 𝑗 mode 𝑚 to be
executed 𝑟𝑗,𝑚,𝑘. Similarly to RCPSP, the model uses job instead of activity, the meaning
is the same.

CP optimizer searches for the following interval variables:

𝑗𝑜𝑏𝑗 Interval variable representing selected activity’s mode schedule, 𝑗 ∈ 𝐽 .
In final schedule, each activity 𝑗𝑜𝑏𝑗 holds the value of a scheduled
activity mode 𝑚, 𝑗𝑜𝑏_𝑚𝑜𝑑𝑒𝑗,𝑚.

𝑗𝑜𝑏_𝑚𝑜𝑑𝑒𝑗,𝑚 Interval variable representing a mode 𝑚 of a given activity 𝑗, 𝑗 ∈ 𝐽 ,
𝑚 ∈ 𝑚𝑜𝑑𝑒𝑠𝑗 , optional.

The objective of this model is to minimize the maximum completion time of all
activities while considering multiple modes for each activity.

Minimize : max
∀𝑗∈𝐽

(𝑒𝑛𝑑_𝑜𝑓(𝑗𝑜𝑏𝑗)) (4.4)

The model includes following constraints:

1. Alternative constraints:

𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒(𝑗𝑜𝑏𝑗 , {𝑗𝑜𝑏_𝑚𝑜𝑑𝑒𝑗,𝑚 | 𝑚 ∈ 𝑚𝑜𝑑𝑒𝑠𝑗}) ∀𝑗 ∈ 𝐽 (4.5)

which ensure that only one mode is selected for each activity,
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2. renewable resource capacity constraints:

∑︁
𝑗∈𝐽

∑︁
𝑚∈𝑀𝑗

(𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒_𝑜𝑓(𝑗𝑜𝑏_𝑚𝑜𝑑𝑒𝑗,𝑚) · 𝑝𝑢𝑙𝑠𝑒(𝑗𝑜𝑏_𝑚𝑜𝑑𝑒𝑗,𝑚, 𝑟𝑗,𝑚,𝑘)) ≤ 𝑅𝑘

∀𝑘 ∈ 𝑅𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 (4.6)

In this formula we check the presence of mode (whether it has been scheduled), and
count its resource requirements only in that case. Pulse is a cumulative function
that accounts only for times in which the activity has been scheduled.

3. Non-renewable resource capacity constraints:∑︁
𝑗∈𝐽

∑︁
𝑚∈𝑀𝑗

(𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒_𝑜𝑓(𝑗𝑜𝑏_𝑚𝑜𝑑𝑒𝑗,𝑚) · 𝑟𝑗,𝑚,𝑘)) ≤ 𝑅𝑘

∀𝑘 ∈ 𝑅𝑛𝑜𝑛_𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 (4.7)

Similarly, to the previous case, we count resource requirements of a given mode
only if it has been scheduled.

4. Precedence constraints are also defined to keep the order of activity execution
correct.

𝑒𝑛𝑑_𝑏𝑒𝑓𝑜𝑟𝑒_𝑠𝑡𝑎𝑟𝑡(𝑝𝑟𝑒𝑑, 𝑗𝑜𝑏𝑗) ∀𝑝𝑟𝑒𝑑 ∈ 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑗 ,∀𝑗 ∈ 𝐽 (4.8)

4.1.4 Job Shop Problem

Following section describes the CP model of Job Shop Scheduling Problem (Sec-
tion 2.3.3).

The variables in the model consist of interval variables representing the job opera-
tions, with each interval variable having a specific processing time.

𝑂𝑖,𝑗 Interval variable for operation assigned to job 𝑖, placed on 𝑗𝑡ℎ position of the
job sequence.

The objective is to minimize the maximum completion time for the last operation
of each job 𝑗, 𝑂𝑗,𝑛.

Minimize : max
∀𝑗∈𝐽

(𝑒𝑛𝑑_𝑜𝑓(𝑂𝑗,𝑛)) (4.9)

The model includes:
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1. Precedence constraint:

𝑒𝑛𝑑_𝑏𝑒𝑓𝑜𝑟𝑒_𝑠𝑡𝑎𝑟𝑡(𝑂𝑗,𝑚, 𝑂𝑗,𝑚+1) ∀𝑗 ∈ 𝐽, ∀𝑚 ∈ {1, ..., 𝑛− 1} (4.10)

which ensures that the job tasks are scheduled in the correct machine order, and

2. No-overlap constraint:

𝑛𝑜_𝑜𝑣𝑒𝑟𝑙𝑎𝑝({𝑜|𝑚𝑎𝑐ℎ𝑖𝑛𝑒(𝑜) = 𝑚, 𝑜 ∈ 𝑂}) ∀𝑚 ∈𝑀 (4.11)

which ensures that only one operation is scheduled on a machine at a given time.

4.1.5 2D-Leveled Strip Packing Problem

In the remainder of the section on CP we describe the Cutting & Packing models.
The provided model represents a simplified version of the 2D Strip Packing Prob-

lem (Section 2.4.1), known as the 2D Level Strip Packing Problem. This approach was
chosen due to the primordial difficulty of modeling the original Strip Packing Problem
using constraint programming. Improved 2D Strip Packing Problem models are pro-
vided further below. The 2D Level Strip Packing Problem takes a different approach
then the standard 2D Strip Packing CP model, employing a similar methodology to the
MM-RCPSP. MM-RCPSP selects one of the activity modes to be scheduled, 2D-Leveled
Strip Packing Problem model selects the level on which the rectangle should be placed.
For 2D-Leveled Strip Packing Problem, we conservatively assume that maximum number
of levels is the same as the number of rectangles available 𝐽 .

𝑟𝑒𝑐𝑡𝑗 Interval variable representing selected rectangle placement on
horizontal coordinate, 𝑗 ∈ 𝐽 . In final schedule, each 𝑟𝑒𝑐𝑡𝑗 holds
the horizontal coordinate of a rectangle placed on some 𝑛𝑡ℎ level,
𝑟𝑒𝑐𝑡𝑠_𝑜𝑛_𝑙𝑒𝑣𝑒𝑙𝑗,𝑛.

𝑟𝑒𝑐𝑡𝑠_𝑜𝑛_𝑙𝑒𝑣𝑒𝑙𝑠𝑗,𝑛 Interval variable representing a 𝑗𝑡ℎ rectangle placed on an 𝑛𝑡ℎ

level in a strip. Each rectangle has processing time equal to its
width. Optional. ∀𝑗 ∈ 𝐽, ∀𝑛 ∈ 𝐽 .

In this model, the objective is to minimize the sum of the maximum heights of the
rectangles placed on each level, considering different levels within the strip.

Minimize:∑︁
𝑙𝑒𝑣𝑒𝑙∈{1,...,𝑛}

max({ℎ𝑗 |𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒_𝑜𝑓(𝑟𝑒𝑐𝑡𝑠_𝑜𝑛_𝑙𝑒𝑣𝑒𝑙𝑠𝑗,𝑙𝑒𝑣𝑒𝑙) 𝑗 ∈ 𝐽}) (4.12)

The constraints include
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1. alternative constraints:

alternative(𝑟𝑒𝑐𝑡𝑗 , {𝑟𝑒𝑐𝑡𝑠_𝑜𝑛_𝑙𝑒𝑣𝑒𝑙𝑠𝑗,𝑙𝑒𝑣𝑒𝑙 | 𝑙𝑒𝑣𝑒𝑙 ∈ 𝐽}) ∀𝑗 ∈ 𝐽 (4.13)

ensuring that each rectangle is assigned to only one level, and

2. no overlap constraints:

no_overlap({𝑟𝑒𝑐𝑡𝑠_𝑜𝑛_𝑙𝑒𝑣𝑒𝑙𝑠𝑗,𝑙𝑒𝑣𝑒𝑙 | 𝑗 ∈ 𝐽}) ∀𝑙𝑒𝑣𝑒𝑙 ∈ 𝐽 (4.14)

ensuring that rectangles on each level do not overlap with one another.
Additionally, there is a

3. constraint limiting the maximum end position of rectangles on each level to be
within the strip width W.

max
𝑟𝑒𝑐𝑡∈𝐽

(𝑒𝑛𝑑_𝑜𝑓(𝑟𝑒𝑐𝑡𝑠_𝑜𝑛_𝑙𝑒𝑣𝑒𝑙𝑠𝑟𝑒𝑐𝑡,𝑙𝑒𝑣𝑒𝑙)) ≤𝑊 ∀𝑙𝑒𝑣𝑒𝑙 ∈ 𝐽 (4.15)

4.1.6 2D Strip Packing Problem Not Oriented

Model of not oriented 2D Strip Packing Section 2.4.1 assumes n rectangular items
𝑗 ∈ 𝐽, 𝐽 = {1, ..., 𝑛} to be placed into strip of width W.

CP Model uses two lists of interval variables as parameters:

𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒𝑋
𝑗 Interval variable for horizontal coordinates of rectangle j, 𝑗 ∈ 𝐽 .

𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒𝑌
𝑗 Interval variable for vertical coordinates of rectangle j, 𝑗 ∈ 𝐽 .

Model minimizes the maximum heigth of the strip with the following objective
function:

Minimize : max
𝑗∈𝐽

(𝑒𝑛𝑑_𝑜𝑓(𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒𝑌
𝑗 )) (4.16)

While being constrained by following constraints:

1. No overlap constraint - At least one of width or height do not intersect (in order
for two rectangles to intersect, both width and height need to intersect):

𝑛𝑜_𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒𝑋
𝑖 , 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒𝑋

𝑗 ) ∨ 𝑛𝑜_𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒𝑌
𝑖 , 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒𝑌

𝑗 )
∀𝑖 ∈ {1, ..., 𝑛𝑜_𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠− 1}, ∀𝑗 ∈ {𝑖 + 1, ..., 𝑛𝑜_𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠} (4.17)

And
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2. Width constraint - Constraint limiting the maximum end position of rectangle to
be within the strip width W.

max
𝑗∈𝐽

(𝑒𝑛𝑑_𝑜𝑓(𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒𝑋
𝑖 )) ≤𝑊 (4.18)

4.1.7 2D Strip Packing Problem Oriented

Model assumes n rectangular items 𝑗 ∈ 𝐽, 𝐽 = {1, ..., 𝑛}.
Model uses six lists of interval variables as parameters, two lists for items with

original rotation, two for rotated items, and two interval lists that hold either original
rotation rectangle position or rotated one, depending on the rotation that was selected.

𝑟𝑒𝑐𝑡_𝑛𝑜_𝑟𝑜𝑡𝑋
𝑗 Interval variable for horizontal coordinates of rectangle j, 𝑗 ∈ 𝐽 ,

optional.
𝑟𝑒𝑐𝑡_𝑛𝑜_𝑟𝑜𝑡𝑌

𝑗 Interval variable for vertical coordinates of rectangle j, 𝑗 ∈ 𝐽 , op-
tional.

𝑟𝑒𝑐𝑡_𝑟𝑜𝑡𝑋
𝑗 Interval variable for horizontal coordinates of rotated rectangle j,

𝑗 ∈ 𝐽 , optional.
𝑟𝑒𝑐𝑡_𝑟𝑜𝑡𝑌

𝑗 Interval variable for vertical coordinates of rotated rectangle j, 𝑗 ∈ 𝐽 ,
optional.

𝑟𝑒𝑐𝑡𝑋
𝑗 Interval placeholder variable for one of original rotation or rotated

rectangle horizontal coordinates, 𝑗 ∈ 𝐽 .
𝑟𝑒𝑐𝑡𝑌

𝑗 Interval placeholder variable for one of original rotation or rotated
rectangle vertical coordinates, 𝑗 ∈ 𝐽 .

Other than that, the model uses list of binary variables, that represent orientation
of each rectangle. This is important, because it locks both oriented and not oriented
variants of specific rectangle together. It prohibits rectangle being selected with one
rotated variable and the second one not rotated.

𝑂𝑗 binary variable representing orientation of rectangle j, 𝑗 ∈ 𝐽 .

And similarly to previous 2D Strip Packing models, this one minimizes height of
strip. The slight difference is that in this case we take one of original and rotated rectangle
- hidden in alternative variable 𝑟𝑒𝑐𝑡𝑌 .

Minimize : max
𝑗∈𝐽

(𝑒𝑛𝑑_𝑜𝑓(𝑟𝑒𝑐𝑡𝑌
𝑗 )) (4.19)
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Moreover, constraints similar to previous Strip Packing Problem models need to
hold, with a few of additions because of orientations:

1. Only one rotation needs to be selected

𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒(𝑟𝑒𝑐𝑡𝑋
𝑗 , [𝑟𝑒𝑐𝑡_𝑛𝑜_𝑟𝑜𝑡𝑋

𝑗 , 𝑟𝑒𝑐𝑡_𝑟𝑜𝑡𝑋
𝑗 ])

𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒(𝑟𝑒𝑐𝑡𝑌
𝑗 , [𝑟𝑒𝑐𝑡_𝑛𝑜_𝑟𝑜𝑡𝑌

𝑗 , 𝑟𝑒𝑐𝑡_𝑟𝑜𝑡𝑌
𝑗 ]) ∀𝑗 ∈ 𝐽 (4.20)

But, since this constraint does not enforce that either pair of original or pair of
rotated orientation is selected, we need to enforce it.

2. Select pair of original oriented rectangles, or pair of rotated rectangles

𝑂𝑗 = 0 => 𝑎𝑙𝑙_𝑜𝑓([𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒_𝑜𝑓(𝑟𝑒𝑐𝑡_𝑟𝑜𝑡𝑋
𝑗 ), 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒_𝑜𝑓(𝑟𝑒𝑐𝑡_𝑟𝑜𝑡𝑌

𝑗 )])
𝑂𝑗 = 1 => 𝑎𝑙𝑙_𝑜𝑓([𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒_𝑜𝑓(𝑟𝑒𝑐𝑡_𝑛𝑜_𝑟𝑜𝑡𝑋

𝑗 ), 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒_𝑜𝑓(𝑟𝑒𝑐𝑡_𝑛𝑜_𝑟𝑜𝑡𝑌
𝑗 )])

∀𝑗 ∈ 𝐽 (4.21)

3. For every rectangles pair, assert that the first rectangle in its selected orientation
does not overlap with the second rectangle in its selected orientation

𝑛𝑜_𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑟𝑒𝑐𝑡𝑋
𝑖 , 𝑟𝑒𝑐𝑡𝑋

𝑗 ) ∨ 𝑛𝑜_𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑟𝑒𝑐𝑡𝑌
𝑖 , 𝑟𝑒𝑐𝑡𝑌

𝑗 )
∀𝑖 ∈ {1,..., |𝐽 | − 1},∀𝑗 ∈ {𝑖 + 1, ..., |𝐽 |} (4.22)

4.1.8 1D Bin Packing Problem

CP model looks for following decision variables. We assume the same number of
bins as is the number of items 𝐽 in case that every item has the same dimensions as
each bin:

𝑖𝑡𝑒𝑚_𝑏𝑖𝑛_𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑖,𝑗 Binary variable representing in which bin 𝑗 the item 𝑖 is
placed. 𝑖 ∈ 𝐽, 𝑗 ∈ 𝐽 .

𝑖𝑠_𝑏𝑖𝑛_𝑢𝑠𝑒𝑑𝑗 Binary variable representing whether the bin 𝑗 is occupied
by any item. 𝑗 ∈ 𝐽 .

The CP model finds a solution such that it minimizes the number of bins used:

Minimize :
∑︁
𝑗∈𝐽

𝑖𝑠_𝑏𝑖𝑛_𝑢𝑠𝑒𝑑𝑗 (4.23)

The model includes these constraints:
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1. Each item should be in exactly one bin:

∑︁
𝑏𝑖𝑛∈𝐽

𝑖𝑡𝑒𝑚_𝑏𝑖𝑛_𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑖𝑡𝑒𝑚,𝑏𝑖𝑛 = 1 ∀𝑖𝑡𝑒𝑚 ∈ 𝐽 (4.24)

2. The sum of weights for items in each bin should not exceed the bin capacity:

∑︁
𝑖𝑡𝑒𝑚∈𝐽

(𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑡𝑒𝑚 · 𝑖𝑡𝑒𝑚_𝑏𝑖𝑛_𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑖𝑡𝑒𝑚,𝑏𝑖𝑛) ≤ 𝑐𝑎𝑝𝑏𝑖𝑛 · 𝑖𝑠_𝑏𝑖𝑛_𝑢𝑠𝑒𝑑𝑏𝑖𝑛

∀𝑏𝑖𝑛 ∈ 𝐽 (4.25)

This is the end of the section covering Constraint Programming models used in
the framework. In the following section we will talk about Genetic Algorithms that we
implemented. Contrary to this section, where we described the environment with the
constraints and let the solver do its job, in the Genetic Algorithms section we either
come up with our own naive approaches, or we replicate an algorithm from scientific
papers. In case of replicated algorithm, we will also list out a little of previous work as
well as the current state-of-the-art methods.

4.2 Genetic Algorithms
Genetic Algorithm (GA, [32]) is a meta-heuristic used in all sorts of optimization

problems but is not limited to them only.
Meta-heuristics are higher-level strategies that guide the search process. They pro-

vide a general framework designed to be problem-independent and can be applied to vari-
ous problems. Examples of meta-heuristics are GA, Simulated Annealing, Particle Swarm
Optimization, Tabu Search, or others, usually inspired by nature. Meta-heuristics are
often provided with problem-specific heuristics. Heuristics are based on domain knowl-
edge and provide rules or guidelines used to improve the quality of the solution and the
speed of its retrieval.

The strength of GA lies in its customizability connected with an exhaustive search
that GA performs. On the other hand, customizability comes at a significant cost, with
many parameters that must be fine-tuned. Fine-tuning is performed when the user needs
to evaluate many parameter combinations and selects the best-performing configuration.

While GAs usually do not provide the best results, they are frequently used for
either finding baseline solution, where comparison is needed, or for good-enough initial
solutions that more mature and fine-tuned algorithms will later use. Moreover, as GAs
are extensively modular, they offer an excellent and straightforward addition to the
framework.

A GA population consists of individuals, each represented by a chromosome. Chro-
mosomes are composed of genes, which can take various forms, including strings, num-
bers, or bits. The specific form of these genes is chosen by the user based on the nature
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of the problem being addressed. One of the key advantages of using chromosomes is their
abstract representation, particularly when represented as bits. This abstraction simpli-
fies the computational process and enhances the speed of operations such as selection,
crossover, and mutation.

GAs are a population-based algorithm steered towards the individuals with the best
properties, often referred to as survival of the fittest. GA’s population is managed with
the following operators (modules) that must be specified: selection, crossover, mutation,
and evaluation (fitness function)

The user explicitly pressures the algorithm’s convergence behaviour by selecting the
selection operator. The selection operator selects the individuals that will participate in
the crossover to generate a new offspring. Some selection operators are roulette wheel
selection, rank selection, tournament selection, or elitist selection.

Provided with a pair of parents, the crossover operator creates new offspring by
combining both parent’s chromosomes. The well-known crossover operators are (1, 2, K)-
point crossover, uniform crossover, simulated binary crossover, or exponential crossover.

The mutation operator alters each individual to support population diversity. It
is executed on each individual separately, usually even on separate genes with a given
probability. The most known operators swap gene positions or change the gene value al-
together. Examples of mutation operators are bit flip mutation, swap mutation, inversion
mutation, and Gaussian mutation.

Both crossover and mutation depend on chromosome representation. Some operators
are suited for binary chromosomes, some for real-valued chromosomes, and others may
be problem-specific.

The evaluation operator uses a given fitness function to assign an individual with
an objective value. The evaluation operator is problem and model specific.

Algorithm 1 describes the GA framework workflow. After initially generating the
population, the population’s individuals are evaluated, pairs of individuals are selected,
crossover creates offspring from each pair, and finally, offspring are mutated, creating a
new population.

Depending on the specific GA used, the GA’s flow can also change, creating various
variants of GA. The most frequent additions are probabilities of mutation or some of
the parents sustaining in the following generations (elite-preserving).

Overall, GAs frequently find a satisfiable solution. However, the solution quality de-
pends on several parameters and operators. To acquire the best parameter combination,
the user needs to evaluate all combinations, which is rarely the case, and in the end,
there is a need for a tradeoff to be done between the configuration quality and the time
spent finding it.

4.2.1 Biased Random-Key Genetic Algorithm

One of the variants of GAs are Biased Random-Key Genetic Algorithms (BRKGA,
[33]).

Compared to general GAs, the BRKGA’s chromosomes are represented by a floating
point numbers in range [0, 1). The new generations of the individuals are more resistent
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Algorithm 1: Classical Genetic Algorithm, [32]
Input : Population size n, Maximum number of iterations, MAX
Output: Global best solution, 𝑌𝑏𝑒𝑠𝑡

1 Generate initial population of n chromosomes 𝑌𝑖, 𝑖 ∈ {1, ..., 𝑛}
2 Set iteration counter t = 0
3 Compute the fitness value of each chromosome
4 while t < MAX do
5 Select pairs of chromosomes from the population based on fitness value
6 Apply crossover on selected pairs with a given crossover probability
7 Apply mutation on the offsprings with a given mutation probability
8 Replace old population with newly generated population
9 Increment current iteration counter t

10 end
11 Return the best-found solution 𝑌𝑏𝑒𝑠𝑡

against premature convergence as in each generation a portion of population is generated
at random. This is accomplished with the elitist selection which duplicates a ratio of best
performing individuals to the new generation, and thanks to the mutation being replaced
with a generation of new, random, individuals.

In the BRKGA, each chromosome is represented by a set of floating-point numbers
that fall in the range [0, 1). To counter the premature convergence that may occur in
GAs, BRKGA generates 𝐵𝑂𝑇 % mutants in each generation to bring more diversity
into the population. Premature convergence occurs when an algorithm converges on
a sub-optimal solution early. Furthermore, BRKGA integrates elitist selection, which
involves carrying over a specified percentage (denoted as 𝑇𝑂𝑃 ) of the highest-performing
individuals from the current generation to the next. This ensures that the qualities of
the best solutions are preserved.

The workflow of creating a new generation is defined as follows (also described in
Figure 4.1). First, number of the best individuals (also called TOP) is copied into new
generation. Then, we generate new individuals (called mutants, number of mutants is
defined by BOT number) to prevent convergence. This replaces mutation step. Finally,
we select one parent from TOP and one from the old population (including TOP) and
execute parametrized uniform crossover (for each gene, we generate number in [0, 1],
and select the gene of the first parent if the number is lower than crossover probability
𝐶𝑝𝑟𝑜𝑏, and the gene of the second parent otherwise). Number of individuals created by
the crossover is 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒− 𝑇𝑂𝑃 −𝐵𝑂𝑇 .

4.2.2 RCPSP

RCPSP (Section 2.3.2, [35]) is NP-hard problem [7]. As such, survey presented in
[36] shows that exact methods have hard time to solve an instance with more than 60
activities. For this reason, the use of heuristics and meta-heuristics (Section 4.2) are



4.2. Genetic Algorithms 31

Figure 4.1: Transitional process between consecutive generations [34]

preferred.
Heuristic methods are categorized as either single-pass heuristics (constructive heuris-

tics) or multiple-pass heuristics (improvement heuristics). Examples of meta-heuristic are
GA ([37]) and difference evolution (DE) ([38], [39]). Compared to the exact methods,
meta-heuristics are much better at solving higher activity instances, but at a cost of
multiple hyper parameters that need to be fine-tuned, often demanding much more time
from the users.

Among the current state of the art, we take top three algorithms evaluated on j120
benchmark ([19]) in [36], the best two are using GA ([40], [37]) and the third one is using
combination of ant colony optimization [41].

In our work, we reproduce the forward pass part of the [34]. The basis of this
algorithm is BRKGA meta-heuristic.

The forward procedure is provided in Algorithm 2. The algorithm receives the chro-
mosome representing rectangle priorities ranging from 0 to 1. In each iteration, the al-
gorithm calculates tasks whose precedences have been already scheduled, and available
resources. Then it selects the task with the highest priority that hasn’t been scheduled
yet. For this task, it calculates the earliest finish time considering only precedence con-
straints, and then refines it considering resource capacities. This earliest feasible finish
time is then used to schedule the task. Once all tasks are scheduled, the makespan is
computed as the finish time of the last task in the schedule.

4.2.3 2D Strip Packing

2D strip packing has NP-hard [16] complexity. There are propositions for exact
algorithms ([43], [44], [45]), but overall the practical solutions rely on heuristics providing
a good enough solution.

The work in [46] classifies strip-packing heuristics into construction (Positioning-
based, Fitness-based heuristics, Level-based, Profile-based) and improvement heuristics
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Algorithm 2: CONSTRUCT ACTIVE SCHEDULE ([42])
Input : chromosome with rectangle priorities with [0, 1] domain
Output: makespan 𝐹𝑛+1

1 Initialize 𝐹0 = 0, 𝑆0 = 0
2 for g = 1 to n do
3 Calculate 𝐷𝑔, Γ𝑔 and 𝑅𝐷𝑘(𝑡)(𝑘 ∈ 𝐾, 𝑡 ∈ Γ𝑔)

/* select activity with highest priority */
4 𝑗* ← arg max𝑗∈𝐷𝑔

(𝑃𝑅𝐼𝑂𝑅𝐼𝑇𝑌𝑗)
/* compute earliest Finish time (in terms of precedence only) */

5 𝐸𝐹𝑗* ← max𝑖∈𝑃𝑗 (𝐹𝑖) + 𝑝𝑗*

/* compute earliest Finish time (in terms of precedence and
capacity) */

6 𝐹𝑗* ← min{𝑡 ≥ 𝐸𝐹𝑗* − 𝑝𝑗* | 𝑟𝑗*,𝑘 ≤ 𝑅𝐷𝑘(𝜏), 𝑘 ∈ 𝐾 | 𝑟𝑗*,𝑘 > 0, 𝜏 ∈
[𝑡, 𝑡 + 𝑝𝑗* ]}+ 𝑝𝑗*

/* update 𝑆𝑔 */
7 𝑆𝑔 ← 𝑆𝑔−1 ∪ 𝑗𝑥

8 end
/* compute makespan (equal to finish time of activity n + 1) */

9 𝐹𝑛+1 = 𝑚𝑎𝑥𝑗∈𝑃𝑛+1(𝐹𝑗)

(Search over sequences, Search over the layout).
One of the oldest positioning-based heuristics is called “Bottom-up left-justified”, or

just BL, by [47]. Although being one of the most known and having a simple approach,
it has been shown that the results are heavily affected by the order in which the input
rectangles are received [48], and the performance can be improved by up to 10% with
correct ordering.

Another significant leap in performance was done in [26], which introduces the so-
called best-fit (BF) heuristic. BF identifies the lowest available place in the strip, keeps
only rectangles with widths smaller than the width of the space, and places the widest
rectangle in that space. BF uses the so-called skyline to identify empty places where
rectangles should be placed next.

The skyline represents the height of the strip column. As such, the algorithm no
longer needs to store complex geometrical representations of the strip but rather the
heights of columns only, making the strip handling significantly easier. Skyline implicitly
allows for “wasted spaces” (spaces where rectangles can no longer be placed). When a
gap (the lowest empty plane in the skyline) is found that is too narrow to place any
rectangle in it, it is called a wasted space, and the skyline is raised to have the same
height as the lowest neighbor.

Later, bidirectional algorithm modification was presented by [49].
Amongst current state-of-the-art methodologies belong GRASP (meta-heuristic,

[50], ISH (heuristic, [51]), and fairly new IN-H* (deterministic tree search procedure,
[52]).
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Figure 4.2: Strip Packing solver using level
based heuristic

Figure 4.3: Strip Packing solver not using
level based heuristic

As the SOTA algorithms are often complex and require many parameters to be
set up, the focus of this work lies in showcasing the framework’s features that support
easy integration and benchmarking. We decided to implement the algorithm from [42]
that uses the squeaky wheel optimization approach. Squeaky wheel optimization (SWO,
[53]) is an approach that iteratively creates a solution, and in each iteration, it penalizes
the items that negatively affect the objective the most. In the subsequent iterations,
the items with the biggest penalty are prioritized to be placed first. It turns out to be
competitive and sometimes better than one of the SOTA, GRASP.

To showcase the extensible capabilities of the framework with GA that is supported
by the framework, we adapted the original algorithm implementation provided in Al-
gorithm 4, [42], which traditionally relied on iterative penalty updates. Our adaptation
involves implementing the algorithm as a fitness function within a Genetic Algorithm
(GA). Instead of updating penalties after each iteration, we let GA generate the penalties
as the chromosome.

In the Algorithm 3, we present the adapted pseudo-code of the algorithm that we
use as the fitness function.

Algorithm 3: Pseudo-code of the SWO packing methodology, changed for GA
Input : chromosome with rectangle penalties with [0, 1] domain
Output: skyline

1 while exists pieces not packed do
2 Find lowest slot ‘s’
3 if s is too narrow for any piece then
4 Raise s to level of lowest neighbour and merge them both
5 else
6 Find piece with highest penalty, from those that fit into s
7 Assign this piece to s, next to the tallest neighbour
8 end
9 end



34 Chapter 4. Solvers

Algorithm 4: Pseudo-code of the SWO packing methodology ([42])
Output: best skyline found

1 Initialise each piece’s penalty value to zero
2 while elapsed time < time limit do
3 Initialise empty skyline
4 while exists pieces not packed do
5 Find lowest Slot ‘s’
6 if s is too narrow for any piece then
7 Raise s to level of lowest neighbour and merge them both
8 else
9 Find piece with highest penalty, from those that fit into s

10 Assign this piece to s, next to the tallest neighbour
11 end
12 end
13 forall Piece ‘p’ in current instance do
14 if p.lower - edge - y - coordinate + p.height > instance lowerbound then
15 p.penalty = p.penalty + p.height
16 end
17 end
18 end

4.2.4 1D Bin Packing

To extend the list of examples we provide with the framework and to have some
“simple go to” example. We also create a naive fitness function (Algorithm 5) for 1D
Bin Packing Problem. The GA generates list of genes as the chromosome and items are
assigned to the respective bins specified by the genes. The objective is to minimize the
number of bins used. If there are multiple individuals with the same number of bins
used, the algorithm prioritizes the one individual that has bigger maximum bin load to
motivate the most effective bins assignment.

Algorithm 5: 1D Bin Packing Fitness Function
Input : chromosome, |items| integers in domain [1, ..., |items|]
Output: number of bins, maximum bin load

1 initialize 𝐵𝑖 = 0 (𝑖 ∈ {1, ..., |𝑖𝑡𝑒𝑚𝑠|})
2 𝐵𝑖 =

∑︀
𝑔𝑒𝑛𝑒=𝑖 | 𝑔𝑒𝑛𝑒∈𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 𝑔𝑒𝑛𝑒

3 bin_used =
∑︀

𝑏∈𝐵(𝑏 > 0)
4 max_bin_load = max(𝐵)

This has been solvers chapter, in the next one we present the benchmarking and
experiments we have evaluated on the framework.
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Experiments

The experimental chapter of this thesis is structured to demonstrate the capabilities
and flexibility of the proposed framework in combinatorial optimization. We divide this
section into distinct parts, each focusing on different aspects and applications of the
framework to offer a comprehensive understanding of its functionalities.

Initially, we delve into a user testing experiment, a critical research component.
In this experiment, a test subject integrates a Maximal Independent Set Problem and
custom solvers for that problem into the framework. This exercise is instrumental in
evaluating the framework’s user experience and adaptability in accommodating new
problems and solvers. The insights gained from this user testing are invaluable for refining
the framework and ensuring it meets the needs of its users.

Following this, we present experiments on two major problems covered in this the-
sis: Resource-Constrained Project Scheduling (RCPSP) and 2D-Strip Packing (2D-SP)
Problem and one minor experiment on MM-RCPSP. These experiments showcase how
the framework handles these complex combinatorial problems, highlighting its problem-
solving and solution comparison efficiency. The results and discussions from these ex-
periments will illustrate the practical applications of the framework and its effectiveness
in a research context.

The experiments were run on CentOS Linux release 7.5 cluster node, which uses
Slurm as a workload manager and job scheduler. The cluster node has Intel Xeon E5-
2690 v4 CPU, 14 Cores/CPU; 2.6GHz with 35 MB SmartCache. The RAM was limited
to 16 GB. The software used was the following: CPLEX/22.11, GCCcore-10.2.0, and
Python-3.8.6. The experiments were run on a single CPU node.

5.1 User testing

We conducted a user testing session to evaluate the user experience and gather
feedback on our framework. The participant in this test was Ing. Josef Grus, the author’s
supervisor. This session focused on integrating the Maximum Independent Set Problem
into our framework. The test user selected this problem because we did not cover it in
the framework problem set.

35
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Maximum Independent Set Problem [54] assesses to find a maximum independent
set in a provided graph 𝐺 = (𝑉, 𝐸) with vertex set 𝑉 = {1, ..., 𝑛} and edge set 𝐸.
Independent set 𝑉 ⊆ 𝑉 , that the edge set �̃� ⊆ 𝐸, of the graph induced by 𝑉 , 𝐺(𝑉 ), is
empty.

An induced graph 𝐺(𝑉 ) is such graph that contains a subset of original graph
vertices 𝑉 , 𝑉 ⊆ 𝑉 and the edge set of the induced graph 𝐺(𝑉 ) contains such edges, that
both its adjacent vertices are in 𝑉 .

A Maximum Independent Set is an independent set that is not a subset of any other
independent set.

The user had a dataset, CP model, and GA fitness function prepared for the user
testing. The user testing consisted of integrating the dataset and CP and GA models
into the framework so that the user could simultaneously compare the performance of
both approaches on the provided benchmark dataset.

Other than the problem to solve, we asked the user to select a specific benchmark for
evaluation, develop a fitness function for the GA, and prepare a CP model for the IBM
ILOG CP Optimizer. We placed the code base prepared by the user in the attachments
of the digital copy of this work.

During the integration user testing, the user was provided with the user guide
(available in the Chapter 6.2) and was able to discuss the potential issues with the
author of this work.

In the process of testing, the user implemented the dataset parser:

def parse_instance(path: pathlib.Path):
with open(path) as file:

_, _, vertices, edges = file.readline().strip().split()
vertices, edges = int(vertices), int(edges)
neighbors = [[] for i in range(vertices)]
for i in range(edges):

_, u, v = file.readline().strip().split()
u, v = int(u) - 1, int(v) - 1

neighbors[u].append(v)
neighbors[v].append(u)

return {
"no_vertices": vertices,
"no_edges": edges,
"neighbors": neighbors

}

The user introduced a new class of optimization problems.

class MISProblem(OptimizationProblem):
def __init__(self, benchmark_name, instance_name, data, solution,
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run_history):
super().__init__(benchmark_name, instance_name, "MIS", data,

solution, run_history)

self.no_vertices = data["no_vertices"]
self.no_edges = data["no_edges"]
self.neighbors = data["neighbors"]

...

The user integrated the CP model into a custom CP solver for the Maximum Inde-
pendent Set Problem.

class MISCPSolver(CPSolver):
def _solve(self, instance, validate=False, visualize=False,

force_execution=False):
if not force_execution and len(instance._run_history) > 0:

if instance.skip_on_optimal_solution():
return None, None

# Specify the model
model = CpoModel(name="BinPacking")
model.set_parameters(params=self.params)

variables = cp.binary_var_list(instance.no_vertices)

# Specify the model constraints
for k, neighborhood in enumerate(instance.neighbors):

for l in neighborhood:
if k < l:

model.add_constraint(cp.logical_or(
variables[k] == 0, variables[l] == 0

))
model.add_constraint(cp.maximize(cp.sum(variables)))

# Solve the model
solution = model.solve()

As well as implemented a new custom GA solver.

class MISGASolver(GASolver):
def _solve(self, instance, validate=False, visualize=False,

force_execution=False):
class MISProblem(ElementwiseProblem):
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def __init__(self, no_vertices, neighbors, fitness_func):
super().__init__(n_var=no_vertices,

n_obj=1,
n_constr=0,
elementwise_evaluation=True)

self.neighbors = neighbors
self.no_vertices = no_vertices
self.fitness_func = fitness_func

def _evaluate(self, x, out, *args, **kwargs):
out = self.fitness_func(self, x, out)

problem = MISProblem(instance.no_vertices, instance.neighbors,
self.fitness_func)

res = minimize(problem, self.algorithm, self.termination,
verbose=True, seed=self.seed)

The testing was completed in less than two hours and yielded positive user feedback.
We expect that with a growing number of integrations done by the user, the duration
of the process will be significantly reduced to under one hour as the user becomes more
aware of the framework internals.

The resulting pipeline of load, execution, and the results dump looks like the fol-
lowing; note that we have left out the imports on purpose:

algorithm = GA(
pop_size=100,
n_offsprings=50,
sampling=PermutationRandomSampling(),
crossover=OrderCrossover(),
mutation=NoMutation(),
eliminate_duplicates=True

)

def construct_solution(instance, x, out):
available = set(range(instance.no_vertices))
number_successes = 0

solution = []
for k in x:

if k in available:
number_successes += 1
solution.append(k)

for neighbor in instance.neighbors[k]:
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if neighbor in available:
available.remove(neighbor)

out["F"] = -number_successes

# SPECIFIC BENCHMARK INSTANCE
instance = load_raw_instance("raw_data/MIS/dataset1/C125.9.mis",

"", "MIS")

# CP SOLVER EXAMPLE
value, assignment, sol = MISCPSolver(5, 1).solve(instance)
print(value, assignment)

# GA SOLVER EXAMPLE
MISGASolver(algorithm, construct_solution, ("n_gen", 20),

seed=1).solve(instance)

instance.dump()

This section covered user testing. In the next section, we cover extensive testing of
RCPSP and 2D-SP Problem solvers and compare them to state-of-the-art solutions.

5.2 RCPSP

In this subsection, we evaluate solvers of the RCPSP on PSPLIB’s [19] j120.sm
benchmark, focusing on the comparison of our CP model (Section 4.1.2) against the
GA approach (model described in Section 4.2.2) and the state-of-the-art metaheuristic
algorithms. We evaluate the impact of different time limits on the performance of IBM
ILOG CP Optimizer’s performance and examine the effects of different crossover strate-
gies and population sizes on the performance of implemented fitness functions for GA
and BRKGA.

We used a forward pass from [34] as the fitness function.
If not specified otherwise, we use the following configuration for the GA: Two Point

Crossover executed with 90% probability, Polynomial Mutation, Tournament Selection,
and duplicate elimination.

5.2.1 Experiment 1: Running Default Solvers Against State-of-the-Art
Algorithms

In the initial experiment, we benchmark selected GA 1 and BRKGA 2 configurations
against the state-of-the-art metaheuristics [36]. We assess the average deviation from

1120 individuals in each generation , 90% crossover probability, limited to 5000 schedules
2TOP=12 individuals, BOT=36 individuals , 72 offsprings 72, 𝐶𝑃 𝑅𝑂𝐵=70%, limited to 5000 schedules
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the critical path lower bound over 5000 schedules, highlighting the performance of the
algorithms on comparable milestones.

The critical path lower bound [55] is the first, “naive”, lower bound on the project
duration. It does not consider the resource capacities to compute the longest available
path from the starting activity to the terminal activity. No shorter valid schedule exists
because the activities from the longest available path would overlap, so the metric is
valid as the lower bound. This metric is often used for datasets without known optimal
solutions.

To consider the algorithm comparison in the whole context of our work, we include
the result of our CP model, limited by 60 seconds.

solver deviation (%) time (s)
Goncharov and Leonov (Specialist GA(FBI)) [37] 30.50 –
Proon and Jin GA(LS) [40] 31.51 –
CP 60 seconds 32.3 34.1
Chen et al. (Decomposition-based(ACO(SS))) [41] 32.48 –
BRKGA 43.4 245.3
GA 44.0 249.5

Table 5.1: Comparison of default CP and GA solvers with state of the art metaheuristics

This experiment (Table 5.1) demonstrates that while straightforward, a simple,
one-pass forward generation heuristic does not yield competitive results in this com-
plex domain. We also highlight that the experiments are implemented in Python, which
significantly contributes to at least an order of magnitude worse execution times.

5.2.2 Experiment 2: Impact of Population Sizes on GA Performance

In the following experiments, we benchmark different configurations of GAs and
BKRGAs to determine whether configuration changes affect the performance and whether
the effect is major or minor.

First, we compare the effect of different population sizes on the performance of GA.
We keep the evaluation to the 5000 generated schedules.

solver deviation (%) time (s)
GA 240 offsprings 43.8 254.6
GA 120 offsprings 44 249.5
GA 60 offsprings 45.6 246.8

Table 5.2: GA population size performance comparison

The results in Table 5.2 and Figure 5.1 show an improvement trend with bigger
population size. However, with 240 offsprings, the difference is only minor against 120
offsprings, compared to the difference between 60 and 120 offsprings.
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Figure 5.1: Comparison of different GA population sizes performances in time

5.2.3 Experiment 3: BRKGA Population Composition

Contrary to GA experiments, we focus on the population composition of the BRKGA
in Experiment 3. For the BRKGA, the authors of [34] recommend the BRKGA param-
eters to be setup as described in Table 5.3.

Parameter Interval
𝑇𝑂𝑃 (# elites) 0.10 - 0.20
𝐵𝑂𝑇 (# mutants) 0.15 - 0.30
𝐶𝑃 𝑟𝑜𝑏 0.70 - 0.80

Table 5.3: Recommended configurations for BRKGA in RCPSPs

In our experiment, provided in Table 5.4 and visualized in Figure 5.2, we observed
the following results on provided setups after 5000 evaluations. The number 𝑇𝑂𝑃 of elite
individuals moved to the new generation affects the performance of the algorithm, high
percentage of elite individuals kept probably hurts the diversity, whereas low amount
of elite individuals kept limits the convergence. There is no clear implication that 𝐵𝑂𝑇
number in 15 % - 30 % range significantly affects the performance, but we expect the
performance degradation outside this range as the number of completely random indi-
viduals affects the convergence and diversity.

5.2.4 Experiment 4: Impact of GA Crossover Strategies

This subsection introduces an experiment focused on the impact of varying crossover
strategies on the GA performance on RCPSPs. We test the following crossover strate-
gies: Single Point Crossover, Two Point Crossover, Simulated Binary Crossover (SBX),
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solver deviation (%) time (s)
TOP 15%, BOT 22.5% 42.5 243.0
TOP 25%, BOT 15% 42.5 245.3
TOP 15%, BOT 22.5% 43.0 242.1
TOP 25%, BOT 20% 43.1 245.3
TOP 10%, BOT 30% 43.4 245.3

Table 5.4: Comparison of different BRKGA configurations on j120.sm RCPSP benchmark

Figure 5.2: Comparison of different BRKGA population compositions on the performance in
time

Uniform Crossover, and Half Uniform Crossover. Each GA has 120 individuals in each
generation and we compare the performance after 5,000 evaluations.

solver deviation (%) time (s)
GA HalfUniformCrossover 42.4 249.2
GA UniformCrossover 42.5 249.2
GA SBX 42.8 249.2
GA TwoPointCrossover 44.0 249.5
GA SinglePointCrossover 44.9 249.6

Table 5.5: Comparison of different GA crossover strategies on j120.sm RCPSP benchmark

The tested crossover strategies, evaluation provided in Table 5.5 and in-time progress
visualized in Figure 5.3, show a compelling trend. Going from the worst-performing
crossover strategy to the best-performing one, the complexity of the crossover strategy
increases, possibly influencing offspring diversity and, thus, the GA’s performance. In the
context of Single Point Crossover and Two Point Crossover, the crossover combines two
or three parts of the parents, which may limit the diversity in the offspring generation.
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Figure 5.3: Comparison of different GA crossover strategies on the performance in time

The Simulated Binary Crossover is known for its exploration and exploitation balance,
maintaining more diversity while improving the objective. Finally, the Uniform and
Half Uniform Crossover strategies show the best performance as the crossover strategies
generate offspring as a random, gene-level combination of both parents.

5.2.5 Experiment 5: Evaluating CP Model Performance

In the last experiment, we extend the CP model to different time limits to determine
how much the performance changes.

solver deviation (%) time (s)
CP 600s 30.9 324.1
CP 180s 31.5 99.6
CP 60s 32.3 34.1
CP 15s 34.6 9.1

Table 5.6: Comparison of different CP timelimits on j120.sm RCPSP benchmark

We highlight that the IBM ILOG CP Optimizer, despite being a general solver for
scheduling, delivers comparable results to the SOTA algorithms for RCPSP in the 600
seconds time limit configuration (Table 5.6).

5.3 2D Strip Packing Problem

This section provides a comparative study on CP and GA in the 2D-SP Problem
context.
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While CP historically saw great results in Scheduling, it sees the opposite per-
formance in Cutting & Packing Problems. We assume that the disparity stems from
the notable difference between constraint restrictiveness between Scheduling and Cut-
ting & Packing. Take RCPSP, for example; only a handful of scheduled activities can
usually be scheduled. Each newly scheduled activity restricts the domain of other vari-
ables through the precedence dependencies. In Packing problems on the other hand,
placing an item into the strip restricts the solution domain space significantly less com-
pared to the RCPSP. In instances with hundreds of more items, the domain, and the
search tree of the Strip Packing Problem is huge, not limiting the CP search enough.

We utilize the BKW benchmark ([26]) to compare the CP and GA methodologies,
including hybrid models combining both approaches.

BKW benchmark contains 13 instances ranging from 10 to 3152 instances. These
instances are designed to challenge and evaluate the performance of various algorithms
in terms of their ability to find an optimal or near-optimal arrangement of items within
the strip. The instances were generated by a guillotine cutting and the optimal solutions
are known. In our experiments, we use the first 12 instances.

We provide resulting performances in the 3 column table in the paragraphs below.
The first column provides the name of the used solver, the second column provides the
average deviation from the optimal solution in %, and the last column contains the
average time consumed.

If not specified otherwise, we use the following configuration for the : Two Point
Crossover executed with 90% probability, Polynomial Mutation, Tournament Selection,
and duplicate elimination.

5.3.1 Experiment 1: Initial CP and GA Comparison

In the initial evaluations, we compare “naive” (leveled fitness function, Section M)
and “prioritized best fit” (using chromosomes as priorities for placing rectangles. Sec-
tion 4.2.3) fitness functions for GA 3, and two CP models (limited to 60 seconds and
one worker). The first CP model (CP Default Not Oriented) does not allow rectangle
rotation, but the second one (CP Default Oriented) allows it. We include a comparison
to the algorithm from the literature, which outperforms our models.

The result (Table 5.7) indicates that the assumption of weak CP performance in
2D-SP Problems is correct.

The primary challenge for CP models in the context of Strip Packing Problems
lies in their requirement to find at least one good solution that will extensively prune
the solution search space. However, it takes a long time to find it, given the size of the
packing problem domain space. The oriented CP model demonstrates a two times better
solution quality. We assess the spike in the performance to the ability to rotate items,
which, in the case of the high items, reduces the objective value drastically.

3200 individuals in a single generation, duplicates elimination, Tournament Selection, Two Point
Crossover with 100% probability, Polynomial Mutation with 90% probability and termination after 30
generations without best objective value improvement.
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solver deviation (%) time (s)
GA + BLF [26] 3.7 –
best-fit GA 19.9 191.8
naive GA 60.2 309.5
CP Default Oriented 60 189.5 55.0
CP Default Not Oriented 60 482.3 55.0

Table 5.7: Comparison of 2 GA with different fitness functions and 2 CP models on BKW
benchmark

Compared to CP models, which almost blindly search the domain space, GAs benefit
from the deterministic nature of constructive heuristics that leverage the rectangle in
the strip placement knowledge (skyline, levels).

The result shows that the best fit heuristic is vastly superior to CP models and
the level fitness heuristic. The best fit heuristic shows better convergence and space
utilization, with more than one-third of the deviation that level fitness has and is 50%
faster to converge.

5.3.2 Experiment 2: Time-Constrained CP Models

After reducing the time limits of CP models, the results in Table 5.8 reveal only a
tiny impact on performance. This highlights the CP limitations of managing extensive
solution domains without an early, high-quality solution. This strongly contrasts the de-
terministic and flexible nature of GAs, which benefit from random individual generation
covering bigger solution space and subsequent reproduction driving the convergence.

solver deviation (%) time (s)
CP Default Oriented 60 189.5 55.0
CP Default Oriented 15 204.0 13.8
CP Default Not Oriented 60 482.3 55.0
CP Default Not Oriented 15 491.1 13.8

Table 5.8: Comparison of different CP timelimits on BWK 2D_SP Problem benchmark

5.3.3 Experiment 3: Comparison of Time-limited GAs with CPs

Here, We compare CP models to the same GAs as in the first experiment but we
limit GAs time limit to 60 seconds (Table 5.9). The time-limited GAs perform slightly
worse than the non-limited GAs but are significantly superior to the CP models. This
further underscores CP’s challenges in vast solution spaces where immediate high-quality
solutions are inaccessible.
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solver deviation (%) time (s)
best-fit GA 19.9 191.8
best-fit GA 60sec 20.6 61.8
best fit GA 30 individuals 60sec 21.2 60.2
naive GA 60.2 309.5
naive GA 30 individuals 60sec 68.3 60.0
CP Default Oriented 60 189.5 55.0
CP Default Not Oriented 60 482.3 55.0

Table 5.9: Comparison of initial experiments with time limited GAs on BWK 2D_SP Problem
benchmark

5.3.4 Experiment 4: Hybrid Model Integration

As hinted in the previous experiment, the CP models suffer from not having access
to a “good enough solution in a short enough time”. One possible fix to this problem is
to use the hybrid algorithm. For this use case, we employ the leveled fitness function for
GA that runs for 20 generations and then CP continues with the initial solution from
GA. The great thing about this approach is that the GA heuristic fitness function will
assign the rectangles into levels, not providing perfect results. However, its solution will
be good enough to prune a significant space of the search space for CP, thus allowing
CP to find the solutions in the “good” subspace of the solution domain.

solver deviation (%) time (s)
best fit GA 30_1.0_60sec 21.2 60.2
CP Default Not Oriented Hybrid 15 53.1 13.8
CP Default Not Oriented Hybrid 60 44.9 55.0
naive GA 30_1.0_60sec 68.3 60.0
CP Default Oriented Hybrid 15 45.6 13.8
CP Default Oriented Hybrid 60 44.6 55.1

Table 5.10: Comparison of hybrid GA+CP algorithms with level based and best fit GA heuristic
on BWK 2D_SP Problem benchmark

More importantly, the CP model can “beat” the leveled fitness function GA with
this improvement.

This study (Table 5.10) reveals a fundamental limitation of CP in Strip Packing and
broader packing problems: the vast solution space and weak constraint restrictiveness.
Contrary to scheduling problems, where each variable assignment significantly restricts
the search space, in packing problems, CP’s ability to prune the search space is signifi-
cantly less effective due to each assignment having an impact only on a small subset of
the solution domain.

We provide an example of the outputs of running a hybrid solver below. Figure 5.4
shows an output of the first part of the hybrid solver - GA, with the objective value 71.
The GA uses constructive level fitness function, placing the rectangles on the levels only,
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and its result is inferior. In the second step of the hybrid solver, we feed the output of GA
into the CP solver, which outputs the solution with the objective value 53, improving the
solution by more than 25 %. We provide the output of the hybrid solver in Figure 5.5.

Figure 5.4: Strip Packing solver using level
based heuristic

Figure 5.5: Strip Packing solver not using
level based heuristic

Even though the CP models do not reach the performance of the classic Strip
Packing heuristic, it is visible that with a little “push”, the performance of CP models
can be significantly improved. This suggests that CP’s performance in packing problems
can be improved with strategic modifications and the incorporation of GA elements.

The full table of Strip Packing experiments is included in Section L.

5.4 MM-RCPSP

Additionally, we extended both the CP (Section 4.1.3) and BRKGA4 (Algorithm 2
updated for MM-RCPSP) models to handle the multi-mode variant of RCPSP. Below,
we provide a comparison of our models against the state-of-the-art models from the
literature benchmarked on the MMLIB50 [24].

First, we compare the GA model against the state-of-the-art models on 1,000 sched-
ules.

solver deviation (%) time (s)
VANP11 [56] 28.2 –
VANP10 [57] 34.1 –
LOVA09 [58] 34.2 –
GA 36.3 65.9

The % deviation was calculated using the critical path lower bound. For the critical
path lower bound of MM-RCPSP, we assumed the mode with the minimal processing
time to be the “job processing time”, as used in Section 5.2.

4TOP=15 individuals, BOT=15 individuals , 70 offsprings, 𝐶𝑃 𝑅𝑂𝐵=70%, limited to 5000 schedules
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In this experiment, the GA algorithm did not find a feasible solution for 175 out of
540 instances. For the remaining instances, the average deviation from the critical path
lower bound was 36.3 %.

Second, we compare CP model performance against the state-of-the-art algorithms
on 50,000 schedules.

solver deviation (%) time (s)
CP 23.6 31.4
VANP11 [56] 23.8 –
VANP10 [57] 24.9 –
LOVA09 [58] 26.7 –

In this case, the commercial CP solver has comparable results to the state-of-the-art
but with a significantly higher number of evaluations completed.
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Conclusion

This work implements a Python framework supporting cross-paradigm and cross-
library solver comparison called General Optimization Solver, available at https://git
hub.com/Omastto1/General-Optimization-Solver. The framework is built to be eas-
ily extensible, contains almost 20 different benchmarks, has built-in support for 6 CO
problems with more than 10 GA and CP solvers, and provides a solution to compare
completely different solvers in one place with ease.

6.1 Evaluating the thesis’ accomplishments

The assignment of the thesis was set in two parts. In the first part, the main objective
was to analyze the CO problems, their formulations, and solvers, focusing on RCPSP
and Rectangle Packing. The solvers analyzed should have used CP or GA methods to
provide an extensive foundation for the second part of the assignment. Based on the
theoretical research, the thesis assignment expects the author to design, implement, and
verify a system for evaluating CO problem solvers. The framework is expected to load
different benchmarks, evaluate, validate, visualize the instances, and export the results.
Finally, the system is expected to support easy integration of new datasets, problems,
algorithms, or problem-specific heuristics in such a way that the majority of the reusable
parts are already implemented in the framework. The system is expected to be verified
with the methods developed by the author and the results compared to the literature.

In this work, we analyzed CO with a focus on Scheduling Problems (RCPSP, MM-
RCPSP, JSSP) and Cutting & Packing Problems (2D-SP Problem and 1D-SP Problem).
For each problem, we provided a necessary theory, problem variants, and their applica-
tions.

We designed the framework for evaluating algorithms for combinatorial problems.
We described the unified data structure the framework uses, how the instances can be
processed, verified, visualized and exported. We discussed in detail how each module
works and how it can be extended.

With a simple user flow example, we showcased on the example of 1D Bin Packing
that the whole benchmark evaluation can have less than 20 lines of code.

49
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For selected Scheduling and Cutting & Packing Problems, we implemented Con-
straint Programming and Genetic Algorithm solvers and analyzed the current state of
art solvers within the corresponding branches.

We verified reusability of the framework with a user testing and compared our
solvers with the results reported on PSPLIB, MMLIB and KBW benchmarks.

We included the user guide in Appendix I to provide more in-depth instructions on
the framework usage. We forward everyone looking for the most frequent use cases for
extending the framework there.

6.2 Reflection on the Research Process, Limitations, and
Future Research

We expect that some of the framework’s features and overall approaches to some
problems will become outdated as the new problems or solver paradigms, whose edge-
cases we did not predict, will be added.

For the future research, we recommend conducting user-testing more frequently as
the scope of the solving methods will be expanded and there will be more space for
generalization. Some of the nice-to-add approaches that can be added in the future are
Tabu Search, Ant Colony Optimization, or Particle Swarm Optimization.

We propose to move the benchmarks from the framework repository to another
online source to lower the memory requirements of the framework as the number of
benchmarks will rise.
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Appendix I - User Guide

In the following chapter we list the most frequent use-cases that the user may
encounter. We try to describe the scenarious in the order they may pop up, starting with
adding new benchmark data (Section A, Section B), implementing problem classes for
these benchmarks (Section D), in cases they are not already available, integrating solvers
into benchmark (Section E) and running the whole framework pipeline (Section G). In
the end we list some more experienced use-cases: reusing benchmark data (Section C),
visualizing output (Section I) or running multiple solvers at once (Section H).

The Framework provides multiple Combinatorial Optimization problems such as:
(MM-)RCPSP, JSSP, 2D-SP Problem, 1D-BP Problem and 2D-BP Problem. Frame-
work contains selected benchmarks for provided problems. We offer default Constraint
Programming solvers for all problems and default Genetic Algorithm solvers for subset
of the problems. Steps to extend each part - benchmark data, problem definition, solver
model - are described on following pages.

A Adding new benchmark data

By default, the raw benchmarks are stored in ‘/raw_data‘ folder. If you find your-
self looking for the benchmark that we definitely should have provided but for whatever
reason we did not, don’t worry, you are free to extend the set of benchmarks the frame-
work is using. if you are struggling to find the data for Cutting & Packing Problems, we
suggest using [59] or https://www.euro-online.org/websites/esicup/data-sets/.

To extend the framework with the benchmark of your choice, paste your bench-
mark’s raw data into corresponding folder in ‘raw_data‘ directory in framework’s root
folder. There, either create a new folder if you are introducing a new problem (in that
case, look into Section D section as well) or select already existing problem folder. In the
problem type folder, create a folder corresponding to the benchmark name and paste
the benchmark instances into currently created folder. If the benchmark folder is already
existing, shout "hooray", because you saved yourself some time, and go get yourself a
treat.

Now, depending on your taste, these are further topics that may interest you Sec-
tion F, Section B or Section C
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B Adding new parser

Hello, seeing you here means that you have probably added a benchmark, for which
there is no parser implemented, or you did not find one. Either case, this is a list of
supported benchmark formats:

• RCPSP

– PSPLIB[19] - j30.sm, j60.sm, j90.sm, and j120.sm under the "j120" format
parameter

– Patterson[20] - sD [21], CV [22], NetRes [23], etc.; use "patterson" when load-
ing

• MM-RCPSP

– PSPLIB[19] - j10.mm, c15.mm, and c21.mm under the "c15" format parame-
ter, use "c15"

– MMLIB[24] - MMLIB50, MMLIB100, MMLIB+ - "mmlib" format

• JSSP 1 - "jobshop" format

• 2D-SP Problem 2 (load with "strippacking" format parameter)

– ZDF[25] - number of elements, width of strip, (index, width, heigth) - "strip-
packing"

– BKW[26] - Json with "Objects" (1 strip) and "Items" (rectangles) keys - "bkw"

• 1D-BP Problem - first line number of items, second line number capacity of each
bin, third+ items

• 2D-BP Problem - extension of 1d bin packing - capacity as width, height, each
item row contains width, height

If you have not find a format that you are looking for, we will guide you through
implementing one.

Implementing a new parser requires two things:

1. implement the parser itself,
1First row contains the number of jobs and the number of machines pair. Then there are ‘number

of jobs‘ rows, with each containing ‘number of machines‘ pairs. Each pair contains the machine that is
meant to be run and the processing time of that task. The ‘4 95‘ pair in the third column and the first
row means that as the third task for the first job, the fifth machine (we are using zero-based indexing)
is meant to run for 95 units of time.

2The first row containing the number of units meant to be placed inside a strip, the second row
containing the width of a strip and ’number of units’ rows with triple - units index, unit height, unit
width
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2. add implemented parser into framework logic - ‘general_optimization_solver.load
_raw_instance‘ and instantiate a problem instance with parsed data.

We provide an example how to do both in the following subsections.

B.1 Implementing parser

For writing raw data parser, you need to follow a simple rule. That is, the function
(the name is not important) should return a dictionary with important instance features.
Lets take a look at a simple 1D bin packing parser example:

def load_1dbinpacking(path, verbose):
with open(path, "r") as file:

line = file.readline()
no_rectangles = int(line.strip())

line = file.readline()
bin_capacity = int(line.strip())

weights = []
for _ in range(no_rectangles):

weight = int(file.readline().strip())
weights.append(weight)

parsed_input = {
"no_rectangles": no_rectangles,
"bin_capacity": bin_capacity,
"weights": weights,

}

return parsed_input

That’s all! Now lets go and implement the parser!

B.2 Add parser into framework API

If you are new to framework API, go and take a look at Section F. Or not, should
be easy as is.

The heart of framework logic is the ‘general_optimization_solver.load_raw_insta
nce‘ function, which depending on ‘format‘ parameter selects which parser to run and
which class should be instantiated with the data.

At this point we expect that you yet need to add your format and parser into the
logic. To show you an example, this is how logic for loading raw 1d Bin Packing Problem
instances without run history and solution is implemented:
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...
elif format == "1Dbinpacking":

data = load_1dbinpacking(path, verbose)

instance = BinPacking1D(
benchmark_name, instance_name, data, solution={}, run_history=[])

...

Nothing hard, is it? Of course given that you are using problem that has already been
introduced in the framework. If not, you need to work a little harder. For implementing
new optimization problem type. See Section D.

C Reusing benchmark data

The raw benchmarks’ data that you have loaded into framework (and ideally run
or explicitly dumped) are available in framework’s uniform json structure. We list a
simplified structure without run history details below.

{
"benchmark_name":
"instance_name":
"instance_kind": // One of "RCPSP", "MM-RCPSP", "JOBSHOP",

// "2DSTRIPPACKING", "1DBINPACKING", "2DBINPACKING"
"data": { ... } // Problem-specific dictionary of parameters
"reference_solution": {

"feasible": // One of true/false
"optimum": // Either known optimum integer of 'null'
"cpu_time": // Time (s) to find the optimum if available,

// otherwise key not present
"bounds": { } // Present if no 'optimum' is known.

// Stores 'lower' and 'upper' referential bound.
}
"run_history": [ ... ] // List of dictionaries with historical runs

}

To reuse these datas, the framework offers the ‘general_optmization_solver.load_
instance‘ function. The function loads dumped data from the path provided.

D Introducing new optimization problem class

Problem classes are a foundation stone of the framework.
Start with creating a new folder named after the optimization problem class in

the ‘src‘ folder. Then, move the corresponding parser to the folder (assuming you have
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already created one, if not see Section B, then create ‘solvers‘ folder which will contain
solvers (see Section E) and create ’problem.py‘ file in the root problem type folder.

In this file, create new class that inherits ‘src.common.optimization_problem.Opti
mizationProblem‘ and its ‘__init__‘ method accepts following parameters ‘benchmark
name‘, ‘instance name‘, ‘data‘, ‘solution‘, ‘run history‘. Then pass this arguments to
OptimizationProblem initiator, add problem name as third parameter. Assign instance
configuration to instance variables (these instance variables will be later on used in
solver).

class BinPacking1D(OptimizationProblem):
def __init__(self, benchmark_name, instance_name, data, solution,

run_history) -> None:
super().__init__(benchmark_name, instance_name, "1DBINPACKING",

data, solution, run_history)

self.bin_capacity = self._data["bin_capacity"]
self.weights = self._data["weights"]
self.no_items = len(self._data["weights"])

Other than ‘__init__‘ you are meant to implement ‘validate‘ and ‘visualize‘ meth-
ods, these are meant to be called from solver.

E Adding new solver
Difficulty of adding a new solver varies can be categorized into 3 groups

• Adding a new solver paradigm - here by paradigm we mean Genetic Algorithms,
Constrained Programming, Tabu Search, etc.

• Adding new instance of a solver paradigm not yet implemented for a specific prob-
lem - say Constraint Programming model for Travelling Salesman Problem.

• Altering solver model in cases where the paradigm and benchmark solver instance
is already implemented - more restrictive constraints for Constraint Programming
model, extend model to accept initial solution etc.

E.1 Adding new solver paradigm

Abstract solver and solver paradigm base classes are defined in ‘src.common.solver‘.
When implementing new paradigm, keep in mind following best practices.

• Choose appropriate ‘solver_name‘ class variable to provide better understanding
of result dumps.

• ‘__init__‘ should accept solver paradigm-specific configuration parameters and
optionally model specific ‘solver_name‘. We provide Genetic Algorithm solver as
an example below:
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class GASolver(Solver):
def __init__(self, algorithm, fitness_func, termination,

solver_name, seed=None):
super().__init__()

self.solver_name = solver_name
self.algorithm = algorithm
self.fitness_func = fitness_func
self.termination = termination
self.seed = seed
self.callback= HistoryCallback(algorithm)

• Each solver paradigm class needs specialized ‘add_run_to_history‘ method. The
method extends the instance’s run history and accepts problem instance, objec-
tive value, solution info, solution progress, and execution time as parameters. This
method needs to execute the instance’s update_run_history with the correspond-
ing parameters.

E.2 Adding new solver instance to problem

To add a new solver paradigm instance to specific benchmark, add a new module
to ‘{problem_type}/solvers‘ folder. The module needs to contain solver inheriting spe-
cific paradigm base class. Then, implement ‘_solve‘ method, which accepts ‘instance‘
parameter and ‘validate‘ or ‘visualize‘ optional flags which signalize whether ‘validation‘
or ‘visualization‘ is meant to be run

For running implemented solver, see Section G.
We provide a minimalist example of example of CP solver function below:

def _solve(self, instance, validate=False, visualize=False):
model, model_variables = self.build_model(instance)

solution = model.solve()

E.3 Adding new solver model

To alter solver model (in the sense of changing the model’s behaviour with model
parameters) is so far supported in GAs only. To ‘alter‘ a CP model, you need to create
a new modul, duplicate the code from original solver and alter it in the new one. To
alter Genetic Algorithm, you need to alter the one of pymoo.algorithm, fitness function
or termination criteria which are accepted as parameter of GASolver instances.

from pymoo.algorithms.soo.nonconvex.ga import GA

algorithm = GA(
pop_size=100
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)

def fitness_func(instance, x, out):
bins = {}
for idx, bin_idx in enumerate(x):

bin_idx = int(bin_idx)
bins[bin_idx] = bins.get(bin_idx, 0) + instance.weights[idx]

# Objective: Minimize the number of bins used
out["F"] = len(bins)

return out

termination_criteria = ("n_gen", 100)

The fitness function needs to accept ‘instance‘, ‘x‘ input and ‘out‘ output dictionary
(pymoo specific). The objective value is meant to be stored in out["F"] and constraints in
out["G"], constraint with a value less then 0 means the constraint has not been broken.

F Using API
The General Optimization Solver framework offers 4 API endpoints which are meant

for loading (raw) instances or (raw) benchmarks. These endpoints return either instance
inheriting ‘OptimizationProblem‘ or ‘Benchmark‘ instance. Benchmarks are loaded like
this:

from src.general_optimization_solver import load_raw_benchmark

benchmark = load_raw_benchmark("raw_data/rcpsp/j120.sm")

G Running solver
Running CP solver that uses 10 workers and runs for 60 seconds, solving 1D Bin

Packing instance is as easy as:

from src.general_optimization_solver import load_raw_instance
from src.binpacking1d.solvers.solver_cp import BinPacking1DCPSolver

instance = load_raw_instance("raw_data/1d-binpacking/scholl/N1C1W1_A.BPP")

BinPacking1DCPSolver(TimeLimit=60, no_workers=10).solve(problem)

Depending on solver paradigm, the specific solver accepts either ‘TimeLimit‘ and
‘no_workers‘ parameters for constrained programming (docplex.cp) or ‘algorithm‘, ‘fit-
ness_func‘, ‘termination‘, ‘seed‘ parameters for genetic algorithms (pymoo)
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Figure 6.1: Example of Job Shop Scheduling Problem solution

The ‘solve‘ method is same for all solvers and accepts either instance or benchmark,
and optionally ‘validate‘, ‘visualize‘ and ‘force_execution‘ flags

H Running multiple solvers

Below we are providing an example of running Constrained Programming and Ge-
netic Algorithm solvers on a 1D Bin Packing Problem instance with no known solution.

instance = load_raw_instance("raw_data/1d-binpacking/scholl/N1C1W1_A.BPP",
"", "1Dbinpacking")

BinPacking1DCPSolver(TimeLimit=10).solve(instance, validate=False,
visualize=False, force_execution=True)

BinPacking1DGASolver(algorithm, fitness_func, ("n_gen", 100), seed=1)
.solve(instance)

instance.dump()

I Comparing outputs visually

To visualize (and compare) two solutions of a problem instance, user needs to vi-
sualize each solution separately and pass an exported solution variables in ‘visualize‘
method to:

instance.visualize(model_variables_export)
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J Comparing solvers performances
To compare performances of solvers, the framework implements two methods, ‘g

enerate_solver_comparison_markdown_table‘ and ‘generate_solver_comparison_p
ercent_deviation_markdown_table‘, both implemented in the benchmark base class.
The first one lists an objective value for each solver-instance pair. The second one lists
average deviation from the lower bound and average execution time on all instances. We
provide examples bellow.

Instance GA forward 90 BRKGA rcpsp BRKGA rcpsp forward
j3010_1 43 56 43
j3010_10 43 46 41*
j3010_2 58 65 58
j3010_3 63 77 63
j3010_4 64 72 64

Table 6.1: Example of ‘generate_solver_comparison_markdown_table‘ output

Solver deviation (%) time (s)
BRKGA rcpsp 4.6 5.1
BRKGA rcpsp forward 3.8 4.2
GA forward 90 4.6 10.0

Table 6.2: Example of ‘generate_solver_comparison_percent_deviation_markdown_table‘
output
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In the rest of the appendix, we attach tables, algorithms, figures and others that we
did not find place for in the body of this work, but we find them important to provide.

K Sample Visualizations of Problem Solutions

Figure 6.2: Solution of the cv25 RCPSP
instance, containing 2 renewable resources

Figure 6.3: Solution of the c154_3 MM-
RCPSP instance, containing 2 renewable
and 2 non-renewable resources

Figure 6.4: Solution of the BKW3 2D
Strip Packing instance

Figure 6.5: Solution of the abz5 Job Shop
Problem instance, containing 10 jobs with
10 tasks to be done on 10 machines
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L Complete table covering the 2D Strip Packing experi-
ments

solver deviation (%) time (s)
best fit GA 200_1.0 19.9 191.8
best fit GA 200_1.0_60sec 20.6 61.8
best fit GA 30_1.0_60sec 21.2 60.2
CP Default Oriented Hybrid 60 44.6 55.1
CP Default Not Oriented Hybrid 60 44.9 55.0
CP Default Oriented Hybrid 15 45.6 13.8
CP Default Not Oriented Hybrid 15 53.1 13.8
naive GA 200_1.0 60.2 309.5
naive GA 30_1.0_60sec 68.3 60.0
CP Default Oriented 60 189.5 55.0
CP Default Oriented 15 204.0 13.8
CP Default Not Oriented 60 482.3 55.0
CP Default Not Oriented 15 491.1 13.8

Table 6.3: Full table covering 2D Strip Packing experiments

M Leveled 2D Strip Packing Fitness Function
def fitness_func(instance, x, out):

"""
Place rectangles one after each other into levels, return total height
"""
order = np.argsort(x)
total_height, current_width, current_height = 0
rectangles = [None] * instance.no_elements
for i in order:

if current_width + instance.rectangles[i]['width'] > instance.strip_width:
total_height += current_height
current_width = 0
current_height = 0

rectangles[i] = (current_width, total_height)
current_width += instance.rectangles[i]['width']
current_height = max(current_height, instance.rectangles[i]['height'])

total_height += current_height
out["F"] = total_height

return out
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