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Abstract
Evolutionary algorithms are a family of
optimization techniques that are heavily
inspired by organic evolution. They are
popular mainly for their wide applicabil-
ity. They are also suitable for black-box
optimization where a description of the ob-
jective function is not known. Many vari-
ants of evolutionary algorithms were pro-
posed during their history, but they were
mainly focused on the optimization of one
optimization problem at a time. Little
effort was paid to multitasking which is
an optimization of multiple optimization
problems at the same run of evolutionary
algorithm. Recently, a paper was pub-
lished that introduced a new approach
to evolutionary multitasking called mul-
tifactorial optimization. The motivation
of this approach is better effectivity in
optimization of several tasks concurrently
than optimization of each problem inde-
pendently. This work implements the mul-
tifactorial optimization for an important
class of evolutionary algorithms which is
genetic programming, that works with a
tree representation of the candidate solu-
tions. The goal of this thesis is the im-
plementation of the genetic programming
algorithm that optimizes in a multifacto-
rial sense and subsequent analysis of its
attributes and performance.

Keywords: multitasking, black-box
optimization, evolutionary algorithms,
genetic programming, multifactorial
optimization

Supervisor: Ing. Petr Pošík, Ph.D.

Abstrakt
Evoluční algoritmy jsou skupinou opti-
malizačních technik, jež jsou inspirované
organickou evolucí. Evoluční algoritmy
mají širokou oblast použití a jsou také
vhodné pro takzvanou black-box optima-
lizaci, kdy není znám předpis optimali-
zované funkce. Evoluční algoritmy mají
dlouhou historii a byla přestavena řada
variant jejich použití. Téměř všechny va-
rianty se však zaměřovali na optimalizaci
jedné účelové funkce najednou a málo po-
zornosti bylo věnováno optimalizaci vícero
účelových funkci v jednom běhu evoluč-
ního algorithmu, tedy takzvanému mul-
titaskingu. Nedávno byla přestavena me-
toda multifaktoriální optimalizace, která
představuje způsob, jak se dají evoluční
algoritmy efektivně aplikvat pro optimali-
zací vícero optimalizačních problému na-
jednou. Hlavní motivací tohoto přístupu je
očekávání lepší efektivity optimalizačního
procesu, než při řešeni každého problému
zvlášť. Tato práce obsahuje rekonstrukci
navrhovaného řešení a následné analýzu
jeho vlastností na jednu z významných
odnoží evolučních algoritmů, kterou je ge-
netické programování, které pracuje se
stromovou reprezentací jedinců v popu-
laci. Cílem této práce je anaýlza efektivity
genetického programování implementující
multifaktoriální optimalizaci.

Klíčová slova: multitasking, black-box
optimalizace, evoluční algoritmy,
genetické programování, multifaktoriální
optimalizace

Překlad názvu: Multitasking v
symbolické regresi
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Chapter 1
Introduction

Evolutionary algorithms (EA) are a family of optimization algorithms inspired
by organic evolution. There are plenty of EA techniques and approaches,
but most of them are focused on single-objective (SO) optimization which
is an optimization of one objective function at a time. If more objective
functions needed to be optimized, then by the SO approach, the functions
would be optimized sequentially, one after another. A little effort was paid to
the possibility of optimizing multiple objective functions concurrently. This
approach is also referred to as multitasking 1.

Potential benefit of multitasking is better efficacy and efficiency of the
optimization process. If there is some similarity among optimal solutions
of the objective functions, then if an optimum of one function is found, it
could be used by another function and help it to find it its optimum. This
phenomena might be especially beneficial in the cases, where a complex
objective function, that is difficult to optimize, is optimized with another
less complex task, with similar optimum. Another possible benefit might
be a maintaining of genetic diversity in the population, if there is some ex-
change of genetic material between individuals of different objective functions.

On the other hand, the multitasking approach also might have a negative
impact on the optimization process. There might be negative interference of
the individual objective function. That might lead the multitasking optimiza-
tion approach to spend more resources to reach the same level of optimality
as in the single-objective approach.

In general, there are two main possible uses for a multitasking optimization:.There is only one task that needs to be optimized, but other auxiliary
tasks are added to the assignment to enhance the optimization process..There is a need to optimize several tasks and they are optimized concur-
rently.

1Note, that this multitasking described in the text, has nothing to do with parallel
computing nor multi-threading. The multitasking is an optimization approach, no matter
of the particular implementation of the algorithm.

1



1. Introduction .....................................
One could ask about the efficacy of the multitasking approach, where

multiple functions are optimized in the same run and there is allowed some
information exchange between individual problems. The goal of this project is
to assess the contributions of multitasking in both above mentioned scenarios
compared to the single-objective approach. No other distinct algorithm is
discussed in this project in detail.

This thesis is organized as follows. Chapter 2 introduces symbolic regression,
which will be the goal of optimization throughout this project. Chapter 3
takes a deeper look into evolutionary algorithms and their functioning. A
method of multitasking optimization called multifactorial optimization is
introduced in Chapter 4. Algorithms of this project implement a branch of
evolutionary algorithms called genetic programming which is described in
Chapter 5. This chapter also discusses the implementation of multifactorial
optimization by genetic programming. In Chapter 6 are introduced testing
problems that are used to analyze the performance of designed algorithms.
The settings of used algorithms are described in Chapter 7. This chapter
also explains a process by which are found the most suitable settings for each
algorithm. The performance of algorithms for testing problems is revealed in
Chapter 8. The conclusion of the thesis is presented in Chapter 9.

2



Chapter 2
Symbolic regression

Let’s have a system that consists of a set of variables. The values of these
variables might not be independent, but they might be bonded by some kind
of relationship. It might be desirable to estimate the relationship between
those variables and thus obtain the model of the system.

Two types of variables are distinguished, independent and dependent. Inde-
pendent are those variables that take value independently to other variables.
Dependent variables are those variables that take value that is determined
by values of the independent variables. For the sake of simplicity take into
account only cases where there is a set of independent variables and exactly
one dependent variable.

An example of this system might be a mathematical formula, for instance
y = 2 ∗ x2. In this particular case, x is an independent variable that can
take any value and y is a dependent variable, that is determined by the x.
If the form of the mathematical formula is known, then there is no need to
estimate anything. But it might happen that the exact mathematical formula
is not known and only a set of value pairs of x and corresponding y might
be obtained, such as [(1, 2), (-2, 8), (0, 0), (3, 18)]. How to get the original
formula based on these values? How can one evaluate the correctness of the
obtained formula? These questions might be answered by regression.

Regression [1, 2] is a set of statistical methods used for the estimation
of relationships between independent variables (input of a function) and
dependent variables (output of a function). By regression, a model of some
system is obtained. The regression task consists of several basic ingredients [3]:

.Training set:
Let’s have a system that is the target of regression. Every observation of
values of the variables of the system might be denoted as (x, y) ∈ (X ,Y),
where x represents values of independent variables and y represents value
of the dependent variable. X is then space of values of independent
variables and Y is space of values of dependent variable. Such an
observation is called training example. The set of training examples is

3



2. Symbolic regression ..................................
then Tm = {(xi, yi) ∈ (X ,Y), i = 1, ..., m}. Hypothesis class:
For regression to take place, there must be defined a set of possible models.
This set of models is also called hypothesis class, denoted as H ⊆ YX .
The function of the model is to derive value of the dependent variable
based on the values of the independent variables, so the estimation of y
by model h ∈ H is yh = h(x).. Loss function:
Loss function numerically evaluates a quality of a particular model h
for a given training set Tm. By L is typically denoted loss for a training
set and by l is denoted loss for a training example. There is a plenty of
possible loss functions, for instant root-mean-square error (RMSE). It is
defined as:

RMSE(h, Tm) =
√

1
m

∑m
i=1 (yi − h(xi))2.

This loss function will be used in all future uses of loss functions through-
out this project.

The goal of the regression process is to choose a model with the lowest loss
of all models from the hypothesis class. The idea of choosing the best model
is captured by the following equation:

Regression(H, Tm) = arg min
h∈H

L(H, Tm)

The regression is a much broader topic than presented in the previous
sections, but yet all necessary concepts needed in this project were introduced.

Symbolic regression is a special type of regression where the model of a
function is presented as a symbolic expression. Every valid mathematical
expression has its symbolic expression. This symbolic expression can be
represented as a rooted directed acyclic tree (rooted DAG). For instance, take
a look at image 2.1. In the image, a mathematical formula is presented, as
well as its symbolic representation expressed by a tree. The tree has variables
and constants in its leaves and mathematical operators in all other nodes.
This holds for any symbolic expression.

The value of the expression can be obtained from the root of the tree
by applying its operator to all its descendants. This is done recursively
till to the leaves of the tree. If the tree contains only one node, then the
value of the expression is equal to the value of this node. It also holds, that
any subtree of the expression is also a rooted DAG, that represents a valid
mathematical formula. Unfortunately, it does not hold that any two subtrees
of the symbolic expression can be swapped and it is guaranteed to get a
valid symbolic expression. But with caution, one can replace subtrees of the
expressions by different subtrees and generate new expressions.

4



.................................. 2. Symbolic regression

Figure 2.1: A mathematical function and its symbolic representation [4]
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Chapter 3
Evolutionary algorithms

Evolutionary algorithms (EA) are a family of optimization techniques inspired
by organic evolution [7]. They are popular mainly due to their robustness and
wide applicability. They can be applied to optimize a function even though a
definition of the function is not provided, therefore EA algorithms are widely
used in black-box optimization. EA were successfully applied in many fields
of IT such as computer networks, image processing [5, 6], healthcare [8, 9]
and others.

The basic workflow of an evolutionary algorithm looks as follows. At first,
the population of candidate solutions is initialized. Then algorithm is iterated
until terminal conditions are met. One iteration of evolutionary algorithm
consists of following steps. selection. offspring generation. evaluation. replacement

In the following sections, the respective steps of the evolutionary algorithm
are described in more detail.

3.1 Initialization

At first, random candidate solutions are generated for the target problem.
These candidates can be generated according to some prior knowledge about
the problem if available. Then all these individuals are evaluated according
to the objective function of the optimization problem.

3.2 Selection

From the evaluated population a subset of individuals is selected. The
selection can be performed under various criteria. The most straightforward
approach is to select individuals according to their fitness values.

7



3. Evolutionary algorithms ................................
3.3 Offspring generation

The selected individuals are used to generate a new set of individuals. In EA
terminology the original selected population of individuals is called parents
and the population derived from the parents is called offspring. Offspring
are generated using two evolutionary operators, mutation and crossover.
Crossover is a process when two individuals are combined in order to create
new individuals. The mutation takes only one individual and modifies it
slightly to create a new individual.

3.4 Evaluation

When offspring are created, they are evaluated with respect to the objective
function that is being optimized. This way, each individual obtains a fitness
value.

3.5 Replacement

Having two sets of evaluated individuals, the previous population and off-
spring are used to create one new set of individuals for another iteration
of the algorithm. In this process, a subset of individuals is kept and the
rest is discarded. Often the original population is simply replaced by its off-
spring, but more advanced techniques were successfully introduced such as the
elitist strategy, where the most fit individuals are chosen for the next iteration.

The whole process of EA is depicted in the pseudo-code Alg. 1. The EA
runs as described until termination conditions are met. The termination
criterion is typically number of generations, time of computation, or quality
of the best individual in the population.

Algorithm 1 Illustration of simple evolutionary algorithm
1: procedure simple evolutionary algorithm
2: population ← initialization of population
3: evaluate population
4: while the conditions for termination are not met do
5: parents ← select individuals from population
6: offspring ← make mutation and crossover of parents
7: evaluate offspring
8: population ← make replacement with population and offspring

9: return the best individual of population

8



.......................... 3.6. Extension of evolutionary algorithms

3.6 Extension of evolutionary algorithms

Many advanced techniques enhancing the efficacy of evolutionary algorithms
were proposed and implemented such as structured populations [10, 11, 12, 13],
local searches, adaptive parameters [14, 15] and others. The majority of
these techniques though, are focused on the single-objective EA, where the
algorithm has only one objective function to optimize. A little effort was paid
to the multitasking approach, where several optimization tasks are optimized
concurrently. Although some work was done in these regard[16, 17]. One of
the state-of-the-art algorithms that addresses the multitasking approach is
recently introduced multifactorial optimization. [18].

9
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Chapter 4
Multifactorial optimization

The goal of the multifactorial optimization (MFO) [19] is to optimize multiple
optimization problems concurrently and harness the potential latent genetic
complementarities of the problems in order to more effectively optimize all the
problems together than optimizing each problem independently. The purpose
of MFO is not to find optimum trade-off among optimization problems, but
to fully optimize each task.

Assume that K minimization optimization problems T1, T2, ..., TK are about
to be solved simultaneously by the MFO algorithm. The population of can-
didate solutions consists of P individuals p1, p2, ..., pP . With these general
settings, let’s take a look at several essential features of MFO, that are intro-
duced in the following sections.

4.1 Unified representation scheme

MFO aims to be able to optimize distinct optimization tasks concurrently. In
order to do so, MFO uses unified representation scheme. So, chromosome of
each individual is represented as a vector x ∈ [0, 1]Dmax , Dmax = max{Dj},
where Dj is the dimensionality of Tj . Each problem is mapped into interval
[0, 1]Dj . To evaluate an individual for problem Tj , simply the first Dj genes
of the chromosome are taken. This type of encoding operates as a layer
of abstraction that allows the algorithm to take the same individual as a
candidate solution for any optimization problem.

4.2 Factorial cost

For a given task Tj and an individual pi the factorial cost is defined as Ψi
j = f i

j ,
where f i

j is simply the fitness value of pi for Tj . 1

1In the case of an objective function with constraints, the factorial cost is defined as
Ψi

j = λ · δi
j · f i

j , where f i
j is a fitness value of pi for Tj , λ is a penalizing multiplier and δi

j is
value of constraint violation.

11



4. Multifactorial optimization ...............................
4.3 Factorial rank

Let’s have a list Lj , that represents the factorial cost for a particular task Tj

and all individuals in the population, so Lj = [Ψ1
j , Ψ2

j , ...ΨP
j ]. Also, let’s have

L̄j that represents Lj sorted in ascending order. Factorial rank ri
j is simply

the index of pi in the L̄j .

4.4 Scalar fitness

Let’s have a list Ri, that represents factorial ranks of an individual pi for
each problem, so Ri = [ri

1, ri
2, ..., ri

K ]. The scalar fitness of pi is defined as
φi = min{Ri} 2.

4.5 Skill factor

The skill factor of an individual pi represents the task on which the individual
is most effective. It is defined as τ i = argmin{Ri}

4.6 Multifactorial evolution

To determine the quality of an individual, it is needed to have some mechanism
to compare individuals in the population. In the case of MFO, it cannot
be done by comparing fitness values as in the single objective variant of
optimization. A different approach must be adopted. For this purpose, scalar
fitness is used. For two individuals pa and pb, the pa is considered to dominate
pb in a multifactorial sense if and only if τa > τb. The factorial rank and
therefore also scalar fitness and ordering of individuals are not absolute but
they are determined by the quality of other individuals in the population.
It holds that if an individual is the global optimum of some problem it will
not be dominated by any other individual, thus the proposed comparison
technique is indeed valid.
The basic workflow of the MFO is very similar to the one of EA, but MFO
differs in several steps.

4.6.1 Initialization

After the individuals are generated, they are evaluated for each optimization
task, in other words, each factorial cost is calculated. Then scalar fitness and
skill factor of each individual are determined.

2In the original paper [18] introducing MFO, the Scalar fitness is defined as φi = 1/
min{Ri}. The change was made so each optimization problem in this project is defined as
a minimization

12



................................ 4.6. Multifactorial evolution

4.6.2 Offspring generation

Let’s have two individuals pa and pb selected as parents. If these individuals
have the same skill factor then they are considered as solutions to the same
problem. By crossover, the parents produce offspring ca and cb. If the parents
have the same skill factor, then the crossover is performed. If the parent differs
in their skill factor, then the crossover is performed with random mating
probability (rmp). If the crossover is not performed, then the offspring are
produced by the mutation operator. Offspring inherit skill factors from their
parents. If offspring are produced by parents with different skill factors, then
the skill factor of an offspring is set to be as skill factor of the randomly
selected parent.

4.6.3 Evaluation

When offspring are created, they are evaluated with respect to their skill
factor only. This approach saves a lot of potentially wasted evaluations. As
a consequence, once a skill factor of offspring is determined, it will never
change afterward. This approach is not a necessity but is advantageous from
a practical viewpoint.
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Chapter 5
Genetic programming

Genetic programming is a branch of evolutionary computation. The key
difference between standard evolutionary algorithms and genetic programming
is that evolutionary algorithms represent candidate solutions as vectors of
numbers whereas genetic programming works with trees. Due to this fact,
genetic programming is used on different optimization problems. Moreover,
with tree representation there come new difficulties that have to be handled
and are not present in evolutionary algorithms. The most prominent one is
the bloat problem.

5.1 Bloat problem

During the evolution of genetic programming (or any evolutionary algorithm
using variable length of the genotype), the candidate solutions can change
their size due to the mutation and crossover operators. It might happen, that
the individuals tend to grow on their size without any meaningful benefit in
terms of their fitness values. This phenomenon is known as the bloat problem.
An illustration of the bloat problem is depicted in Fig.5.1

One might think that the explanation for the bloat problem is that the
mutation operator tends to add a lot of new genetic material, thus the candi-
date solutions tend to get bigger over time regardless of their fitness values.
To test this hypothesis, an evolutionary algorithm is tested on a constant
function with a random selection. The results are depicted in Fig.5.2. One
can conclude based on the graph, that with the very same settings, we got
very different progress in terms of the height of the individuals. The average
height tends to get bigger over time, but this effect is not as pronounced as in
the case of the non-constant function, so the bloat problem is not just a bias
of the algorithm in adding genetic material. The cause of the bloat problem
has a different explanation.

The bloat problem was intensively studied and there are several explana-
tions for such a phenomenon [21, 22, 23]. Detailed discussion of the reasons
for bloat is out of the scope of this project.
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(a) : Development of height of tree individuals of over time

(b) : Development of fitness of tree individuals of over time

Figure 5.1: Illustration of the bloat problem

Two main difficulties come with the bloat problem. The first one is compu-
tational efficacy. Evaluation of a big tree is computationally more demanding
than evaluation of a small tree, so the optimization process might create fewer
candidate solutions with the provided computational resources. The second
difficulty refers to the interpretability of the tree. It is easier to interpret
the function of a small tree than a large tree with a lot of redundant genetic
material. In addition, the bigger the tree is, the harder it is to make any
modifications and adjustments to it.

There were introduced many techniques and ideas on how to deal with the
bloat problem [24, 25, 26]. Among the most common ones belongs introducing
a fixed maximal depth of the tree, defining tree size as a second criterion of
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(a) : Development of height of tree individuals of over time

(b) : Development of fitness of tree individuals of over time

Figure 5.2: Illustration of the bloat problem for constant function

multiobjective optimization problem, updating the fitness value of a tree by a
penalization, that depends on the complexity of the tree, and others. Several
techniques of bloat control are tested and discussed in the experimental
section of this work.

5.2 Multifactorial optimization in genetic
programming

It was already discussed, how the multifactorial optimization works, what
are the advantages and possible disadvantages of this approach, and how
it is implemented in the case of evolutionary algorithm. A question arises,
how to transfer and successfully use multifactorial optimization for genetic
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programming. It might be worth reminding that the key difference between
evolutionary algorithm and genetic programming is, that in the genetic pro-
gramming the tree representation is used instead of the vector one.

Successful attempts [19, 20] of using multifactorial optimization for genetic
programming were made, but so far only with trees of fixed size. To the best
knowledge of the authors of this project, no previous attempts of multifacto-
rial optimization with trees of variable length were made.

One can conclude, that many concepts of multifactorial optimization such
as factorial cost, factorial rank, scalar fitness, and skill factor can be used in
genetic programming without any struggle. A bit of a challenge comes with
the unified representation scheme. However, this project is focused primarily
on symbolic regression of real-valued functions. Also an assumption of no
prior knowledge about the function, in terms of present operators, is made.
With this in mind, one can easily decide to use the very same set of operators
in the optimization of each function. One thing that might vary though, is
the dimensionality of the optimized function. It is assumed in this project,
that the dimensionality of the objective function is known.

Another important thing is the process of evaluation of an individual. In this
project, the evaluation works as follows. For an objective function, generate
a corresponding number of samples. Given a candidate solution, compute its
fitness for all samples. Assemble these fitnesses with root-mean-square error
and obtain the final fitness of the individual.
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Chapter 6
Testing problems

It is a crucial part of analyzing an algorithm, to come up with a robust,
relevant, and suitable testing set to explore the algorithm’s performance.

But first, take a look at the terminology used throughout this project. Any
objective function is called a task. An optimization problem is called an
assignment and it consists of one or more tasks. So each assignment of SO
has exactly one task and each assignment of MFO has at least two tasks.

The testing problems used for the analysis of proposed algorithms are heav-
ily inspired by the benchmark set presented in the paper "Genetic Program-
ming Needs Better Benchmarks"[27]. In this project, there are 4 assignments
used in total.

6.1 Koza

This assignment consists of the following tasks:.Koza-1: x6 − 2x4 + x2.Koza-2: x5 − 2x3 + x.Koza-3: x4 + x3 + x2 + x

The domain of all tasks is X = [−1, 1]. All tasks are polynomial, but
the orders as well as signs and coefficients slightly differ. Nonetheless, all
tasks have non-empty intersection, thus there are possible benefits in sharing
genetic information across tasks.

All Koza tasks are depicted in Fig 6.1.

6.2 Nguyen

This assignment consists of tasks. Nguyen-1: x3 + x2 + x
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Figure 6.1: All tasks present edin Koza assignment

. Nguyen-2: x5 + x4 + x3 + x2 + x. Nguyen-3: x6 + x5 + x4 + x3 + x2 + x

The domain of all tasks is X = [−1, 1]. As in the Koza assignment, all tasks
in Nguyen are polynomials, but their similarity is more pronounced. All
members of each task are positive and have coefficients equal to 1. As a
matter of fact, each Nguyen task contains the previous one and just adds one
or more members to it.

All Nguyen tasks are depicted in Fig.6.2. From the graphical point of view,
as well as from the symbolic one, all Nguyen tasks are very similar. The
expectation is that Nguyen assignment will have the most promising results
in terms of the beneficial effect of the multifactorial approach.

6.3 Keijzer

This assignment consists of tasks expressed by the very same mathematical
formula. The difference between individual tasks is in their domains. These
tasks are:.Keijzer-1: 0.3xsin(2πx) for x ∈ [−1, 1].Keijzer-2: 0.3xsin(2πx) for x ∈ [−2, 2].Keijzer-3: 0.3xsin(2πx) for x ∈ [−3, 3]

All Keijzer tasks are depicted in Fig. 6.3.
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Figure 6.2: All tasks presented in Nguyen assignment

6.4 Keijzer2

All previous assignments were one-dimensional, but Keijzer2 is two-dimensional.
The tasks look as follows:.Keijzer2 - 1: xy + sin((x− 1)(y − 1)).Keijzer2 - 2: x4 − x3 + y2/2− y.Keijzer2 - 3: 6sin(x)cos(y)

The domain of all tasks is X = [−3, 3]2. Keijzer2 tasks are depicted in Fig. 6.4.
All Keijzer 2 tasks are symbolically more distinct than tasks in the previous
assignments. Thus, the expectation is that multifactorial optimization will
struggle with this assignment.
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Figure 6.3: All tasks presented in Keijzer assignment
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(a) : Keijzer2 - 1 task (b) : Keijzer2 - 2 task

(c) : Keijzer2 - 3 task

Figure 6.4: All tasks presented in Keijzer2 assignment
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Chapter 7
Parameters

Algorithms of evolutionary computation have usually several parameters
that determine, how the algorithms work and how effective they are. Some
parameters have a greater influence on the efficacy of the algorithms than
others, but all parameters should have to be set to some reasonable values.

7.1 Description of parameters

This project also contains several parameters, that modify the behavior and
efficacy of the algorithm.

7.1.1 Population size

This parameter determines the number of individuals present in the popula-
tion. In this project, population size is constant. But there exist many EA
algorithms with dynamic population size, for instance ALPS [11] or MAP
elites[12].

Even though this project has a constant population size, the population is
not panmictic in the case of MFO. Unlike the single-objective approach the
MFO has structured population due to the restricted crossover probability,
which depends on the skill factor of particular individuals.

In general, the population size can take any positive integer value. In the
case of multifactorial optimization (MFO), the population size should be
at least one individual for every objective function the MFO is intended to
optimize.

7.1.2 Selection strategy

A random selection strategy is used. The probability of mating is uniform
throughout the whole population. Note that even when two individuals are
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7. Parameters......................................
chosen to mate with each other, the crossover itself might not be performed. It
depends on the skill factor of the individuals and random mating probability.

7.1.3 Replacement strategy

An elitist strategy is used. The original and offspring populations are merged
and the half of the population with the minimal factorial cost is chosen for
the next iteration of the algorithm.

7.1.4 Stopping condition

There has to be defined a condition that determines when to terminate the
evolutionary algorithm. Very often it is the number of generations that
the algorithm is allowed to proceed or the number of evaluated individuals.
However, since this project uses a variable length of genotype of candidate
solutions, this end condition might not be very suitable. Since the computa-
tional resources needed for an evaluation of a candidate solution are strictly
connected to the amount of genetic material the individual has, the number of
evaluated tree nodes might be more suitable in reflecting how computationally
demanding an evaluation of a candidate solution is.

So for a run of the algorithm, a budget of evaluations of nodes must be
set. After the budget is depleted, the algorithm is terminated and then the
individuals with the best fitness for each objective function are returned.

7.1.5 Evaluation budget

This parameter determines how many evaluations of a defined type (genera-
tions, individuals, nodes, etc. ) are proceeded until the algorithm ends.

7.1.6 Number of runs

Since the evolutionary computation algorithms (ECA) are stochastic, the
algorithms might have a different performance every time they are launched.
With this behavior, it might be difficult and uncertain to analyze the perfor-
mance of a particular algorithm or make a comparison of different algorithms.
A common procedure to deal with this issue is to launch a particular al-
gorithm independently several times and then make an average of their
performance over all runes. The number of runs parameter then refers to
the number of independent runs the results of the algorithm are averaged over.

The Number of runs can take any positive integer value. The higher value
the more statistically significant the results are.
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7.1.7 Random mating probability

This parameter was already discussed in the theoretical section about mul-
tifactorial optimization in Chapter 4. It determines with what probability
two individuals with different skill factors shall undergo crossover with each
other. If the crossover is not performed, than individual mutation kicks in.

Random mating probability can take any value from (0, 1)

7.1.8 Random crossover probability

In the case of single-objective (SO) optimization, there are no individuals
of different skill factor, thus random mating probability parameter has no
effect. However, it is still desired to control the frequency of crossover and
mutation. Therefore, random crossover probability is introduced. In the
single-objective optimization two individuals undergo crossover with this
probability, otherwise, mutation is performed.

Random mating probability can take any value from (0, 1)

7.1.9 Evaluation type

As already discussed in the theoretical section about genetic programming,
the fitness value of a tree individual is obtained as the value of the root of the
tree. An alternative evaluation of an individual is introduced in this project.

To evaluate the root of a tree, all other nodes of the tree must be evaluated
first. So fitness value of an individual can be also obtained as the fitness value
of any node of the tree. This can be done without any additional evaluations.

The alternative evaluation is simply obtaining the fitness value as the value
of the root of the best subtree in the individual, the tree itself included.

The evaluation type can be:. Root - Fitness value is obtained from the root.All nodes - Fitness value is obtained from the best subtree

7.1.10 Local improvement

As already mentioned in the section about the bloat problem, the complexity
of the tree might grow over time with a crippling effect on the performance
of the algorithm. To avoid this phenomenon, some countermeasures must be
made.

In this project, it is done by local improvement method, where an individual
tree is replaced by some of its subtree. The question is when to execute this
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local improvement and what subtree to choose.

In this project, there are designed two methods that decided when to
undergo this replacement:.Always - In each iteration, each tree in the population is replaced by its

best subtree.. On height - In each iteration, the height of each tree is measured. If the
height of the tree is greater than the Height threshold value, then this
tree is replaced by its best subtree of maximal height Height limit.

Note, that the Always method is a special case of the On height method
with threshold 0 and infinite height limit. But for clarity, these two strategies
will not be unified in future sections.

7.1.11 Height threshold

An auxiliary parameter used in the On height local improvement method. It
determines what minimal height the tree shall have to undergo local improve-
ment.

The Height threshold can take any integer value.

7.1.12 Height limit

Another auxiliary parameter used in On height as well as in the Always local
improvement method. It determines what maximal height a subtree can have
to replace the original candidate solution.

The Height limit can take any positive integer value.

7.2 Parameter tuning

As laid out in the previous section, genetic programming has a lot of parame-
ters to set. One might ask what are the optimal values for these parameters
for the algorithm to be as effective as possible. This is indeed a tough question
and that is so for several reasons. Firstly, the parameters are very often not
independent but interfere with each other. Secondly, the optimal settings of
parameters might vary from task to task. Finally, there are many parameters
that can take on various values, so finding the right settings might be very
difficult due to the curse of dimensionality [28]. Despite these difficulties, an
experiment was conducted to get at least a rough idea of how different con-
figuration settings affect the efficacy of the algorithm and what configuration
setting is the most preferable one if no prior knowledge, about the task to
optimize, is known.
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Configurations
Evaluation
type

Local im-
provement

Height
threshold

Height limit

All nodes Always x 10
All nodes Always x 20
All nodes On height 10 10
All nodes On height 10 20
All nodes On height 20 10
All nodes On height 20 20
Root Always x 10
Root Always x 20
Root On height 10 10
Root On height 10 20
Root On height 20 10
Root On height 20 20

Table 7.1: All configuration settings for the bloat control parameter tuning

To reduce the unpleasant effect of the curse of dimensionality the set of
parameters are divided into two parts that are tuned independently. The
parameters were divided so, that there are expected low relations between
parameters of different parts, even though the effect of interference is not
guaranteed to be not present. So it might happen, that sub-optimal settings
will be found.

In the first group, parameters related to evaluation and bloat control are
presented. Namely, these parameters are Evaluation type, Local improvement,
Height threshold, Height limit. For both Evaluation types and for both Local
improvement strategies, values 10 and 20 were tested for Height threshold,
and the same values were also tested for Height limit. In total, it makes 12
different configurations to test. The tested configurations are depicted in the
Tab. 7.1

In the second group of parameters, settings related to population control
are presented. These parameters are Population size and Random mating
probability for the multifactorial algorithm and Random crossover probability
for the single-objective algorithm respectively. The tested values of Popula-
tion size are 50, 100, 150, 200. The Random mating probability or Random
crossover probability was tested for values 0.3, 0.6, and 0.9. In total, it makes
12 different configurations. These configurations are depicted in Tab. 7.2

Moreover, in order to make a fair comparison of multifactorial optimization
(MFO) and single-objective optimization (SO), both algorithms were tuned
individually. So the whole tuning process looks as follows. First, an algorithm
is tuned for the first group of parameters. For this purpose the parameters
from the second group were set to some reasonable moderate values, more
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Configurations

Population
size

RMP /
RCP

50 0.3
50 0.6
50 0.9
100 0.3
100 0.6
100 0.9
150 0.3
150 0.6
150 0.9
200 0.3
200 0.6
200 0.9

Table 7.2: All configuration settings for the population control parameter tuning

precisely the population size was set to 100 and random mating probability
was set to 0.5 for MFO and the random crossover probability was set to 0.5
for SO respectively. After the tuning for the first group of parameters, the
tuning of the second group of parameters takes place. For this purpose, the
parameters from the first group are set to the values found in the first part
of the tuning.

Another important question is on which assignment defined in Chapter 6
tests the configuration settings. If different configurations are tested on just
one assignment, it could happen that the optimal configuration found, will
be optimal just for the one assignment, and it will have very poor efficacy
for different assignments. The goal of this parameter tuning is to find a
configuration, that works well in general, therefore the configurations will be
tested on several different tasks and the results will be then compiled together.

But how reasonably aggregate results of different configurations across dif-
ferent assignments? The first idea, that might come into mind, is to just sum
the best fitnesses from all assignments and choose the configuration with the
lowest sum value. The significant drawback of this approach is that different
assignments might have fitness values of different magnitudes. Therefore
it might happen, that just one assignment will be taken into account and
the others will have just negligible effect. To avoid this drawback a relative
comparison of configurations is proposed.

The relative comparison of configurations works as follows. At first, all
assignments for each configuration setting are conducted and the results are
stored in the corresponding logbooks. At this point, all raw data are available.
Secondly, for each assignment, one after another, the absolute data in the
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logbooks are transformed into relative values. This is done by averaging
fitness values for a particular assignment across all configurations and thus
obtaining the average fitness value for a given assignment. All fitness values
of the assignment are then divided by this averaged value. By this process, a
relative performance of each configuration for a given assignment is obtained.
This is done for each assignment. At this point all relative values are available.
Thirdly, make a compilation of results across all configurations. This is done
by computing an average of the performance of a given configuration across
all tasks in all assignments.

This approach has some drawbacks as well. The main one is that, from
the relative values it is not possible to analyze the performance of individual
configuration settings. For instance, if the relative fitness of a configuration
setting grows, one cannot tell what is happening with the absolute fitness. It
could grow faster than the fitnesses of other populations, it could be constant,
but the fitnesses of other populations tend to decline, or it could decline, but
the fitnesses of other populations tend to decline much faster. But since the
goal of the parameter tuning is to find the best configuration setting from
a given set, this drawback is not significant and the proposed approach is
suitable.

It is true that trying to optimize all parameters at once and to test more
different configurations might bring better results and find better configu-
ration of settings. But to do so, much more computational power would
be needed. The introduced approach was chosen as a compromise between
efficacy and time resources.

7.2.1 Tuning of multifactorial optimization

Let’s take a look at the result of applying the proposed parameter tuning
method for the multifactorial optimization. The development of efficacy of
different configurations is depicted in graphs.

In the graph Fig. 7.1, there is a line for each configuration. To make the
graph more intelligible, the lines are distinguished based on the configuration
they represent. Evaluation type is expressed by line pattern. All nodes is
solid and Root is dotted. Local improvement is expressed by width of the line.
Always is slim and On height is thick. Different configurations of particular
Evaluation type are then distinguished by different colors.

Based on the graph, one could conclude that configuration with the Always
strategy tends to be more effective than those with the On height strategy.
Also, each configuration with All nodes evaluation is more effective than
its Root counterpart. From these observations, one might conclude that
configuration with the All nodes evaluation type and the Always strategy
might be the most suitable one for future experiments. For this configuration
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the Height limit 10 has better performance than 20, thus it will be chosen.
In conclusion, in all future experiments, multifactorial optimization will have
configuration with these settings: Evaluation type is All nodes, Local im-
provement is Always, Height limit is 20.

In Fig. 7.2 are shown results of parameter tuning of parameters related to
population control i.e. population size and random mating probability. As
the graph shows the algorithm is more effective with a higher population size
as 150 or 200. Also for population sizes 50 and 100, it looks like the algorithm
has better efficacy for lower random mating probability. No other obvious
tendency can be observed from the data, thus the configuration with the best
performance is chosen. In conclusion, in all future experiments, multifactorial
optimization will have a configuration with these settings: Population size is
150, and Random mating probability is 0.6.

7.2.2 Tuning of single-objective (SO) optimization

For the single-objective optimization was conducted a very similar experiment
to the one for multifactorial optimization. The key difference is that in the
single-objective approach, only one task can be optimized in the assignment.
So, instead of optimizing 4 assignments each with 3 tasks, 12 individual tasks
were optimized. The results of each task were averaged over 6 independent
runs.

The graph design distinguishing different configurations is the same as in
the multifactorial case.

The bloat control tuning for SO is depicted in Fig. 7.3. In the single-
objective approach, there can not be found the same efficacy tendencies in
the bloat control tuning as in the multifactorial approach. The All nodes
Evaluation type occupies the best as well as the worst positions in the
performance. The Always strategy also does not show any convincing efficacy.
Based on the graph, in all future experiments single-objective optimization
will have a configuration with these settings: Evaluation type is All nodes,
Local improvement is On height, Height threshold is 10, and Height limit is
also 10.

The SO population control tuning is depicted in Fig. 7.4. From the graph,
one can observe the very strong tendency of SO to have poor performance
for population size 50. The performance for higher population sizes seems
almost identical, but there just are relatively close to each other in comparison
with the very poor performance of population size 50. In conclusion, in all
future experiments, single-objective optimization will have a configuration
with these settings: Population size is 150, and Random mating probability
is 0.3.
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7.3 Final parameters

After the tuning process, the following parameter values were decided to be
set for conducting of all experiments.

For multifactorial optimization:. End condition: Number of nodes. Evaluation budget: 80000. Number of runs: 100. Population size: 150. Random mating probability: 0.6. Evaluation: All nodes. Local improvement: Always. Height limit: 10

For single-objective optimization. End condition: Number of nodes. Evaluation budget: 80000. Number of runs: 100. Population size: 150. Random crossover probability: 0.3. Evaluation: All nodes. Local improvement: On height. Height threshold: 10. Height limit: 10

33



7. Parameters......................................

(a) : Development of height of tree individuals over time

(b) : Development of fitness of tree individuals over time

Figure 7.1: Bloat control parameter tuning for MFO. Fitness shall be minimized.
In the legend of each graph, the individual parameters are separated by a comma.
The parameters are: Evaluation, Local improvement, Height threshold, Height
limit.
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(a) : Development of height of tree individuals over time

(b) : Development of fitness of tree individuals over time

Figure 7.2: Population control parameter tuning for MFO. Fitness shall be mini-
mized. In the legend of each graph, the individual parameters are separated by a
comma. The parameters are: Population size and random mating probability.
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(a) : Development of height of tree individuals over time

(b) : Development of fitness of tree individuals over time

Figure 7.3: Bloat control parameter tuning for SO. Fitness shall be minimized.
In the legend of each graph, the individual parameters are separated by a comma.
The parameters are: Evaluation, Local improvement, Height threshold, Height
limit.
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(a) : Development of height of tree individuals over time

(b) : Development of fitness of tree individuals over time

Figure 7.4: Population control parameter tuning for SO. Fitness shall be
minimized. In the legend of each graph, the individual parameters are separated
by a comma. The parameters are: Population size and random crossover
probability.
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Chapter 8
Experiments

This chapter presents the results of conducted experiments and the following
analysis of the performance of the individual optimization approaches (MFO,
SO) as well as their comparison. These experiments are focused on detailed
analysis of the mentioned approaches, therefore no other alternative algorithm
is included.

The experiments were conducted on testing problems introduced in Chapter
6 An the optimization algorithms had configuration settings showed in Section
7.3.

The goal of the conducted experiments is to find out whether in any of
the stated cases of multitasking usage, mentioned in Chapter 1, the multi-
factorial optimization brings any improvement in terms of performance of
optimization of particular tasks. Each case is analyzed in an individual section.

In the following sections, only a fitness graph is presented, since analyzing
the development of the height of population has no relevancy, with respect to
the performance comparison.

8.1 Optimizing one task with auxiliary tasks

This section analyses a case where only one task is needed to be optimized.
Three distinct algorithms were launched in order to optimize the target task...1. Single-objective approach that optimizes the target task only, this ap-

proach will be also referred to as SO...2. Multifactorial approach with two different auxiliary tasks, this approach
will be also referred to as MFO...3. Multifactorial approach that has the target tasks in its assignment three
times, this approach will be also referred to as Multiple. The reason
for the Multiple approach is to find out whether the potential benefits
of multifactorial optimization come from the intercommunication of
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different tasks or if it is because of the structure of the population that
the multifactorial optimization introduces.

All algorithms have a budget of 80000 evaluations and the results are averaged
over 100 independent runs, as already discussed in the section 7.3

An important thing to keep in mind is that if each algorithm has the same
evaluation budget, then the MFO approach with 3 different tasks in the
assignment, will spend approximately only 1/3 of the evaluations for the
target task. The rest of the budget is spent on auxiliary tasks that are not
the goal of the optimization.

8.1.1 Koza

Based on Fig. 8.1, one can conclude that all the approaches have similar
performance for the second and the third tasks, even though the multifactorial
approach is slightly worse for these tasks. Quite interesting is the performance
for the first task, the hardest one. Here, the multifactorial approach has
a significant benefit over other approaches. A possible explanation is that
for the hardest task, the multifactorial optimization could take advantage
of inter-genetic communication and enhance the performance of the hardest
task by partial solutions from the easier tasks.

8.1.2 Nguyen

For the Nguyen tasks the SO approach is the worst of all approaches, as
depicted in Fig. 8.2. Even with the advantage of more evaluations per task, the
SO approach is not dominant in either task. The multiple and multifactorial
approaches have similar performance, even though the multifactorial approach
is slightly better.

8.1.3 Keijzer

The Keizjer is clearly dominated by the SO approach. It has the best perfor-
mance for all tasks. The worst is the multifactorial approach and a slightly
better is the Multiple approach. This assignment has tasks of the same
mathematical formulation, therefore it might be startling for someone, that
the multifactorial approach has so poor performance.

One might assume, that the latent genetic complementarities should be
intensive in this assignment and help the multifactorial approach to reach
good performance. One possible explanation for the paradoxical observation
might be, that the tasks are not solved completely correctly, but rather
are approximated by another function. Even though the mathematical
formulation is the same for all tasks, because of the different range of the
tasks, their final form is quite distinct and therefore the approximating solution
for each task might be also quite distinct, unfavorably to the multifactorial
approach.
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8.1.4 Keijzer2

For the Keijzer2 assignment, the performance of the Multiple and SO ap-
proaches is quite comparable. For the first task, the SO approach is better.
For the second task, both approaches are of the same performance, and for
the third task, the Multiple approach is better. The undoubtedly worst
performance has the multifactorial approach, but since all the tasks in this
assignment are mathematically distinct as well as spatially distinct, the
observed data are in line with our preliminary suggestions.

8.1.5 Summary

Experiments of optimization of one task with auxiliary tasks were conducted
and following analysis of their performance was discussed. Based on the
results, the multifactorial approach tends to be dominant to single-objective
approach in these cases:.All tasks are symbolically and spaciously similar to each other..The task that shall be optimized is lunched together with auxiliary tasks,

that are easier and share non-trivial amount of genetic material with the
main task.

On the other hand, the multifactorial approach seem to not bring merit to
optimization process in cases where.The tasks are spaciously distinct and are too complex to be optimized

precisely..All the task are symbolically and spaciously different.

8.2 Optimizing several tasks concurrently

This section analyses a case, where all tasks are the goal of the optimiza-
tion. This section reveals a comparison of SO and MFO approaches for all
assignments. Each task has the same evaluation budget, therefore the SO
approach will have only a third of evaluations for a task in comparison with
MFO since SO optimizes only 1 task at a time instead of 3 as in the MFO.
In other words, for every 3 optimization processes of SO for different tasks of
the assignment, 1 optimization process of MFO is made for all three tasks of
the assignment and with a 3 times higher evaluation budget.

Each graph in this section contains 8 distinct lines. There are 3 lines for
the MFO approach for the individual tasks. Then there is 1 line representing
the compiled results of MFO performance for the whole assignment. In the
compiled version, there are present fitnesses of all tasks in an interlacing
manner and divided by the number of tasks. Then, there are 3 lines for the
SO approach for individual tasks and also 1 line for the complied version of SO.
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Due to the fact, that 8 lines per graph might be overwhelming, the lines are

graphically clearly differentiated. The multifactorial approach is represented
by solid lines, whereas the SO approach is presented by dashed lines. Due
to the fact, that the SO approach has a smaller evaluation budget, its lines
end early in the graph. For better graphical comparison, the SO lines are
extended by dotted lines at the height of their best fitness for a given task.
Each task it’s own represented by a distinct color. The compiled versions
of both approaches are then differentiated by greater thickness and unique
color.

Here, as well as in the previous section, only graphs of fitnesses are pre-
sented, since the height is not relevant in performance comparison of individual
approaches.

One can notice, that the line representing the compiled result of SO ap-
proach does not start at the beginning of the graph as other lines, but a bit
later. It is because the compiled results need at least one iteration of the
SO algorithm for all tasks, therefore it needs 3 times more evaluations to
determine the fitness value of its first record.

Another unclear observation about the line representing the compiled ver-
sion of SO is that its slope in some cases changes frequently. It is so because
the compiled version was created by interlacing of results for individual tasks.
Each task might have a different slope for any point in the graph. By inter-
lacing these individual results, the slope of the compiled version is inherently
also interlaced and thus might change.

8.2.1 Koza

As one can conclude based on the graph Fig. 8.5, the Multifactorial approach
is systematically better for the Koza assignment than the SO approach. The
MFO is better for all tasks and that is directly reflected in the compiled
version of both approaches.

8.2.2 Nguyen

In the case of Nguyen the advantage of MFO is intensively pronounced. As
depicted in Fig. 8.6 the MFO reached better results even during the run of
SO. It means that the MFO got better results for a particular task even when
splitting its evaluation budget between other tasks. This observation is in
agreement with the results obtained for Nguyen task in the previous section.
For the first task, both approaches managed to reach a good quality solution,
even though MFO converged a bit faster. For the second and third tasks, the
MFO revealed a great advantage towards a single-objective approach.
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8.2.3 Keijzer

As one can conclude based on the graph Fig. 8.7, the Multifactorial approach
is systematically better for the Keijzer assignment than the SO approach. For
the second and third tasks, the Multifactorial approach has better performance,
and even for the first task, the multifactorial approach is slightly better.

8.2.4 Keijzer2

For the Keijzer2 assignment, the results for the first task are comparable, but
the Fig. 8.8 shows a better results for the second and third task. It this case
the MFO shows no a great advantage compare to the SO approach.

8.2.5 Summary

Experiments of optimization of several tasks concurrently were conducted
and the following analysis of their performance was discussed. Based on the
results, the multifactorial approach tends to have better performance in all
tested cases.
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(a) : Fitness development of the firs task of Koza

(b) : Fitness development of the second task of Koza

(c) : Fitness development of the third task of Koza

Figure 8.1: Comparison of MFO, Multiple and SO approach for the Koza
assignment
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(a) : Fitness development of the firs task of Nguyen

(b) : Fitness development of the second task of Nguyen

(c) : Fitness development of the third task of Nguyen

Figure 8.2: Comparison of MFO, Multiple and SO approach for the Nguyen
assignment
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(a) : Fitness development of the firs task of Keijzer

(b) : Fitness development of the second task of Keijzer

(c) : Fitness development of the third task of Keijzer

Figure 8.3: Comparison of MFO, Multiple and SO approach for the Keijzer
assignment

46



.......................... 8.2. Optimizing several tasks concurrently

(a) : Fitness development of the firs task of Keijzer2

(b) : Fitness development of the second task of Keijzer2

(c) : Fitness development of the third task of Keijzer2

Figure 8.4: Comparison of MFO, Multiple and SO approach for the Keijzer2
assignment
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Figure 8.5: All tasks present in Koza assignment

Figure 8.6: All tasks present in Nguyen assignment
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Figure 8.7: All tasks present in Keijzer assignment

Figure 8.8: All tasks present in Keijzer2 assignment
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Chapter 9
Conclusion

Evolutionary computation is a family of popular optimization techniques that
are successful in many domains of optimization. Even though the development
of the evolutionary algorithms was mainly focused on single objective cases,
lately a new approach of multifactorial optimization has been introduced. It
tries to achieve better efficiency by optimizing multiple optimization tasks
concurrently and combining the genetic material of candidate solutions of
different tasks. In this project, a genetic programming implementing multi-
factorial optimization was introduced. Several experiments were conducted
in order to analyze the behavior of the multifactorial approach for genetic
programming and compare its performance with the single-objective approach.
These experiments were conducted two multiple testing problems and multiple
scenarios. The results of experiments showed, that multifactorial optimization
can be indeed beneficial and more effective than a single objective approach
in a case where all multiple tasks are goals of the optimization and thus
are optimized concurrently in a multifactorial sense. Despite the promising
results, it is important to keep in mind, that a very limited set of settings
and optimization problems were tested. Further experiments need to be
conducted to get a better analysis of multifactorial optimization performance.

9.1 Future work

To get a more thorough analysis of the performance of the multifactorial
approach, more testing problems need to be included. Especially real-world
problems might give valuable insight into the possibilities of utilization of the
multifactorial approach and multitasking in general.
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