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Abstract

The objective of this thesis is to analyse
the recurrent convolutional neural net-
work that has been previously proposed
for detecting splice sites in the fungal
kingdom and to provide an explanation
by employing sequence logos. The main
goal is to minimise the number of mod-
els required to obtain complete coverage,
taking into account time complexity and
computational capacity.

Initially, a total of 19 pairs of models
were generated, with one model represent-
ing the donor and another model repre-
senting the acceptor. These pairings were
formed based on the taxonomical classifi-
cation.

Subsequently, two pipelines were cre-
ated: one for augmentation and another
for the purpose of transfer learning. Upon
establishing the optimal parameter set-
tings, a thorough evaluation of the mod-
els was conducted, revealing the transfer
model to be the superior choice.

While comparing the models to deter-
mine the optimal number required, an is-
sue with transfer learning occurred. The
issue lay in the fact that the application of
transfer learning resulted in an improve-
ment in the F1 score of the particular
model in question, but led to a decrease
in the scores of the other models. There-
fore, different kinds of models were chosen.
As a result, 9 models have been selected
that meet the criteria for classifying the
entire fungal world.

In order to justify this decision and

explain the selected models, an explana-
tory technique known as Sequence logos
was chosen. Based on these logos, it was
concluded that the models were selected
appropriately.

Keywords: Fungi, RCNN, Transfer
Learning, Sequence Logo, Augmentation,
Splice Site Recognition, Explanation
methods, Motifs

Supervisor: doc. Ing. Jiří Kléma, Ph.D.
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Abstrakt

Cílem této práce je analyzovat implemen-
tovanou rekurentní konvoluční neurono-
vou síť navrženou pro detekci intronů v
metagenomech hub a poskytnout vysvět-
lení za pomoci sekvenčních log. Hlavním
cílem je najít minimální počet modelů po-
třebných k dosažení úplného pokrytí va-
riability druhové rozmanitosti v říši hub
s přihlédnutím k časové složitosti a výpo-
četní náročnosti.

Zpočátku bylo vytvořeno celkem 19
párů modelů - jeden pro donor a jeden
pro akceptor. Tyto dvojice byly vytvořeny
na základě taxonomické klasifikace.

Následně byly vytvořeny dvě metody
učení modelů: jedna za pomoci augmen-
tace dat a druhá za použití transfer lear-
ning. Po nalezení optimálních hodnot pa-
rametrů těchto metod bylo provedeno
důkladné porovnání jednotlivých modelů
mezi sebou. Z tohoto porovnání vyšel mo-
del natrénovaný pomocí transfer learningu
jako nejlepší volba.

Při porovnání modelů k určení nejmen-
šího počtu potřebných modelů ke klasifi-
kaci říše hub, byl nalezena limitace použití
transfer learning. Model doučený pomocí
transfer learning sice lépe hodnotil douče-
nou část, avšak u zbytku jeho schopnost
hodnotit klesla. Toto vedlo k výběru mo-
delů naučených jinou metodou. Celkem
bylo ze všech vybráno 9 modelů, které s
velkou přesností klasifikují celou říši hub.

Pro podpoření tohoto rozhodnutí a vy-
světlení vybraných modelů byla vybrána
technika zvaná Sekvenční loga. Na základě

těchto log a jejich porovnání se dospělo k
závěru, že modely byly vybrány vhodně.

Klíčová slova: Houby, RCNN, Transfer
Learning, Sekvenční loga, Augmentace
dat, Detekce intronů, Metody
vysvětlování, Motivy

Překlad názvu: Vysvětlitelné a
přenositelné modely intronů hub
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Chapter 1

Introduction

Fungi have been around for a very long time, with fossils dating back all
the way to 460 to 455 million years ago. However, molecular data suggest
that fungi may have originated over a billion years ago, much earlier than
previously thought based on the fossil record. While the exact number of
fungal species on Earth is unknown, it is known that at least 99,000 species
have been identified, and about 1,200 new species are discovered annually.
It’s estimated that there are likely around 1.5 million fungal species in total
[6].

For understanding and better, faster classification of the unknown, there
is an effort to develop methods that detect introns with the use of Neural
Networks or Machine Learning.

This thesis builds upon previous works dedicated to developing models
for automated fungal intron detection. Denis Baručić worked on support
vector machine intron detection models in his thesis [2]. Models of the
same type were used in the study by Le et al. [26]. The paper confirmed
that intron detection significantly improves the annotation of environmental
metagenomes, particularly by increasing the proportion of newly predicted
genes. Martin Indra addressed the same task with neural network detection
models [20]. These models proved to enhance the process of intron detection
both in terms of effectiveness and efficiency.

The existing solution offers only two general models for splice sites, which
are afterwards merged into potential introns. These introns are then filtered
out using a simple algorithm that resolves overlaps based on a scoring system.

1



1. Introduction .....................................
This technique achieves favourable outcomes, however exclusively for species
belonging to a well-represented phylum, as the overall models are incapable
of learning the intricate characteristics of certain minor phyla or classes.

Therefore, this thesis aims to conduct a comprehensive examination of the
taxonomy of the fungal kingdom, exploring the potential for phylum or even
class models. The primary objective of this thesis is to examine the previously
proposed neural network models and attempt to explain them. The additional
goal is to conduct a comparative analysis of the models, identify the areas
of similarity between them, and reduce the amount that is used in intron
detection in regard to effectiveness, time complexity and computational needs.

1.1 Text Structure

This Chapter 1 outlines the fundamental basis of the thesis by introducing
the theme and providing an overview of its objectives. In Chapter 2, the
attention turns to context, carefully examining the theoretical aspects of
splice sites and introns in biology. It also explores the intricacies of Neural
Networks (NN) while also describing the NN used in this thesis, and clarifies
topics such as augmentation, transfer learning, and sequence logos, as well
as looks into the current research on these topics. Chapter 3 focuses on the
data, offering valuable information about the specific sorts of data utilised,
their formats, and an in-depth examination of taxonomy. Chapter 4 explains
the statistical tools used to assess the generated models.

In Chapter 5, a systematic method is followed to explain the process of
creating models. The process begins with the development of generic models
for acceptor and donor, then advances to phylum models, and finally concludes
with the creation of class-specific models. Chapter 6 moves to model training
approaches, with a focus on augmentation and transfer learning, and explores
their practical implementation. Chapter 7 provides complete descriptions
of experiments, including parameter tuning for augmentation and transfer
learning, as well as a thorough comparison of different models.

Chapter 8 centres around model description, specifically logo sequences,
and comparing them across models. Chapter 9 provides a comprehensive
examination and analysis of the experimental data. It thoroughly evaluates
all the models and makes a recommendation for the required number of
models. Additionally, it investigates the sequence logos. Chapter 10 serves
as a definitive conclusion, summarising the entire thesis and offering insights

2



.................................... 1.1. Text Structure

into possible potential research directions.
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Chapter 2

Background

2.1 Fungi

The fungi emerged as a unique group of single-celled eukaryotes during the
Precambrian period. Recent estimates of the origins of the fungal kingdom,
determined by the examination of the molecular clock, vary between 760
million years ago and 1.06 billion years ago [33].

Based on the phylogenetic relationships of fungi, as indicated by the analysis
of 18S ribosomal DNA, the classification of fungi has been revised by [19].
They have placed fungi under three kingdoms: Protozoa, Chromista, and
Fungi, all falling under the domain of Eukarya.

This thesis will exclusively concentrate on the Kingdom Fungi, commonly
known as "true fungi". The members of the kingdom possess the following
characteristics: (1) they obtain nutrition through absorption; (2) their so-
matic phase consists of either single cells or filaments; (3) their cell walls
contain chitin and beta-glucans; (4) they have only whiplash flagella; (5) their
mitochondria have flattened cristae; and (6) they have peoxisomes and Golgi
bodies present [10].

The most recent taxonomy categorises the known true fungi into nine
primary lineages: Opisthosporidia, Chytridiomycota, Neocallimastigomy-
cota, Blastocladiomycota, Zoopagomycota, Mucoromycota, Glomeromycota,

5



2. Background .....................................
Ascomycota, and Basidiomycota (Figure 2.1) [34]. Besides the previously
mentioned phyla, there exists a group of animal parasites known as mi-
crosporidians, comprising around 1000 species [51]. The incorporation of
microsporidians into the Fungi kingdom is further substantiated by further
data derived from genome structure and phylogenetic investigations [4]. They
are classified as a separate phylum known as Microspora.

Figure 2.1: Fungal phyla and approximate number of species in each group [46]

Fungal cells share many of the same organelles as other eukaryotic cells.
Fungal nuclei are typically small, less than 2 µm in diameter, and can compress
and stretch to fit through septal pores and into developing spores. Fungi
usually have between 6 and 21 chromosomes that code for anywhere from
6,000 to almost 18,000 genes. The size of fungal genomes varies widely,
ranging from 8.5 megabase pairs to just over 400 Mb in filamentous fungi.
Compared to other eukaryotic organisms, fungal genomes are relatively small,
averaging approximately 1% the size of mammalian genomes and only 1.3
times the size of the largest known bacterial genome [6].

2.2 Pre-mRNA splicing

Genes are made up of DNA, and in some cases, RNA in the case of certain
viruses. DNA is a long chain-like molecule composed of small building blocks
called monomers. There are four types of monomers in DNA: adenine (A),
guanine (G), thymine (T), and cytosine (C). DNA molecules are usually
double-stranded, with two complementary strands. In this structure, adenine
in one strand always pairs with thymine in the other strand, and guanine in

6



.................................. 2.2. Pre-mRNA splicing

one strand always pairs with cytosine in the other strand. This strict pairing
rule between A and T, and G and C, forms the basis for gene replication [47].

Eukaryotes possess several nuclear genes that encode proteins, which are
often interrupted by one or more introns. These introns must be accurately
removed from the initial gene transcript before the RNA is transferred to the
cytoplasm for translation [24].

The spliceosome, consisting of five snRNPs (small nuclear ribonucleopro-
teins) named U1, U2, U4, U5, and U6, eliminates introns from the pre-mRNA.
Each snRNP is comprised of a tiny RNA molecule that is associated with
proteins. Accurate identification of introns is necessary for proper splicing
[40].

There are three signals that are involved in guiding splicing: the 5’ splice
site (5’ss) located at the beginning of the intron, the polypyrimdine tract/3’
splice site (PPT-3’ss) lying at the end of the intron, and a branch site (BS)
situated before the PPT-3’ss [17] around 18–40 nucleotides upstream [7].

The splicing reaction consists of two sequential phases. The first step
involves the breaking down of the 5’–3’ phosphate linkage, which connects
the 5’ exon to the first nucleotide of the intron. The second step involves
the breakage of the linkage between the last nucleotide of the intron and the
3’ exon, specifically at the 3’ splice site. This generates a circular molecule
featuring a tail, known as the intron lariat, and a branched structure at the
branch point. The unbound 3’ hydroxyl on the 5’ exon is utilised to initiate an
attack and break the bond between the last nucleotide of the intron and the
3’ exon, liberating the intron in the form of a lariat. The debranching enzyme
simplifies this process into a linear form, which is thus likely to be quickly
broken down by exonucleases. The earliest stages entail the identification
of the 5’ splice site by the U1 snRNA and the attachment of U2 snRNA to
the branch-point region, facilitated by SR-proteins. The U4 and U6 small
nuclear ribonucleic acids (snRNAs) form a spliceosome by pairing together as
a duplex, which brings the 5’ splice site and branch point into close proximity.
The two catalytic steps are referred to as transesterification reactions. The
process of assembling and disassembling the spliceosome involves several
ATPases, most of which are RNA helicases. These proteins utilise the energy
from ATP hydrolysis to catalyse structural rearrangements in the spliceosome
[1]. This whole process is depicted in Figure 2.2.

7



2. Background .....................................

Figure 2.2: Process of pre-mRNA splicing and its signals [1]

2.3 Neural Networks

The neural network is a computational structure that draws inspiration from
the intricate workings of the human brain. Just as the brain’s network of
interconnected neurons enables it to process information, learn, and make
decisions, neural networks aim to replicate these capabilities in the realm of
artificial intelligence. The equivalents of biological neurons are called units or
nodes. Synapses are represented by individual numerical values or weights.
These weights are applied to each input signal, multiplying them, before
transmitting them to the corresponding cell body [12]. An example of a
simple neuron is shown in Figure 2.3.

Figure 2.3: Example of simple neuron [21]

8



................................... 2.3. Neural Networks

The activation of neuron can be mathematically expressed using Formula
2.1.

oj = ϕ((
∑

xi · wij) − bj) (2.1)

The equation describes activation of the j-th neuron, where ϕ: R → R
represents the activation function, xi is an i-th input, wij ∈ R is a weight of
the connection from neuron i to neuron j and bj ∈ R is a bias of neuron j.

Most neural networks are organized into groups of units called layers,
and in many neural network architectures, these layers are structured in a
sequential manner, where each layer’s output depends on the preceding. In
architectures based on these sequential structures, the primary architectural
decisions involve determining the network’s depth and the width of each layer.
It is worth noting that even a network with just a single hidden layer can
effectively learn and fit the training data [14]. An example of a basic neural
network structure can be found in Figure 2.4.

Figure 2.4: Basic Neural Network Structure [44]

2.3.1 Neural Networks and Sequential pattern recognition

At first, Markov chains [38] were used to depict sequential patterns, but
they encountered challenges in representing intricate interactions. Deep
neural networks have significantly impacted sequential recognition, with the
Recurrent Neural Network (RNN) becoming an established model. Long
short-term memory (LSTM) is a type of artificial recurrent neural network
(RNN) architecture that is commonly employed in the field of deep learning.
LSTM, in contrast to conventional feed-forward neural networks (CNN) [28],
incorporates feedback connections. It has the capability to process not just
individual data points (such as pictures) but also complete sequences of data
(such as DNA or RNA) [45].

The merging of Convolutional Neural Networks (CNN) and Recurrent
Neural Networks (RNN) has been employed to address the limitations of each

9



2. Background .....................................
network. The Recurrent Convolutional Neural Network (RCNN) merges the
recurrent structure of LSTM to capture complex long-term connections and
the convolutional operation of CNN to reveal local sequential patterns within
hidden states [18].

2.3.2 Overview of used Neural Network

The core framework utilised in this thesis was first introduced by [20]. His
thesis provides a thorough examination of the complexities and reasons behind
the parameters, methods, and so on. However, this part focuses only on the
fundamental elements. The architecture of the model is illustrated in Figure
2.5, which displays a Recurrent Convolutional Neural Network (RCNN)
configuration consisting of four convolution layers, Leaky rectified linear
activation functions (Leaky ReLU), Bidirectional RNN with long short-term
memory, and Dropout layer for preventing overfitting.

Stochastic gradient descent (SGD) emerged as the preferred optimizer
during the training phase, showcasing superior performance. The learning
rate was set to 0.01 and was dynamically adjusted by multiplying it by a factor
of 0.2 after every epoch. The implementation of this adaptive learning rate
technique results in improved convergence and fine-tuning of performance.

The optimisation procedure utilised the binary cross-entropy loss function.
The batch size was deliberately selected at 16, based on current research that
recommends smaller batch sizes due to their demonstrated improvement in
results [30].
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Figure 2.5: Model Architecture by [20]

2.4 Augmentation

Data augmentation has been an extensively researched field in the domain
of machine learning. It refers to a collection of algorithms that generate
artificial data based on an existing dataset. The synthetic data usually
includes minor alterations in the data that the model’s predictions should be
unaffected by. Synthetic data can also depict mixtures of remote instances
that would be immensely tough to grasp otherwise. Data augmentation is
a highly valuable tool for influencing the training of deep neural networks.
This is mostly because the transformations are well understood and there
are plenty of chances to examine the model’s failures. The most typical
application of Data Augmentation is to prevent overfitting. Deep Neural
Networks, in the absence of augmentation or regularisation, are vulnerable to
acquiring incorrect associations and memorising high-frequency patterns that
are challenging for humans to identify [43].
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2. Background .....................................
Augmentation of DNA data is essential in the field of Deep Neural Networks

(DNNs) for genomics and bioinformatics tasks. Data augmentation involves
generating new training samples from current data by applying various
transformations, thus expanding the dataset. In the domain of DNA data,
augmentation techniques are used to provide diverse training instances from
genomic sequences. Here are some common methods for augmenting DNA
data for DNNs:

.Mutation: a transformation in which single nucleotide mutations are
applied at random to a wild-type sequence,.Translocation: a transformation that chooses a breakpoint in the sequence
at random (resulting in two segments) and then switches the order of
the two sequence segments,. Insertion: a transformation in which a random DNA sequence (of un-
known length) is randomly inserted into a wild-type sequence.. Deletion: a transformation in which a random, contiguous section of a
wild-type sequence is removed,. Inversion: a transformation where a random subsequence is replaced by
its reverse complement,. Reverse complement: is a transformation that replaces a random subse-
quence with its reverse complement,. Noise Injection: a transformation where Gaussian noise is added to the
sequence [27].

Given that this is not a novel technique, several groups (such as Lee et
al.[27], Minot et al. [31], Zhang et al. [56], Tyekucheva et al. [49] and
Lacan et al. [25]) have already conducted investigations, devised innovative
approaches, and created libraries that aid its implementation. One of these
groups [27] developed a library called evoaug. The image below depicts their
explanation of the approach and the augmentation process.

Figure 2.6: Schematic of evolution-inspired data augmentations (left) and the
two-stage training curriculum (right) [27].
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Because defining the ideal method of augmentation is beyond the scope
of this thesis, the Noise injection concept was chosen among all the possible
methods from Evoaug as it is the most fundamental. Furthermore, based on
the results of [27] experimentation, it outperforms the model trained without
it.

2.5 Transfer learning

Conventional machine learning techniques have demonstrated efficacy in
several applications, although they remain limited in real-world situations.
An optimal situation for machine learning involves having an adequate number
of labelled training instances that closely match the distribution of the test
data. Nevertheless, acquiring an appropriate amount of training data can
prove to be costly, laborious, or unattainable. Semi-supervised learning may
reduce the requirement for extensive labelled data by leveraging a substantial
quantity of unlabelled data to enhance learning precision. Still, the task of
gathering unmarked examples can be challenging, rendering conventional
models inadequate. Transfer learning shows great promise in tackling this
problem [57].

Transfer learning is a technique that enhances the performance of a learner
in one domain by utilising knowledge from a closely related domain [52].
According to the article [42], it can mitigate overfitting by excluding undesired
noise from the dataset. Transfer learning methods can be categorised into
three primary subsets, which are determined by the distinct circumstances
between the source and target domains and tasks:..1. Inductive transfer learning: the target task varies from the source task,

despite the similarity or dissimilarity between the source and target
domains. The model requires labelled data from the target domain to
be trained,..2. Transductive transfer learning: the target and source tasks are identical,
however the source and target domains differ. There is a lack of labelled
data in the target domain, but there is an excess of labelled data in the
source domain,..3. Unsupervised transfer learning: the target task is distinct from, yet
associated with, the source task. There is a lack of labelled data in both
the source and target domains during training [23].
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2.5.1 Definition

In the following section, a short definition of domain, task and transfer
learning is given.

Domain: The domain D is composed of two elements: a feature space X
and a marginal probability distribution P (X), where X = {x1, ..., xn} ∈ X .

Task: For a given domain, D = {X , P (X)}, a task contains two elements:
a label space Y and an objective prediction function f(·) (represented by
T = {Y, f(·)}). The function f(·) is not directly observable but can be
acquired through learning from the training data, which consists of pairs
{xi, yi}, where xi ∈ X and yi ∈ Y. The function f(·) can be utilised for
predicting the related label, f(x), of a novel instance x. From a probabilistic
perspective, the function f(x) can be represented as P (y|x).

Source and target domains: For simplicity, only the case of one
source domain DS , and one target domain DT will be considered. To be
more precise, the data from the source domain are represented as DS =
{(xS1 , yS1), ..., (xSnS

, ySnS
)}, where xSi ∈ XS refers to the data instance and

ySi ∈ YS represents the corresponding class label. Similarly, the data from
the target domain is expressed as DT = {(xT1 , yT1), ..., (xTnT

, yTnT
)}, with

the input xTi belonging to XT and the corresponding output yTi ∈ YT . In
general, 0 ≤ nT ≪ nS .

Transfer learning: Given a source domain DS and learning task TS ,
a target domain DT and learning task TT , transfer learning aims to help
improve the learning of the target predictive function fT (·) in DT using the
knowledge in DS and TS , where DS is not equal to DT , or TS is not equal to
TT .

The definitions provided above originate from the survey [36].

2.5.2 Transfer learning in splice site recognition

Biological sequence analysis seeks to provide functional annotations to DNA
segments, playing a crucial role in the comprehension of a genome. An
instance of this is the recognition of splice sites based on the boundaries
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between exons and introns, which is a challenging undertaking due to the
multitude of potential alternative splicing occurrences [54].

For splice site recognition, there was a proposal by Giannoulis et al. [13]
to employ unsupervised transfer learning. Transfer learning is employed to
address the issue of inadequately annotated genomes by using knowledge
from the well-annotated genome of another organism (source domain) and
applying it to our poorly annotated genome (target domain). The proposed
approach involves utilising an adapted variant of the K-means algorithm
with a representation technique known as n-gram graphs. An alternative
method for employing transfer learning is outlined in [32], which involves the
utilisation of pre-trained models. Pre-trained models are neural networks that
have been previously used in other tasks, allowing them to gain information
that can be transferred and applied to new target data [55]. The study
conducted by Schweikert et al. [41] examined the efficacy of several transfer
learning methods (Figure 2.7) in addressing the mRNA splice site prediction
problem.

Figure 2.7: Four domain adaptation models (adopted from an invited talk by
Gunnar Rätsch, Invited Talk at NIPS Transfer Learning Workshop, December
2009, Whistler, B.C. [41])

This thesis draws inspiration from the transfer learning approach proposed
by [32]. The initial training of the base model was conducted using a dataset
that is characterised by its substantial size. Subsequently, this model was
employed to transfer its knowledge and create a new model using the dataset
of phylum or class that exhibits sparse representation.
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2.6 Explanation methods

Explanation methods have emerged as a crucial area of research in the field
of machine learning, particularly in relation to complex models like deep
neural networks (DNNs) due to their black-box nature [29]. They provide
an explanation as an image, text, or other visual aid that accompanies a
prediction to offer intuition into the underlying reasons for the model output
(Figure 2.8). Approaches span contrasting styles that focus on different model
elements, e.g., the training dataset or the learned feature representations.
Model-transparent approaches highlight which particular input features trig-
gered key activations within a model’s weights. Model-agnostic methods
such as treating the model as a black box and attempting to approximate
the relationship between the input sample and the output prediction. Fi-
nally, example-based methods offer instances from the training dataset in
an attempt to capture the relationship between a given test input and the
underlying training data that contributed to the model’s decision [22].

Figure 2.8: Illustration of analysed techniques for interpreting picture, text, and
ECG input [22].

Deep models are frequently employed for scientific exploration, but their
lack of transparency restricts their effectiveness. Consequently, there is
a growing need for models that can be comprehended by people. This
requirement is not exclusive to the field of bioinformatics, and there exist
novel approaches to enhance the interpretability of machine learning models.
Explainable artificial intelligence (XAI) has emerged as a discipline that
has made conceptual progress which has the potential to be beneficial for
bioinformatics applications, specifically in the realm of scientific exploration
[37].
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During the process of analysing biological sequences, such as DNA or
protein sequences, a technique known as sequence logos came into being and
has since gained widespread application.

2.6.1 Sequence logo

Sequence logos are powerful graphical representations used to depict sequence
motifs and patterns in biological sequences, such as DNA or protein sequences.
They provide a visually intuitive way to analyse and interpret the information
content and consensus sequences of aligned sequences [39].

Each logo is made up of stacks of symbols, with one stack representing
each position in the sequence, respectively. The overall height of the stack
is proportional to the amount of information that is included at that point,
whereas the height of symbols inside the stack reflects the relative frequency
of each amino acid or nucleic acid that is present at that position. The
description of a binding site, for instance, that is provided by a sequence logo
is typically more detailed and accurate than the description that would be
provided by a consensus sequence [3].

In response to the widespread use of sequence logos, a great number of
research was conducted, and a great number of libraries, packages, or web-
tools were developed. Among the many examples that can be found on the
internet, Crooks and al. [9] have developed a generator known as WebLogo;
Tareen and al. [48] have created a Python library called Logomaker; Omar
Wagih [50] contributed with an R package named as ggseqlogo; and Workman
and al. [53] have built a web-based tool labelled as enoLOGOS.

Sequence logos can be used to graphically showcase the results of models,
in our case, the splice sites, just as is shown in Figure 2.9.

(a) : Exon-Intron (Donor) Sites (b) : Intron-Exon (Acceptor) Sites

Figure 2.9: Logos showing a small sample of Human intron-exon splice boundaries
[8]
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Chapter 3

Decription of Data

Source data were acquired from one of the predecessors. The data consists of
FASTA files with the DNA sequence scaffolds of individual organisms and
GFF files with DNA feature annotations [20].

3.1 File Formats

3.1.1 FASTA

The FASTA format is a text-based format used to represent nucleotide or
peptide sequences. It employs single-letter codes to represent base pairs
or amino acids. A FASTA-formatted sequence commences with a brief
description on a single line, followed by subsequent lines containing the actual
sequence data. The description line is differentiated from the sequence data
by a ">" sign in the first column. It is advisable to ensure that the length of
each line of text does not exceed 80 characters [16].

What follows is an example sequence in the FASTA format:

>scaffold_1
TTGGATAGGCGCCATAGCCCTCCATTGTGGGTGTTAGAACAAGGGCAATTCCTGCCACCTATACTGGCTA
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3. Decription of Data ..................................
GAGGCCTGAGTGGCCCAGATTAGCTTAGTATGATTACATAATGCTCCCTATAACACTGGCTGAGAAACAA
TAAGTTTCCTCAGCGATTCGTCTCTATCATTTGGGGATAATAGAATTGACTCGATCTCACTATTGCTAAT

3.1.2 GFF

The General Feature Format (GFF) is a text file with tab-delimited fields
that contain information on all possible features that might be associated
with a nucleic acid or protein sequence. This format can accommodate a wide
range of elements, including CDS, microRNAs, binding domains, ORFs, and
more. Regrettably, other iterations of the initial GFF format have emerged,
resulting in a lack of compatibility among them. The most recent approved
format, GFF3, has endeavoured to rectify some deficiencies that were absent
in prior iterations [11].

An example of a GFF file:

scaffold_1 JGI exon 774 1123 . + . name "fgenesh1_kg.1_#_1_#_Locus4417v1rpkm26.65"; transcriptId 416145
scaffold_1 JGI CDS 1088 1123 . + 0 name "fgenesh1_kg.1_#_1_#_Locus4417v1rpkm26.65"; proteinId 416053; exonNumber 1
scaffold_1 JGI start_codon 1088 1090 . + 0 name "fgenesh1_kg.1_#_1_#_Locus4417v1rpkm26.65"
scaffold_1 JGI exon 1190 1606 . + . name "fgenesh1_kg.1_#_1_#_Locus4417v1rpkm26.65"; transcriptId 416145
scaffold_1 JGI CDS 1190 1606 . + 0 name "fgenesh1_kg.1_#_1_#_Locus4417v1rpkm26.65"; proteinId 416053; exonNumber 2

3.2 Taxonomy

The dataset is made up of 862 organisms, which are classified into 8 major
phyla. Significantly, the phylum Ascomycota stands out as the most prevalent,
making up over 50% of the overall sample. To obtain a comprehensive analysis
of the number of organisms in each phylum, please consult Table 3.1.

Phylum Count
Ascomycota 479
Basidiomycota 295
Blastocladiomycota 4
Cryptomycota 1
Chytridiomycota 21
Microsporidia 8
Mucoromycota 38
Zoopagomycota 16

Table 3.1: Representation of phyla in the data
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Taxonomy Rank Taxonomic Count
Phylum 8
Class 46
Order 124
Family 307
Genus 566
Species 862

Table 3.2: Taxonomic distribution at various hierarchical ranks with correspond-
ing counts of taxa.

Table 3.2 is a summary of the taxonomic variety in the data, displaying
the number of detected species at various hierarchical levels. This breakdown
is a useful resource for comprehending how organisms are distributed across
different taxonomic levels. It serves as a basis for exploring the biological
characteristics of the set of data and assists in making informed decisions
when creating models.

The complete taxonomy of fungi, depicted as a phylogenetic tree, is available
in the image below 3.1.

1
Figure 3.1: Classification of Fungi [15]
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Chapter 4

Statistics

The evaluation process utilised several statistical measures, which include
True Negative (TN), True Positive (TP), False Negative (FN), and False
Positive (FP), to assess the performance of the models. By employing the
aforementioned parameters, crucial metrics such as True Positive Rate (TPR)
4.2 and Positive Predictive Value (PPV) 4.1, which are also referred to as
recall and precision, respectively, were calculated.

PPV = TP

TP + FP
(4.1)

TPR = TP

TP + FN
(4.2)

These metrics offer valuable information about the models’ capacity to accu-
rately detect positive instances and the accuracy of positive identifications.

When rare minority classes are involved in creating experimental datasets,
it is common practice to retain all available samples from this class while
reducing the number of samples from the majority class. While this approach
may be justifiable during training, it becomes problematic during testing
because it disregards the true imbalance ratio that the classifier will encounter
when deployed. Therefore, relying on precision computed directly on the test
set in this scenario can be misleading [5]. Given these factors, the Precision
computed directly on the test set may be deceptive, requiring an adaptation.
The incorporation of priors (ptest and preal) facilitates the achievement of a
more accurate representation. The modified equation 4.3 is shown below.

PPVadjusted =
preal
ptest

· TP
preal
ptest

· TP + 1−preal
1−ptest

· FP
(4.3)
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4. Statistics ......................................
For the purpose of conducting a thorough model comparison, the F-score
was calculated as a complete metric to evaluate accuracy. The F-score is
a balanced evaluation metric that takes into account both false positives
and false negatives and is calculated based on the precision and recall of the
model. The equation 4.4 can be seen below.

F = 2
TPR−1 + PPV −1

adjusted

(4.4)
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Chapter 5

Model creation

This chapter focuses on the creation of models, specifically examining the
complex process of model development. It highlights the progression from
general donor and acceptor models to more specific phylum models and
eventually concludes with the development of taxonomy mixture models.

5.1 Donor and acceptor models

In order to improve understanding of the codes presented by [20], two distinct
models were deliberately created, with each model designed for analysing
donor and acceptor splice sites. During the training and evaluation stages, it
became evident that producing a single, all-encompassing model required a
significant amount of time. In order to improve the model’s efficiency, a com-
prehensive evaluation of its performance within specific phyla was conducted.
The results, as shown in Tables 5.1 and 5.2, highlight the difficulties of using
a universal model, with F-scores for each phylum consistently below the 0.85
threshold.

Throughout the training and evaluation phase, a few significant obstacles
became apparent. An error occurred when creating the dataset for the phylum
Cryptomycota. Later on, when assessing this phylum, the decision to include
it was reconsidered, as constructing a complete dataset was deemed unfeasible
due to the scarcity of organisms available for this phylum.
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5. Model creation ....................................
Another noteworthy obstacle arose during the examination of the phylum

Microsporidia. While the datasets were generated without any issues, the
models faced challenges during their evaluation. At that point, the precise
cause remained unknown. During the course of the investigation, a significant
observation arose - the data related to Microsporidia primarily consisted
of files for false splice sites, whereas true ones were only present in small
quantities.

Based on these discoveries, it became clear that depending only on two
broad models resulted in less than ideal outcomes due to their inherent generic
nature. As a result, this understanding led to a change in strategy, recognising
the requirement for a more refined and specialised model setup to attain
superior results.

ASCOMYCOTA BASIDIOMYCOTA BLASTOCLADIOMYCOTA CHYTRIDIOMYCOTA MUCOROMYCOTA ZOOPAGOMYCOTA
TN 92.6 91.2 93.5 85 92.9 91.6
TP 90.6 88.1 92.1 87.2 90.6 80.6
FN 9.4 11.9 7.9 12.8 9.4 19.4
FP 7.4 8.8 6.5 15 7.1 8.4

TPR 0.906 0.881 0.921 0.872 0.906 0.806
PPV 0.92 0.91 0.93 0.85 0.93 0.91

adjusted PPV 0.75 0.71 0.78 0.59 0.76 0.71
F 0.82 0.79 0.84 0.71 0.83 0.75

Table 5.1: Evatuation of the whole donor model on individual phyla

ASCOMYCOTA BASIDIOMYCOTA BLASTOCLADIOMYCOTA CHYTRIDIOMYCOTA MUCOROMYCOTA ZOOPAGOMYCOTA
TN 92.6 91.2 93.5 85 82.5 92.7
TP 90.6 88.1 92.1 87.2 96.2 85.2
FN 9.4 11.9 7.9 12.8 3.8 14.8
FP 7.4 8.8 6.5 15 17.5 7.3

TPR 0.906 0.881 0.921 0.872 0.962 0.852
PPV 0.92 0.91 0.93 0.85 0.85 0.92

adjusted PPV 0.75 0.71 0.78 0.59 0.58 0.74
F 0.82 0.79 0.84 0.71 0.72 0.79

Table 5.2: Evatuation of the whole acceptor model on individual phyla

5.2 Phyla models

When the shortcomings of the generic models were brought to light, it became
abundantly clear that in order to get better outcomes, it was necessary to
employ models that were both more precise and more specialised. It was
ultimately decided that the advancement of the research strategy would be
in constructing and training models tailored to specific phyla. The individual
phyla are listed below.

.Ascomycota. Basidiomycota. Blastocladiomycota
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. Chytridiomycota

.Mucoromycota

. Zoopagomycota

For each of the indicated phyla, two separate models for donor and acceptor
splice sites were created. Following that, a comprehensive assessment was
carried out on every phylum, which involved self-assessment and evaluation of
other phyla, and the results are reported in detail in Tables 5.3 and 5.4. It is
important to mention that, although there were difficulties in training models
for the phylum Microsporidia, the datasets were included in the evaluation
process in order to understand how other models are able to work with them.

Although the F-scores of these models occasionally exceeded the 0.85
barrier, none of them reached a value higher than 0.90. One noteworthy
finding was that there was no one superior model that could be applied to
all groups of organisms. Each model showed different levels of success, and
even when analysing a model within its group, it was difficult to determine
its optimality.

These findings led to a fundamental change in thinking, motivating the
investigation of models specifically designed for each class and utilising the
transfer learning approach to overcome the 0.90 threshold. To address the
difficulties presented by datasets with a restricted number of species, a
mechanism for augmentation was implemented to improve the performance
and generalisation abilities of the model.

5.3 Class models

Before implementing class-specific models, it was considered essential to
conduct a thorough examination of the distribution of organisms within each
class. This strategic decision was made based on the knowledge obtained from
the difficulties faced with the phylum Cryptomycota, where the creation of a
dataset proved unattainable due to it consisting only of one organism. Figure
5.1 visually illustrates the distribution patterns of species across classes.
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5. Model creation ....................................

Figure 5.1: Distribution of organisms in classes

Upon further examination of the distribution, it was determined that many
classes consisted solely of one organism. In such cases, a more detailed
approach was taken by examining the sub-phylum to which the individual
organism belongs. Figure 5.1 provides an additional visual representation of
this decision-making process. Nevertheless, when confronted with difficulties
in constructing models for sub-phyla due to conflicts with classes from the same
sub-phyla that are prevalent in organisms, an alternative approach was utilised.
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Models were created in these situations by combining classes according to
their parent phylum, thereby preventing unnecessary duplications.

The thorough approach led to the development of 19 separate models that
together cover all organisms (except Cryptomycota and Microsporidia, as
mentioned before). The following list presents these models.

.Phyla models. Blastocladiomycota. Zoopagomycota. Subphyla models. Pucciniomycotina. Ustilaginomycotina.Taphrinomycotina.Class models.Agaricomycetes. Chytridiomycetes. Dothideomycetes. Eurotiomycetes. Leotiomycetes.Mucoromycetes. Pezizomycetes. Sordariomycetes.Tremellomycetes. Saccharomycetes.Merged class models.Monoblepharidomycetes + Neocallimastigomycetes. Dacrymycetes + Geminibasidiomycetes + Wallemiomycetes.Glomeromycetes + Mortierellomycetes + Umbelopsidomycetes. Coniocybomycetes + Orbiliomycetes + Xylonomycetes + Lecanoromycetes

After creating datasets specifically designed for each model, a lengthy
procedure of training and evaluation followed. This phase involved a series of
carefully planned experiments to determine the effectiveness of augmentation
and transfer learning in attaining the main goal: determining the fewest
number of models needed to cover the entire fungal domain. The specific
information and results of these experimental efforts are explained in the next
chapter, Chapter 7.
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Part I

Model training
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Chapter 6

Methods

6.1 Augmentation

6.1.1 Implementation

The most crucial step of implementation was integrating the augmentation
into an already prepared pipeline that was created by Bc. Martin Indra [20].
For an efficient training process, it was critical to ensure precise handling of
data generated from preprocessing and generate the dataset file in the correct
format. All of these needs were taken into account, and the new pipeline is
represented in 6.1 Part A.

This pipeline thoroughly details the whole process that leads to the de-
velopment of the final graph. It includes a full explanation of the inputs
and outputs for each block, with a notable focus on the augmentation block.
However, it is essential to consider that the specific data augmentations used
may establish a bias in the structure of motif grammars. Thus, the DNN is
fine-tuned on the original, unaltered data in the second step to enhance these
features and lead the function towards the observed biology, removing any
bias produced by the data augmentations [27].
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6. Methods.......................................

Figure 6.1: Schematic of the process of augmentation. A The graph depicts the
pipeline of the entire augmentation process, from raw data in Fasta and GFF
files to building datasets, training and testing models, and finally displaying
the performance of the models by comparing F1 scores. B Zoom in on the
procedure under the "Augmentation" block. C A comprehensive description of
how the augmented data was obtained and how Gaussian noise is added to the
sequences.

Part B of Figure 6.1 depicts the internal processes of this block. It is worth
noting that it includes more than just the addition of random noise. Given
the data access methods used by Bc. Martin Indra’s programmes, there was
a need to recreate the way the original samples are stored and apply it to
the augmented ones as well. Regardless, the main result of this phase is the
generation of a new JSON file that describes the new dataset.

Due to the preprocessing sequences being encoded as one-hot, adding noise
to them directly proved unfeasible. It became necessary to convert these
sequences into a format compatible with the NumPy library’s function for
creating random Gaussian noise. As a result, it was decided to first turn the
sequence into a categorical variable, allowing for the noise addition. Before
returning to one-hot encoding, a clipping step was added to make sure that
the output values were within the range corresponding to the number of bases,
namely 5 for A, C, G, T, and N for random. The entire process is illustrated
in Figure 6.1 part C, accompanied by an illustrative example.
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6.2 Transfer learning

6.2.1 Implementation

The provided methodology, as shown in Figure 6.2, divides the transfer
learning process into two separate phases, each of which contributes to the
improvement of model adaptability for certain tasks. Two datasets are derived
after data preprocessing to assure data quality and consistency: one for pre-
training and the other for fine-tuning. During the pre-training phase, a model
is trained on the initial dataset, providing a comprehensive understanding of
general characteristics and representations. The model goes through a transfer
learning block with the second dataset at the same time, adapting its expertise
to the job at hand. Using the second dataset, an independently trained model
is built in parallel. The comparative examination of the transfer-learned model
and the independently trained model provides insight into their effectiveness.
A graph is created to provide a more visual representation, illustrating the
performance metrics derived from the evaluation. This graphical depiction
serves as a visual aid, allowing a clearer understanding of the framework’s
ability to improve model performance when compared to traditional training
approaches.
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6. Methods.......................................

Figure 6.2: Schematic of the process of transfer learning.
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Chapter 7

Experiments

Each and every research endeavour needs the provision of evidence, and it is
precisely in this context that experiments present themselves. This chapter
provides a thorough description of these experiments, including augmentation,
transfer learning, and a comparative examination of normal, augmented, and
transfer models.

Parameter adjustment becomes crucial while implementing the augmenta-
tion approach. An elaborate investigation, specifically using the Blastocla-
diomycota phylum, explores the ideal configurations for the mean, standard
deviation, and proportion of augmented data. The augmentation experiment’s
performance is analysed and presented in three visual graphs, providing valu-
able insights.

The transfer learning experiment involves a thorough examination of the
most effective parameter configurations, including the learning rate, the
number of frozen layers, and batch sizes. The experiment demonstrates that
frozen layers have a negligible effect, leading to a strategic change in focus
towards investigating the interactions between learning rates and batch sizes.

The last experiment’s objective is to conduct a comparative examination
of normal, augmented, and transfer models using datasets with increasing
organism counts. The emphasis lies in identifying the circumstances in
which each type of model demonstrates exceptional performance, particularly
in scenarios involving a limited number of species. Due to the impact of
evolutionary proximity between the dataset and the base model during transfer
learning four distinct settings were created.
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7. Experiments .....................................
7.1 Augmentation

7.1.1 Parameter tuning

The requirement for parameter tuning arose as a critical requirement as a
result of the implementation of the augmentation strategy. An experiment
was created to determine the best setting of the parameters. Due to time
complexity, just one phylum was picked.

The rationale behind choosing phylum Blastocladiomycota is due to its
relatively small dataset, which consists of only four organisms. The essential
factors under consideration were the standard deviation, mean, and the pro-
portion of augmented data in the dataset. For example, the augmentation
process involved experimenting with different percentages, such as 25%, signi-
fying the proportion of augmented data added to the original dataset, which
were tested. The precise values for these parameters were crucial in establish-
ing the augmentation strategy and, as a result, the overall performance of
the model.

The exact values of these parameters tested were:

.Mean = [0.0, 0.25, 0.5, 1.0]

. Standard Deviation = [0.1, 0.2, 0.3, 0.5, 1.0]

. Percentage = [25.0, 50.0, 75.0, 100.0]

Three specific graphs were created to completely examine the performance
of each parameter arrangement. The first graph provides a visual depiction
of all parameter combinations, providing a full overview. The second graph
focuses on highlighting the best-performing models from each percentage
group, providing insights into the top performers in various augmentation
scenarios. Finally, a boxplot was used to depict the distribution of the
data, offering a brief summary of the experimental results. The graphical
representation of these results is accessible in Figures for donor model 7.1,
7.2a, and 7.2b and for acceptor model 7.3, 7.4a and 7.4b.
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.................................... 7.1. Augmentation

Figure 7.1: F1 Score Trends of Donor Models with Different Mean, Std and
Percentage Values

(a) : Best Precision, Recall, and F1 Score for Each Percentage Group

(b) : Boxplot of F1 Scores at Different Percentages

Figure 7.2: Augmented donor model review
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7. Experiments .....................................

Figure 7.3: F1 Score Trends of Acceptor Models with Different Mean, Std and
Percentage Values

(a) : Best Precision, Recall, and F1 Score for Each Percentage Group

(b) : Boxplot of F1 Scores at Different Percentages

Figure 7.4: Augmented acceptor model review
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7.1.2 Results

The efficacy of this strategy has been demonstrated in my research on aug-
menting DNA sequences, with superior outcomes for the model when trained
using augmented data. Despite the obvious improvements, determining the
ideal set of parameters remains a difficult task. Experimentation found that
the F1 scores associated with different parameter combinations are surpris-
ingly similar as can be seen in 7.1 or 7.3. The results analysis, as depicted
in 7.2a and 7.4a, reveals an interesting observation regarding the compar-
ison of the best-performing models from each percentage group. Contrary
to expectations, there is no obvious dominance or significant difference in
performance outcomes across the examined groups. This finding emphasises
the difficulty in determining the most effective parameter setting.

While a single best parameter choice remains elusive in our investigation, a
careful examination of box plots 7.2b and 7.4b reveals intriguing trends in the
data distribution. Notably, the 25% group in the donor model consistently
has the smallest interquartile range, shortest whisker lengths, and outliers
that closely hug the box. This pattern indicates a degree of coherence
and stability within this subset, showing a possible association between the
chosen parameters and the observed model performance features. Based
on the aforementioned findings, the setting of ’mean’: 0.0, ’std’: 0.2’, and
’percentage’: 25.0 was selected for the training of augmented donor models.
On the other hand, upon examining the outcomes of the acceptor model,
it was not immediately clear what the optimal parameter configuration
was. Although all percentage groups in 7.4a have at least one model that
outperforms the normal one, 7.4b reveals an intriguing observation. Each
percentage group has a significantly wide interquartile range, surpassing
even the F1 score of the reference normal model. As a result, selecting the
best-performing model became challenging. Ultimately, a setting of ’mean’:
1.0, ’std’: 0.1’, and ’percentage’: 50.0 was selected. This particular percentage
group was the only one where the mean exceeded the reference value.
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7. Experiments .....................................
7.2 Transfer learning

7.2.1 Tuning hyperparameters

A comprehensive experiment is carried out to investigate the optimal setting
for hyperparameters of transfer learning. The mentioned hyperparameters
are:

. Learning rate = [0.001, 0.0001, 2e-05, 5e-05]. Number of frozen layers = [0, ..., 10]. Batch size = [1, 2, 4, 8, 12, 16]

Because of time-based complexity constraints, batch size tweaking was
skipped over at first in this investigation. Given the extensive range of
hyperparameters investigated, including the examination of frozen layers
(ranging from 0 to 10) and learning rates (with values of ’0.001’, ’0.0001’, ’2e-
05’, ’5e-05’), a balance between the depth of exploration and the computational
resources available was critical. To maximise efficiency, two batch sizes — 16
and 4 — were chosen to capture a reasonable spectrum of batch size effects
while avoiding an exhaustive search. The results are shown in Figures 7.5
and 7.6.

Figure 7.5: Results of tuning hyperparameters with batch size = 4 on base
donor model Sordariomycetes.
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Figure 7.6: Results of tuning hyperparameters with batch size = 16 on base
donor model Sordariomycetes.

After the findings were examined, it became clear that the variation in the
number of frozen layers had no significant impact on model performance. As
a result, a strategic choice was made to change the scope of the investigation.
The following experiment was then carried out with a focus on the relationship
between learning rates and batch sizes while ignoring layer freezing. Figure
7.7 depicts the outcome.

Figure 7.7: Results of tuning learning rate and batch size on the base donor
model Sordariomycetes.

A parallel study was conducted to develop acceptor models based on the
insights gained from training donor models, in order to achieve a thorough
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7. Experiments .....................................
understanding and optimisation. Based on the information obtained from the
donor model studies, the acceptor models were primarily concerned with the
important factors of batch size and learning rate. The results for acceptor
models can be seen below in Figure 7.8.

Figure 7.8: Results of tuning learning rate and batch size on base acceptor
model Sordariomycetes.

7.2.2 Results

Following the discovery that the number of frozen layers had no effect on
the F1 score, attention was focused on a controlled experiment involving
the fine-tuning of the learning rate and batch size parameters. During the
research process, it became abundantly evident that the results were not
optimal, which eventually resulted in an in-depth analysis to determine the
most effective parameter configuration. As such, the optimal parameters
’learning_rate’: 5e-05, ’batch_size’: 16 were successfully identified for all
four classes in the case of the donor model, since they yielded the highest
average F1 score. Interestingly, the results of the acceptor model were easier
to interpret due to the absence of significant fluctuations. Throughout all
the groups, a setting of ’learning_rate’: 0.001, ’batch_size’: 2 was chosen.
Nevertheless, the observed variations in parameter settings have prompted
consideration of the possible benefits of customising parameters for each class,
considering the lack of significant differences.
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7.3 Model comparison

One of the primary goals was to conduct a comparative analysis of different
models, namely normal, augmented, and transfer models, with the aim of
determining their respective levels of usability. The experiment aimed to
evaluate the impact of augmentation and transfer learning on performance
across different datasets, taking into account the substantial variation in the
number of organisms in each dataset. This variety spanned from datasets
with fewer than a dozen organisms to those with larger amounts of data. In
order to thoroughly assess the performance of the model within this range, it
was essential to conduct a detailed assessment.

The main objective of the experiment was to identify situations in which
the traditional model was adequate compared to those where augmented
or transfer learning models were more beneficial. This in-depth evaluation
not only enhanced the understanding of the efficacy of each model but also
yielded vital insights about the versatility of augmentation and transfer
learning methods, as influenced by the unique characteristics of the dataset.

Four separate settings were constructed as a consequence of this discovery...1. Dataset of class Eurotiomycetes (phyla: Ascomycota, number of organ-
isms: 135) transfer on the base model of class Sordariomycetes (phyla:
Ascomycota, number of organisms: 120)..2. Dataset of class Ustilaginomycotina (phyla: Basidiomycota, number of
organisms: 21) transfer on the base model of class Agaricomycetes (phyla:
Basidiomycota, number of organisms: 223)..3. Dataset of class Eurotiomycetes (phyla: Ascomycota, number of organ-
isms: 135) transfer on the base model of class Agaricomycetes (phyla:
Basidiomycota, number of organisms: 223)..4. Dataset of class Mucoromycetes (phyla: Mucomycota, number of or-
ganisms: 31) transfer on the base model of class Leotiomycetes (phyla:
Ascomycota, number of organisms: 32)

The findings of this analysis for donor and acceptor models are visually
presented in Figure 7.9 and 7.10 below. The graphs below illustrate the
performance of the normal model in blue, the augmentation model in orange,
and the transfer models in green. Additionally, there is a line of reference.
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7. Experiments .....................................
This reference provides an evaluation of the dataset carried by the base model.
Due to limited time, the third setting was disregarded while researching
acceptor models.

Figure 7.9: Comparison of normal, augmented and transfer donor models. The
setting of the augmented model: mean 0.0, std 0.2, percentage 25.0 and of
transfer model: lr=5e-05, batch size = 16 frozen layers = 0

Figure 7.10: Comparison of normal, augmented and transfer acceptor models.
The setting of the augmented model: mean 1.0, std 0.1, percentage 50.0 and of
transfer model: lr=0.001, batch size = 2 frozen layers = 0

7.3.1 Results

After carefully analysing the results, it becomes evident that there is a strong
correlation that highlights the crucial significance of the number of organisms
in the dataset in determining the effectiveness of the models in identifying
splice sites. Unsurprisingly, the normal model had difficulties attaining similar
results as the base model, regardless of modifications in the base model’s
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dimensions or dataset qualities. This disparity implies a possible constraint
in the normal model’s capacity to adjust to various dataset settings.

In contrast, the augmentation model demonstrated favourable results,
especially when handling vast datasets. The performance of the augmentation
model exceeded that of the base model, particularly when the dataset included
a significant number of creatures. Nevertheless, a significant limitation became
apparent while working with smaller datasets. This was likely a result of the
configuration of the augmentation process, as well as the constraint on the
amount of data that may be augmented without compromising the model’s
performance.

The transfer model, which showed the best overall results, displayed an
impressive ability to withstand concerns about the size of the dataset. It
immediately outperformed the base model. Nevertheless, a subtle difficulty
arose about the model’s evaluation proximity to the dataset. The complexity
of this matter became evident when analysing the case of the Eurotiomycetes
class, which was trained using the Sordariomycetes class model. Both classes
belong to the same phylum. The evaluation proximity issue proposes that
the performance of the transfer model is highly dependent on the relationship
between the model and the used dataset.

These findings clearly indicate that transfer learning is the most effective
approach for encompassing the entire fungal kingdom with the fewest number
of models.
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Model explanation
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Chapter 8

Logo sequences

Sequence logos, when incorporated into CNN explanations, function as inter-
pretable visualisations that shed light on the decision-making mechanisms of
the network. The deliberate choice of using sequence logos for comprehending
splice site models is based on the fact that these visualisations not only offer
clarity, but also effectively capture and depict complex patterns within the
data. Their efficacy derives from their capacity to condense complex informa-
tion into visually comprehensible formats, making them more readable even
for individuals who are unfamiliar with the intricacies of CNNs.

8.1 Logo creation

The sequence logo creation procedure greatly benefited from the innovative
code written by a doctorate candidate Anh Vu Le. The code developed
by Le presented a highly sophisticated framework; yet, the adaptation of
this framework to the dataset that was created by the code from Indra [20]
remained unknown. In regard to the intricate nature of the task and the
limited amount of time available, a practical choice was made to utilise the
preprocessing, dataset creation and logo visualisation offered by Le.

53



8. Logo sequences....................................
8.1.1 Preproccesing of data and dataset creation

FASTA files were generated for each fungus by extracting intron and exon
sequences from Assembly and GFF files. In addition to the FASTAs, CSV
files were generated containing the locations of introns and exons. The fungus
directories are composed of splice site window sequences, which include both
donor and acceptor FASTAs. These sequences are 402 nucleotides in length
and contain AG and GT di-nucleotides in the middle. There are separate
versions for the false donor and true acceptor windows.

The ipynb notebook simplifies the process of generating training and
validation datasets by enabling users to define specific parameters, such as
the phyla and species to be included, the number of samples per species, and
the ratio between positive and negative samples. This procedure utilises the
previously stated pre-generated splice site windows.

8.1.2 The process of sequence logo creation

The creation of logos requires a methodical process that can be divided into
four essential steps. Initially, it was crucial to choose a single organism
for each model, taking into account that the evaluation focused solely on
individual organisms rather than entire classes, sub-phyla, or phyla. The
selected organisms and their taxonomic classification include:

.Tralac1: Agaricomycetes. Blabri1: Blastocladiomycota. Synfus1: Zoopagomycota.Obemuc1: Chytridiomycetes. Disac1: Dothideomycetes. Claim1: Eurotiomycetes. Bissp1: Leotiomycetes. Pilano1: Mucoromycetes. Sarco1: Pezizomycetes. Colgr1: Sordariomycetes
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.Kocim1: Tremellomycetes. Picpa1: Saccharomycetes. Spoli1: Pucciniomycotina. Jamsp1: Ustilaginomycotina. Saico1: Taphrinomycotina.Anasp1: Monoblepharidomycetes + Neocallimastigomycetes. Calco1: Dacrymycetes + Geminibasidiomycetes + Wallemiomycetes.Gloin1: Glomeromycetes + Mortierellomycetes + Umbelopsidomycetes. Symko1: Coniocybomycetes + Orbiliomycetes + Xylonomycetes + Lecanoromycetes

The next two steps required utilising a donor model to identify acceptor
dimers and vice versa to ensure compatibility with introns. Attributions were
acquired through these procedures. The last stage was displaying the perfor-
mance of these models on introns, using the previously obtained attributions,
by sequence logos. The Deeplift library’s viz_sequence function was utilised
to generate visualisations of the randomly selected introns. Furthermore, after
visualising introns as logos, high-scoring regions (motifs) were also extracted
and the position weight matrix (PWM) was computed for later comparison
of logos.

8.2 Results

A grand total of 38 logos were systematically created, with each organism
providing two logos—one generated from the donor model and another from
the acceptor model. These logos collectively offer a thorough understanding
of the models’ performance in many biological scenarios. The entire collection
of logos can be found conveniently in the appendices (refer to Appendices). In
order to do a detailed comparison of the logos produced by the acceptor and
donor models, the R package DiffLogo [35] was utilised. This comparative
analysis provides insight into the differences between the two types of logos,
presents useful information on the models’ different responses and pinpointing
areas of divergence. The results of these comparisons are likewise included in
the appendices. Upon careful review of the logos, it becomes apparent that
certain models have higher performance in comparison to others. Certain
models demonstrate exceptional proficiency in identifying dimers, while others
struggle and instead identify patterns, particularly emphasising the presence
of the base T.
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Chapter 9

Discussion

9.1 Experiments

The experimentation involved two primary approaches: augmentation and
transfer learning, each yielding unique results and findings. The augmentation
strategy involved the integration of augmentation into an already established
pipeline. The technique of augmentation, although improving the scores of
certain classes, was not universally applicable, requiring further adjustment
to the original data to achieve better usability. Parameter tuning experiments
were performed to optimise the augmentation technique, with a specific
focus on the Blastocladiomycota phylum because of its smaller dataset. The
presence of identical F1 scores across several parameter combinations has
revealed the difficulty in identifying an ideal set. The analysis of box plots
uncovered interesting patterns, guiding the choice of parameters for donor
and acceptor models. Based on all the findings, these are the settings that
were chosen:

. Donor: ’mean’: 0.0, ’std’: 0.2’, and ’percentage’: 25.0.Acceptor: ’mean’: 1.0, ’std’: 0.1’, and ’percentage’: 50.0

The transfer learning strategy adopted a phased approach, which involved
splitting the process into two distinct phases: pre-training and fine-tuning.
A comprehensive experiment was carried out to optimise hyperparameters,
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9. Discussion ......................................
with particular emphasis on frozen layers, learning rates, and batch sizes.
Remarkably, the performance was not much affected by the number of frozen
layers. Further tests focused on determining the most effective learning rates
and batch sizes. This resulted in the determination of the ideal parameters
for donor models as a learning rate of 5e-05 and a batch size of 16 and for
acceptor models as a learning rate of 0.001 and a batch size of 2. Nevertheless,
the intricacy of parameter configurations necessitated the contemplation of
customisation tailored to individual classes as it became apparent that the
differences between classes are bigger than was initially thought.

The objective of the model comparison phase was to evaluate the usability
of several models, specifically the normal, augmented, and transfer models,
using a range of different datasets. Four unique environments were established,
which entailed transitioning between different classes with different sizes of
datasets. The visualisations in Figures 7.9 and 7.10 revealed complex patterns.
The standard model experienced difficulties in adjusting to various dataset
configurations, suggesting potential constraints. Augmentation demonstrated
efficacy, especially when applied to bigger datasets, but encountered dif-
ficulties when applied to smaller datasets. The transfer models regularly
achieved superior performance compared to the base model, demonstrating
their effectiveness in managing datasets of different sizes. Nevertheless, the
evaluation proximity problem highlighted the significance of the correlation
between the model and the dataset utilised.

In general, transfer learning has demonstrated higher capabilities in achiev-
ing high scores. This implies that it could have a significant influence on
the final determination of the number of models required to cover the en-
tirety of the fungal kingdom. The demonstrated efficacy of transfer learning
in improving model performance is consistent with the results of the back-
ground research, which also highlighted the substantial enhancement of model
outcomes through transfer learning.

9.2 Model recommendation

A thorough evaluation was carried out to evaluate the models and choose
the most efficient options for both donor and acceptor classifications. The
selection process gave priority to models with the highest sum of F1 scores,
which is an indication of their balanced performance in terms of precision
and recall.
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The Eurotiomycetes model showed exceptional performance for the donor,
achieving a sum of F1 score of 16.3356 and an average score of 0.8598. On
the other hand, the Agaricomycetes model proved to be the optimal choice
for the acceptor, with a sum of 15.5203 and an average of 0.8169. The data,
clearly displayed in the accompanying table 9.1, highlights the outstanding
skill of the chosen models.

Model F1 Score (Eurotiomycetes) F1 Score (Agaricomycetes)
Agaricomycetes 0.9277 0.9164
Blastocladiomycota 0.9279 0.8412
Zoopagomycota 0.8976 0.7381
Chytridiomycetes 0.8618 0.9049
Dothideomycetes 0.9214 0.9048
Eurotiomycetes 0.9303 0.9104
Leotiomycetes 0.9132 0.8780
Mucoromycetes 0.8993 0.8974
Pezizomycetes 0.8660 0.8741
Sordariomycetes 0.9115 0.8844
Tremellomycetes 0.9364 0.8103
Pucciniomycotina 0.9465 0.8865
Ustilaginomycotina 0.9517 0.8308
Taphrinomycotina 0.7770 0.6768
merge_model1 0.8415 0.8348
merge_model2 0.9427 0.9293
merge_model3 0.9251 0.8830
merge_model4 0.9578 0.9193

Table 9.1: F1 Scores for models evaluated by Eurotiomycetes for donor and by
Agaricomycetes for acceptor

The current scores largely surpass the scores of phylum models in Tables
5.4 and 5.3. Nevertheless, certain classes exhibit particularly low scores, even
descending below 0.8, which can be considered undesirable. This implies that
depending solely on two models has been deemed inadequate. In light of this,
a comprehensive analysis of the models was undertaken to determine the
optimal model for assessing each class. The F1 scores and optimal models for
evaluation are shown in Table 9.1 below.
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donor acceptor

Models F1 score best model F1 score best model
Dothideomycetes 0,9215 Dothideomycetes 0,9198 Eurotiomycetes
Eurotiomycetes 0,9303 Eurotiomycetes 0,9209 Eurotiomycetes
Leotiomycetes 0,9136 Dothideomycetes 0,9007 Eurotiomycetes
Pezizomycetes 0,866 Eurotiomycetes 0,8943 Sordariomycetes
Sordariomycetes 0,9122 Sordariomycetes 0,9107 Sordariomycetes
Taphrinomycotina 0,8031 Taphrinomycotina 0,839 Dothideomycetes
merge_model4 0,9578 Eurotiomycetes 0,9331 Eurotiomycetes
Agaricomycetes 0,9415 Agaricomycetes 0,9164 Agaricomycetes
Tremellomycetes 0,9482 Dothideomycetes 0,9318 Pucciniomycotina
Pucciniomycotina 0,9466 Agaricomycetes 0,8865 Agaricomycetes
Ustilaginomycotina 0,9517 Eurotiomycetes 0,8618 Ustilaginomycotina
merge_model2 0,9526 Agaricomycetes 0,9293 Agaricomycetes
Blastocladiomycota 0,9295 Agaricomycetes 0,8616 Pucciniomycotina
Chytridiomycetes 0,8696 Agaricomycetes 0,9049 Agaricomycetes
merge_model1 0,8952 Mucoromycetes 0,8804 merge_model1
Mucoromycetes 0,9254 Mucoromycetes 0,9135 Mucoromycetes
merge_model3 0,9251 Eurotiomycetes 0,9027 Eurotiomycetes
Zoopagomycota 0,8976 Eurotiomycetes 0,7468 Sordariomycetes

Table 9.2: Results of an analysis of "best models" for each class/sub-
phylum/phylum

The table clearly shows that all 38 models are not required. Upon initial
examination, it becomes apparent that only 6 models need to be thought of
as potential for donor: Dothideomycetes, Eurotiomycetes, Sordariomycetes,
Taphrinomycotina, Agaricomycetes, and Mucoromycetes. Similarly, 8 models
are considered adequate for acceptor: Eurotiomycetes, Sordariomycetes,
Dothideomycetes, Agaricomycetes, Pucciniomycotina, Ustilaginomycotina,
merge_model1, and Mucoromycetes. Only 14 models have been deemed
necessary, which is a substantial decrease from the original 38.

Still, there is an opportunity for improvement, since certain models just
determine the best class for one model. By relaxing the criterion for the
highest possible score, these models can be substituted with ones that occur
several times, improving both efficiency and time complexity. Upon thorough
analysis, the subsequent modifications can be executed:

. Donor:. Sordariomycetes (0.9122) → Eurotiomycetes (0.9115).Taphrinomycotina (0.8031) → Eurotiomycetes (0.7770).Acceptor:. Dothideomycetes (0.839) → Eurotiomycetes (0.8311)
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. Ustilaginomycotina (0.8618) → Pucciniomycotina (0.8617).merge_model1 (0.8804) → Mucoromycetes (0.8417)

As a result of these modifications, the number of necessary models has been
reduced to 4 for donor (Dothideomycetes, Agaricomycetes, Eurotiomycetes
and Mucoromycetes) and 5 for acceptor (Eurotiomycetes, Agaricomycetes,
Mucoromycetes, Pucciniomycotina and Sordariomycetes), making a total of 9
models required to thoroughly assess the entire Fungi kingdom.

The results reveal a noticeable pattern, especially apparent when evaluating
models from the Ascomycota and Basidiomycota phyla. Models belonging to
the Ascomycota phylum are consistently most accurately assessed by models
from the same phylum, and a similar pattern is seen for models within the
Basidiomycota phylum. The fact that there is internal compatibility among
phyla indicates that there is a certain level of specialisation. This highlights
the effectiveness of models when they are trained and evaluated within their
taxonomic groups. However, models from phyla with extensive datasets,
regardless of their taxonomic classification, generally demonstrate better
performance when evaluating models from other phyla.

An attempt was made to address a low score by transferring the dataset
of the Zoopagomycetes phylum to the Agaricomycetes acceptor model. The
experiment resulted in an enhancement of the Zoopagomycota score from
0.7381 to 0.7436. In addition to this favourable alteration, four additional
scores experienced a rise. Nevertheless, the drop was observed in thirteen
scores, limiting the applicability of this model to only five unique models.
Upon completion of the examination of "best models," it was determined
that the Sordariomycetes model emerged as the most optimal choice for the
phylum Zoopagomycota. Another attempt at transfer learning was made in
order to enhance the score.

However, upon comparing the scores of this model with those of the "best
models" in Table 9.3, they are shown to be inconsequential. The highest F1
score is still produced by the "best model". The inefficiency of transfer learning
can be attributed to the computationally demanding requirements and the
crucial necessity for optimal performance in the computer system. Based on
the computational complexity and performance limitations, it was determined
that transfer learning may not be a viable method to achieve the desired
outcomes within the current limits. Further testing and experimentation
would be necessary.
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Models Agaricomycetes transfer model (A) "best model" transfer model (S)

Zoopagomycota 0,7381 0,7436 0,7468 0,7454
Pezizomycetes 0,8741 0,8513 0,8943 0,8365
Sordariomycetes 0,8844 0,8589 0,9107 0,8677

Table 9.3: Comparison of models for phylum Zoopagomycota; usage of transfer
learning

9.3 Sequence logos

Since the logos generated from the taxonomy-based evaluation did not provide
sufficient information about the models, new logos were designed. However,
this time the assessment was done based on the findings in 9.2 where 9 models
were found to be optimal for covering the whole kingdom. The revised logos
can also be found in the Appendices.

The newly generated sequence logos demonstrate the strength and effective-
ness of the created models, visually representing their ability to distinguish
patterns. These logos not only visually display the models’ competence but
also reinforce the selections made in the previous section regarding the choice
of the best models. An in-depth analysis of the model’s performance, as
shown in Figure 9.1, specifically examines a region that makes up an intron.
This region is carefully highlighted to emphasise the presence of dimers and
the branch point. This magnified depiction impressively demonstrates the
models’ capacity to precisely recognise and differentiate crucial characteristics
within genomic sequences. The logos provide clear and precise information,
which enhances understanding and confirms that the selected models are
appropriate for splice site prediction.

Figure 9.1: Zoom in on one of the logos showcasing the 5’ splice site, branch
point and 3’ splice site

The comparisons conducted by DiffLogo helped clarify the reasoning behind
the choice of optimal models. The provided Figure 9.2 presents a convincing
visual representation of motif comparisons among organisms belonging to
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the phylum Basidiomycota. The noticeable differences identified among the
motifs highlight the natural variety in this biological group. The difference in
traits between organisms justifies the use of separate models for each organism,
taking into account the specific features of their motif compositions.

Figure 9.2: Comparison of motifs of interest of models from the Basidiomycota
phylum

In contrast, Figure 9.3 presents a comparison of organisms evaluated using
the Agaricomycetes model, illustrating a different scenario. The patterns
seen in this context demonstrate a striking resemblance, confirming the
effectiveness of the Agaricomycetes model.

Figure 9.3: Comparison of motifs of interest of organisms evaluated by Agari-
comycetes model
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9.4 Final assessment of chosen models

The comparison of the selected "best models" with the phylum models and
outcomes from the general models may be found in Table 9.4. The selected
models demonstrate a higher capacity to accurately identify splice sites
compared to the general models. In addition, the previous issue of general
models struggling with underrepresented phyla has been resolved by the new
models, which consistently yield high results regardless of the size of the
dataset.

"best model" phylum model whole model
donor acceptor donor acceptor donor acceptor

Ascomycota 0,90 0,90 0,84 0,84 0,82 0,82
Basidiomycota 0,95 0,91 0,85 0,78 0,79 0,79
Mucoromycota 0,93 0,91 0,87 0,77 0,83 0,72
Chytridiomycota 0,88 0,89 0,77 0,65 0,71 0,71
Zoopagomycota 0,90 0,75 0,68 0,59 0,75 0,79
Blastocladiomycota 0,93 0,86 0,73 0,58 0,84 0,84

Table 9.4: Comparison of "best models" with phylum models and the general
models

While constructing models, a computer failure occurred. The malfunction-
ing of the CPU’s overhead fan resulted in a decline in performance. Due to
the significant influence of hardware issues on the overall performance of the
system, it is not possible to establish a dependable correlation between time
and performance.

Nevertheless, in theory, the computational requirement is directly propor-
tional to the size of the datasets. Based on this information, it can be assumed
that the task of constructing large models for all 862 creatures (862 x 2 = 1724)
is time-consuming and quite complex. On the other hand, creating smaller
models for donors (113+223+135+31) and acceptors (135+223+31+27+120),
totalling 1038 significantly reduces complexity and time. This is because the
thousands of organisms are trained individually rather than all together. The
non-linearity of complexity suggests that creating numerous smaller models
may be a more efficient strategy compared to using a single large model.

The selected models should outperform the general models in intron detec-
tion when applied to metagenoms. This is because, unlike the general models,
they were trained on more specific data, allowing them to understand both
the overall patterns and the unique properties of each class. However, this
efficiency is achieved by sacrificing the requirement for speed, as the total
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assessment process is more time-consuming.
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Chapter 10

Conclusions

This thesis aimed to investigate the efficacy of transfer learning and model
explanation methods in the realm of the fungus kingdom. The primary
objective was to provide the smallest number of models needed to achieve full
coverage while also considering time complexity and computational resources.

Two pipelines were created: one for augmentation and another for the
intention of transfer learning. Upon determining the most effective configura-
tions for both approaches, a model created using transfer learning emerged as
the superior performer, surpassing the older approach by a significant margin.
During the investigation into reducing the number of necessary models, a
constraint on transfer learning became apparent. While it improved results for
the specific class/sub-phylum/phylum that was used, it resulted in a decline
in performance for the other classes/sub-phyla/phyla. As a result, a group of
ideal models was identified, suggesting a total of nine models as the optimal
option - four for donors (Dothideomycetes, Agaricomycetes, Eurotiomycetes,
and Mucoromycetes) and five for acceptors (Eurotiomycetes, Agaricomycetes,
Mucoromycetes, Pucciniomycotina, and Sordariomycetes).

Sequence logos were chosen for explanation purposes due to their widespread
application in the analysis of biological sequences. At first, a total of 38 logos
were produced, with a pair for each organism. One logo was created by the
donor model and the other by the acceptor. These logos demonstrated that
certain models exhibited superior proficiency in identifying dimers compared
to others as some models displayed a tendency to emphasise the base T
instead of finding the splice sites. Consequently, the analysis of these pairs
generated by DiffLogo did not result in any substantial findings. Following
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10. Conclusions.....................................
that, a separate set of sequence logos was created, specifically targeting the
models that were determined to be optimal.

The newly created sequence logos effectively demonstrated the strength of
the models in accurately predicting splice sites within the fungal kingdom.
These logos visually depict the models’ capacity to precisely recognise crucial
characteristics in genetic sequences. Furthermore, the comparison of the motifs
of interest offered strong backing for the previous choice in selecting the most
suitable models. The visual evidence provided confirms the effectiveness of the
models and emphasises their potential as valuable tools for comprehending
genetic patterns in the classification of the fungal kingdom. This is in
accordance with the goal of creating efficient models.

This study offers the potential for further research. During experimentation,
it was discovered that utilising transfer learning is advantageous. However,
implementing it to determine the minimum number of required models is
exceedingly difficult and time-consuming. There is a potential for exploring
transfer learning to either utilise it or create a novel approach for optimising
models. Additionally, as the package used for logo assessment just provides
the differences, there’s an opportunity to create a new instrument for logo
sequences that highlight similarities.
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(a) : Logo of intron evaluated by acceptor model for Tralac1

(b) : Logo of intron evaluated by donor model for Tralac1

(c) : Comparison of the logos for Tralac1

(d) : Logo of intron evaluated by acceptor model for Blabri1

(e) : Logo of intron evaluated by donor model for Blabri1

(f) : Comparison of the logos for Blabri1

(g) : Logo of intron evaluated by acceptor model for Synfus1

(h) : Logo of intron evaluated by donor model for Synfus1

(i) : Comparison of the logos for Synfus1

Figure 1: Visualisation of introns in different organisms evaluated by acceptor
and donor models corresponding to their taxonomy, and their comparison



(j) : Logo of intron evaluated by acceptor model for Obemuc1

(k) : Logo of intron evaluated by donor model for Obemuc1

(l) : Comparison of the logos for Obemuc1

(m) : Logo of intron evaluated by acceptor model for Disac1

(n) : Logo of intron evaluated by donor model for Disac1

(o) : Comparison of the logos for Disac1

(p) : Logo of intron evaluated by acceptor model for Claim1

(q) : Logo of intron evaluated by donor model for Claim1

(r) : Comparison of the logos for Claim1

Figure 1: Visualisation of introns in different organisms evaluated by acceptor
and donor models corresponding to their taxonomy, and their comparison



(s) : Logo of intron evaluated by acceptor model for Bissp1

(t) : Logo of intron evaluated by donor model for Bissp1

(u) : Comparison of the logos for Bissp1

(v) : Logo of intron evaluated by acceptor model for Pilano1

(w) : Logo of intron evaluated by donor model for Pilano1

(x) : Comparison of the logos for Pilano1

(y) : Logo of intron evaluated by acceptor model for Sarco1

(z) : Logo of intron evaluated by donor model for Sarco1

() : Comparison of the logos for Sarco1

Figure 1: Visualisation of introns in different organisms evaluated by acceptor
and donor models corresponding to their taxonomy, and their comparison



() : Logo of intron evaluated by acceptor model for Colgr1

() : Logo of intron evaluated by donor model for Colgr1

() : Comparison of the logos for Colgr1

() : Logo of intron evaluated by acceptor model for Kocim1

() : Logo of intron evaluated by donor model for Kocim1

() : Comparison of the logos for Kocim1

() : Logo of intron evaluated by acceptor model for Spoli1

() : Logo of intron evaluated by donor model for Spoli1

() : Comparison of the logos for Spoli1

Figure 1: Visualisation of introns in different organisms evaluated by acceptor
and donor models corresponding to their taxonomy, and their comparison



() : Logo of intron evaluated by acceptor model for Jamsp1

() : Logo of intron evaluated by donor model for Jamsp1

() : Comparison of the logos for Jamsp1

() : Logo of intron evaluated by acceptor model for Saico1

() : Logo of intron evaluated by donor model for Saico1

() : Comparison of the logos for Saico1

() : Logo of intron evaluated by acceptor model for Anasp1

() : Logo of intron evaluated by donor model for Anasp1

() : Comparison of the logos for Anasp1

Figure 1: Visualisation of introns in different organisms evaluated by acceptor
and donor models corresponding to their taxonomy, and their comparison



() : Logo of intron evaluated by acceptor model for Calco1

() : Logo of intron evaluated by donor model for Calco1

() : Comparison of the logos for Calco1

() : Logo of intron evaluated by acceptor model for Gloin1

() : Logo of intron evaluated by donor model for Gloin1

() : Comparison of the logos for Gloin1

() : Logo of intron evaluated by acceptor model for Symko1

() : Logo of intron evaluated by donor model for Symko1

() : Comparison of the logos for Symko1

Figure 1: Visualisation of introns in different organisms evaluated by acceptor
and donor models corresponding to their taxonomy, and their comparison



(a) : Tralac1

(b) : Blabri1

(c) : Synfus1

(d) : Obemuc1

(e) : Disac1

(f) : Claim1

(g) : Bissp1

(h) : Pilano1

(i) : Sarco1

Figure 2: Visualisation of introns in different organisms evaluated by donor
models from the optimal set



(j) : Colgr1

(k) : Kocim1

(l) : Spoli1

(m) : Jamsp1

(n) : Saico1

(o) : Anasp1

(p) : Calco1

(q) : Gloin1

(r) : Symko1

Figure 2: Visualisation of introns in different organisms evaluated by donor
models from the optimal set (continued)



(a) : Tralac1

(b) : Blabri1

(c) : Synfus1

(d) : Obemuc1

(e) : Disac1

(f) : Claim1

(g) : Bissp1

(h) : Pilano1

(i) : Sarco1

Figure 3: Visualisation of introns in different organisms evaluated by acceptor
models from the optimal set



(j) : Colgr1

(k) : Kocim1

(l) : Spoli1

(m) : Jamsp1

(n) : Saico1

(o) : Anasp1

(p) : Calco1

(q) : Gloin1

(r) : Symko1

Figure 3: Visualisation of introns in different organisms evaluated by acceptor
models from the optimal set (continued)



Figure 4: Comparison of motifs of interest of all models
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