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Abstrakt
K poškozenı́ nohy šestinohého kráčejı́cı́ho robotu, které zamezuje dalšı́ lokomoci, může při robo-
tizaci lidské práce v nebezpečném prostředı́, jakým jsou doly nebo zborcené budovy, snadno
dojı́t. Aby byli lidé vyvarováni nebezpečı́, musı́ robot fungovat autonomě. Výměnou robotů za
lidi se ale prostředı́ nestane o nic bezpečnějšı́, takže se robot při vykonávánı́ práce může snadno
poškodit. V přı́padě poničenı́ musı́ být robot schopen pokračovat ve svém úkolu, vrátit se k
lidskému operátorovi kvůli opravám nebo aspoň rychle opustit mı́sto, kde došlo k poškozenı́,
protože tam může hrozit dalšı́ nebezpečı́. Žijı́cı́ šestinohé organismy, které jsou předlohami
pro šestinohé kráčejı́cı́ roboty, jsou celkem rychle schopny se vzniklé amputaci svojı́ chůzı́
přizpůsobit. V této práci použivám z přı́rody odpozorovaná pravidla, určujı́cı́ vztahy mezi pohyby
jednotlivých nohou. Tato pravidla upravujı́ závislosti v dynamickém systému, který po amputaci
měnı́ rytmus pohybu robota, aby vykompenzoval chybějı́cı́ nohu. Metoda adaptuje rytmus na
základě vnitřnı́ho stavu dynamického systému, takže nepotřebuje žádný kontinuálnı́ senzorický
vstup. Výsledná lokomoce je vyhodnocena navrženou ohodnocujı́cı́ funkcı́, která upřednostňuje
předevšı́m stabilitu rychlosti a orientace robotu. Výsledná metoda je porovnána s konkurenčnı́
metodou, založenou na zpracovánı́ senzorického vstupu, a překonává ji kvalitou ve dvou ze třı́
testovaných scénářů amputace a konzistentnostı́ ve všech testovaných scénářı́ch. Obě metody
jsou také porovnány s navrhovaným přı́stupem optimalizace pomocı́ evolučnı́ho algoritmu, kde
toto testovánı́ odhaluje společné trendy v adaptaci lokomoce po amputaci nohy u všech třı́ metod,
navzdory jejich odlišným optimalizačnı́m kritériı́m. Výsledky podporujı́ myšlenku, že použitá
z přı́rody odpozorovaná pravidla jsou vhodnou heuristikou pro adaptaci lokomoce a nalezené
podobnosti mezi výsledky lokomoce a jejı́ho ohodnocenı́ u jednotlivých metod poukazujı́ na
možné vylepšenı́ definice těchto pravidel.

Klı́čová slova: Šestinohý kráčejı́cı́ robot, Amputace nohy, Lokomoce, Adaptace, Vzor chůze,
Evolučnı́ algoritmus, Ohodnocujı́cı́ funkce, Ohodnocenı́ chůze, Adaptace rytmu, Kompenzace
poškozenı́, Centrálnı́ generátor vzorů, CGV, Dynamický systém
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Abstract
The hexapod walking robot can easily come to leg damage, preventing the robot from locomo-
tion while replacing humans on a mission in dangerous environments, like mines or collapsed
buildings. To keep people away from the threats, the robot has to work autonomously. However,
switching out the robots and people does not make the environment any less hostile, so the robot
can be easily damaged during its task. In the case of damage, the robot has to continue in its task,
get back to the human operator for repairs, or at least quickly leave the dangerous place where
it came to harm because more damage can happen. The living six-legged organisms, which are
templates for the hexapod walking robots, are able to adjust their locomotion swiftly after the
leg amputation. In this work, I use nature-observed rules dictating relations among movement of
individual legs. The rules provide dependencies within a dynamic system adjusting the robot’s
movement rhythm after the amputation to compensate for the missing leg. The method adapts
based on the state of the system itself; hence, no continual sensory feedback is needed. The
resulting locomotion is evaluated by the proposed reward function favoring mainly the stability
of locomotion speed and stability of the robot’s orientation. The proposed method is compared
with competing sensory-based state-of-the-art method and overcomes it in terms of performance
in two out of three tested amputation scenarios with more consistent results in all tested scenarios.
Both the competing methods are also compared with proposed evolution algorithm optimization
approach, revealing similar trends in locomotion adaptation across all the compared methods de-
spite their different optimization criteria. The results support the nature-observed coordination
rules as a suitable heuristic for locomotion adaptation and suggest the rules improvement given
the observed relations between resulting locomotion and its gained reward.

Keywords: Hexapod walking robot, Leg amputation, Locomotion, Adaptation, Gait pattern,
Evolution algorithm, Reward function, Gait evaluation, Rhythm adaptation, Damage compensa-
tion, Central pattern generator, CPG, Dynamic system
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Chapter 1

Introduction

If a robot gets damaged, it needs a relatively fast adaptation mechanism to overcome the damage
and leave the dangerous place as fast as possible to avoid further destruction and continue in its task,
or at least to get to the closest repair point. The aimed use of robots does often consider missions
in hostile environments, where human life could be endangered (e.g., inspections, search and rescue
missions or mining in environments like industrial areas [1], mines, underground, caves, collapsed
buildings [2, 3], extra-terrestrial objects and planets [4], etc.); thus, robot replacing the human in such
tasks could save lives. However, if the environment is dangerous for humans, it is usually unsafe for
the robots too, increasing the chances of malfunctions and failure. The significant advantage of the
hexapod walking robot in comparison with quadrupeds and bipeds is its redundancy in the number
of legs, which we would like the robot to utilize in the adaptation process in case of the robot’s leg
damage/amputation.

The design of legged robots is inspired by nature: bipeds are based on human anatomy, quadruped
models originate in dogs, deers, horses, etc., and hexapod robot designs are inspired by stick insects,
ants, cockroaches or beetles; hence, the robots’ locomotion is also inspired by their animal templates.
The inspiration comes from nature because the physique has already undergone millions of years of
testing, inherently solving many problems by its design.

Despite the designs being inspired by known organisms, controlling their locomotion is not an
easy task, mostly due to a large number of degrees of freedom. The six-legged robot usually consists
of 18 joints, where each joint needs to be continuously fed by motion commands. Based on the used
method and its goal, such parametrization can lead to thousands of degrees of freedom. Nevertheless,
over the years, many relations and dependencies in locomotion have been described and used to make
the search for suitable locomotion easier.

However, the locomotion with an amputated leg introduces another challenge because the loco-
motion of a fully functional robot does not transfer well to the problem of amputation. Although the
researchers observe results of living-organisms locomotion adaptation after a leg injury, the adapting
mechanism is not yet fully understood [5, 6].

Therefore, the robotics use a variety of methods tackling the damage compensation problem, like
evolution optimization [7], reinforcement learning [8, 9], traditional control approaches [10], or they
develop a dynamic system based on sensory feedback or other biomimetic mechanism, like neural
oscillators [11], artificial hormones [12] or nature observed Coordination Rules (CRs) describing re-
lations between the movement of individual legs [13].

The approaches often use sensory feedback (force, torques, robot orientation, etc.) as input for
their dynamic system, adjusting the locomotion rhythm and sometimes also the amplitudes of the
motor commands. However, the sensory feedback can produce noised or invalid data due to the
damage that caused the leg amputation.

My method adjusts the locomotion rhythm based on nature-observed CRs extended for amputation
scenarios with no sensory feedback, using only the information about which leg is damaged. The CRs
put restrictions on the legs, forbidding or encouraging similarity between their movement. Hence, the
proposed method does not rely on possibly unreliable continuous sensory feedback.

I compare a reactive approach relying on sensory feedback with no knowledge about particular
damage with its ”orthogonal” approach of my method, knowing only the information about damage
having no other sensory feedback. The methods’ scores are given by the proposed reward function,

1



1. Introduction

designed to evaluate the robot’s locomotion.
The compared methods adjust the timing of individual legs’ forward and backward movement,

given by parametrized motion primitives, within the repeating robot’s movement. Thanks to the
parametrization, the complex locomotion of the hexapod walking robot is reduced to a few tunable
parameters.

In contrast to the compared online learning methods, I propose an evolution algorithm tuning the
parameters. The evolution algorithm optimizes the proposed reward function value by tunning the
locomotion parameters, hence giving an upper bound of what the competing online methods, tunning
the same parameters, are able to achieve.

The gap between the upper bound, given by the computationally demanding evolution algorithm,
and the online adapting methods is discussed, concluding the computational demands of evolution
optimization are not worth the small reward gain it provides. However, a point of interest is that
despite different optimization criteria, all three compared methods tend to adapt the locomotion after
amputation towards similar results.

The results prove that, according to the proposed reward function, the proposed feedback-free
method is more consistent and, in two out of three scenarios, better than the compared feedback-based
method, thus justifying the CRs-based rhythm modification and importance of the damage origin
knowledge.

The remainder of this thesis is organized as follows: In Chapter 2, I present the introduction to
legged locomotion and gait patterns, together with the work related to the thesis topic. The problem
statement can be found in Chapter 3. The proposed sensory-feedback-free method based on adjusted
CRs is described in Chapter 4. Chapter 5 introduces the simulation setting, the proposed reward
function for locomotion evaluation, adjustments made to the sensory-feedback-based competitive ap-
proach proposed by Miguel et al. [14], and the evolution algorithm providing the upper bound for the
compared methods.

Results presentation and methods comparison are provided in Chapter 6, with a discussion fol-
lowing in Chapter 7, which also includes some insights into the relation between the coordination
rules, expected reward values, and obtained reward values for achieved gait patterns. Another dis-
cussed topic is the comparison of the online learning methods, represented by the proposed method
and Miguel’s approach, with the evolution algorithm. The thesis concludes in the final Chapter 8.
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Chapter 2

Background and Related Work

This Chapter is divided into two main sections. In the first Section 2.1, I introduce the concepts
and basic principles of legged locomotion, together with the coordination rules on which the pro-
posed method is based. The second Section 2.2 follows with an overview of different approaches and
methods the robotics use to invoke the hexapod walking robot locomotion and how such concepts are
(sometimes) extended to a damage adaptation.

2.1 Introduction to Legged Locomotion of Hexapods
The various approaches share a common foundation: utilizing the periodicity to simplify the complex
problem of legged locomotion having to control many servo motors (usually eighteen in the case of
hexapod walking robots). This section introduces the fundamentals of fully functional legged robots’
locomotion and the coordination rules describing relations between individual legs movement crucial
for the proposed method.

2.1.1 Locomotion of Fully Functional Walking Robot

The two fundamental branches of legged locomotion can be categorized as (i) precise motion planning
for difficult terrain and (ii) the topic of this thesis, the use of gait patterns for regular terrain. The
branch (i) is advantageous if the traversed terrain has many pitfalls and requires precise foot-placing
to avoid an irreversible robot state (e.g., a fall into the water while crossing the river using protruding
stones). Nevertheless, such approach is computationally very demanding and is situation-specific,
requiring a reasonably good scan of the traversed terrain and the robot’s model with weight distribution
and body and leg dimensions to create a precise plan.

For traveling longer distances of regular terrain, there is no need to precisely plan the movement
of every joint because minor irregularities occurring there do not usually put the robot at risk of irre-
versible state. Therefore, to decrease the demand for computational resources, which can be utilized
for other tasks, it is reasonable to use the approach (ii) inspired by a nature-observed feature of living
organisms’ movement, the Gait Patterns (GPs) based on the movement repetitiveness.

The GP is a repetitive motion pattern prescribing the mapping between the phase of the motion
and the movement of individual legs and their joints. GPs are widely recognized in the locomotion of
all living organisms, whether it is trot, walk, gallop, or any other named or unnamed repetitive pattern
of movement. The motion of each joint and each leg repeats periodically; hence, I use an expression
Leg’s Motion Cycle (LMC) denoting the periodic movement of an individual limb.

The LMCs of individual legs are mutually synchronized and ordered within the repeating move-
ment of the whole body, here called the Motion Cycle (MC). The MC’s phase, in combination with
the phase in which the LMC starts within the MC, clearly determines the movement phase of the re-
spective leg. The ordering of the LMCs starts within the MC is both determined by and determining
the GP.

The LMC consists of two altering movements: the swing and the stance. The swing is the forward
movement when a leg is lifted of the ground moving forward (i.e., it is making the step forward). The
stance is the leg’s backward movement when the leg is lying on the ground, supporting the body’s
weight and moving backward in relation to the body.

5
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When no irregularities occur, the leg moves the same distance forward during the swing and back-
ward during the stance. Therefore, the leg’s altering forward and backward movement distance is the
same, but the time spent in the swing can differ from the time spent in the stance; hence, the forward
and backward leg speed can vary. The LMC consists of the swing followed by the stance (i.e., the
combined duration of one swing and one stance gives the duration of one LMC), and the combined
duration of one swing and one stance equals the length of MC’s period.

An important detail is the swing duration, which is usually the same for all legs. Frequently
mentioned in the other works is the duty factor, the fraction of the LMC period for which the leg
performs stance. Because the LMC consists of swing followed by stance, both the swing duration and
duty factor are defined by defining one of them. In this thesis, the swing duration is used.

Generally, the name GP encapsulates the whole motion pattern, not only the LMC starts and
swing duration, but also the mapping from the LMC phase to the motor commands, i.e., the GP can be
adjusted not only by the change of rhythm but also by change of servo motor movement amplitudes.
To avoid confusion, in this thesis, the LMCs starts placement within the MC, together with the swing
duration (or swing durations if we consider individual value for each leg), are called the GP rhythm.

It is believed that living organisms maintain the rhythm with the use of oscillators. The observa-
tions of living organisms revealed oscillators existing in their spinal cord (or in other subregions of
the central nervous system in simpler organisms, like insects). Findings suggest that such oscillators
in the hierarchy of animals’ motor system (central neural system - neural oscillators - effector organs)
have a role of generating a rhythm underlying the periodic movement [15,16]. Such oscillators consist
of several coupled neurons, producing a recurrent neural network. The neural oscillators are called
Central Pattern Generators (CPGs).

Some simplified CPG models are mathematically described and used in robotics. The CPG’s key
feature is its ability to generate rhythmical output without any rhythmical input, which is automatically
restored if any outside influence perturbs the rhythm. This CPG feature is often used in the locomotion
controllers design for automatic small perturbation handling caused by uneven terrain, for instance.
Another useful and frequently exploited feature is the ability of multiple coupled CPGs to synchronize.

The CPG’s ability to synchronize with other CPGs and to restore its rhythm shows itself while
observing the CPG’s state space. From all states in the state space, the CPG’s state trajectory converges
to a closed loop called the limit cycle. The CPG’s state following the limit cycle trajectory determines
the CPG’s, and implicitly also the MC’s or LMC’s, phase.

Researchers in the community have proposed many different approaches, trying to use CPG/CPGs
and the above-described features with various modifications and roles within the proposed locomotion
controllers. Some of the approaches regarding the hexapod walking robots are described in Sec-
tion 2.2.

2.1.2 Basic Gait Patterns of Hexapod Walking Robot
The morphology of a hexapod walking robot dictates its suitable GPs based on observations of cock-
roaches, stick insects, ants, and other six-legged organisms’ locomotion. The usual design consists
of three (front, middle, and hind) pairs of legs, where the legs within the pair are on contralat-
eral/opposing sides of the robot’s body. In other words, the robot design tends to copy the living
organisms, see Figure 1. Therefore, it is not surprising that different optimization algorithms con-
verged to GPs observed in living organisms, as proposed by millions of years of evolution.

The biomimetic GPs are the most frequently used GPs for the hexapod walking robots. The
following paragraphs describe the three most occurring hexapod GPs in the robotics community.

The most common GP for a hexapod walking robot is the tripod gait. In general, a tripod gait
is a name for any GP, fulfilling the condition of being supported by three legs in stance at every
moment of the MC. Nevertheless, the tripod gait divides the legs into two triplets: (i) left front and
hind legs combined with right middle leg, and (ii) right front and hind legs combined with left middle
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Figure 1: On the right is the screenshot of the robot from the simulator. The scheme of the robot with
labels of individual legs is depicted in the middle. The color code of the legs holds in all other figures
regarding legs in this thesis. The arrow shows the forward direction of the robot’s walk. On the left is
the schema of one leg with individual parts and the joins between them.

leg. Legs within those triplets move synchronously, performing the same actions simultaneously, i.e.,
their LMCs starts are equal. The triplets alter each other in swing and stance movements, resulting in
three legs being in swing and three legs being in stance in each moment (i.e., the triplets perform their
movement in antiphase), see Figure 2. In the tripod gait, the swing and stance durations are equal, i.e.,

0 π
3

2π
3

π 4π
3

5π
3

2π

motion cycle phase (φmc)

5
4
3
2
1
0

le
g

la
b

el
i

Tripod

0 π
3

2π
3

π 4π
3

5π
3

2π

motion cycle phase (φmc)

5
4
3
2
1
0

le
g

la
b

el
i

Ripple

0 π
3

2π
3

π 4π
3

5π
3

2π

motion cycle phase (φmc)

5
4
3
2
1
0

le
g

la
b

el
i

Wave
Commonly Used Gait Patterns

Figure 2: Showcase of the fundamental GPs. Three GPs are depicted: tripod gait, ripple gait, and
wave gait, from left to right, respectively. The leg label i is on the y axis, while the MC phase φmc is
depicted by the x axis. The color bar represents the respective leg’s swing phase, with its left border
representing the swing start φi(t) and length representing the swing duration. The individual leg colors
and labels correspond to the schema in Figure 1.

half of the MC period, ensuring no overlap in the triplets’ actions. Therefore, in each moment, the
maximum number of legs are performing a step forward while the robot still maintains its stability due
to the other three legs ensuring the robot’s center of mass is above the polygon created by the legs’
foot tips on the ground. Hence, the tripod gait is usually the best solution for maintaining the robot’s
stability while performing a relatively fast walk. The geometrical features of the hexapod morphology
even suggest the tripod gait is very suitable for fast locomotion, maximizing the stride length, thus,
maximizing the speed with a fixed number of stepping cycles [17].

Other very commonly used patterns are various types of ripple gait.1 During the ripple gait, two
legs always perform swing, and four perform stance at each moment. Some variants use separation
into three pairs of legs: (i) right hind and left middle, (ii) right middle and left front, and (iii) right

1Ripple gait has many different names, and the terminology is inconsistent within the robotics community. The same
names are often used for different GPs.
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front and left hind, or the mirrored version of such division. Legs within those pairs undergo the same
movement, i.e., their LMC starts are equal, and the LMC starts of the pairs within the MC are ordered
as (i), then (ii), and (iii) at last, see Figure 2. Due to the requirement on the number of legs performing
swing and stance at each moment, the swing duration has to be shorter than in the tripod gait case.
The swing duration (equal to the phase offset between the LMC starts of pairs (i) and (ii), and (ii) and
(iii)) is therefore equal to two-thirds of the MC period.

Other approaches using ripple gait do not join legs into pairs with equal LMC starts but start the
individual LMCs one at a time, in order (i) right hind, (ii) left middle, (iii) right middle, (iv) left
front, (v) right front, (vi) left hind, or a symmetrical version of such ordering. The phase offset of
consecutive LMC starts (e.g., phase offset between right hind and left middle legs’ LMCs starts) is
then equal to one-sixth of the MC period, while the phase offset of two consecutive legs (e.g., left hind
and left middle), is still the two-thirds of the MC period.

Finally, the third of the most frequently used GPs, the wave gait, which moves forward one leg
at a time with swing duration equal to one-sixth of the MC period, maintaining five legs in stance in
every moment of the MC, see Figure 2. The wave gait is slow, but the robot remains stable and can
move more precisely if needed. Therefore, the wave gait is helpful in restricted spaces, where more
careful maneuvering is needed, or the slower speed can lower slipping on slippery surfaces, like ice,
for instance.

The tripod gait, ripple gait, and wave gait are well known within the community, but the ap-
proaches to invoke the gaits differ using different controller designs, which are described in detail in
the following sections. The GPs hold nature-observed coordination rules introduced in the following
section, serving in some form as a base for many bio-inspired hexapod locomotion controllers.

2.1.3 Gait Patterns in Context of the Coordination Rules

Observing the tripod, ripple, and wave gaits in living organisms and robots resulted in a formulation
of rules in the work of Dürr et al. [13]. The rules were made while observing the locomotion of six-
legged organisms with no leg trauma. Hence, the rules apply to fully functional six-legged robots. The
stated rules include the relations of legs in the context of the GP rhythm, the load distribution, and leg
placing. For purposes of this thesis, the rules about rhythm are relevant, i.e., the rules adjusting the
coordination of the legs’ movement; therefore, I call them the Coordination Rules (CRs), stated here
as follows:

1. While a leg is lifted off, suppress the lift off of its consecutive leg.

2. If a leg touches the ground, initiate the lift off of its consecutive leg.

3. Do not lift off the contralateral legs at the same time.

The consecutive leg for the hind leg is the middle leg on the same robot’s body side. Similarly, the
consecutive leg for the middle leg is the front leg on the respective robot’s body side. The contralateral
legs are the legs on the same positions from the opposing robot’s body sides (e.g., left and right
hind legs). The consecutivity and contralaterality relations are visualized in the most left schema of
Figure 3.

Taking a closer look at the presented GPs in the previous Section 2.1.2, all of them hold the
presented CRs. In the tripod gait, the front and hind legs perform the swing together, while the middle
leg (the rear leg’s consecutive leg) is in stance; therefore, CR 1 holds. The end of the front and hind
legs’ swing initiates the swing of the middle leg, which is the consecutive leg of the hind leg, i.e., the
CR 2 holds. Finally, the mentioned triplets of leg alter in the swing and stance phases, and in each
triplet is exactly one leg of the pair of contralateral legs; hence, the CR 3 also holds. If the situation
is in reverse (the middle leg is lifted and the front and hind legs are in stance), the middle leg is in
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No Damage Ampt. Leg 0 Ampt. Leg 4 Ampt. Leg 2

Application of CRs and CCARs

contralaterality

b is consecutive to a

canceled contralaterality

canceled consecutivity

new contralaterality

new consecutivity

Figure 3: The Figure presents the relations between legs in different scenarios. The fully functional
robot is presented on the left. The black dashed line represents the contralaterality relation between
the legs. The black arrow from leg i to leg k means the leg k is consecutive to leg i. The other
three schemas show the application of CCARs after the amputation, where the amputation of front
left, middle left, and hind left legs is depicted in the schemas from left to right, respectively. The
green dashed lines and arrows show the newly formed relations given the CCARs, while the grey
dashed lines and arrows depict the no longer valid relations canceled by the CCARs in the respective
amputation scenario. The individual leg colors correspond to the schema in Figure 1.

swing, while the lift off of its consecutive (front) leg is suppressed, i.e., the CR 1 holds. The end of
the middle leg’s swing initiates the swing of its consecutive (front) leg; hence, the CR 2 also holds.

In the ripple gait and wave gait, the legs on each side initiate their movement one after another
(hind, middle, and front); therefore, CRs 1 and 2 hold automatically. In wave gait, each leg performs
the swing by itself; hence, the CR 3 can not even be broken. The ripple gait always swings two legs
simultaneously, but never the pair of contralateral legs (left middle - right hind, left front - right middle,
left hind - right front, for instance, or a symmetrical version of the mentioned pairs). Therefore, the
CR 3 also holds.

As mentioned above, the CRs are formulated for fully functional robots. However, they provide
little to no information about rules in scenarios of leg damage. The following section presents an
extension of the CRs for scenarios with leg amputation.

2.1.4 Coordination Rules Extension

The CRs, described in the previous Section 2.1.3, do not provide a clear guide on how the rules behave
in case of leg amputation. Hence, in our previous work [18], we proposed extension of the CRs, which
we call Consecutivity and Contralaterality Adjustment Rules (CCARs):

1. The most-front left (right) functional leg is a contralateral leg for the most-front right (left)
functional leg.

2. The most-hind left (right) functional leg is a contralateral leg for the most-hind right (left) func-
tional leg.

3. If the leg i is the contralateral leg of the leg j that becomes the contralateral leg for the leg k due
to the proposed rule 1. or 2., then the contralateral relation between the legs i and j is no longer
active.
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4. If the leg j: (i) has consecutive leg k, and (ii) is the i-th leg’s consecutive leg, and (iii) is not
functional; then the leg k becomes the i-th leg’s consecutive leg.

The reader of this text can realize that the CCARs are also applicable for the loss of more than
just one leg. Experiments with two amputated legs using more complex controller architecture on real
hexapod walking robot, lacking deeper comparison with competitive approaches, were presented in
the already mentioned original work [18].

The visualization of the CCARs behavior in the leg amputation scenarios is depicted in Figure 3.
The combination of CRs and their extension, the presented CCARs, provide guidelines for the dy-
namic system interactions, adapting the GP rhythm to amputation, proposed in this thesis.

2.2 Different Locomotion Approaches
The aim of this thesis is to propose a solution for GP rhythm adjustment for a robot with a dam-
aged/amputated leg. The methods dedicated to locomotion adjustment after leg damage usually extend
already existing methods designed for fully functional hexapod walking robots.

Most often, the damaged leg is considered amputated, elevated in such position to not conflict with
the motion of other legs, and is no longer considered usable. The only branch of methods frequently
handling many different kinds of damage while still using the damaged leg to some extent are the
Evolution Algorithms (EAs) and Reinforcement Learning (RLs) methods because they simply try to
optimize a reward function given the new sensory feedback. Hence, the methods are able to adapt to
almost any possible damage, even replacing part of the broken leg with a piece of wood, for instance.

The ongoing research already suggested many different control approaches for fully functional,
and also some for damaged, hexapod walking robot locomotion. For a deeper analysis of different de-
velopment branches (of mostly fully functional hexapods), I strongly recommend reading the overview
of the trends in hexapod robot control in the last ten years by Coelho et al. [19]. Here, I just briefly
outline the main ideas behind different development trends in hexapod walking robot locomotion.

2.2.1 Traditional-Control Approaches
The traditional control approaches consider the legs as robotic manipulators. The kinematic-based
techniques mostly use the robot model and different sensor types to calculate whether the robot’s
center of mass projection is within the robot’s support polygon and to handle the environment irregu-
larities [10,20–22]. Widely used is the Static Stability Margin method [23] for gait stability evaluation,
computing the distance between the center of mass projection and the edge of the support polygon.
The algorithms often rely on feedback from ground contact forces and many other sensors. The robots
are even tested in environments with steps, ramps, and other similar types of obstacles that they climb
or avoid [10, 24].

Dynamic-based control methods are also frequently based on the robot’s state towards the support
polygon. However, instead of assuming quasi-static circumstances, they consider the influence of the
robot’s motion. Introducing the dynamics improves the robot’s abilities in obstacle avoidance and also
enables the possibility of energy consumption evaluation [25–28].

The third group of traditional approaches can be considered real-time planning, using mostly
Rapidly Exploring Random Tree [29, 30]. These methods, like many planning methods in other disci-
plines, sometimes implement other advanced mechanisms to take care of some parts of the planning,
like Artificial Neural Networks and Fuzzy Logic [31]. Nevertheless, like other traditional control-based
methods, a robot model with precise dimensions and described movement capabilities is needed.

In the scenario of damage, the traditional control methods usually hold on maintaining the center of
mass within the support polygon [32,33]. There are also innovative approaches considering adaptable
robot’s architecture sliding its legs along the side of the robot’s body and improving the stability [34].

10



2.2 Bio-Inspired Controllers

The requirement for a precise model in traditional approaches can be troublesome if the environ-
ment changes the robot, e.g., mud sticks on the robot’s legs, which become heavier. The change in
sensor readings can significantly influence the planning as it distorts the state of the robot. Given the
planning constraints, the state change can even make the search unfeasible if the distortion is signifi-
cant. On the other hand, rhythm-based controllers using the CPGs utilize the sensory input mostly to
adjust the GP rhythm, possibly distorting the rhythm in extreme cases but not making the locomotion
impossible.

Even in traditional control methods, the concept of GP is used to simplify the process of creating
the complex motion of, most often, eighteen servo motors forming the hexapod. The locomotion
decomposition using the CPG as rhythmic underly for the GP is used to even greater extent in the
bio-inspired methods, described in the following section.

2.2.2 Bio-Inspired Controllers

Bio-inspired controllers are based on nature-observed principles functioning in living organisms.
Some methods use the concepts purely as inspiration for their models, using only the idea of the prin-
ciples. On the other end of the spectrum are researchers who try to take the specific nature-observed
mechanisms and replicate them as truly as possible. Most GP-based controllers use the concept of
CPGs: their coupling or their connection with sensory feedback.

This work considers the Evolution Algorithms (EAs) and Reinforcement Learning (RL) approaches
as part of the bio-inspired controllers, specifically for two reasons: (i) they often use the CPGs to the
same extent, as other bio-inspired methods, using the EA or RL for search of coupling weights or CPG
parameters; (ii) the idea of EA and RL are themselves inspired in nature-observed mechanisms. Thus, I
split the group of bio-inspired controllers into two parts: (i) reward evaluating controllers, the EA and
RL controllers need to repeatedly evaluate the gait while learning, and (ii) dynamic system controllers,
the CPG network with its learning mechanism and with or without sensory feedback connection and
the CPG signal to motor commands mapping is usually one connected dynamic system handling all
the problems online.

2.2.2.1 Evaluating Controllers

The RL and EA methods are good in search space exploration; hence, they usually give very good
results in optimizing a given metric finding and exploiting promising solutions. However, there are
three issues resulting in possible limitations.

Firstly, the common problem of RL and EA approaches for GP-learning is the high dimensionality.
The RL and EA can optimize almost anything if given enough time and space, which can both be
required in enormous amounts if optimizing too many parameters at once. Therefore, it is essential to
parametrize the GP-determining features as compactly as possible. The choice of the parametrization
is usually a challenging task by itself.

Secondly, the EA and RL methods need a lot of data to learn from. During the learning process, a
lot of information has to be stored. We can only learn from what was already tried, and if we do not
store the data, we need to try possibly already explored possibilities, which can be a dead end. There
exist methods focusing on effective data storage for GP learning, e.g., behavior-performance map [8].
Nevertheless, a significant amount of data must be kept to use the methods’ potential fully.

In the case of damage, the robot must leave the dangerous place as fast as possible, not having
time to gather the data nor explore the enormous search.

Thirdly, which does not apply to all EA and LR methods, the learning uses a simulator, resulting in
(i) a Sim-to-Real problem, which summarizes the differences between the simulator and the real-world
(sometimes the algorithm even learns to exploit a simulator’s quirkiness, which is non-existing in real
world [7]), and (ii) the problem of running the simulator in the robot, or the need to connect to a server
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providing simulator. Few methods do not need the simulator and test all on the real robot. However,
such learning, especially in the EA case, can lead to dangerous robot behavior while exploring possibly
damaging movements when the robot can irreversibly damage itself. Also, running the simulations is
often time-consuming and computationally expensive.

The reward evaluating controller methods often implement advanced strategies improving the op-
timum search, e.g., the RL approaches use Intelligent Trial and Error for balancing exploration and
exploitation of policies [8, 9, 35]. There are also experiments with incorporating other concepts into
the learning procedures like monte carlo [36] or neural networks [37]. Attempts are also made with
different sensory inputs, like gyroscopes [38], ultrasonic sensors [39], external camera [40], etc., to
enhance the robot’s capabilities (e.g., obstacle avoidance).

Overall, if given the correct setting, the EA and RL can solve GP optimization for almost any
scenario, including damage or part of a leg replaced by a piece of wood. The methods considering
damage usually try to take advantage of already gathered data from the fully functional state and use
them to improve the learning in damaged state [8]. Nevertheless, the computational demands of the
EA and RL methods do not always meet the possibilities the damaged robot deployed on a mission in
a hostile environment has.

2.2.2.2 Dynamic System Controllers

Dynamic system controllers usually consist of one or more CPGs generating rhythm for swing and
stance alternation, controlling a mechanism that transforms the CPG signal into motor commands for
individual joints. The key feature of such controllers is the real-time approach to problem-solving.
The controllers are designed to handle the emerged problems on the fly, differing significantly in
comparison with previously introduced reward evaluating controllers.

The architectures differ in all possible aspects, for instance, the CPG count, used CPG model,
coupling strategy, CPG signal to commands mapping, or sensory data fusion and its further usage. The
variety of proposed architectures suggests that the problem is still ongoing, and none of the proposed
solutions overcomes the others in all aspects.

Regarding the number of used CPGs, the most common is the use of six CPGs, one for each
leg [11,41], or in other words, each CPG generates rhythm for one LMC. More rarely, the architecture
with eighteen CPGs, one for each joint with three joints per leg, is used [42]. There are also ap-
proaches using three CPGs per robot, one CPG per one pair of contralateral legs [43], or other various
suggestions. Other works, including this thesis, use one CPG per robot generating rhythm for MC.

The CPG models are of various types, and many of them are named, like the Van der Pol oscillator
used in [44], Hopf chosen by authors of [40] or Matsuoka oscillator deployed in [42]. The CPG models
also differ in the number of dimensions their state space has and in the shape of their limit cycle.

CPG coupling strategy is usually an integral part of the proposed solution design in bio-inspired
methods. The way CPGs are or are not coupled determines the system’s behavior. Therefore, there is
great variety among the coupling approaches. There are methods connecting every CPG to all other
CPGs [42]; also, the concept of one master CPG innervating the other CPGs was proposed [11], etc.
A few proposed solutions also change the CPG coupling based on desired GP [45]. Another curious
approach is not connecting the CPGs directly at all but rely on the sensory feedback (ground contact
force) providing enough inhibiting input for the CPG synchronization [14]. One of the well-known
architectures is the WALKNET [13], which is developed continuously [46, 47].

Converting CPG signals to motion commands is a topic by itself from which different development
branches emerge. A lot of proposed techniques define a continuous function that directly converts the
CPG signal into signals setting positions of servo motors [44, 48]. Few approaches use the signal as a
binary switch to recognize whether the leg should perform swing or stance [49]. In this thesis, we use
CPG-RBFN architecture [42, 50], where RBFN stands for Radial Basis Function Neuron, which can
be used as a binary switch or it can be extended to multi-phase switch.
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In the CPG-RBFN architecture in this thesis, the RBFN is a neuron placed in the CPG’s state
space activated by the closeness (i.e., distance, hence ”radial basis” function neurons) of the CPG’s
state. The activation triggers a pulse in the output signal, which can represent any desired phase
within the CPG’s cycle, corresponding to a particular phase in a particular LMC. In other words, the
RBFN activation triggers specific leg action. The advantage of using the CPG-RBFN architecture is
its flexibility. There can be as many RBFNs as we need, signaling whatever action we want within
the phase. Opposed to the continuous function, converting the CPG signal needs a specific function
for a specific CPG. Also, the CPG can change its output signal due to synchronization, perturbations,
etc., changing the CPG output signal significantly and therefore requiring a change of the mapping
function. In contrast, the RBFNs can be used for any CPG model in the exact same way. There can be
issues to learn the neurons to be placed in close vicinity of the CPG’s limit cycle, especially for CPGs
with analytically inexpressible phase. For this issue, we proposed a solution in [51].

Regarding the bio-inspired dynamic system-based methods of handling leg damage, I also include
two novel solutions proposing unique approaches: The first one is the use of artificial hormone (the
artificial hormone mechanism was originally proposed in [52]), which automatically handles the prob-
lems caused by damage [12]. The Second one is the work of Owaki et al., where the tegotae principle
of sensory feedback influencing the CPG’s phase by detecting unwanted behavior is introduced [53].

A problematic area is the detection of malfunction. The malfunction is usually detected by com-
paring the expected and measured sensory feedback. It is a non-trivial task to find out whether the
sensory feedback signaling damage is just a sensor malfunction, a momentary change caused by ter-
rain (e.g., the foot stepped into a pit), a change caused by the environment (sticking mud increasing
the needed force for motion, loose sand, etc.) or actual damage. Nevertheless, the problem of damage
identification is out of the scope of this thesis.

There is a wide variety of approaches handling the hexapod walking robot locomotion. Traditional
approaches need detailed robot model, which can be made obsolete due to damage or environmental
influences, like sticking mud on the robot legs. Almost all the approaches rely on sensory feedback,
whether it is for measuring the robot state in traditional approaches, evaluating the GP in reward eval-
uating methods, or adjusting it, like the dynamic system controllers do. However, in case of damage,
the sensors can become unreliable and even make the adaptation method unfeasible. The difference
is also in deployment criteria, with some methods being able to adapt the gait in real-time, such as
dynamic system methods and real-time planning methods, while others require considerable time to
adjust, particularly evolution algorithms, reinforcement learning, and motion planning, increasing the
danger of the robot by remaining in the potentially risky place where the injury happened. In this
work, I propose an online adapting solution adjusting solely based on the dynamic system relations
with no need for continuous sensory feedback.
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Chapter 3

Problem Statement

This thesis aims to adjust the GP rhythm after a leg amputation. The GP can be decomposed
into two parts: (i) the rhythm control, defining when the actions take place, and (ii) the movement
control, taking care of what the performed actions are. The two actions are swing and stance with
their corresponding motion primitives. When the actions are performed and how long is their duration
is given by the GP rhythm. The CPG model, described in the following paragraphs, drives the GP
rhythm causing the RBFNs activations that trigger the motion primitives driving the servo motors.

The GP rhythm consists of LMC starts φi(t) for i = 0, . . . , 5, each representing the swing move-
ment start phase of the i-th leg within the MC, and the swing duration ∆φ. Ordering of the LMC
starts φi(t) within the MC means assigning each φi(t) a value from [0, P ), where P = 2π is the pe-
riod length of the MC, and implicitly also the period length of the LMC. The swing duration ∆φ is the
same for all legs. Its lower bound corresponds to the wave gait swing duration (hence, lower values do
not make sense because the wave gait already swings only one leg at a time), while the upper bound
corresponds to the tripod gait swing duration (hence, greater values do not make sense if the stability
should still be maintained, because, at some point within the MC, less than three legs would support
the robot’s body). Therefore, the values are bounded within interval [P6 ,

P
2 ] corresponding to [π3 ,

π
2 ]

for P = 2π. For the scenario with an amputated leg, the formal description remains the same, except
we do not care about the amputated leg j; thus i ∈ {0, 1, 2, 3, 4, 5}\{j}.

The MC phase state is given by the CPG’s phase state. In this thesis, I use a simplified CPG
model [54], in which the phase is defined by a single constant, making the phase easy to track. The
CPG model is defined by its differential with respect to time dφcpg(t)

dt given by the following equation:

dφcpg(t)

dt
= ω + p(t) sin (φcpg(t)) , (1)

where ω = 1 is a positive constant ensuring constant phase growth, and p(t) denotes the external
input to which the CPG can synchronize. The MC phase φMC(t) is given as the remainder after
dividing the φcpg(t) by the length of the CPG’s (and also MC’s and LMC’s) period P = 2π, i.e.,
φMC(t) = φcpg(t) mod P .

I focus on amputation recovery without perturbations to the CPG in this work. Therefore, the
perturbation input is set to zero, i.e., p(t) = 0. Hence, the model is simplified as follows:

dφcpg(t)

dt
= ω, (2)

φMC(t) = φcpg(t) mod P, (3)

and the individual LMC phases φLMC
i (t) are defined by equation:

φLMC
i (t) = (φMC(t)− φi(t)) mod P. (4)

The CPG’s state y(t) is defined by a vector
(
u
v

)
∈ R2 as follows:

u(t) = cos(φcpg(t)) = cos
(
φMC(t)

)
, (5)
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3. Problem Statement

v(t) = sin(φcpg(t)) = sin
(
φMC(t)

)
. (6)

In the CPG-RBFN architecture, a specific movement action is triggered by the RBFN activation
depending on the MC phase, i.e., RBFNs are activated by a specific CPG state defining the phase of
the MC. The RBFNs are defined by their centers ws

i(t),w
m
i (t),we

i(t) ∈ R2 which if activated trigger
the swing start, middle of the swing and end of the swing (start of the stance) actions for the i-th leg,
respectively. The RBFNs placing within the CPGs’ state space for correct activation is in this work
defined as follows:

ws
i(t) =

(
cos(φi(t))
sin(φi(t))

)
, (7)

wm
i (t) =

cos
(
φi(t) + ∆φ

2

)
sin
(
φi(t) + ∆φ

2

) , (8)

we
i(t) =

(
cos(φi(t) + ∆φ)
sin(φi(t) + ∆φ)

)
. (9)

The activation signal transmitted by the RBFNs ss
i(t), sm

i (t), se
i(t) depends on the centers ws

i(t),
wm
i (t), we

i(t) ∈ R2 and their distance from the CPG’s state y(t) [55]:

s
s/m/e
i (t) = exp

(
−α
∥∥∥y(t)−ws/m/e

i (t)
∥∥∥) , (10)

where ‖−‖ is the euclidean norm and α = 12 is the coeficient of the neuron’s sensitivity. Therefore,
the peak/activation of the RBFN means that corresponding ss/m/e

i ≈ 1.
For more complex CPG models, we proposed a solution in [18, 51], where the system estimates

the CPG phase and the RBFN uses the estimation to stick to the CPG’s limit cycle in place, where the
CPG state’s phase is estimated to correspond to the desired phase.

The information about amputation is stored in binary vector sdmg ∈ {0, 1}6 indicating the ampu-
tated leg j by sdmg

j = 1. This thesis assumes the vector is given.
The problem description as motion primitives timed by GP rhythm enables to achieve various GPs

only by a change of seven parameters: the LMC starts φi(t) and swing duration ∆φ(t). In the next
Chapter, I propose the method arranging the LMC starts φi(t) within the MC and adjusting the swing
duration ∆φ(t) based on the CRs violation detection and subsequent CRs violation avoidance, adapt-
ing the GP rhythm after the leg amputation. The method is a modified version of the above-mentioned
solution proposed in [18], here transformed for easier comparison with other approaches. An up-
per bound towards which the competing methods are compared is provided by the AE, introduced in
Chapter 5, optimizing the reward function proposed in the same Chapter. The presented EA takes
advantage of the problem specification and optimizes the reward function by assigning values to LMC
starts φi(t), thus evolving the GP rhythm.
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Chapter 4

Proposed Method

The proposed method adapts the GP rhythm after an amputation occurs to enable the robot to
continue in its task. The method is based on a dynamic system detecting the violation of the CRs
and their extension CCARs, introduced in Secs. 2.1.3 and 2.1.4, respectively, and actively adjusting
itself to avoid the violations in the future. The rules violation causes the LMCs starts and the swing
duration ∆φ(t) to change given the proposed relations within the dynamic system. From the proposed
interactions within the system emerges the amputation-adjusted GP rhythm configuration.

4.1 From Rules to Dynamics

The proposed method detects the rules violation to eliminate the violation occurrence afterward. The
CRs are violated if certain pairs of legs perform swing simultaneously, which is detected using the
RFBNs activation signals ss

i(t), sm
i (t), and se

i(t), introduced in Eq. 10, tracking the swing and stance
timing.

The swing start (leg lifting off), middle (leg starts to descend) and end (leg steps on the ground
and the stance starts) are signalized by the activations of the ss

i(t), sm
i (t), and se

i(t), respectively. The
phase switches from stance to swing by activation of the ss

i(t), i.e., ss
i(t) ≈ 1, and it switches back

from swing to stance if the se
i(t) activates, i.e., se

i(t) ≈ 1.

The switch between the swing and stance is tracked by the swing indicators ssw
i (t) are introduced

forming a vector ssw(t) = (ssw
0 (t), . . . , ssw

5 (t)), where ssw
i (t) = 1 and ssw

i (t) = 0 represents the i-th
leg is performing swing and stance, respectively. The amputated leg j is considered to be in swing the
whole MC.

The i-th leg swing indicator helps the robot to recognize two different system states balancing each
other. The first is denoted as Over-Safe State (OSS), representing all legs (except the amputated one)
being in stance, i.e., all functional legs are supporting the robot’s body, and none of them is performing
swing. The OSS is unwanted because its existence implies the robot does not use the time during the
MC to its full potential for movement. The time spent in the OSS can be instead utilized to perform
swing, thus moving the leg and the robot forward. Hence, the OSS slows the robot down.

The second state recognized using the swing indicator ssw
i (t) is the Rules Violation State (RVS).

The RVS is the state when the CRs extended by CCARs are violated, i.e., the leg i violates the CRs
if it performs swing simultaneously with (i) its contralateral leg or (ii) leg to which the i-th leg is
consecutive. The case ”its consecutive leg” is not considered because it is already covered by the case
(ii) applied on its consecutive leg. Another violation occurs if the lift off of the leg i would leave
only two legs in stance in total (i.e., the robot would not have the minimal three points supporting the
body).

The RVS and OSS oppose each other. The RVS signalizes not enough of the stance movement (or
too much of the swing movement), while OSS indicates too much of stance (more of swing movement
could be performed). The method tunes the parameters influencing the occurrence of OSS and RVS
to balance them.

The following sections consist of steps leading to the dynamic detection of the RVS and OSS and
their use in the online change of the GP rhythm in afford to avoid the RVS and OSS in the future.
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4.1 Rules Violation Detection

4.1.1 Rules Violation Detection

The RVS occurs if the activations corresponding to swing of one leg occur within the interval of
swing of its swing-conflicting leg (the conflicting leg pairs are given by the CRs and CCARs). Such
occurrences are recognized and integrated by the system reacting to the occurrences by changing itself.
The change is different based on whether the RVS was detected during or at the end of the swing, and
the amount of change is proportional to ”how much” the RVS was detected.

The swing indicators ssw(t) in combination with damage vector sdmg ∈ {0, 1}6 indicating the
damaged leg j by sdmg

j = 1 while undamaged leg i is indicated by sdmg
i = 0 are inputs of function

d(ssw, sdmg) = (d0(t), . . . , d5(t)) ∈ {0, 1}6, with the following meaning: (i) di(t) = 1 if leg i would
be performing swing in time t, it would violate the rules, and (ii) di(t) = 0 leg i performing swing in
time t would not conflict with the rules.2

Having the information about swing performance ssw
i (t) of individual legs and the logical function

di(t), the system distinguishes two possibilities of CRs violation, early lift (leg starts to lift off despite
it should remain on the ground) and late support (leg is lifted while it should be already on the ground),
represented by binary signals as

i and ae
i , respectively. The as

i(t) = 1 marks the violation during the first
half of the swing movement (the beginning or the middle of the swing), and the ae

i(t) = 1 signalizes
the violation occurring at the end of the i-th leg’s swing:

as
i(t) = di(t)s

sw
i (t)Jss

i(t) > γ ∨ sm
i (t) > γK, (11)

ae
i(t) = di(t)s

sw
i (t)Jse

i(t) > γK, (12)

where the Iverson bracket J−K gives value one if the predicate in them is true; otherwise, it is equal to
zero. The threshold hyperparameter γ = 0.5 marks the activation of the RBFN signal if passed. The
signals are further smoothened by integration:

dvs
i(t)

dt
= (as

i(t)− vs
i(t)) δ, (13)

dve
i (t)

dt
= (ae

i(t)− ve
i (t)) δ, (14)

where hyperparameter δ is empirically set to 10.

4.1.2 Leg Motion Cycle Starts Dynamics

With the RVS detected, the system adjusts the LMCs starts, trying to avoid the RVS in the next MC.
The signals vs

i(t) and ve
i (t) are used as the dynamic weights pushing the LMC start to avoid the rules

violation, as shown in the following equations:

dφi(t)

dt
= gε1 (vs

i(t)− ve
i (t)) + sgn (Φ) (Φ)2 , (15)

Φ = gε2

((
φf c

i (t)(t)⊕
P

2

)
	 φi(t)

)
, (16)

gε(c1) = c1J|c1| ≥ εK, (17)

2There are more ways how to get the binary values for vector d(t) based on the binary vector ssw(t) =
(ssw

0 (t), . . . , ssw
5 (t)) and binary vector sdmg ∈ {0, 1}6. For instance, the methods of propositional logic or finite state

automaton, etc. The technique I used is a bit tedious and not very interesting; therefore, it is presented in Appendix A.
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4.1 Swing Duration Dynamics

φ⊕ φ′ = (φ+ φ′) mod P, (18)

φ	 φ′ =


φ− φ′ if |φ− φ′| ≤ P

2 ,

φ− φ′ + P if φ− φ′ < −P
2 ,

φ− φ′ − P if φ− φ′ > P
2 ,

(19)

where sgn(−) is the sign function, f c
i (t) is a function returning a label of leg contralateral to leg i

according to CCARs, and the term Φ is a regularization enforcing the antiphase motion of contralateral
legs. Eq. 17 is a thresholding function providing some tolerance margin stabilizing the system (e.g.,
it is not necessary to enforce the contralateral legs to have a phase offset precisely equal to P

2 ). The
constants are set as ε1 = ε2 = 0.1. Eqs. 18 and 19 ensure correct shifting within the interval [0, P ).
Finally, the term inside the function gε2(−) in Eq. 16 computes the shift the leg i needs to make to be
in antiphase with its contralateral leg.

Important note: the LMC start φi(t) is also bounded by the interval [0, P ); hence, if the gradient
moves the value outside the interval, the operation mod P is applied on the value φi(t). Nevertheless,
the LMC start dynamics can not solve all the violation problems, as discussed in the previous sec-
tion 4.1. Therefore, the following section uses the violation detection as

i(t) and ae
i(t) for adjustment

of the swing duration ∆φ(t).

4.1.3 Swing Duration Dynamics
The swing duration ∆φ(t) influences the violation detection significantly. To demonstrate the influ-
ence, consider the two extreme cases when the swing duration value is ∆φ(t) = 0 and ∆φ(t) = P ,
respectively. The first case leads to the OSS and causes the robot to stop moving. The second case
leads to constant rules violation, i.e., constant RVS, because if every leg is always in swing, the con-
flicting pairs will perform the swing simultaneously, resulting in the rules violation. Therefore, I
propose the system balancing the swing duration ∆φ(t) to make it as long as possible to maintain the
robot’s movement, avoiding the OSS, while avoiding the rules violation and implicitly avoiding the
RVS.

Change of the swing duration ∆φ(t) can lead to new OSS or RVS detection. Therefore, the
change can cause interactions in the system adjusting the LMC starts, compensating the detected rules
violations, which takes some time to resolve. Hence, the ∆φ(t) should not be lowered every time the
CRs violation is detected, but only when ”too much” of the CRs violation is detected. Following the
same logic, prolonging the swing duration ∆φ(t) should also occur after a certain amount of detected
OSS.

Thus, I propose to use the bio-inspired mechanism of Leaky Integrate&Fire (LIF) neurons cv(t)
and co(t), which integrate the ”error” increasing the neurons potential until it reaches a certain thresh-
old, then fires causing the change in the ∆φ(t). After firing, the neuron’s potential decreases below
zero and takes some time to reset before integrating again, providing the system time to adapt. If the
threshold is not reached, the neuron’s potential starts to reset to zero; hence ”leaky”. The LIF neu-
rons act as short-term memory, forgetting the violation occurrence after a while. The LIF neurons are
described in the following equation:

cv(t+ ∆t)

{
−θv if cv(t) ≥ 1,

cv(t) + ∆t
(
ηv∑

i∈I v
s
i(t)− cv(t)

)
otherwise,

(20)

co(t+ ∆t)

{
−θo if co(t) ≥ 1,

cv(t) + ∆t
(
ηoJ0 =

∑
i∈I s

sw
i (t)K− co(t)

)
othrwise,

(21)
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4.1 Swing Duration Dynamics

where I is a set of labels corresponding to fully functioning legs, hyperparameters influencing the
input weight ηv = 8, ηo = 10 and determining the leakage after firing θv = θo = 100∆t

P are set
empirically with ∆t being the integration step, and the expression J0 =

∑
i∈I s

sw
i (t)K indicates the

OSS.
The LIF neurons cv(t) and co(t) fire, if they reach value of 1. The neurons’ potential is way below

zero after firing. The rapid decrease is detected and drives the change of the swing duration ∆φ(t).
The RVS and OSS have opposing effects on the swing duration ∆φ(t); hence, the OSS influences

∆φ(t) only if the potential of the LIF neuron cv(t) signalizing the RVS is close to zero. The swing
duration ∆φ(t) dynamics are driven by the following equation:

d∆φ(t)

dt
=


−∆φ(t)

ψ if cv(t) < −θ∆φ,
∆φ(t)
ψ if cv(t) ≈ 0 ∧ co(t) < −θ∆φ,

0 else,

(22)

where the hyperparameters ψ = 8 and θ∆φ = 0.8 regulate the change and mark the activation thresh-
old, respectively. The value ∆φ(t) is bounded by interval [P6 ,

P
2 ], as discussed in Chapter 3.

The introduced update rules for the LMC starts φi(t) and swing duration ∆φ(t) modify the GP
rhythm based on the violation of CRs giving relations among legs adjusted by proposed CCARs trying
to achieve stable GP rhythm in which the altering swing and stance do not conflict with the given
CRs. The LMC starts φi(t) dictate the positions of their respective RBFNs ws

i(t),w
m
i (t),we

i (t),
as described in Chapter 3, whose activation triggers specific motion primitives controlling the servo
motors movement. The only necessary sensory input is the binary vector sdmg = {0, 1}6 marking the
j-th leg amputated by setting sdmg

i = 1.
In the following Chapter, the experiment setup is presented, in which the necessary modifications

of the competitive method, originally proposed by Miguel et al. [14], are introduced, together with
a simple evolution algorithm proposed to upper bound the possible reward for GP rhythm adjust-
ment after leg amputation. The results are further compared using the reward function, proposed in
section 5.4 and discussed in the following Chapters.
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Chapter 5

Evaluation Methodology

This Chapter, consisting of five parts, provides the experiments setup and the methodology for the
proposed method evaluation: (i) The first part 5.1 provides the mapping of the RBFNs activations to
relative servo motor position. (ii) The second part 5.2 describes the competitive method implemen-
tation and a few changes that were made in contrast with the original authors’ work [14] to make the
methods comparable. (iii) Next part 5.3 introduces the evolution algorithm. (iv) The fourth part 5.4
proposes the reward function for GP rhythm evaluation, based on which the methods are compared. (v)
Finally, the last part 5.5 introduces the settings of the simulator, the used robot model, and the exper-
iment, together with mapping of the relative servo motor positions to the motor commands, common
for all the compared methods.

For method comparison, a metric evaluating their performance is needed. A metric is provided
in (iv) as a reward function. The reward considers the desirable locomotion features, such as speed
and directional stability, and normalizes them. The normalized sensory inputs are then weighted to
make the fundamental gait patterns (commonly used for fully functional hexapod walking robots, see
Section 2.1.2) gain positive cumulative reward over the period of the MC.

There is possibly a limit to how much only the GP rhythm change can improve the GP after a
leg amputation. To see how far from the limit the compared methods are, the EA optimizing the
proposed reward function by adjusting the GP rhythm is provided in part (iii). In this part, a significant
search space reduction is proposed using the GP rhythm parametrization. The parametrization enables
encoding the complex locomotion after amputation into only four tunable parameters, leading to a
large reduction of the search space and, thus, the parametrization decreases the needed computational
resources for the evolution optimization method.

All the compared methods adjust the GP rhythm with servo motor amplitudes not being consid-
ered. Hence, the methods output is the servo motor relative position within its movement boundaries.
The approach in (i) provides the proposed method with a mechanism mapping the RBFN activations
to the relative servo motor position.

Converting the relative positions to the actual motor commands, common for all the compared
methods, is provided in part (v), together with the introduction of the used simulator, robot model, and
experiment setting.

5.1 RBFN signals to relative Amplitude
In this work, I use two steps for mapping the RBFN output signal ss/m/e

i to motion commands. In
this section, the RBFN activation switches between swing and stance, activating predefined functions
determining the servo motor relative position. The second step maps the relative positions to real
positions, which is introduced in Section 4.1.1.

The relative values given by the functions between which the RBFNs activations switch are in
range [−1, 1], where the borders represent the minimal and maximal amplitude of the regular leg
movement, respectively;3. The RBFN signals are converted to swing indicating binary vector ssw used
in the previous Chapter 4, Section 4.1.1, which are further used in the presented mapping definition
in this section.

3The value can be a little out of the interval, e.g., if during the adaptation process, the swing is a bit longer than initially
expected due to change of LMC starts between two consecutive MCs.
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5.2 Competitive Method

The Body-Coxa (BC) joint is used for forward/backward leg movement, and Coxa-Femur (CF)
joint for up/down leg movement. The Femur-Tibia joint is fixed in a static position. Therefore, two
different mappings from RBFN signals to relative amplitude [−1, 1] are needed.

The BC joint has to perform movement across the whole range from the most posterior position,
represented by relative value −1, to the most anterior position, represented by relative value 1, during
the swing, and during the stance, it resets back from anterior 1 to posterior −1 position. I decided to
parametrize the BC joint swing movement by part of the cosine curve and the backward movement by
linear function influencing the relative BC joint dynamics ûbc

i (t) as follows:

dûbc
i (t)

dt
=


(

1− ûbc-last(t)+1
2

)
P

2∆φ(t) cos
((
φLMC
i (t)

)
P

2∆φ(t)

)
if ssw

i = 1,

− 2
P−∆φ(t) if ssw

i = 0,
(23)

where φLMC
i (t) is the i-th leg motion phase introduced in Chapter 3, ûbc-last(t) is the last value of

ûbc
i (t) before the swing began (i.e., usually ≈ −1) ensuring that ûbc

i (t) = 1 at the end of the swing
independently of the initial relative amplitude value ûbc

i (t) at the swing start.
The CF joint value ûcf

i (t) represents the up and down movement, where −1 represents the lowest
point with the leg touching the ground and 1 stands for the highest elevation point, is represented by
the curve of hyperbolic tangent’s derivative, driving the CF joint relative amplitude by the following
equation:

ûcf
i (t) =

{
−χ tanh2

(
φLMC
i (t)− χ′

2

)
+ 1 if ssw

i = 1,

−1 if ssw
i = 0,

(24)

χ′ = ln

(
χ′′ +

√
(χ′′)2 − 4

2

)
, (25)

χ′′ = 2
1 + 2

χ

1− 2
χ

, (26)

where χ = 2.08 is a hyperparameter regulating the smoothness of the swing start and end.
The mapping from interval [−1, 1] to the servo motor position is common for all compared meth-

ods, and it is dependent on the defined range of the robot’s servo motors. Therefore, the linear trans-
formation is provided in the Section 5.5 with shared hyperparameters for all tested methods.

5.2 Competitive Method
This section is dedicated to a brief description of the method proposed by Miguel et al. [14], which I
use for comparison with the method proposed in this work. 4 The authors use sensors for load sensing
on each leg, with each leg having its own CPG, which are not coupled directly in the system but
indirectly through the sensory feedback. Given the state of the CPG determining the LMC phase, the
authors predict the sensory feedback and measure the error between expected and measured values.
The error influences the slow and fast learners; the fast learner adapts quickly but also quickly forgets,
while the slow learner remembers a longer time period but adapts slower. The learners affect the CPG
phase, thus adjusting the GP rhythm.

The authors use one CPG for each leg, which is described by the following equation:

ai(t+ 1) = αSi(t) +

2∑
j=1

wijoj(t), (27)

4For a smooth transition from the paper’s notation, I decided to use the original authors’ notations. Hence, consider
variables in this section separate from all other variables in this work.
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5.3 Evolution Algorithm - Upper Bound

where i ∈ {1, 2}, t stands for simulation step/discrete time, wij is a fixed weight of aj to ai neuron
connection.

The Si(t) is processed sensory feedback, evaluating the similarity of expected and sensed sensory
input. The variable α is the dynamic weight of Si(t) influence on the neuron ai. The α combines
fast and slow learners; the fast learner adapts quickly but also quickly forgets, while the slow learner
adapts slowly but remembers more extended time period. Those two learners run in parallel and are
closely described in the original paper.

In the following paragraphs, I describe a few changes I made to the proposed system. The first
is the use of variable oi(t) = tanh (ai(t)) for i = 1, 2. The authors use an unspecified CPG post-
processing unit for CPG signal-to-motor command mapping. I use the oi(t) feature, that the function
hyperbolic tangens bounds the value oi(t) in interval [−1, 1]. Therefore, it works as an output signal
of the CPG, providing the relative amplitude. o1(t) defines the movement of the BC joint and o2(t)
prescribes the CF joint motion. However, I experienced twitching of the servo motors by sometimes
step-wise progression of the values. Therefore, I decided to smoothen the output by averaging:

ôi(t) =
oi(t) + oi(t− 1)

2
. (28)

Another issue for comparison was a different number of iterations per MC. The reward is computed
as the cumulative sum over each iteration reward for five consecutive MCs; hence, a lower number
of iterations with measures after different time steps could make the results incomparable. Therefore,
I increased the number of iterations by linear interpolation of the motion commands between the
commands computed by the method (between each two computed motion commands, there were 17
interpolated commands) to approximately match the number of iterations per MC.

The problem was also the difference in sensory feedback. The authors use load sensing feedback,
while I use measured torque in CF joint. Nevertheless, the time progression of those two is similar,
and a scaling factor of 3 approximately leveled up the values. The method uses the feedback to verify
if progression is equal to expectation. Therefore, the difference should be negligible.

One more inconvenience to solve was the sensory feedback was sometimes similarly step-wise,
as the mentioned CPG output oi(t). Hence, I also averaged the sensory feedback, where the sensory
input for the method was averaged over the last three measured values:

F (t) =
Fm(t) + F (t− 1) + F (t− 2)

3
, (29)

where Fm(t) is the current sensory measurement. For computation of F (0) the values for averaging
were set to zeros: F (−1) = F (−2) = 0. The rest of the method implementation details are described
in the original paper.

In comparison with the results of the original work, my implementation has a longer swing dura-
tion, which is probably caused by different CPG to motor commands mapping. Both the robot model
and simulator I used are different from the original authors’ experiments. The authors measure the
performance by average robot speed and report its decrease after amputation. In my experiment, the
adjusted implementation achieved similar results in the performance decline after the amputation.

5.3 Evolution Algorithm - Upper Bound
The competing methods adjust the GP rhythm without any knowledge of the reward function evaluat-
ing them. To see how much reward the methods can possibly achieve by adapting only the GP rhythm,
I implement the EA optimizing the reward function by tuning the GP rhythm. The EA provides an
upper bound revealing how well the competing methods optimize the GP rhythm.

While evolution algorithms can optimize anything given enough time/computational power, the
need for high time and computational resources is their limitation. Therefore, I aimed to make the
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5.3 Search Space Reduction

search space as simple as possible with only a few tunable parameters, lowering the computational
time and the needed number of generations to a minimum. The search space definition uses the GP
rhythm description used throughout this thesis, making the search space relatively small.

Algorithm 1: evolution(gcount, n, nmin, b, j, P )

Data: 0 < gcount ∈ N; 0 < n ∈ N; 0 < nmin ≤ n, nmin ∈ N;
b ∈ [0, 1]; j = label of amputated leg; 0 < P ∈ R;

Result: g =
(
φ

congif
i ; i = 1, . . . ,floor

(
max

(gcount
1.3 , nmin

)))
;

rGP =
(
rGP
i ; i = 1, . . . ,floor

(
max

(gcount
1.3 , nmin

)))
;

1 for i = 1 to m do
2 φ

congif
i ←

(
φ

config
i,k = random uniform(0, P ); k ∈ {0, . . . , 5}\{3, j}

)
∈ [0, P )4

3 end
/* Initialize 1-st generation: */

4 g← (φ
congif
i ; i = 1, . . . , n)

5 rGP ← compute rewards(g)
6 n1 ← n
/* Evolve generations 2 to gcount: */

7 for i = 2 to gcount do
8 σ ← 8.8

i
9 ni ← floor

(
max

(ni−1

1.3 , nmin
))

10 g← breed(g, rGP, b, σ, ni, j, P )
11 rGP ← compute rewards(g)

12 end

Figure 4: The function random uniform(a, b) is a function randomly sampling from a uniform dis-
tribution. Function floor(a) rounds number a ∈ R to its closest integer l ∈ N lower than a: l < a.
Function compute rewards(g) simulates five MCs of each GP configuration φcongif

i in in g and com-
putes the configuration’s reward rGP

i according to Section 5.4. Function breed is described in Alg. 2.

5.3.1 Search Space Reduction

The EA needs to have a defined search space within which the mutations and crossovers can be per-
formed exploring possible solutions. The straightforward approach for building the search space
would be to find a motor command for each servo motor in each iteration of the MC, i.e., having
a vector of 18 · 222 = 3996 elements, i.e., (a, b)3996, where a ∈ R and b ∈ R are the limits of the
servo motors movement.5 Such massive search space takes a very long time to explore. Because of
that, the straightforward approach is hardly ever used. I propose to use the definition of the GP rhythm
from Chapter 3 to reduce the search space.

The aim is to find an optimal GP rhythm for the given amputated leg j, i.e., find the swing duration
∆φ and the LMC starts φi(t) for i = {0, . . . , 5}\{j}, where φi(t) ∈ [0, P ) and P = 2π. However,
there is theoretically an infinite amount of symmetric φi(t) settings resulting in the same GP, which is
only shifted in phase.

To avoid the symmetries, I fix the φ3 = 0, where label i = 3 stands for the hind right leg. With the
hind right leg’s LMC start fixed on zero, each gait will start by swing movement of the hind right leg,
and all other equal gaits differing only by phase shift are eliminated from the optimization choice.

5In this work I use 222 iterations per MC.
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Algorithm 2: breed(g, rGP, b, σ,m, j, P )

Data: g = (φ
congif
1 , . . . ,φcongif

n ); rGP = (rGP
1 , . . . , rGP

n );
b ∈ [0, 1]; 0 < σ ∈ R; 0 < m ∈ N; j = label of amputated leg; 0 < P ∈ R;

Result: ĝ = (φ̂
congif
1 , . . . , φ̂

congif
m )

1 mbest ← ceil(bn)
2 m̂← m−mbest
3 pg ← (rGP

i −min(rGP) + ε; i = 1, . . . , n)
4 pg ← (pgi /

∑n
k=1 p

g
k ; i = 1, . . . , n)

/* Create m̂ new individuals: */
5 for i = 1 to m̂ do
6 φpar1 ← random choice(g,pg);
7 φpar2 ← random choice(g,pg);
8 for k ∈ {0, . . . , 5}\{3, j} do
9 d← max(|φpar1

k − φpar2
k |, ε);

10 φ̂
config
i,k ← random uniform

(
min(φ

par1
k , φ

par2
k )− αd,max(φ

par1
k , φ

par2
k ) + αd

)
;

11 φ̂
config
i,k ←

(
φ̂

config
i,k + σ random normal(0, 1)

)
mod P ;

12 end

13 φ̂
congif
i ← (φ̂

config
i,k ; k ∈ {0, . . . , 5}\{3, j});

14 end
/* Let mbest individuals survive to next generation: */

15 for i = 1 to mbest do
16 φ̂

congif
m̂+i ← get ith best(g, i, rGP);

17 end

Figure 5: The functions random uniform(a, b) and random normal(µ,std) are functions randomly
sampling from uniform and normal distributions, respectively. The function random choice(a,p)
makes a random choice of elements ai based on their respective probabilities pi. Function ceil(a)
rounds number a ∈ R to its closest integer l ∈ N greater than a: l > a. Function get ith best(a, i,b)
returns i-th best solution from all ak given their respective bi, where highest bi is the best. The
hyperparameter ε = 1

16 keeps the values further from zero. Hyperparameter α = 1
16 enlarges the

possible children value range from convex space between parents to convex space with vicinity.

I also propose a parameter reduction for the tested scenarios with amputation of one leg by fixing
the ∆φ = P

3 . This value is the swing duration value for ripple gait when two legs are always lifted
off while four legs support the body. After tripod gait, which has the swing duration ∆φ = P

2 not
usable in the case of an amputated leg if three legs should support the body at any moment, the ripple
gait is the second fastest out of the observed gaits in living six-legged organisms. Moreover, the swing
duration ∆φ = P

3 is applicable (does not by definition conflict with the CRs) even for the scenario
with an amputated leg. Therefore, I conclude that setting the swing duration to value P

3 optimizes this
parameter automatically, and its optimization by EA is no longer needed.

Using the abstraction applied throughout this thesis (i.e., represent the gait by LMC starts and
swing duration) combined with the above-explained parameter fixing, the evolution algorithm has to
optimize the GP’s reward rGP by optimizing only a vector of four parameters:

φconfig = (φi ∈ [0, P ); i ∈ {0, . . . , 5}\{3, j}), (30)

where j is the label of the amputated leg, and the φi in the vector are ordered by their index from
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lowest to largest. The proposed search space parametrization results in bounded search space [0, P )4.

5.3.2 Evolution Algorithm Parametrization
The used EA, together with the algorithm taking care of generating a new generation from the old one,
are both presented in Algs. 1 and 2, respectively, where the input parameters for Alg. 1 are following:
gcount = 50, n = 200, nmin = 20, b = 0.15, P = 2π, and j ∈ {0, 2, 4} differs for different amputation
scenarios.

There are three mechanisms deployed in the EA. The σ and number of individuals ni in generation
i are dependent on the generation, where the first influences the mutation extensiveness, and the second
reduces the number of newly formed individuals in each generation. The third mechanism is the
mechanism of elites ensuring the new generation’s optimal value is greater or equal to the previous
generation.

The aim of the mutation extensiveness is to first search through different parts of the search space
and then optimize the most promising areas of it. Hence, I propose to change the possible mutation
range, denoted by σ, in each generation. In the first few epochs, the large σ enables extensive random
mutations exploring possibly unknown areas of the search space. With ongoing evolution, the σ
lowers, making the mutation more subtle, exploring close vicinity of the best-so-far-found individuals.

To decrease the needed computational time, the number of individuals in each progressing genera-
tion lowers. The algorithm starts with maximal generation size to sample the search space in the most
uniform way possible. Then, each new generation is smaller than the previous one until the minimal
number nmin of individuals per generation is reached, stopping the population size from lowering.

The elites mechanism is enforced by always adding ≈ bni = 0.15ni best members of the gener-
ation i to the next generation i + 1, where ni stand for i-th generation members number, see Alg. 2
lines 1 and 15-17.

The remainder of the new generation individuals is created by combining the individuals of the
old generation; see Alg. 2 lines 5-14. The resulting new individual is then influenced by a mutation,
as discussed before.

There are nmin = 20 individuals in the last generation, among which the best-found solution
is present.6 The fitness of the individuals is determined by the reward value rGP, proposed in the
following Section.

5.4 Reward Function
This section introduces a reward function r(t) and the resulting reward value rGP designed to compare
the proposed method with the method presented by Miguel et al. The aim is to reward velocity and
stability while suppressing changes in velocity (acceleration), orientation, and position in unwanted
directions. The measurements used for the reward function are also selected partially based on the
plausibility of living organisms being able to perceive such measurements and include them in their
reward system while learning to walk. I use three measurements: (i) position p(t), (ii) orientation o(t)
and (iii) torques of coxa-femur joint b(t) = (b0(t), . . . , b5(t)).

The simulation consists of discrete steps, with step ∆t. Therefore, the velocity v(t) and accelera-
tion a(t) is computed from position differences in time:

v(t) = p(t+ ∆t)− p(t), (31)

a(t) = ‖v(t+ ∆t)− v(t)‖. (32)

6Thanks to the elites mechanism, the best individual is guaranteed to survive all the way to the last generation, even if
formed in the first generation. Otherwise, the record of the best solutions would have to be kept.
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5.4 Reward Function

The orientation is a unit vector oriented in the direction of the robot’s forward direction. The
reward function r(t) is defined by following equation:

r(t) = 〈r(t)|α〉, (33)

r(t) =


r1(t)
r2(t)
r3(t)
r4(t)
r5(t)

 ; α =


α1β1

α2β2

α3β3

α4β4

α5β5

 , (34)

where 〈−|−〉 stands for dot product, and the alphas and betas are constant weights of different ele-
ments of r(t). The first component r1(t) given as follows:

r1(t) =

〈
o(t)

∣∣∣∣ v(t)

‖v(t)‖

〉
‖v(t)‖, (35)

rewards the velocity in the forward direction. The first term is largest if the direction of the velocity
v(t)
‖v(t)‖ (position change direction) and the robot’s orientation o(t) are equal. The reward can also be
negative if the orientation and velocity direction differ. Hence, the first term weights the second term,
the velocity, in a way that rewards large velocity in the correct direction and penalizes velocity in
unwanted directions.

The r1(t) is the only positively weighted component of the r(t) vector. Therefore, its weight α = 5
is relatively large in comparison with the following coefficients to outweigh the other components
(r2(t), . . . , r5(t)).

The second component, r2(t), penalizes acceleration because we want our robot to move at a con-
sistent speed without slowing down or speeding up within the MC. Assuming the robot carries sensors
like cameras, it is reasonable to maintain stable speed suppressing motion blur causing twitches. r2(t)
is given by the following equation:

r2(t) = ‖a(t)‖. (36)

The third component is meant to minimize the torques to minimize the servo motors’ effort. There-
fore, it is simply defined as the sum of absolute values of coxa-femur joints’ torque:

r3(t) =
∑
i∈I
|bi(t)|, (37)

where I is a set of labels corresponding to functioning legs. The fourth and fifth terms penalize the
orientation change and position change in unwanted directions (the forward), respectively:

r4(t) = ‖o(t+ ∆t)− o(t)‖, (38)

r5(t) = |ph(t)|+ |pv(t)|, (39)

where ph(t) and pv(t) are shifts of the robot’s body in the horizontal and vertical robot’s axis (i.e.,
sideways and up and down movement).

The two types of hyperparameters serve different purposes. The beta-coefficients are set to nor-
malize the inputs into a similar scale, while the alpha-coefficients play the role of weights of the input
contributions into the reward. The beta-coefficients β1, . . . , β5 are set based on the sensory values to
make them all of a similar scale, e.g., if r1(t) ≈ 102 and r2(t) ≈ 10−4, then β1 = 10−2 and β2 = 104.
In this work for our model, the β-coeficients are set as β1 = 102, β2 = 10, β3 = 1, β4 = 10, β5 = 103.
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5.4 Reward Function

The remaining alpha-coefficients are empirically set to make the r(t) values of the known tripod, rip-
ple, and wave gaits positive: α2 = −0.2, α3 = −0.5, α4 = −1, α5 = −0.5, see upper plot in
Figure 6.

The GP rhythm performance varies within the MC (see Figure 6). Therefore, to evaluate the GP
rhythm, it is necessary to consider all the rewards it gained. Hence, in this work, I use the cumulative
sum of the reward function results (see the lower plot in Fig 6):

rc(t) =

bt/∆tc∑
i=0

r(i∆t). (40)

I let the experiment run for five MCs and as the final GP score I take the mean of the last MC’s
cumulative sums:

rGP =
1

nP

5nP−1∑
i=4nP

rc(i∆t), (41)

nP = (2π)/∆t, (42)

where the nP is the number of discrete steps of length ∆t in one period P = 2π. In the remainder of
this thesis, the GPs are evaluated using the rGP as a score of the GP.
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Figure 6: The Figure shows the proposed reward value behavior on traditional GPs. The reward r
(on y axis) within one MC (MC phase φMC is on x axis) and its cumulative sum rc (presented on the
y axis) over five MCs (MC phase φMC depicted on x axis) are depicted in the top and bottom plots,
respectively. The reward for the tripod, ripple, and wave gaits are presented by blue, orange, and green
colored lines, respectively. In the bottom picture, the red dashed line shows the start of the fifth MC.
The gaits are evaluated based on the cumulative sum values mean rGP over the last (i.e., fifth) MC.
The rGP is shown by the dot at the end of the fifth MC or by the dashed line with color corresponding
to its respective GP.
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5.5 Experiment Setting

5.5 Experiment Setting
In this section, the experimental setup of the compared methods is presented. The used simulator and
simulation model are described together with the parameter setting of the robot’s default servo motor
positions and movement range for individual joints. All the compared methods output relative motor
values in range [−1, 1], which are mapped to particular motor commands in this section.

The simulation is run in simulator CoppeliaSim [56] using a hexapod walking robot model PhantomX-
v3.1 [57] controlled by python3 API walking on a straight surface.

The robot has eighteen position-controlled servo motors, three servo motors for each leg. The
leg forward and backward movement is provided by rotation in Body-Coxa (BC) joint (see Figure 1),
and up and down movement is ensured by Coxa-Femur (CF) joint. The Femur-Tibia (FT) joint was
not used in this work and remained in a fixed position during the whole simulation. The leg dam-
age/amputation was simulated by raising the amputated leg above the robot’s body to a non-conflicting
position with the other legs and with the ground.

The methods generate values from interval [−1, 1] representing the relative servo motors positions.
The robot’s resting servo motors positions ubc-rest

i , ucf-rest
i , uft-rest

i are set to values: ubc-rest
i = −0.25 and

ubc-rest
i = 0.25 for front (i ∈ {0, 1}) and hind (i ∈ {2, 3}) legs’ BC joins, respectively; ubc-rest

i = 0
for middle (i ∈ {4, 5}) legs’ BC joins; ucf-rest

i = 0.5 for all legs’ CF joins and uft-rest
i ≈ −1.37

for all FT joins. The resulting servo motor positions ubc
i (t), ucf

i (t), uft
i (t) are given by the following

transformation:
ubc
i (t) = ubc-rest

i + (ξbc
2 û

bc
i (t) + ξbc

1 ), (43)

ξbc
1 =

ubc
max + ubc

min
2

, (44)

ξbc
2 = ubc

max − ξbc
1 , (45)

where the ucf
i (t) and uft

i (t) are computed analogously (with fixed FT joint implying ûft
i (t) = 0 for

all t > tampt, where tampt represent the time of amputation) and movement range amplitudes ubc
max =

0.32, ubc
min = −0.32, ucf

max = 0.7, ucf
min = 0.2, uft

max = 0.3, uft
min = −0.2 are empirically set.

The three tested methods were run differently according to their specifics. I already discussed in
Section 5.4 that the evaluation of the GP is computed based on five MCs. Given the GP rhythm, the
five MCs can be run; hence, the evaluation of individuals in the evolution process runs for five MCs,
i.e., 222 · 5 iterations, because the GP does not change during the run. On the other hand, Miguel’s
and my methods adapt online; thus, a few MCs are needed for adaptation before the GP stabilizes.

The Miguel method starts with the leg already amputated and with randomly initialized CPG states
ai(0) = random uniform(−1, 1) for i ∈ {1, 2} for each leg’s CPG. The simulation runs for 25 MCs,
during which the adapted gait changes only slightly. Based on observations, Miguel’s method does
not fully stabilize; hence, there is no point in waiting for the system to fully converge to unchanging
GP. Nevertheless, I empirically confirmed the 25 MCs are enough for the system to adapt to the
amputation.

In contrast, in most cases, my proposed method stabilizes after a while. At the beginning of the
experiment, the robot locomotes using the tripod gait for 2 MCs. The amputation occurs during the
third MC, with the amputation time selected based on random uniform distribution within the third
MC, introducing randomization into the state in which the system starts to adapt. The adaptation
process starts after the amputation.

There are two possible stopping criteria for the experiment. The simulation stops when: (i) the
LMC starts φi(t) do not change for five consecutive MCs, or (ii) the 50-th MC ended. In most
cases of stopping the simulation after 50 MCs, the GP rhythm is usually ”almost stabilzed”, i.e.,
the swing/stance timings do not change anymore, but their phase offset remains approximately the
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same. In other words, slight numerical instability occurs, forcing the system to never fully stabilize,
but for the naked eye, the GP seems stable.

Each method was tested for amputation of the front left (i = 0), middle left (i = 4), and hind
left (i = 2) legs. Those three cases cover all possible amputations because amputating legs from
the robot’s right body side would cause the same but mirrored situation. The evolution generated 50
generations of individuals, from which the top 30 best-performing individuals for each leg amputation
scenario are selected for comparison with the two other methods. The proposed and the Miguel’s
methods ran 30 times for each amputation scenario.

After running the experiments for each method, the reward is computed based on the performance
in the last five MCs. The following Chapter introduces the achieved results.
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Chapter 6

Results

The results presented in this section compare the reward values (computed with proposed reward
function, see Section 5.4) of three different approaches: (i) Miguel’s reactive method with no infor-
mation about particular damage with (ii) proposed method relying strictly on the damage information
and rhythm change with no sensory feedback, and with (iii) evolution algorithm approach with its
thirty best-performing individuals in each scenario representing the upper bound achievable with the
GP rhythm change7.

The methods modify the GP rhythm to adapt to the leg amputation. Three scenarios were tested
in the experiments: amputation of the front left, the middle left, and the hind left legs, with results
depicted in Figure 7.

At the end of this Chapter, the overall results, giving an insight into the reward value dependency
on the GP rhythm, are presented together with GPs resulting from the individual methods showing
similarities despite different optimization criteria of respective approaches.

6.1 Simmilar Best Results and More Consistent Performance
A reasonable demand for the use of any solution to a problem is its consistency. If the aim is for the
robot to get to the closest repair point after the damage occurs, one could prefer the robot gets there
every time but possibly slower, over sometimes getting there fast and sometimes not getting there at
all in the extreme case.

The results suggest the proposed sensory-free method is not only comparable with the reactive-
based approach of Miguel et al. but also achieves better results in some scenarios given the introduced
reward function. In scenarios with amputated front and hind legs, the introduced method performs
better than Miguel’s method. In the case of middle leg amputation, Miguel’s method seems to offer
better results than the proposed method.

However, in all scenarios, the standard deviation of the achieved reward of the introduced method
is at least two times lower than the standard deviation of the achieved rewards by Miguel’s method.
The proposed method’s worst result is better than Miguel’s worst result in each scenario, with the best
results achieved by both approaches scoring very similarly in all the amputation cases.

The statistics comparison of individual scenarios is presented in Table 1, with results distribution
demonstrated by histograms in Figure 8. Therefore, the proposed method is more consistent in the
expected outcome in all tested cases due to lower standard deviation and better worst-case scenarios.

6.2 More Consistent Traversed Trajectory
The robot navigation towards a goal relies on the robot’s capability to maintain its movement direction.
The goal in the trajectory is to keep the movement straight, parallel with the y axis, and, of course,
with the maximum possible velocity. The leg amputation disbalances the power, pushing the robot
on the opposing sides of its body, resulting in turning towards the weakened side. A less significant
imbalance in the locomotion movement direction improves the quality of the adjusted locomotion.

7Recall the definition the GP rhythm form Section 2.1.1, where GP rhythm is given by the LMC starts φi(t) for each leg
together with the swing duration ∆φ.
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39
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Table 1: Statistics of methods’ reward value in experiments

Ampt. leg method min max median mean std

Miguel −347.9 −22.7 −194.8 −181.6 76.1
front left Proposed −148.1 −10.4 −64.7 −62.7 30.8

Evolution −1.2 8.2 0.9 1.6 2.4

Miguel −236.6 −45.0 −125.2 −124.2 58.9
middle left Proposed −190.4 −54.8 −140.4 −140.2 27.0

Evolution −44.3 −39.4 −43.2 −43.0 1.1

Miguel −464.0 −16.5 −130.6 −153.6 96.1
hind left Proposed −103.4 0.1 −49.2 −55.9 26.8

Evolution 2.10 10.8 4.0 4.5 2.3

Miguel’s method’s greater deviation is noticeable even in the robot’s movement trajectory; see
Figure 9. All the upper bound solutions, given by the evolution algorithm, do not deviate much. The
introduced method deviates more, but in comparison with Miguel’s approach, the trajectory has fewer
sideways deviations from the forward direction.

Another difference is the variation in the trajectories’ direction. Especially in the scenario with the
amputated front left leg (leg 0, see Figure 9), the resulting gaits generated by Miguel’s method walk
in very different directions. Some are deviated about 40 degrees to the left, while others are deviated
about 45 degrees to the right from the desired initial direction. In comparison, my method is more
consistent in the resulting adapted GP movement direction.

Noticeable is also the consistency difference in the walked distance between the proposed method
and Miguel’s method. Miguel’s approach achieves considerably longer traveled distance in some
cases, but simultaneously, the worst attempts manage to travel about half the distance.

The proposed method traversed path is more predictable in both criteria, its length and its direction,
making the navigation process easier than using the Miguel’s approach, decreasing the demands in
navigation adjustments in case of leg damage.

6.3 Consistency is Independent on the MC State in Time of
Amputation

The relations within the dynamic system can favor some states in which the adaptation gives better
results than in other states. The results presented in this section show that this is not the case for the
proposed method.

The amputation time within the MC was randomized in the proposed method (described in previ-
ous Chapter 5, Section 5.5). In the experiment, no correlation between the time of amputation within
the phase and the resulting reward rGP was observed, confirmed by the dependency visualization in
Figure 10. There is no visible dependency between the adaptation time and the achieved score. There
are both cases, with the longest adaptation achieving both the best and the worst score in the amputa-
tion of the hind left (leg 2) and the front or the middle left (0 or 4) legs, respectively. The method also
shows no clear sign of dependency between the phase of amputation (i.e., the start of the adaptation
process) and the length of adaptation. Hence, I conclude the method behaves consistently in terms of
both adaptation time and resulting score independently on the phase in which the damage occurs.
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Figure 9: Top view, where each line represents the path the robot walked in 5 MCs during the ex-
periment. The color represents the reward value rGP achieved by the GP, which produced the path
performing the locomotion. The colors are normalized for each plot individually, i.e., The brightest
yellow (darkest blue] stands for the best (the worst) solution in each chart.
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Figure 10: The figure shows plots of reward value rGP dependency on the phase of amputation perfor-
mance and length of adaptation (given in number of MCs) in the first and second column, respectively,
and the dependency of the learning duration on the phase of amputation performance in the third col-
umn.
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6.4 Reward Dependency on the GP
If the space of the GP evaluation dependency on the GP rhythm was known, classical optimization
methods, like gradient descent, could be used to solve the problem of locomotion adaptation after leg
amputation optimally. However, beforehand, the space is unknown. Nevertheless, the results gathered
during the experiments give a hint of some parts of the space, which is introduced in this section and
further discussed in the next Chapter.

The individual GPs with their measured reward generated by evolution and the tested methods
offer an insight into the reward dependency on the GP. However, even with one leg amputated and
one leg having a fixed swing start (hind right leg 3), the vector representing the GP has four elements.
Therefore, I present the dependency in a series of plots, where each plot depicts swing starts φi(t) of
two legs i and k on axis x and y, respectively, with reward function value for the given configuration
depicted by color as presented in Figures 11, 13, and 15 for amputation of front left, middle left and
hind left leg, respectively.

There is a visible tendency of my method results to cluster into lines in the GP subspace in the
Figures 11, 13, and 15. The reason is the method’s origin in the CRs, which enforces specific phase
offsets of leg swing starts. All configurations on a line parallel to φi = φk have equal differences, e.g.,
equal phase offset of the swing starts, which the CRs favor. The results show multiple correlations
with the CRs, which are further discussed in the following Chapter.

6.5 The Resulting Gait Patterns and Their Similarities
The resulting output of the proposed and compared methods is the amputation-adapted GP. The
reward-GP space visualized in Figures 11, 13, and 15 show only fragments of the adapted GPs, be-
cause each point gives only information about LMC starts of two legs, but not about the whole GP.
Hence, a few picked GPs are presented in Figures 17, 18 and 19 for scenarios with amputated front
left, middle left and hind left legs, respectively.

In scenario with amputated middle left leg (leg 4, see Figure 18), the diagonally oposing legs (i.e.,
pairs 1, 2 and 0, 3)tend to undergo the swing simultaneously. Such behavior makes sense from more
angles of view: (i) The legs 0 and 1, and the legs 2 and 3 are contralateral; hence, their movement
should be in antiphase, while legs 0 and 2 should also perform their LMCs in antiphase to each other
because they are the only two remaining legs on the left side of the robot’s body. The solution of
synchronizing the diagonally opposing legs is the only solution in such scenario.

(ii) The robot in this scenario resembles quadruped with the additional leg on the right side of the
body. Therefore, it seems natural the robot tends to use GP typical for quadrupeds8, with the ”extra”
leg performing its movement somewhere within the MC.

A similar trend can be observed in the scenario with amputated hind left leg (2, see Figure 19) with
the diagonally opposing pairs of legs 1, 4, and 0, 3, with the exception of Miguel’s approach, where
the middle left leg tends to synchronize with the middle right leg (5). However, in the scenario with
the amputated front left leg (0, see Figure 17), the same logic does not seem to apply for diagonally
opposing pair of legs 3, 4 for Miguel’s and evolution method. The proposed method follows the
previously mentioned trend. The cause of such difference will be a subject of future research.

Despite different adaptation approaches, the resulting GPs seem to have similar phase offsets of the
LMCs for respective legs, or in other words, similar relations between legs seem to emerge from the
different approaches. Such results suggest the fusion of the methods would not lead to large conflicts
between them but could improve their performance.

8Many four-legged animals, including dogs, horses, etc., walk with such gait with front and rear legs from opposing
sides performing swing and stance together.
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rGP Dependency on φi for Amputated Leg 0

Figure 11: Approximation of reward value rGP for amputation of front left leg given the swing starts
φi and φk for legs i and k, respectively. Each row represents the values for legs i&k, with legs i and
k depicted on x and y axes, respectively. Each red cross represents one individual in evolution or one
experiment resulting GP in Miguel’s and my methods’ in the first, second, and third columns, respec-
tively. The achieved rGP is depicted by the color, with maximum and minimum values represented by
brightest yellow and darkest blue, respectively. Note the dependencies are, in fact, dependencies of
three leg swing starts. The third leg is the hind right leg 3 with fixed swing start φ3 = 0.
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Figure 12: Approximation of expected reward value rGP for amputation of front left leg given the
swing starts φi and φk for legs i and k, respectively. Each row represents the expected values for legs
i&k, with legs i and k depicted on x and y axes, respectively. Each red cross represents one individual
in evolution or one experiment resulting GP in Miguel’s and my methods’ in the first, second, and third
columns, respectively. The expected rGP for the given GP is depicted by the color, with maximum and
minimum values represented by brightest yellow and darkest blue, respectively. Note the dependencies
are, in fact, dependencies of three leg swing starts. The third leg is the hind right leg 3 with fixed swing
start φ3 = 0.
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Figure 13: Approximation of reward value rGP for amputation of middle left leg given the swing
starts φi and φk for legs i and k, respectively. Each row represents the values for legs i&k, with
legs i and k depicted on x and y axes, respectively. Each red cross represents one individual in
evolution or one experiment resulting GP in Miguel’s and my methods’ in the first, second, and third
columns, respectively. The achieved rGP is depicted by the color, with maximum and minimum values
represented by brightest yellow and darkest blue, respectively. Note the dependencies are, in fact,
dependencies of three leg swing starts. The third leg is the hind right leg 3 with fixed swing start
φ3 = 0.
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Figure 14: Approximation of expected reward value rGP for amputation of middle left leg given the
swing starts φi and φk for legs i and k, respectively. Each row represents the expected values for legs
i&k, with legs i and k depicted on x and y axes, respectively. Each red cross represents one individual
in evolution or one experiment resulting GP in Miguel’s and my methods’ in the first, second, and third
columns, respectively. The expected rGP for the given GP is depicted by the color, with maximum and
minimum values represented by brightest yellow and darkest blue, respectively. Note the dependencies
are, in fact, dependencies of three leg swing starts. The third leg is the hind right leg 3 with fixed swing
start φ3 = 0.
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Figure 15: Approximation of reward value rGP for amputation of hind left leg given the swing starts
φi and φk for legs i and k, respectively. Each row represents the values for legs i&k, with legs i and
k depicted on x and y axes, respectively. Each red cross represents one individual in evolution or one
experiment resulting GP in Miguel’s and my methods’ in the first, second, and third columns, respec-
tively. The achieved rGP is depicted by the color, with maximum and minimum values represented by
brightest yellow and darkest blue, respectively. Note the dependencies are, in fact, dependencies of
three leg swing starts. The third leg is the hind right leg 3 with fixed swing start φ3 = 0.
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Figure 16: Approximation of expected reward value rGP for amputation of hind left leg given the
swing starts φi and φk for legs i and k, respectively. Each row represents the expected values for legs
i&k, with legs i and k depicted on x and y axes, respectively. Each red cross represents one individual
in evolution or one experiment resulting GP in Miguel’s and my methods’ in the first, second, and third
columns, respectively. The expected rGP for the given GP is depicted by the color, with maximum and
minimum values represented by brightest yellow and darkest blue, respectively. Note the dependencies
are, in fact, dependencies of three leg swing starts. The third leg is the hind right leg 3 with fixed swing
start φ3 = 0.
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Figure 17: Showcase of GPs adapted to amputation of the front left leg by different methods. The
individual rows belong to the proposed method, Miguel’s approach, and the evolution algorithm, from
top to down, respectively. Three GPs are depicted for each method: The worst scoring, the one with
median reward, and the best achieved from left to right, respectively. (For the evolution, the worst
is the worst out of the 30 best individuals, not the worst individual in the whole evolution process.)
The leg label i is on the y axis, while the MC phase φMC(t) is depicted by the x axis. The color bar
represents the respective leg’s swing phase, with its left border representing the swing start φi(t) and
length representing the swing duration ∆φ. The individual leg colors and labels correspond to the
schema in Figure 1.
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Figure 18: Showcase of GPs adapted to amputation of the middle left leg by different methods. The
individual rows belong to the proposed method, Miguel’s approach, and the evolution algorithm, from
top to down, respectively. Three GPs are depicted for each method: The worst scoring, the one with
median reward, and the best achieved from left to right, respectively. (For the evolution, the worst
is the worst out of the 30 best individuals, not the worst individual in the whole evolution process.)
The leg label i is on the y axis, while the MC phase φMC(t) is depicted by the x axis. The color bar
represents the respective leg’s swing phase, with its left border representing the swing start φi(t) and
length representing the swing duration ∆φ. The individual leg colors and labels correspond to the
schema in Figure 1.
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Figure 19: Showcase of GPs adapted to amputation of the hind left leg by different methods. The
individual rows belong to the proposed method, Miguel’s approach, and the evolution algorithm, from
top to down, respectively. Three GPs are depicted for each method: The worst scoring, the one with
median reward, and the best achieved from left to right, respectively. (For the evolution, the worst
is the worst out of the 30 best individuals, not the worst individual in the whole evolution process.)
The leg label i is on the y axis, while the MC phase φMC(t) is depicted by the x axis. The color bar
represents the respective leg’s swing phase, with its left border representing the swing start φi(t) and
length representing the swing duration ∆φ. The individual leg colors and labels correspond to the
schema in Figure 1.
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Chapter 7

Discussion

The proposed method deals with real-time gait adaptation after leg amputation to enable the robot
to leave the place where the damage originated as fast as possible with no need for continual sensory
input, which can also be unreliable due to the damage. The method is compared with the reactive
method proposed by Miguel et al. [14] and with the offline-learning approach represented by the
evolution algorithm, where the mutual methods comparison metric is the proposed reward function for
GP evaluation. The proposed method proved itself to be overall more consistent in terms of traversed
path and achieved utility given by the reward function, and in two out of three scenarios, it performed
better than the competitive online method.

The previous Chapter 6, containing experiment results, introduces some interesting questions to
discuss. Firstly, how do the online adaptation methods, represented by the proposed method and
competitive Miguel’s method, stand in comparison with the optimal solution given by evolution opti-
mization? Secondly, how do the results obtained in the experiments connect to the original concept of
coordination rules and the proposed adjustments? Last but not least, what are the implications of the
GP rhythm adaptation and of the correlation of the expected and obtained reward value space? This
Chapter aims to discuss and provide insight into those three topics, including a discussion about the
shortcomings of the results and possible future work.

7.1 Online Adaptation Versus Evolution Optimization
The main difference between evolution optimization and the online adapting methods is the amount
of computational time and computational resources needed for evolution to converge to an optimal
solution. The online methods adapt within a few MCs, i.e., in a matter of seconds, while the evolution
optimization took ≈ 9 hours to finish. If the robot is supposed to adapt using the evolution, it needs to
perform a few MCs of each generated individual to find its reward value, or it needs to be able to run
the simulator to test the solutions before use in the real world.

During such time, the robot needs to stop its locomotion and risk damage due to the evaluation
of very bad individuals in the case of testing the individuals in the real world. In the case of in-
simulation evaluation, the robot has limited computational power for other tasks due to the need to run
the simulator, and the locomotion also has to stop until satisfyingly good parameters are found.

In this thesis, the evolution runs for fifty generations. However, one could argue that we do not
need to run so many generations of evolution to outperform the best results of the online adapting
methods. In fact, in the first generation, a very good solution, sometimes outperforming the best-
achieved solution given by the online adapting methods, is already present, as shown in Figures 20,
and 21.

The problem is that the best solution is one out of two hundred randomly generated individuals.
Even if all the ten best randomly generated individuals would be considered satisfyingly good enough,
we would still need to evaluate at least twenty randomly generated individuals to hope to have a good
chance of finding one equivalently good solution. With the use of five MCs for evaluation of each, that
would be one hundred MCs for evaluating locomotion. Still, we could be unlucky and end up with a
very bad or even dangerous (servos-damaging) solution.

The online approaches usually need much fewer MCs to adapt (see Fig 10 for the adaptation length
of the proposed method). Moreover, in the state of adapting, the robot usually does not perform such
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Figure 20: The figure shows the evolution algorithm progress for all three amputation scenarios. x
axis depicts the generation number and y axis depicts the reward value rGP. Each black dot is an
individual in the given generation. The green, orange, and blue lines depict the maximum, mean, and
minimum rGP values in each generation, respectively.
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7.1 Online Adaptation Versus Evolution Optimization

self-damaging behavior as the randomly generated parameters could. In case to fully use the potential
of evolution optimization, we would need to evaluate many more individuals, resulting in even longer
adaptation time.

Given the hexapod walking robot has six legs, the adapted gaits could be precomputed and stored
in the robot’s memory before the mission even starts. In this case, such solution would beat the online
approaches because it could be used instantly and would be better performing. However, the number
of possible malfunctions and their intensity is too high to precompute every possible damage scenario.
If future research expands the proposed rules, it could provide a dynamic system that is able to handle
any kind of damage (e.g., implementing limping in case of lighter servo motor malfunction). In that
case, the future scaling of the number of damage scenarios would favor the online-based approaches.

In terms of obtained reward, the gap between the tested online methods and their upper bound,
given by the evolution’s best solution, is relatively small, and the best online adapted individuals’
resulting GPs have behavior trends similar to the best GPs achieved by the evolution optimization.

Given all the reasoning mentioned above, given the experiment conditions and the GP evalua-
tion by the proposed reward value, I conclude the online adapting methods are more suitable for the
locomotion adaptation after leg amputation than the evolution optimization approach.
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Figure 21: The figure shows the best-rated individual progress within the evolution algorithm for all
three amputation scenarios. x axis depicts the generation number and y axis depicts the reward value
rGP. The green line depicts the maximum rGP value reached in each generation. The trend is non-
decreasing because the best 15% of individuals from the generation survive to the next generation;
thus, the best reward in a new generation is at least as high as in the previous generation.
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7.2 Relation Between Coordination Rules and Gait Patterns’ Reward Value

7.2 Relation Between Coordination Rules and Gait Patterns’
Reward Value

While observing interpolated reward space, shown in Figures 11, 13, and 15, we can recognize some
reappearing trends, e.g., a valley of low values around the line x = y, lower values in corners and
around the edges of the given space, etc. The reward value rGP trends for given pairs of φi(t)s indicate
which phase offsets of (i.e., the relation between) the respective LMCs (and by extension, which GPs)
are more likely to achieve good results. However, shifting the legs swing starts φi(t), determining the
LMCs offset, is exactly the point of the CRs and their adjustments. Therefore, one could expect we
can extract the coordination rules from the reward value dependency on the swing starts, depicted in
Figures 11, 13, and 15.

I decided to perform such comparison from the other end, and I created simplified plots of ex-
pected dependency of reward value rGP on the leg swing starts φi(t) given the CRs, as presented in
Figures 12, 14, and 16. In the following paragraphs, I provide the reasoning for generating the depen-
dencies the way they are depicted in the mentioned Figures systematically from first Figure 12 to the
last Figure 16 and from top to down in each Figure.

For each pair of the swing start φi(t) values, there are several corollaries based on the CRs and
CCARs. The highest expected reward is in the area where all the corollaries are met. On the con-
trary, the lowest expected reward is in the areas where none of the corollaries is met. Each corollary
contributes to the expected reward value as follows: Each corollary has a weight of 1

n , where n is the
number of corollaries for the given pair of values. How much are the individual corollaries met for a
given pair of swing start values φi(t) is given by the difference of the by-corollary-given phase offset
and the actual phase offset of the φi(t) values. The corollaries for the individual pairs of swing start
values are presented in Appendix B.

All the corollaries result in the expected reward value dependency on the legs’ swing start offsets,
depicted in Figures 11, 13, and 15. I claim the proposed method obeys the CRs and CCARs on
which the corollaries are based. Indeed, comparing the achieved configurations (the red crosses in the
Figures), they occur near the expected maximums, proving the system is really designed with respect
to the CRs and CCARs.

However, the important question remains: Do the CRs-and-CCARs-based corollaries match the
optimal solutions given by the evolution algorithm?

Comparing the expected and obtained reward value dependencies side by side, we can observe
similar trends. The most remarkable similarity is probably the valleys of minimums along the line
x = y. Every time they occur in the measured results (leg pairs 1&4, 1&5 and 2&4 in the scenario
with amputated leg 0, see Figure 11; leg pairs 0&1, 0&2 and 1&5 in the scenario with amputated leg
4, see Figure 13; and leg pairs 0&4 and 1&5 in the scenario with amputated leg 2, see Figure 15) they
also appear in the expected results. Such valley means the values should not be similar to each other.

Another occurring resemblance is the lower reward values in the corners (leg pairs 1&4, 1&5, 2&4
and 2&5 in the scenario with amputated leg 0, see Figure 11; 0&1, 0&2, 1&2, 1&5 and 2&5 in the
scenario with amputated leg 4, see Figure 13; and leg pairs 0&4, 1&4, 1&5, and 4&5 in the scenario
with amputated leg 2, see Figure 15) and around the edges (leg pairs 1&2, 1&5, 2&5 and 4&5 in the
scenario with amputated leg 0, see Figure 11; leg pairs 0&1, 0&2, 0&5, 1&2 and 2&5 in the scenario
with amputated leg 4, see Figure 13; and leg pairs 0&4, 0&5, 1&4, 1&5 and 4&5 in the scenario with
amputated leg 2, see Figure 15) of the shown space, which co-occur in most of the instances.

Few of the configurations also show similar maximum trends in the compared Figures (the re-
semblance stands out in leg pairs 1&5 and 2&4 for the scenario with amputated leg 0, see Figure 11
and all the leg pairs of the scenarios with amputated legs 4 and 2, see Figures 13 and 15, respec-
tively). Nevertheless, the mentioned corollaries building the expected reward dependency trends are
only approximate, which often leads to unnecessary symmetries, highlighting some specific values
much more than the neighboring ones (even in cases of the corollary where ”the values should be
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more similar than different”), etc. Therefore, a deeper analysis of the CRs and CCARs and a more
precise reward value expectation approach could arguably estimate the trends even better.

The above-mentioned similarities show the expected CRs-and-CCARs-based search space corre-
lates with independently created reward-value-based search space.

7.3 Limitations and Future Work
This thesis worked mainly with the concept of leg damage, meaning the leg amputation. Nevertheless,
The leg damage does not have to be binary, i.e., fully functional or in need of amputation, but the leg
can be slightly damaged and still usable. Future research should explore the possibility of using the
slightly damaged leg to help the locomotion, e.g., via limping.

Whatever many hours of the simulation were run for data gathering in this thesis, there was no
time left for deploying all the methods on a real walking robot, partially due to the unpredictability of
the randomly generated individuals in the evolution algorithm, which could damage the robot’s servo
motors. However, the deployment in the real world can always have very different results from the
results gathered in simulations.

The proposed method was already tested on a real walking robot using a bit more complicated
locomotion controller architecture in our work in [18].9 However, the results of the adjusted Miguel’s
method and the EA approach have not yet been tested on a real hexapod walking robot. Such compar-
ison will be the subject of future research.

A few preliminary experiments were run with real walking hexapod robot Daisy by HEBI robotics,
which is of larger scale and has differently shaped legs and body than the model PhantomX-v3.1
used in the simulation or the SCARAB robot used in the experiments in the previous work [18]. The
observed locomotion behavior showed the proposed method does not solely solve the adaptation for
the tested robot. Its different weight distribution restricted some of the legs from lifting off during
the locomotion due to the additional load put on the front legs by the absence of the amputated leg.
Therefore, the fusion of the proposed and competitive method, or some other sensory-based approach,
will probably be necessary, if a universal solution should be achieved.

The movement range and the legs’ default positions in relation to the body were all predetermined
by motion primitives with given bounds, meaning the proposed methods had no control over the
movement amplitudes. Therefore, the locomotion adaptation could probably be improved by fixing
the rhythm given by the compared methods and optimizing the amplitudes.

In Section 5.3.1, I mentioned the straightforward approach to optimize the GP by tunning 3996
parameters (one servo motor position command for each servo motor for each iteration within the MC),
which would reduce to 15 · 222 = 3330 parameters for case of one amputated leg, optimizing both,
rhythm and amplitudes at the same time, which can be decoupled to handle separately the rhythm
and the amplitudes. Even if no other reductions were introduced and a similarly straightforward
approach would be used to optimize only the amplitudes after using the compared methods for rhythm
optimization, the number of parameters would decrease significantly. The motion primitives, activated
in the right moments given the GP rhythm, could be parametrized by only two numbers for each servo,
representing the range of movement for the respective servo motor, i.e., 18 · 2 = 36 parameters, or
15 · 2 = 30 parameters for case of one amputated leg. Therefore, the introduced reduction yields
in total 35 parameters10 for locomotion after amputation of one leg, significantly reducing the search
space. Future work could explore the relations between amplitudes of individual legs and even further
reduce the search space, decreasing the needed computational resources.

9The work also provides results of amputation of not only one but two legs simultaneously. However, including such
experiments for all three discussed methods would significantly increase the time and computational power demand for this
thesis.

1030 for amplitudes and 5 for LMC starts and swing duration. Recall that one LMC start is fixed to value 0 to avoid
symmetries.
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Therefore, future experiments with differing morphologies will also be targeted to answer the
question of whether the relations between the evolution-algorithm-found optimals and the expected
optimals based on the CRs and proposed CCARs still hold for different morphologies. Such robustness
could be partially tested by changing the default robot posture in the simulation (making the robot
stand on more straightened legs or with legs spreaded to a greater distance around the robot’s body,
etc.). These simulations can be run before experiments using different real-world robots to ensure the
behavior would not damage them.

The similarities between the expected reward value search space, based on the implications of
the CRs and CCARs, and the experimentally obtained reward value search space show that the CRs
and CCARs could be used as heuristic for the optimal reward value search. The reward value is
dependent on sensory data, including robot position, velocity, and rotation tracking. Such data can be
difficult to obtain with high precision, especially on small robots with limited payload for sensors or
in environments with low visibility and/or no GPS connection. The proposed method provides a way
to improve the optimal locomotion search in conditions where sensors are not available or reliable.

The observed similarities support the connection between the rules and the GP utility, with this
thesis aiming to implement the rules to achieve the optimal GP rhythm. With the achieved results, it
is possible to invert the direction of the workflow in future work and formulate a new set of possibly
more precise GP rhythm rules based on the obtained reward value space, which could further improve
the proposed method ability to amputation adaptation.

All the compared methods tackled the adaptation after leg amputation by tunning the GP rhythm,
i.e., changing when the legs are lifted off moving forward and when the legs support the robot’s body
moving backward. The methods achieved improvement in the locomotion after amputation. Hence,
the experiments proved the correct rhythm change itself can truly improve the locomotion.
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Chapter 8

Conclusion

In this thesis, the coordination-rules-based method adjusting the Gait Pattern (GP) rhythm to adapt
the locomotion after leg amputation of the hexapod walking robot was proposed and compared with
competitive sensory-based adaptation approach [14] and with introduced Evolution Algorithm (EA)
given the proposed reward function evaluating the GP. The proposed method originates in bio-inspired
Coordination Rules (CRs) further extended by Consecutivity and Contralaterality Adjustment Rules
(CCARs) for the case of leg amputation. The rules determine the relations between the movement
of individual legs, implying which legs can or can not move simultaneously. The proposed method
dynamically detects a violation of the rules and actively adapts the timing of the legs’ movement to
avoid the rules violations in the future.

The introduced reward value favors GPs with high and stable velocity, stable orientation, and
straightness of the traversed path. The weights for sensory inputs are balanced to make the nature-
observed GPs gain positive rewards. The EA takes advantage of the locomotion decoupled parametriza-
tion to reduce the locomotion search space significantly. The locomotion parametrization after leg
amputation is achieved with only four parameters, automatically eliminating an infinite number of du-
plicate GPs differing only by phase offset of their periodic movement. The EA utility is the proposed
reward function value optimized by changing the GP rhythm.

The comparison of the two online-adapting approaches shows the proposed CR-based method is
more consistent and, in two out of three scenarios, outperforms the competitive method proposed by
Miguel et al. The proposed method is more consistent in the achieved results in individual runs, in
the traversed path, and in the robot’s orientation. Moreover, in contrast with the competing method,
the proposed method does not depend on continual sensory feedback, which can be unreliable after
damage occurs. All three compared methods, the proposed method, the Miguel’s method, and the
EA, converge to similar areas within the GP space and yield GP rhythms with similar trends, although
each optimizes different criteria. Such similarities imply a possibility of future fusion of the methods,
hopefully improving their performance.

From the method evaluation, the GP evaluation space emerged using the samples gathered during
the experiments. The obtained GP evaluation space was compared with the expected GP evaluation
given the bio-inspired CRs. The comparison revealed correlations between the observed and expected
GP utility space, supporting the idea that CRs and CCARs are suitable heuristic for GP search.

The obtained GP evaluation space gives the opportunity to form new CRs given the evaluation
space observation of dependencies within the GP. Such novel CRs could further improve the perfor-
mance of the proposed method. More experiments with different morphologies could also provide
additional data for the GP evaluation space and result in correlations leading to CRs independent of
the particular morphology. Combining the proposed sensory-free method optimizing the GP rhythm,
enhanced by the newly formed CRs based on the observed GP evaluation space, with sensory feedback
could provide a universal solution for gait adaptation of hexapod walking robots after leg amputation
with possible extension to any leg damage adaptation.
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Appendix A

Getting the Swing Danger Vector

The input are the vectors sdmg ∈ {0, 1}6, with sdmg
j = 1 means leg j is amputated and ssw(t) =

(ssw
0 (t), . . . , ssw

5 (t)), where ssw
i = 1 means leg i is performing swing and ssw

i = 0 means leg i is
performing stance.

The swing danger vector d(t) indicates whether each leg can perform swing or not, according
to CRs and CCARs. The first conflict is the possibility of swinging the leg in the same time its
contralateral leg performs swing. Finding the leg’s contralateral leg is addressed in the following
Section A.1. The second possible conflict is with the leg’s consecutive leg, which is introduced in the
second Section A.2

The implementation is done in python3 with NumPy library. Therefore, the implementation of
getting the vector d(t) uses available vector and matrix operations.

A.1 Get Label of Contralateral Leg
Two support matrices are defined: (i) binary matrix Mr of dimensions 6 × 6, where row r represents
leg label 0, . . . , 5 and the column c represents the legs role in the morphology: 0: hind left, 1: middle
left, 2: front left, 3: hind right, 4: middle right, 5: front right. Hence, the elements mr

r,c = 1 for
(r, c) ∈ {(0, 2), (1, 5), (2, 0), (3, 3), (4, 1), (5, 4)} and all others are equal to zero:

Mr =



0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0

 , (46)

(ii) The second support matrix is the matrix of consecutiveness Mc, where mc
r,c = 1 and mc

c,r = −1
if leg c is consecutive to leg r and mc

r,c = 0 otherwise:

Mc =



0 0 0 0 −1 0
0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 0 0 1
1 0 −1 0 0 0
0 1 0 −1 0 0

 . (47)

The vector msel is given as the j-th row of the matrix Mc, where j is the label of amputated leg, i.e.,
s

dmg
j = 1, so msel = mc

j .
The index ir = argmaxim

r
j,i, where mr

j = (mr
j,0, . . . ,m

r
j,5) is the j-th row of the matrix Mr, is

the role of the damaged leg. The index ic = ir +
∑5

i=0m
sel
i is the role of the leg k, for which the

amputated leg j is the consecutive leg.
The matrix of roles Mr is then modified to correspond to the CCARs: If the leg j is amputated

and is consecutive leg of the leg k, the leg k takes the role of the amputated leg j, i.e., the ir-th column
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A.2 Conflict with Consecutive Leg

mr
,ir

is copied to the ic-th column mr
,ic

in the matrix Mr = (mr
,0, . . . ,m

r
,5), i.e., mr

,ic
:= mr

,ir
.

Because the leg j is amputated, it no longer has any of the roles, thus mr
j,ir

= 0.
i-th element scont

i in vector scont = (scont
0 , . . . , scont

5 ) represents the label of the i-th leg’s contralat-
eral leg, according to the CCARs (i.e., according to newly adjusted matrix Mr), as follows:

scont
i =

{
argmaxkm

r
i,k + 3 , if argmaxkm

r
i,k < 3

argmaxkm
r
i,k − 3 , if argmaxkm

r
i,k ≥ 3

(48)

Vector sr = (sr
0, . . . , s

r
5) consists of elements sr

i, where i stands for role in the morphology (i.e.,
recall 0: hind left, 1: middle left, 2: front left, 3: hind right, 4: middle right, 5: front right), and the
element sr

i represents the label of the leg with the given role:

sr
i =

{
argmaxkm

r
k,i if sdmg

i = 0

−1 otherwise
. (49)

Finally, vector dcont = (dcont, 0, . . . , dcont
5 ) is introduced, where dcont

i = 1 means i-th leg’s con-
tralateral leg is performing swing, thus the leg i should not perform swing:

dcont
i =

{
ssw
l if sdmg

i = 0

0 otherwise
(50)

l = sr
scont
i

(51)

A.2 Conflict with Consecutive Leg
Here another support binary matrix Ms of dimensions 6× 6 is introduced, with ms

r,c = 1 if the leg c
is on the same side of the robot’s body as leg r, otherwise ms

r,c = 0 and also if c = r, then ms
r,c = 0:

Ms =



0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0
0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0

 . (52)

For each leg i a value ai, representing how many legs on the same side are in swing (amputated
leg is considered as performing swing), is computed as follows:

ai =

5∑
k=0

ms
i,ks

sw
k . (53)

In the case of contralaterality, the previous section introduced a mechanism changing the matrix
according to CCARs. However, here, I skipped such process and substituted it with the summation
for the change in consecutivity. The expressions dcons

i , forming the vector dcons
i carry an information

about whether leg i can perform swing in relation to its consecutive leg (dcons
i = 0) or not (dcons

i = 1):

dcons
i =

{
1 if (i 6∈ {2, 3} ∧ sdmg

l = 0 ∧ ssw
l = 1) ∨ ai = 0

0 otherwise
(54)

l = sr
scons
i

(55)

Finally, the vector d = (d1, . . . , d5), is given as:

di = Jdcont
i + dcons

i > 0K. (56)
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Appendix B

CRs and CCARs Implications Generating
Expected Reward Value Space

B.1 Amputated Leg: Front Left 0
Relation of: front right 1 & hind left 2: According to CRs and CCARs, leg 2 is contralateral to leg
3, which has its swing start φ3 set to zero. Therefore, leg 2 should have swing start φ2 somewhere
around P

2 = π in order to move in antiphase with leg 3. Similarly, the consecutive legs move after
each other: the hind leg, middle leg, and the front leg at last, followed by the hind leg again. Hence,
the phase offset between leg 1 and 3 should be approximately ∆φ equal to P

3 = 2π
3 . Combining these

two corollaries, the leg swing start of leg 2 φ2 ≈ π and swing start of leg 1 φ1 ≈ 2π
3 , therefore the

phase offset between φ2 and φ1 should be around π
3 .

Relation of: front right 1 & middle left 4: Based on the CRs and CCARs, legs 1 and 4 are
contralateral; thus, the phase offset of their swing starts should vary around value P

2 = π. Leg 2 is
contralateral to leg 3, which has φ3 equal to zero. Therefore, the leg 2 should start its swing around
π. Because legs 4 and 2 are only two legs on the left side of the robot’s body, the legs should alter;
therefore, the swing start φ4 of leg 4 should be approximately equal to the φ3 (i.e., 0 = φ3 ≈ φ4)
because leg 3 should also alter the leg 2. Lastly, leg 1 should approximately start its swing P

3 = 2π
3

after the leg 0, with the same reasoning as in the pair of swing starts φ1 and φ2.
Relation of: front right 1 & middle right 5: Because the legs 3, 5, and 1 are consecutive in

that order, the phase offsets between the consecutive pairs should correspond to the ∆φ = P
3 = 2π

3 ,
according to the CRs.

Relation of: hind left 2 & middle left 4: Legs 2 and 4 are the only legs remaining on the left
side of the robot’s body. Therefore, they should alter in the movement, with their phase offset being
approximately P

2 = π. The leg 2 is also contralateral to the leg 3. Hence, the phase offset of legs 3
and 2 should also approximately correspond to P

2 = π, and legs 3 and 4 should perform the swing in
similar phase (i.e., φ4 ≈ φ3 = 0).

Relation of: hind left 2 & middle right 5: Based on the CRs, the consecutive legs 5 and 3 should
have phase offset of their swing start somewhere around ∆φ = P

3 = 2π
3 . Leg 2 is contralateral to leg

3; therefore, again, the phase offset between them should be approximately P
2 = π. Based on those

two corollaries, the phase offset between legs 2 and 5 should move in proximity to value π
3 .

Relation of: middle left 4 & middle right 5: Given the reasoning above for a pair of swing start
values φ1 and φ4, leg 4 should start its swing around 0, i.e., φ3 ≈ φ4. The leg 5 is leg’s 3 consecutive
leg; hence φ5 ≈ ∆φ = P

3 = 2π
3 . The leg 3 with φ3 = 0 moves in antiphase of the leg 2. Thus, leg’s

5 movement following the movement of leg 3 should perform its movement close to the movement of
leg 4, i.e., φ4 ≈ φ5.

B.2 Amputated Leg: Middle Left 4
Relation of: front left 0 & front right 1: The legs 0 and 1 are contralateral; therefore, I expect the
phase offset between them to be approximately P

2 = π. Leg 0 is also expected to have approximately
the same swing start φ0 as leg φ3 = 0, with the same reasoning as for leg 4 in the scenario with
amputated leg 0 (i.e., legs 0 and 2 are the only two legs on the left side; hence they should alter each
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B.3 Amputated Leg: Hind Left 2

other, with leg 2 being contralateral to leg 0). Also, the reasoning behind the expectancy of leg’s 1
swing start being around ∆φ = P

3 = 2π
3 is the same as in the case of the scenario with amputated leg

0.
Relation of: front left 0 & hind left 2: Using the logic from the previous paragraph, the legs 2

and 0 should alter each other; thus, the mutual phase offset is expected to be around value P
2 = π.

The previous paragraph also explains the corollary of value φ0 ≈ P
2 = π. Finally, legs 3 and 2 are

contralateral; therefore, I expect the value phi2 ≈ π, given the fixed value φ3 = 0.
Relation of: front left 0 & middle right 5: Once again, the value phi0 expectation is somewhere

close to value φ3 = 0. Leg 5, being the consecutive leg of leg 3, results in the corollary the value
phi5 ≈ ∆φ = P

3 = 2π
3 . Thus, the expected phase offset of legs’ 0 and 5 swing starts φ0 and φ5 is

about π3 .
Relation of: front right 1 & hind left 2: On the leg 1 the corollary of its swing start φ1 having

phase offset with leg 0 roughly ∆φ = P
3 = 2π

3 applies again. Leg 2 is contralateral to leg 3, implying
the phase offset P2 = π. The phase offset of legs’ 1 and 2 swing starts φ1 and φ2 use the weak corollary
of being ”more similar than different”, written as φ1 ≈ φ2.

Relation of: front right 1 & middle right 5: Leg 1 is consecutive to leg 5; thus, I expect the
phase offset between their respective swing starts φ1 and phi5 to be approximately ∆φ = P

3 = 2π
3 .

Also, leg 5 is consecutive to leg 0, and leg 0 starts its movement after leg 1. In other words, all the legs
3, 5, and 1 are consecutive in that order; therefore, I expect the distances between consecutive leg’s
swing starts to be approximately around the value. Hence, with leg’s 3 swing start φ3 fixed to value 0,
the phase offset from 0 should be somewhere close to value ∆φ = P

3 = 2π
3 .

Relation of: hind left 2 & middle right 5: The legs’ 2 and 5 swing start relations to the fixed
swing start φ3 = 0 of leg 3 were already described. Given the relation between 2 and 3, and 3 and 5,
the expected phase offset between swing starts of legs 2 and 5 is about π3 .

B.3 Amputated Leg: Hind Left 2
Relation of: front left 0 & front right 1: The legs 0 and 1 are contralateral; thus, the phase offset
of their swing starts is expected to be near the value of P

2 = π. For the pair of legs 4 and 0, the logic
of altering their actions as they are the only two remaining legs on the left side applies again. Leg 4
being contralateral to leg 3 (according to the CRs and CCARs) with fixed swing start φ3 = 0 suggests
the leg’s 0 swing start φ0 should be similar to φ3, i.e., φ0 ≈ φ3. Legs 3, 5, and 1 are consecutive in
that order; hence, the movement of leg 3 is assumed to start after the movement of leg 1. Thus, the
leg’s 1 swing start should have the phase offset around ∆φ = P

3 = 2π
3 .

Relation of: front left 0 & middle left 4: The legs 0 and 4 are consecutive, and they are the only
remaining legs on the left side. Therefore, their expected phase offset is P

2 = π in order to alter each
other. Leg 4 is the contralateral leg to leg 3, due to the CRs and CCARs, implying the expected swing
start φ4 value being approximately P

2 = π because the leg’s 3 swing start is fixed to value φ3 = 0.
Because the legs 4 and 3 should move in antiphase and legs 4 and 0 should move in antiphase, the legs
0 and 3 should perform their movement in similar phase, i.e., φ0 ≈ φ3.

Relation of: front left 0 & middle right 5: Leg 5 is the consecutive leg to the leg 3, which has
fixed swing start φ3 = 0; hence, the leg’s 5 swing start φ5 is expected to have a phase offset with
swing start φ3 around the value ∆φ = P

3 = 2π
3 . The expected swing stat value of leg 0 (φ0 ≈ φ3) was

already explained in the previous paragraphs. Combining the expected values of legs 0 and 5, their
expected phase offset is approximately π

3 .
Relation of: front right 1 & middle left 4: The expected phase offset between legs 1 and 3

(∆φ = P
3 = 2π

3 ) is already explained in the previous paragraphs. Leg 4 is, once again, considered
contralateral to leg 3 due to the CRs and CCARs, implying the leg’s 4 swing start be near the value of
P
2 = π, as leg 3 has fixed swing start value φ3 = 0. Hence, the expected phase offset of legs’ 1 and 4
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B.3 Amputated Leg: Hind Left 2

swing starts is around π
3 .

Relation of: front right 1 & middle right 5: Legs 3, 5, and 1 are consecutive legs, respectively.
Thus, the phase offsets between swing starts of legs 3 and 5, 5 and 1, and also 1 and 3, is approximately
∆φ = P

3 = 2π
3 , where leg 3 has fixed swing start φ3 = 0.

Relation of: middle left 4 & middle right 5: Finally, leg 5 is the consecutive leg of leg 3,
and based on the CRs and CCARs, leg 4 is contralateral to leg 3, which has a fixed swing start
φ3 = 0. Therefore, the phase offset between swing starts of pairs of legs 3 and 5, and 3 and 4 are
∆φ = P

3 = 2π
3 , and P

2 = π, respectively. Such relation implies the phase offset of legs’ 4 and 5 swing
starts near the value of π3 .
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