Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Text-driven Real-time Video Stylization using
Diffusion Models

Bc. David Kunz

Supervisor: prof. Ing. Daniel Sykora, Ph.D.
Field of study: Artificial Intelligence
January 2024

ii

S MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

l. Personal and study details
4 ™\
Student's name: Kunz David Personal ID number: 467838

Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Computer Science

Study program: Open Informatics

Specialisation: Artificial Intelligence

Il. Master’s thesis details

4 2
Master’s thesis title in English:

Text-driven Real-time Video Stylization using Diffusion Models

Master’s thesis title in Czech:

Textem fizena stylizace videa v realném ¢ase s vyuzitim difuznich modelti

Guidelines:

Study methods for transferring an artistic style to a video using a set of hand-drawn keyframes [1, 2, 3]. Explore also
techniques for image synthesis [4, 5] based on diffusion models [6] that can be used to prepare stylized keyframes
automatically. Implement a tool that allow to stylize a live video in real time [2] using keyframes generated by text-driven
diffusion process. Verify the effectiveness of the proposed solution on a simple video conferencing application that enables
the user to change his or her visual appearance in the live video on the fly using interactively by typing text prompts.

Bibliography / sources:

[1] JamriSka et al.: Stylizing Video by Example, ACM Transactions on Graphics 38(4):107, 2019.

[2] Texler et al.: Interactive Video Stylization Using Few-Shot Patch-Based Training, ACM Transactions on Graphics
39(4):73, 2020.

[3] Futschik et al.: STALP: Style Transfer With Auxiliary Limited Pairing, Computer Graphics Forum 40(2):563-573, 2021.
[4] Rombach et al.: High-Resolution Image Synthesis With Latent Diffusion Models, Proceedings of Conference on Computer
Vision and Pattern Recognition, pp. 10684-10695, 2022.

[5] Brooks et al.: InstructPix2Pix: Learning to Follow Image Editing Instructions, CVPR 2023.

[6] Ho, et al.: Cascaded Diffusion Models for High Fidelity Image Generation, Journal of Machine Learning Research
23(47):1-33, 2022.

Name and workplace of master’s thesis supervisor:

prof. Ing. Daniel Sykora, Ph.D. Department of Computer Graphics and Interaction

Name and workplace of second master’s thesis supervisor or consultant:

Date of master’s thesis assignment: 18.09.2023 Deadline for master's thesis submission:

Assignment valid until: 16.02.2025

prof. Ing. Daniel Sykora, Ph.D. Head of department’s signature prof. Mgr. Petr Pata, Ph.D.
Supervisor’s signature Dean'’s signature

_ J
lll. Assignment receipt

The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

iv

Acknowledgements

I would like to thank my tutor, Prof.
Daniel Sykora, for his assistance and valu-
able advice during this project. His pos-
itivity and motivation significantly con-
tributed to the completion of this work.
Additionally, I would like to acknowl-
edge the foundational work of the authors
whose research has been instrumental in
shaping this project. Their pioneering ef-
forts laid the groundwork for this project.
I also wish to extend my gratitude to my
partner and family for their ongoing sup-
port, not just during my thesis work but
in all my academic pursuits. Finally, I ap-
preciate all the subjects who generously
agreed to participate by allowing their
videos to be included in this thesis.

Declaration

I declare that all the work presented in
this project is my own. No part of this
work has been plagiarized or copied from
another source without proper attribution.
I have upheld and respected the princi-
ples of academic honesty and integrity in
completing this project.

Prague, January 9, 2024

Prohlasuji, ze jsem predlozenou praci
vypracoval samostatnté a ze jsem uvedl
veskeré pouzité zdroje v souladu s Metod-
ickym pokynem o dodrzovani etickych
principi pri pripravé vysokoskolskych
zavérecnych praci.

V Praze, 9. ledna, 2024

Abstract

This thesis presents a new approach to
text-driven video stylization. The pri-
mary objective was to enable users to
transform a live video stream using sim-
ple text prompts while ensuring real-time
performance and maintaining high vi-
sual quality. Our approach combines the
complementary capabilities of Instruct-
Pix2Pix and StyleVid to synthesize styl-
ized keyframes and efficiently propagate
them across video frames. This hybrid
pipeline achieves over 30 fps performance
with minimal latency and style delay on
typical video conferencing footage. The
system not only showcases fast perfor-
mance and interactive text prompt ca-
pabilities, but also excels at producing
diverse and visually compelling styliza-
tions in diverse video scenarios. Despite
its strengths, the method also reveals lim-
itations in keyframe consistency and cov-
erage, especially for motions beyond stan-
dard video call scenarios. User feedback
from public demonstrations confirms the
system’s intuitive use and expressive po-
tential.
keyframe consistency and automate frame
selection to further refine this novel av-
enue in text-guided real-time video styl-
ization.

Future work aims to enhance

Keywords: style transfer, video
stylization, image synthesis, latent
diffusion models, real-time processing

Supervisor: prof. Ing. Daniel Sykora,
Ph.D.
FEE, Department of Computer Graphics

and Interaction

vi

Abstrakt

Tato prace zpracovava novy pristup k tex-
tové fizené stylizaci videa. Hlavnim ci-
lem je interaktivni transformace zivého vi-
deo streamu pomoci jednoduchych texto-
vych prikazi zadanych uzivatelem pii za-
chovani vysoké vizualni kvality videa.
Nase metoda kombinuje komplementarni
schopnost syntézy stylizovanych kli¢ovych
snimkl a jejich efektivniho siteni u mo-
delit InstructPix2Pix a StyleVid. Toto
hybridni feSeni dosahuje vykonu pres
30 snimku za vtefinu s minimalni la-
tenci a prodlevou styld na typickych vi-
deo konferenénich zabérech. Systém také
vynikd v produkci rozmanitych a vizu-
alné presvédcivych stylizaci videi ve vniti-
nim i vnéjsim prostfedi. Omezeni spociva
v konzistenci a pokryti klicovych snimk,
zvlasté pri komplexnich pohybech uziva-
tele béhem videohovoru. Zpétnd vazba
uzivatelll pri verejnych prezentacich po-
tvrzuje intuitivni pouziti systému a jeho
expresivni potencidl. Moznosti dalsiho vy-
voje metody pro textové rizenou stylizaci
videa v redlném case jsou predevsim zlep-
seni konzistence klicovych snimki a v au-
tomatizaci vybéru snimki.

Kli¢ova slova: prenos stylu, stylizace
videa, syntéza obrazu, latentni difuzni
modely, zpracovani v redlném case

Pteklad nazvu: Textem Tizena stylizace
videa v redlném case s vyuzitim difuznich
modelt

Contents
1 Introduction 1l

1.1 Problem Statement
1.2 Motivation and Goals 2
1.30utline....................... 3]
2 Neural Networks and Diffusion
Models 5|
2.1 Historical Context 5
2.2 Neural Networks Foundation 6
2.2.1 Convolutional Layer
2.2.2 Pooling Layer

2.2.3 Upsampling Layer...........
2.2.4 Residual Networks (ResNets) .

2.2.5 U-Networks (U-Nets) 9
2.3 Diffusion Models Foundation . . .
2.3.1 Conditioning
3 Style Transfer Methods
3.1 Non-parametric Methods
3.2 Parametric Methods 17
3.2.1 Neural Methods 18
3.2.2 Diffusion Methods 20/
4 Method 27
4.1 Overall Approach
4.2 Keyframe Selection and
Stylization
4.3 Style Propagation.............
5 Implementation
5.1 Hardware and Software
Configuration
5.2 Application Design............
5.2.1 Client Components.
5.2.2 Server Components
6 Results and Experiments
6.1 Performance Analysis
6.2 Style Coherence Analysis
6.2.1 Style Coverage.............
6.2.2 Convergence Speed
6.3 Results 56l

6.3.1 Limitations and Failure Cases 68
6.3.2 Future Work
6.4 User Demonstration...........

vii

7 Conclusion

A Bibliography

B Additional Results
C Attachment Files

SREB

Figures
1.1 An example of a neural network
based style transfer technique [13].
The stylized image b) depicts the
same semantic content as the source
photograph a) styled by the style
exemplar, Starry Night by Vincent
Van Gogh [I].
1.2 Real-time Video Stylization with
Text-Driven Diffusion Models. The
process begins with a video stream of
unstylized input frames (blue border).
Keyframes (blue glow), are extracted
from these input frames. A text
prompt - "As a marble statue” -
describes the desired transformation
to stylize input keyframes, creating
stylized keyframes (orange glow).
The created style is then propagated
as soon as possible to the rest of the
video stream’s frames (orange
borders). i
1.3 Images edited using the
InstructPix2Pix [4] model. Given an
input image a) and an instruction to
edit the image, the model performs
the appropriate edit b)-d).

[\

<

2.1 Visual representation of a
convolution operation. A 3x3 kernel
with predefined weights slides across
the input image grid, applying a dot
product at each position to create a
feature map.

2.2 A full convolutional layer: An
input image with three channels (left)
undergoes convolution with two
distinct 4x4x3 filters, resulting in two
separate feature maps (beige and
orange). These feature maps, each
with an added bias, are then
subjected to a ReLLU activation
function, yielding activated feature
maps (teal and blue). These are then
ready to be processed by subsequent
convolutional layers, now with two
channels.

9

viii

2.3 A comparison of upsampling
methods: Transposed Convolution
with zero insertion (top) versus
Nearest-Neighbor Interpolation
(bottom). Image from [49].

2.4 Comparison of traditional neural
network layers versus a residual block
in ResNet architectures. (a)
illustrates a typical sequence of
weighted layers and activation
functions, denoted as F'(z). (b)
shows the residual block with a skip
connection, allowing the input z to
bypass the two layers by adding it
directly to their output, denoted
as F(x) + x, before the activation
function. Image adapted from [27]
under CC BY 4.0 license.

2.5 Original U-Net architecture
of [39].

2.6 Diffusion process in generative
modeling. The top row represents the
forward diffusion process, where
structured data is progressively
noised until it becomes
indistinguishable from random noise.
The bottom row illustrates the
reverse process, where noise is
removed to reconstruct the input
data or synthesize new data instances,
guided by the score function as
shown on the right, in which the
gradient points to the direction of
data with higher likelihood and less
noise. Image adapted from [46]. ..

2.7 Example of conditioning adapted
from [48]. ControlNet is used to add
conditions; Canny edges (top) and
human pose (bottom) to control the
generation of image using Stable
Diffusion. Stable Diffusion is further
conditioned on input text.

3.4 Schematic from Rerender A
Video [47], showing the two-phase
process: the generation of coherent
keyframes at every K-th frame of the
original video and the propagation to
produce a temporally consistent
video sequence. First the keyframes
are created with attention according
to the blue and pink arrows. Then,

3.1 An example of the stylization setup
from Image Analogies [21]. A content
image A and its styled
counterpart A’ form the desired
transformation. The goal is to
perform the same transformation on
image B creating image B’.

3.2 This diagram illustrates the
balance between adherence to the

guide image and model distribution
fidelity in the SDEdit process [32],
modulated by the noise level

the frames between these keyframes
are stylized using EbSynth [25], the
style propagated from the keyframes

variable tg. The graph to the left
plots two metrics: Lo (similarity to
the guide image) and Kernel
Inception Distance (KID) (similarity
to the model’s image distribution).
As tg increases from 0 to 1, the Lo
score increases, indicating that the
image is diverging from the original
guide. Conversely, a decreasing KID
score denotes a closer alignment with
the model’s distribution. The ’Sweet
spot’ is where an ideal mix of
originality and creativity is achieved.
The images to the right display this
effect visually, with tg = 0 presenting
the unchanged guide image
and tg = 1 offering a completely new
image informed by the model’s data,
with intermediate values depicting
the gradual shift between these two
extremes.
3.3 An illustration of fine-tuning
text-to-image models on video data
from [2]. Initially, the samples
synthesised from one batch are
different, then the fine-tuning takes
advantage of batches to feed in video
frames as training images, allowing
the generation of consistent videos.

on both sides, then blended..

4.1 Participant using the real-time
style transfer application during the
Uroboros: Creative Al meet-up.

4.2 Stylizing a video using StyleVid in
conjunction with InstructPix2Pix.

4.3 Comparison of stylized keyframes
generated using IP2P. a) contains the
input keyframes and b) and c)
contain the respective keyframes
stylized with the prompt "make him
look like batman" with CFG image 13
and CFG text 2. Keyframes in b)
were created all at once in one
inference run and the keyframes in c)
were generated one by one in 3
distinct inference runs.

4.4 Comparison of images generated
using [P2P and ControlNet with
Stable Diffusion v1.5 as a base model.
The image pairs a)-f) contain an
input image that the model is
conditioned on, shown on the left.
On the right is the generated output
paired with the text prompt used.
Pair a) is generated by IP2P, while
pairs b)-f) are outputs using
ControlNet.

4.5 Weight contributions of frames in
temporal blending: The graph
displays the declining influence of
each preceding frame on the blended
output over time for multiple values
of a.

30

31

ix

4.6 Foreground masks created using
the MediaPipe selfie segmenter. a)
contains the input keyframes from
which the training masks b) are

created. ...

5.1 Diagram of the application design.
Shows the inner workings and
connection of two machines a client
and a server (in blue). Separately
running programs are depicted in
brown, yellow signifies storage and
the distinct client components are
shown in pink. The arrows show the
flow of information between the
machines, components and other
resources. The storage on the client
is shown as opaque to indicate that
the server is the actual location of
thedata. 138

5.2 A screenshot of the entire GUI app
with collapsed drawers. Shows the
Keyframe View Section and the

Output Console.
5.3 A screenshot of the expanded

Video Processing Drawer.
5.4 A screenshot of the expanded Mask

Viewer Drawer. 41!
5.5 A screenshot of the expanded IP2P

Config Drawer.

6.1 Simple style stylization using
one keyframe: input keyframe and
mask (blue border), stylized keyframe
(orange border), input and stylized
frames (bottom two rows). Used
parameters; prompt: "as a
daguerreotype”, cfg_text: 8,
cfg_image: 2.

6.2 Simple style stylization using
multiple keyframes: input
keyframes and masks (blue border),
stylized keyframes (orange border),
input and stylized frames (bottom
two rows). Used parameters; prompt :
"as a daguerreotype”, cfg_text:
8, cfg_image: 2.

6.3 Hard style stylization using one
keyframe: input keyframe and mask
(blue border), stylized keyframe
(orange border), input and stylized
frames (bottom two rows). Used
parameters; prompt: "turn him
into Shrek", cfg_text: 7.5,
cfg_image: 2.

6.4 Hard style stylization using
multiple keyframes: input
keyframes and masks (blue border),
stylized keyframes (orange border),
input and stylized frames (bottom
two rows). Used parameters; prompt :
"turn him into Shrek",
cfg_text: 7.5, cfg_image:

2 48]

6.5 Hard sequence stylization using
multiple keyframes: input
keyframes and masks (blue border),
stylized keyframes (orange border),
input and stylized frames (bottom
two rows). Used parameters; prompt :
"give him a moustache”,
cfg_text: 8, cfg_image: 2. .

6.6 Convergence times of three styles;
an simple style (top), medium style
(middle), hard style (bottom). Each
row contains the style parameters on
top and the stylized keyframe
(orange border) and stylized frames
taken every 5 s starting at 0 s with
the first model. 50!

6.7 Convergence times of a simple style
trained on multiple keyframes;
stylized keyframes (orange border,
top), stylized frames taken every 5 s
starting at 0 s with the first model
(bottom). ...

6.8 Convergence times of a medium
style trained on multiple keyframes;
stylized keyframes (orange border,
top), stylized frames taken every 5 s
starting at 0 s with the first model
(bottom). L

6.9 Convergence times of a hard style
trained on multiple keyframes;
stylized keyframes (orange border,
top), stylized frames taken every 5 s
starting at 0 s with the first model
(bottom).

6.10 Convergence times of a hard style
using a mask; input keyframe (blue
border, top) stylized keyframes
(orange border, top), training mask
(blue border, top), stylized frames
taken every 5 s starting at 0 s with
the first model (bottom 2 rows).

6.11 Convergence times of a hard style
without using a mask; input
keyframe (blue border, top) stylized
keyframes (orange border, top),
training mask (blue border, top),
stylized frames starting at 0 s with
the first model (bottom 3 rows).

6.12 Subject 1:

Top: Input keyframes (blue border)
and input video test frames.
Bottom: Stylized keyframes (orange
border), target style configuration
parameters, and stylized test

frames. 59
6.13 Subject 1:

Two styles (top and bottom); each

with stylized keyframes (orange

border), target style configuration

parameters, and stylized test

frames. 60)

6.14 Subject 2:
Top: Input keyframes (blue border)
and input video test frames.
Bottom: Stylized keyframes (orange
border), target style configuration
parameters, and stylized test

frames.
6.15 Subject 2:

Two styles (top and bottom); each

with stylized keyframes (orange

border), target style configuration

parameters, and stylized test

frames. L. 62|

Xi

6.16 Subject 3:
Top: Input keyframes (blue border)
and input video test frames.
Bottom: Stylized keyframes (orange
border), target style configuration
parameters, and stylized test frames
before and after background
replacement.

6.17 Subject 3:
Two styles (top and bottom); each
with stylized keyframes (orange
border), target style configuration
parameters, and stylized test frames
before and after background
replacement.

6.18 Subject 4:
Top: Input keyframes (blue border)
and input video test frames.
Bottom: Stylized keyframes (orange
border), target style configuration
parameters, and stylized test

frames. i 65!
6.19 Subject 4:

Two styles (top and bottom); each

with stylized keyframes (orange

border), target style configuration

parameters, and stylized test

frames. 66

6.20 Subject 5:
Top: Input keyframes (blue border)
and input video test frames.
Middle and bottom: Two styles,
each with stylized keyframes (orange
border), target style configuration
parameters, and stylized test

frames. 67
6.21 Limitation of styles extending
beyond the subject’s silhouette.
6.22 Participants at the Uroboros:
Creative Al meet-up.
6.23 Participant at the Uroboros:
Creative Al meet-up examining the
created style.

Tables

B.1 Subject 1:

Top: Input keyframes (blue border)

and input video test frames.

Bottom: Stylized keyframes (orange

border), target style configuration

parameters, and stylized test

frames. 82
B.2 Subject 1:

Two styles (top and bottom); each

with stylized keyframes (orange

border), target style configuration

parameters, and stylized test

frames. L. 83
B.3 Subject 2:

Top: Input keyframes (blue border)

and input video test frames.

Bottom: Stylized keyframes (orange

border), target style configuration

parameters, and stylized test

frames. 34!
B.4 Subject 2:

Two styles (top and bottom); each

with stylized keyframes (orange

border), target style configuration

parameters, and stylized test

frames. 185!
B.5 Subject 4:

Top: Input keyframes (blue border)

and input video test frames.

Bottom: Stylized keyframes (orange

border), target style configuration

parameters, and stylized test

frames. L. 86
B.6 Subject 4:

Two styles (top and bottom); each

with stylized keyframes (orange

border), target style configuration

parameters, and stylized test

frames. 7

Xii

Chapter 1

Introduction

The field of video stylization has emerged as a captivating intersection of art and
technology, enabling the transformation of conventional videos into visually engaging
artistic expressions. Although existing methods have made strides toward achieving
compelling stylizations, real-time processing remains an elusive goal. These methods
often rely on precomputed styles, which limit user interactivity or entail computationally
expensive (pre)training, thereby constraining their applicability in interactive real-time
scenarios such as video conferencing or live streaming.

In recent years, video stylization has garnered substantial attention due to its ability
to transform ordinary videos into appealing artistic creations. Despite the advances,
real-time video stylization remains a challenging endeavor, particularly when aiming to
achieve a high diversity of possible outputs and at the same time speed of execution.

The advent of diffusion models has opened new avenues for image and video synthesis.
These models, especially when driven by text inputs, empower ordinary, less artistic,
people to create and stylize their own images without the need for a paintbrush
or experience in Photoshop. They could enable more natural and interactive user
engagement, allowing for customization of styles on the fly based on simple text
prompts.

. 1.1 Problem Statement

Video stylization is a transformation in which a video is artistically altered, changing
the video content while preserving its structure. Structure refers to the characteristics
describing its geometry and dynamics, e.g., shapes and locations of subjects, as well
as their temporal changes. And content refers to the appearance and semantics of
the video, such as the colors and styles of objects and the lighting of the scene. An
example of style transfer can be seen in Figure 1.1l

1. Introduction

Figure 1.1: An example of a neural network based style transfer technique [13]. The
stylized image b) depicts the same semantic content as the source photograph a) styled by
the style exemplar, Starry Night by Vincent Van Gogh [1].

This thesis focuses on real-time video stylization employing text-driven diffusion
models for style creation and propagation of this created style to the video. The inputs
are a continuous live video stream and a text prompt that specifies the desired artistic
style. The goal is to apply this style to keyframes taken from the stream and then
propagate the style to subsequent frames, ensuring interactive, coherent, and visually
consistent stylization. This can be seen in Figure |1.2

The difficulty of this problem lies in ensuring real-time performance, user interactivity,
and high visual quality. Specifically, real-time performance involves minimizing the
delay between frame capture and display of the stylized output, while maintaining high
frame rates for smooth video playback. Interactivity means minimizing the stylization
delay; the time between the user providing a text prompt and observing its stylization
effects in the video. At the same time, the stylization must preserve video content,
remain temporally coherent, and appear visually compelling throughout the sequence.
Achieving these goals simultaneously poses a significant challenge.

. 1.2 Motivation and Goals

In an era where video content is prevalent and the demand for personalization is
high, the capacity to adapt and personalize video streams in real time is invaluable.
This thesis dives into this space with a specific goal: to create a real-time live-stream
application that utilizes diffusion models to stylize video in a user-interactive manner.
Users can alter the visual aesthetic of their video output using simple text prompts,
which are converted to styles via a text-to-image process enabled by diffusion models.
An example of how a style can be changed using a text prompt can be seen in Figure
These styles can then be applied to the video frames. This setup brings video stylization
directly to users, allowing them to engage with and shape their video experience in
real time.

1.3. Outline

p 3 Style Creation P N
Source Keyframes Stylized Keyframes

Prompt

+ As a marble

statue

(I Video Stream I

11 |

Stylization delay

Time

Figure 1.2: Real-time Video Stylization with Text-Driven Diffusion Models. The process
begins with a video stream of unstylized input frames (blue border). Keyframes (blue
glow), are extracted from these input frames. A text prompt - "As a marble statue" -
describes the desired transformation to stylize input keyframes, creating stylized keyframes
(orange glow). The created style is then propagated as soon as possible to the rest of the
video stream’s frames (orange borders).

Input “Apply face paint” “What would she look like as a “Turn her into Dwayne The Rock
bearded man?” Johnson”

Figure 1.3: Images edited using the InstructPix2Pix [4] model. Given an input image a)
and an instruction to edit the image, the model performs the appropriate edit b)-d).

. 1.3 Outline

This thesis is structured as follows.

® Chapter |2 provides an introduction to neural networks and diffusion models, dis-
cussing key concepts like convolutional and residual networks needed to understand

3

1. Introduction

modern video stylization techniques.

® Chapter 3 presents an overview of style transfer methods, categorizing them, and
delving into prominent neural network and diffusion model approaches.

®8 Chapter /4] outlines the design and objectives of the proposed real-time video
stylization technique.

8 Chapter 5 details the technical aspects of the implementation.

® Chapter |6 evaluates both performance in terms of frame rate and latency and
qualitative style coherence of stylizations and discusses limitations and possible
future work.

® Chapter |7 summarizes the key contributions of the thesis and suggests avenues
for future research.

® Appendices B| and |C contain additional stylization results and descriptions of
attached files.

Chapter 2

Neural Networks and Diffusion Models

In computer vision and image processing, the evolution of neural networks has been at
the forefront of numerous breakthroughs, with stylization being no exception. Recent
advances in diffusion models represent a significant leap in capabilities for image
creation and transformation. As this marks the future direction of stylization, we
will first build a strong foundation by introducing neural networks and focusing on
their role in the development of diffusion models. We will start with a short historical
overview, then discuss convolutional neural networks, and finally diffusion models.

. 2.1 Historical Context

The concept of neural networks (NNs) was originally inspired by the biological neural
system inside our brains in the 1940s, later, in 1957 the perceptron algorithm [40] was
introduced, but since it could not solve nonlinear problems (like XOR), it was not
successful straight away. In the 1980s, the introduction of backpropagation reignited
interest in neural networks by enabling effective training of multilayer structures.

The next important moment was the introduction of LeNet-5 [29] in 1998, one
of the first successful applications of Convolutional Neural Networks (CNNs) for
document recognition. This was further propelled by the introduction of AlexNet [28§]
in 2012, a deep CNN that proved the architecture’s remarkable performance in image
classification, signaling the onset of the deep learning revolution.

In 2014, Generative Adversarial Networks (GAN) [I5] were introduced, becoming
the state of the art for generative uses of NN, such as image synthesis or style transfer.
The following year Residual Networks (ResNets) were introduced [18], helping to solve
the problem of vanishing gradients and allowing NNs to have more layers than before.

In 2017, Attention Is All You Need [45] by Vaswani et al. introduced the Transformer
model, primarily designed for tasks in Natural Language Processing (NLP). The key
innovation of the Transformer was the use of attention mechanisms, which allow the
model to focus on different parts of the input data dynamically. This was a key
ingredient in image generation as it allowed the models to globally route information
between parts of the entire image.

In 2020, OpenAl introduced the CLIP (Contrastive Language-Image Pretraining)
model [36], a system designed to understand the relationship between visual and textual
information by predicting which images and texts pair together. This understanding
was achieved by developing encoders for both modalities and mapping them into a

5

2. Neural Networks and Diffusion Models

shared embedding space. The model then assesses the similarity and dissimilarity
between these embeddings to identify matching and non-matching pairs of images and
text descriptions.

In 2021, diffusion models [43], 22] gained prominence, particularly for their prowess
in synthesizing diverse high-quality images, surpassing earlier methods such as GANs
and Variational Autoencoders (VAEs) in both complexity and image fidelity.

In 2022, the use of lantent space was adopted in diffusion models by [38]. This proved
to be a key feature for flexible conditioning mechanisms, which enabled a wide range
of applications including image-to-image and text-to-image synthesis, representing a
significant advancement in the field of generative modeling.

. 2.2 Neural Networks Foundation

In neural network architectures, neurons are fundamental computational units. Layers,
composed of these neurons, are stacked to form the network. A neural network
comprises of an input layer that receives initial data, followed by one or more hidden
layers, and concludes with an output layer. The most basic type of layer is the fully
connected layer, characterized by each neuron being connected to every neuron in the
preceding layer. In a fully connected layer, the computation involves taking a weighted
sum of its inputs, adding a bias term, and then applying a non-linear activation
function, such as the Rectified Linear Unit (ReLU). The ReLU function is defined
as ReLU(x) = max(0, x), providing a simple yet effective mechanism for introducing
nonlinearity into the network.

Mathematically, the transformation of a fully connected layer | can be expressed as:

b = f (W(l)h(lfl) + b(l))

where A=Y is the output of the previous layer—the input data for the layer, w®
represents the weights, b() the bias and f the activation function. This ensures that
information processed by one layer propagates forward and influences the subsequent
layers’ calculations.

Different NN architectures replace some of these fully connected layers with special-
ized layers. For example, a CNN can also have convolutional and pooling layers. A Fully
Convolutional Network (FCN) [30] has only convolutional and pooling layers. And
a U-Net [39] extends a FCN by also including upsampling layers, such as transposed
convolutions, nearest-neighbor upsampling, or pixel shuffle.

Different NN architectures incorporate specialized layers or blocks in place of some
fully connected layers to optimize performance for specific tasks, such as image pro-
cessing. For instance, a Convolutional Neural Network (CNN) adds convolutional
and pooling layers. A Fully Convolutional Network (FCN) [30], designed to work on
any image size, is composed exclusively of convolutional and pooling layers, entirely
omitting fully connected layers. A U-Net [39] builds upon the FCN architecture by inte-
grating upsampling layers, enhancing its capabilities in image reconstruction. Residual
Networks (ResNets) [18] utilize ResNet blocks, which are sets of layers featuring skip
connections. These connections allow for the direct flow of information across layers,
addressing the vanishing gradient problem and improving learning in deep networks.

6

2.2. Neural Networks Foundation

In the following paragraphs, these layers and concepts will be discussed in detail.

B 2.2.1 Convolutional Layer

A convolutional layer is the core layer of a CNN. This layer allows the network to
gather information from more than just one pixel at a time, also taking into account
the values of the surrounding pixels. This is done by a kernel (also known as a filter)
that traverses the image grid, computing a dot product at each position, and capturing
local information into a feature map. An example can be seen in Figure [2.1. The
weights in this layer are stored per kernel and not per input pixel; this allows the layer
to process inputs of any size.

The area from which the network gathers information is known as the effective
receptive field (or field of view). For a single layer, this field is influenced by the
hyperparameters of the layer: kernel size, dilation, and stride. Kernel size determines
the area of the filter; larger sizes capture larger features, but increase the number
of weights. Dilation introduces gaps between the weights in the filter, enlarging its
coverage area and improving its ability to detect larger patterns without an increase in
the number of weights. Stride specifies the step size the filter takes when traversing
the image grid. A higher stride value results in the skipping of more pixels during the
filter application, which reduces the spatial dimension of the output feature map and
does not introduce any new parameters.

Downsampling, coupled with stacking convolutional layers, increases the effective
receptive field as each subsequent layer aggregates features over an expanding area of
the input, due to the cumulative effect of convolution operations. This enables deeper
layers to capture a wider spatial context.

As we can see in Figure [2.1] convolution cannot be performed along the edges of the
image due to the absence of neighboring values. As a result, the output dimensions
are reduced by ng at each edge for a kernel size k. To address this, the padding
hyperparameter is used, which either adds zeros or replicates the image values around
the edges to extend the input image size. This compensates for the reduction in size
and maintains the output dimensions closer to those of the original input.

Real images usually have multiple channels; the kernel is adapted to have a cor-
responding number of layers. To extract a variety of features, multiple filters can
be employed within a single convolutional layer, leading to an output with as many
channels as the number of filters used. Figure [2.2 demonstrates the operation of a
complete convolutional layer with 2 filters.

B 2.2.2 Pooling Layer

Another important layer is the pooling layer; it typically follows convolutional layers
and does not have any learnable parameters. This layer serves to downscale the input.
By doing so it; contributes to robustness, decreases computational requirements and
increases the effective receptive field of the network—since the following convolutional
layers would now have a larger relative reach.

Uhttps://indoml.com/2018/03,/07 /student-notes-convolutional-neural-networks-cnn-introduction/

7

https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/

2. Neural Networks and Diffusion Models

Input Filter Result

4 o215)83 | e 2 16

jmmpl 6 (274)0]|3

*
-
o
L

I

.. 110 |-
5|6 |5 |a|7|8] T '
Parameters: /
R Size: f=3 @=9'1+2'0+5'(-1)+
s|sls|slela Stride: s=1 6"1 +2°0 +4%(-1) +
Padding: p=o0 4™ +5°0 + 4%(-1)

n,xn, = 6x6

https://indoml.com

Figure 2.1: Visual representation of a convolution operation. A 3x3 kernel with predefined
weights slides across the input image grid, applying a dot product at each position to
create a feature map.

The most common form is max-pooling; in this process, a window slides over each
feature map, selecting the maximum value that is retained in the output. A typical
window size is 2x2 with a stride of 2-this reduces the feature map by half.

B 2.2.3 Upsampling Layer

In neural network architectures, particularly those applied in image segmentation,
super-resolution, and stylization, there is a need to match the spatial resolution of the
output with that of the input. To achieve this, upsampling layers are employed to
reverse the resolution reduction caused by previous layers. Two prominent types of
upsampling are Transposed Convolution and Nearest-Neighbor Upsampling.

Transposed Convolution, also known as fractionally-strided convolution, is a
learnable upsampling method. The process involves adding zeros among the elements
of the low-resolution feature map to increase its size, then a standard convolutional
operation is applied. This not only increases the spatial dimensions, but also allows
the network to learn the optimal upscaling patterns during training, thus helping in
the reconstruction of lost spatial details.

Nearest-Neighbor Upsampling is a nonlearnable method where the value of
the nearest pixel is duplicated to increase the feature map’s size. This approach is
straightforward and efficient as it does not involve learning; however, it may result in
less refined output compared to Transposed Convolution.

See Figure for a visual explanation of the upsampling methods.

B 2.2.4 Residual Networks (ResNets)

Residual Networks (ResNets) are a type of deep neural network architecture that
introduced the concept known as skip connections (also called residual connections).
Skip connections allow the activation of one layer to bypass one or more layers and
be added directly to the activation of a subsequent layer. This design counters the

8

2.2. Neural Networks Foundation

A Convolution Layer

Input Filter 1

Output
s(6|2|4|0]|3 3x3
|| 4x4x3
245|452 sk ReLU- +b —
— Filter 2
5| 6|5)|4|7]|8 3x3x2 3x3x2 3x3x2

S| 7|7 |19]|2|1

5|85 |3)|8)|4 -

3x3

6x6x3 4x4x3

Figure 2.2: A full convolutional layer: An input image with three channels (left) undergoes
convolution with two distinct 4x4x3 filters, resulting in two separate feature maps (beige
and orange). These feature maps, each with an added bias, are then subjected to a ReL.U
activation function, yielding activated feature maps (teal and blue). These are then ready
to be processed by subsequent convolutional layers, now with two channels. Image taken

from indoml.co

vanishing gradient problem by allowing the flow of gradients during backpropagation,
thereby supporting the successful training of very deep networks.

The core of ResNets are Residual Blocks, which consist of a set of layers followed by
a skip connection that adds the block’s input directly to its output. This process, known
as identity mapping, ensures that the network can at least maintain the performance
of the shallower architecture, with deeper layers poised to improve it if they can learn
useful features. An example of this can be seen in Figure

Batch normalization is another technique used within ResNets that helps stabilize
the learning process. By normalizing the input of each layer, batch normalization
ensures that the values do not get too high or too low, thus helping in faster and more
stable convergence during training.

ResNets also excel in feature reuse, as skip connections allow features from initial
layers to be reintroduced into later layers, promoting efficient reuse of features and
reducing the need to relearn redundant feature representations.

B 225 U-Networks (U-Nets)

U-Nets are characterized by their symmetric structure—in the shape of the letter U.
They consist of a contracting path that reduces spatial dimensions and an expanding
path that restores spatial dimensions to the size of the input.

The contracting path is composed of repeated modules, each containing convolutions
followed by ReLU activation and pooling for spatial reduction. This downsampling
process captures the broader context within the image. Then, the expanding path
uses upsampling methods to enlarge the feature maps. This part of the network
also incorporates skip connections from the contracting path, which reintegrate high-
resolution information lost during downsampling.

The U-Net architecture was first used in medical image segmentation, the original
architecture can be seen in Figure

2. Neural Networks and Diffusion Models

Transposed
Low Resolution Convolution

Feature

B -

I
I
Nearest |
Neighbor |

Interpolation |
I

Zero Inserted Image

Figure 2.3: A comparison of upsampling methods: Transposed Convolution with zero
insertion (top) versus Nearest-Neighbor Interpolation (bottom). Image from [49].

. 2.3 Diffusion Models Foundation

Denoising Diffusion Probabilistic Models (DDPMs), or diffusion models for short, are
a class of generative models distinguished by their two-phase process: adding noise
to the data and then, using a UNet, learning to reverse this addition [22]. Unlike
traditional generative models that directly generate data, diffusion models iteratively
transform data into a noisy state and then back to its original form or a new sample.
A visual explanation of this is shown in Figure

In the forward phase, the diffusion model systematically adds Gaussian noise to
the data through a series of steps, leading to a state similar to random noise. This
progression, known as the diffusion process, is mathematically modeled as a Markov
chain and consists of T distinct timesteps. It starts with xg, the original image x.
Each timestep, labeled x;, gradually increases the level of noise in the image. By the
time it reaches the final timestep T, the data is indistinguishable from random noise.

The reverse phase involves a neural network trained to predict and subtract the
noise added at each step of the forward phase. Sequentially applying this denoising
process reconstructs the original data or generates new samples. The training objective
is to minimize the difference between the actual and predicted noise at each step,
optimizing the model’s denoising capability.

Mathematically, this loss can be expressed as

Lpym = Ex eono,1)t [H€ — €g(X, t)“%})

where Lpjs is the loss function of the diffusion model, calculated as the expected
value of the square difference between the real noise € and the noise predicted by the
model ¢y for the noised data x; at each time step ¢t. This metric assesses the model’s
ability to accurately restore the original data x and create new instances from the
learned distribution.

This iterative approach of diffusion models, while powerful in handling complex data

10

2.3. Diffusion Models Foundation

! b i
! |
X ! 1 s
1 i e P
- | Weight Layer P o
4 I - -
Weight Layer : F(") _< Activation 5 ia
1 | 0 —
F(") _{ Activation . : : S Ig
g FUSCHON ! Weight Layer i3 1o
! 18 15
Weight Layer ! ~ F(x) : g' . §
N : I) : é’ X i
F(x) : (@ +x P ,
v : 1
Activation I .” . :
Function E A;Cutrl\‘?tgonn :

(@) (b)

Figure 2.4: Comparison of traditional neural network layers versus a residual block in
ResNet architectures. (a) illustrates a typical sequence of weighted layers and activation
functions, denoted as F'(x). (b) shows the residual block with a skip connection, allowing the
input x to bypass the two layers by adding it directly to their output, denoted as F'(z) + z,
before the activation function. Image adapted from [27] under CC BY 4.0 license.

distributions and producing high-quality, diverse images, can also be a limitation in
terms of speed of sampling. Specifically, this means that the image passes through the
UNet once for each timestep. For larger images (or larger T'), this quickly becomes a
problem.

To address this limitation in sampling speed, cascaded diffusion models [23] have
been proposed. They divide the problem into multiple generative tasks. Each task is
handled by a different submodel that performs the image generation for the specific
scale. For example, one model could generate a 32x32 image, and the next uses this
image as a conditional input, creating a 64x64 version, etc. This is repeated to cascade
up to the full target resolution. Although conditioning is a key enabler of cascading, it
will be revisited more thoroughly later in the text.

An alternative approach to accelerate diffusion models is through latent space
processing-Latent Diffusion Models (LDM) [38]. This technique significantly
improves computational efficiency by reducing the dimensionality of the data, thus
abstracting imperceptible high-frequency details, focusing on the most semantically
significant aspects.

The model first compresses (encodes) the input image into a lower-dimensional
latent representation using a trained perceptual compression model, consisting of
an encoder F and a decoder D. This encoding eliminates the need to manipulate
full-resolution images directly, but maintains their image-like 2D structure. Once
an image is encoded, the noising and denoising steps are performed as before. The
decoder D is then used to revert the data back to the image space.

An essential aspect of model generation is the ability to exert control over the output.

11

2. Neural Networks and Diffusion Models

i
imna?gu(: > > olele output
tile e 1717 || segmentation
a2l 2 ¢ 3 map

u
t

12 25
-I*I’l I'I’I =»conv 3x3, ReLU

copy and crop

¥ s s 1024
s>~ e e # max pool 2x2
° °¥ 102 4 up-conv 2x2
-’ ‘ = conv 1x1

Figure 2.5: Original U-Net architecture of [39].

To achieve this, conditioning is introduced as a means of guiding the generative process.

Bl 2.3.1 Conditioning

Conditioning is a way to make diffusion models create specific types of images or follow
certain themes. Instead of just copying what they learned, they use special signals or
inputs such as ImageNet [7] image classes, captions, segmentation information, or even
other images (as mentioned earlier with cascaded diffusion models) to direct the model
toward the exact picture you want. An example can be seen in Figure

Conditioning inputs are integrated into the diffusion model’s architecture and training
process. This can be achieved by concatenating the conditioning data with the input at
each timestep of the diffusion process or by modifying the neural network architecture
to include additional pathways or layers specifically for processing the conditioning
information—such as cross-attention mechanisms [6]. The key is to ensure that the
conditioning data influences the generation process at each step of the noise addition
and removal.

These architectural adjustments affect both the training and inference phases of the
model at each time step. During training, the model learns to align its output with the
conditioning signals, effectively learning a conditional distribution. During inference,
the conditioning signals guide the model to generate output that follows the specified
characteristics.

Conditioning inputs, such as text prompts and spatial layouts, can provide useful
guidance during sampling from diffusion models. For example, GLIDE [34] feeds text
embeddings into the attention layers of its denoising model. DALL-E 2 [37] intead

12

2.3. Diffusion Models Foundation

i Score function

(Probabillty of perturbed data)

Data «<—— Generating samples by denoxsmg Noise One denolsing step

Figure 2.6: Diffusion process in generative modeling. The top row represents the forward
diffusion process, where structured data is progressively noised until it becomes indistin-
guishable from random noise. The bottom row illustrates the reverse process, where noise
is removed to reconstruct the input data or synthesize new data instances, guided by the
score function as shown on the right, in which the gradient points to the direction of data
with higher likelihood and less noise. Image adapted from [46].

encodes the text into a shared text-image embedding using CLIP, which guides its
variational autoencoder diffusion model. Meanwhile, latent diffusion models [38]-on
which Stable Diffusion is based on—allow manipulation in lower-dimensional latent
spaces, where text or other signals can be fused to enable conditional generation from
compressed representations. ControlNet [48] has another approach; it uses specialized
neural networks to output modulation signals conditioned on target guidance inputs.
The outputs are feature-wise offsets, which are vectors that indicate how much each
intermediate feature map in the diffusion model should be modified to reflect the
conditioning.

13

2. Neural Networks and Diffusion Models

ko 37

Input Canny edge

Input human pose “a high-quality, detailed, and professional image™ “chef in kitchen” “Lincoln statue”

Figure 2.7: Example of conditioning adapted from [48]. ControlNet is used to add
conditions; Canny edges (top) and human pose (bottom) to control the generation of image
using Stable Diffusion. Stable Diffusion is further conditioned on input text.

14

Chapter 3
Style Transfer Methods

The concept of stylization lacks a precise definition. It involves altering aspects such
as the colors used, the texture patterns left by different artistic mediums, and even
changing the shapes of people or objects in an image. The ultimate goal is to give
the impression that the image belongs to a particular artistic style. A variety of
techniques can achieve this goal through different approaches. In this chapter, we will
first categorize stylization methods. Then we will discuss the major works in detail,
with a special focus on the papers that gave form to this thesis.

As described by Futschik in [10], style transfer techniques can be broadly cate-
gorized into three approaches: procedural methods, non-parametric methods, and
parametric/learning-based methods. This classification is based on the fundamental
principles of the methods, but it is evident that each one has its own characteristics,
advantages, and disadvantages, which leads to distinct and recognizable visual results.

Procedural Methods. Procedural methods work by algorithmically manipulating
images to achieve artistic effects. They rely on hand-crafted rules and heuristics to guide
the manipulation of content images. For example, Hertzmann’s Painterly Rendering
algorithm, which uses brush stroke placement rules to give a painted appearance [20].

Non-parametric Methods. Non-parametric methods copy small patches of pixels
from style images and paste them onto the content image. The key aspect is selecting
which patches to copy from where, in order to produce a coherent and appealing result,
this is done by additional guidance mechanisms.

Parametric Methods. Finally, in parametric or learning-based methods, the image
data is used to train a model, which is then used for content synthesis. We can further
divide these methods into neural and diffusion-based methods. Neural methods rely on
convolutional neural networks to encode the content and style information of images
in their feature representations. Their loss functions are generally designed to match
content while reconstructing style textures. Diffusion-based methods use learned data
distributions to guide the creation of images by iterative a process that gradually
refines images from a noisy initial state. Conditioning is used to guide this generation
to a specific style.

Although procedural methods marked early progress, continued advances have
primarily emerged in non-parametric and parametric techniques. We now delve deeper

15

3. Style Transfer Methods

A

Figure 3.1: An example of the stylization setup from Image Analogies [21]. A content
image A and its styled counterpart A’ form the desired transformation. The goal is to
perform the same transformation on image B creating image B’.

into the latter two families, which represent the current state-of-the-art and have
greater relevance to the methods explored in this thesis.

B 31 Non-parametric Methods

Non-parametric, patch-based style transfer methods work by synthesizing small texture
patches from the style image, and copying those patches over to corresponding regions
in the content image. This keeps the style and content somewhat separate—the content
outlines and structure remain intact, while style is added on top. This offers a significant
advantage for artists, allowing them to focus on style creation and confidently fine-tune
their work, with the assurance that any adjustments will result in predictable and
coherent changes in the stylization.

A pioneering work in this area is Image Analogies by Hertzmann et al. [21]. Nothing
specific about the stylization is assumed. Rather, it requires an example consisting of
an image pair that demonstrates the desired artistic stylization. New input images
can then be stylized in the same manner as the example stylized output. This setup
can be seen in Figure 3.1

Image Analogies, however, have some shortcomings due to its reliance on only local
pixel neighborhoods to infer the stylization transform. This has two main issues; first,
the perfect alignment between the original and the stylized image becomes crucial for
effective style transfer. Second, the method is restricted to making only local changes
in the image, rendering high-level analogies impossible. Still, Image Analogies were an
influential milestone in example-based style transfer.

Jamriska et al. adapted this approach with great success, managing to apply the
concept to coherent video stylization [25] and creating a tool called EbSynthE This
method specifically aims to provide artists with more direct control over the stylization
process. Prior methods like those developed by Gatys et al. [13] and Ruder et al. [41]
mainly addressed the global appearance of the target to approximate a given visual
style, but lacked mechanisms for explicit local artist control.

To ensure a semantically meaningful and time-coherent transfer, several guidance
channels are calculated from the input video. The guides are;

1|https ://ebsynth. com‘

16

https://ebsynth.com

3.2. Parametric Methods

8 Color Guide: Maintain the original color of the video frames, capturing the
visual changes in the scene.

8 Mask Guide: Useful in layered styling and managing occlusions, like in green-
screen scenarios.

®8 Positional Guide: This involves creating a map based on optical flow to resolve
ambiguity between distinct features with similar appearance that should be stylized
differently.

8 Edge Guide: Focuses on highlighting edges, a critical element in many art styles.

8 Temporal Guide: Works to minimize changes in stylization from one frame to
the next, keeping the video’s flow consistent.

These guidance channels are incorporated into a patch-based error metric that
is optimized in the StyLit algorithm [9] to balance the adherence to the example
stylization with the various guidance constraints.

When the scene undergoes changes (such as a face turning) revealing previously
unseen features, the artist may specify additional styled keyframes to style these areas.
To handle multiple keyframes, the video is first stylized by each keyframe separately,
then the resulting frames are blended together. Rather than using a linear blend,
which would diminish the high-frequency contrast of the artistic medium and cause
a ghosting effect, the pixels are selected from either stylized sequence. Using the
fact that the patch matching error for each pixel and for each stylized sequence is
known, the authors chose to prefer the pixel with a lower match error. This is further
controlled by a temporal coherence pixel selection mask, which helps to avoid frequent
alternations between choosing the contents from the stylized sequences. Finally, global
color histogram blending is used to ensure smooth variation over time.

. 3.2 Parametric Methods

Parametric leverage the representational power of either a neural network or a diffusion
model to directly learn a desired image manipulation task, without the need for
extensive feature engineering or specific algorithm design. One approach is to design
and train a model from scratch specifically for the artistic stylization task, using
example style images to guide the training just as in Image Analogies. However,
recent breakthroughs in deep learning allow us to leverage large pre-trained models.
These models have already learned powerful general-purpose representations of images
by training on massive diverse datasets. Either they can be fine-tuned on specific
stylization data. Or alternatively, the pre-trained models can be used directly as fixed
feature extractors, transferring their learned knowledge about images to the style
transfer application without extra training. Additionally, some diffusion models can
be used as-is to directly stylize images and videos by manipulating their generative
capabilities by augmenting them with other controlling mechanisms such as attention
or feature-wise offsets, without the need for any fine-tuning or feature extraction.
Compared to non-parametric or procedural methods, parametric methods can
represent highly complex mappings between domains, allowing them to create more

17

3. Style Transfer Methods

flexible or complex transformations. The learned end-to-end mapping fuses style and
content together, making them able to do more global transformations, which can be
difficult to achieve using non-parametric patch-based methods. However, this makes the
stylization more of a "black box"; with more entagled style and content, it can be hard
for an artist to directly and predictably modify the style (procedural methods expose
more parameters, and non-parametric approaches let the artist edit the style exemplar).
In some regards, especially in diffusion model image generation and stylization, this
can also be advantageous, as it offers a straightforward and stress-free experience
for the user, eliminating the need for any parameter adjustments and ensuring an
automatic stylization process. In other scenarios, particularly in video stylization using
diffusion models, the lack of controllability emerges as a major challenge. When the
stylization is done independently frame-by-frame, each output frame can come out
looking starkly different from its neighbors, even in videos with small frame-to-frame
differences in the input. These inconsistencies result in a flickering effect that disrupts
the visual continuity and are a central focus of every video stylization and generation
paper employing diffusion models.

B 3.2.1 Neural Methods

Gatys et al. [13] pioneered artistic style transfer using convolutional neural networks
(CNN). Their key insight was that CNNs trained for image recognition capture both
style and content information in different layers of the network. Style is encoded in
early convolutional layers that capture textures, while content is preserved in deeper
layers.

Their algorithm works by optimizing a target image to match the content features
of one image and the style features of another. Specifically, they define a content
loss between activations of a content image and the target image in deeper CNN
layers. They also define a style loss between early layer activations and Gram matrices.
Minimizing both losses with gradient descent synthesizes an artistic hybrid image that
reflects content and style.

A limitation is that the optimization process is slow, taking minutes per image. But
the work inspired many follow-ups to accelerate the method and opened the door to
using pre-trained CNNs as powerful feature extractors for style transfer and other
image manipulations.

Ruder et al. [42] addressed this by formulating feedforward networks to perform
stylization in real-time by learning the image transformations. Specifically, they train
CNNs that directly map an input image/video frame to a stylized output in a single
forward pass. This is achieved by using perceptual losses that match the output style
and content statistics to the reference style image.

To deal with temporal coherence in videos, their feedforward architecture uses diluted
convolutions and multi-frame training introducing temporal consistency losses between
frames by using optical flow warping to achieve smooth stylized videos. They also
develop a multi-pass optimization strategy that processes the video bidirectionally,
blending stylized frames to prevent quality degradation along occlusions.

Compared to optimization-based approaches, this achieves a 3 orders of magnitude
speedup (~400 ms per frame), allowing for almost real-time editing effects. A limitation

18

3.2. Parametric Methods

is that their method requires training a new network per style rather than the flexible
optimization of Gatys et al.

Building on previous work by Futschik et al. in [II], Texler et al. developed
StyleVid [44], an approach to fast and flexible video stylization using neural networks.
Their goal was to achieve the semantic faithfulness of patch-based methods like Stylizing
Video by Example [25], while enabling real-time performance and the random access
of feedforward techniques.

StyleVid’s key insight is a patch-based training scheme that acts as an implicit
regularizer. Specifically, they train a small UNet on random crops from just a few
stylized keyframes, compared to the much larger dataset required by Futschik et al. [11].
The cropped patches combined with proper batch size and network capacity tuning
prevent overfitting to this limited training data. This allows the network to better
generalize to new frames of a similar video while still reproducing the artistic style.

The training loss function combines adversarial, perceptual VGG, and color recon-
struction terms. Once trained, arbitrary frames from the same video can then be
stylized in a non-sequential fully convolutional pass. This is because the network
learns a set of translation filters that can be applied to input of any resolution, not
just the fixed patch size used during training. So there is no need to explicitly blend
overlapping patches.

For temporal coherence, StyleVid first relies on the network’s implicit learning, since
the training set contains frames from a coherent video. However, with temporal flicker
still apparent, the authors identify two main sources: (1) temporal noise in the original
video and (2) visual ambiguity of the stylized content. They address input noise with
motion-compensated bilateral filtering as a pre-process which loads surrounding frames
but can still run in parallel. They address ambiguity with an auxiliary input layer of
sparse, registered Gaussian noise that disambiguates local regions. Another, faster,
domain-specific method could assume that the target object we want to stylize doesn’t
have any ambiguous regions and use a mask to train the method only on this target
area (e.g. think a face infront of a white wall). So, while some coherence does depend
on seeing nearby frames, the stylization pass itself remains fully independent and
parallelizable, maintaining lightweight processing compared to sequential approaches
that pass intermediate stylized results between frames.

Building on the idea of fast (real-time) frame-independent stylization, Futschik et al.
introduce STALP (Style Transfer with Auxiliary Limited Pairing) [12]. The key insight
in STALP is to utilize information from both the stylized keyframes as well as the
unstylized target video frames during network training. This enables them to achieve
temporal stability without explicit guidance and better preserves style transfer to
frames with a larger deviation from the original keyframe.

To ensure that keyframe stylization is as close as possible, a Ly loss is calculated
between network output and ground truth stylized frames. As a complementary
objective, to act as a regularizer to enforce consistency on unstylized target frames,
the authors use a stylization loss similar to that of Gatys et al. [I3] between network
output and style exemplars computed on VGG features. By considering both sources
of data in calculating loss, the network generalizes better to new frames compared to
only seeing the sparse stylized keyframes. The VGG style loss allows the network to
implicitly learn coherence without needing specialized losses tuned for video data.

19

3. Style Transfer Methods

Compared to StyleVid, a limitation of STALP is significantly longer training times
due to the costly optimization for similarity of Gram matrices. However, the benefit
is improved temporal stability and preservation of style details even with greater
appearance changes in the target video. This increased robustness enables applications
beyond video including autopainting of panorama images, stylization of 3D renders, or
of different portraits captured under similar illumination conditions.

B 3.2.2 Diffusion Methods

Diffusion models present a generative approach to neural style transfer based on
iterative refinement. They are trained to gradually perturb and noise a content image
over hundreds of repeated denoising steps. The conditioning provided at each step
steers this noisy diffusion process to reveal a final stylized output.

A major advantage over feedforward methods is the ability to train on large diverse
datasets of artistic images, capturing complex styles. The iterative procedure also
provides more control, as intermediate outputs can be observed and the conditioning
adjusted. However, repeated denoising incurs a computational cost, taking orders of
magnitude longer to stylize an image. There is also a trade-off between quality and
coherence when applying diffusion models to video frames.

Specifically, diffusion models can synthesize artistic images guided by a reference
style—usually in the form of a text description, but fine-tuning, specialized attention, or
other guidance mechanisms are required to ensure temporal consistency across video
frames.

The most straightforward approach to stylizing a video with diffusion models is to
simply treat each frame independently as an image. We take an off-the-shelf text-to-
image diffusion model and iteratively denoise the input frames that have been noised
with Gaussian noise, just as in SDEdit [32]. The text prompt guides the emergence of
details as each noised frame is denoised, steering the artistic stylization.

The level of noise added an then removed controls how much the original structure
is retained - higher noise allows larger changes, but risks incoherence between frames
and vice versa. This trade-off between faithfulness to the desired style and alignment
to the original frame is shown in Figure 3.2,

Other naive approaches, such as independently applying InstructPix2Pix (IP2P) [4] to
each frame, also exhibit flickering without explicit temporal context. IP2P parameters
controlling adherence to text and to the image can partially mitigate this, but changes
are made blindly without considering video structure. We will go into more depth
about IP2P in a later section.

While single-image diffusion models enable powerful synthesis abilities, applying
them to video input directly overlooks crucial dependencies in time. Depending on the
strategy these methods use to overcome this, we can categorize techniques for video
stylization using diffusion models into two main approaches:

1. Pure Diffusion Methods; Methods that create each frame independently using
a diffusion model, but incorporate additional constraints or guidance to maintain
temporal coherence across frames. Most of these methods treat each frame
separately during stylization but consider relationships between frames. We
discuss such architectures in Section 13.2.2!

20

3.2. Parametric Methods

Realistic More faithful More realistic
— Less realistic Less faithful

SDEdit —
Faithful A

Realistic

- HEEEEEEREE

00 02 04 06 0s
t to=0 to=02 t=04 =05 t,=06 t,=07 t,=08 t,=09 to=1

Figure 3.2: This diagram illustrates the balance between adherence to the guide image
and model distribution fidelity in the SDEdit process [32], modulated by the noise level
variable tg. The graph to the left plots two metrics: Lo (similarity to the guide image)
and Kernel Inception Distance (KID) (similarity to the model’s image distribution). As ¢y
increases from 0 to 1, the Lo score increases, indicating that the image is diverging from
the original guide. Conversely, a decreasing KID score denotes a closer alignment with the
model’s distribution. The "Sweet spot’ is where an ideal mix of originality and creativity is
achieved. The images to the right display this effect visually, with ¢ty = 0 presenting the
unchanged guide image and ty = 1 offering a completely new image informed by the model’s
data, with intermediate values depicting the gradual shift between these two extremes.

2. Hybrid Diffusion Methods; Methods that use diffusion to create one or
more keyframes, then explicitly propagate the changes onto other frames. These
methods are inspired by example-based approaches and often use similar methods
of propagation, using diffusion only as a style generator. We explore these methods
in Section 13.2.2.

B Pure Diffusion Methods

Training high-quality generative diffusion models requires substantial computing re-
sources. As such, creating dedicated video models is prohibitively expensive for most
researchers and is primarily done by large tech companies. Even when training video
models, given the lack of large-scale diverse video datasets, pre-training on images has
been shown to improve sample quality and prompt-following abilities.

While training purely on video can better capture motion and temporal patterns, it
risks losing the expressive power of image models. Many works balance video training
with image training to retain these capabilities.

Rather than training specialized video models, most methods instead start with
pre-trained text-to-image models and augment them to handle video generation. The
two main strategies are: zero-shot application, directly using the model to stylize video
frames, and fine-tuning the model on the target video to improve coherence.

To ensure smooth transitions between frames, these approaches commonly modify
self-attention layers to attend to nearby frames. Some also add positional encodings or
auxiliary losses to further encourage temporal consistency.

Next, we survey prominent examples of techniques following these different strategies.

One approach is to add structural representations extracted from the input video to
guide the stylization process. Methods such as Genl [8] use depth maps to encourage
consistency in geometric layouts between frames. These inputs act as scaffolds, helping
the model to preserve intrinsic motion and features. Genl incorporates CFG scale
parameters to control how precisely the outputs must align to this depth guidance,

21

3. Style Transfer Methods

with blurrier depth enforcing looser consistency. Another CFG parameter balances
the adherence to frame coherence versus text conditioning, as Genl is trained on both
images and videos. Spatio-temporal resnet blocks and attention allow information to
propagate across both space and time.

Rather than directly stylizing each frame, some methods first edit an anchor frame
and then propagate changes to neighbors. For example, Pix2Video [5] performs
DDIM inversion on input video frames to obtain partial noise estimates zp that retain
structural information for each frame. It first performs text- and depth-guided diffusion
on an anchor frame to achieve the target edit. It then propagates changes to the other
frames by injecting the anchor’s self-attention features, and at each diffusion step
updates the latent code of the current frame guided by the latent of the anchor.

The very new EMU Video [14] model from Meta also demonstrates the usefulness
of the factorized approach of Pix2Video, this time in text-to-video generation. It
consists of three diffusion models: one generates an anchor frame from the text prompt,
another synthesizes a low frame rate video conditioned on the anchor, and a final
interpolation model increases the frame rate. By explicitly generating an initial frame,
it provides a strong conditioning signal to aid in coherent video rendering over time.

FateZero [35] takes a more comprehensive approach than Pix2Video to take ad-
vantage of attention to maintain coherence when editing video frames. Specifically,
FateZero captures attention maps across all frames during the initial DDIM inver-
sion process under a specific source text prompt describing the original input video
(e.g., "Jeep driving on the road."). At each inversion timestep under this source
prompt, it stores intermediate self-attention maps s!,. encoding spatial relationships
and cross-attention maps c,. relating visual features to text semantics.

Later, during iterative denoising under the target prompt ("Porsche driving on
the road."), FateZero cleverly fuses these source attention maps with the target ones.
This makes the model focus only on the differences between the source and target
prompts. In particular, FateZero uses %,
for any background regions that are unchanged ("...driving on the road"), while allowing
cross-attention for the edited parts of the target prompt to be updated based on the
changes ("Porsche..."). A similar idea is also used to create a spatial blending mask for
self-attention. To maintain better temporal consistency, FateZero also adds inter-frame

attention.

to retain the original cross-attention maps

AnimateDiff [17] introduces a motion module to add animation capabilities to
existing personalized text-to-image diffusion models without the need for fine-tuning.
The lightweight motion module handles coherence across frames via temporal convo-
lutions and attention and is trained on video data while appended to a base frozen
text-to-image model. Once trained, the module can be plugged into models fine-tuned
with techniques like LoRA [24], which updates only certain weights to adapt the
model to a target artistic domain (e.g. Pokémon). To work correctly, the motion
module is designed to be orthogonal to LoRA, ControlNet [48], and other conditioning
mechanisms, which means that it does not alter these tuned artistic weights, allowing
stylization to be preserved while adding animation capabilities. With the addition
of ControlNet, it becomes even more powerful, effectively extending the use of the

22

3.2. Parametric Methods

method to editing videos, as we can easily use depth or other conditioning extracted
from a source video to keep the video’s form while making stylization edits.

Similarly to AnimateDiff, Text2Video-Zero [20] uses a text-to-image model with-
out any additional training. They create a text-to-video method compatible with
ControlNet [48], but instead of training a motion model on video data, they enrich the
latent codes (from which frames are later generated) with motion dynamics. This is
done by sampling the noise for the first frame, doing At steps of the backward diffusion
process, then warping it along a translation vector to simulate motion for subsequent
frames. After warping, noise is reintroduced to allow flexibility in object motions. The
frames created from these latent codes share a certain appearance, making the video
more consistent.

Also, as in Pix2Video, it introduces a cross-frame self-attention where the features
in each frame attend only those of the first frame.

The authors also experiment with InstructPix2Pix, exchanging self-attention mech-
anisms with cross-frame attention to create Video InstructPix2Pix which greatly
improves the method’s per-frame consistency.

The recently proposed Dreamix method [33] adapts a cascaded pixel-space con-
ditional diffusion model architecture for the task of video editing. In contrast to
previous LDM approaches, it builds on top of the Imagen Video model, which consists
of hierarchical text-conditional diffusion models. Before editing a video, Dreamix first
fine-tunes this model on the specific input sequence using a mixed objective function -
one component focuses on full video reconstruction, learning overall motion patterns,
while the other separately reconstructs individual frames to enhance detail. At infer-
ence time, it creates a degraded low-resolution version of the input and leverages the
fine-tuned model to iteratively upsample this sequence to full resolution guided by the
edit instructions.

While Align Your Latents [2] focuses on text-to-video generation, it provides useful
techniques for adapting image diffusion models for video generation. A text-to-image
model is fine-tuned to the video data by feeding in frames in batches (illustrated in
Figure |3.3), incorporating temporal convolution and attention. This alignment helps
to reduce flickering.

The method also uses masking to enable longer video generation. A model is trained
to predict future frames given a starting context, using a mask to differentiate given
vs. predicted frames in the batch timeline.

Similarly, using the same masking scheme, a separate interpolation LDM fills gaps
between sparsely predicted keyframes. This split addresses memory constraints as we
don’t have to fit as many frames into one batch.

While Pure Diffusion Methods have advanced video stylization, they are not without
limitations. Generating frames individually is computationally demanding and often
restricted to short video segments. Moreover, maintaining temporal coherence between
frames is still a significant challenge. Despite rapid growth and potential in this field,
real-time applications remain out of reach for now.

23

3. Style Transfer Methods

Generative
Stochastic Processes
per Frame/Batch Element

Marginal Diffused
Data Distribution

Input Noise (for each
Frame/Batch Element)

3 \ Temporal Video
e Fine-Tuning

Before temporal video fine-tuning, After temporal video fine-tuning, samples are aligned to
different batch samples are independent. form a video sequence (after applying the LDM decoder).

Figure 3.3: An illustration of fine-tuning text-to-image models on video data from [2].
Initially, the samples synthesised from one batch are different, then the fine-tuning takes
advantage of batches to feed in video frames as training images, allowing the generation of
consistent videos.

B Hybrid Diffusion Methods

Hybrid Diffusion Methods combine the strengths of diffusion-based frame generation
with example-based propagation techniques. They typically generate keyframes using
diffusion models and then extend these styles or changes to the entire video sequence.
This approach balances the generative power of diffusion models with efficient prop-
agation, ensuring temporal coherence with less computational demand. A notable
strength of hybrid methods is their speed advantage. Although generating a single
frame using a diffusion model can take up to several seconds, propagation of these styles
or changes across frames, depending on the method, can be much faster. This efficiency
in propagation is especially advantageous for video applications, where processing
speed is a critical factor, especially for real-time applications.

The recent work Rerender a Video by Yang et al. [47] demonstrates impressive
results in adapting image diffusion for temporally coherent video stylization. Their
key insight is introducing hierarchical cross-frame constraints across both global style
and low-level textures.

Specifically, Rerender a Video operates in two phases, stylizing select keyframes using
an augmented diffusion model and then propagating these to neighboring frames. A
diagram of this strategy can be seen in Figure For keyframe stylization, constraints
are applied at different diffusion steps to align the shape, texture, and color properties
between the current keyframe, the previous keyframe, and the anchor keyframe (the
first frame of the video). This coherence also relies on the proposed fidelity-oriented
encoding to limit the accumulation of artifacts during repeated latency projections.

24

3.2. Parametric Methods

Key Frame Translation

(e

fo Il Ik L2k

Full Video Translation

. First frame; First key frame; Anchor frame . Key frame @ Non-key frame
—— Cross-frame Attn; Pixel-aware Fusion Frame interpolation

~ Cross-frame Attn; Shape-aware Fusion; Pixel-aware Fusion; Color AdaIN

Figure 3.4: Schematic from Rerender A Video [47], showing the two-phase process:
the generation of coherent keyframes at every K-th frame of the original video and the
propagation to produce a temporally consistent video sequence. First the keyframes are
created with attention according to the blue and pink arrows. Then, the frames between
these keyframes are stylized using EbSynth [25], the style propagated from the keyframes
on both sides, then blended.

The second phase extends the stylization from keyframes to other frames using
EbSynth [25] as temporal-aware patch matching and blending.

An obvious limitation of these hybrid approaches is shared by many example-based
methods, when a frame contains new content not captured in a keyframe, the stylization
can fail to propagate. When using these methods, we have to be careful to choose
keyframes that capture the scene.

Another method that can be used to create keyframes is InstructPix2Pix (IP2P) [4].
IP2P pioneers a compelling approach for learning text-conditional image manipulation
without human-labeled data. It instead creates an entirely synthetic training dataset
by chaining the outputs of two powerful pre-trained models: the GPT-3 language
model and the Stable Diffusion image generator.

Specifically, GPT-3 is first fine-tuned on a small dataset of image captions and
editing instructions to generate text edits. This fine-tuned model produces more than
450,000 text triplets of an input caption, an instruction to edit the image, and an output
caption after editing. Then, Stable Diffusion equipped with Prompt-to-Prompt [19]
and CLIP generates multiple candidate image pairs per text triplet. For each triplet,
100 pairs are generated with different similarity hyperparameters. A CLIP-based
metric then selects pairs where text and image changes align best.

The resulting synthetic dataset of aligned image and text pairs is used to train
InstructPix2Pix, a diffusion model conditioned on the input image and text instruction
that performs the desired image edit. Though trained purely on synthetic data,
InstructPix2Pix generalizes to real images and human-written edits at test time.

We can provide the IP2P model with text prompts describing the desired artistic
keyframe style, along with the frame images themselves. Configuration parameters
allow controlling the balance between adhering to the text versus adhering to the
image—preserving frame layouts and content. IP2P then outputs stylized keyframes
reflecting the specified style, which can propagate across video sequences.

25

26

Chapter 4
Method

In this chapter, we discuss the approach taken to enable real-time stylization of a
live video stream using text prompts. We first examine the overall approach at a
conceptual level, with details of specific components elaborated on in later sections.

B 41 Overall Approach

The objective is to stylize a streaming video in real-time based on a textual description
of the desired artistic style supplied by the user.

In practical terms, a user would be sitting in front of a camera and monitor to see
himself in a live video stream at 30 frames per second (fps). A configuration window
with a text box (and other settings) allows the user to enter a text prompt describing
the change he/she would apply to the video. With minimal latency after entering a
prompt, the user would see himself/herself stylized in real time in the same smooth
stream at around 30 fps. The configuration window remains on the screen and lets the
user further interact with the stream by entering another prompt or tuning the settings
for the previous one. An example of this setup taken during a user demonstration can
be seen in Figure 4.1\

To achieve this, we opt for a hybrid technique that takes advantage of the comple-
mentary strengths of diffusion models and neural style transfer. This approach takes
keyframes from the target video, stylizes them, and then, using these keyframe pairs,
propagates the style to the rest of the video using an example-based method. An
overview of this pipeline can be seen in Figure [4.2]

Specifically, we use the InstructPix2Pix (IP2P) text-to-image diffusion model [4]
to synthesize stylized keyframes from keyframes taken from the video stream. IP2P
was chosen for its ability to maintain the identity of the original image better than
other generative models when applying edits. As a model that is conditioned on both
an image and a text prompt, IP2P takes the original image as input along with the
text prompt, allowing it to selectively edit parts of the image described in the prompt
while preserving the rest of the content. This makes it well-suited for our use case
of stylizing a person in a video while retaining their core visual identity. Additional
considerations are discussed in Section 4.2l

The style is then propagated to all other frames of the video using the StyleVid [44]
neural network. StyleVid is a good fit due to its ability to train an image stylization
model in tens of seconds and run at more than 30 fps for real-time video stylization.

27

4. Method

Figure 4.1: Participant using the real-time style transfer application during the Uroboros:
Creative Al meet-up.

To further improve the training speed, we apply a mask to select the foreground of
each keyframe and select patches only from these regions. Even though we cannot use
the same pre-processing methods to deal with temporal consistency as the authors
suggest (as their approach needs access to the whole sequence before stylization), the
implicit temporal consistency with some additional post-processing on-the-fly shows to
be sufficient. Additional considerations are discussed in Section

For this to work in a real-time setting, we split the work between keyframe genera-
tion (IP2P), style propagation (StyleVid), user interaction for entering prompts, and
displaying the live stylized video stream.

B a2 Keyframe Selection and Stylization

To propagate the style throughout the video, we first need to generate stylized keyframes
that will serve as examples of the style. The first step is to select the appropriate
keyframes from the video stream. The second step is to transform them using the
InstructPix2Pix [4] (IP2P) diffusion model.

A good set of keyframes would be those that capture the subject from angles that
are likely to be facing the camera at some point in the video stream. In a video
conference-like setup, the most important keyframe would be the face captured from

28

4.2. Keyframe Selection and Stylization

InstructPix2Pix
Source Keyframes Stylized Keyframes

Prompt

Asa
marble
statue

StyleVid

Source Keyframes Stylized Keyframes |

T
Stylization delay

Time

Figure 4.2: Stylizing a video using StyleVid in conjunction with InstructPix2Pix.

the front. This single keyframe can suffice in certain situations, especially when the
desired style preserves the low-level features of the face. For example, changing the
color tones requires only one keyframe to keep the stylization consistent even when
the subject turns, revealing their face from the side.

However, if the stylization consists of a more dramatic change that reveals new
occluded parts, a single keyframe may not stylize the revealed parts satisfactorily. In
such cases, it is helpful to include multiple keyframes that capture the subject from
different angles. When using multiple keyframes, we need to ensure that they are
stylized in a consistent manner. This means that if we stylize a front-facing face and
then rotate to stylize the face from the side, we should end up with something close to
the rotated version of the stylized front-facing face.

When running InstructPix2Pix conditioned on an image, we have no guarantee
that a small change in the input image translates into a corresponding change in the
generated output when using the same text prompt. To solve this potential incoherence

29

4. Method

between multiple stylized keyframes, we concatenate the input keyframes into one joint
image and run a single inference. This enforces consistency in the stylization, as can
be seen in Figure 4.3.

a)

Figure 4.3: Comparison of stylized keyframes generated using IP2P. a) contains the input
keyframes and b) and c) contain the respective keyframes stylized with the prompt "make
him look like batman" with CFG image 13 and CFG text 2. Keyframes in b) were created
all at once in one inference run and the keyframes in c¢) were generated one by one in 3
distinct inference runs.

Generating the images all at once has a downside; the inference has to be done on
one GPU, and the images have to fit into the memory. In our setup we can fit up to 3
images at 448x448 pixels each. For stylizing a face in a video-conferencing application,
3 keyframes prove to be enough, with one keyframe facing the camera and the other
two facing either side.

Another downside of multiple keyframes and one inference run is that it takes slightly
longer to generate the images. It is about 1.6x faster to generate 3 images separately.

30

4.2. Keyframe Selection and Stylization

IP2P was selected over other generative models due to its ability to edit the input
image as described by the text prompt while preserving identity and content not related
to the edit. This method avoids complete identity loss compared to other techniques
when using text prompts with targeted changes, such as "Give him a moustache’.
IP2P does this by conditioning the original input image (along with the text prompt),
rather than only providing an extracted feature map, such as an edge image, depth, or
normal map, which is the strategy of ControlNet. This identity-preserving quality can
be seen in Figure On the other hand, when we want a complete transformation of
the style of the input image, the guidance features of ControlNet can be enough and
sometimes even better than IP2P.

a)

Input: Original image Prompt: “give him a moustache” Input: Normal map Prompt: “a young guy with a
moustache”

Input: PiDiNet Prompt: “a young guy with a Input: Depth map Prompt: “a young guy with a
moustache" moustache”

Input: Canny edge Prompt: “a man with a moustache” Input: Canny edge Prompt: “a young guy with a
moustache”

Figure 4.4: Comparison of images generated using IP2P and ControlNet with Stable
Diffusion v1.5 as a base model. The image pairs a)-f) contain an input image that the
model is conditioned on, shown on the left. On the right is the generated output paired
with the text prompt used. Pair a) is generated by IP2P, while pairs b)-f) are outputs
using ControlNet.

IP2P allows adjusting the guidance strength to configure how closely the output
adheres to the text prompt versus preserving the original input image. This classifier-
free guidance mechanism gives intuitive control ranging from fully preserving the input
image to strongly steering the output based on the text prompt. If the stylization

31

4. Method

does not match the user’s expectations, it is easy to tune the guidance to either give
more strength to the text or better preserve the identity of the input image. A sensible
default usually gives a satisfactory result, but it really depends on the specific edit
prompt.

Another small aspect to consider is the formulation of the prompt; in the case
of IP2P, the prompt text is an edit instruction. The alternative, which most other
methods use, is a text description of the output image. So instead of "give him a
moustache” we would have to do something like "a young man with a moustache”. An
example of these prompts can be seen in Figure [4.4 This formulation of what should
change rather than what should be the output is very intuitive to humans.

B a3 Style Propagation

After generating the stylized keyframes, the next step is propagating the artistic style
to the rest of the video sequence. This is done in an example-based manner using the
StyleVid [44] neural network.

StyleVid aims to achieve the semantic faithfulness of patch-based methods such as
Stylizing Video by Example [25], while enabling real-time performance and the random
access of feedforward techniques. Importantly, StyleVid runs inference at more than
30 fps on a sufficiently fast GPU. It also trains the image stylization model in just a
few seconds, allowing quick adaptation of new styles.

The authors identify two main sources of temporal flickering in their method:

1. temporal noise in the original video and
2. visual ambiguity of the stylized content.

While we cannot leverage the same pre-processing as the original method (since we
need to stylize each frame as it is created to keep the application interactive), the
implicit temporal consistency of StyleVid combined with additional post-processing
shows to be sufficient.

To address temporal noise in the input video, we blend the current frame with
the previously processed frame. This approach combines the information from the
immediate frame with a weighted average of the past frames, effectively reducing
temporal noise. Mathematically, this process is described as follows:

blended_frame(; = o - current_frameg + (1 — a) - blended_frame;)

where « is the weight given to the current_frame, and 1 — « is the weight of the
previously blended_frame. The contribution of each frame to the final image can then
be described as an exponentially weighted moving average:

t
blended_frame(= o - Z(l —a)k. current_frame(,_j).
k=0

A visualization of this contribution can be seen in Figure 4.5

32

4.3. Style Propagation

Contribution of Each Frame to the Blended Output Over Time for Various Alphas

0.7 4 —e— Alpha 0.3
—e— Alpha 0.5

0.6 4 —e— Alpha 0.7

0.5

0.4 4

0.3 4

0.2 4

Weight contribution to output

0.1+

0.0 4 o>—o0 PP ° P PN

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Frame number (from most recent to oldest)

Figure 4.5: Weight contributions of frames in temporal blending: The graph displays the
declining influence of each preceding frame on the blended output over time for multiple
values of a.

To further fight temporal inconsistencies, due to visual ambiguity, we introduce
foreground masking to focus the stylization on the main region of interest; the head and
shoulders in a video conferencing setup. Compared to the background, the foreground
does not contain as many visually ambiguous areas. Training only on the foreground
significantly improves the convergence time, since we are learning to stylize a smaller
region with less visual ambiguity. The foreground mask is obtained by segmenting the
input keyframes using the Google MediaPipe [31] selfie segmente selected for its
real-time performance. An example of the masks can be seen in Figure

With the overall approach established, the next chapter will focus on implementation
details of integrating IP2P and StyleVid into an interactive application.

1|ht‘cps ://developers.google.com/mediapipe/solutions/vision/image_segmenter

33

https://developers.google.com/mediapipe/solutions/vision/image_segmenter

4. Method

Figure 4.6: Foreground masks created using the MediaPipe selfie segmenter. a) contains
the input keyframes from which the training masks b) are created.

34

Chapter 5

Implementation

This section provides the technical details and practical realization of the real-time
video stylization video-conferencing application created as part of this thesis. To meet
real-time performance goals and enable user interactivity, we separate the workload
across key asynchronous components: camera capture, stylization inference, video
display, the client-interaction application, keyframe stylization, and style transfer model
training. These components run on two separate machines; a client machine and a
server machine.

First, we discuss the hardware and software technologies used, including the specifics
of the camera, GPUs, operating system, and libraries used. We then explain the
application design and discuss the workings and data-flow of individual components.

To achieve real-time stylization, it is crucial to run these components concurrently.
Multithreading techniques and inter-process communication mechanisms that allow
different parts of the pipeline to operate in parallel and on separate computers. We
also detail the integration challenges faced and strategies to address them.

The final section of the text will focus on the user interface for entering artistic
stylization prompts, settings to direct the process, and the display mechanisms to show
the user a live stream of the stylized video output.

The next chapter Results and Experiments |6/ demonstrates the real-time performance
and qualitatively evaluates visual coherence through demos.

B 5.1 Hardware and Software Configuration

To split the work as much as possible, we use two machines—a client machine and a
server machine—with separate hardware setups tailored to their distinct roles. The
client handles communication, camera capture, and display of outputs and interfaces.
The server runs diffusion model inference and trains the neural network.

The client machine exists to enable user interaction. It has the camera and displays
the camera view and stylization along with all the interactive components. The client
runs on a Windows 11 desktop equipped with an NVIDIA GeForce RTX 4080 GPU!,
an Intel Core i9-10900X CPU, and a Logitech HD Pro Webcam C920 camera?.

"https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4080/
Zhttps://www.logitech.com/en-us/products/webcams/c920s-pro-hd-webcam.960-001257.
html

35

https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4080/
https://www.logitech.com/en-us/products/webcams/c920s-pro-hd-webcam.960-001257.html
https://www.logitech.com/en-us/products/webcams/c920s-pro-hd-webcam.960-001257.html

5. Implementation

The server is there to handle most of the heavy lifting. It runs the InstructPix2Pix [4]
diffusion model inference and trains the StyleVid [44] stylization network. The server
uses an NVIDIA DGX platform?| with multiple NVIDIA A100 GPUs.

The server or back-end is built on top of the official implementations of Instruct-
Pix2Pix [4] and StyleVid[44]. IP2P forms the foundation for keyframe stylization, the
code is taken from the official open source repository?. StyleVid enables efficient style
propagation, with code adapted from its official open source repository’.

A Flask server [16] wraps the IP2P diffusion model to handle stylization requests
through a RESTful API. Communication with the client uses SocketlO for real-time
interactivity. Another separate Python program adapts the StyleVid implementation
to perpetually train stylization models.

The client or front-end of the video conferencing application is built using Python,
with PyQt (Python binding for the Qt application framework) for the graphical
interface and OpenCV [3] for the capture and display of real-time video. It also uses
the StyleVid implementation® to run stylization model inference.

SSHF'S (Secure SHell FileSystem) is used to establish a connection between the
client and the server, enabling the seamless and efficient exchange of files by mapping
a directory on the server to the client.

B 52 Application Design

In a real-time interactive setting, we need to take special care to handle every user
interaction without any visible delay and to have the stylization run smoothly without
any timing inconsistencies. This can be practically achieved by separating work into
parallel execution flows where possible. However, concurrency in Python faces some
challenges. Since Python’s memory management is not thread-safe (specifically, the
CPython implementation), it uses a Global Interpreter Lock (GIL), which prevents
multiple native threads from executing Python bytecode concurrently. Therefore,
in a multithreaded Python program, only one thread can execute Python code at
once. For I/O-bound operations, such as file and network operations, Python can still
achieve concurrency as the GIL is released to allow other threads to run during these
times. However, for CPU-bound computations, the GIL limits parallelism. Although
multiprocessing avoids this issue, the lack of shared memory between processes makes
this impractical for our needs.

Importantly, Python can bypass the GIL when executing tasks in external libraries,
particularly those written in C/C++ or other languages. For instance, Graphical User
Interface (GUI) tasks such as rendering the UT in PyQt, many NumPy operations, or
operations on data using libraries like TensorFlow or PyTorch can run in parallel on
multiple cores or on a GPU because they are not executed directly by the CPython
interpreter. We take advantage of this capability to incorporate concurrency by
wrapping key parallelizable components in separate threads when feasible.

3https://www.nvidia.com/en-us/data-center/dgx-platform/
“https://github.com/timothybrooks/instruct-pix2pix
Shttps://github.com/OndrejTexler/Few-Shot-Patch-Based-Training
Shttps://github.com/OndrejTexler/Few-Shot-Patch-Based-Training

36

https://www.nvidia.com/en-us/data-center/dgx-platform/
https://github.com/timothybrooks/instruct-pix2pix
https://github.com/OndrejTexler/Few-Shot-Patch-Based-Training
https://github.com/OndrejTexler/Few-Shot-Patch-Based-Training

5.2. Application Design

To make the stylization faster, we also distribute functions across client and server
machines, interacting via file sharing and a REST API. The client built with PyQt
consists of camera capture, stylized video display, stylization inference, and a GUI
to enter text prompts and interact with various video and other settings. The server
handles keyframe generation using InstructPix2Pix and perpetual training of the
style transfer network as new stylized keyframes are created. A schema of the entire
application design can be seen in Figure [5.1.

During the development of this project, SSH was used for communication between
the client and the server machines. To enable a flexible and efficient workflow, the client
was connected to the server using SSHF'S by mapping the development directory on
the server to a local directory on the client. This way, the files in the shared directory
could be accessed on the client machine, even though they physically reside on the
server. Since the drawbacks proved insignificant, this setup was kept for seamless file
sharing between machines.

B 5.2.1 Client Components

Since access to the camera can be given to one process at a time, we have two options;
Fit all of the client components (such as the camera capture, stylized video display,
stylization inference, and the GUI) into one Python program or separate this work
further into two or more programs. At first, I separated the GUI from the rest of the
client application. Although this solution worked well, it introduced new unnecessary
complexity in communication and was not very user-friendly. To have a cleaner and a
more future-proof product, I decided to integrate the solution into one.

The following text describes the components of this client application and how they
come together as a whole.

B Camera Capture

Capturing camera frames is practically similar to reading from the hard drive in that it
releases the GIL and is thus non-blocking. It can be easily partitioned into a separate
thread. The camera capture module retrieves frames from the webcam at its maximum
sampling speed—30 fps—and at a resolution of 800x600, which is then cropped to a
square. These frames are saved in a double-ended queue for the rest of the application
to access. In addition to providing all camera needs for the application, this module
can optionally blend incoming frames to reduce temporal noise.

B Stylization Inference

To stylize the frames captured by the camera module and hold the GIL as little as
possible, we use three complementary threads. First, to keep the stylization delay as
short as possible, we have a thread periodically checking for the newest model. When a
new model is found, its path is passed to another thread, which then loads this model
into the GPU. The third and final thread then performs the actual inference on the
GPU by passing the input frame through the trained StyleVid [44] model.

The first two threads access a different external non-blocking resource and thus can
be separated out. The third thread, similarly to the second, accesses the GPU, but

37

5. Implementation

Client

L

Client Application

User Interface and Settings

Keyframe View]

Storage

Keyframes

|

(
[][U
[

Video Processing Drawer]—-<

e

,_—[IP2P Config Drawer

A \
Stylization
| Inference
)

R

Camera

Capture

e —

\

[Output Console

)
)

: f

v
-

Video
Display

4

[Video Output

q Server
Q Communicator
Stylized Keyframes
Models
- N
Server
SSHFS » (
HF Storage

Connnection

A

Style

Transfer

A

Trainer

J

‘ N
A |
Stylized Keyframes

Keyframe Stylizer

o
G

RESTful
API

Figure 5.1: Diagram of the application design. Shows the inner workings and connection
of two machines a client and a server (in blue). Separately running programs are depicted
in brown, yellow signifies storage and the distinct client components are shown in pink.
The arrows show the flow of information between the machines, components and other
resources. The storage on the client is shown as opaque to indicate that the server is the
actual location of the data.

5.2. Application Design

since we need the stylization to run without any noticeable hiccups, it is useful to run
separately.

B Video Display

An important component is displaying the camera frames along with the stylized
frames. The concurrency of this component is handled by PyQt itself, since updating
a frame in an open window is done outside of CPython itself.

To help smooth the stream and avoid possible stuttering, the video display also
enforces a cap on the frame update frequency. If a cycle of the display loop takes less
than 3—12th of a second, the thread waits until this time has elapsed. This, sleep time
gives other threads space to run and helps prevent minor timing inconsistencies among
the threads, in decreasing in the maximum achievable 30 frames per second (fps).

This component can also optionally blend the output frames to reduce noise caused
by stylization ambiguity. Another functionality is to replace the background of the
stylized frames with the background of the input frames to eliminate disturbing color
changes sometimes caused by updating models stylization models.

B Server Communicator

To direct keyframe stylization on the server machine, the client application employs
two communication mechanisms.

Real-time messaging leverages SocketIO to enable bidirectional status updates and
notifications between the client and the server. This allows dynamic feedback about
actions performed, errors encountered, and style transfer progress.

Sending stylization instructions relies on a REST API exposed by the Flask server
that wraps the InstructPix2Pix model. The API exposes an endpoint that accepts
HTTP POST requests containing the configuration parameters for the text prompt,
diffusion settings, image guidance strength, etc. The server queues these requests
and handles stylization one by one, loading the specified input frames, generating the
artistic keyframe transformations, and saving the output.

B User Interface and Settings

The GUI is built using PyQt and provides an intuitive way for users to interact with
the video stylization application. A screenshot can be seen in Figure [5.2. The app
contains several key components:

Keyframe View Section. Provides a side-by-side view of the input and output folders
showing the input keyframes and the corresponding stylized output keyframes. The
images can be opened for closer inspection, deleted individually or all at once using
the Clear button. The folder view updates automatically based on directory changes,
but can be manually refreshed with the Reload button. This allows reviewing and
clearing out the generated stylized frames.

Video Processing Drawer. Includes options to control real-time video stylization
video display:

39

5. Implementation

(T Live Style Transfer (m])
Input: Output:
...erver/fewshot-app/server/training_in ...app/server/training_out/000014_out

000.jpg 001.jpg 002jpg 000.jpg 001.jpg 002,jpg
Clear Reload Clear Reload
Video Processing
+ show
Masks Viewer
» show
IP2P Config
» show
Output:
server: Server is up and runnng
client: sending stylization request "GTA V style”
server: Stylization finished in 9.25 seconds.
client: sending stylization request "make him look like Marble statue”
server: Stylization finished in 9. 18 seconds.
client: Video processing stopped
: The video processing thread will been reset with default settings
Reconnect
- 4

Figure 5.2: A screenshot of the entire GUI app with collapsed drawers. Shows the
Keyframe View Section and the Output Console.

Save Frame: Save a new frame to the input folder.

Keyframe Options: Switch between Multiple Keyframes and One Keyframe options.
The choice determines whether a newly saved frame will be added or will replace
the previous frames.

Blend In Settings: Options to blend input video frames with an adjustable alpha
value.

Blend Out Settings: Options to blend output video frames with an adjustable
alpha value.

Output Mask: Toggle ON/OFF the background replacement of the stylized frames
by the backgrounds of the input frames.

Composer View: Select the layout of input/output views of the video display
window. Has three options Side by Side, Input Only and Output Only.

Input Source: Choose between a live camera or a prerecorded sequence.

Start Video Processing: Open the video display window to see your live stylization.

A screenshot of this component can be seen in Figure

40

5.2. Application Design

Video Processing

V¥ hide

Save Frame

Keyframe Options: One Keyframe
Blend In Settings

Blend Input Video Frames: Blendng Off
Input Blend Abha: 0.5 I
Blend Out Controls

Blend Output Video Frames: Blending Output Frames

Output Blend Apha: 0.3 [|
Output Mask: Mask Off
Composer View: Side by Side
Input Source: Camera

Start Video Processng

Figure 5.3: A screenshot of the expanded Video Processing Drawer.

Masks Viewer Drawer. Displays input keyframe masks and provides options to
generate masks manually or automatically when sending a new stylization instruction.
Masks control which parts of the image are used to train the stylization. Contains an
option to switch to an "All White mask" to effectively train on the entire image.

The viewer otherwise functions similarly to the input and output image viewers.

A screenshot of this component can be seen in Figure [5.4l

Masks Viewer

¥ hide

Input Masks:
...nt/dplomka/server/fewshot-app/server/traning_mask

Al white mask
@ Create automaticaly

000jpg 001jpg 002jpg Generate Masks

Clear Reload

Figure 5.4: A screenshot of the expanded Mask Viewer Drawer.

IP2P Config Drawer. Provides configuration settings and controls for the IP2P
keyframe stylization:

® Input fields to set parameters like seed, CUDA device, image resolution and the
number of diffusion steps.

® Sliders to adjust textual and image-based guidance strengths.
® Text field to enter the edit prompt.

® Save or load the stylization configurations to and from a YAML file with the Load
and Save buttons.

B (o button to send the stylization command to the server with the current settings.

A screenshot of this component can be seen in Figure |5.5

41

5. Implementation

1P2P Config

¥ hide

Seed: Cuda Device: Resolution:
1371 3 448
Steps: 30.0

cfg Text: 9.0

cfg Image: 1.5
|
make him look like Marble statue

Load Save Go

Figure 5.5: A screenshot of the expanded IP2P Config Drawer.

Output Console. Logs messages from the server and the client, indicating status,
actions taken, and errors. Also contains a Reconnect button to check or update the
server connection.

B 5.2.2 Server Components

The server handles the heavy-weight tasks of keyframe stylization using IP2P [4] and
perpetual training of the neural style transfer models through StyleVid [44]. It runs
on a system equipped with multiple GPUs to enable parallel execution. The server
workload is handled by two separate Python programs:

B Keyframe Stylizer

Integrates the official implementation of InstructPix2Pix’ [4] into a RESTful API
using the Flask framework. This module stylizes keyframes based on configuration
instructions received from the client. At launch, it loads the ~34 GB IP2P model
into the GPU (20 seconds). The API then waits for incoming HTTP POST requests
containing parameters such as the number of diffusion steps, seed, textual/visual
guidance weights, edit prompt, CUDA device, and input/output paths.

Requests are queued and handled one by one. For multiple inputs, keyframes are
concatenated, stylized jointly, and then split back up. The stylized output keyframes
are saved to the designated path, which is accessible to the Style Transfer Trainer.

B Style Transfer Trainer

Adapts the official implementation of StyleVid®| [44] to perpetually train style transfer
models on new stylized keyframes and periodically saves these updated models.

A single dedicated thread handles the entire model training, checking for new stylized
keyframes every 100 batches. If available, these are loaded and swapped with the
previous training data (taking ~130 ms). Whenever there are new stylized keyframes
available, we also check for new input keyframes and update those as well. Every
150 batches, the current model is saved to disk (~80 ms). Saved models are accessible
to the client via SSHFS.

"https://github.com/timothybrooks/instruct-pix2pix
Shttps://github.com/OndrejTexler/Few-Shot-Patch-Based-Training

42

https://github.com/timothybrooks/instruct-pix2pix
https://github.com/OndrejTexler/Few-Shot-Patch-Based-Training

Chapter 6

Results and Experiments

In this chapter, we present the results and experiments conducted to evaluate our
real-time neural style transfer method. We begin with a quantitative analysis, focusing
on key performance metrics such as frame rate and latency. This is followed by
qualitative coherence analysis, focusing on several key aspects of the style transfer,
including the effect of additional keyframes, style convergence speed, and the role of
masking in enhancing stylization. Then, in Section [6.3, we present and discuss the
stylized results, showing the achievable style diversity. We also include observations
from public demonstrations of our application, offering insight into user interactions.

B 6.1 Performance Analysis

To quantitatively evaluate the real-time and interactive capabilities of the system,
three metrics were analyzed: frame rate, latency, and style delay.

Frame rate indicates the smoothness of the output video stream. Processing a single
frame captured at 800x600 and stylized at 448x448 takes approximately 25 milliseconds.
Given the 30 fps limit of our webcam, the frames are being stylized faster than they
are captured. Meaning that we reach the 30 fps stylization output. To further test the
limits of the system, we artificially increase the input framerate and achieve stylization
at about 39 fps.

End-to-end latency combines the camera capture delay and time needed for stylization
and frame display. With the typical webcam lag of 100-150 ms, and image processing
adding roughly 30 ms, the total lag stays under 200 ms - an imperceptible level of
delay during live streaming. When running at 30 fps, the stylized video is about one
frame behind the input video.

Style delay measures the waiting time from entering a text prompt to initial visible
changes in the stylized output stream. Using the typical 3 keyframes, this delay can
be up to 13.4 seconds. With only 1 keyframe, it drops to 6.2 seconds. These totals
come from several steps:

Generating 3 keyframes with InstructPix2Pix requires approximately 9.2 seconds
at 30 diffusion steps. The keyframe outputs are then loaded into the style transfer
trainer (~130 ms), which checks for new images every 20 batches or ~560 ms seconds
before starting to train on the fresh data. The trainer then releases a new model every
100 batches or ~2.8 seconds. On the client-side, a check for the latest model occurs
every 0.5 seconds. Once found, the client loads this new model in ~270 ms to start

43

6. Results and Experiments

using it for inference.

Summing these pipeline timings accounts for the total style delay from prompt to
early observed stylization effects. However, the style transfer continues to improve
with the release of new models until training has fully converged. The convergence
time strongly depends on the difficulty of the style.

B 6.2 Style Coherence Analysis

To assess the coherence of the style, we examine two key aspects related to the quality
of real-time video stylization. The first is stylization coverage; the ability of the
propagated stylization to fully takes hold across all video frames given factors like
the number of keyframes or the complexity of the desired transformation or sequence.
The second is the convergence speed, the rate at which the stylization improves over
continual training iterations, influenced by elements such as background masking and
style difficulty.

Evaluating these elements of quality and speed provides important practical insights.
The effectiveness across different style settings validates the flexibility of the approach.
By observing the convergence, we gain insight into the expected delay for observing a
completed stylization.

B 6.2.1 Style Coverage

Style coverage is largely determined by two factors, the complexity of a given style
and how well the input video sequence is covered by keyframes.

The complexity of a style can be seen by comparing the input and the stylized
keyframes. It is largely dictated by how the style changes the structure of the keyframe.
Simple styles can change colors or slightly decrease low-level structure, such as smooth-
ing skin, etc. Complex styles change the high-level structure, such as making someone
fat (or otherwise changing the shape of the face) or adding low-level structure to
regions that lack it, such as giving the frames a painterly appearance (Figure 6.10).

Simple Styles. Simple styles typically generalize well, so a single frontal keyframe
can be sufficient to capture the desired change. This can be seen in Figure 6.1, where
the style is well generalized from one keyframe. Additional keyframes can still help
improve the style, but can also cause problems if they aren’t coherent with each other.
Another factor to consider is that more keyframes can also increase the chance of
introducing common diffusion artifacts, such as malformed eyes. Figure 6.2 shows the
negligible improvement from using multiple keyframes on an easy target style.

Complex Styles. Complex styles typically need multiple keyframes to generalize to
the whole output sequence. This can be seen in Figure 6.3/ where the model struggles to
stylize the frames convincingly. Figure [6.4] shows how multiple keyframes that capture
the subjects’ turned head help stylize the heads’ motion.

The style transfer can still struggle if the input sequence contains more complex head
movements or faces not captured by the keyframes. This can be seen in Figure [6.5

44

6.2. Style Coherence Analysis

Figure 6.1: Simple style stylization using one keyframe: input keyframe and
mask (blue border), stylized keyframe (orange border), input and stylized frames (bot-
tom two rows). Used parameters; prompt: "as a daguerreotype"”, cfg_text: 8,
cfg_image: 2.

B 6.2.2 Convergence Speed

Style convergence is mainly influenced by three factors; style complexity, number of
keyframes, and foreground masking.

Style complexity. Simple styles converge considerably faster than complex styles.
For simple style, the stylization result is easily recognizable and pleasing even on the
first loaded model. On the other hand, complex styles take several, sometimes even
tens of seconds, to become recognizable as the desired style and take even longer to
fully converge. Figure shows this effect starting with an easy style—saturating the
colors and adding a fine structure, continuing with a harder style—slightly changing the
geometry of the face and adding hard lines, and finally displaying a hard style-changing
the geometry of the face and adding a lot of small sharp details.

Multiple Keyframes. Employing multiple keyframes generally improves the model’s
ability to handle complex styles and significant head movements. However, this
benefit comes at the cost of increased convergence time, particularly for complex

45

6. Results and Experiments

Figure 6.2: Simple style stylization using multiple keyframes: input keyframes
and masks (blue border), stylized keyframes (orange border), input and stylized frames
(bottom two rows). Used parameters; prompt: "as a daguerreotype”, cfg_text: 8,
cfg_image: 2.

46

6.2. Style Coherence Analysis

Figure 6.3: Hard style stylization using one keyframe: input keyframe and mask
(blue border), stylized keyframe (orange border), input and stylized frames (bottom
two rows). Used parameters; prompt: "turn him into Shrek", cfg_text: 7.5,
cfg_image: 2.

styles. Figures and 6.9/ demonstrate the convergence times for the same simple,
medium, and hard styles as prior single-keyframe examples (Figure , now trained
on multiple keyframes. The simple style converged as fast as before, while medium and
hard styles take almost twice the time to converge. (Note that the CFG parameters
were adjusted to better match the stylized keyframes of the previous figure, in the case
of the hard—yeti—example a closer match was not achieved.)

Foreground Masking. Applying a foreground mask during training focuses the
style transfer network exclusively on the key facial and torso regions of the subject
rather than the entire frame. We are primarily interested in coherently stylizing the
person themselves, and not the ambivalent background. Constraining the area speeds
convergence for two main reasons:

First, reducing the output resolution lessens the risk of overfitting to noise or
nonexistent structures in background regions of stylized keyframes. Without masking,
the network tries to reconstruct fictional details in areas like walls that lack clear
correspondences between the input and target frames.

47

6. Results and Experiments

Figure 6.4: Hard style stylization using multiple keyframes: input keyframes and
masks (blue border), stylized keyframes (orange border), input and stylized frames (bot-

tom two rows). Used parameters; prompt: "turn him into Shrek", cfg_text: 7.5,

cfg_image: 2.

48

6.2. Style Coherence Analysis

Figure 6.5: Hard sequence stylization using multiple keyframes: input keyframes
and masks (blue border), stylized keyframes (orange border), input and stylized frames
(bottom two rows). Used parameters; prompt: "give him a moustache", cfg_text:

8, cfg_image: 2.

49

6. Results and Experiments

cfg_text: 9
cfg_image: 1.4
prompt: "make him painted by watercolors"

0s

cfg_text: 3.4
cfg_image: 2
prompt: “make me look like barack obama"

cfg_text: 9.4
cfg_image: 2
prompt: "turn him into a yeti"

Figure 6.6: Convergence times of three styles; an simple style (top), medium style (middle),
hard style (bottom). Each row contains the style parameters on top and the stylized
keyframe (orange border) and stylized frames taken every 5 s starting at 0 s with the first
model.

Second, even with valid background details, narrowing down the target area of the
style transfer effectively reduces the number of pixels the network needs to process,
leading to an easier learning task. The network can more rapidly latch onto and
reproduce consistent textures and patterns.

Figures and illustrate the impact of foreground masking on convergence
speed, comparing the results with and without mask use. In these figures, the target
style presents a particularly challenging scenario for transfer without masking, as the
stylized keyframe background contains brush textures, whereas the corresponding input
area is a plain white wall.

50

6.2. Style Coherence Analysis

cfg_text: 7.5
cfg_image: 1.4
prompt: “"make him painted by watercolors"

Figure 6.7: Convergence times of a simple style trained on multiple keyframes; stylized
keyframes (orange border, top), stylized frames taken every 5 s starting at 0 s with the
first model (bottom).

ol

6. Results and Experiments

cfg_text: 3.4
cfg_image: 2
prompt: "make him look like barack obama"

Figure 6.8: Convergence times of a medium style trained on multiple keyframes; stylized
keyframes (orange border, top), stylized frames taken every 5 s starting at 0 s with the
first model (bottom).

52

IllIIIIlllIIIIlllIllllIllllllIllllIll6.2.Sty/eCOherenceAna/ysiS

cfg_text: 9.4
cfg_image: 2
prompt: "turn him into a yeti"

Figure 6.9: Convergence times of a hard style trained on multiple keyframes; stylized
keyframes (orange border, top), stylized frames taken every 5 s starting at 0 s with the
first model (bottom).

93

6. Results and Experiments

Figure 6.10: Convergence times of a hard style using a mask; input keyframe (blue border,
top) stylized keyframes (orange border, top), training mask (blue border, top), stylized
frames taken every 5 s starting at 0 s with the first model (bottom 2 rows).

54

6.2. Style Coherence Analysis

Figure 6.11: Convergence times of a hard style without using a mask; input keyframe
(blue border, top) stylized keyframes (orange border, top), training mask (blue border,
top), stylized frames starting at 0 s with the first model (bottom 3 rows).

95

6. Results and Experiments

. 6.3 Results

Five videos featuring five different subjects were used to evaluate the real-time styliza-
tion system. These videos show typical movements seen in video calls, with subjects
primarily facing forward or sideways and engaging in head tilts. To further test
the system’s robustness, two videos also showcase more dynamic actions, including
exaggerated head rotations and facial expressions with hands covering the subjects’
faces.

The videos were filmed on 3 different cameras; Logitech C920 webcam, and iPhone 11
and iPhone 15 cameras.

Multiple different styles were applied to each video to evaluate the stylization
coherence. Styles include simple color and texture changes as well as more complex
shape distortions. For the purposes of a fair evaluation, we made an effort not to
cherry-pick only great looking styles. However, we do present only the styles where
the stylized keyframes well overlayed the input keyframes, since without this condition
our method cannot work properly. Even so, some of the stylized keyframes better
match the face geometry, are thus easier to learn, and provide a more convincing style
transfer.

All styles were generated using 3 keyframes, with 30 diffusion steps, the other
relevant parameters CFG text and CFG image were chosen to best fit each specific
prompt and are stated along with the exact prompt wording next to each style.

The criteria for selecting input keyframes were to capture angles with expected
visibility given typical video-conferencing motions facing the camera. For most subjects,
we used keyframes; with forward-, left-, and right-facing poses. For subjects making
faces in front of the camera, we replace a side-facing keyframe with a facial expression
keyframe.

All styles were trained using only the input keyframe foreground. Styles were trained
until perceived convergence. Depending on the keyframe match, convergence times
ranged from tens of seconds to a minute.

The following is a description of results for all subjects.

Subject 1. Figures|[6.12|and |6.13 present results for Subject 1. The video contains
challenging frames with hands occluding the face and casting slight shadows. Besides
exaggerated head tilts, most of the footage features natural head movements facing
forward.

The three keyframes include; hands covering the face, a slightly tilted frontal
perspective, and a smiling forward shot. The stylized versions of these keyframes
remain visually consistent with each other.

All three styles applied to this subject’s video adapt well to the varying poses.
However, there are specific challenges: The extreme head tilt poses a difficulty for the
"give him sunglasses” style, resulting in slight misstylization. Additionally, the "digital
art style” encounters artifacts due to shadows created by the hands in front of the face,
though the rest of the sequence maintains a high-quality stylization.

Subject 2. Figures|[6.14 and [6.15 present results for Subject 2. The footage includes
challenging frames with exaggerated head tilts, interspersed with minor motions, and

o6

6.3. Results

natural expressions of smiling, laughing, and making faces.

The selected keyframes capture a head tilt, a straightforward frontal shot, and a
frontal shot with teeth showing, as an example of making a face. The stylized versions
remain reasonably consistent in preserving high-level facial structure, with only small
deviations in the more distorting “as a pig” style and low-level inconsistencies in the
“make him a zombie” style.

The applied styles adapt well to simple head positions, creating a coherent stylization
throughout most of the sequence. However, they encounter difficulties with the
exaggerated head tilts, where details are sometimes lost or the intended effect is
not fully achieved. Facial expressions are mostly well stylized, but the "as pig" and
"make him into a zombie" styles show a loss of detail, particularly in complex facial
movements.

Subject 3. Figures|6.16 and 6.17 show the stylization results for Subject 3. The video
predominantly features simple, front-facing frames with various facial expressions. The
sequence was recorded outdoors against the backdrop of a lush garden.

The three keyframes capture the forward view and slight head rotations and effectively
represent the range of movements and expressions in the video. Their stylized versions
remain visually consistent.

All three styles applied to this subject’s video adapt well to the test frames, main-
taining a coherent stylization. However, in addition to stylizing in the intended way,
the style "make him look like a clown" colors the sky orange. This undesirable effect
is caused by training only on the foreground, resulting in non-sensical or disruptive
background stylization not present in the stylized keyframes. To address this, we can
replace the background of the stylized frames with the background of the input frames,
effectively correcting these anomalies. Figures illustrate stylization both before and
after this background replacement, demonstrating the effectiveness of this technique.

Subject 4. Figures |6.18 and [6.19] present the results for Subject 4. This subject’s
video features a variety of head tilts, turns, and facial expressions captured indoors.
The motion remains limited in range with no extreme rotated perspectives.

The chosen keyframes include a frontal view and one for each side of the face. These
keyframes capture the range of head movements and expressions exhibited in the
video. Although the stylized keyframes for the "give him a carnival mask" style appear
consistent at first glance, a closer inspection reveals misalignments. Changes in the
mouth and eyes do not align with the input keyframes, and the mask’s position varies
slightly around the nose and forehead between the stylized keyframes. Other stylized
keyframes are consistent.

These inconsistencies in the stylized keyframes of the "give him a carnival mask'
style result in a broken and non-generalizing stylization. The style effectively transfers
only to test frames nearly identical to the initial input keyframes. The other styles
applied to this subject’s video perform quite well, demonstrating better coherence and
adaptability to the various head movements and expressions.

Subject 5. Figure 6.20 shows the results for Subject 5. The video features very minor
head movements.

o7

6. Results and Experiments

The chosen keyframes include a frontal view and one for each side of the face,
effectively covering the range of limited motion presented in the video.

The flat "make him into a ghibli studio character"” style, applied to this subject’s
video, performs well for the non-moving parts of the subject’s face. However, it faces
challenges in more expressive areas such as the eyes or mouth, especially when the test
frame deviates significantly from the keyframes.

More stylization results can be found in Appendix Bl

o8

6.3. Results

cfg_text: 12
cfg_image: 2
prompt: "make him look like a bronze statue”

Figure 6.12: Subject 1:

Top: Input keyframes (blue border) and input video test frames.

Bottom: Stylized keyframes (orange border), target style configuration parameters, and
stylized test frames.

99

6. Results and Experiments

cfg_text: 14
cfg_image: 2.2
prompt: “"digital art style"

cfg_text: 14
cfg_image: 2
prompt: "give him sunglasses"

Figure 6.13: Subject 1:
Two styles (top and bottom); each with stylized keyframes (orange border), target style
configuration parameters, and stylized test frames.

60

6.3. Results

cfg_text: 7.4
cfg_image: 2
prompt: “"make him look asian"

Figure 6.14: Subject 2:

Top: Input keyframes (blue border) and input video test frames.

Bottom: Stylized keyframes (orange border), target style configuration parameters, and
stylized test frames.

61

6. Results and Experiments

cfg_text: 3.4
cfg_image: 2
prompt: "as pig"

cfg_text: 12
cfg_image: 2

prompt: "make him into a zombie"

Figure 6.15: Subject 2:
Two styles (top and bottom); each with stylized keyframes (orange border), target style
configuration parameters, and stylized test frames.

62

6.3. Results

cfg_text: 4.8
cfg_image: 1.4
prompt: "make him like ken from barbie"

Figure 6.16: Subject 3:

Top: Input keyframes (blue border) and input video test frames.

Bottom: Stylized keyframes (orange border), target style configuration parameters, and
stylized test frames before and after background replacement.

63

6. Results and Experiments

cfg_text: 13.2
cfg_image: 1.7
prompt: "give him a goatee"

cfg_text: 8.6

B cfg_image: 1.6

§ prompt: "make him like look like a clown™
. N A W

Figure 6.17: Subject 3:

Two styles (top and bottom); each with stylized keyframes (orange border), target style
configuration parameters, and stylized test frames before and after background replace-
ment.

64

6.3. Results

Subject

cfg_text: 9
cfg_image: 2
prompt: “give him a carnival mask"

Figure 6.18: Subject 4:

Top: Input keyframes (blue border) and input video test frames.

Bottom: Stylized keyframes (orange border), target style configuration parameters, and
stylized test frames.

65

6. Results and Experiments

cfg_text: 7.6
cfg_image: 1.3
prompt: "make me as a disney character"

cfg_text: 16
cfg_image: 1.5
prompt: "oil painting, brush strokes"

Figure 6.19: Subject 4:
Two styles (top and bottom); each with stylized keyframes (orange border), target style
configuration parameters, and stylized test frames.

66

6.3. Results

Subject 5

cfg_text: 12
cfg_image: 2
prompt: “"make him into a ghibli studio character

cfg_text: 5.5
cfg_image: 1.5
prompt: “GTA V style"”

Figure 6.20: Subject 5:

Top: Input keyframes (blue border) and input video test frames.

Middle and bottom: Two styles, each with stylized keyframes (orange border), target
style configuration parameters, and stylized test frames.

67

6. Results and Experiments

B 6.3.1 Limitations and Failure Cases

This section examines the boundaries of our method’s capabilities and identifies
scenarios where it fails to deliver the intended results. Understanding these limitations
is crucial for further refinement of the system.

Keyframe Consistency. The primary limitation arises from the capabilities of IP2P.
The efficacy of our style transfer relies on the diffusion model’s ability to create a
consistent style. If the diffusion model does not create consistent keyframes, the
subsequent video stylization is compromised. In this context, consistency means one
of two things:

One is the consistency between an input keyframe and the corresponding stylized
output keyframe. This means the alignment of features between these two key frames,
such as the mouth, eyes, etc. For inexpressive or mostly non-moving features (such
as nose, ears or hair), this alignment isn’t necessary for a successful stylization. The
"as pig" style of Subject 2 (Figure 6.15)) is an example of this form of inconsistency
that produces the desired result. Nevertheless, when the facial features align, the
subsequent movement of the given feature in the stylized video will be well defined—it
will correspond to the movement of the feature in the input video. For example, if the
mouth of the stylized keyframe aligns with the mouth of the input keyframe, opening
the mouth will cause the mouth to open in the stylized video.

The other is consistency between stylized keyframes. This means that the feature
mapped by one stylized keyframe to a specific location will be mapped to the same
location by other stylized keyframes. For example, this means that if one stylized
keyframe has ears slightly lower on the face compared to the input keyframe, other
stylized keyframes should also have ears slightly lower compared to their input keyframe.
If the other keyframes have ears in a different location, the keyframes are inconsistent.

Even minor inconsistencies between the stylized keyframes can have a pronounced
impact on the stylization. IP2P lacks a mechanism to address this issue directly. Our
current method attempts to mitigate this by generating all stylized keyframes in a
single inference run, introducing a form of regularization. However, this strategy does
not inherently guarantee consistency, and discrepancies between keyframes still arise.
An example of this issue can be seen in the style "give him a carnival mask” of Subject
4 in Figure [6.18| In this example, the produced style completely fails to generalize to
unseen angles and the inconsistently stylized keyframes compete against each other,
resulting in a broken mess.

Keyframe Coverage. Another limitation is observed when keyframes do not encapsu-
late the full spectrum of the subject’s movements or expressions. In such cases, the
style fails to generalize well to new positions or expressions, resulting in unsatisfactory
stylization for previously unseen facets of the head or exaggerated expressions. This
issue is particularly noticeable in the video of Subject 2, where the wide array of head
movements and facial expressions extend beyond the perspectives captured by the
limited set of keyframes.

Style Boundary. We also encounter a limitation inherited from StyleVid. The scope
of style possibilities is confined to those that do not extend beyond the subject’s outline.

68

6.3. Results

Any stylistic elements that exceed these boundaries are associated with the background
during the training phase. This limitation is exemplified in Figure where the
added elements that exceed the subject’s outline are lost due to being trained to latch
onto the featureless wall in the background.

Figure 6.21: Limitation of styles extending beyond the subject’s silhouette.

Manual Keyframe Choice. Finally, our implementation is also slightly limited in terms
of interactivity. The system relies on the user to provide keyframes manually. Users
must actively choose frames from the video feed that they anticipate will best represent
the range of motions, camera angles, and facial expressions they will make during
interaction. This extra burden placed on the user takes away from the effortlessness of
the interaction, forcing the user to retake keyframes in case of change in perspective.

B 6.3.2 Future Work

One of the main limitations identified is the challenge of ensuring consistent stylization
across multiple keyframes generated by InstructPix2Pix. Addressing the consistency
issue is crucial to enable robust propagation of the style to the full video.

There are several promising directions to consistency across keyframes. We could
use one of the many diffusion model video stylization techniques: One approach is
to leverage Video InstructPix2Pix, an extension of the InstructPix2Pix framework
designed for temporally consistent video generation [26]. Another possibility is to use
the approach from Rerender A Video [47] and let the user capture and fine-tune the
style on an anchor keyframe, then propagate the style consistently to the rest. This
approach would also improve interactivity, as tuning parameters on one image could
be significantly faster.

Another way to improve user experience and style coverage is to automate keyframe
selection. This extension would be compatible with the anchor keyframe approach;
after setting an anchor, other keyframes would be identified automatically based on
the current set of keyframes and the user’s face position.

69

6. Results and Experiments

. 6.4 User Demonstration

Throughout the development of this project, we had the opportunity to present the
application to the public during two distinct events, providing invaluable feedback on
user interaction with the system.

The first demonstration took place at the Uroboros: Creative Al meet-up, hosted at
Petrohradska kolektiv, as a part of Dny Al. The second opportunity was at the Open
Day event at CTU, where we represented the Department of Computer Graphics and
Interaction (DCGI).

During the Uroboros event, approximately 15 individuals directly interacted with
the application (Figures and , while the Open Day at CTU saw more than
100 people come into contact with the application, with around 20 engaging hands-on.
These demonstrations, though not formal user studies, offered crucial insights into user
engagement and interaction with the application.

Figure 6.22: Participants at the Uroboros: Creative Al meet-up.

The intuitive nature of the text prompt interface was mostly confirmed by users,
although observations led to ideas for further enhancements to streamline the experience.
At this stage, the creation and propagation of the style to the video was slower, taking
about 25 s, which limited the users’ willingness to experiment with multiple styles.
However, they still found the experience fun and interactive.

The real-time stylization effects were generally perceived as compelling. Users
who managed to create well-matching, coherent stylized keyframes showed enjoyment

70

6.4. User Demonstration

GEEREBQRES0

Figure 6.23: Participant at the Uroboros: Creative Al meet-up examining the created style.

in experimenting with movements in front of the camera. Some were intrigued by
testing the limits of stylization, exploring how far they could move before breaking the
stylization.

One notable limitation observed was users’ desire to add elements such as hats
to their faces. However, our method could not accommodate this use case, as the
structure of added items like hats would attach to the background during training and
not move with the user’s head in the video. This limitation was recognized, but it
remains unaddressed within the current scope of our method.

The ability to produce a wide diversity of styles was established. However, first-time
users found it challenging to create certain styles because adjusting CFG parameters
requires experience to develop a sense of intuition.

Users also noted limitations, particularly regarding the interface setup. Initially,
the interface was divided into two client applications, one for video display and the
other containing UI elements to direct IP2P keyframe stylization. This setup was
cumbersome because, due to technical limitations of camera access, the user was
required to switch focus between these windows when capturing new keyframes. This
feedback helped to streamline the interface for a more cohesive user experience.

Although these demonstrations were only indicative, the feedback received was
important in validating the application’s goals like interactivity, speed, coherence, and
the range of artistic expression.

71

72

Chapter 7

Conclusion

This thesis introduced a novel approach to real-time artistic stylization of video
using text prompts and diffusion models. The key challenge was to enable users to
interactively transform their live video stream through simple text prompts while
maintaining high visual quality and real-time performance.

Our technique combined the complementary strengths of InstructPix2Pix and Style-
Vid. InstructPix2Pix leveraged recent advances in text-guided diffusion models to
synthesize stylized keyframes representing the desired artistic edits. StyleVid then
efficiently propagated these styles to all video frames using a fast patch-based neural
stylization network. By balancing the generative capabilities of diffusion models and
the speed of neural propagation, this hybrid pipeline delivered real-time streaming at
30 fps with imperceptible lag between input capture and stylized output.

Beyond fast performance, our method enables intuitive user interaction through text
prompts with reasonable style delays between entering prompts and observing their
video effects. Tailored to typical video conferencing footage containing a subject’s
head and torso, it achieved visually compelling and diverse stylizations tuned by the
diffusion model configuration parameters. The flexibility was validated across videos
featuring different subjects, head motions, facial expressions, cameras, and background
settings. However, limitations regarding consistency of stylized keyframes and coverage
of exaggerated motions outside the scope of conventional video calls were identified to
be addressed in future work.

Compared to existing video stylization literature, our method enables previously
unattained creative self-expression in a real-time interactive setting, albeit with a
more restricted range of styles than full video diffusion models. Still, user feedback
from public demonstrations affirmed the system’s intuitive interaction and showed a
sufficiently expressive range of styles validating its real-world application.

Future work should focus on ensuring consistent keyframe stylization and automat-
ically selecting optimal frames to maximize coverage. Addressing these limitations
can progress text-guided video stylization toward flexible real-time applications like
visually customizable video conferencing and streaming.

73

74

Appendix A
Bibliography

Vincent van Gogh. The Starry Night. Saint Rémy, June 1889 | MoMA.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook
Kim, Sanja Fidler, and Karsten Kreis. Align your Latents: High-Resolution Video
Synthesis with Latent Diffusion Models. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pages 22563-22575, 2023.

Gary Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

Tim Brooks, Aleksander Holynski, and Alexei A. Efros. InstructPix2Pix: Learning
to Follow Image Editing Instructions. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pages 18392-18402, 2023.

Duygu Ceylan, Chun-Hao Huang, and Niloy J. Mitra. Pix2Video: Video Editing
using Image Diffusion. In Proceedings of IEEE International Conference on
Computer Vision, pages 23206-23217, 2023.

Cheng-Kang Ted Chao and Yotam Gingold. Text-guided Image-and-Shape Editing
and Generation: A Short Survey, 2023. arXiv:2304.09244.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet:
A large-scale hierarchical image database. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pages 248-255, 2009.

Patrick Esser, Johnathan Chiu, Parmida Atighehchian, Jonathan Granskog, and
Anastasis Germanidis. Structure and Content-Guided Video Synthesis with
Diffusion Models. In Proceedings of IEEE International Conference on Computer
Viston, pages 7346-7356, 2023.

Jakub Fiser, Ondrej Jamriska, Michal Luka¢, Eli Shechtman, Paul Asente, Jingwan
Lu, and Daniel Sykora. StyLit: Illumination-Guided Example-Based Stylization
of 3D Renderings. ACM Transactions on Graphics, 35(4):92, 2016.

David Futschik. Leveraging Machine Learning for Artistic Stylization. PhD Thesis,
Czech Technical University in Prague, 2023.

75

A. Bibliography

[11]

[12]

[13]

[14]

David Futschik, Menglei Chai, Chen Cao, Chongyang Ma, Aleksei Stoliar, Sergey
Korolev, Sergey Tulyakov, Michal Kucera, and Daniel Sykora. Real-Time Patch-

Based Stylization of Portraits Using Generative Adversarial Network. In Proceed-
ings of the ACM/EG Expressive Symposium, pages 33-42, 2019.

David Futschik, Michal Kucera, Michal Lukac¢, Zhaowen Wang, Eli Shechtman, and
Daniel Sykora. STALP: Style Transfer with Auxiliary Limited Pairing. Computer
Graphics Forum, 40(2):563-573, 2021.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Image Style Transfer
Using Convolutional Neural Networks. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pages 2414-2423, 2016.

Rohit Girdhar, Mannat Singh, Andrew Brown, Quentin Duval, Samaneh Azadi,
Sai Saketh Rambhatla, Akbar Shah, Xi Yin, Devi Parikh, and Ishan Misra. Emu
Video: Factorizing Text-to-Video Generation by Explicit Image Conditioning,
2023. arXiv:2311.10709.

Tan J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative Ad-
versarial Nets. In Advances in Neural Information Processing Systems, pages
2672-2680, 2014.

Miguel Grinberg. Flask web development: developing web applications with python.
O’Reilly Media, Inc., 2018.

Yuwei Guo, Ceyuan Yang, Anyi Rao, Yaohui Wang, Yu Qiao, Dahua Lin, and
Bo Dai. AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models
without Specific Tuning. In Proceedings of International Conference on Learning
Representations, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, pages 770-778, 2016.

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel
Cohen-Or. Prompt-to-Prompt Image Editing with Cross Attention Control. In
Proceedings of International Conference on Learning Representations, 2023.

Aaron Hertzmann. Painterly Rendering with Curved Brush Strokes of Multiple
Sizes. In SIGGRAPH Conference Proceedings, pages 453-460, 1998.

Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Curless, and David H.
Salesin. Image Analogies. In SIGGRAPH Conference Proceedings, pages 327-340,
2001.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic
Models. In Advances in Neural Information Processing Systems, volume 33, pages
6840-6851, 2020.

76

[23]

[33]

A. Bibliography

Jonathan Ho, Chitwan Saharia, William Chan, David Fleet, Mohammad Norouzi,
and Tim Salimans. Cascaded Diffusion Models for High Fidelity Image Generation.
The Journal of Machine Learning Research, 23(47):2249-2281, 2021.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li,
Shean Wang, Lu Wang, and Weizhu Chen. LoRA: Low-Rank Adaptation of
Large Language Models. In Proceedings of International Conference on Learning
Representations, 2022.

Ondiej Jamriska, Sarka Sochorové, Ondiej Texler, Michal Lukaé¢, Jakub Figer,
Jingwan Lu, Eli Shechtman, and Daniel Sykora. Stylizing Video by Example.
ACM Transactions on Graphics, 38(4):107, 2019.

Levon Khachatryan, Andranik Movsisyan, Vahram Tadevosyan, Roberto Henschel,
Zhangyang Wang, Shant Navasardyan, and Humphrey Shi. Text2Video-Zero:
Text-to-Image Diffusion Models are Zero-Shot Video Generators. In Proceedings
of IEEE International Conference on Computer Vision, pages 15954—-15964, 2023.

Kyung-Soo Kim and Yong-Suk Choi. HyAdamC: A New Adam-Based Hybrid
Optimization Algorithm for Convolution Neural Networks. Sensors, 21(12):4054,
2021.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification
with Deep Convolutional Neural Networks. In Advances in Neural Information
Processing Systems, 2012.

Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278—
2324, 1998.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully Convolutional Net-
works for Semantic Segmentation. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, pages 3431-3440, 2015.

Camillo Lugaresi, Jiugiang Tang, Hadon Nash, Chris McClanahan, Esha Uboweja,
Michael Hays, Fan Zhang, Chuo-Ling Chang, Ming Guang Yong, Juhyun Lee,
Wan-Teh Chang, Wei Hua, Manfred Georg, and Matthias Grundmann. MediaPipe:
A Framework for Building Perception Pipelines, 2019. arXiv:1906.08172.

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu,
and Stefano Ermon. SDEdit: Guided Image Synthesis and Editing with Stochastic
Differential Equations. In Proceedings of International Conference on Learning
Representations, 2022.

Eyal Molad, Eliahu Horwitz, Dani Valevski, Alex Rav Acha, Yossi Matias, Yael
Pritch, Yaniv Leviathan, and Yedid Hoshen. Dreamix: Video Diffusion Models are
General Video Editors. In Proceedings of International Conference on Learning
Representations, 2024.

7

A. Bibliography

[34]

[42]

[43]

[44]

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin,
Bob McGrew, Ilya Sutskever, and Mark Chen. GLIDE: Towards Photorealistic
Image Generation and Editing with Text-Guided Diffusion Models. In Proceedings
of International Conference on Machine Learning, pages 16784-16804, 2022.

Chenyang Qi, Xiaodong Cun, Yong Zhang, Chenyang Lei, Xintao Wang, Ying
Shan, and Qifeng Chen. FateZero: Fusing Attentions for Zero-shot Text-based
Video Editing. In Proceedings of IEEE International Conference on Computer
Vision, pages 15932—-15942, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. Learning Transferable Visual Models From

Natural Language Supervision. In Proceedings of International Conference on
Machine Learning, pages 8748-8763, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen.
Hierarchical Text-Conditional Image Generation with CLIP Latents, 2022.
arXiv:2204.06125.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn
Ommer. High-Resolution Image Synthesis with Latent Diffusion Models. In
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,
pages 1067410685, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional
Networks for Biomedical Image Segmentation. In Proceedings of Medical Image
Computing and Computer-Assisted Intervention, pages 234241, 2015.

Frank Rosenblatt. The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, 65(6):386-408, 1958.

Manuel Ruder, Alexey Dosovitskiy, and Thomas Brox. Artistic Style Transfer for
Videos. In Proceedings of German Conference Pattern Recognition, pages 26—36,
2016.

Manuel Ruder, Alexey Dosovitskiy, and Thomas Brox. Artistic Style Transfer
for Videos and Spherical Images. International Journal of Computer Vision,
126(11):1199-1219, 2018.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli.
Deep Unsupervised Learning Using Nonequilibrium Thermodynamics. In Pro-
ceedings of International Conference on Machine Learning, pages 2256—2265,
2015.

Ondfej Texler, David Futschik, Michal Kucera, Ondiej Jamriska, Sarka Sochorova,
Menglei Chai, Sergey Tulyakov, and Daniel Sykora. Interactive Video Stylization
Using Few-Shot Patch-Based Training. ACM Transactions on Graphics, 39(4):73,
2020.

78

[45]

[46]

A. Bibliography

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is All you Need.
In Advances in Neural Information Processing Systems, 2017.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao,
Wentao Zhang, Bin Cui, and Ming-Hsuan Yang. Diffusion Models: A Comprehen-
sive Survey of Methods and Applications. ACM Computing Surveys, 56(4):105,
2023.

Shuai Yang, Yifan Zhou, Ziwei Liu, , and Chen Change Loy. Rerender A Video:
Zero-Shot Text-Guided Video-to-Video Translation. In SIGGRAPH Asia Confer-
ence Papers, page 95, 2023.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding Conditional Control to
Text-to-Image Diffusion Models. In Proceedings of IEEE International Conference
on Computer Vision, pages 3836-3847, 2023.

Xu Zhang, Svebor Karaman, and Shih-Fu Chang. Detecting and Simulating
Artifacts in GAN Fake Images. In Proceedings of IEEE International Workshop
on Information Forensics and Security, 2019.

79

80

Appendix B
Additional Results

Additional stylization results for Subjects 1, 2 and 4.

81

B. Additional Results

Subject 1

" cfg_text: 16
| cfg_image: 2
Q prompt: "give him a scary face paint, charcoal”

Figure B.1: Subject 1:

Top: Input keyframes (blue border) and input video test frames.

Bottom: Stylized keyframes (orange border), target style configuration parameters, and
stylized test frames.

82

B. Additional Results

cfg_text: 12
cfg_image: 2.2
prompt: "as painted by rembrandt"

cfg_text: 12
cfg_image: 2.2
prompt: "as a johannes vermeer painting"

Figure B.2: Subject 1:
Two styles (top and bottom); each with stylized keyframes (orange border), target style
configuration parameters, and stylized test frames.

83

B. Additional Results

cfg_text: 12
cfg_image: 2
: "make him look like a bronze statue"

Figure B.3: Subject 2:

Top: Input keyframes (blue border) and input video test frames.

Bottom: Stylized keyframes (orange border), target style configuration parameters, and
stylized test frames.

84

B. Additional Results

cfg_text: 6.5
cfg_image: 2.1
prompt: "make him into a gigachad"

cfg_text: 12
cfg_image: 2
| prompt: "make him as a gold statue"

Figure B.4: Subject 2:
Two styles (top and bottom); each with stylized keyframes (orange border), target style
configuration parameters, and stylized test frames.

85

B. Additional Results

Subject 4

cfg_text: 16.8
lcfg_image: 2.2
 prompt: "watercolor painting"

g \ :
v N\ "‘ - f\‘q e /(u‘ g
\ld ‘ //1 \F\ LN H s’\'ﬁ.‘;,H

) AT
Figure B.5: Subject 4:
Top: Input keyframes (blue border) and input video test frames.

Bottom: Stylized keyframes (orange border), target style configuration parameters, and
stylized test frames.

86

I EEEEESEEEEEESEEESEEEEEsEsEsEsssssssnsnnannnas s s B Additional Results

cfg_text: 9
cfg_image: 1.5
prompt: “"make him look like a marble statue"

ST . llbm\.. .)ﬁh\\\m
7 N N < W

LA S,

cfg_text: 12
cfg_image: 2
prompt: "as painted by van gogh"

Figure B.6: Subject 4:
Two styles (top and bottom); each with stylized keyframes (orange border), target style
configuration parameters, and stylized test frames.

87

88

Appendix C
Attachment Files

/
thesis.pdf ..o pdf file with the thesis text
oo 1= NP code directory for the client and server
README .md ...ttt it e et et e, GitHub links

89

	Introduction
	Problem Statement
	Motivation and Goals
	Outline

	Neural Networks and Diffusion Models
	Historical Context
	Neural Networks Foundation
	Convolutional Layer
	Pooling Layer
	Upsampling Layer
	Residual Networks (ResNets)
	U-Networks (U-Nets)

	Diffusion Models Foundation
	Conditioning

	Style Transfer Methods
	Non-parametric Methods
	Parametric Methods
	Neural Methods
	Diffusion Methods

	Method
	Overall Approach
	Keyframe Selection and Stylization
	Style Propagation

	Implementation
	Hardware and Software Configuration
	Application Design
	Client Components
	Server Components

	Results and Experiments
	Performance Analysis
	Style Coherence Analysis
	Style Coverage
	Convergence Speed

	Results
	Limitations and Failure Cases
	Future Work

	User Demonstration

	Conclusion
	Bibliography
	Additional Results
	Attachment Files

