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Abstract
In this thesis, we study the Resource-
Constrained Project Scheduling Prob-
lem (RCPSP) with the constraints and
criteria related to (electrical) energy
consumption. We extend the Multi-
Mode RCPSP (MMRCPSP) variant so
that the different energy consumption
of activities based on their mode, maxi-
mum contracted energy limits, and hourly
Time-of-Use electricity prices are consid-
ered. We formulate and study two similar
problems, where the total energy cost is
either restricted by a hard budget limit
or combined with the project makespan
in the weighted linear combination cri-
terion. Constraint Programming (CP)
models and a Genetic Algorithm (GA) ex-
tending an existing good-performing GA
for RCPSP to our problems are proposed
and implemented to solve these problems.
Furthermore, for extra tuning of the ac-
tivity mode selection in the GA, we pro-
pose a machine learning model. We also
construct a hybrid approach, in which
the GA warm-starts the CP model. For
the evaluation of the proposed methods,
new datasets are created based on the
existing MMRCPSP benchmark datasets
PSPLIB and MMLIB. In the experiments,
we analyze the optimality of the exact ap-
proaches, compare different initial genera-
tion creation methods for the GA, study
the benefits of the use of the machine
learning model in the GA, and evaluate
all proposed approaches on instance sets
of different sizes.

Keywords: Resource-Constrained
Project Scheduling Problem,
Multi-Mode RCPSP, Constraint
Programming, Genetic Algorithm,
Electrical Energy Consumption
Optimization

Supervisor: Ing. Vilém Heinz

Abstrakt
V této práci studujeme Resource-
Constrained Project Scheduling Problem
(RCPSP) s omezeními a kritérii spojenými
se spotřebou (elektrické) energie. Rozšiřu-
jeme Multi-Mode RCPSP (MMRCPSP)
variantu tak, že je uvažována různá
spotřeba energie aktivit na základě jejich
módu, limity maximální nasmlouvané
energie a hodinová Time-of-Use cena
elektřiny. Formulujeme a studujeme dva
podobné problémy, kde celková spotřeba
energie je buď omezena tvrdým limitem
na rozpočet nebo zkombinována s make-
spanem projektu ve váženém lineárním
kritériu. Pro řešení těchto problémů jsou
navrženy a implementovány Constraint
Programming (CP) modely a genetický
algoritmus (GA), který rozšiřuje existující
dobře performující GA pro RCPSP na
naše problémy. Dále navrhujeme machine
learning model pro další zlepšení výběru
módu aktivity v GA a konstruujeme
hybridní přístup, ve kterém GA warm-
startuje CP model. Pro vyhodnocení
navržených metod jsou vytvořeny nové
datasety vycházející z existujících MMR-
CPSP benchmark datasetů PSPLIB
a MMLIB. V experimentech analyzu-
jeme optimalitu exaktních přístupů,
porovnáváme různé metody vytváření
počáteční generace pro GA, studujeme
přínos použití machine learning modelu
v GA a vyhodnocujeme všechny navržené
přístupy na sadách instancí o různé
velikosti.

Klíčová slova: Resource-Constrained
Project Scheduling Problem,
Multi-Mode RCPSP, Programování s
omezujícími podmínkami, Genetický
algoritmus, Optimalizace spotřeby
elektrické energie

Překlad názvu: Resource-Constrained
Project Scheduling Problem s
optimalizací spotřeby elektrické energie
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Chapter 1
Introduction

With the movement towards cleaner production, the question of energy
consumption is gaining more and more interest nowadays, especially from
manufacturing companies. In connection with the stricter emission goals,
many industrial companies have been attempting to reduce their energy
consumption together with CO2 emissions in the last few years. In addition,
the level of attention devoted to energy consumption has increased even more
with the recent noticeable increases and volatility in energy prices.

In a factory, there are typically a lot of different machines, tasks, and
operations that need to be efficiently scheduled. These tasks are often
constrained by various relations between them, and the available resources
(e.g., machines or workers) are limited. Moreover, energy is consumed during
the processing of individual tasks, and the electricity price can vary during
the day. Hence, the energy consumption within the whole manufacturing
process must be taken into consideration, too.

Many scheduling problems in the industry can be modeled by the well-
known Resource-Constrained Project Scheduling Problem (RCPSP). However,
energy consumption is usually not considered in this problem. Therefore,
the goal of this thesis is to extend the RCPSP with relevant constraints and
criteria related to electrical energy1 to better reflect the real-world production
requirements. Besides the formulation of the studied problem variant, the
goal is also to provide algorithms based on both exact and metaheuristic
approaches and evaluate their effectiveness in instance sets of different sizes.

1.1 Resource-Constrained Project Scheduling
Problem

Resource-Constrained Project Scheduling Problem (RCPSP) is a standard
project scheduling problem that has been widely investigated for more than
50 years. Despite the age of the problem, both it and a lot of its extensions
and variants [1], [2] are still heavily studied due to its practical application.

1In this thesis, we will focus on electrical energy as a major energy source in industry.
Thus, by the term energy, we mean electrical energy in the rest of this thesis unless otherwise
stated.
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1. Introduction .....................................
In RCPSP, we have K types of resources and there are available Rk re-

sources of each type k ∈ {1, . . . , K} in each time unit t. Resources can be,
for example, machines, equipment, or workers. Given these resources, the
goal is to schedule a finite set of n activities (also called tasks or operations)
A = {a1, . . . , an}. Each activity ai ∈ A has specified its duration di and the
number of resources needed for its processing. Particularly, each activity ai

requires rik units of resource k for each resource type k ∈ {1, . . . , K} during
each time unit t in which it is processed. Moreover, precedence constraints
that restrict the order of processing of some activities are present in this
problem. Preemption is not allowed, and thus, when an activity ai starts
being processed at time si, its processing cannot be stopped, and it is finished
at time si +di. All parameters of the problem are assumed to be non-negative
integers.

Specifically, the goal of RCPSP is to find a schedule S = (s1, . . . , sn),
where si is the start time of processing of activity ai, which satisfies both prece-
dence and resource constraints and minimizes the project makespan Cmax that
is the finish time of the last processed activity (i.e., Cmax = maxai∈A si + di).

Precedence constraints are defined by a precedence relation ≺ ⊆ A × A.
For each pair of activities (ai, aj), such that ai ≺ aj , activity ai has to be
processed earlier than activity aj meaning activity aj can start after the
activity ai was processed (i.e., sj ≥ si + di).

Resource constraints, expressed in Eq. (1.1), ensure that there is enough
amount of each type of resource k in each time unit t ∈ {0, . . . , T}, where
a project horizon T is an upper bound of the project makespan.∑

ai∈A
si≤t<si+di

rik ≤ Rk, ∀k ∈ {1, . . . , K},∀t ∈ {0, . . . , T} (1.1)

1.2 Multi-Mode Resource-Constrained Project
Scheduling Problem

An extension of the standard RCPSP that considers that activities can be
processed in one of several modes is called Multi-Mode Resource-Constrained
Project Scheduling Problem (MMRCPSP). It allows modeling alternative ways
of processing a concrete activity (e.g., at different processing speeds or with
different resource requirements).

In MMRCPSP, each activity ai has a finite set of modes M i in which it
can be executed. The mode influences the activity duration and the number
of resources the activity needs. Therefore, for each activity ai and each its
processing mode m ∈M i, a duration dim and resource requirement rimk for
each resource k are given.

Two2 main categories of resources are distinguished in MMRCPSP – re-
newable and non-renewable [3]. Renewable resources, which are usually repre-

2There is also a third category called doubly constrained, but it does not have to be
considered explicitly because it can be replaced by renewable and non-renewable resources.

2



.................................... 1.3. Thesis Outline

sented by machines, equipment, or human resources, restrict the availability
of resources in each time unit. Such resources allocated for the processing of
an activity are released immediately after the activity is processed. On the
other hand, non-renewable resources, which are usually represented by cost
(money), limit their consumption over the whole project.

Besides finding a list of start times, the goal of MMRCPSP is also to select
exactly one mode for each activity such that the resulting schedule (formed by
both start times and assigned modes) satisfies both resource and precedence
constraints and minimizes the project makespan Cmax.

1.3 Thesis Outline

In this thesis, we formulate and study two new problem variants that extend
the Multi-Mode RCPSP with energy-related constraints and criteria with
respect to real-world production. Specifically, the following aspects of energy
are considered on top of MMRCPSP..The consumption of the activity depends on the mode in which it is

processed (e.g., the faster execution of an activity requires more resources
and results in higher energy consumption).. Electricity prices vary during the day, and a concrete price is given for
each hour by Time-of-Use (TOU) tariffs.. Energy consumption in each 15-minute time interval is constrained by
the maximum contracted energy limit..Two different views on how to regard the total energy cost are studied in
two similar problems. The project’s total energy cost is either constrained
by a hard energy budget limit or is part of the optimization criterion.

The rest of this thesis is organized as follows. Chapter 2 summarizes the
related literature on methods how RCPSP and MMRCPSP are solved and
relevant problems that consider energy. In Chapter 3, we extend Multi-
Mode RCPSP with energy-related constraints and criteria and formulate two
new problems – Problem with Hard Energy Budget Constraint (in Section 3.1)
and Problem with Total Energy Cost in Objective (in Section 3.2). Chapter 4
presents the Constraint Programming (CP) paradigm and provides CP models
for both problems representing the exact approach to the problems. A meta-
heuristic approach is proposed in Chapter 5, where we extend and adapt an
existing well-performing genetic algorithm for RCPSP to our problems. At
the end of this chapter, we also propose a simple machine learning model that
selects the most appropriate activity mode based on activity and sub-problem
characteristics. In Chapter 6, we create new problem instances of various
sizes based on existing MMRCPSP benchmark datasets. All implemented
algorithms are experimentally evaluated in Chapter 7. Finally, Chapter 8
summarizes this thesis and outlines possible future work.

3
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Chapter 2
Related Work

With respect to the practical relevance and the time RCPSP and MMR-
CPSP have been studied, a lot of methods were proposed to solve these
problems. Since RCPSP and hence also MMRCPSP (since an RCPSP in-
stance is implicitly also an instance of MMRCPSP with single mode for each
activity) are strongly NP-hard [4], there have been developed both exact
and metaheuristic approaches.

In this chapter, we will describe the exact methods in Section 2.1 and the
metaheuristic ones in Section 2.2. In Section 2.3, we will then focus on related
problem variants that consider energy.

2.1 Exact Methods

Exact approaches aim to find the optimal solution or prove that the problem
instance is not feasible. Moreover, lower/upper bounds on the solution quality
are usually provided during the search. Several different approaches have
been developed for RCPSP and MMRCPSP.

As a combinatorial optimization problem, RCPSP can be formulated using
(Mixed-)Integer Linear Programming (MILP) and then solved by a MILP
solver. Many different MILP formulations have been proposed in the literature.
According to how time and resource-sharing characteristics are modeled, they
can be divided into three categories – time-indexed, sequencing, and event-
based formulations [5].

Time-indexed MILP formulations (e.g., in [6] and [7] for RCPSP or in [8]
for MMRCPSP) use binary variables to indicate a state of activity at a certain
time. Particularly, a binary variable xit is used for each activity ai and
time unit t, and it is equal to 1 if and only if activity ai starts at time t.
For MMRCPSP, binary variables also contain information about the execution
mode of activity (i.e., variable ximt is equal to 1 if and only if activity ai is
executed in mode m and starts at time t).

Sequencing MILP formulations (for instance, in [9]) involve two kinds
of variables. Integer variables correspond to the start times of individual
activities, and binary variables specify the relative order of activities. Specifi-
cally, for each pair of activities (ai, aj), there is a binary variable xij that is
equal to 1 if activity ai should be completed before the activity aj can start

5



2. Related Work.....................................
(i.e., si + di ≤ sj).

In the event-based MILP formulation, the time horizon is decomposed into
a set of events. An event corresponds to the time when an activity starts
or ends. Two different event-based formulations for RCPSP were proposed
in [10], in which variables are indexed by events (not by time). For instance,
binary variables indicating whether an activity either starts/ends or is in
progress at a particular event were used.

Besides MILP, many enumeration methods have been proposed, especially
for the MMRCPSP variant. These techniques are based on the branch-
and-bound method and the idea of enumerating partial schedules [3]. For
instance, an enumeration scheme based on the concepts of mode and extension
alternatives was proposed in [11].

Furthermore, Constraint Programming (CP) approach has become popular
in the last few years. This is mainly because of the recent significant progress
in the development of more efficient CP solvers for scheduling (e.g., IBM ILOG
CP Optimizer [12]). In addition, compared to the linear algebraic constraints
in the MILP modeling, CP also offers more complex constraints such as logic
constraints, scheduling constraints, global constraints, and others [13].

2.2 Metaheuristic Methods

Finding the optimal schedule in a reasonable time is not usually possible
for problem instances of a larger scale. In such cases, the heuristic and
metaheuristic approaches come into play. There have been developed a lot
of metaheuristic techniques for RCPSP and its variants based on various
approaches in the literature [3], [14], [15], [16].

Firstly, several so-called single-pass heuristics based on different priority
rules, determining a certain precedence-feasible order of activities, have been
proposed in the RCPSP literature [15]. These heuristics can be further im-
proved by applying some improvement techniques, such as serial/parallel
Schedule Generation Schemes (SGS) [17], forward/backward scheduling (i.e.,
scheduling in the reversed direction), or justification schemes (shifting activi-
ties in a schedule). These heuristic methods can provide good solutions, but
the optimality gaps are still not satisfactory [15]. This fact motivated the
further development of more complex metaheuristic methods.

Very popular and successful metaheuristics in both RCPSP and MMRCPSP
are Genetic Algorithms (GAs) that are inspired by the evolution principle of
the survival of the fittest individuals. In GA, the set of candidate solutions
(schedules) forms a generation. In each iteration, operators (the most common
are crossover and mutation), which emulate genetic evolution, are applied to
these individuals to create new child schedules. At the end of each iteration,
individuals are selected for the next generation depending on the fitness
function (the better the fitness value is, the higher the probability of being
selected). GAs were proposed, for example, in [18], where the authors used
two separate populations and extended the serial SGS by a mode improvement
procedure for the multi-mode variant, in [19], where a local search strategy

6



.................................. 2.3. Energy in RCPSP

was incorporated to the GA operators, or in [20], where two new variants of
crossover were developed.

However, many promising metaheuristics based on other techniques have
been developed as well. For instance, a metaheuristic using the Simulated
Annealing approach was presented in [21], a method based on Ant Colony
Optimization was proposed in [22], Particle Swarm Optimization approach
was used in [23], or Tabu Search algorithm was presented in [24].

Finally, with the huge advancements in the field of machine learning in
recent years, some attempts to use machine learning techniques also for
combinatorial problems such as RCPSP have been proposed. Nevertheless,
due to the complexity of RCPSP, they usually focus only on a particular sub-
problem. Generally, the methods learn from multiple project characteristics
(e.g., network complexity, resource strength, or resource factor) on small
instances and are trained to perform well on the bigger ones. For instance, a
decision tree approach was constructed in [25] to classify and detect the best-
performing priority rule, a multilayer feed-forward neural network was trained
in [26] to select an appropriate priority rule or a prediction model was learned
to rank different configurations of branch-and-bound procedures in [27]. A
more advanced approach was proposed in [28], where a graph neural network
was trained to learn high-dimensional embeddings from characteristics of
individual activities, and a deep reinforcement learning was used to learn the
scheduling policy.

Last but not least, many hybrid algorithms that combine multiple of these
techniques have been proposed. The hybridization may be either integra-
tive, where the local search methods are combined with population-based
metaheuristics, or collaborative, where possibly different pure metaheuristics,
executed sequentially or in parallel, exchange information about the search
process [16].

2.3 Energy in RCPSP

Scheduling problems are usually closely related to the industrial environment.
Since industrial machines typically consume a lot of energy, it is natural to
consider energy consumption in scheduling problems.

Furthermore, the price of electricity usually is not constant but rather varies
during the day. There exist several different pricing policies that are applied
in production planning [29], [30]. One of the most frequent pricing schemes
are Time-of-Use (TOU) tariffs, where electricity prices vary in different parts
of the day. Usually, the day is divided into off-peak, mid-peak, and on-peak
periods with constant electricity prices that are known in advance. Real-Time
Pricing (RTP) is similar to the TOU strategy, but it is more dynamic because
the electricity prices typically differ and change in hourly intervals. Another
policy is called Critical Peak Pricing (CPP), where high consumption during
a concrete time interval is heavily penalized.

Given a large number of RCPSP studies, only a few of them investigated
adding some energy-related constraints and objectives to their problems. In
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2. Related Work.....................................
the rest of this section, we will describe some of them.

In [31], the authors assumed partially renewable resources (a generalization
of both renewable and non-renewable resources) that allowed them to inde-
pendently model power restriction during peak hours and contract demand
constraints. Contract demand limits the average energy consumption over a
certain period of time. Power restriction constraints limit the use of electric
power for 1-hour time intervals during peak hours to some percentage of the
contracted value. In addition, multiple modes, setup operations, and energy
consumed during them were considered in their problem.

A bi-objective model for RCPSP under TOU electricity tariffs was proposed
in [32]. Besides electricity costs, labor costs during various shifts were
considered as well. Electricity consumption during different hours and labor
costs were combined in one objective called total project cost. The second
objective was the project makespan. Moreover, the impact of the machine
on/off strategy (considering transitions between machine states) was analyzed.

Energy cost minimization for a different scheduling problem of unrelated
parallel machines, which does not contain precedence constraints, was studied
in [33]. Both electricity consumption and demand charges were involved
in the total electricity cost objective in their model. Electricity cost was
determined by the RTP policy.

Energy consumption was also considered in [34], where multiple suppliers
were assumed as a part of the so-called green project indicator criterion.
Besides energy consumption, this criterion combines noise pollution and the
safety of workers. The second objective in the proposed bi-objective problem
was the minimization of the project makespan.

A bi-objective model was established in [35] for solving an RCPSP variant
for a complex product system under the static TOU electricity tariffs. The
optimized objectives were project delay and energy consumption cost.

To sum up, energy can be involved either in the problem constraints
(e.g., contract demand and power restriction during peak hours in [31]) or in
the objective function – the minimization of total electricity cost in [33], total
project cost in [32], green project indicator in [34], or energy consumption cost
in [35]. The formulated problems are either single-objective or bi-objective,
and the standard scheduling objectives, such as project makespan or project
delay, are also optimized.

Although these problems are based on some real-world situations, each of
them contains only some important aspects, while other important ones are not
considered in the problem. Specifically, similarly to [32] and compared to [31],
we suppose that the problem should consider the non-constant electricity
price during the day. Moreover, similarly to [31], contract demand should
be limited over a certain time interval. Furthermore, we believe the total
energy cost can be involved either as a constraint or as a part of the objective
function. Therefore, in Chapter 3, we will formulate two new problems that
take these aspects into account.

8



Chapter 3
Problem Statement

An important aspect of the problem where energy consumption is considered
is definitely its price, which can vary over time. We suppose energy costs can
be handled in two possible ways (i.e., to consider it either in constraints or in
the objective). Hence, in this chapter, we will formulate two similar problems
that extend the Multi-Mode RCPSP formulation, and we will study these
two problems in the rest of the thesis.

On top of the standard MMRCPSP formulation, both problems consider
that energy is consumed while processing individual activities, the electricity
price varies over time, and the consumed energy is restricted in regular time
intervals. And as indicated, they differ in the way the energy costs are
regarded. The total energy expenses of the project are either limited by a
hard constraint in the form of an energy budget (Section 3.1) or involved in
the optimization criterion (Section 3.2).

3.1 Problem with Hard Energy Budget Constraint

The first problem assumes there is a hard energy budget on the total energy
price that cannot be exceeded. The problem is formulated as follows.

Same as in the MMRCPSP definition, we are given a finite set of activities A
that needs to be processed. Each activity ai has a finite set of processing
modes M i. The duration dim of the processing of an activity ai and the
number of resources rimk of each resource type k the activity needs are given
for each processing mode m ∈ M i. Precedence constraints between the
activities and resource constraints are defined as well.

Additionally, processing of each activity ai in mode m consumes cim units
of electric energy in each time unit t during which it is processed (i.e., the
energy consumed by an activity is assumed to be the same in each time unit).
The consumption cim is the total energy consumption of all resources used
to process the activity in a single time unit. All resources in this problem
are renewable (i.e., Rk units of resource k are available at each time unit t).
The cost of electricity is modeled with Time-of-Use (TOU) electricity tariffs,
where the electricity prices differ in different parts of the day. The tariffs are
modeled by a function p(t) that assigns an electricity price to each time unit
t ∈ {0, . . . , T}.

9



3. Problem Statement ..................................
Besides the precedence and resource constraints, the following two energy-

related constraints are added. Both of them share the term c(S, t), expressed
in Eq. (3.1), which denotes the total amount of consumed energy by schedule S
at time t (i.e., the sum is over all activities that are processed at time t). We
recall that a schedule is formed by a certain start time si and mode m ∈M i

for each activity ai.

c(S, t) =
∑

ai∈A
si≤t<si+dim

cim (3.1)

The first added constraint aims to avoid high penalties for high electricity
consumption that are common in CPP scenarios. Therefore, it restricts energy
consumption during regular time intervals so as not to overstep the contracted
amount. Particularly, in a schedule S, the total amount of consumed energy
during each 15-minute1 time interval q ∈ Q cannot exceed the given energy
consumption limit Cq. Thus, the inequality, expressed in Eq. (3.2), has to be
satisfied for each quarter q ∈ Q.

∑
t∈q

c(S, t) ≤ Cq, ∀q ∈ Q (3.2)

The second constraint, expressed in Eq. (3.4), reflects TOU prices. It
limits the schedule S such that the total price of consumed energy over the
whole project energyCost(S), expressed in Eq. (3.3), cannot exceed the given
energy budget B.

energyCost(S) =
T∑

t=0
c(S, t)p(t) (3.3)

energyCost(S) ≤ B (3.4)

Similarly to MMRCPSP, the goal of this problem is to non-preemptively
schedule all activities (i.e., to find a schedule S containing a start time si and
a processing mode m ∈M i for each activity ai) such that all constraints are
satisfied and the project makespan Cmax is minimized.

3.2 Problem with Total Energy Cost in Objective

In the problem with a hard energy budget constraint, defined in Section 3.1,
the project’s duration is optimized, and the total energy expenses of the
project are regarded only in the hard energy budget constraint. Nevertheless,
in practice, the total energy cost of the project is sometimes also an important
metric when the energy budget is not so strict.

Hence, we define a slightly different problem. The only difference com-
pared to the previous one is that it does not consider the energy budget

1We are using 15-minute intervals because it is a common practice in the industry.
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...................... 3.2. Problem with Total Energy Cost in Objective

constraint (Eq. (3.4)), and instead, it involves the project’s total energy cost
directly in the optimization criterion.

Specifically, the goal of this problem is to find a schedule S, which satisfies
all the constraints and minimizes the weighted linear objective expressed
in Eq. (3.5).

weightedObjective(S) = α Cmax + β energyCost(S) (3.5)

This criterion combines two aspects – the project’s duration Cmax and the
project’s total energy cost energyCost(S). These aspects are weighted by
parameters α and β that specify the trade-off between the project makespan
and its energy cost. The parameters have to be set by the user before the
optimization. For instance, they can be set by the managers to determine
which aspect is more important in their business case.
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Chapter 4
Exact Approach

Although exact methods can usually find the optimal solution in a reasonable
time only for smaller problem instances, they can still be useful even for
larger ones. For such instances, they can provide at least feasible solutions
and, in some cases, even solutions of good quality.

From possible exact techniques, we selected a Constraint Programming (CP)
approach for solving our problems. It is a not-so-explored approach that has
become quite popular in scheduling in the last few years, especially due to
effective problem formulation.

In Section 4.1, we will briefly present the CP paradigm together with
expressions and constraints employed in the proposed models. After that,
the CP models for both our problems will be proposed in Sections 4.2 and 4.3.
And in Section 4.4, we will describe the warm-starting technique that can
improve the efficiency of the CP models.

4.1 Constraint Programming

Constraint Programming (CP) is a powerful paradigm for modeling and
solving combinatorial problems. In this paradigm, the problem is modeled
in a declarative way by defining sets of variables, domains, and constraints.
It aims to assign a value from its domain to each variable such that all
constraints on the variables are satisfied. There is also an objective function
that evaluates the current assignment of values to all variables. Hence, the
goal of the CP solver is to find a feasible solution with the optimal objective
value.

In this thesis, we will use the IBM ILOG CP Optimizer [12] because it is a
state-of-the-art solver. Besides the speed, its advantage is also a wide range
of global constraints and interval variables. In the rest of this section, we will
focus on those expressions and constraints used in our CP models and their
notation.

The essential element of the CP model for scheduling problems is an interval
variable, which usually represents some activity in a schedule. It is a decision
variable whose domain is a set of all possible intervals. Interval variable x
is denoted by an expression interval(x) and it is characterized by its start
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4. Exact Approach....................................
time startOf(x), finish time endOf(x), and the size of the interval sizeOf(x)
representing the start time, finish time and the duration of an activity.

Moreover, an interval variable can be optional, which is an important
feature for many use cases (e.g., in our case, they will allow us to model
alternative processing modes of activity easily). The optional interval variable
can be either present or absent in the solution. A present optional interval
variable has assigned a specific interval, whereas absent optional interval
variables are (roughly speaking) not considered by any constraint in the
model. An optional interval variable y is denoted as optionalInterval(y).

However, it is important to note that until a solution is found, it may not
be known whether an optional interval variable will be present or not [12].
The presence of an optional interval variable y in the solution is expressed by
the logical expression presenceOf(y), which is evaluated to 1 if the interval
variable is present in the model or 0 if the variable is absent.

A group of possible optional interval variables can be connected to a
single interval variable, for example, using the alternative(x, {y1, . . . , yl})
constraint. It models an exclusive alternative for the interval variable x
between a set of optional interval variables {y1, . . . , yl}. Particularly, exactly
one of the optional variables yi is present in the solution, and the interval of
variable x is the same as the interval of variable yi.

Furthermore, a lot of constraints for specifying the order of activities, se-
quences of activities, overlapping of activities, or temporal constraints can be
modeled. In our models, we will use the constraint endBeforeStart(xi, xj) to
define the precedence constraints, which restricts that the start time startOf(xj)
of interval xj has to be greater than or equal to the finish time endOf(xi) of
interval xi.

Last but not least, cumulative functions are provided for modeling resource
consumption. Specifically, we will employ the pulse(x, z) expression that
specifies that z units of a particular resource are used during the interval x.

4.2 CP Model for Problem with Hard Energy
Budget Constraint

In this section, we will propose a CP model for the problem with hard energy
budget constraint, defined in Section 3.1. Since we need to express the
energy-related constraints that are time-dependent, we have to explicitly
incorporate time units into the model and use the so-called time-indexed
model. Therefore, for each activity, we will distinguish the optional interval
variables not only with the processing mode but also with the different start
times.

In order to reduce the number of optional interval variables, a set of possible
start times of each activity ai is limited by a lower bound sLB

i and an upper
bound sUB

im . Both bounds are determined from the directed acyclic graph
of precedent activities. In particular, the lower bound is the length of the
longest path to a given activity from the first activity, where the length of
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................ 4.2. CP Model for Problem with Hard Energy Budget Constraint

each activity aj is the minimum duration over all possible modes of activity
minm∈Mj djm. The upper bound is computed similarly from the last activity
and the subtraction from the project horizon. In addition, its value can differ
for individual mode m and depends on the activity duration in the given
mode.

The proposed CP model is formulated as follows.

Minimize max
∀xi

endOf(xi) (4.1)

Subject to
interval(xi) ∀ai ∈ A (4.2)
optionalInterval(yims) ∀ai ∈ A, m ∈M i,

s ∈ {sLB
i , . . . , sUB

im }
(4.3)

sizeOf(yims) = dim ∀yims (4.4)
startOf(yims) = s ∀yims (4.5)
alternative(xi,

⋃
m∈M i

s∈{sLB
i ,...,sUB

im }

{yims}) ∀xi (4.6)

endBeforeStart(xi, xj) ∀ai, aj ∈ A, ai ≺ aj

(4.7)∑
∀yims

pulse(yims, rimk) ≤ Rk ∀k ∈ {1, . . . , K}

(4.8)∑
∀yims

presenceOf(yims)econs
q (ai, m, s) ≤ Cq ∀q ∈ Q (4.9)

∑
∀yims

presenceOf(yims)ecost(ai, m, s) ≤ B (4.10)

For each activity ai ∈ A, a corresponding interval variable xi is constructed
in Eq. (4.2). Moreover, an optional interval variable yims is created for each
activity ai, processing mode m, and possible start time s in Eq. (4.3). Each
optional interval variable has a fixed duration and start time that are specified
in constraints in Eqs. (4.4) and (4.5), respectively. All these interval variables
of each activity are connected together in Eq. (4.6).

Precedence constraints are specified in Eq. (4.7), and resources are con-
strained in Eq. (4.8). The energy-related constraints, which are added on
top of the MMRCPSP, expressing energy consumption limits and the hard
energy budget limit are described in Eqs. (4.9) and (4.10). Note that both
the energy

econs
q (ai, m, s) =

∑
t∈[s,s+dim]∩q

cim (4.11)

consumed by an activity ai in processing mode m with start time s in
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4. Exact Approach....................................
a 15-minute time interval q and the energy cost

ecost(ai, m, s) =
s+dim∑

t=s

cimp(t) (4.12)

of such activity are constants that can be precomputed in advance. Finally,
the objective function in Eq. (4.1) minimizes the project makespan (i.e., the
finish time of the last activity).

4.3 CP Model for Problem with Total Energy Cost
in Objective

The CP model for the problem with total energy cost in the objective,
introduced in Section 3.2, is very similar to the CP model for the problem
with hard energy budget constraint in Section 4.2. The only two differences
are that the hard energy budget constraint, expressed in Eq. (4.10), is not in
this model, and the model optimizes the weighted objective function, defined
in Eq. (3.5). In particular, it minimizes the CP expression in Eq. (4.13)
instead of Eq. (4.1).

Minimize α max
∀xi

endOf(xi)+β
∑

∀yims

presenceOf(yims)ecost(ai, m, s) (4.13)

4.4 Warm-Started CP Model

It usually takes a lot of time until a feasible solution is found by the CP
solver. Therefore, providing a warm-start solution (i.e., a feasible solution)
to the CP solver often helps to improve its efficiency.

Specifically, we will use a schedule found by a genetic algorithm (described
in Section 5.1) in a small number of iterations as a warm-start schedule to
the CP solver.

Furthermore, since proposed CP models are time-indexed and contain
many optional interval variables, it is reasonable to attempt to reduce them
when we have a warm-start schedule. In case of a problem with the hard
energy budget constraint, where the project makespan is minimized, the
number of variables in the model can be reduced (and hence, we implemented
this improvement) by decreasing the project horizon to the makespan of the
warm-start schedule. Unfortunately, this improvement cannot be generally
made in case of a problem with the total energy cost in the objective due to
the more complex objective function.
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Chapter 5
Metaheuristic Approach

Exact approaches are not very scalable and often become unusable for larger
instances. Thus, we studied the current state-of-the-art metaheuristic meth-
ods, an alternative approach that can find feasible solutions for such instances.
We chose an existing Genetic Algorithm (GA) for RCPSP, adjusted it to our
problems, and implemented it.

The implemented GA for our problems will be described in Section 5.1. Be-
sides that, in the attempt to further improve the GA performance, a machine
learning model to select activity mode during the rescheduling of activity in
the sub-problem in the GA will be proposed in Section 5.2.

5.1 Genetic Algorithm

The selected genetic algorithm, which we decided to extend and adapt to
our problems, is a Genetic Algorithm with Neighborhood Search (GANS) [19].
In GANS, the neighborhood (local) search (NS) is incorporated into a GA
framework, and the authors showed that it improves the efficiency of searching
the solution space while keeping the randomness of the GA approach. Even
though it is not the newest algorithm, according to the data reported by the
authors in [16], it is still one of the best metaheuristic algorithms for RCPSP.
That is why we decided to use it as a baseline for our extension to both of
our problems.

We will describe the implemented GA in general for both problems at the
same time since the differences between our two problems are relatively small.

The proposed genetic algorithm follows the common GA structure shown
in Algorithm 1. Given a problem P , it uses GA operators and tries to find
an individual (in our case, a schedule denoted bestSchedule) with the lowest
objective value among all found feasible solutions during the search until the
termination condition, denoted stopCondition, is satisfied. The algorithm
consists of several important parts, which we will describe in the rest of this
section. Most of them are very similar to those in GANS since we adapted
this algorithm to our problems. However, we will describe all the parts for
the completeness and clarity of our implementation. The algorithm also has
several parameters, which will be summarized in Section 5.1.9.
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5. Metaheuristic Approach ................................
Algorithm 1: GA structure

input : Problem P
output : Schedule bestSchedule

1 G ← createInitGeneration(P)
2 while not stopCondition() do
3 parentChromosomes ← selectParentPairs(G)
4 childChromosomes ← {}
5 foreach (Cf , Cm) ∈ parentChromosomes do
6 child1, child2 ← crossover(Cf , Cm)
7 childChromosomes ← childChromosomes ∪

{mutation(child1), mutation(child2)}
8 end
9 G ← selectNextGeneration(childChromosomes)

10 end
11 return bestSchedule

5.1.1 Chromosome

The fundamental element of the proposed GA is a chromosome, which rep-
resents a single feasible solution in a solution space and the information of
how the neighborhood search (NS) operator (Section 5.1.2) should operate.
In our case, a chromosome is a tuple consisting of these four genes:..1. A core activity (acore) – An activity that is used to select activities that

will be rescheduled in the NS operator...2. NS operator improvement (Iobj) – An improvement in the objective value
obtained by applying the NS operator with this core activity (i.e., the
contribution of the NS operator on the current chromosome)...3. A schedule (S) – A current feasible solution defined by start time si and
processing mode m ∈M i for each activity ai ∈ A...4. An activities order (Ao) – An order of all activities A which satisfies
the precedence constraints of the problem and respects the order the
individual activities were put into the schedule.

Compared to the chromosome representation in the GANS algorithm, we
do not have a binary variable determining whether a forward or a backward
serial Schedule Generation Scheme (SGS) method [17], in which each activity
is gradually scheduled at the earliest (latest) precedence- and resource-feasible
start time, will be used while solving the rescheduling sub-problem. It is
because we use only forward search due to the added energy-related constraints
in our problems. On the other hand, the activities order Ao is stored to
be able to easily perform a left shift on the rescheduled schedule in the NS
operator (Section 5.1.2).
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.................................. 5.1. Genetic Algorithm

5.1.2 Neighborhood Search Operator

Similarly to the GANS algorithm, the key part of the proposed GA is the
Neighborhood Search (NS) operator. It is based on a local search method
(Local Search with Sub-problem Exact Resolution) introduced in [36], which
is integrated into the GA operators. Particularly, the NS operator is employed
in the GA as a part of the crossover and mutation operators (Sections 5.1.5
and 5.1.6).

Specifically, the NS operator attempts to improve a feasible schedule by
rescheduling some activities in a sub-problem when the start times, modes, and
resource allocation of the other activities are fixed. It consists of three essential
steps, which we will describe separately before describing the whole NS
operator...1. Block selection method – It splits the set of activities A according to

the core activity acore of the chromosome into a set of activities Ar

containing Nr activities, which are in the block around the core activity
(including acore) and will be rescheduled, and the other activities Af ,
which will be fixed in the rescheduling sub-problem. The block of
activities is formed by the activities that overlap with or are close to the
given core activity. For the pseudocode, we refer to [19]...2. Rescheduling sub-problem – When the activities are split, the sub-problem
is defined by fixing the start times, modes, and resource allocations of
the fixed activities Af . Its goal is to reschedule the rest of the activi-
ties (Ar). Similarly to the GANS algorithm, the sub-problem is solved by
rescheduling the activities Ar using a forward serial SGS. A random order
of activities Ao

r that respects the precedence constraints is constructed
for activities in Ar. In addition, a random processing mode is assigned
for each activity ai ∈ Ar before it is scheduled. Given the order of activi-
ties Ao

r, the new schedule Sr is constructed by scheduling the activities Ar

one by one (respecting their order, modes, current resource allocations,
and precedence constraints) at the first possible start time where the
project capacities (resource capacities, energy consumption limits, and
eventually energy budget) are not exceeded. In case some activity cannot
be scheduled (e.g., due to precedence or capacity constraints), an empty
schedule is returned...3. Left shift – In the left shift, activities Ao

before, scheduled before the
block Ao

r, and rescheduled activities in the block Ao
r stay fixed, and

activities Ao
after, scheduled after the block Ao

r, are rescheduled. Similarly
to the Rescheduling sub-problem (second step), a serial SGS is used to
schedule the activities Ao

after. This time, their modes and order stay the
same as in the input chromosome Cinput.

The pseudocode of the NS operator used in our GA is shown in Algorithm 2,
in which these three essential steps are highlighted. It takes the problem P and
an input chromosome Cinput as an input and returns a chromosome Coutput.
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5. Metaheuristic Approach ................................
Algorithm 2: Neighborhood Search Operator

input : Chromosome Cinput, Problem P
output : Chromosome Coutput

parameters : Maximum number of iterations I,
Number of activities to be rescheduled Nr,
GA stopping limit λ

1 for i← 1 to I do
2 Ar, Af ← splitActivitiesUsingBlockMethod(Cinput, Nr)

3 Sinput ← Cinput.S

4 Sr, Ao
r ← solveReschedulingSubproblem(Sinput, Ar, Af )

5 if Sr is empty then
6 continue
7 end
8 Ao

before, Ao
after ←

splitFixedActivitiesAndPreserveOrder(Af , Cinput)
9 if |Ao

after| = 0 then
10 Sresult ← Sr

11 else
12 Sresult ← applyLeftShift(Sr, Ao

after)

13 if Sresult is empty then
14 Sresult ← Sr

15 end
16 end
17 Iobj ← objective(Sinput) - objective(Sresult)
18 if Iobj > 0 then
19 Ao

result ← constructActivitiesOrder(Ao
before, Ao

r, Ao
after)

20 return chromosome(Cinput.acore, Iobj, Sresult, Ao
result)

21 end
22 end
23 return chromosome(Cinput.acore, 0, Cinput.S, Cinput.A

o)

The NS operator runs until a given limit on the number of iterations I is
reached, until a schedule with a better objective value is found, or until the
stopping limit λ of the GA is reached. If no schedule with a better objective
value is found in I iterations, on the Line 23, the NS operator returns a
chromosome with the same values as the input chromosome except for the
objective improvement gene, which is set to 0.

In each iteration of the NS operator, a new schedule with a better objective
value is attempted to be constructed in the following way. At first, on
the Line 2, all activities are split into two disjoint sets Ar and Af using a block
selection method according to a core activity of the input chromosome Cinput.
These two sets of activities define a sub-problem where activities from Af

will stay fixed, whereas activities from Ar will be rescheduled. Then, the
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resulting rescheduling sub-problem is solved on the Line 4 and a schedule after
rescheduling Sr and the order Ao

r, in which the activities in the block (Ar)
were rescheduled, are returned. If no feasible schedule was found during the
rescheduling, the NS operator continues with the next iteration on the Line 1.

Otherwise, the rescheduling resulted in a feasible schedule Sr, and the fixed
activities Af are split into two lists Ao

before and Ao
after according to their start

time in the input schedule Sinput and the start time of the core activity in
the input chromosome Cinput on the Line 8. The order of activities from the
input chromosome Cinput is preserved in both lists. Then, the left shift is
applied to the schedule after rescheduling Sr for the fixed activities Ao

after,
which are after the rescheduling block, and creates the result schedule Sresult

on the Line 12. When there is no activity after the rescheduling block, the
left shift is not applied, and the schedule after rescheduling Sr is assigned
as the result schedule Sresult on the Line 10. Similarly, the schedule after
rescheduling Sr is assigned as the result schedule Sresult if the left shift fails
to create a feasible schedule.

Finally, on the Line 17, the Iobj is computed from the objective value
of the input schedule Sinput and the result schedule Sresult. If there is an
improvement in the objective value, a new chromosome is created such that a
core activity of the input schedule is preserved, the NS operator improvement
gene is set to Iobj , and the result schedule Sresult is used. Moreover, all
activities are ordered with respect to the precedence constraints to be able to
easily perform a left shift in the next generations of the genetic algorithm.
Otherwise, if there is no improvement in the objective value, the algorithm
continues with the next iteration on the Line 1.

5.1.3 Initial Generation

Unfortunately, the process of how the initial generation is created in GANS is
not mentioned in [19]. Nevertheless, we suppose it is also an important part
of the GA. Therefore, we implemented and will evaluate (in Section 7.2.2)
four different ways of how to create the initial generation. Each starts
with determining a random order of activities that respects the precedence
constraints...1. SGS method – It assigns a random mode to each activity and solves

the rescheduling sub-problem, in which all activities are scheduled with
respect to the given random order in the same way as it is solved in
the NS operator (Section 5.1.2).
Unfortunately, due to capacity constraints in the problem, this greedy
method does not have to create a feasible schedule. Hence, it may need
to be repeated with a new precedence-feasible random order of activities
until a feasible schedule is created. Each attempt is, of course, counted
in the result statistics...2. Sequential method – It creates a sequential schedule where activities are
placed one right after the other (each activity starts at the time when the
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5. Metaheuristic Approach ................................
previous activity finished) in the given random order. Each activity is
scheduled in the mode with the lowest energy consumption that satisfies
the most strict 15-minute energy consumption limit.
It relies on the fact that such a sequential schedule will be feasible.
However, in our dataset (see Section 6.2), any order of the sequentially
scheduled activities in the least consuming mode will lead to a feasible
schedule, and hence, this method always creates a feasible schedule...3. Fallback method – It tries to create a schedule using the SGS method.
When no feasible schedule is created in the given number of attempts,
the sequential method is used as a fallback. The number of attempts is
a parameter of this method. Hence, for clarity, we will also denote this
method as the fallback-x method, where x corresponds to the number of
attempts...4. Half method – It creates half of the initial generation by the SGS method,
and the second half of the generation is created by the sequential method.
This time, each schedule is attempted only once, and hence, the number
of chromosomes in the initial generation can be lower in the case of this
method. Nevertheless, the number of chromosomes in the generation
will be repaired in the first iteration of the GA.

Based on the way the schedules are created, the makespan of schedules
created by the SGS method should be noticeably lower compared to schedules
created by the sequential method. On the other hand, there is no guarantee
that the initial generation will be constructed in a small number of schedules
in the case of the SGS method. Therefore, we proposed the other two methods
that combine these two methods.

5.1.4 Parent Selection

Parent selection works in the same way as in the GANS algorithm. Np pairs of
parent chromosomes are selected from each generation G. Father chromosomes
are selected using a roulette wheel selection method with respect to the
objective values of the chromosomes in the current generation. Mother
chromosomes are selected likewise, but the improvement Iobj achieved by
the NS operator is used instead of the objective value.

5.1.5 Crossover Operator

Given two parent chromosomes Cm and Cf , the crossover operator produces
two child chromosomes (Cm.acore, Cm.Iobj , Cf .S, Cf .Ao) and (Cf .acore, Cf .Iobj ,
Cm.S, Cm.Ao). The NS operator is then applied to these child chromosomes
to find and possibly update a better schedule and the order of activities. In
any case, the value of the Iobj gene is updated. It is either set to the objective
value improvement obtained by applying the NS operator or to 0 if there is
no improvement.
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5.1.6 Mutation Operator

After the crossover operator, a mutation operator is applied to the child
chromosomes. It adds randomness to the GA and aims to avoid getting stuck
in a local optimum solution. Specifically, with a small probability pmut, a new
core activity is randomly chosen and set to the chromosome. In such a case,
the NS operator is applied to the new chromosome with this core activity.

Compared to the GANS algorithm, we do not mutate the search direction
gene because we use only a forward search direction in the NS operator.

5.1.7 Next Generation Selection

At the end of each iteration of the GA, the next generation of M chromosomes
is selected from the child chromosomes. Since some child chromosomes can
be duplicated in the generation, we transform them into a set of candidate
chromosomes Ccandidate (i.e., unique chromosomes without duplicities). The
first Nt chromosomes with the lowest objective value are selected directly
to the next generation. The rest M − Nt chromosomes are chosen from
Ccandidate using a roulette wheel selection with respect to the objective value
of the chromosome. This roulette wheel selection is the same as the father
chromosome selection in Section 5.1.4.

5.1.8 Stop Condition

The proposed GA stops when a given number of schedules λ is produced during
the search. New schedules are produced during the initial generation creation
and the application of the NS operator (in the crossover and eventually
mutation operators). In an iteration of the NS operator, schedules are
produced while solving the rescheduling sub-problem and during the left shift.
Hence, one application of the NS operator to a chromosome can produce up
to 2I schedules.

Compared to the GANS algorithm, we do not use a condition based on
the number of successive generations without an improvement as a stopping
criterion.

Note that the termination condition is checked at any step where a new
schedule is created in the GA. It means the algorithm does not have to finish
the whole iteration and stops immediately when the given number of schedules
is produced.

5.1.9 Parameters

As indicated earlier, the GA has several parameters that have to be specified.
In the experiments, we used the same parameter values as the GANS algorithm.
For clarity, the parameters of the implemented GA and their values are
summarized in Table 5.1.
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Notation Meaning Value
Nr The number of activities to be rescheduled in each

sub-problem (it depends on the number of activities n
in the problem)

0.2n

I The maximum number of iterations in one application
of the NS operator

10

M The number of chromosomes in each generation 40
Np The number of parent pairs in each generation 20
pmut The probability of applying the mutation operator 0.02
Nt The number of child chromosomes that are directly

selected into the next generation
8

λ The maximum number of schedules to be produced 50000

Table 5.1: The parameter settings of the implemented GA used in the experi-
ments. Most parameters have the same notation and values as the parameters
of the GANS algorithm in [19].

5.2 Mode Selection Model

The crucial part of the implemented GA is solving the rescheduling sub-
problem in the NS operator. In the sub-problem, modes of activities that
are rescheduled are assigned at random. This randomization creates diverse
individuals in a generation, which is an important aspect of the GA. However,
such sub-problem solutions often lead to infeasible schedules. Thus, we
decided to try to create a machine learning model that would predict the
mode of the activity based on its characteristics. In this section, we will
describe how we trained the model and how it selects the most suitable mode
for an activity in the rescheduling sub-problem.

Specifically, we assume there are some characteristics of sub-problems
shared within different-sized instances. Hence, we used the optimal solutions
of small instances (found by an exact approach) to train the model to learn
these characteristics and to learn to select more suitable modes on the larger
instances.

Firstly, we start with the creation of the dataset for the model. From an
optimal schedule of an instance, several samples are created. In particular, we
create several different sub-problems from an instance by randomly selecting
different core activities. Having a sub-problem, all activities in the sub-
problem are gradually scheduled one by one (using the SGS, exactly the same
way it is done in the NS operator in the GA), and a sample is created for
each activity and its mode in the optimal schedule. A data sample consists
of a pair of input and target feature vectors, which will be described in the
following paragraphs.

Since the number of modes can differ and the characteristics of a mode
do not have to correspond to the mode identifier, we trained the model
for the regression task instead of classification. In particular, we defined a
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three-dimensional feature vector that characterizes a certain mode of activity.
To select a mode for an activity, this vector is computed for each possible
mode of the activity, and the mode corresponding to the vector with the
lowest Euclidean distance from the predicted target vector is selected.

The individual target features of activity ai and mode m are:..1. The duration of activity ai in mode m divided by the maximum duration
over all the modes of activity – i.e., dim

maxm′∈Mi
dim′..2. Energy consumed by activity ai in mode m divided by the maximum

energy consumption over all the activity modes – i.e., cimdim
maxm′∈Mi

cim′ dim′..3. The maximum ratio of resources required by activity ai in mode m and
resource capacity over all the resource types – i.e., maxk∈{1,...,K}

rimk
Rk

Similarly, we defined the input feature vector that characterizes the sub-
problem and the activity. We tried several different features (some of them
worked better, some of them worked worse). In the final model that is evalu-
ated in Section 7.2.3, the input vector consisting of the following 8 features1

was used. Nevertheless, we do not claim this is the best possible configuration
of features, and on the contrary, we believe better features exist...1. The maximum minus the minimum duration of activity ai over all its

modes – i.e., maxm∈M i dim −minm∈M i dim..2. The size of the window in which activity ai can be scheduled (determined
by its earliest start time (ESTi) and latest finish time (LFTi)) divided
by the minimum window size of yet unscheduled activities Au in the
sub-problem – i.e., LF Ti−ESTi

minaj ∈Au LF Tj−maxaj ∈Au ESTj..3. The number of direct successors of activity ai in the sub-problem divided
by the number of yet unscheduled activities Au in the sub-problem
– i.e., |succs(ai)|

|Au|..4. The maximum minus the minimum of the maximum resource consump-
tion ratio of activity ai (ratiok = maxm∈M i

rimk
Rk

) over all the resource
types – i.e., maxk∈{1,...,K} ratiok −mink∈{1,...,K} ratiok..5. The maximum energy consumption of activity ai in a single quarter
over all its modes (where dq

im denotes the duration of activity ai in
mode m in a single quarter) divided by the average available quarter
energy consumption capacity in the sub-problem (denoted Cavailable

q ) –
i.e., maxm∈Mi

cimdq
im

Cavailable
q

1Note that depending on sub-problem characteristics in a sample, the denominator of
some features can be 0 or negative. In such a case, the feature is set to 0. For clarity, we
omit this in their description.
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5. Metaheuristic Approach ..................................6. The maximum energy cost of activity ai (i.e., the maximum electricity
price pmax in the sub-problem times its maximum consumption over all
its modes) divided by the available energy budget (denoted Bavailable)
in the sub-problem – i.e., pmax maxm∈Mi

cimdim

Bavailable..7. The maximum ratio of the average consumption of resource k by all
yet unscheduled activities Au and their modes in the sub-problem
(denoted rk) and the resource capacity over all the resource types –
i.e., maxk∈{1,...,K}

rk
Rk..8. The maximum energy cost of all yet unscheduled activities Au (i.e.,

the maximum electricity price pmax in the sub-problem times the sum
of their maximal consumption) divided by the available energy budget

(denoted Bavailable) in the sub-problem – i.e.,
pmax

∑
aj ∈Au maxm∈Mj

cjmdjm

Bavailable

Our multi-output regression model is a simple neural network, implemented
in PyTorch framework2, consisting of 3 linear layers interleaved with ReLU
layers. The input size of the network is 8, the output size is 3, and the size of
hidden layers is 32. The network was trained on the training set (80 % of the
dataset) using an Adam optimizer3 with a learning rate of 0.001, batch size
of 32, and mean square error loss4 function for 200 epochs.

The resulting model is the model with the lowest loss on the validation set
(10 % of the dataset) during the training. The model weights were stored in
a file, and this model is used in the evaluation in Section 7.2.3.

Nevertheless, to preserve some randomness that is vital for the NS op-
eration in GA to fulfill its purpose, this model is used only with a certain
probability pmodel, which is a parameter of this model. Otherwise, the original
mode assignment procedure (i.e., a random activity mode is assigned) is used
in the GA.

2https://pytorch.org/
3https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
4https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html
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Chapter 6
Dataset

Since we defined new problems, we cannot easily use some existing datasets,
but we need to create new instances of our problems. We will use two standard
benchmark datasets for MMRCPSP and extend them to create instances of
our problems. More details about these datasets and how we transform them
into new ones are provided in this chapter.

6.1 MMRCPSP Datasets

In the case of MMRCPSP, there are three standard benchmark datasets
(PSPLIB, Boctor, and MMLIB), which are used in most of the research work.

PSPLIB [37] is a well-known project scheduling library that contains many
datasets for RCPSP and also for several of its extensions. It has been a
standard benchmark dataset in project scheduling research for decades. For
MMRCPSP, there are seven sets of instances differing in the number of
activities from 10 to 30 activities.

The Boctor dataset [38] is a less popular dataset consisting of 2 subsets
of instances with 50 or 100 activities and a different number of renewable
resources and modes. Each subset contains only 120 instances, which is
significantly less than 640 instances in PSPLIB sets. Moreover, non-renewable
resources are not considered in these instances.

Nevertheless, some shortcomings were observed in both these older datasets
and motivated the introduction of a newer benchmark dataset MMLIB [14]
with larger instances. It contains two sets of instances, MMLIB50 and
MMLIB100, with 50 and 100 activities, respectively. These instances have
similar properties to PSPLIB instances. In addition, there is a special set
MMLIB+ that contains instances with a higher number of resources and
modes.

6.2 Our Dataset

As we have indicated, to create instances of our problems, we extended
instances from the aforementioned standard MMRCPSP datasets. Namely,

27



6. Dataset .......................................
we used instances from PSPLIB and MMLIB datasets because they are more
popular and contain a lot of instances of different scales.

Compared to MMRCPSP instances, instances of our problems need to be
extended with energy consumption of activities per time unit, electricity price,
energy consumption limits for each 15-minute window, and an energy budget
in case of the problem with the hard energy budget constraint. This section
describes how we decided to determine these values and what instance sets
we created for our experiments.

6.2.1 Project Horizon

Firstly, we start with the definition of the project horizon. In MMRCPSP,
the project horizon is the length of a sequential schedule, where activities are
placed one after the other, and the mode with the longest duration is selected
for each activity. In our problem, there are energy consumption limits for
15-minute windows that need to be taken into account, too. Nevertheless, we
assume and will set these consumption limits so that each activity can be
scheduled in any 15-minute time window. But perhaps only one activity will
be able to be scheduled at a single time unit. This assumption ensures that
even the two activities with the highest consumption can be placed directly
one after the other at any time unit without exceeding the consumption limits.
Hence, the project horizon T in our problem, expressed in Eq. (6.1), is the
same as in MMRCPSP (i.e., the sum of maximum duration of each activity).

T =
∑

ai∈A

max
m∈M i

dim (6.1)

6.2.2 Energy Consumption of Activity

The energy consumption of activity ai in a particular processing mode m is
derived from its resource1 requirements rimk of each resource type k and the
duration dim. The consumption of activity is the weighted sum of resource
requirements where each resource type k has a different weight wk. To obtain
energy consumption in a single time unit, expressed in Eq. (6.2), which is
needed in our problem, this consumption is divided by the duration. Note
that only the integer part of the number is used to work with integer values.
For simplicity, the consumption is the same in each time unit t. Therefore, the
result energy consumption of an activity is the product of the duration dim

and energy consumption in a single time unit cim.

cim =
⌊∑

k rimkwk

dim

⌋
(6.2)

1MMRCPSP instances contain information about both renewable and nonrenewable
resource requirements and capacities. Since only renewable ones are considered in our
problems, the information about nonrenewable resources is not considered in creating new
instances.
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This choice allows us to have different energy consumption in individual
modes. Moreover, it corresponds to real situations because modes that require
fewer resources have lower energy consumption. And if we are interested in
low energy consumption, it can be better to process the activity in a longer
but more economical mode.

6.2.3 Electricity Price

As we have mentioned, we assume the electricity price is given by TOU tariffs
in individual hours. Particularly, we defined an electricity price distribution
during a single day (Fig. 6.1) that includes high on-peak and low off-peak prices
and some transitional hours with prices in between. The price distribution is
cyclic, so in case the project schedule is longer than one day, it repeats from
the start for subsequent hours. In order to ensure all instances do not start
at the same hour, we introduced an offset parameter h0 (a random integer
from interval [0, 23]) for each instance. The resulting electricity price in a
problem instance is then shifted by this offset, which allows us to model that
projects can start at any hour.
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Figure 6.1: Electricity price distribution during a single day.

6.2.4 Energy Budget Limit

Regarding energy budget and energy consumption limits, we used a similar
approach to the resource-strength coefficient, which was used in [37] to
determine resource capacities. This coefficient allowed the authors to specify
how strong the resource constraints are. Therefore, we also defined the lower
and upper bounds of these limits and used coefficients to regulate the strength
of the constraints.
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In the case of energy budget limit, we defined the lower/upper thresh-

olds Bmin/Bmax as the maximum electricity price over the whole project
horizon pmax = maxt∈{0,...,T } p(t) times the total minimum/maximum energy
consumption of all activities (Eqs. (6.3) and (6.4)). Maximum electricity
price is used in both cases to ensure the precedence relations between ac-
tivities would not cause the infeasibility of the project. The result energy
budget limit is then computed from these two bounds and an energy budget
coefficient αB ∈ [0, 1] according to Eq. (6.5).

Bmin = pmax
∑

ai∈A

min
m∈M i

cimdim (6.3)

Bmax = pmax
∑

ai∈A

max
m∈M i

cimdim (6.4)

B =
⌊
(1− αB)Bmin + αBBmax

⌋
(6.5)

6.2.5 Energy Consumption Limits

We likewise define the lower/upper bounds for energy consumption limits.
Before we specify them, we introduce a parameter uq, which specifies the num-
ber of time units in a single 15-minute time window. The lower bound Cmin,
expressed in Eq. (6.6), is the biggest minimum consumption in a single 15-
minute time window out of all activities where the duration of an activity
is assumed to be the whole 15-minute time window. It guarantees that an
arbitrary activity can be scheduled (at least in the most economical mode)
in any 15-minute time window and that any two activities can be scheduled
sequentially right behind each other. The upper bound Cmax, expressed
in Eq. (6.7), is the sum of maximum consumption in a 15-minute time win-
dow over all the activities. In other words, Cmax is a value of limit that
would allow all of the activities to be executed in the same time window.
These bounds are the same for all 15-minute time windows. Similarly to
the energy budget limit, the energy consumption limit Cq for each time
window q ∈ Q is constructed from these bounds and the energy consumption
coefficient αC ∈ [0, 1] according to Eq. (6.8).

Cmin = max
ai∈A

min
m∈M i

cimuq (6.6)

Cmax =
∑

ai∈A

max
m∈M i

cim min(dim, uq) (6.7)

Cq =
⌊
(1− αC)Cmin + αCCmax

⌋
, ∀q ∈ Q (6.8)

6.2.6 Created Instance Sets

Finally, when we have defined all the parameters of problem instances, we
can generate new instances of our problems. Specifically, as indicated earlier,
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instances of our problem were created from j10 and j30 instances from the
PSPLIB [37] dataset and MMLIB50 and MMLIB100 instances from the
MMLIB [14] dataset.

The parameters that were used in the generation of a new dataset were
set in the following way. Both the energy budget coefficient αB and energy
consumption coefficient αC were set randomly to one value from the set
{0.1, 0.2, 0.3, 0.4, 0.5} for each instance. These coefficient values ensure we
have instances with both less restrictive and more restrictive limits. As
mentioned earlier, the hour offset parameter h0 is a random integer from
interval [0, 23]. To model projects of larger size that are longer than a few
hours, for each selected standard set of instances, we created two different
instance sets differing in the number of time units in a 15-minute time window
(parameter uq). The set with uq = 15 assumes that a single time unit
corresponds to 1 minute, whereas the other set with uq = 1 assumes that
a single time unit corresponds to 15 minutes. For clarity, the domains of
individual instance parameters are summarized in Table 6.1.

The characteristics of the created datasets, which will be used for evaluation
in Chapter 7, are shown in Table 6.2.

parameter domain
αB {0.1, 0.2, 0.3, 0.4, 0.5}
αC {0.1, 0.2, 0.3, 0.4, 0.5}
h0 [0, 23]
uq {1, 15}

Table 6.1: The domains of individual problem instance parameters that were
used in the generation of a new dataset.

name # instances |A| |M | K uq

j10_1min 536 10 3 2 15
j10_15min 536 10 3 2 1
j30_1min 640 30 3 2 15
j30_15min 640 30 3 2 1
MMLIB50_1min 540 50 3 2 15
MMLIB50_15min 540 50 3 2 1
MMLIB100_1min 540 100 3 2 15
MMLIB100_15min 540 100 3 2 1

Table 6.2: The characteristics of individual problem instances in the used
datasets. Columns |A|, |M |, K, and uq show the number of non-dummy activities,
modes, type of resources, and the number of units in a 15-minute window in the
dataset, respectively.
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Chapter 7
Evaluation

In this chapter, we will experimentally evaluate all the proposed approaches
on the aforementioned datasets of different sizes. Firstly, the configuration
of experiments will be described in Section 7.1. The measured data will be
analyzed in Section 7.2, and the results of the experiments will be summarized
in Section 7.3.

7.1 Configuration of Experiments

All the proposed approaches were implemented in Python 3.10. Python was
chosen because it is a very popular programming language with many libraries
(e.g., for data analysis or machine learning) that enable fast implementation.
To solve the CP models, the CP solver IBM ILOG CP Optimizer 22.1.01 was
used.

All the experiments were run on the optim server operated by the Czech
Institute of Informatics, Robotics and Cybernetics at the Czech Technical
University in Prague2. Specifically, one core of Intel(R) Xeon(R) Silver 4110
CPU @ 2.10 GHz processor was used.

In terms of the stopping criteria, as indicated earlier, we use the number of
created schedules as a stopping criterion for the genetic algorithm. Compared
to the time limit, the number of created scheduled during the search is often
the preferred stopping criterion in the literature (e.g., in [16], [19] or [14])
because it is not dependent on the selection of the programming language
and the hardware on which the experiments are run. Namely, we set the limit
(parameter λ) to 50000 produced schedules in the experiments. For the CP
models, the time limit was set to 300 seconds. In the case of warm-started CP,
the time limit given to the CP solver is decreased by the time needed to find
the warm-start schedule tws (i.e., the limit is 300− tws seconds) to provide a
fair comparison of the CP and warm-started CP.

In terms of the performance of algorithms, the usual metric in RCPSP
is the Average Percent Deviation (APD) from a lower bound. Hence, in
the case of the problem with the hard energy budget constraint, where the
project makespan is minimized, we will observe the APD from the critical

1https://www.ibm.com/docs/en/icos/22.1.0?topic=cp-optimizer
2https://www.ciirc.cvut.cz/en/
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path lower bound (denoted criticalPathLB). This lower bound is the length
of the longest path from the first activity to the last activity in the precedence
graph, where the length of each activity ai is the minimum duration over
all possible modes of activity minm∈M i dim. In the case of the problem with
total energy cost in the objective, we created a lower bound of the objective
value (denoted weightedCriterionLB) based on the values of parameters α
and β used in the experiments (see Section 7.1.1), and we will compare the
methods with respect to the APD from this lower bound.

7.1.1 Scenarios of Problem with Total Energy Cost in
Objective

In the problem with total energy cost in the objective, defined in Section 3.2,
the criterion contains parameters α (the weight of the project makespan
criterion), and β (the weight of the total energy cost criterion), which have to
be specified in advance before the optimization. In practice, these parameters
would be most likely set by the managers based on their concrete case. For
instance, the weighted criterion can correspond to the overall price of the
project, where the cost of one hour of production would be involved in the
parameter α.

Nevertheless, in the experiments, we are using benchmark datasets with
artificial values. Therefore, we defined three scenarios with different weights
of the individual criteria to be able to investigate the effects of different
weights on the proposed approaches. In addition, the individual criteria are
divided by the corresponding lower bounds criticalPathLB and

energyCostLB = pmin
∑

ai∈A

min
m∈M i

cimdim, (7.1)

where pmin = mint∈{0,...,T } p(t) is the minimum electricity price over the
whole project horizon, so that both criteria have values of a similar scale.
Specifically, the scenarios represent the cases where the weight of the project
makespan criterion is notably higher (scenarioCmax), the weights of both
criteria are equal (scenarioequal), and the weight of the total energy cost is
notably higher (scenarioenergy). The concrete values of parameters α and β
used in the experiments in respective scenarios are summarized in Table 7.1.

scenario α β

scenarioCmax
3

criticalP athLB

1
energyCostLB

scenarioequal
1

criticalP athLB

1
energyCostLB

scenarioenergy
1

criticalP athLB

3
energyCostLB

Table 7.1: Scenarios of the problem with total energy cost in the objective with
the concrete values of parameters α and β used in the experiments.

Since the weight parameters in all scenarios contain lower bounds of both
involved criteria, we can derive a lower bound of the weighted criterion
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(denoted weightedCriterionLB) and use it in the experiments. This lower
bound is computed as α criticalPathLB +β energyCostLB. In particular, the
values of weightedCriterionLB are equal to 4 in the case of scenarioCmax and
scenarioenergy scenarios and equal to 2 in the case of scenarioequal scenario.

7.2 Experiments

After introducing the configuration of the experiments, we can evaluate them.
In Section 7.2.1, we will start with the optimality of solutions found by
the exact approaches. Different methods of initial generation creation and
the use of the proposed mode selection model in the GA will be analyzed
in Sections 7.2.2 and 7.2.3, respectively. After that, all proposed approaches
will be compared in Section 7.2.4.

7.2.1 Optimality of CP Models

In the case of exact approaches, we compare the performance of the CP and
warm-started CP models with respect to the optimality of the found solutions
in a given time limit.

Before the comparison, the warm-started CP needs a warm-start schedule.
As indicated earlier, the schedule with the lowest objective value found by
a GA is given to the warm-started CP model. Particularly, the stopping
criterion to obtain the warm-start schedule was set to 1000 generated schedules,
and a “half” method of initial generation creation (Section 5.1.3) was used
to generate the initial generation of the GA. We chose this method because
it seemed to be the most efficient one in the early phase of the GA in the
majority of problems (see results in Section 7.2.2).

In the experiments, we ran CP and warm-started CP models for 300 seconds
on all problem instances in a dataset. The percentage of instances in which
an optimal solution was found is shown in Table 7.2 for problems with the
hard energy budget constraint and in Table 7.3 for problems with total energy
cost in the objective.

In the case of the problems with the hard energy budget constraint (Ta-
ble 7.2), the results show that for the datasets with 10 activities (j10_1min
and j10_15min), optimal solutions were found in all instances. Moreover, the
average time to solve an instance was around 2 seconds. For the datasets with
larger instances, there can be seen the gain achieved by warm-starting the CP
model. In all these datasets, warm-started CP found considerably more
optimal solutions. The biggest improvement was obtained for the dataset
MMLIB100_15min, where the warm-started CP found 69.44 % of optimal
instances compared to 18.52 % found by the CP model without warm-starting.
This substantial improvement is largely caused by the huge reduction in the
number of variables in the models (on average, 232627 variables in case of CP
is reduced to 7875 variables in case of warm-started CP).

In terms of feasibility, except for 4 instances in the MMLIB100_15min
dataset (less than 1 % of instances), in which CP model did not find any
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dataset name CP ws-CP
j10_1min 100.00 100.00
j10_15min 100.00 100.00
j30_1min 69.38 76.41
j30_15min 83.44 88.44
MMLIB50_1min 37.96 50.00
MMLIB50_15min 67.41 78.70
MMLIB100_1min 6.67 33.15
MMLIB100_15min 18.52 69.44

Table 7.2: The optimality of found solutions (in %, rounded to 2 decimal places)
by CP and warm-started CP (ws-CP) models in 300 seconds in case of problems
with the hard energy budget constraint.

feasible solution, feasible schedules were found in all instances in the given
time limit.

Furthermore, generally speaking, a higher percentage of optimal solutions
were found in instances with 15-minute time granularity. We suppose this
result is caused mainly by the 15-minute energy consumption limits. In the
case of 15-minute time granularity, this limit is covered by a single time unit,
whereas 15 time units are involved in the limit in the case of 1-minute time
granularity. In addition, as expected, the larger the instance is, the lower the
percentage of found optimal schedules is.

In the case of the problem with total energy cost in the objective, the
experiments were run in all three scenarios but only in datasets with a 1-minute
time granularity to have a reasonable number of experiments. We selected
these datasets because they seem to be slightly more difficult compared to
datasets with 15-minute time granularity. The results (Table 7.3) show that
all instances with 10 activities were solved optimally, and the models are
more efficient on smaller instances.

scenarioCmax scenarioequal scenarioenergy

dataset name CP ws-CP CP ws-CP CP ws-CP
j10_1min 100.00 100.00 100.00 100.00 100.00 100.00
j30_1min 67.50 67.50 63.75 64.22 45.62 47.66
MMLIB50_1min 26.11 24.81 8.33 7.59 9.44 10.93
MMLIB100_1min 0.00 0.00 0.00 0.00 0.00 0.00

Table 7.3: The optimality of found solutions (in %, rounded to 2 decimal places)
by CP and warm-started CP (ws-CP) models in 300 seconds in case of problems
with total energy cost in the objective for different scenarios.

However, the effect of warm-starting is not as significant as in the case of
problems with the hard energy budget constraint. This is mainly because
the number of variables in the model is not reduced when a warm-start
solution is given due to a different optimization criterion. In some scenarios
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of MMLIB50_1min datasets, the percentage of found optimal solutions was
even slightly higher for the CP without warm-starting. Nevertheless, it is
also important to mention that CP without warm-starting did not find any
feasible solution in the given time limit in roughly half of the instances of the
MMLIB100_1min dataset in all three scenarios, which was not the case for
the warm-started model, which provided a feasible solution in all instances.

Furthermore, there is a noticeable difference between individual scenarios.
A higher percentage of optimal solutions was found in the scenarioCmax

scenario, where the makespan has a higher weight, and vice-versa, a lower
percentage of the optimal solution was found in the other two scenarios, where
the weight of the makespan is lower. We suppose this is because the CP
solver works better with this standard scheduling criterion.

7.2.2 Effect of Initial Generation in GA

In Section 5.1.3, we proposed and described 4 different methods of how to
create an initial generation in our GA. In this section, we will evaluate their
effect on the performance. As indicated earlier, we will use the APD from
the lower bound to evaluate the performance of the algorithm.

How the APD evolves in the number of generated schedules is shown
in Fig. 7.1 for problems with the hard energy budget constraint and in Fig. 7.2
for different scenarios of problems with total energy cost in the objective.
Figures show the performance of GA on the MMLIB50_1min dataset. The
measured data are shown with the different number of schedules in two sub-
figures to be able to observe the GA’s performance both in the first iterations
of GA (5000 schedules) and during the whole search (50000 schedules). For the
clarity of figures, only three initial generation creation methods – “sequential”,
“fallback-1”, and “half” are shown in the figures. The “SGS” method is
excluded from the comparison since it did not even find any feasible schedule
in 50000 generated schedules in almost 10 % of instances. Other variants of
a fallback method (“fallback-10” and “fallback-100”) are also omitted since
they perform similar or worse than the “fallback-1” method (Fig. C.1).
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Figure 7.1: APD from the criticalPathLB (in %) in the number of generated
schedules for different methods of initial generation creation on MMLIB50_1min
instances of the problem with the hard energy budget constraint.
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Figure 7.2: APD from the weightedCriterionLB (in %) in the number of
generated schedules for different methods of initial generation creation on MM-
LIB50_1min instances of the problem with total energy cost in the objective.

The measured data in the case of both problems (Figs. 7.1 and 7.2) show
that the highest improvements in the objective are achieved in the early phase
of the GA. Moreover, the APD of the “sequential” method is notably higher
compared to the other methods in the early phase. This is definitely caused
by the way how the “sequential” method constructs the initial schedules.
Nevertheless, in the 50000 produced schedules, the “sequential” method
reaches similar or slightly lower APD compared to the “half” method, and
both these methods have significantly lower APD compared to the “fallback-1”
method.

Furthermore, Fig. 7.2 indicates that the lower the weight of the makespan
criterion is, the better the performance of the “sequential” method is in the
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early phase. In the case of scenarioenergy, it even dominates over the other
two methods.

To sum up, the best performance in the 50000 generated schedules was
achieved by the “sequential” method of initial generation creation in all
experiments. Slightly worse results were obtained by the “half” method.
Finally, a “fallback” method had the worst performance. Nevertheless, the
“sequential” method does not dominate other methods during the whole search.
Specifically, in the lower number of schedules, solutions of higher quality can
be obtained by the “half” method. That is why we used this method to find
a warm-start schedule for the warm-started CP in the other experiments.

7.2.3 Effect of Mode Selection Model in GA

In Section 5.2, we proposed a mode selection model that selects a mode of an
activity based on the activity and sub-problem characteristics. This model
aims to improve mode assignments in the sub-problem in the NS operator
and thus also to improve the GA. Recall that in our base GA implementation,
modes are assigned randomly. As mentioned earlier, randomness is a vital
factor of the GA, and hence, we believe some randomness should also be
preserved when a mode selection model is used. Therefore, in this section,
we will compare the performance of the base GA without a model with the
performance of the GAs, where the trained mode selection model is used with
a certain probability.

Since the proposed mode selection model is rather a prototype, the model
was trained only for the problem with the hard energy budget constraint.
Therefore, all experiments presented in this section were performed for this
problem. In particular, The model was trained on the optimal solutions of
instances in the j10_15min dataset, which were found by warm-started CP.
The details about this model, including the hyperparameters and the training
phase, were described in Section 5.2.

In the experiments, we run a GA with the trained mode selection model
with different model probabilities pmodel ∈ {0, 0.25, 0.5, 0.75, 1}. The model
probability pmodel is a probability with which the mode assignment is done by
the model (i.e., the mode of activity is assigned by the model with probability
pmodel and at random with probability 1− pmodel). Note that the case when
pmodel = 0 is the base variant without the mode selection model, where all
modes are assigned randomly.

The results obtained by the GA with different model probabilities on
datasets with larger instances MMLIB50_15min and MMLIB100_15min
are shown in Fig. 7.3. Same to previous GA comparisons, the figure shows
the measured APD from the criticalPathLB in the number of produced
schedules. The “half” method of initial generation creation was used in the
case of all variants since we observed the mode selection model improves
the GA mainly in the early phase, where this method outperforms the other
ones (see Section 7.2.2).

The measured data support our conjecture that randomness is a crucial
part of the GA and when there is no randomness in the mode assignment
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(pmodel = 1), with the increasing number of produced schedules, the APD stays
significantly higher compared to all other variants, where the randomness
is present. In other variants that combine the trained model with random
mode assignment, it can be seen that the mode selection model can improve
the GA performance in the early phase (their APD is notably lower than
the APD of the GA without the model (pmodel = 0)).
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Figure 7.3: APD from the criticalPathLB (in %) in the number of generated
schedules achieved by GA with the trained mode selection model and different
model probabilities pmodel on MMLIB50_15min and MMLIB100_15min datasets
of the problem with the hard energy budget constraint.

With a gradual number of produced schedules, the difference between
the GA without and with the model decreases. However, there are variants of
model probabilities (pmodel is 0.25 or 0.5) where the APD is lower also in 50000
number of generated schedules. To better see the effect of the trained mode
selection model, in Fig. 7.4, we visualized the comparison of the base GA
with the “sequential” method of initial generation creation, the base GA
with the “half” method, and the GA with the “half” method and the best
variant with mode selection model (pmodel = 0.5) on the MMLIB100_15min
dataset. It can be seen that the GA with the “half” method and the mode
selection model outperformed both GAs without the mode selection model.
For instance, the difference between the GA with “half” method and random
mode assignment and the GA with “half” method and the mode selection
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model is about 4.5 % of APD in the 1000 schedules, and about 1 % of APD
in the 50000 schedules.
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Figure 7.4: APD from the criticalPathLB (in %) in the number of generated
schedules achieved by GAs without a mode selection model and the GA with
the trained mode selection model on MMLIB100_15min dataset of the problem
with the hard energy budget constraint.

7.2.4 Comparison of Proposed Approaches

To compare all three proposed approaches (CP, ws-CP, and GA), we visualized
how the APD from the lower bound evolves in time3. Figure 7.5 shows this
comparison on different scaled datasets of the problem with the hard energy
budget constraint. Nonetheless, one should read these figures carefully because
it is necessary to keep in mind that the genetic algorithm is implemented in
Python4, whereas the used CP optimizer is implemented in C++, and it is
optimized for scheduling tasks.

Furthermore, the result APD from the criticalPathLB found by individual
approaches in either 300 seconds or 50000 generated schedules on all datasets
of the problem with the hard energy budget constraint are summarized
in Table 7.4.

Except for the case of small-sized instances (Fig. 7.5a), Fig. 7.5 shows that
it takes quite a lot of time (tens or hundreds of seconds) until the CP model
finds some solution. After a feasible schedule is found, the model manages to
relatively quickly find better solutions. Opposite behavior can be seen in the
case of the GA, where the most notable improvements occur primarily in the
early phase during the first generations. Therefore, it is reasonable that the

3In the figures showing this visualization, the measured APD values at a certain time
are visualized only if a feasible solution was found in all instances in the dataset at that
time by the respective algorithm. Therefore, the values of the CP model sometimes start
later or are not present in the figure. And since the GA uses a different stopping condition,
its visualized APD values stop at the time all instances in the dataset were computed.

4As mentioned in the introduction of this chapter, we chose Python due to the consider-
ably faster implementation time compared to C++. The speed of the method, hence, reflects
a trade-off between the implementation and computation time. Thus, the comparison is
from the practical standpoint, where both implementation and computation time play
a role.
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warm-started CP that combines a relatively good warm-start schedule found
by GA with the optimized CP search for scheduling outperformed both of
them in the case when the project makespan is minimized.
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Figure 7.5: APD from the criticalPathLB (in %) in time for different approaches
on selected datasets of the problem with the hard energy budget constraint.

dataset name CP ws-CP GA
j10_1min 66.48 66.48 69.10
j10_15min 30.49 30.49 31.56
j30_1min 31.50 30.78 38.70
j30_15min 8.36 7.75 11.84
MMLIB50_1min 53.13 42.49 54.45
MMLIB50_15min 13.96 9.82 18.25
MMLIB100_1min 598.27 44.33 58.10
MMLIB100_15min 240.59 12.61 26.34

Table 7.4: APD from the criticalPathLB (in %, rounded to 2 decimal places)
for individual algorithms on all datasets of the problem with the hard energy
budget constraint. The lowest values for each dataset are bold.

Similar differences between the compared approaches were also observed
on selected datasets in the case of the problem with total energy cost in
the objective regardless of the scenario (Figs. C.2 to C.4). This time, the
efficiency of the GA in the early phase is more significant and it takes more
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time until the other two approaches perform better. Warm-starting the CP
model still improves the CP. However, its benefits on larger instances are not
so big, and in the case of the MMLIB50_1min dataset, CP even outperformed
warm-started CP in the last (tens of) seconds of the search. On the other
hand, the CP without warm-starting results in significantly worse APD
in the case of the MMLIB100_1min dataset and, more importantly, did
not find any feasible solution in the given time limit in almost half of the
instances of the problem with total energy cost in the objective. To provide
the concrete values, the result APD from the weightedCriterionLB after
either 300 seconds or 50000 generated schedules for individual approaches
are summarized in Tables 7.5 to 7.7 for respective scenarios.

dataset name CP ws-CP GA
j10_1min 46.10 46.10 46.92
j30_1min 27.19 27.14 29.46
MMLIB50_1min 41.59 43.47 45.82
MMLIB100_1min 142.59 82.30 59.50

Table 7.5: APD from the weightedCriterionLB (in %, rounded to 2 decimal
places) for individual algorithms on selected datasets of the problem with total
energy cost in the objective in the scenarioCmax scenario. The lowest values for
each dataset are bold.

dataset name CP ws-CP GA
j10_1min 40.30 40.30 40.88
j30_1min 32.88 32.88 34.69
MMLIB50_1min 45.32 46.74 48.56
MMLIB100_1min 158.34 83.39 68.44

Table 7.6: APD from the weightedCriterionLB (in %, rounded to 2 decimal
places) for individual algorithms on selected datasets of the problem with total
energy cost in the objective in the scenarioequal scenario. The lowest values for
each dataset are bold.

dataset name CP ws-CP GA
j10_1min 29.37 29.37 29.66
j30_1min 31.50 31.51 33.47
MMLIB50_1min 41.19 41.42 44.56
MMLIB100_1min 143.69 73.07 65.66

Table 7.7: APD from the weightedCriterionLB (in %, rounded to 2 decimal
places) for individual algorithms on selected datasets of the problem with total
energy cost in the objective in the scenarioenergy scenario. The lowest values
for each dataset are bold.
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7.3 Summary of Experiments

From the measured results, we can conclude that different approaches are
more suitable for different problem instances.

Specifically, for the small instances with 10 activities, the CP model is the
best option since it finds an optimal solution in the order of a few seconds.
Finding a warm-start schedule is counterproductive in this case. For the
larger instances, the number of variables in the CP model increases, and its
efficiency notably decreases. In such instances, the warm-started CP model
starts to benefit from the provided warm-start schedule from the GA. It
performs better than the CP model since it takes some time (tens of seconds
in case of instances with 30 activities and notably more in case of larger ones)
until a feasible schedule is found by the CP.

As the results in Section 7.2.4 indicate, the genetic algorithm is suitable
mainly for middle and large-scale instances where the CP solver takes some
time to find a feasible solution. Specifically, in Section 7.2.2, we saw that even
when the initial generation is created in a naive way, like placing activities
one by one in the case of the “sequential” method, GA is able to significantly
improve the initial solutions in the first few generations.

However, the improvements in the solution quality in the later generations
of the GA are not that big. Therefore, it can be reasonable to stop the GA
after a few generations and try to improve the schedule by the CP solver
(ws-CP), especially in the case of the problem with the hard energy budget
constraint, in which a standard scheduling criterium (Cmax) is minimized.

In terms of the mode selection model in the GA, in Section 7.2.3, we saw
that even though the trained model is a relatively simple neural network,
the results showed that with the appropriate value of model probability
pmodel (e.g., 0.25 or 0.5 in our experiments), the GA with the mode selection
model outperform the base GA with random mode assignment. Hence, it
can improve the proposed GA, and it makes sense to further investigate the
incorporation of more complex machine learning models to the GA.

All in all, from the results of both of our problems, we conclude that the
problem becomes harder when the objective function becomes more complex,
such as the weighted criterion in the case of the problem with total energy
cost in the objective. Particularly, as we saw in Section 7.2.1, the percentage
of optimal solutions found by the CP models was notably lower compared to
the problem with hard energy budget constraint, even though the number of
variables in both CP models was the same.
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Chapter 8
Conclusion

In this thesis, we studied a Resource-Constrained Project Scheduling Prob-
lem (RCPSP) together with electrical energy consumption. The goal was to
extend the standard RCPSP formulation with the constraints and criteria
related to electrical energy with respect to existing literature and real-world
production.

Since, to the best of our knowledge, there is not any RCPSP variant in
the literature that would consider both hourly electricity prices and restrict
energy consumption during regular time intervals, we decided to formulate a
new problem variant. In particular, we focused on the Multi-Mode RCPSP
(MMRCPSP), which assumes that an activity can be processed in one of the
multiple alternative modes, and we extended each processing mode with energy
consumption so that it varies depending on mode. In addition, we added the
hourly Time-of-Use (TOU) electricity prices and maximum contracted energy
limits during regular 15-minute time intervals to the problem. With this new
extension of MMRCPSP, we formulated two similar problems differing in
how the total energy cost is regarded. In the case of the problem with the
hard energy budget constraint, the total energy cost is restricted by a hard
limit and the project makespan is minimized. Whereas in the case of the
problem with total energy cost in the objective, the hard budget limit is not
considered, and the total energy cost is combined with the project makespan
in the weighted linear combination criterion.

To solve these problems, we proposed and implemented both exact and
metaheuristic approaches. Specifically, we created CP models using the CP
solver IBM ILOG CP Optimizer [12]. As a metaheuristic approach, we
designed and implemented a genetic algorithm. It extends a genetic algo-
rithm GANS [19], which is one of the best metaheuristic algorithms for
the RCPSP, and adapts it to our problems. Moreover, we combined both
approaches into a warm-started CP model, where a GA is used for finding
the warm-start schedule, and the CP model tries to further improve the
warm-start solution. To further improve the implemented GA for the larger
instances, we also trained a relatively simple machine learning model to select
the most appropriate mode for activity in the GA sub-problem based on
the activity and sub-problem characteristics in the optimal solutions of the
smaller instances.
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For the evaluation of the proposed methods, we created several datasets

based on the existing MMRCPSP benchmark datasets PSPLIB [37] and
MMLIB [14]. We selected four sets of instances differing in the number of
activities in an instance (10, 30, 50, or 100 activities). From each set, we
created two new datasets varying in the time unit granularity (a single time
unit in an instance corresponds to either 1 minute or 15 minutes). In addition,
we extended the instances with energy consumption of activities per time
unit, energy consumption limits for each 15-minute window, electricity price,
and an energy budget limit.

Besides the comparison of all proposed approaches, in the experiments,
we also analyzed the optimality of found solutions by the exact CP models,
compared different methods of creating the initial generation for the GA, and
evaluated the use of the mode selection machine learning model in the GA.

The results of the experiments showed that the selection of an appropriate
method depends on the problem size, criterion, and available time for finding
the solution. For the smaller instances with 10 activities, the CP model is
the best option that is able to find optimal solutions in a few seconds. On
the other hand, for the larger instances, the better option is to use the GA
or combine it with the CP (i.e., warm-started CP). Last but not least, the
incorporation of a trained mode selection model to the GA can also slightly
improve the search on the larger instances.

8.1 Future Work

In the experiments, we showed that the use of a trained mode selection model
can improve the performance of the GA. Nevertheless, the proposed mode
selection model is rather a prototype since not much time was devoted to the
designing and testing of efficient features because this was not in the scope of
this thesis. Thus, future work may be in the development of better training
data with more sophisticated features or proposing more complex models and
evaluating their integration in the GA.

Although the experiments were performed on different-sized datasets that
extend the standard benchmark datasets, they are still artificially created
and can differ from real-world problems. Hence, it might be interesting to
see how all the proposed algorithms would perform on real-world production
data. We also believe that implementing the genetic algorithm in a faster
programming language might be beneficial for practical usage.

However, all of these suggestions are beyond the scope of this thesis.
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Appendix A
List of Abbreviations

APD Average Percent Deviation

CPP Critical Peak Pricing

CP Constraint Programming

GANS Genetic Algorithm with Neighborhood Search [19]

GA Genetic Algorithm

MILP Mixed-Integer Linear Programming

MMRCPSP Multi-Mode Resource-Constrained Project Scheduling Prob-
lem

NS Neighborhood Search

RCPSP Resource-Constrained Project Scheduling Problem

RTP Real-Time Pricing

SGS Schedule Generation Scheme

TOU Time-of-Use electricity tariffs
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Appendix B
List of Notations

The following is the list of symbols (and their meaning) used in the definition
of the problems studied in this thesis.

Symbol Meaning

A a finite set of activities
ai an activity with index i
M i a finite set of processing modes of activity ai

m a particular processing mode
dim a duration of processing of activity ai in mode m
K a number of types of resources
Rk a number of resources of type k, k ∈ {1, . . . , K}
rimk a required number of resources of type k by activity ai

in mode m
T a project horizon
t a discrete time unit, t ∈ {0, . . . , T}
si a start time of activity ai

S a schedule (it consists of start time si and processing
mode m ∈M i for each activity ai)

ai ≺ aj a precedence constraint between activities ai and aj

Cmax a project makespan
p(t) an electricity price at time t
cim a energy consumption of activity ai in mode m in a

single time unit
c(S, t) a total amount of consumed energy by schedule S at

time t
q a quarter period (15-minute time window)
Q a finite set of all quarter periods
Cq an energy consumption limit in a quarter q
energyCost(S) a total price of consumed energy by a schedule S
B a budget on the total energy cost of the whole project
α the weight of the project makespan criterion in the

weighted objective criterion
β the weight of the total energy cost criterion in the

weighted objective criterion
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Appendix C
Measured Data in Further Experiments

C.1 Effect of Initial Generation in GA
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Figure C.1: APD from the criticalPathLB (in %) in the number of generated
schedules for “fallback” methods of initial generation creation on MMLIB50_1min
instances of the problem with hard energy budget constraint.
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C.2 Comparison of Proposed Approaches
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Figure C.2: APD from the weightedCriterionLB (in %) in time for different
approaches on selected datasets of the problem with the total energy cost in the
objective in the scenarioCmax scenario.
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Figure C.3: APD from the weightedCriterionLB (in %) in time for different
approaches on selected datasets of the problem with the total energy cost in the
objective in the scenarioequal scenario.
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Figure C.4: APD from the weightedCriterionLB (in %) in time for different
approaches on selected datasets of the problem with the total energy cost in the
objective in the scenarioenergy scenario.
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