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Abstract

This thesis deals with relationships among features detected in sensor
data with different modalities: 2D RGB images and 3D data from rotating
LiDARs or depth cameras. It describes fundamental features for both
modalities and selects specific deterministic keypoint detectors. An algo-
rithm was designed to match features extracted from different modalities
for localization purposes. The algorithm uses the unique characteristics of
each modality to find corresponding pairs of their keypoints by utilizing
projection to 3D space, kd-tree structures and a nearest neighbour search.
These identified pairs are subsequently iteratively aligned in 3D space
to obtain a transformation between two data frames. The proposed
deterministic algorithm was implemented and evaluated in a simulated
environment across all selected detector pairs. The experiments showcase
the best performance for the pair of the SIFT used in image data and the
Shi-Tomasi detector used in 3D data, confirming the feasibility of such an
approach for rapid odometry in control systems.

Keywords: multimodal, matching, registration, LiDAR, depth cam-
era, position estimation, features, keypoints, Canny edge detector,
Shi–Tomasi corner detector, SIFT

Abstrakt

Tato práce se zabývá vztahy mezi prvky detekovanými v datech senzor̊u s
r̊uznými modalitami: 2D daty RGB sńımk̊u a 3D daty z rotuj́ıćıch LiDARů
nebo hloubkových kamer. Popisuje základńı př́ıznaky pro obě modality
a vyb́ırá konkrétńı deterministické detektory kĺıčových bod̊u. Pro účely
lokalizace byl navržen algoritmus, který zarovnává př́ıznaky extrahované
z rozd́ılných modalit. Algoritmus využ́ıvá jedinečné charakteristiky každé
modality k nalezeńı odpov́ıdaj́ıćıch pár̊u jejich kĺıčových bod̊u pomoćı
projekce do 3D prostoru, kd-stromových struktur a algoritmu hledáńı
nejbližš́ıho souseda. Takto identifikované páry jsou následně iterativně
zarovnány ve 3D prostoru pro źıskáńı transformace mezi dvěma da-
tovými rámci. Navržený deterministický algoritmus byl implementován
a vyhodnocen v simulovaném prostřed́ı pro všechny dvojice vybraných
detektor̊u. Experimenty ukázaly nejlepš́ı výsledek pro dvojici detektor̊u
SIFT použ́ıvaný v obrazových datech a detektor Shi-Tomasi použ́ıvaný
v 3D datech, což potvrdilo použitelnost takového př́ıstupu pro rychlou
odometrii pro ř́ıdićı systémy.

Kĺıčová slova: multimodálńı, zarovnáváńı, registrace, LiDAR, hloubková
kamera, odhad pozice, př́ıznaky, kĺıčové body, Cannyho hranový detektor,
Shi–Tomasi detektor roh̊u, SIFT
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1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
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With the advancement of multisource and multimodal sensors, various data represen-
tations of the same scene are captured through various sensor perceptions. The 2D images
captured by lightweight cameras as a set of two-dimensional grids are the most popular data
source representing scene information. Another prevalent category of sensors encompasses
those employed in 3D imaging techniques. These techniques can be categorized into two pri-
mary groups: the first relies on 3D inference from 2D matching relationships, often utilizing
structured light or stereo vision. The second category, more popularly adopted, is a 3D infer-
ence based on time-of-flight measurements, exemplified by LiDAR or depth cameras. However,
in this latter category, models directly obtained from 3D sensors lack inherent corresponding
relationships with 2D images, and they need to be coupled through matching algorithms.

The challenge of establishing corresponding relationships between 2D images and 3D
data could also be represented as determining the position and orientation of a camera relative
to a 3D model of a scene, also referred to as the image-based localization problem. It is an
essential step in many applications, such as location recognition, Augmented Reality (AR),
and visual navigation for autonomous vehicles.

Accurate localization serves as a foundational prerequisite for numerous navigation
tasks. For instance, precise information about their spatial orientation in the environment
allows autonomous mobile robots or pedestrians to plan optimal routes toward designated
goal locations. Although the Global Navigation Satellite System (GNSS) provides accurate
position estimates on a global scale, there exist situations where it faces significant errors
or fails to provide position estimates altogether. Also, an apparent drawback of GNSS is its
inability to provide information about other objects or the surrounding environment. Further
details concerning these challenges and additional motivations can be found in Section 1.1.

Against the backdrop of these challenges, this thesis is dedicated to tackling localization
in an intricate realm of multimodal domain. The proposed approach addresses the limitations
of GNSS by harnessing the potential of two distinct sensors: a conventional RGB camera and
a source of 3D information (a LiDAR or a depth camera). It uses a popular approach to robot
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localization to match sensor data against a previously acquired map. These chosen sensors
capture disparate modalities’ data, spanning two-dimensional and three-dimensional spatial
representations. The multimodal domain yield several challenges discussed in Section 1.2.

The premise of this thesis assumes the availability of an environment map where an
autonomous robot operates. In the first scenario, the map is acquired through the deployment
of either LiDAR or a depth camera. This map is represented in the form of a 3D point
cloud. In contrast, the robot is equipped solely with a camera that captures the surrounding
environment using colour images. In the second scenario, the premise involves the availability
of an RGB environmental map captured by a camera (e.g., Google Street View). In this case,
the map is represented by a collection of images, and the robot is equipped solely with a
LiDAR that captures the surrounding environment using a 3D point cloud. In both cases,
consequently, the need arises to fuse pre-existing map data with the obtained information.

Fusing image data with 3D point clouds presents a challenge due to differences in
appearance and modalities. Existing methods address this issue by projecting the 3D data
onto a 2D plane or reconstructing 3D point clouds from 2D images to facilitate data alignment
for pose estimation [1]. To establish mutual correspondence between these distinct data sets, it
will be necessary to identify features that accurately describe the respective space, regardless
of the modality. Our intuition says that there should exist geometric structures, such as
lines, planes, and corners, that can be captured in 3D maps and 2D images regardless of
appearance differences, modality gaps, and scale. Nongeometrical features will also be used
to avoid being limited to intuitive solutions. Therefore, one of the objectives of this thesis
is to review and compare the 2D and 3D geometric and nongeometric feature descriptor
correspondences regarding accurate and long-term camera localization.

Apart from selecting appropriate feature detectors, the challenges contain determining
a suitable feature association and finding the transformation between the two feature sets.
Such an algorithm should robustly identify corresponding point pairs from the given sets of
points in different modalities. Subsequently, based on these identified pairs, the algorithm
should calculate the mutual transformation between these modalities. This process aims to
estimate a transformation between the 2D image and the 3D point cloud, which should be
used for the localization in the 3D map.

1.1 Motivation

Autonomous robot navigation has been a significant subject of research for a long time.
For example, self-driving cars (also known as autonomous and driverless cars) have been si-
multaneously studied and developed by universities, research centres, car companies, and com-
panies of other industries worldwide since the middle 1980s [2], yet it is still a challenging and
unsolved task even today. The underlying prerequisites for achieving successful autonomous
navigation encompass precise localization of the robot and a comprehensive understanding
of its surrounding environment. Currently, the GNSS solutions provide the primary localiza-
tion mechanisms, furnishing unparalleled absolute positioning accuracy on the surface of the
Earth.

Nevertheless, the efficacy of GNSS-based systems can be hindered by various factors.
For instance, environments characterized by obstructions like tunnels or caves may impede
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the availability of GNSS signals, rendering the systems ineffective. Furthermore, in scenarios
such as urban canyons, the absence of a direct line-of-sight to satellites degrades the accuracy
of GNSS solutions, which may result in considerable positioning errors. Given the paramount
importance of ensuring safe and reliable autonomous navigation even these small inaccuracies
are problematic. Also, GNSS systems cannot inherently offer information about the robot’s
surroundings. GNSS cannot detect or identify objects such as other vehicles, pedestrians, road
signs, or obstacles in the environment. This limitation restricts the robot’s ability to perceive
and respond to dynamic changes in its surroundings and it makes it impossible to plan a path
overall.

Autonomous robot navigation systems often incorporate complementary sensors such
as LiDAR or depth cameras to address these limitations. Through these sensors, it is feasible
to ensure relative localization until satellite-based localization can be re-established. These 3D
sensors can also be employed for precise localization, provided an existing 3D environmental
map is available beforehand. An example of such a map is shown in Figure 1.1b.

For instance, this 3D map can be obtained through a prior robotic exploration utilizing
Simultaneous Localization and Mapping (SLAM) techniques. Alternatively, another viable
option is to leverage recent advances in Structure-from-Motion (SfM) techniques [3], [4] and
the fact that growing percentage of our world is covered by photos available on websites, such
as Flickr, Google Street View (see Figure 1.1a for example), and Mapillary, which then make
it possible to reconstruct the 3D structures on a large scale efficiently. These reconstructed
maps together with data from 3D sensors can be used for precise localization.

The widespread use of LiDAR sensors is limited due to their high cost and heavy
weight. Compared to that, cameras are low-cost and lightweight sensors, readily available and
commonly used for visual-inertial-based pose estimation and mapping methods for various
robot systems [5], [6]. Thus, the challenge for this thesis remains in utilizing conventional
cameras, without the use of LiDAR, for localization within a 3D map.

The spatial relationship between 2D and 3D space provides the promotion and reference
significance in developing computer vision applications and shares characteristics with robot
visual navigation. In augmented reality, the precise alignment of 2D images and 3D point
clouds is crucial for generating realistic and immersive virtual content that seamlessly interacts
with the real-world environment. The spatial relationship between these modalities allows for
creating compelling AR experiences, where virtual elements can be seamlessly integrated
into the physical world, enhancing user interaction and understanding. Principally, it requires
acquiring and maintaining an estimate of the camera position and orientation relative to some
geometric representation of its surroundings.

The fusion of images and point clouds is nowadays increasingly sought due to its valuable
spatial information about the external environment, not only for autonomous vehicles but
across various applications. Both sensors provide rich and complementary data which can be
fused and used by various algorithms and machine learning to sense and make vital inferences
about the surroundings. The basis of multi-sensor fusion is accurate extrinsic calibration
between sensors, that is, precise estimation of the relative transformation between sensors that
establishes a geometric relationship between their coordinate systems. The quest for a robust
and highly accurate algorithm for extrinsic calibration remains a contemporary challenge, as
the outcome of the external calibration significantly influences the subsequent quality of the
fusion of this data. Several methods have been developed to address the LiDAR and camera
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extrinsic, for example using mutual information (MI) [7] or standard calibration objects, such
as planar boards [8], planar boards with checkerboard patterns [9] or other calibration objects
such as a circle-based object in [10] and board with four circular holes and a single metal
trihedral corner as in [11]. But for solving this task, it is also possible to use place recognition
and localization by estimating transformation from 2D-3D matches. If the proposed method
of place recognition and localizations are sufficiently accurate, it is also possible to use it for
the initial approximate alignment of this calibration between the camera and LiDAR or depth
camera sensors if used on the same rigid robot body.

(a) An image from the Google Street View website
[12]

(b) A point cloud map generated from LiDAR sen-
sor data [13]

Figure 1.1: Illustration of an image and a point cloud map acquired by a camera and a LiDAR
sensor, capturing an urban cityscape

1.2 Challenges of using multimodal data

Across various disciplines, data about the same environment can be collected using
different types of detectors, operating under distinct conditions, or at varying observation
times. The term ”modality” serves to categorize each of these data acquisition frameworks.
Given the intricate characteristics of natural and urban environments that robots commonly
navigate, relying solely on a single modality seldom yields comprehensive situational aware-
ness. Consequently, the adoption of multiple modalities concurrently has been introduced as a
solution. However, this approach introduces several new challenges related to data alignment
or heterogeneous data representation.

Data alignment is a primary challenge in multimodal data fusion. Different modalities
often employ distinct coordinate systems, scales, and measurement units. Ensuring that data
aligns accurately is fundamental for a wide array of applications, from robotics [14, 15] to
healthcare [16, 17]. Robust registration techniques are required to establish correspondences
between modalities and minimize alignment errors.

Furthermore, the representation of data across various modalities can be highly het-
erogeneous. While some modalities may provide 2D data, others offer rich 3D information.
Although methods exist for projecting multidimensional data onto a unified framework, ad-
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dressing issues like viewpoint variations, occlusions, and perspective distortions remains chal-
lenging.

In addition to addressing the heterogeneity of the data, extracting semantic information
from multimodal data is another challenge. This is because specific modalities may excel in
capturing visual details while others might provide depth or spatial information. To illustrate,
the description of corner detection in a 2D image necessitates entirely different specifications
compared to characterizing a corner detected within 3D data. Consequently, combining these
diverse data sources to derive meaningful semantic insights is a complex and multifaceted
task.

1.3 Related Work

Matching multimodal features, especially in the context of combining 2D and 3D data,
has been a topic of considerable research interest in recent years. This is primarily driven by
its relevance in applications such as robotics, computer vision, and augmented reality, where
the fusion of different sensor modalities can provide a more comprehensive understanding
of the environment. To accomplish this, many research efforts have been directed towards
effectively aligning and matching 2D and 3D features.

While 2D modalities rely on cameras, LiDAR sensors that actively measure range in-
formation are frequently used for 3D modalities. Both LiDAR-based odometry and map-
ping [18,19] and visual-inertial systems [20,21], and even other techniques like thermal vision-
based solution [22] have successfully been used to solve the SLAM problem. Some existing
approaches tackle visual localization from a camera by detecting and matching visual fea-
tures [23]. Other methods have explored solutions for visual localization using visual features
extracted from LiDAR data [24]. These methods demonstrated sufficient accuracy and ro-
bustness in tested datasets.

However, SLAM frameworks that rely on a single modality are susceptible to sensor
degradation specific to the sensor type. Therefore, a different solution is needed with combi-
nation of complementary sensor data in multimodal SLAM frameworks. A possible solution
is the fusion of multimodal information, which stands out as a promising method, particu-
larly exemplified by the Multi-Modal SLAM (MIMOSA) framework [25]. This approach is
strategically devised to integrate data originating from diverse sensor modalities, such as
cameras, LiDAR, and inertial sensors. The significance of such multimodal integration lies in
its potential to address the intrinsic limitations of individual sensors, providing a more robust
and accurate foundation for the SLAM process. MIMOSA is tailored to enabling resilient
robotic autonomy in GNSS-denied and perceptually-degraded environments. This approach
uses decoupled point cloud registration and a fusion of multiple odometry estimates relying
on visible light and thermal vision. However, these frameworks integrate the outputs of the
independent pipelines for each modality in the so-called back-end of the SLAM process and
produce an output as a combination of the individual per-modality estimates. As written in
previous sections, this thesis exploits the advantages of both sensors to localize accurately in
3D maps without being equipped with a LiDAR. Thus, the method of matching data from
sensors directly is used instead of back-end integration in the proposed approach.

In recent research, addressing the challenge of multimodal feature matching predom-
inantly relies on deep learning-based methodologies. One of the pioneering works in this
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domain, dedicated to image-to-point cloud registration for robot localization, is the 2D3D-
MatchNet [26]. This approach leverages the extraction of 2D and 3D keypoints through SIFT
and ISS, respectively. Subsequently, a neural network with three branches is introduced to
facilitate the learning of keypoint descriptors. The transformation estimation between the
image and point cloud, established via 2D-3D correspondences, is realized using EPnP [27].
In the P2-Net [28], a batch-hard detector [29] is employed to generate a shared embedding
between distinct sensor modalities. However, this method restricts its training and testing
to sub-maps of sizes less than a meter, rendering it unsuitable for broader robotic applica-
tions. DeepI2P [30] split the image-to-point cloud registration problem into a classification
and an optimization problem. It incorporates a cross-modality neural network to classify
whether points fall within the image frustum. The classification outcomes are then utilized to
construct a cost function governing the inverse camera projection. An optimization solver is
subsequently engaged to derive the transformation minimizing the cost function. CorrI2P [31]
adopts a cross-modality network for extracting overlapping regions and dense descriptors be-
tween the image and point cloud. This facilitates the establishment of dense image-to-point
cloud correspondences, and an iterative RANSAC-based EPnP [27] is employed to estimate
the relative pose. EFGHNet [32] embraces a divide-and-conquer strategy, breaking down the
image-to-point cloud registration into four sub-networks that are sequentially applied and in-
dependently optimized. In contrast, I2PNet [33] introduces an end-to-end 2D-3D registration
network, where all parts are differentially united and jointly optimized. This integration al-
lows for the refinement of errors in subsequent modules, ultimately enhancing the robustness
of the registration process.

However, using deep learning brings disadvantages. Deep learning models, especially
deep neural networks, are inherently complex. This complexity can make them challenging
to understand and interpret. This is particularly problematic in scenarios where model inter-
pretability and explainability are crucial, such as safety-critical applications. Another disad-
vantage is that deep learning models often require vast amounts of labelled data to be trained
effectively. In the context of multimodal feature matching, this can be a significant draw-
back, as collecting labelled data for both 2D and 3D modalities can be time-consuming and
expensive. Additional issues might be associated with overfitting or a lack of generalization.

In contrast to deep learning-based methods, the literature contains fewer instances
of approaches for camera localization in geometric maps constructed from LiDAR data via
mathematical computation. One example introduced a technique for localizing autonomous
vehicles in urban environments [34]. This method utilizes LiDAR intensity data to generate
a synthetic representation of the mapped ground plane, subsequently matching it with the
camera image by maximizing normalized mutual information. However, it offers a limited
3-DoF pose estimation. Conversely, another approach introduces estimation of the complete
6-DoF camera pose [35]. Its appearance prior (map) fuses geometric and photometric data
to create a reference view, matched against the live image by minimizing the normalized
information distance. Both methods conduct matching operations in 2D space, necessitating
computationally intensive image rendering supported by GPU hardware. Additionally, their
prior comprises LiDAR intensities or visual textures. In contrast, a method [36] exclusively
relies on geometric information. In this work, researchers utilized the 3D positions of visual
features with triangulated depths to construct local feature clouds, aligning them with the Li-
DAR map through graph optimization, obviating the GPU-intensive rendering step. However,
this method has the drawback of requiring a robust initialization. Ground truth trajectory
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data can be employed for this purpose, facilitating interpolating the first two keyframes’ poses.
In cases where such trajectory data are unavailable, an alternative initialization procedure is
necessary, such as manual alignment between a reconstructed point set and the 3D LiDAR
map.

Similar to the previous approach, this thesis uses key points that establish a shared
embedding between the image and point cloud. Moreover, this thesis tries to avoid robust
initialization conditions such as manual interventions, even in cases where the ground truth
camera trajectory is unknown.

Many works exist that test and compare methods to extract 2D or 3D local features.
A theoretical overview and evaluation of point cloud detectors and descriptors is given in
[37] or with a specific focus on detectors in a publicly available Point Cloud Library1 is
given in [38]. [39] provides detailed descriptions for representative recent algorithms of visual
feature detection, and [40] discusses the implementation and comparison of a range of the
Open Computer Vision (OpenCV) library 2 feature detectors. Inspired by these works, this
thesis tests and compares all pairs of selected 2D and 3D keypoints detectors for multimodal
matching.

1.4 Outline

This thesis is partitioned as follows. Firstly, the principle of the pinhole camera is intro-
duced, along with a detailed description of the sensors employed in this work, including colour
cameras, depth cameras, and LiDAR, in Chapter 2. Additionally, in this chapter, the process
of transforming these data between 2D and 3D spaces is described. Secondly, the detection
of features from images is presented, in Chapter 3. This chapter outlines their basic catego-
rization and provides an in-depth description of selected methods. Thirdly, the detection of
features from 3D data is elaborated upon, in Chapter 4. This includes the direct detection of
keypoints points from 3D space, as well as the conversion of 3D data into 2D and the appli-
cation of methods for image feature detection. Next, a methodological approach is described
for finding mutual transformations between modalities in 3D and 2D space, in Chapter 5.
The chapter also introduces the developed algorithm for identifying mutual correspondences
among keypoints and their subsequent alignment. Fifth, an analysis of multimodal matching
is provided in Chapter 6. This chapter presents the simulation results and compares all pro-
posed methods for feature detection, evaluating them in comparison to unimodal matching.
Finally, the thesis is concluded in Chapter 7 by summarising the achieved objectives and
future extensions of the work.

1Point Cloud Library, https://pointclouds.org/
2OpenCV, https://opencv.org/

https://pointclouds.org/
https://opencv.org/
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1.5 Mathematical Notation

Summary of mathematical notation used throughout the thesis is presented in Table 1.1.

Symbol Example Description

upper or lowercase letter m, M, M a scalar
bold upper letter R a matrix or set
bold lowercase letter h a column vector

upper index T RT , x T matrix and vector transpose
bar index d̄ a normalized column vector
lower index i Ri, pi R, r at discrete time step i

Table 1.1: Overview of the mathematical notation
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1.6 Table of Symbols

Chapter Symbol Description

Preliminaries (Chapter 2) f Focal length
m Point on the image plane
P Point in space
K Camera calibration matrix
(cx, cy) Principal point coordinates
(u, v) Image-pixel coordinates
k1, k2 Radial distortion coefficient
p1, p2 Tangential distortion coefficient

Image feature detection (Chapter 3) I Pixel intensity
(x, y) Point (pixel) coordinates

Methodology (Chapter 5) I Pixel intensity
Imax, Imin Image intensity extreme values
(x, y) Pixel coordinates

Table 1.2: Summary of symbols utilized
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Chapter 2: Preliminaries

Contents

2.1 Pinhole Camera Model . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

In this thesis, various sensors are used to capture the surrounding space. However, these
sensors gather distinct data, resulting in different modalities. Specifically, a camera is utilized
to capture RGB images, a depth camera records depth images, and a LiDAR captures 3D
LiDAR range data. The data acquired from these sensors are registered in different dimensions,
either 2D or 3D. The subsequent section will provide a more detailed description of these
sensors to help understand how the data can be effectively transformed between 2D and 3D
domains. Both the camera and the depth camera utilize the principle of a pinhole camera,
which enables the representation from the 3D space into 2D and vice versa.

2.1 Pinhole Camera Model

The pinhole camera model is a fundamental concept in computer vision and computer
graphics. It is a simplified mathematical representation of the formation of an image by the
interaction of light rays with the camera’s imaging sensor. In the pinhole camera model, a
small aperture (or pinhole) is assumed to exist in front of the imaging sensor and light rays
from the scene pass through this aperture to form an inverted image on the sensor plane. To
simplify the mathematical depiction, the pinhole camera model incorporates an intermediary
virtual image plane between the camera’s focal point and the captured scene. Positioned at
the focal length f(m), this virtual image plane operates in parallel with the actual image plane
behind the focal point, sharing an equivalent distance from the focal point. Employing the
virtual image plane in front of the focus ensures that the projected image remains unrotated.
The model also assumes that light rays travel in straight lines and do not undergo any
distortion within the camera system. Consequently, the pinhole camera model is considered
a perspective projection, where parallel lines in the 3D world converge to a point in the 2D
image.

Mathematically, the pinhole camera model can be described using simple linear equa-
tions. Consider a pinhole camera model, where the centre of projection Fc serves as the origin
of a Euclidean coordinate system. The plane Z, defined by the equation z = f , is referred
to as the image plane, where f represents the focal length, and Z coincides with the plane
aligned along the optical axis. The intersection point of the optical axis with the image plane
is termed the principal point, with the coordinates (cx, cy). Given a point P in the 3D space,
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specified by its coordinates P = (X, Y, Z), then its projection onto the image plane is the
point m = (u, v). This projection is defined as the intersection of the image plane with
the line connecting point P and the centre of projection Fc. This process is illustrated in
Figure 2.1. Utilizing the theory of similar triangles, we can establish that point (X, Y, Z)T

is projected onto the point
(
f X

Z , f
Y
Z , f

)T
, denoted as m, which lies on the image plane and

can be termed the image point [41].

Figure 2.1: Projection of a point in space onto a point on the image plane [42]

When representing the points in space and on the image plane in matrix form, the
central projection can be elegantly described as a linear mapping between their homogeneous
coordinates. This mapping can be expressed using matrix multiplicationuv

1

 ∼
f 0 cx

0 f cy
0 0 1

XY
Z

 . (2.1)

The matrix on the right-hand side of the equation is known as the camera matrix K. Using
the camera matrix, the Equation 2.1 can be written as

m ∼ KP. (2.2)

By expressing the equations for image-pixel coordinates u and v, the central projection can
be also described as

u =
fX

Z
+ cx,

v =
fY

Z
+ cy.

(2.3)

In real-world camera systems, deviations from the ideal pinhole model occur due to
various optical and mechanical imperfections. These imperfections lead to distortions in the
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captured images. The two most common types of distortions are radial distortion and tan-
gential distortion.

Radial distortion is caused by the lens system’s inability to focus light rays ideally onto
the image sensor. It results in straight lines appearing curved in the image. Radial distortion
can be further divided into barrel distortion and pincushion distortion. Barrel distortion causes
straight lines to curve outward from the centre of the image, giving a bulging effect. It is more
prominent towards the edges of the picture. Pincushion distortion, on the other hand, causes
straight lines to curve inward towards the centre, resulting in a pinched effect. Both effects
are shown in Figure 2.2.

Figure 2.2: Illustration of barrel and pincushion distortion effect on a square grid [43]

Radial distortion is typically modelled using radial distortion coefficients, often denoted
as k1 and k2. Mathematically, it can be expressed as

udistorted = u(1 + k1r
2 + k2r

4), (2.4)

vdistorted = v(1 + k1r
2 + k2r

4), (2.5)

where udistorted and vdistorted are the distorted image coordinates, u and v are the undistorted
image coordinates, and r is the distance from the principal point.

Tangential distortion occurs when the lens and the image sensor are not perfectly paral-
lel. This leads to a skewing effect where lines that should be parallel in the real world appear
to converge or diverge in the image. Mathematically, tangential distortion can be represented
as

udistorted = u+ (2p1uv + p2(r
2 + 2u2)), (2.6)

vdistorted = v + (p1(r
2 + 2v2) + 2p2uv), (2.7)

where udistorted and vdistorted are the distorted image coordinates, u and v are the undistorted
image coordinates, p1 and p2 are tangential distortion coefficients, and r is the distance from
the principal point.

2.2 Sensors

As mentioned in the introduction of this chapter, this thesis utilizes three distinct sen-
sors: LiDAR, depth camera, and RGB camera. Each of these sensors records its surrounding
environment in different ways, resulting in diverse dimensions of data representation. A de-
tailed explanation of the functioning of each sensor will be provided, along with the methods
for representing the acquired data in both 2D and 3D formats.
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2.2.1 LiDAR

Light Detection and Ranging (LiDAR) is an active sensor for capturing precise three-
dimensional information about the surrounding environment. It operates by emitting laser
pulses towards the target area and measuring the time the laser beam returns after reflection
from objects in its path. By analysing the time-of-flight data, LiDAR systems can determine
the distances to objects in the environment in a structured manner. The generated structure is
a highly accurate (±0.9 cm for ranges less than 10 m from LiDAR) 3D point cloud representing
the scene.

Mathematically described, a LiDAR sensor emits a laser beam with a known wavelength
λ (m), propagating it towards the target surface. Upon encountering an object, such as the
ground or a structure, the laser beam is scattered and reflected towards the sensor. The time
taken for this round trip, known as ”time of flight,” is denoted as ∆ t(s). The speed of light
in the medium (usually air) is represented as c (m/s). By applying the equation c = λ · f ,
where f (Hz) is the frequency of the laser pulses, the distance d (m) to the object can be
calculated as

d =
c∆t

2
. (2.8)

Since LiDAR measures the distances in the line of sight, additional angular information
is required to reconstruct the 3D geometry of the scene accurately. For this purpose, LiDAR
sensors are equipped with an azimuth angle θ(rad) and an elevation angle ϕ(rad) encoders
to determine the position of each laser point relative to the sensor’s coordinate system. By
combining distance measurements with angular information, LiDAR systems construct dense
and precise 3D representations of any environment. An example of a 3D point cloud is shown
in Figure 2.3b.

To acquire data from LiDAR in a digital form, the 3D point clouds are typically con-
verted into a 2D matrix representation. This process involves discretizing the continuous 3D
space into a grid and determining which grid cells are intersected by the LiDAR laser beams.
Each cell in the grid corresponds to a pixel in the 2D matrix, and the intensity of the pixel
is associated with the distance or reflectivity of the corresponding point in the 3D point
cloud. The Figure 2.3a shows an example depth image constructed from LiDAR data. This
projection of 3D point clouds to 2D matrices allows for efficient storage and processing of
LiDAR data. It also allows for processing the data as images using computer vision analysis
techniques.

2.2.2 Depth camera

A depth camera, also known as a 3D camera or range camera, is an advanced imaging
device that goes beyond the capabilities of traditional cameras by capturing both the visual
appearance of a scene and the distance information from the camera to various objects in
the scene. This allows to create depth maps or point clouds, providing a comprehensive
representation of the 3D structure of the surrounding environment.

The depth camera’s mathematical principles are closely related to the pinhole camera
model, which forms the base model for traditional cameras. The pinhole camera model pro-
vides the foundation for the camera’s imaging process, and the additional depth estimation
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(a) Output in the form of a depth image

(b) Output in the form of a point cloud

Figure 2.3: Example and comparison of LiDAR outputs in 2D and 3D

techniques complement the pinhole camera model by providing valuable spatial information
about the scene. The operation of depth cameras commonly uses one of two main approaches:
triangulation and time-of-flight (ToF) measurement, which are essential components of the
camera’s depth estimation process.

In the triangulation approach, the depth camera emits a pattern of structured light or
infrared signals onto the scene. The position of the light source emitting the structured light
pattern differs from the position of the corresponding point on the object in the scene. The
depth camera then captures the reflected light pattern, and by analysing the displacement of
the pattern in the camera’s image plane, the depth camera can calculate the distance d (m)
between the camera and the object using trigonometric principles. This process is known as
the triangulation equation

d =
Bf

displacement
, (2.9)

where B (m) is the baseline distance between the light source and the camera’s optical
centre, and f (m) is the focal length [44].

In the time-of-flight measurement approach, the depth camera emits short pulses of
light or infrared signals, and the time taken for the signals to return to the camera’s sensor
is measured. The time of flight τ (s) is then converted to a distance measurement using the
speed of light c (m/s), as described by Equation 2.8 as

d =
cτ

2
. (2.10)

The output of the depth camera is a greyscale depth image, where shades of grey
represent the distance of an object from the camera (see Figure 2.4a). The depth image
obtained from the depth camera can be utilized to calculate the corresponding 3D point in
the scene from a given pixel in the depth image. By applying the pinhole camera model and
the known camera parameters, such as the focal length and camera intrinsic matrix, the depth
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value of a specific pixel can be converted into 3D coordinates. The 2D-to-3D projection can
be derived from Equation 2.3 as

X =
(u− cx)d

f
, (2.11)

Y =
(v − cy)d

f
, (2.12)

Z = d, (2.13)

where u, v are the coordinates of the pixel in the depth image, d is the depth value of the pixel
(u, v), and X, Y , Z are the 3D coordinates of the point in the camera’s coordinate system
corresponding to the pixel (u, v). The resulting point cloud obtained through this method is
depicted in Figure 2.4b.

(a) Output in the form of a depth image (b) Output in the form of a point cloud

Figure 2.4: Example and comparison of depth camera outputs in 2D and 3D

2.2.3 RGB camera

An RGB camera, or just a camera, is an essential imaging device. At its core, a camera
captures visual information about the surrounding 3D environment and transforms it into 2D
images (see Figure 2.5a). The fundamental principle underlying the operation of a camera is
based on the pinhole camera model. While it may not fully represent real-world complexities,
the pinhole camera model serves as a fundamental concept for camera imaging principles.
Compared to the depth camera, the RGB camera utilizes three image sensors, each sensitive to
one of the primary colours: red, green, and blue. By combining the intensity values from these
sensors, the RGB camera generates full-colour images, representing the scene as perceived by
the human visual system.

The mathematical description of the RGB camera’s operation involves the principles
of colour theory and image processing. Each image sensor in the RGB camera measures
the intensity of light in its corresponding colour channel. Let Ir(u, v), Ig(u, v), and Ib(u, v)
denote the intensity values at pixel coordinates (u, v) in the red, green, and blue channels,
respectively. These intensity values typically range from 0 (no light) to 255 (full intensity) for
each channel. To create a full-colour image, the RGB camera combines the intensity values
from the three channels. The combined colour image IRGB(u, v) at pixel coordinates (u, v)
can be expressed as a vector in the RGB colour space

IRGB(u, v) = [Ir(u, v), Ig(u, v), Ib(u, v)]T . (2.14)
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Certain algorithms rely on single-channel images, necessitating the conversion of RGB
images into a grayscale format. This transformation is essential for acquiring a black and white
image representation, where each pixel contains a single intensity value. To achieve this, a
weighted combination of the red, green, and blue colour channels is employed to represent
each pixel in the grayscale image. The grayscale intensity Igray(u, v) at a pixel (u, v) can be
mathematically expressed as

Igray(u, v) = wrIr(u, v) + wgIg(u, v) + wbIb(u, v), (2.15)

where wr, wg, and wb determine the contributions of each colour channel to the grayscale
intensity. Commonly used weights to achieve perceptually balanced grayscale images are
wr = 0.2989, wg = 0.5870, and wb = 0.1140, which ensure that the resulting grayscale
image resembles the human perception of luminance. The grayscale image obtained through
this process preserves the structure and visual information of the original RGB image while
reducing the colour information to a single intensity value per pixel.

Applying the pinhole camera model with known camera parameters, including focal
length and intrinsic matrix, enables the projection of 3D spatial coordinates of a specific
point in space onto a 2D image plane. This plane constitutes the medium through which
the sensor acquires data, manifested as colour or grayscale images, ultimately serving as the
camera’s output.

In the case of an RGB camera, obtaining information about the surrounding environ-
ment in the form of 3D data is significantly more complex. This complexity arises from the
inherent limitation of RGB images in providing direct depth information, i.e., the distance of
objects from the camera sensor. Unlike depth cameras or LiDAR, which can directly measure
distances, RGB cameras capture colour information without any depth-related cues. As a
result, the information about object distances is entirely missing in the RGB images, making
the task of 3D reconstruction more challenging. A key concept in this process is the utilization
of rays to establish correspondences between image pixels and 3D points.

In 3D reconstruction, each pixel in the image is considered to be the projection of a 3D
ray originating from the camera’s centre of projection (referred to as the focal point). These
rays pass through the pixel coordinates on the image plane and project into 3D space.

A pinhole camera model is adopted, with the camera intrinsic matrix K ∈ R3×4. For a
3D point P = (X,Y, Z)T in the camera’s coordinate system, it is projected onto the image
plane as m = (u, v)T using the following equationuv

1

 ∼ K

XY
Z

 . (2.16)

To perform 3D reconstruction, the process is reversed. Given a pixel (u, v) in the image,
we consider it as the projection of a 3D ray originating from the camera’s centre of projection.
The direction vector of the ray d = (dx, dy, dz)

T can be computed by applying the inverse of
the camera intrinsic matrix K−1 to the pixel coordinatesdxdy

dz

 = K−1

uv
1

 . (2.17)
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Subsequently, the direction vector d is normalized to have a unit length

d̄ =
d

‖d‖2
. (2.18)

Through the utilization of the direction vector d̄, rays are cast from the camera’s centre of
projection into 3D space. The resulting ray cloud obtained through this equation is depicted
in Figure 2.5b.

(a) Output in the form of a colour image (b) Output in the form of a ray cloud

Figure 2.5: Example and comparison of RGB camera outputs in 2D and 3D
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Visual features refer to visual structures in images and primitives and generally serve as
distinctive image characteristics. Image feature detection involves identifying these structures,
such as points, lines or curves, and regions, also more high-level classification as geometric,
gradient-based, histogram-based and learning-based feature detectors, all to highlight salient
visual cues in digital images. However, this is a low-level processing step that in all cases takes
pixel intensities on input and produces image structures indicating different characteristic
properties on output. The uses of visual features are numerous, ranging from classifying
medical conditions in x-ray imagery to understanding the environment around a mobile robot.
A shared concept among all application scopes is the focus on extracting salient (unique) and
stable (temporally and spatially) features in an efficient manner.

Achieving the desired properties and robustness is still an ongoing problem, particularly
due to many difficulties in the extraction, such as changes in scale, viewpoint, illumination and
quality of images. A high-performance feature detector should show robustness to changing
imaging conditions (for example, scene illumination, motion blur, and image noise) as well
as satisfy other interests such as efficiency, accuracy and repeatability and generalizability.
Besides, computational efficiency needs to be considered in real-time applications.

Visual features are closely related to human perceptual organization. Psychological re-
search on Gestalt laws has demonstrated that the human visual system has a tendency to
group low-level image components [45]. This system, according to Gestalt factors, organizes
visual stimuli based on factors such as proximity, similarity, continuity, and closure. As com-
puter vision seeks to simulate human visual perception using cameras and computers, visual
feature detection draws inspiration from human visual perception. It follows that primitive
features such as edges, contours, corners, and regions, highly relevant to human visual percep-
tion, are therefore utilized in visual feature detection [46]. This thesis is focused on geometric
and gradient-based methods, but other types exist, such as local descriptors, histograms or
learned vectors. In order to better describe the individual methods, it is essential to clarify
the related concepts (see also Figure 3.1).

1. Edge refers to pixels at which the image intensities change abruptly, with pixel intensities
being discontinuous at different sides of edges. In other words, there is a high-intensity
gradient flow at an edge.
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2. Contours/boundaries have ambiguous definitions, but in the context of low-level fea-
tures, they refer to intersecting lines/curves of different segmented regions.

3. Corners are points at which two different edge directions occur in the local neighbour-
hood, being the intersection of two connected contour lines.

4. Regions refer to a closed set of connected points, with nearby and similar pixels being
grouped to compose the region of interest [39].

(a) Edge (b) Corner (c) Region

Figure 3.1: Example of visual features in computer vision

The definitions mentioned above have natural and close connections. Specifically, con-
tours or boundaries can be obtained through the tracking and connection of neighbouring
edges. Corners are defined as the points where straight edge lines intersect, while the intersec-
tion curves between different regions make up boundaries. Visual feature detection methods
are typically classified into three categories: edge detection, corner detection, and blob detec-
tion, which can also be referred to as the detection points or regions of interest. Edge and
corner detection were chosen as suitable points of interest for cross-modal matching due to
their clear definition and detection in both modalities: image data and 3D spatial data. In
contrast to corners and edges, blobs refer to local regions of interest that typically lack a
direct geometric representation in space. However, it is still possible to detect blobs in both
modalities and due to their local region description, they also could have the potential for
cross-modal matching. Therefore, they were also selected for this thesis.

The categories of edge, corner and block feature detection will be described in detail
in the following section. To better showcase the distinctions of the categories, each section
contains a detailed description of its representative method. Special emphasis is laid on meth-
ods with the potential of 3D space expansion, as is needed for connecting the image-feature
theory with 3D-feature extraction, discussed in Chapter 4.

3.1 Edge detection

Edges are sharp transitions in image brightness that are commonly detected using
differential operators. These operations capture the strength and position of discontinuities
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in image brightness. Edges are also used for the detection of contours or boundaries, which
represent more general information and describe the intersection of various regions. Thus
edges have a crucial role in image interpretation.

When extracting edges from a two-dimensional image of a three-dimensional scene,
the edges can be classified as a viewpoint dependent or a viewpoint independent. Viewpoint
dependent edges may change as the viewpoint changes and typically reflect the geometry
of the scene, such as objects occluding one another. Compared to that, a viewpoint inde-
pendent edges represent inherent properties of the three-dimensional objects independent of
the observer’s position or orientation. It often corresponds to contours or boundaries repre-
senting distinct objects, surface markings, and surface shapes. These edges are crucial for
object recognition, image matching, and 3D reconstruction, as they can be used to infer the
underlying structure and geometry of the objects in the scene [47].

Various methods have been developed for edge detection, including gradient-based,
Laplacian-based, and Canny [48] edge detection. Gradient-based methods use the first-order
derivatives of the image intensity function to detect edges. Laplacian-based methods use the
second-order derivatives to detect edges, and Canny edge detection uses a combination of
both approaches, which have proved to be a robust and effective method due to its ability to
identify edges with high accuracy while minimizing the detection of false edges [49].

The Canny edge detector is based on the computational theory of edge detection, which
models edge detection as an optimization problem with three criteria; detecting edges with
a low error rate, meaning the detector should accurately capture as many edges as possible,
accurately localizing the point detected by the operator in the edge’s centre and avoiding
multiple markings of a given edge in the image while minimizing false edges [50].

The Canny edge detector involves a multi-stage process that begins by applying a
Gaussian filter to smooth the image and reduce noise. The Canny algorithm explicitly uses a
two-dimensional Gaussian function

G(x, y) =
1

2πσ2
exp−

x2+y2

2σ2 , (3.1)

where σ is the size of the standard deviation of the distribution determining the desired
degree of smoothing and the scale of the edges in the image. Typically, a convolution kernel
approximating a Gaussian filter with a σ of 1.0 is used. The smoothed image is then used
to calculate the gradient, representing the rate of change in image intensity. The gradient
is calculated using a Sobel operator, which returns a value for the first derivative in the
horizontal direction Gx and the vertical direction Gy

Gx =

−1 0 1
−2 0 2
−1 0 1

 , Gy =

−1 −2 −1
0 0 0
1 2 1

 . (3.2)

It is also possible to use different operators to approximate the first derivative of the image,
for example, the Sobel–Feldman operator, the Scharr filter or the Prewitt operator.

The second stage of the Canny edge detector involves identifying the direction of edges
by calculating the magnitude and direction of the gradient. The gradient magnitude G is
calculated as the square root of the sum of the squares of the x and y gradients

G =
√
G2

x +G2
y, (3.3)
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whereas the gradient direction theta is given as the arctangent of the ratio of the y gradient
to the x gradient with the formula

θ = arctan

(
Gy

Gx

)
. (3.4)

The gradient magnitude G of each pixel and its corresponding gradient direction θ is then
used to suppress non-maximum edges. Each pixel is checked if its gradient magnitude is more
significant than its two neighbouring pixels along the gradient direction. If the current pixel’s
gradient magnitude is the local maximum, it is retained as a firm edge point. Otherwise, it
is suppressed. This step helps to reduce the thickness of the edges and remove weak or false
edges.

The final stage of the Canny edge detector applies hysteresis thresholding, where the
remaining edge pixels from non-maximum suppression are classified as either firm or weak
edges based on their gradient magnitude. This thresholding step ensures that only the pixels
with maximal magnitude in the gradient direction are recorded as strong edge points, highly
likely to represent actual edges in the image. Figure 3.2 illustrates the contrast between
different threshold values set in the image processing. To form the final edge map, the Canny
edge detector performs edge tracking by connecting weak edges to firm edges if they are
spatially adjacent. A weak edge is also classified as a firm edge if it is connected to a firm
edge [48].

(a) Threshold = 20 (b) Threshold = 70 (c) Threshold = 180

Figure 3.2: The Canny edge detector with different threshold values

3.2 Corner detection

Corner detection is an important aspect of image understanding because it is a feature
of the image that is invariant to transition, rotation, and partially scale changes. Corners
are defined as the intersecting points of two connected straight edge lines. Alternatively,
they are also known as junctions, where the edges of an image meet at a point with a high
degree of angular deviation. The definition of a corner, as a connection of straight edge lines,
mathematically refers to the point where two dominant and different gradient orientations
exist. Corner detection provides a wealth of information on the neighbourhood of corners.
Corners are also unique in local regions compared to edges, making them favoured for wide
baseline matching.

The definition of a corner suggests that corners are dependent on scale. Corner detection
and multi-scale analysis are straightforward and essential ways to identify points of interest.
Reversely, corners can be viewed as points of interest at a fixed scale. There are three classes of
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corner detection methods: classical gradient-based, template-based, and contour-based detec-
tion. Classical gradient-based corner detection relies on gradient calculation. Template-based
detection compares pixels, and in recent years, templates have been combined with machine
learning techniques. Contour-based detection, on the other hand, relies on contour and bound-
ary detection results to identify corners [39].

The Harris corner detector [51] proposed in 1988 is probably the most widely used
detector for corner detection. It is an eigenvalue-based feature point detector known for its
strong invariance to image noise and rotation [52]. The Harris corner detector operates by
computing the local auto-correlation function of a signal, which measures the local changes of
the signal with patches shifted by a small amount in different directions. The auto-correlation
function defined for a given shift (∆x,∆y) and a point (x, y) is given as

E (u, v) =
∑

x,y
w(x, y) [I (x+ u, y + v)− I(x, y)]2 , (3.5)

where E is the difference between the original and the moved window, u and v refer to the
window displacement in the x and y direction, w(x, y) refers to the weighting function of
the window at position (x, y), commonly represented by a Gaussian or a window of ones,
I(x+u, y+ v) is the intensity of the moved window and I(x, y) is the intensity of the original
image [53].

By using the Taylor series and expanding the square in Equation 3.5 it can be further
rewritten as

E(u, v) ≈ [u v]

(∑
x,y
w(x, y)

[
I2x IxIy
IxIy I2y

])[
u
v

]
. (3.6)

By substitution, the equation can be further simplified as

E(u, v) ≈ [u v]H

[
u
v

]
, (3.7)

where H represents Harris-Matrix

H =
∑

x,y
w(x, y)

[
I2x IxIy
IxIy I2y

]
. (3.8)

The Harris corner detector then defines a corner response R

R = Det (H)− k (Trace (H))2 = λ1 · λ2 − k (λ1 + λ2)
2 , (3.9)

where λ1 and λ2 are eigenvalues of H, Det(H) = λ1 · λ2, Trace(H) = λ1 + λ2, and k is a
constant [54].

The Harris corner detector is favoured for its robustness against image noise and ability
to handle rotational transformations. It is suitable for various computer vision applications, for
instance, camera calibration, augmented reality, structure from motion or visual simultaneous
localization and mapping.

Harris was further improved by Shi and Tomasi in 1994 [55], with their aim to address
some limitations of the original detector and provide a more reliable corner detection method.
Shi and Tomasi redefined the corner response as minimum eigenvalue

R = min(λ1, λ2), (3.10)
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which produces feature points that are more stable and accurate for tracking than the Harris
detector [56]. Additionally, Shi and Tomasi introduced a threshold parameter to distinguish
corners from non-corners. Pixels with a corner response value more significant than the thresh-
old are identified as corners. This step also helps to reduce false positives and improves the
overall accuracy of corner detection. Figure 3.3 demonstrates the distinctions resulting from
various threshold settings.

(a) Threshold = 0.01 (b) Threshold = 0.1 (c) Threshold = 0.33

Figure 3.3: The Shi-Tomasi corner detector with different threshold values

3.3 Keypoint detection

Keypoints or interest points are referred to as local extremes in scale-location spaces,
describing surrounding areas, typically circular or square regions. Compared to that, interest
regions are referred to as segmented irregular regions with defined constancy. Interest point
detection aims to find local extremes in pyramid spaces, and interest region detection aims
to identify regions with constancy by segmentation techniques.

Interest points can provide an informative representation of digital images. They refer
to local extrema in 3-dimensional scale spaces with locations and scales as axes. Thus, interest
points can be mathematically denoted as (x, y, σ), where (x, y) indicate the location and σ
indicates the scale. A corner can be viewed as a point of interest at a fixed scale. Furthermore,
every point of interest is given a feature descriptor, a compact and informative representation
of the local image content surrounding this point. These descriptors can encode relevant
information about the intensity, texture, or gradients in the neighbourhood of the interest
points. They can be obtained inside square or circular regions centered at (x, y) with the size
determined by the scale σ [57]. Various interest point detection methods are proposed, such
as Hessian–Laplacian [58], SIFT [59], SURF [52], MSER [60], BRISK [61], and FREAK [62].
Figure 3.4 illustrates the contrast between different sigma values set in the SIFT keypoints
detector.

Classical methods including Laplacian of Gaussian (LoG), difference of Gaussian (DoG)
and Hessian–Laplacian are based on Gaussian pyramid construction. The scale space of an
image is defined as a function L(x, y, σ) that is the result of the convolution of a variable-scale
Gaussian G(x, y, σ) with an image I(x, y) as

L(x, y, σ) = G(x, y, σ) ∗ I(x, y), (3.11)

where ∗ is the convolution operation in x and y, and the Gaussian scale-space kernel is defined
as

G(x, y, σ) =
1

2πσ2
exp
−x

2+y2

2σ
2 . (3.12)



3.3. Keypoint detection 25

The Gaussian pyramid is then constructed by increasing σ. LoG is based on the Laplacian of
Gaussian filtered scale space. Each layer of LoG pyramid is defined as

∇2L = Lxx + Lyy, (3.13)

where Lxx and Lyy are the second partial derivatives. Unlike LoG, DoG layers are obtained by
the difference of two nearby Gaussian smoothed layers, without the computation of the second
partial derivatives. DoG can be seen as the approximation of the LoG with low computational
cost. DoG function, which can be computed from the difference of two nearby scales separated
by a constant multiplicative factor, is defined as

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y), (3.14)

where k is a multiplicative factor. The local extremes of LoG and DoG pyramid are recorded
as LoG and DoG interest points, respectively.

SIFT (Scale Invariant Feature Transform), proposed by Lowe [59], is one of the most
popular feature detectors and descriptors in the literature [63]. SIFT can efficiently identify
object points in noisy, cluttered, and occluded environments due to its high invariance to
translation, scaling, and rotation. This method extracts interest points from the image in two
steps. First, the local extremes in DoG pyramid are recorded as potential keypoints, and a
3D quadratic function is used to approximately locate the interpolated location of candidate
keypoints. Second, the measurement function computed with the trace and determinant of
the Hessian matrix is used to eliminate keypoints with strong edge responses and sub-pixel
localization [39]. The interest points extracted this way show scale invariance and rotation
invariance.

In addition, it is possible to compute the descriptor for each detected keypoint. This
descriptor captures information about the local image gradient patterns surrounding the
detected keypoint, enabling robust keypoint matching described in the following sections.

The descriptor extraction process commences with dividing a localized region centred
on the keypoint into smaller, well-defined subregions or bins. Typically, these subregions are
organized in a grid, often with divisions like 4x4. Within each of these delineated subre-
gion, histograms of gradient orientations are constructed. These histograms represent the
distribution of edge orientations within the subregion. The gradient magnitudes and their
corresponding directions are leveraged to populate these histograms (see Figure 3.4, which
shows calculated magnitudes and directions for each detected keypoint). All these histograms
are concatenated into a single high-dimensional vector, creating the descriptor for the given
keypoint. This vector typically consists of hundreds of values, and in essence, it encapsulates
the intricate local gradient patterns encompassing the keypoint [64].
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(a) σ = 0.5 (b) σ = 1.6 (c) σ = 5.0

Figure 3.4: The SIFT keypoint detector with different sigma values
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Three-dimensional feature detection is a fundamental task that involves identifying and
extracting distinct spatial structures in the point clouds acquired, for example, from LiDARs
or depth cameras. As in 2D image feature detection, the primary goal is to find characteristic
properties representing salient and stable cues in the 3D environment. In the context of 3D
data, visual features refer to specific patterns and primitives that differentiate various objects
and surfaces in a point cloud. Unlike traditional images, which are composed of pixels in a
two-dimensional grid, point clouds capture the spatial coordinates of individual points in a
3D scene. Therefore, 3D feature detection involves identifying points of interest, lines, planes,
and higher-level structures within the point cloud. These 3D features are important in various
applications, for instance, localization, mapping, and navigation of robots and autonomous
vehicles, 3D object recognition, using augmented reality or environmental monitoring and
land cover classification.

Detecting features in 3D comes with its own set of challenges. The process must be
robust to handle variations in scale, viewpoint, illumination, and quality of the acquired data.
Point clouds are often affected by noise, occlusions, and varying point densities, making feature
extraction more complex than from 2D images. A high-performance feature detector should
show robustness to these problems and satisfy other interests such as efficiency, accuracy,
and repeatability. Also, it needs to consider computational efficiency since computational
complexity is significantly higher than in image feature detectors.

In the realm of 3D feature detection, this thesis focuses on two fundamental categories:
geometric feature detection and gradient-based methods. This is the same approach as in the
context image feature detection outlined in Chapter 3. Geometric feature detection primar-
ily involves the extraction of basic geometric primitives, including points, lines, and planes,
within the 3D space. These features are frequently associated with object boundaries and
salient surface characteristics. Complementing this, gradient-based methods harness gradient
information and surface normals to identify features corresponding to object boundaries and
distinctive surface attributes in the 3D domain. It is worth noting that within 3D feature de-
tection alternative methodologies exist, including histogram-based [65] and learning-based [66]
feature detectors.

The selected methods for 3D point detection align with those chosen for image feature
detection from cameras, as described in the previous Chapter 3. Specifically, these methods
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include edges, corners, and key points, which were selected due to their clear definition and
simple detection in both modalities. Additionally, it is conceivable to leverage plane detectors,
commonly employed in 3D data processing. However, using them for cross-modal matching
brings many complications.

The application of plane detectors, widely used in the analysis of 3D data, poses chal-
lenges when adapted for cross-modal matching. The difficulties come from the diverse charac-
teristics of data captured by different sensors, introducing variations in perspective, resolution,
and environmental conditions. Also, the global nature of plane features and the impossibility
of precisely locating them at one point makes them harder to detect and match between differ-
ent types of data reliably. The potential differences in the appearance of planes in images and
point clouds, coupled with sensor-specific noise, introduce other problems. Therefore, despite
their effectiveness in 3D analysis, using plane detectors for cross-modal matching introduces
complexities that may hinder the robustness and generalizability of the matching process.
The chosen approach is focused on more localized features, such as edges, corners, and key-
points, offering a more adaptable and reliable approach for achieving effective cross-modal
correspondences.

The following section will provide a detailed description of the method for edge detection
in 3D space, which corresponds to the edge detection approach described in the preceding
chapter. Subsequently, the possibility of applying 2D points of interest detectors to 3D data
obtained from LiDAR or depth cameras will be explained. This approach has been chosen
due to its significant time and computational efficiencies compared to other alternative 3D
methods.

4.1 Edge detection

Edge detection in 3D aims to identify regions in the point cloud with significant changes
in surface orientation, indicating transitions between different objects or surfaces. Specifically,
this process involves determining points in the point cloud that are situated on sharp discon-
tinuities or boundaries between surfaces. The orientation of the surface at each point in the
point cloud is represented by the local surface normal computed at that point. Techniques
such as Principal Component Analysis (PCA) [67] or Least Squares Fitting [68] are employed
to estimate the surface normal using a neighbourhood of points surrounding each point.

As these techniques can be computationally and temporally demanding, this thesis
draws upon the paper of Ji Zhang and Sanjiv Singh [18]. This paper leverages the character-
istic of LiDAR or depth camera, which generates the returned points in an ordered manner.
Although LiDAR naturally generates unevenly distributed points, the returns from the laser
scanner have the same angular resolution within a scan. The feature points are extracted us-
ing only information from individual scans, with a co-planar geometric relationship. Consider
Xi as a point obtained from LiDAR, and let S be the set of consecutive points of Xi returned
by the laser scanner in the same scan. Given that the laser scanner generates point returns
in clockwise or counterclockwise order, S encompasses half of its points on each side of Xi,
exhibiting uniform angular intervals. To assess the smoothness of the local surface, Zhang
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and Singh introduced a term c

c =
1

|S| · ‖Xi‖

∥∥∥∥∥∥
∑

j∈S,j 6=i

(Xi −Xj)

∥∥∥∥∥∥ . (4.1)

Subsequently, the points in a scan are sorted based on their respective c values, and the
feature points are selected based on the maximum c values and labelled as potential points.

To further enhance accuracy, additional constraints are imposed to optimize the distri-
bution of feature points across the environment and to avoid selecting points that are already
surrounded by feature points. This involves dividing the environment into four identical sub-
regions, ensuring the number of selected edge points within each subregion adhere to the
specified maximum limit. Another condition is that a point is eligible for selection only if
none of its neighbouring points have already been chosen as feature points. Furthermore, to
ensure reliable feature point selection, points situated on surface patches that align closely
with the laser beam direction or are positioned at the boundary of occluded regions are ex-
cluded from consideration. These measures collectively aid in the extraction of robust and
accurate edge points. Figure 4.1 illustrates detected edges by this algorithm in data obtained
from the depth camera and LiDAR.

Figure 4.1: Detected edges in data obtained from the depth camera (left) and LiDAR (right)

4.2 Using 2D detectors

Using image (2D) feature detection on a projected image of a point cloud offers several
advantages over employing 3D feature detection on the same point cloud. One primary reason
is the computational efficiency achieved by reducing data dimensionality. When using 3D
feature detection directly on the point cloud, the processing complexity increases substantially
due to the large amount of raw 3D data involved. This results in higher computational costs
and potentially limits real-time performance in certain applications.

In addition, projecting the point cloud onto a 2D image plane allows us to leverage
well-established 2D feature detection algorithms, which are generally computationally more
efficient. The projected image presents a condensed representation of the 3D data, reducing
the number of data points processed and analyzed. As a result, the computational complexity
is significantly reduced, enabling faster and more efficient feature detection.
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Furthermore, image feature detection techniques often benefit from a wealth of existing
research and development, making them more refined and accurate. Many advanced algo-
rithms for image feature detection have been extensively studied and optimized, leading to
robust and reliable methods for identifying salient features in 2D images.

The utilization of 2D feature detection on 3D data has proven to be highly functional,
as demonstrated by S. Urban and M. Weinmann [69]. Their approach has found effective
applications in scenarios such as the registration of two sets of 3D point clouds acquired
through laser scanning, as well as in place recognition using imaging LiDAR [24].

The image feature detectors described in the previous chapter (Chapter 3) will be
employed for the detection of points of interest in the 3D data as well. This will be achieved
by applying these detectors to the depth image obtained from the respective sensor. Through
this process, crucial key points will be identified on the depth image, which will subsequently
be projected into 3D space using methods outlined in Chapter 2 or selected as corresponding
points within the point cloud from this sensor. Figure 4.2 shows detected edges by the Canny
detector on data from a depth camera and LiDAR, on depth images and corresponding point
clouds. Figure 4.3 shows the same with the detected corners by the Shi-Tomasi detector and
Figure 4.4 highlights keypoints detected by the SIFT detector.

(a) LiDAR depth image

(b) LiDAR point cloud (c) Depth camera image (d) Depth camera point cloud

Figure 4.2: Examples of the detected edges using the Canny image detector on data acquired
from the depth camera and LiDAR
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(a) LiDAR depth image

(b) LiDAR point cloud (c) Depth camera image (d) Depth camera point cloud

Figure 4.3: Examples of the detected corners using the Shi-Tomasi image detector on data
acquired from the depth camera and LiDAR

(a) LiDAR depth image

(b) LiDAR point cloud (c) Depth camera image (d) Depth camera point cloud

Figure 4.4: Examples of the detected keypoints using the SIFT image detector on data ac-
quired from the depth camera and LiDAR
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This chapter describes the methodology for addressing the challenge of establishing
mutual correspondences between 3D data from LiDAR or depth cameras and 2D data from a
colour camera. Firstly, it starts with data preparation and the process of detecting keypoints
from both sensors. Secondly, the pursuit of mutual correspondences among these keypoints is
described. Lastly, it explores the quest for optimal alignment between these datasets, based
on the acquired mutual correspondences. The final two steps are described even in the sce-
nario when data from the colour camera can be directly projected into the space, for instance,
through a depth camera, thus being treated as 3D points for further alignment requirements.
This configuration aligns with the same modality as data that came from LiDAR and depth
camera sensors. This approach allows a single modal matching, that facilitates the assessment
of whether the chosen methods for detecting keypoints in both types of sensors are adequate
for characterizing the given 3D space and can be used for comparison with multimodal match-
ing.

5.1 Feature extraction

Data preparation from the camera involves primarily converting colour images into
grayscale, as described by Equation 2.15. This needs to be done because most algorithms for
keypoint detection in images operate on a single channel rather than three. Subsequently, the
grayscale image undergoes the chosen feature detection algorithm. The keypoints, or point of
interest, are then stored as a set of pixel coordinates for further use.

In the case of a depth camera, data preparation involves generating a 3D point cloud
through the projection method described in Chapter 2. For LiDAR data, the preparation
includes creating a depth image by extracting data from a 2D matrix, as detailed in the same
chapter. Following this step, the depth image is normalized to values ranging from 0 to 255
using the following equation:

Inew(x, y) =
I(x, y)− Imin

Imax − Imin
· 255, (5.1)
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where Inew(x, y) is new normalized intensity of pixel x, y, I(x, y) is the old value of the same
pixel and Imax and Imin are the maximal and minimal values of all pixels in the image. This
normalization is performed to enable the use of 2D keypoint detectors.

In scenarios where depth data are missing in the depth images from one of the 3D
sensors, interpolation can be applied. Interpolation employs a straightforward and intuitive
nearest-neighbour method, which assigns the value of the nearest data point to the newly
interpolated point. While this approach may result in blocky or pixelated images, it is com-
putationally efficient and preserves edge sharpness. This preservation of edge sharpness is a
critical characteristic given that many keypoint detection methods rely on image edges. Fur-
thermore, especially with depth cameras in real-world environments, it often happens that
data on the edges of objects are lost, as illustrated in Figure 5.1.

(a) Grayscale image from a depth camera (b) Corresponding image from a colour camera

Figure 5.1: An image pair from a depth camera and the corresponding colour camera image.
In the left-hand image, completely black pixels indicate areas where the sensor did not capture
any information. It is readily apparent that this occurs, for instance, at the edge of the arch
and the edges of the staircase, which is also shown in the second image from the colour camera.

Subsequently, one of the selected feature detectors is applied to these data in the form
of a 3D point cloud or depth image, as described in Chapter 4. Keypoints are consistently
stored as sets of 3D points. For keypoint detection in depth images, this is achieved by
identifying corresponding 3D points in space for the detected keypoints in the image, which
are subsequently designated as keypoints.

5.2 Finding correspondences

Given that the successful execution of algorithms and methodologies used in the fol-
lowing steps relies on the attainment of a sound initial estimate, it becomes imperative to
commence with the transformation of the data acquired from the colour camera into the most
recent known coordinates of the second 3D sensor.

The nearest-neighbour algorithm is used to establish correspondences between 3D key-
points derived from the 3D sensor and those obtained from the colour camera projected into
the spatial realm through the deployment of a depth camera, as explicated in the previous sec-
tion of this chapter. Within this procedure, keypoints resident within one of the point clouds
undergo scrutiny through comparison with their closest neighbours situated within the other,
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herein referred to as the reference point cloud. The technique of choice for this comparative
process rests upon the application of k-d trees [70], known for their optimization capabilities
in the realm of search operations characterized by reduced computational complexity.

More precisely, a k-d tree, short for k-dimensional tree, is a widely used data structure
in computational geometry and data science, especially for spatial partitioning. It proves par-
ticularly valuable in organizing and querying high-dimensional data, such as point clouds in
three-dimensional space. The k-d tree recursively divides multidimensional space into regions,
often using axis-aligned hyperplanes. Each node within the tree represents a distinct space
region and stores a k-dimensional point selected from the dataset. These points are strate-
gically arranged to facilitate efficient search operations. The tree’s construction ensures an
alternating split of points along different coordinate axes, resulting in a balanced binary tree
structure. This partitioning strategy enables swift search operations, as entire subtrees can
be pruned during the search for the nearest neighbours.

In pursuit of further acceleration prospects, a strategic reduction in the volume of
keypoints in the denser areas of the point clouds by random means is a viable approach. An
additional enhancement in computational efficiency is introduced via deploying the outlier
filter. This filter serves as an instrument for the selective removal of erroneous correspondences
among keypoints and thus operates upon keypoints that have already undergone the process
of pairing and subsequent connection with corresponding keypoints within the second point
cloud. The underlying rationale is the observation that correspondences featuring a smaller
magnitude of relative distance are less likely to exhibit characteristics of outlying elements.
To this end, the filter initiates a sorting operation among all ascertained correspondences
between keypoints, predicated upon their respective distances. Subsequently, the filter removes
correspondences within the uppermost 10% quantile. The practical outcome of this intricate
procedural sequence is a reduction in the total number of keypoints, which leads to a significant
enhancement in the speed of subsequent phases in the processing pipeline.

For the purpose of establishing correspondences between 3D keypoints derived from 3D
sensors and 2D keypoints from the colour camera, a dedicated algorithm was developed. This
algorithm must address the distinctive nature of data obtained from these disparate sensor
modalities, ensuring an effective correlation between 3D spatial information and the corre-
sponding 2D image features. An initial step involves projecting the camera keypoints into rays
within 3D space, as described in Section 2.2.3. These rays are defined by two points: a com-
mon starting point located at the optical centre of the camera, which remains consistent for
all rays originating from a given image, and a second point fixed at a predetermined distance
of z-coordinate from the camera. The same z0-coordinate for all vectors d̄ = (dx, dy, dz)

T

normalized using Equation 2.18 is achieved by multiplying all the coordinates of a given vec-
tor by a constant k such that k = z0/dz. Correspondences are then sought by minimizing the
distance between these rays from the camera and the 3D keypoints. The equation expressing
the distance between the point and the line is used,

d(A,B, P ) =
|(B −A)× (A− P )|

|B −A|
, (5.2)

where A and B are the coordinates of the two points defining the line AB, and P is the point
for which we calculate the distance from the line.

A correspondence is defined as a pair comprising a 3D point and a ray (or its correspond-
ing 2D point in the colour camera image) if they exhibit the minimum distance among all
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possible combinations for the given 3D point and all 2D points. This involves a minimization
as described by the equation

minb∈B d(Ab, P ), (5.3)

where P is a given 3D point, A is the first point of all rays of 2D points, and B is the set of
all second points of rays.

Due to the computationally intensive nature of this process, which necessitates the
calculation of pairwise distances between all 3D and 2D keypoints in the form of rays, it was
necessary to find a solution for an expeditious retrieval. For this reason, a special algorithm
employing k-d trees was devised for this thesis. However, it is important to note that while
k-d trees are exceptionally efficient for finding the nearest neighbours to a given point in
multidimensional space, they are not well-suited for finding the nearest point to a line segment
or a line defined by two points. This limitation arises from the fundamental nature of k-d
trees, due to their partition space using axis-aligned hyperplanes. Since lines in space are not
constrained to be axis-aligned, the partitioning structure to a k-d tree does not align with the
geometry of a line.

Therefore, in the developed algorithm, when searching for the nearest line to a point, a
necessary data transformation to a more suitable representation must be done to use the k-d
tree data structure. This procedure capitalizes on the uniformity of rays, all of which share
the same starting point and have the second point at an equidistant position on the z-axis.
This z-axis is consistent with the optical axis, as illustrated in Figure 2.1. All of these rays
can subsequently be transformed into a new 2D space using their coordinates defined by two
angles orthogonal to the optical axis of the camera (see Figure 5.2). This can be described in
the way similar to spherical coordinates, albeit without the coordinate r denoting the distance
from the centre. Similarly, 3D keypoints from the sensor can be transformed into these 2D
coordinates using the same two angles with respect to the camera’s optical axis. Thus, a 3D
keypoint is redefined as a vector emanating from the camera. Since all 2D keypoints from
the camera lie in a single plane, the relative distances to a given vector remain preserved.
It follows that the one that forms the smallest angle with the 3D point vector, or in other
words, has the smallest difference between the angles of these vectors, is also the closest to
the respective point. The advantage of this transformed 2D space is that a k-d tree structure
can be efficiently used to find the nearest point, even though the actual value of the distance
found in this 2D space does not provide information about the relationship between the line
and the point.

This approach effectively enables the identification of correspondences between a 3D
point and a ray, but conversely, it is not feasible. This limitation arises from the fact that 3D
keypoints, unlike projected 2D keypoints, do not lie on the same z-coordinate. If the nearest
3D point were sought in the same manner for a projected 2D point, it is conceivable that a
more distant 3D point, which actually has a greater Euclidean distance from the given line,
may have a smaller angular difference and, therefore, could erroneously be identified as the
closer point. This inconsistency arises from the projection process and the absence of the
third dimension (z-coordinate) in the transformed 2D space. This is depicted in Figure 5.3.

An alternative approach harnesses SIFT descriptors, which are derived from the image
regions surrounding keypoints. In this context, the spatial coordinates of keypoints do not
contribute to the correspondence detection process; instead, only their descriptors play a piv-
otal role in the matching procedure. Keypoint matching, essentially identifying corresponding
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Figure 5.2: The illustration of the transformation of two 3D points, B1 and B2, into 2D space
defined by two angles. In the left-hand image, both points are depicted as vectors, with angles
α1 and β1 describing point B1, and α2 and β2 for point B2. These angles indicate the deviation
from the optical axis of the camera. The right-hand image portrays the same points in 2D
space, represented by identical angles α and β.

(a) Point-to-line (b) Line-to-point

Figure 5.3: Comparison of Line-to-Point and Point-to-Line approaches. The left-hand illus-
tration shows that the angle α1 for point B1 is smaller than the angle α2 for point B2.
Consequently, point B1 will be identified as the closer point, even though the distance d1 to
the line defined by point P is greater than the distance d2 from point B2 to the same line.
In the right-hand illustration, when all points lie in a single plane, point B2 will be correctly
identified as closer because its angle α2 is smaller than angle α1.

keypoints across images, hinges on assessing the similarity among these high-dimensional
descriptor vectors. This task is achieved by performing the nearest neighbour search in the
descriptor space.

To quantify the dissimilarity between descriptor vectors, the Euclidean distance metric
is employed. For each descriptor in one image, the most akin descriptor, as indicated by the
smallest Euclidean distance, within the set of keypoints from the other image is identified.

Nevertheless, the direct comparison of raw descriptor vectors can be sensitive to varia-
tions caused by lighting, perspective, and other factors. Consequently, post-processing steps,
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including thresholding, are frequently applied to alleviate this sensitivity. Only matches with
distances below the specified threshold are deemed valid during this stage, while others are fil-
tered out. A ratio test may also be implemented, considering the two closest matches for each
descriptor in one image. A match is considered valid if the ratio between the distances of the
best match and the second-best match distances exceeds a predefined threshold. These mea-
sures aim to fortify the resilience of keypoint matching by diminishing sensitivity to specific
variations while ensuring the retention of only dependable correspondences.

However, despite all these enhancements of post-processing steps, the practical appli-
cation of these descriptors for matching keypoints identified by the SIFT detector proved to
be impractical. This was observed even in tests conducted on paring SIFT points in images
from a colour camera and a depth camera. The keypoints, and especially their descriptors
characterizing their surrounding environment, exhibited significant disparities, likely deriving
from the differences in modalities, even though both images may appear similar to the human
eye. This resulted in entirely incorrect keypoint pairings, as illustrated in Figure 5.4. Conse-
quently, SIFT keypoints will be treated similarly to other keypoints, and their cross-modal
pairing will rely on a developed algorithm involving the search for correspondences between
rays and points, as detailed earlier in this Section.

Figure 5.4: The illustration of incorrect keypoint paring using SIFT descriptors between data
from a colour camera and a depth camera

5.3 Cross-modal alignment

After identifying mutual correspondences between keypoints from the 3D sensor and
3D keypoints from the colour camera, the Iterative Closest Point (ICP) algorithm is applied
to obtain the mutual transformation. This algorithm is a widely used technique in the field
of computer vision and robotics for aligning and registering two sets of 3D data points. ICP
operates iteratively to refine the alignment between the source (or moving) point cloud and
the target (or reference) point cloud. In each iteration, it establishes correspondences, as
described in the previous section, between points in the source cloud and the target cloud.

Once correspondences are established, ICP computes the transformation that best aligns
the source cloud with the target cloud. This transformation is a rigid transformation en-
compassing translation and rotation. The optimal transformation is computed by utilizing
Singular Value Decomposition (SVD) on the covariance matrix of the paired points. SVD
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helps decompose this matrix into three fundamental transformations: translation, rotation,
and scaling [71].

The algorithm iteratively refines this transformation, converging towards an alignment
that minimizes the misalignment between the source and target clouds. The iterations con-
tinue until a predefined termination condition is met, which could be a maximum number of
iterations, a threshold on the change in alignment error, or other criteria. As the iterations
progress, the source cloud progressively aligns with the target cloud, resulting in an accurate
transformation that minimizes the misalignment between the two point sets.

After establishing mutual correspondences between 3D keypoints from the sensor and
2D keypoints from the camera, the developed algorithm performs a reprojection of these
points into space in the form of rays emanating from the camera. For each correspondence
between a 3D keypoint and a ray, the point on the ray that is closest to the corresponding
3D point is identified. This point is determined by the following equation

Pclosest = Au(B −A), (5.4)

where Pclosest is the closest point on the line segment, A and B are the two points defining
the line segment and u is the parameter that determines the position of Pclosest on the line
segment and can be calculated as

u =
(P −A)(B −A)

‖B −A‖2
, (5.5)

where P is the given 3D keypoint.

A new point cloud is generated from these obtained points on the rays, which serves as
input for the ICP algorithm described above. The key difference compared to the standard
ICP is that for each iteration of the algorithm, it is necessary to rediscover correspondences
between 3D points and rays and again find the nearest point to the given 3D point on the
rays.
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This chapter presents the validation and verification of the proposed methodology, along
with the testing and comparison of selected methods for keypoint detection in images and 3D
point clouds. The performance and reliability of the chosen localization methods are system-
atically assessed through realistic simulations. The utilization of simulations is imperative for
several reasons: it provides a controlled environment where ground truth data can be precisely
defined, enabling a meticulous evaluation of algorithmic performance. Moreover, simulations
offer a focused environment for the exclusive comparison of the performance of proposed
methods without the introduction of noise factors, such as motion-induced blur or erroneous
3D sensor reflections. These elements would necessitate additional algorithms for filtering,
which would be beyond the scope of this thesis. The methods described in Chapter 3 and
Chapter 4 undergo cross-validation, considering both the colour camera and both 3D sensors
— LiDAR and depth camera, such that each method used to detect points of interest in the
image is validated with every method used to detect points of interest in the data from 3D
sensors. Furthermore, this multimodal matching is compared with the outcomes of unimodal
matching of 3D point clouds using the same methods for detecting keypoints.

The following sections provide a detailed description of the evaluation metrics used to
assess localization accuracy. An analysis of simulation results follows, comparing individual
methods and their errors with respect to ground truth. Table 6.1, Table 6.2 and Table 6.3
summarize the parameters of the selected keypoint detection methods and the proposed pro-
cedure used for testing.

6.1 Evaluation metric

To systematically evaluate the algorithm described above, an analytical tool for eval-
uating localization estimates is introduced. A quantitative analysis is conducted in reference
to ground truth pose data obtained during simulations. Established trajectory evaluation
metrics used in visual or inertial odometry, including Root Mean Square Error (RMSE) and
Absolute Pose Error (APE), are applied. The most straightforward quality assessment of a
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Specification Symbol Value

ICP Termination criteria
Max iterations N 50
MSE translation threshold εtrans 0.01 m
MSE rotation threshold εrot 0.001 rad
Smooth Length - 4

Trimmed Distance Outlier filter
ratio - 0.35

Table 6.1: General parameters of the proposed methodology presented in Chapter 5

Specification Symbol Value

Canny edge detector Low Threshold Tlow 70
Threshold Ratio - 3
Kernel Size k 3

Shi-Tomasi corner detector Max Corners N 600
Quality Level Rmin 0.01
Min Distance d 5 pixels
Block Size k 5
Gradient Size - 3

SIFT keypoint detector Number of Octave Layers O 3
Contrast Threshold C 0.04
Edge Threshold E 10
Sigma σ 1.6

Table 6.2: Parameters of the selected methods for image keypoint detection from colour camera
for simulation presented in Chapter 3

localization history is determined by the Root Mean Square Error, mathematically defined as

RMSE =

√∑N
i=1 ‖pi − p̂i‖2

N
, (6.1)

where N represents the number of pose samples, pi denotes the ground truth pose, and p̂i

signifies the corresponding estimated pose. RMSE provides a measure of the overall accuracy
of the estimated trajectory by quantifying the root of the mean squared differences between
the estimated and ground truth poses. Lower RMSE values indicate higher accuracy and
closer alignment with the true trajectory.

The Absolute Pose Error provides a measure of the accuracy of the estimated pose
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Specification Symbol Value

Canny edge detector Low Threshold Tlow 10
Threshold Ratio - 3
Kernel Size k 3

Shi-Tomasi corner detector Max Corners N 5000
Quality Level Rmin 0.001
Min Distance d 2 pixels
Block Size k 5
Gradient Size - 3

SIFT keypoint detector Number of Octave Layers O 3
Contrast Threshold C 0.001
Edge Threshold E 100
Sigma σ 1.1

Edge detector Min Curvature c 0.01

Table 6.3: Parameters of the selected methods for keypoint detection at data from 3D sensors
for simulation presented in Chapter 3 and Chapter 4

compared to the ground truth pose. For a specific pose i it is defined as

APEi = arccos

(
trace(R>i R̂i)− 1

2

)
+ ‖ti − t̂i‖, (6.2)

where Ri and ti represent the ground truth rotation matrix and translation vector for pose i,
while R̂i and t̂i represent the corresponding estimated rotation matrix and translation vector.
APE values indicate the algorithm’s ability to accurately estimate both the rotational and
translational aspects of the pose.

6.2 Simulation

The Gazebo1 [72] simulator is employed for its capabilities to simulate a realistic envi-
ronment. In the simulator, identical unmanned aerial vehicle (UAV) sensors, including sensor
noise, are simulated in the same way as in real robots. However, this simulation does not in-
troduce physical challenges for sensors, such as issues with reflections on object edges detected
by the depth camera or LiDAR, as illustrated in Figure 5.1. These realistic problems would
need to be addressed using separate algorithms, potentially impacting the comparison of the
proposed methods. Furthermore, the simulation environment provides ground truth data used
for the evaluation of the proposed method, which is hard to obtain in the real world. Hence,
to manifest the reality as closely as possible, an urban environment with diverse structures is
used in the simulation, as shown in Figure 6.1. A UAV flight was executed and recorded in

1Gazebo, https://gazebosim.org/

https://gazebosim.org/
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this environment, capturing raw sensor outputs and ground truth localization in each frame.
The trajectory of this flight is shown in Figure 6.2. The AUV was equipped with a colour
camera, two 3D sensors, a depth camera, and LiDAR at the same time to compare results on
both types of sensors. Subsequently, the same recording was employed for the cross-validation
of all selected methods, ensuring uniform testing conditions.

(a) An overview of the urban environment map
depicting distinct structures

(b) A close-up view of the UAV conducting the
test flight for data collection

Figure 6.1: An illustration of the simulation environment employed for data collection for
testing purposes

Figure 6.2: Top view of the ground truth trajectory of recorded UAV flight in the simulated
environment

The record of the UAV flight was divided into individual frames in the time when the
data from sensors were synchronized, and the absolute position was simultaneously recorded.
For each frame i, keypoints are detected in the data from the colour camera using a selected
method. For the previous frame i−1, keypoints are also detected in the data from the 3D sensor
using another selected method. After transforming the keypoints from the colour camera
in frame i into rays, following the algorithm described in Section 5.2, pairing is performed
with the keypoints from the 3D sensors detected in frame i − 1, as described in the same
Section. From these corresponding pairs of points, the projected 3D keypoint cloud from
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the colour camera is aligned with the point cloud of 3D keypoints detected from the depth
camera or LiDAR using the ICP algorithm. The obtained transformation from ICP is then
compared with the transformation between frame i and frame i − 1, obtained from ground
truth localization.

The cross-validation results for individual methods using a colour camera and LiDAR
or a depth camera, described by RMSE, are presented in Table 6.4 and Table 6.5. From these
data, it is evident that the best result for cross-modal matching between a colour camera
and LiDAR involves matching keypoints from the SIFT detector and the Shi-Tomasi corner
detector. Similarly, for matching data between a colour camera and a depth camera, the
metrics show the best results for both pairs SIFT and SIFT detectors and Shi-Tomasi and
SIFT detectors. Notably, except for an exception, matching keypoints from the same detector
on both sensors appears significantly worse.

XXXXXXXXXXXXXXXXXLiDAR data

Colour camera
data

Canny
edge detector

Shi-Tomasi
corner detector

SIFT
keypoint detector

Canny edge detector 52.22 9.99 4.15
Shi-Tomasi corner detector 0.51 1.24 0.41
SIFT keypoint detector 3.53 0.63 0.78
Edge detector 2.81 0.53 0.65

Table 6.4: RMSE values in meters corresponding to multimodal keypoint matching for each
pair of selected detectors at the colour camera and LiDAR data

PPPPPPPPPPPPPPPPP

Depth camera
data

Colour camera
data Canny

edge detector
Shi-Tomasi

corner detector
SIFT

keypoint detector

Canny edge detector 0.85 0.68 0.73
Shi-Tomasi corner detector 2.12 0.64 0.59
SIFT keypoint detector 0.70 0.48 0.48
Edge detector 1.03 0.79 0.65

Table 6.5: RMSE values in meters corresponding to multimodal keypoint matching for each
pair of selected detectors at the colour and depth camera data

Figure 6.3 illustrates the APE evolution in individual frames of a given UAV flight for
all methods between the camera and LiDAR. This fact is further detailed in Figure 6.4, which
displays the maximum, average, and median of APE and RMSE for all pairs of methods. This
figure shows that utilizing keypoint matching with SIFT and Shi-Tomasi detectors yields the
best results in all observed parameters.

A similar scenario is depicted in Figure 6.5, illustrating the APE evolution in individual
frames for all pairs of methods between the depth camera and the colour camera. Figure 6.6
provides a detailed view of the maximum, average, and median of APE, along with RMSE
for all methods for these two sensors. This figure similarly shows that regarding the RMSE
parameter, the pairs of detectors SIFT – SIFT and Shi-Tomasi – SIFT yield the best results.
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Figure 6.3: Comparison of the absolute pose error to the ground truth reference during the
entire UAV flight of all pairs of methods for feature detection. First method named in each
pairs is used on colour camera data and second on LiDAR data.

Figure 6.4: Summary of maximal, mean and median values of APE and RMSE of all pairs of
methods for feature detection during UAV flight in the simulation world. First method named
in each pairs is used on colour camera data and second on LiDAR data.

However, in other observed parameters, except for the maximum of APE, the pair of Shi-
Tomasi and SIFT detectors demonstrate better performance.
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Figure 6.5: Comparison of the absolute pose error to the ground truth reference during the
entire UAV flight of all pairs of methods for feature detection. First method named in each
pairs is used on colour camera data and second on depth camera data.

Figure 6.6: Summary of maximal, mean and median values of APE and RMSE of all pairs of
methods for feature detection during UAV flight in the simulation world. First method named
in each pairs is used on colour camera data and second on depth camera data.
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6.3 Comparison of cross and single-modal matching

For the comparison between multimodal matching and single-modality matching, the
algorithm outlined in Chapter 5 is used. This algorithm for each frame i detects keypoints
using selected detectors in the colour camera data. Subsequently, these detected pixels in the
colour image are directly re-projected into space using a depth camera with the exact origin
coordinates in the same frame i. Using this process, image keypoints acquire 3D coordinates
in the space. This obtained 3D point cloud is then further utilized for uni-modal matching
with keypoints detected in the data from the 3D sensor in frame i − 1 using other selected
detectors. Uni-modal matching uses the nearest neighbour search in three dimensions and
the ICP algorithm to align the cloud from the colour camera with the point cloud from the
depth camera or LiDAR. Thus, the obtained transformation from ICP is compared with the
transformation between frame i and frame i− 1, obtained from ground truth localization.

This approach facilitates a comprehensive comparison between multimodal and single-
modal registration using the same types of detectors. Table 6.6 provides a comprehensive
overview of RMSE values for all pairs of selected detectors used with both LiDAR and depth
camera sensors, for both multimodal and single-modal matching. From this table, it is evident
that for the majority of pairs of keypoint detectors, single-modal registration from 3D to 3D
yields better results, particularly when using the depth camera sensor, which is unsurprising.
However, for some pairs of detectors, the use of multimodal registration yields better results.
Notably, the pair consisting of the SIFT detector on colour camera data and the Shi-Tomasi
corner detector on LiDAR data not only exhibits the best results for this pair of detectors
but also achieves the best outcome for multimodal matching with this test dataset.

multimodal matching unimodal matching
Colour camera
feature detector

3D sensor
feature detector

Depthcamera LiDAR Depthcamera LiDAR

Canny Canny 0.85 52.22 0.38 1.35
Canny Edge 1.03 2.81 1.79 1.91
Canny Shi-Tomasi 2.12 0.51 1.54 2.79
Canny SIFT 0.70 3.53 0.48 1.59
Shi-Tomasi Canny 0.68 9.99 0.80 1.80
Shi-Tomasi Edge 0.79 0.53 0.46 2.57
Shi-Tomasi Shi-Tomasi 0.64 1.24 1.21 3.30
Shi-Tomasi SIFT 0.48 0.63 0.36 2.07
SIFT Canny 0.73 4.15 0.43 1.79
SIFT Edge 0.65 0.65 0.26 3.45
SIFT Shi-Tomasi 0.59 0.41 0.84 3.28
SIFT SIFT 0.48 0.78 0.44 2.98

Table 6.6: Summary of RMSE values in meters for pairs of methods for detecting features on
colour camera data and data from both 3D sensors compared in multimodal (2D image and
3D point cloud) and unimodal (3D and 3D point clouds) matching during simulation.
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6.4 Discussion of results

Matching single and multi-modal sets involves a compromise between specific advan-
tages and disadvantages, primarily depending on the application. Certainly, simplicity and
computational efficiency can be highlighted among the advantages of unimodal matching. In
cases where the use of multiple modalities is redundant, matching one modality can provide
satisfactory results. Such matching also leverages data consistency, and algorithms adapted
to a single modality can be simpler. For instance, in the context of matching 3D modalities
in the form of point clouds, direct application of the ICP algorithm without the need for fea-
ture detection can be effective. Similarly, for matching 2D colour images, the SIFT detector
and descriptor can be used directly without further data transformation. However, no exact
unimodal matching was used in the testing described above. This is because feature detec-
tion still occurred in two different modalities, but only their matching happened within one
modality – the point cloud. Utilizing unimodal matching with detection in the same modality
would likely yield significantly better results.

Unimodal approaches naturally lack the complex information available from multiple
sources. This can result in poorer performance, especially in scenarios where various infor-
mation is crucial for precise matches. Unimodal pairing can be more susceptible to problems
specific to that modality, such as changes in lighting, noise, or changes in the viewing angle
for camera data or long straight tunnels for 3D sensor data. Additionally, for the purposes of
precise localization, for both a map and a robot that needs to be localized, the same modality
needs to be used, which can be financially expensive in some cases for specific sensors.

Compared to that, the combination of information from multiple modalities often in-
creases the robustness of comparison algorithms. By using additional data, the system be-
comes more resilient to challenges present in individual modalities. Multimodal matching can
provide a richer representation of the scene, leveraging the strengths of each modality. This
increased discriminative power is particularly valuable in complex environments or scenarios
with ambiguous unimodal data or when precise localization in a map created by a modality
different from the robots’ sensors is needed. The data presented above demonstrates that this
multimodal matching facilitates, at the least, basic orientation capabilities. This is contingent
on the choice of an appropriate pair.

In the testing data above, the combination of the Shi-Tomasi detector, adept at identify-
ing corners, and the SIFT detector, despite lacking precise geometric interpretation, appeared
most effective. The robust performance of the Shi-Tomasi detector is unsurprising, given the
well-defined nature of corners in both images and point clouds. Moreover, their sparse distribu-
tion minimizes the likelihood of confusion in the proposed point and ray matching algorithm.
Conversely, the combination and good performance of the SIFT might be intuitively unex-
pected due to the non-geometric representation of the detected keypoints. However, David G.
Lowe and his team [21] demonstrated that SIFT can serve as effective natural landmarks for
tracking and localization.

The main disadvantages of fusing information from multiple modalities often include
the almost unavoidable increase in computational complexity. Integrating data from different
sources requires sophisticated algorithms and can be computationally demanding, potentially
limiting real-time applications. This was evident during the testing described above, where
some selected pairs would require significant computational optimization to approach real-
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time use. Combining data from multiple modalities requires careful integration strategies.
Therefore, designing a unique algorithm for matching rays and points and creating a new
interpretation of ray data by transforming it into 2D space for the purpose of accelerated
search using a kd-tree data structure was necessary. Another disadvantage is certainly the
imprecision achieved by the proposed procedure. The proposed method could likely be used
for rapid odometry in control in case of a GNSS signal outage, but certainly not for precise
localization. For this further improvement and optimization of the proposed approach would
be necessary.

In conclusion, the choice between single and multi-modality matching depends on the
specific requirements of the application. While single-modality approaches offer simplicity
and efficiency, multimodal methods provide enhanced robustness and a more comprehensive
understanding of the environment.
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This thesis addressed the challenge of multimodal alignment, focusing on 2D data from
a colour camera and 3D data from LiDAR or depth camera. The motivation was introduced,
outlining the issues surrounding the use of multiple modalities together with related work and
their limitations. Subsequently, keypoint detectors for both 2D and 3D data were selected and
presented, along with the possibility of employing 2D detectors on data from 3D sensors. These
detectors were chosen to cover fundamental areas of computer vision and to logically describe
features in the selected modalities—2D and 3D space. Following this, the developed algorithm
for cross-modal keypoint matching using the nearest neighbour search was described. This
included a specialized modification of the k-d tree for significant acceleration of the process.
Subsequently, an algorithm for mutual alignment of modalities using an iterative approach,
aiming to align the pairs of identified keypoints and points, was introduced. This proposed
procedure was tested cross-modally on all pairs of selected keypoint detectors in a simulation
environment. In the context of the experimental evaluation, the best performance was shown
by the pair of the Shi-Tomasi corner detector on colour camera data and the SIFT detector
on depth camera data, achieving the final RMSE of 0.45 m. When considering the fusion of
data from the colour camera and LiDAR sensors, the combination of SIFT and Shi-Tomasi
detectors appeared to be the optimal choice, reaching the RMSE of 0.41 m. Remarkably, this
multimodal matching outperforms unimodal matching utilizing the same detectors. This was
presented in the last section, where these results of multimodal alignment were compared
with single-modal 3D-to-3D alignment.

The entire assignment of this thesis has been fulfilled successfully. According to the
assignment, the following tasks have been completed.

� Chapter 3 reviews and compares algorithms for detecting 2D features in RGB images
and Chapter 4 for 3D features in scans from 3D LiDARs or depth cameras.

� The review of algorithms for associating features among the two modalities and summa-
rization of how deeply the topic is studied in the literature was presented in Section 1.3.

� The selection of the feature-detection methods most suitable for cross-modality asso-
ciation and argumentation was presented for image data in Chapter 3 and 3D data in
Chapter 4.
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� A process of an optimization task, maximizing the alignment between two cross-modal
feature sets with selected feature-detected methods, was developed and implemented in
Chapter 5.

� The evaluation of the matching performance for selected pairs of feature detectors was
presented in Chapter 6. The same chapter also defines advantages and disadvantages in
contrast to matching single-modality sets of 3D space.

7.1 Future Work

The introduced algorithm for multimodal matching in localization could be further opti-
mized, for instance, by employing Linear Kalman Filters (LKF). LKF is a recursive algorithm
that updates the current state based on previous and current observations. Optimization in-
volves minimizing the mean squared error of the system state, potentially aiding in refining
the accuracy of position estimates. Another improvement could be finding optimal parameters
for a specific pair of detectors instead of using general parameters tested across all pairs.

An alternative option is exploring different methods for finding mutual pairs in distinct
modalities, such as using neural networks. However, this option requires creating a substantial
dataset first. Deploying the presented algorithm to address the entire problem, not just its
test version, would also entail addressing additional issues related to the model of the entire
map. This includes challenges like seeing through walls, where handling points theoretically
projectable into the camera’s image plane are actually behind an opaque barrier that needs
attention. To adapt and test the algorithm in the real world, constraints and uncertainties
associated with real sensors, such as the poor response of sensor rays at object edges, as
described in Section 5.1, must be addressed.
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Appendices





List of abbreviations

Table 1 lists abbreviations used in this thesis.

Abbreviation Meaning

LiDAR Light Detection and Ranging
AR Augmented Reality
GNSS Global Navigation Satellite System
SLAM Simultaneous localization and mapping
SfM Structure-from-Motion
MI Mutual Information
MIMOSA Multi-Modal SLAM
SIFT Scale Invariant Feature Transform algorithm
ISS Intrinsic Shape Signatures
EPnP Efficient Perspective-n-Point
RANSAC Random sample consensus
DoF Degrees of Freedom
GPU Graphics Processing Unit
RGB Additive colour model
TOF time-of-flight
LoG Laplacian of Gaussian
DoG difference of Gaussian
PCA Principal Component Analysis
ICP Iterative Closest Point algorithm
SVD Singular Value Decomposition
RMSE Root Mean Square Error
APE Absolute Pose Error
UAV Unmanned Aerial Vehicle
LKF Linear Kalman Filters

Table 1: Lists of abbreviations
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