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Abstract

This study focuses on the application of meth-
ods for the automated functional annotation
of non-coding RNAs (ncRNAs), with particu-
lar focus on PIWI-interacting RNA (piRNA).
The primary aim of these methods is to as-
sign previously unexplored piRNAs to their
correct biological functions. An interaction
network between piRNAs, transposons, and
genes was constructed using gene expression
data and sequence data. Gene annotations
are known, and the method of random walks
with restart and the general principle of guilt
by association has been used to promote the
annotation from genes to piRNA. The func-
tionality of the method was validated in the
specific domain of myelodysplastic syndrome
(MDS). The success of the method was mea-
sured by the proportion of MDS-related gene
ontology (GO) terms to the number of all
assigned GO terms, as there is currently no
available database containing the correct as-
signment of functional annotations to indi-
vidual piRNAs. It was shown that piRNAs
showing more significant differences in the
expression levels between groups of patients
with MDS and healthy controls were associ-
ated with a greater proportion of functional
annotations related to MDS.

Keywords: non coding RNA,
PIWI-interacting RNA, Myelodysplastic
syndrome, Random walks, Random walks
with restart, Functional annotations, Gene
ontology, Permutation test

Supervisor: doc. Ing. Jiří Kléma, Ph.D.

Abstrakt

Tato práce se zaměřuje na aplikaci metod
pro automatizovanou funkční anotaci nekó-
dujících RNA (ncRNA), konkrétně PIWI-
interagujících RNA (piRNA). Hlavním cí-
lem těchto metod je přiřadit dosud nepro-
zkoumané piRNA správné biologické funkce.
Data genové exprese a sekvenční data byla vy-
užita ke konstrukci interakčního grafu mezi
piRNA, transpozony a geny. Anotace genů
jsou známé, k propagaci anotací od genů k
piRNA byla využita metoda náhodných pro-
cházek s restartem a obecný princip ’guilt by
association’. Přidělení funkční anotace (GO
term) bylo posouzeno na základě výsledků
permutačních testů. Funkčnost metody byla
ověřována v konkrétní doméně myelodysplas-
tického syndromu (MDS). Úspěšnost metody
byla vyhodnocována podílem termů genové
ontologie (GO) souvisejících s MDS vůči po-
čtu všech přiřazených GO termů, jelikož v
současné době neexistuje dostupná databáze
obsahující správné přiřazení funkčních ano-
tací k jednotlivým piRNA. Bylo prokázáno,
že piRNA vykazující výraznější rozdíly v
úrovních exprese mezi skupinami pacientů
s MDS a zdravými kontrolami byly spojeny s
větším podílem funkčních anotací souvisejí-
cích s MDS.

Klíčová slova: nekódující RNA, PiRNA,
Myelodysplastický syndrom, Náhodné
procházky, Náhodné procházky s restartem,
Funkční anotace, Genová ontologie,
Permutační test

Překlad názvu: Automatická anotace
nekódujících RNA
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Chapter 1

Introduction

The fundamental goal of this diploma thesis is to assign Gene Ontology (GO)
terms to PIWI-interacting RNAs (piRNA) that could possibly be associated with
myelodysplastic syndromes (MDS). The expression data obtained from the Institute
of Hematology and Blood Transfusion, which includes measurements from patients
suffering from MDS and healthy control subjects, is used for this purpose. We were
given expression data for a wide range of piRNAs, transposable elements (TE), and
other genes. The concept of differential expression is introduced to select piRNAs
of interest to us.

The GO terms assignment of the selected piRNAs will be proposed on the basis
of the concept of the guilt by association principle, which states that molecules that
interact with one another have functions that are similar and, as a result, share anno-
tations. We benefit from the expanding database of scientifically validated functional
annotations for numerous genes to assigned the annotations for our piRNAs. The
interactions among the genes in the network will be determined by investigating the
correlations of their gene expression data. Furthermore, the connections between
piRNAs and TEs will be established by considering their sequence complementarity.
Subsequently, the random walks with restart technique will be employed, since it
has demonstrated success for other types of non-coding RNA (ncRNA)[3], [4], [5].
The random walks with restart algorithm will be performed on a gene co-expression
network consisting of piRNAs, TEs, and other genes. The assignment of GO terms
to piRNAs will be determined based on the outcomes of permutation tests.
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1. Introduction .....................................
1.1 Motivation

Non-coding RNAs (ncRNAs) are a class of RNA molecules that do not encode
proteins but play crucial roles in various cellular processes. They have gained
significant attention in recent years due to their diverse biological functions, including
gene regulation, chromatin remodelling, and genome stability. Accurate annotation
of ncRNAs is essential for understanding their functional roles and mechanisms
of action. However, manual annotation of ncRNAs is labour-intensive and time-
consuming. Therefore, the development of automated annotation methods is crucial
for efficient analysis and interpretation of ncRNA data [6]. In my diploma thesis, I
focus on one class of these ncRNAs, piwi-interacting RNA (piRNA).

PIWI-interacting RNA (piRNA) is a type of small RNA molecules that are not in-
volved in encoding proteins. They play a significant role in regulation of transposable
elements (TEs) and ensuring the stability of the genome [7]. The most commonly
recognised function of piRNA is to silence transposable elements (TEs). However,
studies indicates that numerous piRNA sequences are derived from genomic regions
that are unrelated to transposable elements (TEs), implying that piRNAs serve pur-
poses beyond the suppression of TEs [8]. Irregular piRNA expressions have been
detected in several diseases, specifically in tumours and disorders of the reproductive
system. Therefore, piRNAs offer potential as novel biomarkers for early detection
and as targets for precise medicine in therapeutic interventions [1]. This thesis
focuses on their possible associaiton with myelodysplastic syndromes (MDS).

1.2 Text structure

Chapter 1 presents the primary aims and approaches that were used in this thesis.
It also offers some insight into the significance of investigating this topic. The first
part of this thesis centres on the investigation of the subjects related to this study and
the methodologies employed to accomplish the objectives. Chapter 2 provides an
extended overview of PIWI-interacting RNAs, focusing on their role as transposon
silencers and their involvement in different diseases and disorders. Chapter 3 exam-
ines techniques that can be employed to automatically assign functional annotations
to non-coding RNA. It introduces the concepts of gene co-expression networks, the
random walks algorithm, and the principle of guilt by association. Chapter 4 offers
information regarding myelodysplastic syndromes.

The second part of this thesis focuses on the actual implementation of the au-
tomated annotation method employing random walks. Chapter 5 provides details

2



.................................... 1.2. Text structure

about the data set used in our study and the procedures undertaken for adjusting
the data to the desired form. Chapter 6 contains all the details regarding the gene
co-expression network that was built. This chapter also describes the technique
implemented to determine sequence complementarity between piRNAs and TEs.
Chapter 7 provides a comprehensive overview of the random walks technique, with
a particular focus on random walks with restart. It presents information regarding
the application of this method in the given work, as well as introducing the usage of
permutation tests. The results of our experiments are presented in chapter 8. Chapter
9 provides a comprehensive overview of the whole project and offers suggestions
for future actions.
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Chapter 2

PIWI-interacting RNA

PIWI-interacting RNA (piRNA) is a class of small non-coding RNA molecules
that play a crucial role in the regulation of transposable elements (TEs) and the
maintenance of genome stability. PiRNAs are primarily expressed in the germline
cells of animals. PiRNAs are 26–31 nucleotides in length, which distinguishes them
from micro RNAs (miRNAs) that are generally 21–23 nucleotides long or short
interfering RNAs (siRNAs) [7]. The piRNA class is the largest and the most diverse
of all small non-coding RNAs (sncRNA) [9].

PiRNAs are abundant in animal reproductive organs, where their primary function
is to suppress transposons. Transposons are genomic elements that can drive evolu-
tionary change but are also regarded as self-centred DNA parasites. The absence of
piRNAs causes transposons to activate, causing genomic damage and complications
in the development of reproductive organs, ultimately affecting fertility. As a result,
piRNA-mediated transposon silencing is critical for the successful reproduction of
sexually reproducing animals. The piRNA pathway has been compared to a genetic
immune system, with piRNAs acting as genome guardians against invasive foreign
DNA elements [10].

The majority of piRNAs contain complementary sequences to transposon RNAs
in the opposite direction. Because of this complementarity, piRNAs can act as
oligonucleotides, suppressing and controlling these mobile DNA elements precisely
[10].

While our understanding of piRNA biogenesis is far from complete, two sum-
marised mechanisms shed light on the production of mature piRNAs. The first
mechanism involves the ’ping-pong’ amplification mechanism, in which piRNAs

7



2. PIWI-interacting RNA.................................
act as transposon silencers while also enhancing their own presence. The second
mechanism is primary synthesis, in which piRNAs produced may play a regulatory
role in mRNA expression [9].

The presence of piRNAs was suggested in Drosophila, initially referred to as
repeat-associated RNAs (rasiRNAs). However, the true comprehension of piRNA
biology only occurred with the advent of next-generation sequencing [11]. In 2006
the existence of piRNA was reported by several independent research groups. At
that time, they reported an unknown class of small non-coding RNAs found in fly,
mouse and rat germ cells [8]. They revealed that these RNAs were longer (26–31
nt) compared to miRNAs and siRNAs, clustered throughout the genome, mainly
matching transposable element (TE) sequences, and specifically present in testes
[11]. Since then, significant progress has been achieved in the study of piRNAs,
leading to a better understanding of how piRNA clusters are transcribed, the process
of piRNA biogenesis, and various aspects of piRNA function [8].

Despite differences in target regulation and formation methods, the three primary
categories of non-coding RNAs (ncRNAs) share common functionalities, such as
directing Argonaute proteins to nucleic acid targets based on complementary base-
pairing rules [8] [12]. Humans have eight Argonaute proteins, four of which are
Ago (Argonaute) subfamily proteins and four of which are PIWI (P-element induced
wimpy testis) subfamily proteins. AGO proteins are present in various tissues and
bind to miRNAs or siRNAs, while PIWI proteins are predominantly expressed in
animal germ cells and specifically associate with piRNAs [8]. When Ago proteins
are expressed, they bind to siRNAs and miRNAs, transforming double-stranded
precursors into mature small RNAs of 20–22 nucleotides (nt) via a dicer-dependent
process.

PIWI proteins, on the other hand, form a distinct RNA-induced silencing complex
(RISC), known as piRISCs, with a small RNA population known as piRNAs. The
biogenesis of primary piRNAs is a dicer-independent process in which different
nucleases cut the long single strands into individual piRNA units [12]. Mature
piRNAs exhibit a size range of 26–30 nucleotides and possess a distinctive 2’-O-
methylation at their 3’ ends, characteristics that set them apart from other small
RNAs like miRNAs and siRNAs. PiRNA precursors, unlike miRNAs and siRNAs,
are single-stranded and lack obvious secondary hairpin structures. These precursors
are typically derived from specific genomic regions containing repeating elements,
and their synthesis is typically mediated by a dicer-independent pathway. Further-
more, additional posttranscriptional modifications are required for emerging piRNA
maturation. PiRNA biogenesis is contributed by two primary pathways: primary
synthesis and the secondary amplification cycle, also known as the "ping-pong cycle"
[13]. PiRNAs, which are abundant in spermatogenic cells, contribute to stem cell
self-renewal and play an important role in preserving germline and genome integrity
by concealing insertional mutations from transposons [12].

8



................................ 2.1. Transposon Silencing

The main recognised role of PIWI-piRNA complexes is to silence transposable el-
ements (TEs) in animal germ cells at both the transcriptional and post-transcriptional
levels. However, it has been observed that many piRNA sequences originate from
genomic regions that are not related to TEs, suggesting that piRNAs have functions
beyond TE silencing. Growing evidence indicates that the PIWI-piRNA machinery
is also involved in regulating protein-coding genes in germ cells [8].

There is a thesis that piRNAs employ a targeting mechanism similar to miRNAs.
However, there is a huge difference in the relationship between piRNA and its
targets compared to that of miRNA. While miRNA targets develop to be recognised,
piRNA targets are genetic elements of a parasitic nature that are pressured to avoid
recognition. The collection of piRNAs in animals is typically significantly larger in
scale compared to miRNAs, often differing by orders of magnitude. This suggests
the need of existence of protective mechanisms to prevent the silencing of the entire
germline transcriptome [14].

Irregular piRNA expressions have been observed in various diseases, particularly
in tumors and disorders of the reproductive system. PiRNAs show potential as
innovative biomarkers for early detection and as targets for precise medicine in
therapeutic interventions [1].

2.1 Transposon Silencing

Transposons are important structural components in nearly all eukaryotic genomes,
and their mobilisation can cause genetic instability, resulting in harmful mutations.
Furthermore, mobile genetic elements contain transcriptional enhancers and insu-
lators, allowing transposition to affect the expression of nearby genes as well as
large chromatin domains. This process can cause coordinated changes in gene
transcription, which can disrupt development or drive evolutionary changes [15].

Maintaining the genome’s integrity is crucial, and effective suppression of trans-
posable element (TE) activity is essential for this purpose. To ensure the production
of gametes capable of fertilisation, TEs must undergo silencing. In the male germline,
TE silencing takes place prior to meiosis, accomplished through the collaboration of
DNMT enzymes and the piRNA pathway [11].

Initially, it was reported that piRNAs played a defensive role against the mobi-
lization of transposons in germline cells of flies. Subsequent validation extended
this finding to various organisms, including humans. Transposons, often referred to
as jumping genes, resemble endogenous viruses and pose a threat to gene stability
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2. PIWI-interacting RNA.................................
by "copying and pasting" their DNA into the host genome for self-replication. This
process has cascading effects: exon insertions disrupt the coding sequence, intron
insertions alter splicing patterns potentially leading to the creation of novel and harm-
ful fusion proteins. Transposon insertions also cause DNA nicks and double-strand
breaks, and errors in their repair may induce recombination between transposon
repeats, resulting in chromosomal duplication, deletion, translocation, or inversion
[1].

At the transcriptional level, piRNAs and Piwi proteins directly modify chromatin
structure and histone proteins within the nucleus by regulating DNA methyltrans-
ferase (DNMT). DNMT methylates CpG islands in promoter regions, suppressing
transcription initiation. Piwi proteins guide DNMT to bind with transposable el-
ements or target genes, leading to the silencing of these elements or genes as a
consequence [1].

2.2 Disease associations

Recent evidence suggests that piRNAs play important roles in a variety of biological
processes, including transposable element slicing in animal germlines, genome
defence, and histone modification. Given piRNAs’ involvement in gene regulation,
there has been a growing interest in understanding their roles in human diseases.
Numerous studies indicate that the dysregulation of piRNAs can either encourage
or suppress the onset and progression of various diseases, particularly cancers
[1]. Studies are increasingly revealing links between abnormal piRNA expression
and a variety of diseases, including cancer, neurodegenerative conditions such as
Alzheimer’s and Parkinson’s diseases, and geriatric conditions [16][12].

For instance, in the context of neurodegenerative disorders, differential piRNA
expression between the healthy human brain and Alzheimer’s disease has been ob-
served. Notably, the Alzheimer’s-diagnosed brain exhibits over ten-fold upregulation
of five piRNAs piR-hsa-25781, piR-hsa-28467, piR-hsa-1177, piR-hsa-26593, and
piR-hsa-29114—among a total of 146 upregulated and 3 downregulated piRNAs.
This specific piRNA signature could serve as an effective diagnostic marker for
Alzheimer’s disease [12].

In the realm of cancers, the expression of piR-651 was found to be elevated
in various cancer cell lines, including those associated with gastric, lung, breast,
mesothelium, liver, and cervical cancers. Additionally, piR-823 demonstrated sig-
nificant upregulation in colorectal tumorigenesis, where it interacts with HSF1,
enhancing its transcriptional activity and phosphorylation at Ser326, thereby acting
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................................ 2.2. Disease associations

Figure 2.1: Simple graphics showing the role of piRNAs in the development of diseases
[1].

as an active promoter of tumour growth [12].

Therefore, biological studies suggest that piRNAs could be used as biomarkers or
therapeutic targets for disease diagnosis, prognosis and treatment. As a result, it is
critical to identify associations between piRNAs and diseases via the development
of computational methods with the goal of unravelling the root causes of these
conditions [16][12].

2.2.1 Role of piRNAs in Myelodysplastic Syndromes

Germ cells, stem cells, and cancer cells all exhibit essential biological features like
rapid proliferation and self-renewal. Given that the piRNA pathway is important
in maintaining the self-renewal mechanism of germline stem cells, it is possible
that it also has similar functions in supporting the self-renewal of rapidly dividing
hematopoietic stem cells and leukemic cells. Nonetheless, knowledge of piRNA
transcription and precise functions in blood cells is still limited [17].

Although the significance of piRNAs in various hematological malignancies
(blood-related cancers) like multiple myeloma (MM) and classic Hodgkin lymphoma
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has attracted research attention, information regarding myelodysplastic syndromes
(MDS) has been limited. The initial study of piRNAs in MDS patients’ bone marrow
cells found that individuals with low-risk MDS (refractory anaemia) had a higher
expression (9%) of piRNAs than those with high-risk MDS (refractory anaemia
with excess blasts—2) (2%) and healthy controls (1%). This suggests that piRNAs
may play a DNA-protective role in lower-risk MDS. Small non-coding RNAs from
plasma and extracellular vesicles were also found to be upregulated in MDS patients
compared to controls (hsa-piR-019914 and hsa-piR-020450). Two other piRNAs,
hsa-piR-000805 and hsa-piR-019420, were found to be expressed differently in
MDS patients with low and high blast counts. The last piRNA was also linked to
overall survival in a protective role, but no piRNAs were found to be predictive
of azacytidine response in patients. More information is needed on the biological
interpretation of these findings and their potential application in routine clinical
practice [18].

Although research into transposable elements (TEs) and piRNAs in leukemia
is still in its early stages, future advances are expected to contribute to disease
classification, monitoring, and therapeutic interventions. This expectation results
from our growing understanding of the mechanisms and functions of TE/piRNA
processes in both normal and leukemic cells [17].
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Chapter 3

Automated annotation methods

As already stated before, understanding the functions of ncRNAs is essential for
unravelling their roles in cellular activities. However, annotating and characterising
ncRNAs manually can be a tedious and time-consuming process. To overcome this
challenge, the tools and methods for the functional automatic annotation of ncRNAs
have been developed.

Functional automatic annotation of non-coding RNAs (ncRNAs) is a valuable
approach that helps us understand the functions and roles of these RNA molecules.
The tools and methodologies developed for functional annotation of earlier discov-
ered microRNAs (miRNAs)[19], long non-coding RNAs (lncRNAs) [20], [21] and
circular RNAs (circRNAs) [22], [23] can be adapted for piRNA analysis. The tools
can be based on sequence homology [24], structural analysis [25], or machine learn-
ing [26]. In this thesis, the main attention will be paid to bioinformatics approaches
based on the integration of functional genomics data and the utilisation of biological
networks [22], [27], [28].

In systems biology, numerous biological sub-systems can be represented as net-
works. These networks consist of nodes, which represent entities like genes or
proteins, and edges, which represent relationships between pairs of entities. Vari-
ous biological networks exist, including protein-protein interaction (PPI) networks,
gene co-expression networks, metabolic networks, and transcriptional regulatory
networks [2]. The method that I use in my thesis for such annotation is based on
gene co-expression networks.
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3. Automated annotation methods ............................
3.1 Gene-coexpression networks

Gene-coexpression networks fall under the category of biological correlation net-
works [28]. A Gene Co-expression Network (GCN) is an undirected network that
represents genes as nodes and captures significant co-expression relationships (pair-
wise correlations) between genes as edges. Gene co-expression networks exhibit
a scale-free topology, characterised by a few highly connected nodes called hubs
and numerous nodes with only a few connections. Moreover, GCNs display the
small-world property, meaning that most genes can be reached from any other gene
within a small number of steps. GCNs are commonly employed to identify expres-
sion modules, which help extract biological insights by assessing similarity profiles
between genes [29].

Correlation networks depict the connections between pairs of nodes based on their
correlations. However, constructing a correlation network using simple Pearson’s cor-
relations can result in a challenge. This is because the correlations are in most cases
non-zero so the network contains all of the edges and results in a complete graph.
Therefore, it is necessary to eliminate insignificant relationships in the correlation
network, focusing only on the significant edges that demonstrate high correlations
between nodes. In order to resolve this issue, either hard thresholds or soft thresholds
are applied to Pearson’s correlations. This approach enables correlation network
methods to identify and capture biologically significant relationships by utilising
cutoff values [30].

The commonly used methods involve calculating the similarity between expression
profiles of gene pairs and determining a threshold to decide which gene pairs should
be connected. However, these methods have some limitations. The main issue
with these approaches is that they often rely on arbitrary threshold selection, which
can be problematic. Gene CoE exhibits a property known as local scaling, where
genes within one cluster may have strong correlations with each other, while genes
in another group may have weaker correlations. Consequently, choosing a strict
threshold can result in many genes from the weakly correlated group being left
unconnected. On the other hand, including more genes in the network would require
a lower threshold, leading to a situation where a significant portion of genes are
almost completely connected [2]. This is displayed on the graph 3.1 that was
constructed using the data I was given. In this case, a correlation network was
constructed from nearly 17,000 genes, including piRNA, TE, protein-coding, rRNA,
and other genes. In the graph, we can observe that at a threshold of 0.4, the median
number of edges per gene remains around 500. However, as the threshold increases,
the number of genes without any edges sharply rises. This excessive connectivity
makes further analysis challenging .
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Figure 3.1: The relationship between the threshold set on the Pearson correlation
coefficient and two metrics: the median number of links per gene and the count of genes
that do not have any links. By varying the threshold, we can observe how these metrics
change. Inspired by [2]

To address this problem, there is a solution that involves transforming the similarity
matrix based on ranks. Initially, the Pearson correlation coefficient or another
suitables similarity measure is calculated for each pair of genes. Next, for every
gene, all other genes are ranked based on their correlation coefficients with that gene.
Using these ranks, the genes are connected to its top α co-expressed genes. α is a
threshold determined by the user and is typically set to a value smaller than five [2].

Genes that belong to the same pathways or functional complexes are often regu-
lated by the same transcription factors (TFs), resulting in similar expression patterns
across different conditions. Therefore, an important aspect of gene function anal-
ysis is to group genes based on their expression patterns into modules [2]. A
co-expression module refers to a cluster of genes that exhibit strong connections
within the group while having weaker connections to genes outside the cluster in a
network [29]. Additionally, if a significant number of genes in a cluster are known
to have specific functions, it is likely that unannotated genes within the same cluster
may share similar functions. Common techniques used for clustering gene expres-
sion data include hierarchical clustering, k-means clustering, and self-organising
maps (SOM) [2].
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3. Automated annotation methods ............................
3.2 Guilt by association principle

An essential objective of gene co-expression networks is to assign function to genes
and non-coding RNAs (ncRNAs) that were previously unknown. The guiding
principle behind this annotation process is the guilt-by-association (GBA) principle.
According to GBA, an unknown gene or ncRNA can be annotated by associating
it with terms that have already been linked to protein-coding mRNAs and other
ncRNAs whose expression patterns show a strong correlation with the profile being
investigated [28]. The GBA approach involves conducting a correlation analysis
between the expression patterns of ncRNA and protein-coding mRNA, along with
enrichment strategies to associate functional gene sets with the mRNAs that show a
correlation with the specific ncRNA of interest [31].

Generally the principle of guilt by association suggests that genes that share func-
tional similarities are often connected as protein interaction partners or exhibit similar
expression patterns. GBA is a widely employed principle in biological research
and serves as a fundamental approach to analyse and uncover gene function. This
principle serves as a fundamental guideline for analysing gene networks, allowing
researchers to understand their functional properties and evaluate their ability to
encode meaningful biological information [32].

3.3 Random walks

One of the methods of automatic annotations and the first method that I am using in
my thesis is the application of random walks. Random walks, rooted in graph theory
and stochastic processes, provide a framework for exploring and analysing complex
networks. A random walk is a mathematical concept that represents a sequence
of random steps taken within a mathematical space. It describes a path formed by
a series of unpredictable movements. The concept of random walks was initially
introduced by Pearson in 1905 [33].

The general principle of random walks involves a stochastic process of moving
through a sequence of steps in a random manner. It begins at a starting point within
a defined system (in our case a graph constructed of the gene co-expression network)
and progresses through sequential steps by making transitions to neighbouring
positions. The selection of the next position is determined randomly, allowing
for exploration of the entire system. Random walks are performed iteratively,
accumulating information at each step [34].
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................................... 3.3. Random walks

There are two types of the random walks approach, random walks (RW) and
random walks with restart (RWR). A random walk on graphs involves a walker
moving from its current node to a randomly chosen neighbouring node in an iterative
process, starting from a specified source node, s. Random walks with restart are
a variation of random walks where, in addition to the normal transitions, there is
also a possibility of restarting the walk at node s at each time step, with a certain
probability denoted as r [35].

Random walks were initially devised to explore the overall structure of networks
by imitating a particle that moves iteratively from one node to a neighbouring node
chosen at random. The concept of restart, which eventually led to the development
of the random walk with restart (RWR) algorithm, was first introduced in the context
of Internet search engines. The aim was to mimic the behaviour of an internet user
who navigates from one webpage to another through hyperlinks but can also restart
the browsing process on a new arbitrary webpage. As a result, certain webpages will
be visited more frequently than others based on the topological arrangement of the
pages and hyperlinks [36].

RWR has emerged as a leading algorithm in the field of network computational
biology, particularly in guilt-by-association analysis. It was first applied to identify
important disease-related genes. The algorithm ranks all the nodes in a network
based on their proximity to known disease-associated nodes, which act as starting
points for the analysis. This ranking helps identify nodes that are closely connected
to the disease and are likely to play a significant role in its development [36].
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Chapter 4

Myelodysplastic syndromes

Myelodysplastic syndrome (MDS) is a heterogeneous group of diseases characterised
by an abnormality in the production of blood cells due to genetic mutations. It is
a chronic condition characterised by genetic mutations in a type of cells called
pluripotent stem cells. These cells have the ability to develop into different types of
blood cells. However, in MDS, these mutations disrupt the normal process of cell
maturation and differentiation. As a result, the production of healthy blood cells
becomes compromised, leading to a condition called dysplastic hematopoiesis. In
this condition, the blood cells produced are ineffective and don’t function properly.
One important concern in MDS is that it has the potential to progress to a more
aggressive form of blood cancer known as acute leukemia (AL) [37].

MDS is a group of hematopoietic stem cell (HSC) disorders characterised by
impaired hematopoiesis, peripheral blood cytopenia, and a predisposition to progress
to leukaemia. In 30-40% of MDS patients, AML with myelodysplasia-related
changes (AML-MRC) develops gradually. Several new MDS therapeutic agents
have been approved in recent years, with hypomethylating agents like azacitidine or
decitabine proving effective in treating both MDS and AML-MRC. In a significant
proportion of patients, these agents improve overall survival, clinical outcomes, and
quality of life (overall response rate, 40-50%). While the precise mechanism of
action is still being researched, it is hypothesised that DNA hypomethylation may
reverse tumour-suppressor gene transcription inactivation [17].

MDS is predominantly a disease of older people. Median age of patients is around
70-76 years, although it can rarely affect younger patients as well. The incidence
rate of the disease is approximately 5-6 cases per 100,000 people per year in the
general population [38], [39]. However, in the population over 70 years of age, the
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4. Myelodysplastic syndromes..............................
incidence increases to 26 cases per 100,000 people per year, and among patients
over 80 years of age, it rises to 48 cases per 100,000 people per year [38].

The most common symptom of MDS is anemia and anemic syndrome, with 80%
of patients having a hemoglobin level below 100 g/L. Patients typically seek medical
help with feelings of fatigue, weakness, lack of energy, dizziness, headaches, reduced
physical endurance, palpitations, chest pain and difficulty breathing [37].

Disease progression varies greatly among individuals, and treatment approaches
must be customised based on the patient’s symptom severity, risk of developing
acute myeloid leukemia (AML), and any other existing health conditions. The
commonly utilised tools for assessing the risk of MDS patients are the International
Prognostic Scoring System (IPSS), its revised version (IPSS-R), and the World
Health Organisation (WHO)-based prognostic scoring system (WPSS). These sys-
tems categorise patients into different risk levels ranging from very low to very
high. The classification is determined by evaluating factors such as the cytogenetic
features (chromosome abnormalities, recurrent genetic changes), the percentage of
bone marrow blasts, and the severity of peripheral blood cytopenias [40].

In low-risk myelodysplastic syndrome (LR-MDS), the primary goal of treatment
is to address and improve cytopenias, particularly anemia. On the other hand, in
high-risk myelodysplastic syndrome (HR-MDS), the focus of treatment is aimed at
slowing down the progression of the disease and extending overall survival [41].

When it is possible, allogeneic stem cell transplantation (allo-SCT) remains the
only treatment option that offers the potential for a cure in patients with high-risk
myelodysplastic syndrome (HR-MDS). Studies have shown that approximately 40-
50% of patients achieve long-term remission without disease recurrence following
allo-SCT, and these outcomes have improved over time. Hypomethylating agents,
such as azacitidine, are currently considered the initial treatment of choice in the
majority of cases involving higher-risk myelodysplastic syndrome (MDS). In a
randomised phase 3 clinical trial conducted on patients with higher-risk MDS, azaci-
tidine showed a survival advantage compared to conventional treatment regimens.
The study revealed a median survival of 24.4 months with azacitidine, whereas the
median survival with conventional care regimens was 15 months. This survival
benefit associated with azacitidine was observed regardless of factors such as age,
percentage of marrow blasts, and karyotype [41].
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Part II

Practical part
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Chapter 5

Data set

The main aim of this master’s thesis was to create a tool that can identify deferentially
expressed piRNAs and assigns them to correct annotations based on the guilt by
association principle. To reach this goal this data set was provided.

. Expression data for 556 different piRNAs each measured across a sample of
106 subjects.. Expression data of 687 transposable elements (TE) across a sample of 114
subjects.. Expression data of 58216 different kinds of genes, including miRNA, lincRNA,
snRNA, protein coding and more. Measured over 86 subjects.. 15937 different annotations (GO terms) with assigned genes.. Information about the piRNA and TE sequences.. Disease information for each subject.. List of MDS related GO terms obtained from ctd database [42]

The expression data were provided from the Institute of Hematology and Blood
Transfusion.

The intersection between the measured subjects from the first three files (TE,
piRNA, genes) was 79 subjects. The subjects are divided into four groups based
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5. Data set.......................................
on the disease or the stage of disease they suffer from. Majority of the subjects
suffers from myelodyplastic syndromes (MDS) or Acute myeloid leukemia with
myelodysplasia-related changes (AML-MRC). The third group are patients that are
currently treated with azacitidine (AZA). And the rest of the subjects are healthy
controls. This information is essential for identifying differentially expressed piR-
NAs.

5.1 Data preparation

The tool was developed in python. The initial phase involved loading and preparing
the data. The first step was to find the samples that contained data for all of the
genes. This left us with data of 79 subjects. The size of the data set was huge and
needed to be reduced by deleting useless data. Therefore the data with zero or very
low expression were deleted.

However, even after this step, the data set still contained around ten thousands of
genes which would take hours or maybe even days to process. Therefore, for the
initial phase of development and testing, the data set was limited to contain only
piRNAs and one thousand protein coding genes (the genes that most likely have
assigned annotations).

Next step was to normalise the given data. For that purpose the DESeq2 median
of ratios normalisation was used.

The annotations provided were not in the form needed for this work. Therefore
the table with annotations was transformed into a more suitable form. The original
file contained a table that had all the annotations (Go-terms) listed in the first column
and all known genes annotated with this annotation were listed in the respective
lines. The transformed version is vice versa. The first column contains the list of all
the genes and the annotations are listed in the rows.

A subset of all the data had to be made, since our data set was huge and work
with such a huge network would not be feasible. The main criterion for selecting
suitable piRNAs for the experiment was high differential expression. A high level of
differential expression indicates statistically significant differences in the expression
levels of two compared groups. In our case, the first group consisted of MDS
patients, while the second group consisted of healthy controls. In other words, highly
differentially expressed genes are those with high expression in the first group but
low expression in the second, or vice versa. The high difference in expression
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between these two groups suggests a possible link to myelodysplastic syndrome. As
a result, we were looking for piRNAs that were highly differentially expressed.

The same criterion was applied when choosing the subset of the other genes we
needed to add to the network. Only this time both highly and lowly differentially
expressed genes were chosen, to represent both genes with possible connection to
myelodysplastic syndromes (MDS) and genes that are most likely not related to
MDS.
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Chapter 6

Correlation matrix and adjacency graph

Once the data were successfully normalised, a correlation matrix and an adjacency
graph based on this normalised data were constructed. The first constructed graph
can be seen in figure 6.1 where the blue nodes represent protein coding genes and the
red nodes represent piRNAs. The edges of the graph represent correlation between
the genes. In the initial phase of the experiment a non weighted graph was used. The
edges were included in the graph if and only if the absolute value of the correlation
between the genes was above selected threshold. In this case the threshold was set to
0.3.

Figure 6.1: Visualisation of the adjacency graph from the initial phase.
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However this construction was later proven to be insufficient. The graph contained

too many edges and the random walks did not converge. The graph had to be
improved and many edges had to be cut. Therefore the method described in Gene-
coexpression networks was used. This method is not based on establishing a fixed
threshold. Instead, it predefines the number of edges leading from each node. In
this way, the number of edges in the graph can be significantly reduced while still
maintaining the connectivity of nodes in sparser regions of the graph [2].

It is basically a context of k-nearest neighbour graphs, the objective is to link
vertices based on their k-nearest neighbours. However, this definition results in a
directed graph due to the asymmetry of the neighbourhood relationship. There are
two approaches that can be used to create an undirected graph. The first method
involves ignoring edge directions, connecting vertices if either is among the k-nearest
neighbours of the other. This results in what is commonly known as the k-nearest
neighbour graph. The second option is to connect nodes only if both are among the
k-nearest neighbours of each other, forming the mutual k-nearest neighbour graph.
In both cases, after establishing connections, the edges are weighted based on the
correlations between the connected vertices [43]. In this thesis the first method was
used.

Figure 6.2: Visualisation of the adjacency graph from the advanced phase. (3-nearest
neighbour graph) without considering the sequence matches between piRNAs and TEs

In the network visualised in the figure 6.2, there are 3 piRNAs represented as
green dots, 600 TEs represented as pink dots, 938 ’positive’ genes as blue dots and
912 ’negative genes shown as red points. Positive genes are those already annotated
genes that demonstrate a high value of differential expression between groups of
MDS patients and healthy controls. In other words, genes for which we suspect a
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link to myelodysplastic syndrome. Negative genes, on the other hand, have lower
observed differential expression. The graph is displayed in such a way that nodes
with direct connections are displayed close to one another, while nodes with no
direct connections are displayed further apart. As a result, mutually interacting genes
are shown next to each other.

Two criteria were used to choose the three piRNAs. Sufficiently high differential
expression was the initial need. The second requirement was that the chosen piRNA
had sequence matches with provided transposons. The method used to identify the
sequence matches between piRNAs and TEs is described bellow in section Pirna-TE
links. Sequence matches with transposable elements were found for 29 piRNAs.
However, none of these piRNAs matched the important differential expression
requirement. Therefore some compromises had to be made. We chose two piRNAs
with the highest differential expression among the 29 with sequence matches, despite
the fact that it was not statistically significant. The third piRNA is a piRNA with
the highest and statistically significant differential expression, on the other hand it
does not have any sequence match. This third piRNA is shown at the top right of the
graph, above the other two closest to the part of the graph with majority of ’positive’
genes. As it is the only piRNA with significant differential expression, this could be
expected. However the sequence matches are not yet considered in this graph. On
the other hand the graph in the figure 6.3 contains additional edges between piRNAs
and TEs based on their sequential compatibility. If we compare the graph 6.2 and
6.3, we can see that the piRNAs with the TE links shifted a little, however the shift
is not really significant.

Figure 6.3: Visualisation of the adjacency graph from the advanced phase. (3-nearest
neighbour graph) with edges representing sequence compatibility of piRNAs and TEs.
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As already stated before, the edges of the graph were limited to have an predefined

number of edges coming from each node. The numbers of edges we were working
with were 3, 5 and 10. The random walks method and the annotations assignment
were made for each node degree setting and the results were then compared. To
understand the gene co-expression network better few histograms showing the
distributions of the correlation values are presented.

In the graph 6.4 there are three correlation distributions, one for each node degree
setting. This graph looks at every edge in the adjacency graph and shows us the
strengths of the correlations in the network. It is possible to see that increasing the
degree of the vertexes does not significantly alter the distribution of the correlation.
In other words, adding more edges to the network does not significantly lower the
mean and median of the correlation values. The median of the values of correlations
for each node degree is also displayed in the graph 6.4. With more edges in the
network, the median moves slightly towards lower values which was expected since
the the network always contains the x strongest correlations for each gene, where x is
the degree of the nodes in the network. That means that with increasing node degree
the links added are expected to be weaker than the ones already in the network.
However the difference in the median value is not large. For these three settings of
the network the median ranges between 0.59 for node degree 10 and 0.64 for node
degree 3. The exact values of all the mean and median values are presented in table
6.1.
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Figure 6.4: Histogram showing correlations values that were used for creating the
three adjacency graphs with node degrees 3, 5 and 10.
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Node Degree Mean Median
3 0.67 0.64
5 0.65 0.62
10 0.62 0.59

Table 6.1: The mean and median values of the correlation values distribution for each
setting of the degree of the nodes in the network.

The histogram in graph 6.4 gives us some understanding of the distribution of
the correlation values in the gene co-expression network. However it does not
completely tell us how the values are distributed. It does not tell us whether there
are genes that are highly correlated and other genes from lower correlated areas or
if the difference between the strongest correlation and other correlations for that
gene are significant. In other words if there are genes in the network that are only
strongly correlated with one or two other genes with much lower correlations to
others. Therefore to understand the network even better, additional graphs were
created.

The graph 6.5 shows the distribution of the highest correlation values throughout
all genes. This time there is only one histogram for all the node degree settings
since the strongest correlation for each gene is included in every setting therefore all
settings can be displayed together. From this graph it is possible to see that there are
in fact genes with really high strongest correlation and also genes with the strongest
correlation only somewhere around 0.4. However the vast majority of the genes
has its strongest correlation value 0.5 or higher. The mean value of the strongest
correlations is 0.71 and the median is 0.69.
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Figure 6.5: Histogram showing the strongest correlation value for each gene.
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Both graphs 6.6 and 6.7 show the differences between the the strongest and the

weakest correlation used in the network throughout all genes. However there is a
difference at what was considered the weakest correlation for each gene. The graph
6.6 simply shows the distribution of differences between the strongest correlation for
each gene and its 3rd/5th/10th strongest correlation based on the node degree setting.
Therefore, we can see how significant the differences are between the strongest
correlations of each gene and infer if there are areas of highly correlated genes or
not. As we can see in the graph 6.6 the differences between the highest and lowest
correlation value throughout the genes are very small which suggests that majority
of the genes either have more correlation of an similar values and therefore we can
suggest that they form some kind of clusters that are more or less correlated together.
The differences increase slightly with the increasing degrees of the nodes which is
expected since weaker edges are being added. However the mean difference does
not go over 0.1. The exact mean and median values are displayed in table 6.2.
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Figure 6.6: Histogram presenting the difference between the strongest correlation
value and the weakest correlation value that was used for the adjacency graph (3rd, 5th
or 10th strongest correlation value based on the node degree parameter) for each gene.

Node Degree Mean Median
3 0.048 0.034
5 0.069 0.054

10 0.99 0.085

Table 6.2: The mean and median values of the differences between the strongest
correlation values and the 3rd/5th/10th strongest correlation value based on the node
degree.

However as already stated before, adding only x strongest correlations for each
gene, where x is the desired degree of the nodes, results in a directed graph since the
fact that a specific correlation value is in the top x correlation for a specific gene does
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......................... 6. Correlation matrix and adjacency graph

not mean that the same correlation value is also in the top x correlation for the gene
that it leads to and vice versa. To solve this problem and avoid the oriented graph,
an approach was used and therefore an edge is added to the network if it is in the top
x correlations of any of the two genes. The graph 6.7 takes this fact into account and
shows the distribution of the differences between the highest and lowest correlation
value for each gene considering all the edges. The difference between the graphs 6.6
and 6.7 is that this time the lowest correlation does not have to come from the top
correlation values of the gene. As we can see in the graph 6.7 the differences raised
quite significantly which suggests that there are a lot of links between the generally
lower correlated genes and the higher correlated genes in the network. The mean
and median are again displayed in the table 6.3.
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Figure 6.7: Histogram displaying the difference between the strongest and the weakest
correlation used in the adjacency graph for each gene. The weakest correlation value
might not necessary be the 3rd/5th/10th strongest correlation for each gene since the
graph is not oriented and the edge might have been created based on the gene on the
other side of the edge.

Node Degree Mean Median
3 0.16 0.13
5 0.20 0.19
10 0.27 0.25

Table 6.3: The mean and median values of the differences between the strongest
correlation values and the weakest correlation value used in the network for each
gene.
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6. Correlation matrix and adjacency graph ........................
6.1 Pirna-TE links

Since one of the roles of piRNAs in silencing transposons, it was expected that there
would be connections between piRNAs and transposable elements (TEs) in the gene
co-expression networks. Nevertheless, the expression levels of piRNAs and TEs
generally showed no significant correlations. As a result, the concept of forming
links based on their compatibility in terms of sequence formed.

The implemented method was based on the pirScan web software [44], [45].
PirScan is a specialised tool designed to predict the locations where piRNAs are
most likely to bind in a given sequence of C. elegans. It proposes potential silent
mutations that could be introduced to prevent the silencing of transgenes by piRNAs.
Users can input either a mature mRNA or spliced DNA sequence and select either
the default or personalised piRNA targeting rules for the search. The results are
displayed in a simple and structurally organised manner, presenting all expected
piRNA target sites within the provided sequence through graphs and tables. PirScan
applies established targeting rules to predict the endogenous piRNA targeting sites in
an input sequence. PirScan visually presents the precise locations of piRNA targeting
sites within an input sequence, along with the corresponding pairing information
at each site. The outcomes of every piRNA target prediction can be additionally
downloaded [44].

Although we attempted to work with pirScan to detect piRNAs and TEs that are
sequentially compatible, we encountered a difference between our piRNA database
and the one in pirScan. Additionally, using pirScan for all TEs in our database would
require an extensive amount of time and effort. Consequently, it was necessary to
develop a similar tool based on pirScan. For our work, exact location of piRNA
targeting sites was not necessary. Therefore, a significantly simplified version of
pirScan was created. Our tool attempts to align the piRNA sequence to every possible
position of the TE sequence, evaluates the number of mismatches, calculates a ’match
score’, and provides the match score of the best alignment. The algorithm aligns
the piRNA sequence with the reversed TE sequence and examines the presence of
complementary base pairs. Matches are identified whenever ’AT’ and ’GC’ pairs are
found. Other combinations are treated as mismatches, with one exception, the ’GT’
pair is considered to be a mismatch, however, the penalty for this pair is less severe
than the penalty for other mismatches.
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Chapter 7

Random Walks and Permutation Tests

The method used for the piRNA annotation was the random walks method. The
algorithm itself is described in function 1. The random walk starts in a piRNA node
and in each step it randomly progresses to one of the neighbours of the current nodes.
The next step is dependent only on the current state and it is not influenced by the
preceding sequence. The random walk takes a pre-selected number of steps.

Function 1: Random walks
Result: Path
Input: graph, startNode, numSteps
current = startNode;
path = [current];
for i = 1 to numSteps do

neighbors = graph.getNeighbors(current);
if length(neighbors) equal to 0 then

break;

nextNode = randomlySelect(neighbors);
Add nextNode to path;
current = nextNode;

In this diploma thesis a special version of random walks called random walks
with restart was used. In a random walk with restart, there is an added probability
that the walker might "restart" its journey from the initial node rather than moving
to a neighbouring node at each step. This restarting probability introduces a bias,
favouring paths that begin at the first node. The random walks with restart algorithm
is described in function 2.

35



7. Random Walks and Permutation Tests.........................
Function 2: Random walks with restart

Result: Path
Input: graph, startNode, numSteps, restartProbability
current = startNode;
path = [current];
for i = 1 to numSteps do

neighbors = graph.getNeighbors(current);
if length(neighbors) equal to 0 then

break;
nextNode = randomlySelect(neighbors) or startNode (with probability ==

restartProbability);
Add nextNode to path;
current = nextNode;

At the end of each random walk, after the number of steps we chose, we look at
the node that the random walk ended in and the annotations assigned to it. Each of
the GO terms assigned to the gene at the end of the random walk is considered as
a possible GO term for the piRNA. The annotations (GO terms) with significantly
larger than random occurrence at the end gene of the random walks are assigned to
the piRNA.

The decision whether the GO term occurrence is statistically significant is made
based on permutation tests. The key idea behind permutation tests is to generate
a null distribution by randomly permuting or reordering the data, simulating a
scenario in which the observed effect is entirely due to random. The observed test
statistic is then compared to the statistical distribution resulting from many such
random permutations. If the observed statistic is in the extreme tail of the null
distribution, it indicates that the observed effect is unlikely to have occurred by
chance alone, implying that the null hypothesis must be rejected. In other words,
the permutation test determines the likelihood that the observed accuracy happened
by chance. The p-value denotes the proportion of randomised data sets in which
the classifier performed as well as or better than it did in the real data, assuming a
specific null hypothesis [46].

Randomised data sets are generated using the random walks method applied to
the graph, where GO terms are shuffled randomly throughout the network. The
process is visually illustrated in Figure 7.1 on a small, simple network. This involves
taking the correct gene co-expression network, which includes information about
nodes, edges, and assigned GO terms. The method requires temporarily removing
the correct GO term assignments followed by reassigning them to a random node.
It removes the correct assignments of the GO terms and then put them back to a
randomly selected node. As a result, the network’s structure remains unchanged,
while the GO terms are shuffled across the network and assigned to different genes
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......................... 7. Random Walks and Permutation Tests

than before. Throughout this process, the density of individual GO terms within the
network is preserved.

For each randomisation of the network, a predetermined number of random walks
are performed. This procedure is repeated several times in order to ensure proper
distribution. The method improves and becomes more precise as the number of
random walks per randomisation and the number of randomisations of the network
increases. On the other hand the more random walks per randomisation and the
more randomisations of the network are performed, the longer the execution times
becomes. Therefore some compromise between precision and execution time had to
be made.

Throughout the majority of the experiment, 100 random walks per randomisa-
tion and 500 differently shuffled networks were conducted. The same number of
random walks was applied to the correctly annotated gene co-expression network.
Consequently, we obtained a value between zero and one hundred for each GO
term in the network, representing how frequently a random walk finished in a gene
annotated with that particular GO term in the correctly annotated network. With a
total number of 11,892 GO terms in the network, we then generated a distribution of
1000 numbers (dependent on the number of performed shuffles) for each GO term
from the randomised networks. Subsequently, we compared the obtained number
and distribution, calculating a p-value. GO terms exhibiting a significant p-value are
then assigned to the piRNA.
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Figure 7.1: Graphical explanation of the random shuffling of the GO terms in the
network. GO terms, represented as GO1-5 are randomly shuffled among the network.
The density of each GO term remains the same.
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......................... 7. Random Walks and Permutation Tests

The figure 7.2 shows the distribution of the results of the random walks that
started from piRNA ’hsa-piR-018849’ performed on the correctly annotated gene
co-expression network. We can see that the vast majority of the GO terms was not
visited in any of the 100 random walks. These are mostly the GO terms that belong
to the genes that are not highly correlated with examined piRNA and therefore are
located further away in the network and cannot be reached with the random walks.
They can also be GO terms with really low density in the graph so they are harder to
reach with only 100 random walks. Since the number of the GO terms with no visits
is so huge, the rest of the distribution cannot be properly seen. For this reason, the
zoom version of this histogram was created and is displayed in figure 7.3.
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Figure 7.2: Distribution of Random Walk Endpoints on Gene Ontology Terms: A
histogram illustrating the frequency of random walks reaching different Gene Ontology
(GO) terms. The x-axis represents the number of random walks terminating in each
GO term, while the y-axis indicates the count of GO terms for each corresponding
endpoint count. This analysis provides insights into the distribution of random walk
outcomes across the GO hierarchy. Blue distribution shows all GO terms, while orange
distribution only shows GO terms with statistically significant occurrence compared to
the results of random walks on the randomly shuffled network.

Figure 7.3 shows a more detailed look at the lower count values in the distribution
of results from random walks initiated from the piRNA ’hsa-piR-018849’ on a
correctly annotated gene co-expression network. This visualisation presents the
distribution of occurrences of Gene Ontology (GO) terms at the final point of
random walks, satisfying the statistical significance threshold.

Notably, a relatively high frequency does not guarantee statistical significance. A
GO term with a low occurrence, on the other hand, may still be considered significant.
This variability occurs because the p-value is influenced not only by the results of
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7. Random Walks and Permutation Tests.........................
random walks in the correctly annotated network, but also by those in the shuffled
network. That is because, the density of the GO term in the network plays an
important role in determining significance.
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Figure 7.3: Zoom on the distribution of Random Walk Endpoints on Gene Ontology
Terms: A histogram illustrating the frequency of random walks reaching different Gene
Ontology (GO) terms. The x-axis represents the number of random walks terminating in
each GO term, while the y-axis indicates the count of GO terms for each corresponding
endpoint count. This analysis provides insights into the distribution of random walk
outcomes across the GO hierarchy. Blue distribution shows all GO terms, while orange
distribution only shows GO terms with statistically significant occurrence compared to
the results of random walks on the randomly shuffled network.

Figure 7.4 displays a distribution of the numbers of occurrences of individual GO
terms in our gene co-expression network. The blue distribution represents all of the
11925 GO terms assigned to genes in our gene co-expression network. The orange
distribution includes only the 1243 MDS related GO terms assigned to genes in our
network. According to the graph majority of the GO terms are only assigned to only
few genes. In other words, most of the GO terms have low density in the network.
This distribution looks fairly similar with distribution portraying the GO terms at
the finish states of the random walks displayed in figure 7.2. This similarity is not
coincidental as these two distributions are dependent on each other as the random
walks are generally more likely to end up in the more abundant GO term.
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Figure 7.4: Histogram depicting the distribution of Gene Ontology (GO) term oc-
currences in the gene co-expression network. The x-axis represents the number of
occurrences, while the y-axis indicates the frequency of GO terms corresponding to
each occurrence level. Two distributions are provided, blue one represents all GO terms
in the network, orange represents MDS related terms.

For a better comparison of the distributions of all GO terms and MDS related
GO terms, histogram displayed in figure 7.5 was constructed. It presents the same
distributions as the histogram in figure 7.4, only this time not in absolute numbers on
the y axis. Graph in figure 7.5 has density value on the y axis which is more suitable
for comparison between two distributions of different sizes. It is possible to see that
both distributions are similar, meaning that many GO terms in both populations have
only few occurrences in the network. However the MDS related terms seem to be
slightly more abundant than the population with all GO terms. The mean value of
MDS related GO term abundance is slightly higher than the mean value of all GO
terms abundance. The mean value for MDS related GO terms is 14.79, for all GO
terms it is 9.52.

The graph in figure 7.6 illustrates the successful assignment of a GO term based on
the outcome of a permutation test. The assigned Gene Ontology term was accessed
15 times in the correctly annotated network. The results of the shuffled network
are displayed as the blue histogram. It is evident that the number of visits in the
accurately annotated network exceeds that of any of the shuffled networks, which in
this particular case equals to 1000.
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Figure 7.5: Histogram depicting the distribution of Gene Ontology (GO) term oc-
currences in the gene co-expression network. The x-axis represents the number of
occurrences, while the y-axis the density of the number of GO terms for each occurrence
level. Two distributions are provided, blue one represents all GO terms in the network,
orange represents MDS related terms.
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Figure 7.6: Comparison of the distribution obtained from the random walks with
restart performed on the shuffled network and the true outcome of the random walks
with restart on the correct network for the piRNA hsa-piR-018849 and GO term myeloid
cell differentiation.
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Chapter 8

Results

During the initial stages of testing and experimentation, the network pictured in
figure 6.1 was used. The network consisted of 1500 protein coding genes, displayed
as blue nodes, and 423 piRNAs, displayed as red nodes. Protein coding genes
were selected due to the fact that the majority of them possess officially assigned
Gene Ontology (GO) terms. The piRNAs were selected from the data-set, including
all of those with a non-zero expression. At this point, differential expression was
not considered. The decision whether a link between two genes was included in
the network was determined by applying a predetermined threshold of 0.3. That
indicates that the genes were linked in the network only if the correlation between
them had an absolute value greater than 0.3. At this time, the random walk method
is working properly and successfully assigning GO terms.

Nevertheless, the network was insufficient due to a large amount of edges, re-
sulting in a complete lack of convergence in the random walks. Consequently, the
results in this stage appeared to be comparable to a random generator of GO terms.
Furthermore, the genes that were used in the network were not precisely selected.
Due to the absence of differential gene expression analysis, we were unable to tell
the difference between interesting piRNAs and others.

For all these reasons major changes in the network had to be made. Some of
the changes were already discussed in chapter Correlation matrix and adjacency
graph. The number of edges in the gene co-expression network had to be reduced,
to do that the method already described in chapters Gene-coexpression networks
and Correlation matrix and adjacency graph was used. This way each gene was
left with a predetermined number of edges. An edge between two genes was added
into the network if it was in the top x correlations for at least one of the two genes,
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8. Results .......................................
where x is the desired degree of the nodes in the network. Next the network had to
consist of completely different subset of available genes. This time considering the
values of differential expression to focus on piRNAs that are potentially linked to
myelodysplastic syndromes (MDS). In this network transposable elements (TE) were
also included since piRNAs are known for interacting with them. TEs in general do
not have GO terms assigned to them but they could serve as links between piRNAs
and other genes with previously assigned GO terms. However the correlations
between piRNAs and TEs in most cases were not significant. From that the idea
to connect piRNAs and TEs according to their sequential compatibility arose. The
method used to add those piRNA-TE links is described in section Pirna-TE links.

In order to obtain the final results of our work, different network than the one in
the initial experiment was used. The final network, previously discussed in chapter
Correlation matrix and adjacency graph, includes three piwi interacting RNAs
(piRNA) that have been identified as worth mentioning. Additionally, it includes 600
transposable elements (TE), with the elimination of TEs that were expressed at very
low levels. Finally, the network comprises 1850 genes that should already possess
verified annotations. The genes were selected out of two categories: genes exhibiting
significant differential expression between patients with myelodysplastic syndromes
(MDS) and healthy individuals, indicating a potential association with MDS; and
genes exhibiting little differential expression, suggesting no connection to MDS.

The selection of the noteworthy piRNAs was based on two criteria: statistically
significant differential expression between the groups of interest and sequence
compatibility with the available transposable elements (TEs). However, none of the
piRNAs met both conditions satisfactorily. Consequently, a compromise had to be
formed. We identified 29 piRNAs that exhibited sequential compatibility with TEs.
Among these, we selected the two piRNAs with the greatest differential expressions,
although the statistical significance of those differences was not confirmed. The last
newly selected piRNA demonstrated statistically significant differential expression,
but did not possess any sequentially compatible transposable elements (TEs). The
chosen piRNAs are presented in table 8.1.

piRNA matched TE sequences log2FoldChange Adjusted pValue
hsa-piR-014626 6 -1.38 0.94
hsa-piR-021121 3 1.25 0.94
hsa-piR-018849 0 5.97 0.02

Table 8.1: Table presenting information about piRNAs selected for the experiment. It
displays number of sequence compatible transposable elements (TE) and results of the
differential expression analysis, specifically log2 fold change and adjusted p-value.

In order to evaluate the efficiency of our approach, it is essential to have access
to officially recognised annotations that can serve as a benchmark for evaluating
our findings. Unfortunately, we were unable to find a database offering piRNA
annotations that included the piRNAs in our data-set. As a result, it is not possible to
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.................... 8.1. Determining the best random walks parameters

accurately determine the success rate of the method we implemented. Therefore, the
only approach for evaluating the success is by examining the quantity of assigned
Gene Ontology (GO) terms and analysing the proportion of those terms that are
associated with Myelodysplastic syndromes (MDS). The p-values were calculated
based on the cumulative distribution function corresponding to the hypergeometric
distribution given the above values. The p-values provide the probability of observing
a number of positive GO terms (related to MDS) or higher in a sample of randomly
drawn GO terms (the total number of assigned GO terms), taking into account the
sizes of the two populations (the number of different GO terms in the network and
the number of MDS-related GO terms in the network).

The mathematical calculation of the mentioned above probability is provided in
the following equation.

P (X ≥ x) = 1 −
x−1∑
k=0

(K
k

)
·
(N−K

n−k

)(N
n

) (8.1)

where

. N is the population size (Total number of different GO terms in the network). K is the number of success elements in the population (Number of different
MDS related GO terms in the network). n is the number of draws (Number of assigned GO terms). x is the number of desired successes (Number of assigned MDS related GO
terms)

8.1 Determining the best random walks
parameters

The initial phase of the final experiment involved conducting random walks with
restart on this network using various parameter configurations in order to potentially
achieve optimal parameters. The parameters had an impact on both the network
structure and the random walks algorithm. The parameters that were analysed were
the node degree in the network, the length of the random walks, and the probability of
returning to the initial position of the random walk. In this phase of the experiment,
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100 random walks were conducted for each configuration, along with 500 random
shuffles of GO terms.

The tables 8.2, 8.4 and 8.6 display the amounts of assigned Gene Ontology (GO)
terms, along with the assigned GO terms related to myelodysplastic syndromes
(MDS). Each table corresponds to one of the three piRNAs. Tables 8.3, 8.5 and
8.7 present the p-values derived from the cumulative distribution function of the
hypergeometric distribution. The p-values that are statistically significant at a
significance level of 0.001 are highlighted in green.

It is noticeable that hsa-piR-018849 has a greater amount of assigned GO terms
compared to the other two piRNAs. Furthermore, it exhibits a higher proportion of
GO terms related to myelodysplastic syndromes (MDS). The explanation for this
may be found in figure 6, since the piRNA hsa-piR-018849 exhibits significantly
higher differential expression values compared to other piRNAs in the data-set. Con-
sequently, it is mainly linked with other genes that also show significant differential
expression and already have assigned Gene Ontology (GO) terms. As a result, most
of the random walks end in the annotated genes, leading to a greater number of
assigned GO terms in the final analysis. Furthermore, given that the genes in close
contact to this piRNA exhibit significant differences in expression between MDS
patients and healthy controls, the likelihood of obtaining a GO term associated with
MDS increases.

On the contrary, the remaining two piRNAs (hsa-piR-014626 and hsa-piR-021121)
are mainly situated near genes and transposable elements (TE) that show minimal
differential expression. Transposable elements (TEs) lack assigned annotations,
therefore an abundance of TEs results in numerous random walks terminating at
genes without annotations, consequently reducing the number of assigned Gene
Ontology (GO) terms. Furthermore, due to the lack of a lot of highly differentially
expressed genes in their surroundings, the probability of assigning MDS-related
Gene Ontology terms is also reduced.
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Probability of restart 0.05 0.1 0.25
Degree Random walks length

10
5 136 (28) 130 (28) 88 (17)
10 121 (23) 84 (18) 60 (17)
50 29 (7) 33 (9) 102 (20)

5
5 57 (16) 100 (17) 104 (16)
10 95 (21) 149 (24) 86 (17)
50 58 (17) 98 (21) 68 (15)

3
5 97 (19) 94 (17) 85 (19)
10 120 (21) 108 (19) 65 (15)
50 72 (14) 172 (29) 49 (10)

Table 8.2: Table presenting the results of the random walks with restart method for
the piRNA ’hsa-piR-018849’ across 27 parameter combinations. Each cell displays
the count of assigned Gene Ontology (GO) terms alongside the number of assigned
terms related to Myelodysplastic syndromes (MDS), separated by a comma. Parameters
include random walk length, restart probability, and the desired degree of the nodes in
the gene co-expression network.

Probability of restart 0.05 0.1 0.25
Degree Random walks length

5 3.2 × 10−4 1.4 × 10−4 8.7 × 10−3

10 3.1 × 10−3 2.2 × 10−3 9.0 × 10−510
50 2.6 × 10−2 5.4 × 10−3 3.9 × 10−3

5 1.6 × 10−4 2.9 × 10−2 7.2 × 10−2

10 6.5 × 10−4 2.0 × 10−2 6.9 × 10−35
50 5.6 × 10−5 9.9 × 10−4 3.7 × 10−3

5 4.9 × 10−3 1.7 × 10−2 1.0 × 10−3

10 1.2 × 10−2 1.6 × 10−2 2.4 × 10−33
50 1.5 × 10−2 6.2 × 10−3 2.8 × 10−2

Table 8.3: P-Values obtained from the Cumulative distribution function of hypergeo-
metric distribution for results of the random walks with restart method performed for
piRNA ’hsa-piR-018849’. The table corresponds with Table 8.2. P-values significant on
level 0.001 are highlighted in green.
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Probability of restart 0.05 0.1 0.25
Degree Random walks length

10
5 32 (1) 43 (3) 19 (0)
10 32 (6) 0 (0) 22 (4)
50 24 (2) 10 (0) 21 (2)

5
5 14 (0) 23 (3) 12 (0)
10 24 (5) 12 (2) 18 (0)
50 13 (2) 27 (6) 18 (0)

3
5 45 (4) 41 (1) 29 (2)
10 47 (3) 6 (0) 7 (0)
50 55 (4) 4 (0) 161 (2)

Table 8.4: Table presenting the results of the random walks with restart method for
the piRNA ’hsa-piR-014626’ across 27 parameter combinations. Each cell displays
the count of assigned Gene Ontology (GO) terms alongside the number of assigned
terms related to Myelodysplastic syndromes (MDS), separated by a comma. Parameters
include random walk length, restart probability, and the desired degree of the nodes in
the gene co-expression network.

Probability of restart 0.05 0.1 0.25
Degree Random walks length

10
5 0.97 0.84 1.00
10 0.11 1.00 0.19
50 0.73 1.00 0.66

5
5 1.00 0.44 1.00
10 0.10 0.36 1.00
50 0.40 0.06 1.00

3
5 0.70 0.99 0.82
10 0.88 1.00 1.00
50 0.84 1.00 1.00

Table 8.5: P-Values obtained from the Cumulative distribution function of hypergeo-
metric distribution for results of the random walks with restart method performed for
piRNA ’hsa-piR-014626’. The table co-responds with table 8.4.
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Probability of restart 0.05 0.1 0.25
Degree Random walks length

10
5 12 (0) 27 (3) 92 (7)
10 10 (1) 115 (13) 73 (8)
50 8 (0) 59 (7) 55 (4)

5
5 17 (0) 34 (3) 45 (2)
10 21 (4) 28 (2) 80 (9)
50 69 (10) 32 (3) 93 (17)

3
5 26 (3) 29 (5) 42 (6)
10 28 (3) 42 (8) 105 (18)
50 91 (21) 35 (4) 46 (7)

Table 8.6: Table presenting the results of the random walks with restart method for
the piRNA ’hsa-piR-021121’ across 27 parameter combinations. Each cell displays
the count of assigned Gene Ontology (GO) terms alongside the number of assigned
terms related to Myelodysplastic syndromes (MDS), separated by a comma. Parameters
include random walk length, restart probability, and the desired degree of the nodes in
the gene co-expression network.

Probability of restart 0.05 0.1 0.25
Degree Random walks length

5 1.00 0.55 0.86
10 0.67 0.42 0.5010
50 1.00 0.42 0.84
5 1.00 0.70 0.96

10 0.17 0.81 0.465
50 0.18 0.66 0.01
5 0.52 0.18 0.27

10 0.57 0.07 0.023
50 3.52 × 10−4 0.50 0.20

Table 8.7: P-Values obtained from the Cumulative distribution function of hypergeo-
metric distribution for results of the random walks with restart method performed for
piRNA ’hsa-piR-021121’. The table co-responds with table 8.6. P-values significant on
level 0.001 are highlighted in green.
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8.1.1 Network with added piRNA-TE links based on
sequence compatibility

The results of analysing the sequence compatibility were not taken into account in the
above-mentioned tests. Furthermore, two additional experiments were conducted on
the piRNAs, which targeted compatible transposable elements (TEs). The links be-
tween the piRNAs and those transposable elements (TEs) were additionally included
in the network. Figure 6.3 displays the newly established network. Subsequently,
random walks with restart were executed on this revised network. The purpose of
doing so was to determine whether the addition of the new link would have any
influence on the outcomes. Nevertheless, the impact was minimal and predominantly
unfavourable, leading us to walk away from any additional involvement with this
particular version. The outcomes of these experiments are displayed in tables 8.8
and 8.10. The p-values obtained from the cumulative distribution function of the
hypergeometric distribution are displayed in tables 8.9 and 8.11.

Probability of restart 0.05 0.1 0.25
Degree Random walks length

10
5 20 (0) 0 (0) 10 (0)
10 3 (0) 41 (11) 15 (1)
50 9 (2) 69 (3) 44 (0)

5
5 27 (1) 15 (2) 12 (2)
10 13 (0) 10 (0) 9 (0)
50 4 (0) 4 (0) 2 (0)

3
5 51 (1) 25 (0) 17 (1)
10 10 (1) 5 (0) 35 (1)
50 20 (1) 6 (1) 49 (3)

Table 8.8: Table presenting the results of the random walks with restart method for the
piRNA ’hsa-piR-014626’ on the updated network with added piRNA-TE links across 27
parameter combinations. Each cell displays the count of assigned Gene Ontology (GO)
terms alongside the number of assigned terms related to Myelodysplastic syndromes
(MDS), separated by a comma. Parameters include random walk length, restart proba-
bility, and the desired degree of the nodes in the gene co-expression network.
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Probability of restart 0.05 0.1 0.25
Degree Random walks length

10
5 1.00 1.00 1.00

10 1.00 0.00 0.81
50 0.24 0.98 1.00

5
5 0.95 0.47 0.36

10 1.00 1.00 1.00
50 1.00 1.00 1.00

3
5 1.00 1.00 0.85

10 0.67 1.00 0.98
50 0.89 0.48 0.90

Table 8.9: P-Values obtained from the Cumulative distribution function of hypergeo-
metric distribution for results of the random walks with restart method performed on the
updated network with added piRNA-TE links for piRNA ’hsa-piR-014626’. The table
co-responds with table 8.8.

Probability of restart 0.05 0.1 0.25
Degree Random walks length

10
5 2 (0) 58 (7) 7 (0)
10 7 (1) 9 (1) 90 (14)
50 10 (0) 29 (2) 23 (3)

5
5 17 (2) 21 (0) 27 (4)
10 30 (8) 38 (2) 22 (3)
50 80 (8) 70 (14) 72 (15)

3
5 12 (0) 66 (13) 36 (6)
10 19 (2) 15 (0) 44 (4)
50 4 (0) 18 (0) 52 (8)

Table 8.10: Table presenting the results of the random walks with restart method for the
piRNA ’hsa-piR-021121’ on the updated network with added piRNA-TE links across 27
parameter combinations. Each cell displays the count of assigned Gene Ontology (GO)
terms alongside the number of assigned terms related to Myelodysplastic syndromes
(MDS), separated by a comma. Parameters include random walk length, restart proba-
bility, and the desired degree of the nodes in the gene co-expression network.
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Probability of restart 0.05 0.1 0.25
Degree Random walks length

10
5 1.00 0.40 1.00
10 0.54 0.63 0.08
50 1.00 0.82 0.44

5
5 0.54 1.00 0.31
10 0.01 0.92 0.41
50 0.60 0.01 0.01

3
5 1.00 0.02 0.17
10 0.60 1.00 0.69
50 1.00 1.00 0.17

Table 8.11: P-Values obtained from the Cumulative distribution function of hypergeo-
metric distribution for results of the random walks with restart method performed on the
updated network with added piRNA-TE links for piRNA ’hsa-piR-021121’. The table
co-responds with table 8.10.
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8.2 Final Experiment

For the final phase of the experiment, an entirely new set of piRNAs was selected
for examination, and a specific combination of parameters was chosen. The selec-
tion of the parameter combination was determined by the outcomes obtained for
piRNA hsa-piR-018849, as the results for the other piRNAs were not sufficiently
satisfying. Selecting the optimal parameter combination proved challenging due to
the experiment’s limited size caused by limitations on time and high computational
requirements. The random walks with restart did not achieve complete convergence
in this small experiment, suggesting the possibility that a more optimal parameter
combination may exist but was not discovered. We selected the combination of a
node degree set to 5 and a restart probability of 0.05, as this combination consistently
provided statistically significant p-values. The random walk length was set to 50 by
selecting the one with the lowest p-value among the three lengths.

The piRNAs for this final experiment were selected after finalising the decision
on parameter combination. We decided to select three piRNAs from our data-set that
were the only ones showing statistically significant differential expression between
patients with myelodysplastic syndromes (MDS) and healthy controls. Additionally,
we randomly chose one piRNA that exhibited only minimal differential expression.
Among the three piRNAs that show differential expression, only one is up-regulated
in the group of MDS patients. This particular piRNA also exhibits the largest log2
fold change, indicating the greatest difference in expression between the two groups
under examination. It is also the piRNA used in the previous experiment was also
utilised, and the parameter combination was determined based on the results obtained
from it. Two additional piRNAs that are differentially expressed are down-regulated
in the group of patients with MDS. Table 8.12 contains all the piRNAs that have
been chosen. The expectation is to achieve a higher ratio of MDS-related GO terms
for the three differentially expressed piRNAs compared to the last piRNA, which
does not exhibit significant differential expression.

piRNA baseMean log2FoldChange pvalue padj
hsa-piR-018849 89.58 5.97 9.35 × 10−05 0.020
hsa-piR-020828 64.68 -2.17 6.22 × 10−4 0.045
hsa-piR-009051 92.91 -1.41 6.09 × 10−4 0.045
hsa-piR-021032 183.51 0.25 4.02 × 10−1 0.996

Table 8.12: Table presenting piRNAs selected for the final experiment. Information
obtained from the differential expression analysis are displayed.

The largest feasible experiment was conducted for the given piRNAs and param-
eter combination, taking into account our limitations, such as limitation of time
and the insufficient computational power. We conducted 500 random walks on the
accurate gene co-expression network, as well as 500 random walks with restart on
5000 gene co-expression networks that had GO terms shuffled in different ways.
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The outcomes of this experiment are displayed in table 8.13. The table provides

the piRNA identifiers, the total count of assigned Gene Ontology (GO) terms to
each piRNA, the count of assigned GO terms related to myelodysplastic syndromes
(MDS), and the p-value obtained from the cumulative distribution function of the hy-
pergeometric distribution. The piRNA hsa-piR-018849 exhibited the most favourable
outcomes, which was demonstrated by a p-value of 0.0016. This was expected, given
that it possesses the highest differential expression values among all piRNAs. The
piRNA hsa-piR-009051 also demonstrated a significant p-value at a significance
level of 0.05. However, the third piRNA (hsa-piR-020828) exhibited the most un-
favourable outcomes among the four piRNAs, even surpassing the non-interesting
piRNA that, as expected, failed to produce a significant p-value. Following this dis-
covery, we analysed the location of the piRNA hsa-piR-020828 within the network.
The network is depicted in figure 8.1. The piRNA in debate is portrayed as a yellow
node, situated at the boundary between differentially expressed genes and those
without significant differential expression. This position of the node may explain the
unsatisfactory outcome.

piRNA # assigned GO terms (MDS) p-value
hsa-piR-018849 122 (24) 1.6 × 10−3

hsa-piR-020828 36 (4) 0.53
hsa-piR-009051 118 (22) 4.9 × 10−3

hsa-piR-021032 34 (5) 0.28

Table 8.13: Results of the final experiment. Numbers of assigned annotations and
assigned MDS related annotations are presented as well as the p-value obtained from
the cumulative distribution function of hypergeometric distribution.

Figure 8.1: Visualisation of the gene co-expression network used in the final experi-
ment. Blue nodes represent genes with significant differential expression between MDS
patients and healthy controls, red nodes are genes with minimal differential expression
between previously mentioned groups, pink nodes represent transposable elements (TE).
Yellow node represents piRNA hsa-piR-020828 that exhibited statistically significant
differential expression but did not presented statistically significant results from random
walks. Other three piRNAs are displayed as green nodes.
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The GO terms assigned to piRNA hsa-piR-018849 at a significance level of 0.005
are displayed in Figure 8.2. The graph was generated using the enrichment map
plugin within the cytoscape software. The MDS related GO terms are represented
by red nodes, while the remaining assigned GO terms are represented by blue nodes.
It is evident that the majority of the assigned GO terms are concentrated in clusters,
indicating strong associations between the GO terms. This suggests that the findings
were not just coincidental.

Figure 8.2: Graphical visualisation of GO terms assigned to piRNA hsa-piR-018849
created with the enrichment map plugin of the cytoscape software. The myelodysplastic
syndromes related GO terms are visualised as red circles, blue circles represent GO
terms that are not related to MDS.

However, in order to obtain more reliable results, a significantly larger experiment
would need to be conducted, specifically involving a greater number of random walks
with restart per shuffle. Unfortunately, the execution of such a massive experiment
was unfeasible due to the limited amount of time and the insufficient computational
power of my computer. Increasing the number of random walks with restart (RWR)
per shuffle generally leads to improved convergence of the RWR and strengthens
the reliability of the results. The resolution of the p-value and the reliability of the
results are influenced by the number of GO term shuffles.
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Chapter 9

Conclusions

The fundamental goal of this diploma thesis was to develop a tool capable of assign-
ing functional annotations (GO terms) to PIWI-interacting RNAs (piRNA), with a
particular focus on potential associations with myelodysplastic syndrome (MDS).
The Institute of Haematology and Blood Transfusion provided expression data for
this purpose. The data were measured across multiple groups of subjects. We focused
primarily on two groups: patients suffering with myelodysplastic syndromes and
healthy individuals, serving as a reference for comparison. The data-set contained
expression data for PIWI-interacting RNAs, transposable elements, and various other
genes.

The assignment of GO terms was conducted using a random walks with restart
(RWR) algorithm, accompanied by the performance of permutation tests. The
implementation of the RWR algorithm was motivated by the concept of the guild
by association principle, which claims that molecules that interact with each other
frequently possess similar functions. Due to the large size of the provided data-set
and our limited computational capacity, the initial task was to determine the selection
of genes to be included in the gene co-expression network, which functioned as
the framework for the RWR algorithm. The concept of differential expression was
introduced for this purpose. As a result, we had the ability to identify and choose
genes that are particularly relevant to our research. The noteworthy genes were those
that displayed significant differences in expression levels between our groups of
interest, namely MDS patients and healthy controls. After obtaining the information
about differential expression of genes, the genes could be selected and the gene
co-expression network could be constructed.

Throughout our experiments, we encountered an issue caused by an excessive
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9. Conclusions.....................................
amount of links in the network. Therefore, an approach had been used to decrease
the quantity by establishing a fixed degree for the nodes. Following this, a decision
had to be made concerning the optimal number of edges for the network. The RWR
algorithm required the establishment of certain variable parameters, such as the
length of the walks and the probability of restart. As a result, the initial phase of the
experiment was focused on discovering the most suitable combination of parameters.
After selecting the combination, a more extensive experiment was conducted. Four
piRNAs were picked for the annotation assignment in this experiment. Three piR-
NAs exhibited significant differential expression, indicating a potential association
with myelodysplastic syndromes. The last piRNA exhibited minimal differential
expression and served to support the belief that piRNAs with lower differential
expression would be associated with fewer MDS-related GO terms.

Due to the absence of an available database containing the correct GO term
assignments for our piRNAs, the only possible way to evaluate the results was to
examine the number of assigned GO terms along with the proportion that related to
MDS. For this purpose, the cumulative distribution function of the hypergeometric
distribution was introduced to help us in determining whether the proportion of MDS
related GO terms is statistically significant given the sizes of the populations of GO
terms/MDS GO terms in the gene co-expression network.

The p-values for two out of the three selected piRNAs with significant differential
expression (hsa-piR-018849, hsa-piR-009051) were determined to be statistically
significant at a significance level of 0.05. This suggests a potential association with
myelodysplastic syndromes. The p-value for the selected piRNA with non-significant
differential expression was as expected, demonstrating a lack of statistical signifi-
cance. However, the p-value for the last piRNA also turned out to be non-significant,
despite the fact that this piRNA showed statistically significant differential expression
between the groups of myelodysplastic syndrome patients and healthy controls.

9.1 Future plans

The database containing verified annotations for the provided piRNAs currently
remains unavailable. It would be beneficial to revisit this method once the annotations
that have been verified through biological means are accessible. This might be helpful
in accurately assessing the efficiency of our implemented method.

Until then, it would be beneficial to conduct an experiment with a significantly
higher number of random walks per shuffle and an increased number of shuffles in
order to obtain more reliable outcomes.
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“Noncoding rnas and their response predictive value in azacitidine-treated
patients with myelodysplastic syndrome and acute myeloid leukemia with
myelodysplasia-related changes,” Cancer Genomics - Proteomics, vol. 19,
pp. 205–228, Feb. 2022.

[21] Q. Liao, H. Xiao, D. Bu, C. Xie, R. Miao, H. Luo, G. Zhao, K. Yu, H. Zhao,
G. Skogerbo, R. Chen, Z. Wu, C. Liu, and Y. Zhao, “Ncfans: a web server
for functional annotation of long non-coding rnas,” Nucleic Acids Research,
vol. 39, pp. W118–W124, Jun. 2011.

[22] P. Ryšavý, J. Kléma, and M. D. Merkerová, “Circgpa: circrna functional
annotation based on probability-generating functions,” BMC Bioinformatics,
vol. 23, no. 1, 2022.

[23] J. Cardenas, U. Balaji, and J. Gu, “Cerina: systematic circrna functional anno-
tation based on integrative analysis of cerna interactions,” Scientific Reports,
vol. 10, no. 1, 2020.

[24] C. S. Copeland, M. Marz, D. Rose, J. Hertel, P. J. Brindley, C. B. Santana,
S. Kehr, C. S.-O. Attolini, and P. F. Stadler, “Homology-based annotation
of non-coding rnas in the genomes of schistosoma mansoni and schistosoma
japonicum,” BMC Genomics, vol. 10, no. 1, 2009.

[25] A. Zampetaki, A. Albrecht, and K. Steinhofel, “Corrigendum: Long non-
coding rna structure and function,” Frontiers in Physiology, vol. 10, Sep. 2019.

[26] N. Amin, A. McGrath, and Y.-P. P. Chen, “Evaluation of deep learning in
non-coding rna classification,” Nature Machine Intelligence, vol. 1, no. 5,
pp. 246–256, 2019.

[27] E. A. R. Serin, H. Nijveen, H. W. M. Hilhorst, and W. Ligterink, “Learning
from co-expression networks: Possibilities and challenges,” Frontiers in Plant
Science, vol. 7, Apr. 2016.

[28] V. Kunc and J. Kléma, “On functional annotation with gene co-expression
networks,” in 2022 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), pp. 3055–3062, 2022.

[29] A. Emamjomeh, E. Saboori Robat, J. Zahiri, M. Solouki, and P. Khosravi,
“Gene co-expression network reconstruction: a review on computational meth-
ods for inferring functional information from plant-based expression data,”
Plant Biotechnology Reports, vol. 11, pp. 71–86, Apr 2017.

[30] D. Yu, M. Kim, G. Xiao, and T. H. Hwang, “Review of biological network data
and its applications,” vol. 11, no. 4, 2013.

[31] S. Lefever, J. Anckaert, P.-J. Volders, M. Luypaert, J. Vandesompele, and
P. Mestdagh, “Decoderna— predicting non-coding rna functions using guilt-
by-association,” Database, vol. 2017, Jan. 2017.

61



9. Conclusions.....................................
[32] J. Gillis, P. Pavlidis, and A. Rzhetsky, ““guilt by association” is the exception

rather than the rule in gene networks,” PLoS Computational Biology, vol. 8,
Mar. 2012.

[33] F. Xia, J. Liu, H. Nie, Y. Fu, L. Wan, and X. Kong, “Random walks: A review
of algorithms and applications,” IEEE Transactions on Emerging Topics in
Computational Intelligence, vol. 4, no. 2, pp. 95–107, 2020.

[34] L. Lovász, “Random walks on graphs,” Combinatorics, Paul erdos is eighty,
vol. 2, no. 1-46, p. 4, 1993.

[35] S. Köhler, S. Bauer, D. Horn, and P. N. Robinson, “Walking the interactome
for prioritization of candidate disease genes,” The American Journal of Human
Genetics, vol. 82, no. 4, pp. 949–958, 2008.

[36] A. Valdeolivas, L. Tichit, C. Navarro, S. Perrin, G. Odelin, N. Levy, P. Cau,
E. Remy, and A. Baudot, “Random walk with restart on multiplex and het-
erogeneous biological networks,” Bioinformatics, vol. 35, pp. 497–505, 07
2018.

[37] M. J. Vondráková, “Myelodysplastickỳ syndrom, diagnostika a léčba,” Interní
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