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Field of study: Medical Electronics and Bioinformatics
Supervisor: doc. RNDr. Katěrina Helisová, Ph.D.
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Abstract

Random sets have gained significant importance in recent years as a valuable tool for mod-
elling a wide range of phenomena in fields such as biology, geology, medicine, or material
sciences. However, to the best of our knowledge, classification of their realisations has not
yet been studied. In the presented work, a link between methods for random sets and
functional data analysis is built that focusses on evaluating functional characteristics from
individual components in the realisations based on their shape. Such obtained functional
data is then used for nonparametric classification using both supervised and unsupervised
approach based on k-nearest neighbours and k-means algorithms, respectively. The proposed
procedures have been justified through a simulation study. Finally, the procedure is applied
to medical data to show its applicability in practice.

Keywords: Convex compact set, Curvature, k-means, k-nearest neighbours, N-distance,
Nonparametric functional data analysis, Random set, Stochastic geometry, Supervised clas-
sification, Unsupervised classification.

Abstrakt

Náhodné množiny se v posledńıch letech staly cenným nástrojem pro modelováńı široké
škály jev̊u v r̊uzných oborech jako např. biologie, geologie, medićına či materiálové vědy.
Nicméně, pokud je nám dobře známo, klasifikace jejich realizaćı je zat́ım neprozkoumané
téma. V předkládané práci jsou propojeny metody vyvinuté pro náhodné množiny s meto-
dami analýzy funkcionálńıch dat. Celá procedura se pak zaměřuje na klasifikaci podle
funkcionálńıch charakteristik jednotlivých komponent v realizaci náhodné množiny na základě
jejich tvaru. Použita je přitom neparametrická klasifikace jak tzv. s učitelem, tak bez učitele,
jmenovitě algoritmy k-nejbližš́ıch soused̊u, resp. k-pr̊uměr̊u. Navržené postupy byly nejprve
ověřeny simulačńı studíı a nakonec byly postupy aplikovány na lékařská data, aby se ukázala
jejich použitelnost v praxi.

Kĺıčová slova: Konvexńı kompaktńı množina, křivost, k-pr̊uměry, k-nejbližš́ıch soused̊u,
N-vzdálenost, neparametrická funkcionálńı analýza dat, náhodná množina, stochastická ge-
ometrie, klasifikace s učitelem, klasifikace bez učitele.
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Chapter 1

Introduction

The randomness and variability of geometrical patterns occurring in nature constantly mo-

tivate scientists to develop new methods for processing and analysing the data that reflect

these patterns. The problem when working with such data lies in the fact that usually there

is only one realisation of each process to consider. For that reason, statisticians and data

scientists put emphasis on statistical modelling.

Over the past few decades, random sets have been proven to be a very potent tool for

modelling various phenomena in ecology [1], biology [2], material science [3], etc. Most

importantly, they have recently been applied in biomedicine for modelling different cell

patterns and tissues, see e.g. [4], [5] and [6]. (For a broader list of applications, the reader

is referred to books by Illian et al. [7], Baddeley and Jensen [8], and Chiu et al. [9].) Due

to the great diversity of their application, modelling and statistical analysis of random sets

have been rapidly developing due to the fact that neither traditional methods for comparing

random sets nor technologically advanced image processing tools are suitable for the problem

of distinguishing between different natural processes.

Classification problems motivate a great number of scientific works since classification

is a fundamental process in the study of various phenomena. Its purpose is to categorize new

data based upon its relevance to already available, known data. The classification domain

can be divided into two main subcategories: supervised classification (or discrimination,

where the class structure is known a priori) and unsupervised classification (or clustering,

where classes have to be defined) [10]. Class assignment is usually done using a decision

rule which is expressed in terms of a set of random variables (in computer science literature

usually referred to as attributes or case features).

In order to access classification of realisations of random sets, we establish a link between

methods used for random sets and methods used for functional data analysis, which were

extensively studied in [11]. This means that instead of directly comparing the realisations

1



2 Introduction

of random sets, we facilitate the problem by comparing the functional data derived from the

individual realisations. A similar link between methods for point patterns and functional

data using functional summary characteristics (namely, the pair correlation function and the

contact distribution function) was developed in [12] for the supervised classification case. The

authors based their approach on kernel-regression classifier, which proved to be suitable for

accessing the given problem.

In this thesis, my goal will be to suggest a suitable classification procedure that will

correctly classify realisations of random sets and to implement the proposed procedure,

which will be verified using simulated data. Consequently, the procedure will be applied

to images of two types of mammary tissue in order to test its applicability to medical data.

The presented thesis is organised as follows. In Chapter 2, theoretical background is in-

troduced. In Chapter 3, we suggest two classifiers, one for supervised classification and one

for unsupervised classification. The procedures are based on functional non-parametric clas-

sification, where the functional data are derived from the shape of the components of random

sets. In Chapter 4, we validate the procedure using simulated data. In Chapter 5, we apply

the procedure to real data, that is, to different types of mammary tissue. In Chapter 6,

we summarise the results and suggest possible topics for future research.



Chapter 2

Theoretical Background

In this chapter, some basic definitions from general random set theory and stochastic ge-

ometry are introduced. However, the main focus is on the basic concepts of functional data

analysis which will help us build the apparatus for achieving the goals of this work.

2.1 Basic terms

All definitions in this section can be found, with slightly different notation, in the book [9],

unless stated otherwise.

Definition 2.1.1 (Metric space, metrics). A metric space is an ordered pair (X, d), where

X is a set, usually X ⊆ Rd and d is a mapping d : X×X −→ R which satisfies the following

conditions:

• d(x, y) ≥ 0 (non-negativity),

• d(x, y) = 0 iff x = y (separation),

• d(x, y) = d(y, x) (symmetry),

• d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality),

for any x, y, z ∈ X. The function d is called metrics on X or simply distance [13].

Example (Euclidean and Manhattan distance). Let us consider the Euclidean plane with two

points p = [p1, p2] and q = [q1, q2]. The Euclidean distance between p and q is then defined by

dE(p, q) =
√

(p1 − q1)2 + (p2 − q2)2. (2.1)

For the same points, their Manhattan distance is given by

dM(p, q) =| p1 − q1 | + | p2 − q2 | . (2.2)

3



4 Theoretical Background

Definition 2.1.2 (Ball). Suppose (X, d) is a metric space, and let xo be a point in X.

For each r ∈ R+ we define

• the closed ball in X centered at xo with radius r as

D(xo, r) = {x ∈ X : d(xo, x) ≤ r}, (2.3)

• the open ball in X centered at xo with radius r as

Dint(xo, r) = {x ∈ X : d(xo, x) < r}, (2.4)

• the sphere as the difference between a closed and a concentric open ball

Dsph(xo, r) = {x ∈ X : d(xo, x) = r}. (2.5)

Definition 2.1.3 (Bounded set). A set A ⊂ Rd is said to be bounded if there exists a ball

D(xo, r) ⊂ Rd, such that A ⊂ D(xo, r).

Definition 2.1.4 (Open and closed sets). A set X is said to be open if ∀x ∈ X there exists

a positive number ε such that D(x, ε) ⊂ X. A set X is said to be closed if its complement

Xc in Rd is open. The system of all closed subsets of Rd will be denoted as F.

Definition 2.1.5 (Interior, closure, and boundary). The interior Xint of the set X is the

union of all open sets contained in X. The closure Xcl of the set X is the intersection of all

closed sets containing X. The difference ∂X = BX = Xcl−Xint is called the boundary of X.

Definition 2.1.6 (Compact set). A set K ⊂ Rd is said to be compact if it is both closed

and bounded. The system of all compact subsets of Rd shall be denoted as K.

Definition 2.1.7 (Topology). Let (T, T ) be an ordered pair, where T is a set and T is a col-

lection of open subsets of T satisfying:

• ∅ ∈ T and T ∈ T ,

•
⋃

iTi ∈ T , for any sets Ti ∈ T , i ∈ N,

•
⋂

iTi ∈ T , for any sets Ti ∈ T where i is finite.
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Then the couple (T, T ) is called topological space and the collection T is called the topology

on (T, T ).

Definition 2.1.8 (Connected set). Let (T, T ) be a topological space. A subset X ⊂ T

is called a connected set if it cannot be separated into two nonempty subsets such that each

subset has no common points with the set closure of the other [14].

Definition 2.1.9 (Convex set). A set X ⊂ Rd is said to be convex if for every x, y ∈ X and

every 0 < c < 1 we have cx+ (1− c)y ∈ X. Convex sets, which are also compact, are called

convex bodies.

Definition 2.1.10 (Convex body functional). A convex body functional assigns a real value

h(C) for every C ∈ C, where C denotes the system of all convex bodies.

Example (Convex body functionals). Some of the most important convex body functionals

of a set K ∈ C in different dimensions are length of a curve, boundary length or area

of a planar set, surface area or volume of a 3D body, etc.

Definition 2.1.11 (σ−algebra, Borel and Effros σ−algebras). For each set A, a system A
of its subsets is called σ−algebra if it satisfies the following:

• A ∈ A,

• if X ∈ A, then Xc ∈ A,

• if X1,X2, . . . ∈ A, then
⋃∞

i=1Xi ∈ A.

The smallest σ−algebra on Rd containing all open subsets of Rd is called Borel σ−algebra

and is denoted by B. Elements of a Borel σ−algebra are called Borel sets.

The smallest σ−algebra of subsets of F containing all ’hitting’ sets

FK = {F ∈ F : F ∩K ̸= ∅}, ∀K ∈ K (2.6)

is called Effros σ−algebra and is denoted by F .

Definition 2.1.12 (Measurable space, measurable set and measurable function). The pair

(A,A) formed by a set A and σ−algebra A of the subsets of A is called a measurable

space and the X in A are called measurable sets. A function f : X −→ R is said to be

A− measurable if for each Borel set B ∈ B the inverse image f−1(B) belongs to σ−algebra

A associated with A.
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Definition 2.1.13 (Measure, measure space). Suppose that (A,A) is a measurable space.

A function µ : A −→ [0,∞) satisfying:

• µ(∅) = 0,

• µ(
⋃∞

k=1 Xk) =
∑∞

k=1 µ(Xk)

for all Xk ∈ A with Xi ∩Xj ̸= ∅ whenever i ̸= j is called a measure on (A,A). The triplet

(A,A, µ) is called a measure space.

Definition 2.1.14 (Finite, σ-finite, locally-finite measure). Let (A,A, µ) be a measure

space. Both (A,A, µ) and µ are called totally finite if µ(A), and σ-finite if A can be split

into countably many sets of finite measure, that is, A = ∪n
i=1Ai for some n ∈ N such that

∀i, µ(Ai) < ∞. The totally finite measures are also σ-finite. A measure µ is called locally

finite if it is finite on bounded sets. [15]

Definition 2.1.15 (Borel measure). A Borel measure is any measure defined on the σ− al-

gebra of Borel sets.

Definition 2.1.16 (Lebesgue measure). For Q = [u1, w1] × ... × [ud, wd] ⊂ Rd Lebesgue

measure is defined by

vd(Q) = (u1 − w1) · ... · (ud − wd), (2.7)

i.e. it is characterised by the volume of a d-dimensional hypercube.

Definition 2.1.17 (Probability space, random variable). A measure space (Ω,Σ, P ) is called

probability space if it holds that P (Ω) = 1. In that case, the measure P is called a probability

measure, the Ω is called the sample space and its elements are called sample points, the

subsets of Ω that belong to Σ are called events. Real-valued Σ−measurable functions defined

on Ω are called random variables.

2.2 Random Set Theory

Definitions in this section come from [9], unless otherwise stated.

Definition 2.2.1 (Random closed set). Let (Ω,Σ, P ) be a probability space. A measurable

mapping S : (Ω,Σ, P ) −→ (F,F) is a random closed set if for every compact K ∈ K we have

{ω ∈ Ω : S ∩K ̸= ∅} ∈ Σ.
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If we replace K by the system of convex bodies C in Definition 2.2.1, we get the definition

of a random convex compact set.

Definition 2.2.2 (Probability distribution of a random set). The probability distribution PS

of a random set S is defined by

PS(F) = P (S−1(F)) = P (S ∈ F), (2.8)

for every F ∈ F .

Definition 2.2.3 (Independent random sets). Two random sets S1 and S2 are independent

if and only if for any F1 and F2 in F we have

P (S−1
1 (F1) ∩ S−1

2 (F2)) = P (S−1
1 (F1)) · P (S−1

2 (F2)). (2.9)

We can find this definition in [16].

Definition 2.2.4 (Stationarity, isotropy). A random closed set S is stationary if its distri-

bution PS(F) = P (ω ∈ Ω : S(ω) ∈ F) for F ∈ F is invariant under translation. A random

closed set S is isotropic if its distribution is invariant under rotation. If a random closed set

is both stationary and isotropic, it is called motion invariant.

Definition 2.2.5 (Neighbourhood). Consider a finite union of disjoint random sets {S1, ...,Sn}
within an observation window W ⊂ Rd. Every set Si generates a neighbourhood

Hi
M = {z ∈ W : dM({z},Si) ≤ dM({z},Sj) for all i ̸= j}. (2.10)

2.3 Functional Nonparametric Statistics

The following definitions are mainly taken from [11], unless stated otherwise.

Definition 2.3.1 (Functional random variable). A random variable X is called a functional

random variable (f.r.v.) if it takes values in an infinite-dimensional space E (or functional

space). An observation χ of X is called functional data.

Example. Some of the examples of f.r.v. are a random curve, a random surface, etc.

Definition 2.3.2 (Functional dataset). A functional dataset χ1, ..., χn is the observation

of n functional variables X1, ...,Xn identically distributed as X .
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Definition 2.3.3 (Mean). Let S = {X1, . . . ,Xn} be a sample on n functional random

variables identically and independently distributed as X taking values in E, χ1, . . . , χn the

functional data set associated with S and let (Ω,Σ, P ) be a probability space. The mean

of a (functional) random variable X is defined as

E(X ) =

∫
Ω

X (ω)dP (w) (2.11)

and its estimator (known as empirical mean) by

XS =
1

n

n∑
i=1

Xi (2.12)

Definition 2.3.4 (Functional parametric and nonparametric model). Let X be a random

variable valued in some infinite dimensional space E and let f be a mapping defined on E
and dependent on the distribution of X . The model is called a functional parametric model

for the estimation of f if it is evaluated in a finite number of elements of E, or a functional

nonparametric model otherwise.

Since the dimension of the space in which a random variable takes values dictates the

sparseness of the data, it is easily deduced that in the case of functional random variable,

it will be harder to measure the distance between two realisations. In finite dimensional

space Rd, we can use norms defined by

|| x ||2M=
d∑

i=1

(xi)
2 = xTMx, (2.13)

where M is a definite positive matrix. From 2.13 we see that all the norms in Rd are
equivalent. However, in high-dimensional spaces the notion of equivalence between norms

does not hold. Thus, the choice of the norm becomes crucial. It has been shown [17] that

usage of normed or metric spaces in such settings is restrictive. For this reason, some of the

restrictions in Definition 2.1.1 have to be relaxed.

Definition 2.3.5 (Semi-metrics). Let E be an infinite dimensional space, and let ds be a map-

ping ds : E× E −→ R which for any x, y, z ∈ E satisfies:

• ds(x, y) ≥ 0 (non-negativity),

• ds(x, y) = ds(y, x) (symmetry),

• ds(x, z) ≤ ds(x, y) + ds(y, z) (triangle inequality).

Then ds is called semi-metrics and space (E, ds) semi-metric1.
1In literature, names pre-metrics, pseudo-metrics and quasi-metrics are also used, see [18], [19].
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2.3.1 Supervised classification

In the setting for supervised classification, we observe a functional random variable X and

a categorical random variable Y which, for each realisation χ of X , indicates the class (syn-

onymously, group) membership y (also called label). The classification task could be sum-

marised as: given a new functional data χ predict its label y. In the sense of functional data,

it is important to stress that the classical linear discriminant analysis fails, since the highly

correlated predictors degenerate the within-class covariance matrix.

Let (Xi, Yi), i = 1, ..., n be a sample of n independent identically distributed pairs from

(X , Y ) taking values in E×G, where (E, ds) is a semi-metric vector space andG = {1, 2, ..., G}
a set of all possible groups. The notation (χi, yi) will be used in the rest of the text for an ob-

servation of the pair (Xi, Yi) for i = 1, ..., n.

Definition 2.3.6 (Bayes rule). Given a functional object χ in E estimate G posterior

probabilities

pg(χ) = P (Y = g | X = χ), g ∈ G (2.14)

for each group g ∈ G. The Bayes classification rule consists of assigning the observation

χ to the class with the highest estimated posterior probability:

ŷ(χ) = argmax
g∈G

pg(χ). (2.15)

It is important to note that Definition 2.14 can be rewritten as:

pg(χ) = E(1[Y=g] | X = χ), (2.16)

which means that we can express posterior probabilities using conditional expectations2.

Definition 2.3.7 (Kernel estimator of posterior probabilities). Let K be an asymmetric ker-

nel with bandwidth (a smoothing parameter) h, h > 0. Then the kernel estimator of posterior

probability pg(χ) is defined by

p̂g(χ) = p̂g,h(χ) =

∑n
i=1 1[Y=g]K(h−1ds(χ,Xi))∑n

i=1K(h−1ds(χ,Xi))
. (2.17)

Setting

wi,h(χ) =
K(h−1ds(χ,Xi))∑n
i=1K(h−1ds(χ,Xi))

, (2.18)

2For the definition of tho conditional expectation, see [20].
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we get

p̂g,h(χ) =
∑
i∈I

wi,h(χ),where I = {i : Yi = g} ∩ {i : ds(χ,Xi) < h} (2.19)

It is important to note that the estimated posterior probabilities p̂g,h form a discrete

distribution if K is nonnegative.

From the above definitions, we can see that choosing a proper semi-metric ds and the

bandwidth h play a vital role for the proper functioning of the kernel estimator. Choosing

h is usually simplified to the minimisation of a loss function: hLoss = arg inf
h
Loss(h), where

Loss is usually given by the misclassification rate. Computationally, it would be more

efficient to replace the real-valued continuous h that takes values from an infinite set with

an integer parameter k that takes values from a finite subset. One way to do that is by using

the k-nearest neighbours estimator.

Definition 2.3.8 (k-nearest neighbours estimator). Let xi = {χi(p1), ..., χi(pJ)} be a dis-

cretised version of a curve χi = {χi(p); p ∈ P} measured on a grid of J points p1, ..., pJ ,

and let yi be respective class labels. If n identically and independently distributed pairs

(xi, yi)i=1,...,n are observed, we can rewrite Equation 2.17 as

p̂g,k(x) =

∑n
i:yi=g K(h−1

k ds(x, xi))∑n
i=1K(h−1

k ds(x, xi))
, (2.20)

where hk satisfies

card{i : ds(x, xi) < hk} = k. (2.21)

2.3.2 Unsupervised classification

Unsupervised classification is a domain with a wide range of applications. It differs from

supervised classification due to the fact that in the setting for unsupervised classification,

we do not observe categorical responses, which means that we have to define homogeneity

of a class. Since we suppose that the generating distribution is unknown, the approach

is based on centrality notions, for example the mean, as defined in Definition 2.3.3.

Definition 2.3.9 (k-means algorithm). Let S = {X1, . . . ,Xn} be a sample of n functional

random variables identically and independently distributed as X taking values in E, and let

k, k ∈ N be a positive integer specifying the number of clusters, k ≤ n. The goal of the

k-means algorithm is to partition the set S into k subsets Sk = {S1, . . . ,Sk},Si ⊂ S,
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i = 1, . . . , k minimising the within-cluster sum of squares

argmin
Sk

k∑
i=1

∑
X∈Si

ds(X − XSi
)2, (2.22)

where XS⟩ is the empirical mean (also called centroid) defined by (2.12). The algorithm can

be summarised in 6 steps (out of which the first three are used for initialisation):

1. Choose an initial center c1 uniformly at random from S

2. Choose the next center ci selecting ci = X ′ ∈ S with probability ds(X ′)2∑
X∈S ds(X )2

3. Repeat step 2 until k centers {c1, . . . , ck} have been chosen

4. For each i ∈ {1, . . . , k}, set the cluster Si to be the set of points in S closer to ci than

they are to cj for all j ̸= i

5. For each i ∈ {1, . . . , k}, set the center ci to be the centroid (i.e. empirical mean)

of points in Si

6. Repeat steps 4 and 5 until {c1, . . . , ck} no longer changes. [21]

2.4 N -distance

The following definitions, theorems and examples are taken from [22], unless stated otherwise.

Definition 2.4.1 (Positive definite kernel). Let X be a nonempty set. A map

K : X×X → C (2.23)

is called positive definite kernel if for any n ∈ N, arbitrary complex numbers c1, ..., cn ∈ C
such that

∑n
i=1 ci = 0 and arbitrary x1, ..., xn ∈ X it holds

n∑
i

n∑
j

K(xi, xj)cic̄j ≥ 0. (2.24)

Example. Let X = R. An example of a positive definite kernel is

K(s, t) =

1− | s− t |, | s− t |≤ 1

0, | s− t |> 1.
(2.25)
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Since it is a function of the difference | s − t | only, we can consider it as a function of one

real variable

K̃(u) =

1− | u |, | u |≤ 1

0, | u |> 1.
(2.26)

It is called the triangular kernel and it will be used later in Section 3.1

Definition 2.4.2 (Negative definite kernel). Let X be a nonempty set. A map

L : X×X → C (2.27)

is called negative definite kernel if for any n ∈ N, arbitrary complex numbers c1, ..., cn ∈ C
such that

∑n
i=1 ci = 0 and arbitrary x1, ..., xn ∈ X it holds

n∑
i

n∑
j

L(xi, xj)cic̄j ≤ 0. (2.28)

Definition 2.4.3 (Strongly negative definite kernel). Let X be a nonempty set and suppose

that the map L is a real continuous function. The negative definite kernel

L : X×X → R (2.29)

is called strongly negative definite kernel if for an arbitrary probability measure µ and an ar-

bitrary real function f : X → R such that
∫
X
f(x)dµ(x) = 0 holds and∫

X

∫
X

L(x, y)f(x)f(y)dµ(x)dµ(y) (2.30)

exists and is finite, the relation∫
X

∫
X

L(x, y)f(x)f(y)dµ(x)dµ(y) = 0 (2.31)

implies that f(x) = 0 µ-almost everywhere.

Example. Let X = Rd. Then an example of a strongly negative definite kernel is the Eu-

clidean distance, i.e.

L(x, y) = dE(x, y). (2.32)

Example. In [6], strongly negative definite kernels for real functions t1 and t2 which are
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evaluated on a finite grid u1, . . . , un ∈ R has been constructed. It is given by the relation

L(t1, t2) =
n∑

m=1

∑
{k1,...,km}⊆{1,...,n}

(
m∑
l=1

(t1(ukl)− t2(ukl))
2

)1/2

. (2.33)

It was also shown that for statistical purposes, we can take
d∑

m=1

instead of
n∑

m=1

for an appro-

priately chosen d < n, which makes the calculations less time-consuming (d = 3 is recom-

mended, see [6]).

Theorem 2.4.1 (Klebanov). Let L : X × X → R be a map satisfying L(x, y) = L(y, x).
Denote ML the set of all measures µ such that∫

S

∫
S

L(x, y)dµ(x)dµ(y) (2.34)

exists. Then N -distance of the measures µ and ν is given by equation

N (µ, ν) =2

∫
X

∫
X
L(x, y)dµ(x)dν(y)−

∫
X

∫
X
L(x, y)dµ(x)dµ(y)

−
∫
X

∫
X
L(x, y)dν(x)dν(y) ≥ 0 (2.35)

which holds for all measures µ, ν ∈ ML with equality in the case µ = ν if and only if L
is a strongly negative definite kernel.

Empirical estimate of N -distance

Assume we have an observation X1, ..., Xm1 from a distribution µ and Y1, ..., Ym2 from

a distribution ν. The N -distance of the measures µ and ν is then estimated as

N̂ (µ, ν) =
2

m1m2

m1∑
i=1

m2∑
j=1

L(Xi, Yj)−
1

m2
1

m1∑
i=1

m1∑
j=1

L(Xi, Xj)−
1

m2
2

m2∑
i=1

m2∑
j=1

L(Yi, Yj). (2.36)

2.5 Point Processes

Definitions in this section come from [9], unless stated otherwise.

Multidimensional point processes have been used to model various processes occurring

in nature and our surroundings (for example, particles, cells, plants, animals (such as sea

urchins) or cellphones), more precisely, their respective geographical locations or centres

of mass. They are the elementary structures in stochastic geometry, closely related to ran-

dom sets.
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Definition 2.5.1 (Point process). Let (Ω,Σ, P ) be a probability space. Consider M, the

system of locally finite subsets of Rd, with the σ-algebraM = σ({M ∈ M : #(M∩B) = m} :

B ∈ B,m ∈ N0), where B denotes the system of bounded Borel sets and #(M) represents the

number of points in the configuration M. A point process Φ defined on Rd is a measurable

mapping from (Ω,Σ) to (M,M).

Definition 2.5.2 (Intensity and homogeneity of a point process). A measure Λ on B satisfy-

ing Λ(B) = Φ(B) for allB ∈ B, where Φ(B) denotes the number of points of Φ inB, is called

the intensity measure. If there exists a function λ(x) for x ∈ Rd such that Λ(B) =
∫
B
λ(x)dx,

then λ(x) is called the intensity function. If the intensity function λ(x) is constant, λ(x) = λ,

the point process is called homogeneous (or, synonymously, stationary) with the intensity λ.

Otherwise, it is said to be inhomogeneous (or, synonymously, nonstationary).

Definition 2.5.3 (Poisson point process). Let Λ be a locally-finite non-null measure on Rd.

The Poisson point process Φ of intensity measure Λ is defined using its finite-dimensional

distributions:

P (Φ(A1) = m1, ...,Φ(Ak) = mk) =
k∏

i=1

e−Λ(Ai) · Λ(Ai)
mi

mi!
, (2.37)

for every k = 1, 2, ... and all bounded, disjoint sets Ai, i = 1, 2, ..., k, such that Ai ⊂ Rd.

If Λ(Ai) = λ · vd(Ai), where λ is a constant, then Φ is called a homogeneous Poisson point

process [23].

Since we work mainly with homogeneous Poisson point process Φ, we can say, in order

to summarise, that it is characterised by:

• Poisson distribution of the number of points in each A ∈ B with the parameter Λ(A),

• independent scattering, i.e. the numbers of points in disjoint sets are independent

random variables.

Definition 2.5.4 (Boolean model). Let Φ = {x1, x2, ...} be a stationary Poisson point

process in Rd and {K1,K2, ...} be a sequence of independent identically distributed (i.i.d.)

random compact sets in Rd that are mutually independent and independent of Φ.

If E(vd(K1 ⊕ K)) < ∞ for all compact sets K, where ⊕ denotes Minkowski-addition, then

the random set

Ψ =
∞⋃
i=1

(xi +Ki) (2.38)

is called the Boolean model.
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Figure 2.1: Boolean model: random discs (left) and random ellipses (right)

Boolean model is sometimes called Poisson germ-grain model [9]. It can be easily mod-

elled using the Poisson point process with the intensity λ, where around each point of the

Poisson process we construct a random geometrical object (e.g. a line segment, a disc, a poly-

gon, a ball etc.). The resulting union is an example of a Boolean model.

The name germ-grain model comes from the point of view that the points of the Poisson

process form the germs, while the geometrical objects are their corresponding grains. The

Boolean model is an extremely powerful tool for modelling various natural and artificial phe-

nomena, see [9]. However, it is not a sufficient model for all situations. Here we consider the

following, more sophisticated model, the Quermass-interaction model, first defined in [24],

which can be used for modelling repulsive and clustering interactions, see Figure 4.1.

Definition 2.5.5 (Random disc Quermass-interaction process). Consider a planar random

disc Boolean model. The random disc Quermass-interaction process is a random set whose

probability measure is absolutely continuous with respect to the probability measure of the

given Boolean model and the density of its probability measure is given by

fθ(D) =
1

cθ
exp{θ1A(UD) + θ2L(UD) + θ3χ(UD)}, (2.39)

for each finite disc configuration D = {D1,D2, ...,Dn}, where A, L and χ are, respectively,

the area, the perimeter and the Euler–Poincaré characteristic (the number of holes sub-

tracted from the number of connected components) of the union of discs UD =
⋃n

i=1Di,

θ = (θ1, θ2, θ3) is a three-dimensional vector of parameters, and cθ is the normalising con-

stant [25].
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2.6 Curvature of a Planar Curve

The following two definitions come from [26].

Definition 2.6.1 (Curvature of a curve). Let C be a smooth twice differentiable 2D curve

that is properly parameterised by a parameter s ∈ [0, smax] ⊂ R, that is, C(s) = (x(s), y(s)).

The curvature of the curve C at the point C(s) is then defined by

κ(C(s)) =
x′(s)y′′(s)− x′′(s)y′(s)

(x′2(s) + y′2(s))3/2
, (2.40)

where ′ denotes derivative with respect to s.

In other words, if r(s) is the radius of the osculating circle that touches the curve at the

point [x(s), y(s)], then the curvature is given by κ(s) = ±1/r(s), where the choice between

“+” and “−” is dictated by the local convexity convention.

Let C be a continuous, closed (i.e. C(0) = C(smax)), and non-self-intersecting curve (i.e.

if C(s1) = C(s2) then s1 = s2). Suppose that S is a planar (connected) set whose boundary

is determined by C (with appropriately chosen orientation to ensure the right sign +/-).

Curvature κ(z), at the point z ∈ C and for r small enough, is then given by

κ(z) ≈ 3A∗(D(z, r))

r3
− 3π

2r
=

3π

r

(
A∗(D(z, r))

A(D(z, r))
− 1

2

)
, (2.41)

where A(D(z, r)) is the area of the disc D(z, r) centred at z and A∗(D(z, r)) is the area

of D(z, r) ∩ S [26].

2.6.1 Implementation

Note that this procedure was already implemented in [27].

The starting point for our algorithm is a binary (i.e., consisting solely of black and white

pixels) image W containing a digital approximation S of a planar random set S, such that

there are n black disjoint connected components Sk, k = 1, 2, . . . , n inside S. Note that our

attention will be directed to individual components. In the initial stage, certain terms need

to be redefined in order to make them suitable for working with binary images. Note that

in the reminder of the text, the terms point and pixel will be used interchangeably, where

pixel z will be understood as a square of the unit area that is centred at point z.
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Definition 2.6.2 (4-neighbourhood). Let z be a point in a binary image W.

4-neighbourhood of the pixel z is then defined as

H4(z) = {
⋃
i

zi ∈ W : dM(z, zi) ≤ 1}. (2.42)

Since we are working with the digital approximation S of the set S, we have to discretise

the function (2.41) in such a way that the area A(D(z, r)) represents the number of pixels

inside the disc D(z, r) centred at the boundary of S, and A∗(D(z, r)) is the number of pixels

of D(z, r) inside S.

Definition 2.6.3 (Boundary pixel, boundary). Let Sk ⊂ S be a digital approximation

of a connected random set Sk ⊂ S, consisting of black pixels. A pixel z ∈ Sk is called

a boundary pixel if and only if at least one of its neighbouring pixels in its 4-neighbourhood

H4 is white. The union of all boundary pixels of the same component is called boundary and

denoted by BSk .

Let Sk be a connected component with boundary BSk . Then

• the boundary length L(BSk) is called perimeter and calculated by

L(BSk) = #{z : z ∈ BSk}, (2.43)

• the area A(Sk) is calculated as

A(Sk) = #{z : z ∈ Sk}, (2.44)

• for each component, we define a ratio of its perimeter and area as

RSk =
L(BSk)

A(Sk)
=

#{z : z ∈ BSk}
#{z : z ∈ Sk}

. (2.45)

Example. An illustration of the algorithm is shown in Figure 2.2 where the ellipse-shaped

component Sk is given and a disc D has been constructed with the centre at the boundary

point of the set X. The resulting estimate of the curvature is then #C
#C+#D

= 5
5+8

= 5
13
, while

the respective ratio of the perimeter and area is #B
#E

= 12
19
.

After identifying all the boundary points of the connected components Sk, it is necessary

to compute the curvature κk(z) at each point z ∈ BSk . From equation (2.41), we can see
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Figure 2.2: An illustration of the algorithm for estimating the curvature and the ratio of the
perimeter and the area

that κk(z) is proportional to

κk(z) ≃
A∗(D(z, r))

A(D(z, r))
= Ok,D(z,r), (2.46)

for appropriately chosen r. This fact will be used as a guideline for devising a testing

characteristic.

Definition 2.6.4 (Distribution of curvature). Let Ok,D(z,r) be the ratio as defined by equa-

tion (2.46). Define by

κ̃k,D(.,r)(u) =
1

L(BSk)

∫
BSk

1[Ok,D(z,r)≤u]dz, u ∈ ⟨0, 1⟩. (2.47)

It is an analogy of the distribution function of the curvature at points on the boundary,

with the difference that we work with highly dependent values here. From this function,

an analogy to the density function can be defined as

tk,D(.,r)(u) = κ̃′
k,D(.,r)(u) (2.48)

which will be used as a functional characteristic describing the curvature.

Since we are working with binary pictures, i.e. with discrete values, we have to approxi-

mate the distribution function of the curvature.

Let W be a binary image containing a digitised realisation of a connected random set Xk.

For each boundary pixel zi and a fixed radius r ∈ N we approximate

ˆκXk
(zi) =

#{zj ∈ W : zj ∈ D(zi, r) ∩Xk}
#{zj ∈ W : zj ∈ D(zi, r)}

. (2.49)
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Using this approximation, we can further set

tXk
(u) =

#{i ∈ {1, . . . , n} : κ̂(zi) ∈ [u− 1/l, u)}
n

, u =
1

l
,
2

l
, . . . , 1, (2.50)

where l is the number of pixels forming the disk D(., r).
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Chapter 3

Classification of Realisations of

Random sets

In this chapter, we will build our classifiers, using the tools provided in Chapter 2.

Consider a binary image S of a random set S. For each k = 1, ...,m, where m repre-

sents the number of connected components S1, ...Sm inside the realisation S, we evaluate

ratios Rk = RSk and functions describing the curvature tk = tSk using (2.45) and (2.50),

respectively.

3.1 Supervised classification

Let (Xi, Yi), i = 1, ..., n be a sample of n independent pairs as mentioned in Section 2.3.1,

where X denotes the functional random variable and Yi denotes categorical response, and

let (x, y) be an observation of the pair (Xi, Yi), for i = 1, ...n.

For supervised classification, we will use a version of k-nearest neighbours classifier

adapted to work with disretised functional data. Let us recall that it was defined in 2.3.8 as

p̂g,k(x) =

n∑
i:yi=g

K(h−1
k ds(x, xi))

n∑
i=1

K(h−1
k ds(x, xi))

(3.1)

As the semi-metric ds we use the N -distance (2.36) with negative defined kernels given

by (2.32) and (2.33). As the kernel K in (3.1) we decided to use the triangular kernel (2.26).

The last step is to choose its tuning parameter k. Since we base our approach on [11], we use

21
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the same loss function

LCV (k, i0) =
G∑

g=1

(
1[yi0=g] − p

(−i0)
g,k (xi0)

)2
, (3.2)

where

i0 = arg min
i=1,...,n

N̂ (x, xi), (3.3)

p
(−i0)
g,k (xi0) =

n∑
i:yi=g,i̸=i0

K(h−1
k(xi0 )

N̂ (xi, xi0))

n∑
i=1

K(h−1
k(xi0 )

N̂ (xi, xi0))
(3.4)

and obtain optimal number of nearest neighbours kLCV at xi0 as

kLCV (xi0) = argmin
k

LCV (k, i0). (3.5)

Finally, we have

p̂(LCV )
g (x) =

n∑
i:yi=g

K(h−1
LCV (xi0)N̂ (x, xi))

n∑
i=1

K(h−1
LCV (xi0)N̂ (x, xi))

, (3.6)

where hLCV is the bandwidth corresponding to kLCV which depends on the functional point

at which p̂
(LCV )
g,k (x) is evaluated. The classification rule is then given by

y = arg max
g∈{1,...,G}

p̂(LCV )
g (x). (3.7)

3.2 Unsupervised classification

For unsupervised classification, we will use a version of the k-means classifier described

in Section 2.3.2 adapted to work with discretised functional data. As X1, . . . ,Xn we take

the ratios of the components S1, . . . , Sn as points in the 1-dimensional space, the functions

describing the curvature as points in l-dimensional space, where l is the number of points

in which the function describing the curvature is evaluated, and when we consider both

ratio and curvature, we consider this couple as a point in (l + 1)-dimensional space, where

a special weight is given to the ratio, see the following chapter. The output of the algorithm

is the set of subsets Si, i = 1, . . . , k, as introduced in Section 2.3.2, which we consider as the

groups of Xj’s belonging to the i-th class after the algorithm 2.3.9. This means that for

each realisation of a random set, after evaluating the respective characteristic x for each
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component, we calculate the mean as defined by (2.12). Since our approach is based on

N -distance, we will use the same kernel L as defined by (2.32) and (2.33) to calculate

N -distance using (2.36). The classification rule is then given by

argmin
Sk

k∑
i=1

∑
x∈Si

N̂ (x− xSi
)2. (3.8)
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Chapter 4

Simulation Study

The primary objective of this chapter is to demonstrate the functionality of the classifiers in-

troduced in Chapter 3 using simulated data. Specifically, we will focus on the three processes

outlined in Section 2.5.

4.1 Simulated Data

The first step in the validation procedure is to simulate the data of the random sets. We will

focus mainly on models that have already been studied by different authors, see Figure

4.1. Namely, we will use the Boolean model, see Definition 2.5.4, which is widely studied,

the second and the third model are the cluster (studied in [25] and [6]) and the repulsive

model (studied in [28], [25] and [29]), both simulated using Quermass-interaction process

as described in Definition 2.5.5 with suitably chosen parameters using the algorithm from

[30]. The simulated data were kindly provided by the authors of [28] and [25]. For each

model we take 200 realisations.

Due to the fact that the models mentioned above significantly differ by the number

of components in their respective realisations, we had to determine the optimal number

of components that we will consider. Analogously to [31], where the same models and the

same functional characteristic were studied, we decided to use samples of size 10, 20 and ’all’

(where ’all’ marks the number that is equal to the number of components in the realisation

with smaller number of components between the two from which we calculate semi-metrics).

Once we have defined the appropriate classifier for the supervised classification, see (3.6),

we should apply the procedure to the simulated data.

To obtain functional characteristics, we have to choose the appropriate value for the

radius r that is used for calculating the curvature at the boundary point, see (2.49).

25
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Figure 4.1: Previously studied models: the Boolean, the cluster and the repulsive model,
respectively

The area of the disc with radius r (measured in pixels) is given [32] by

A(D(., r)) = 1 + 4 ·
∑
j≥0

(⌊
r2

4j + 1

⌋
−
⌊

r2

4j + 3

⌋)
. (4.1)

A list with values for r = 1, ..., 10000 can be found in [33]. For our study, we will use r = 3

and r = 5, which correspond to A(D(., 3)) = 29 and A(D(., 5)) = 81, as they were used

in [31], because choosing a disc with a large area would lead to a great mistake, since the

disc would not be able to detect local changes in curvature due to discretisation. Note that

the values A(D(., 3)) and A(D(., 3)) are the values used for l in 2.50.

Once we have the input data, we estimate the ratios and curvatures. In this way, we ob-

tain functional data which is then passed to a classifier.

4.2 Supervised classification

Data are split into train set and test set with a 3:1 ratio (which means that 75% of the real-

isations is used for training, while 25% is used for testing the performance of the classifier).

We decided to use three settings in order to study the influence of the number of realisations

on the classification:

• in the first setting we used a sample of 20 randomly chosen realisations from each

model (further ’class’), Boolean (class ’B’), cluster (class ’C’) and repulsive (class ’R’),

meaning that in the training set we have 45 realisations (15 of each class, ’B’, ’C’ and

’R’) in the training set and 15 realisations for testing purpose (5 of each class)

• in the second setting we used a sample of 50 randomly chosen realisations from each

class, meaning that in the training set we have 111 realisations (37 of each class) in the

training set and 39 realisations for testing purpose (13 of each class)
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• in the third setting we used a sample of 100 randomly chosen realisations from each

class, meaning that we have 225 realisations (75 of each class) in the training set and

75 realisations for testing purpose (25 of each class).

Each of the settings mentioned above is then split into three subsettings according to the

characteristic which is used for discrimination, namely ’Ratio’ (using only the ratio), ’Curva-

ture’ (using only the curvature) and ’Both’ (using both the ratio and the curvature). After

that, the classifier is learnt three times for different numbers of components, which we use

for calculating the N -distance (i.e. 10, 20 and ’all’, as mentioned above). After the learning

stage, we use the test set and predict the labels using the posterior probabilities calculated for

each class, as defined in (3.6). The classification results for each setting are shown in Figures

4.2 (20 realisations), 4.3 (50 realisations) and 4.4 (100 realisations) for data obtained using

the osculating circle with radius r = 3, and Figures 4.6 (20 realisations), 4.7 (50 realisations)

and 4.8 (100 realisations) for data obtained using the osculating circle with radius r = 5.

Focussing on the results when considering only 20 realisations shown in Figure 4.2, we ob-

serve that the highest overall misclassification rate was for the smallest sample size (of 10

components) as expected, it drops for a larger sample size (of 20 components), while the

best performance was when considering ’all’ components. Furthermore, we observe that the

most problematic part was the classification of the cluster model. Similar problems occurred

in the simulation study in [31]. This is probably due to the fact that the cluster model

contains a few larger components, a number of (Boolean-like) 2-to-10-disc components, and

a greater amount of (repulsive-like) single-disc components. Among the three subsettings,

the lowest misclassification rate was when considering both characteristics. This reflects

the results obtained in [31] where it was concluded that both characteristics were necessary

to correctly discriminate between different processes.

Taking a look at the results when considering 50 realisations shown in Figure 4.3, we can

see that the classifier behaves in the expected way: the misclassification rate is highest when

taking into account the smallest sample size of 10 components, it drops for a higher sample

size of 20 components, and it is the lowest when considering ’all’ components. Comparing

the results with the previous setting (for only 20 realisations), we can see that the maximum

misclassification rate for each characteristic separately is higher, while it decreases when

considering both characteristics, which is in accordance with the results from [31].

The results for 100 realisations shown in Figure 4.4 indicate that the amount of data

higher than some threshold does not make the classifier significantly more precise, as the

highest misclassification rate is comparable to the setting working with 50 realisations, but

also indicates the dependence of the classification precision on the number of components

considered.
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Each setting is run 50 times in order to obtain box plots of the misclassification rate

shown in Figure 4.5. The maximum and minimum misclassification rates for each setting

are shown in Table 4.1.

Number of realisations 20 50 100
Number of components 10 20 ’all’ 10 20 ’all’ 10 20 ’all’
Characteristics considered Misclassification rate [%]
Both 53.3 26.7 13.3 30.8 12.8 5.1 30.7 10.7 2.7
Curvature 66.7 53.3 20 53.8 30.8 12.8 54.7 28 5.3
Ratio 46.7 26.7 20 30.8 18 12.8 25.3 12 5.3
Both 0 0 0 5.1 0 0 10.7 0 0
Curvature 26.7 6.7 0 25.6 10.3 0 30.7 8 0
Ratio 6.7 0 0 2.6 2.6 0 9.3 1.3 0

Table 4.1: Maximum and minimum (underlined) misclassification rates obtained after 50
runs of k-nearest neighbours algorithm for different settings (20, 50 and 100 realisations)
and respective subsettings (Both, Curvature and Ratio) when using samples of 10, 20 and
’all’ components, respectively. Note that the data used are the data obtained using an
osculating circle of radius r = 3.

To illustrate how the choice of the radius of the osculating circle affects the performance

of the classifier, we performed the same procedures as above for the data obtained using the

osculating circle of radius r = 5. The highest overall misclassification rate when considering

20 realisations, see Figure 4.6, was again for the smallest sample size of 10 components,

as expected. However, comparing the results with the results obtained above (when using

r = 3), we can see that the misclassification rate for all three characteristics is equal or lower.

The best performance was again when considering ’all’ components. The unexpected increase

in the misclassification rate with a growing sample size when considering only the ratio

is again present, since the results shown in Figure 4.6 were obtained for the same realisations

and components (that is, the same seed was used for randomly choosing) and since the

size of the osculating circle does not affect the value of the ratio. Further, we see that

classification based on only the curvature performs better in all three cases (for 10, 20 and

’all’ components). It is due to the fact that the curvature is evaluated in more positions,

leading to greater versatility between classes.

The results when considering 50 realisations shown in Figure 4.7, suggest that the clas-

sifier behaves in the expected way: the misclassification rate is highest when taking into

account the smallest sample size of 10 components, it drops for a higher sample size of 20

components, and it is the lowest when considering ’all’ components. Comparing the results

with the previous ones (for r = 3), we can see that, again, classification based on only the

curvature gives slightly better results.
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The results for 100 realisations shown in Figure 4.8 are the best obtained since the

misclassification rate obtained drops in all three cases.

Each setting is run, as above, 50 times to obtain box plots. The results are shown

in Figure 4.9. The maximum and minimum misclassification rates are shown in Table 4.2.

Number of realisations 20 50 100
Number of components 10 20 ’all’ 10 20 ’all’ 10 20 ’all’
Characteristics considered Misclassification rate [%]
Both 53.3 13.3 6.7 30.8 15.4 2.6 28.2 9.3 1.3
Curvature 60 40 6.7 51.3 23.1 2.6 45.3 20.5 2.6
Ratio 46.7 26.7 20 30.8 18 12.8 25.6 12 5.3
Both 6.7 0 0 7.7 0 0 9.3 0 0
Curvature 20 0 0 28.2 2.6 0 24 5.3 0
Ratio 6.7 0 0 2.6 2.6 0 9.3 1.3 0

Table 4.2: Maximum and minimum (underlined) misclassification rates obtained after 50
runs of k-nearest neighbours algorithm for different settings (20, 50 and 100 realisations)
and respective subsettings (Both, Curvature and Ratio) when using samples of 10, 20 and
’all’ components, respectively. Note that the data used are the data obtained using an
osculating circle of radius r = 5.
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Figure 4.2: Histograms of k-nearest neighbours classification accuracy using only the ratio,
only the curvature and both ratio and curvature for discrimination when using a sample of
10, 20 and ’all’ components, respectively. Misclassification rates are 6. 7%, 20% and 6. 7%
for 10, 20 and all components, respectively, when using only the ratio, 26.7%, 6.7% and 6.7%
when using only the curvature, and 6.7%, 0% and 0% when using both characteristics for a
sample of 20 realisations that were osculated by a disc of radius r = 3.
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Figure 4.3: Histograms of k-nearest neighbours classification accuracy using only the ratio,
only the curvature and both ratio and curvature for discrimination when using a sample of
10, 20 and ’all’ components, respectively. Misclassification rates are 17.9%, 7.7% and 2.6%
for 10, 20 and ’all’ components, respectively, when using only the ratio, 33.3%, 15.4% and
0% when using only the curvature, and 5.1%, 2.6% and 0% when using both characteristics
for a sample of 50 realisations that were osculated by a disc of radius r = 3.
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Figure 4.4: Histograms of k-nearest neighbours classification accuracy using only the ratio,
only the curvature and both ratio and curvature for discrimination when using a sample of
10, 20 and ’all’ components, respectively. Misclassification rates are 12%, 5.3% and 1.3% for
10, 20 and ’all’ components, respectively, when using only the ratio, 30.7%, 13.3% and 1.3%
when using only the curvature, and 12%, 4% and 0% when using both characteristics for a
sample of 100 realisations that were osculated by a disc of radius r = 3.
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Figure 4.5: Boxplots of misclassification rate for 50 runs of k-nearest neighbours algorithm
when considering samples of 20 (top), 50 (central) and 100 (bottom) realisations using
both ratio and curvature, only the curvature and only the ratio for discrimination, respec-
tively. For each setting, misclassification rates for different number of components considered
(namely 10, 20 and ’all’) are shown. Note that the characteristics were obtained using an
osculating disc of radius r = 3.
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Figure 4.6: Histograms of k-nearest neighbours classification accuracy using only the ratio,
only the curvature and both ratio and curvature for discrimination when using a sample of
10, 20, and ’all’ components, respectively. Misclassification rates are 6.7%, 20% and 6.7%
for 10, 20 and ’all’ components, respectively, when using only the ratio, 20%, 13.3% and 0%
when using only the curvature, and 6.7%, 0% and 0% when using both characteristics for a
sample of 20 realisations that were osculated by a disc of radius r = 5.
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Figure 4.7: Histograms of k-nearest neighbours classification accuracy using only the ratio,
only the curvature and both ratio and curvature for discrimination when using a sample of
10, 20, and ’all’ components, respectively. Misclassification rates are 17.9%, 7.7% and 2.6%
for 10, 20 and ’all’ components, respectively, when using only the ratio, 33.3%, 5.1% and 0%
when using only the curvature, and 10.3%, 2.6% and 0% when using both characteristics for
a sample of 50 realisations that were osculated by a disc of radius r = 5.
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Figure 4.8: Histograms of k-nearest neighbours classification accuracy using only the ratio,
only the curvature and both ratio and curvature for discrimination when using a sample
of 10, 20, and ’all’ components, respectively. Misclassification rates are 12%, 4% and 0%
for 10, 20 and ’all’ components, respectively, when using only the ratio, 28%, 9.3% and 0%
when using only the curvature, and 10.7%, 0% and 0% when using both characteristics for
a sample of 100 realisations that were osculated by a disc of radius r = 5.
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Figure 4.9: Boxplots of misclassification rate for 50 runs of k-nearest neighbours algorithm
when considerring samples of 20 (top), 50 (central) and 100 (bottom) realisations using
both ratio and curvature, only the curvature and only the ratio for discrimination, respec-
tively. For each setting, misclassification rates for different number of components considered
(namely 10, 20 and ’all’) are shown. Note that the characteristics were obtained using an
osculating disc of radius r = 5 on the simulated data.
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4.3 Unsupervised classification

In the unsupervised classification case, we use the k-means algorithm, which randomly ini-

tialises the cluster centres ninit times and uses the set of clusters with the best inertia [34].

For our study, we used ninit = 20 for all settings listed below.

Similarly as for the supervised classification, the data are again split into train set and

test set with a 3:1 ratio (which means that 75% of the realisations is used for training, while

25% is used for testing the performance of the classifier). Since we wanted to test how much

the amount of data at our disposal affects the performance of the classifier, we decided to use

3 sizes of samples, namely the sample of 20, 50 and 100 randomly chosen realisations from

each class.

Each of the above-mentioned settings is then split into three subsettings according to the

characteristic which is used for discrimination, i.e. ’Ratio’, ’Curvature’, and ’Both’. Note

that we set the weight for the ratio to be 1000 to compensate for the length and the values

describing the curvature. After that, the classifier performance is tested for different numbers

of components, which we use to calculate the mean. The classification results for each setting

are shown in Figures 4.10 (20 realisations), 4.11 (50 realisations) and 4.12 (100 realisations)

for data obtained using osculating circle with radius r = 3, and Figures 4.14 (20 realisations),

4.15 (50 realisations) and 4.16 (100 realisations) for data obtained using osculating circle with

radius r = 5.

Focussing on Figure 4.10 we can see that the highest overall misclassification rate was

for the smallest sample size (of 10 components) as expected, while the best performance

was when considering ’all’ components. Furthermore, we observe that for a smaller data

set (of only 20 realisations, out of which 15 are used for training), the classifier again had

the greatest problem correctly classifying the cluster model. We justify it by the same fact

as in the unsupervised classification case.

Taking a look at the results when considering 50 realisations shown in Figure 4.11, we can

see that the highest overall misclassification rate was for the smallest sample size (of 10 com-

ponents) as expected, while the best performance was when considering ’all’ components.

Compared to the results when only 20 realisations are considered, the misclassification rate

when only the ratio is considered decreases, which is expected. However, we observe an in-

crease in the misclassification rate when using only the curvature and both the ratio and the

curvature, which leads to a situation where the results when considering both characteristics

and ’all’ components are not the best. This is unexpected since we assume that, with the

growing sample, the estimate of the mean should better reflect the population (i.e., class)

mean. We can see that the increase in the misclassification rate is due to the decrease in the
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precision of classifying the Boolean model.

Contrary to the unsupervised classification case, the results for 100 realisations shown in

Figure 4.12 indicate that the amount of data at hand significantly affects the performance

of the classifier. For a sample of 10 components, the misclassification rate is the highest

when considering both characteristics, while for ’all’ components it is the lowest when both

characteristics are considered. However, the results obtained are not the best results for any

subsetting (’Ratio’, ’Curvature,’ or ’Both’). The highest overall misclassification rate was

again for the smallest sample size, while the best performance was when considering ’all’

components, as expected.

Each setting is run 50 times in order to obtain box plots of the misclassification rate, and

the results are shown in Figure 4.13. The maximum and minimum misclassification rates

after 50 runs for each setting are shown in Table 4.3.

Number of realisations 20 50 100
Number of components 10 20 ’all’ 10 20 ’all’ 10 20 ’all’
Characteristics considered Misclassification rate [%]
Both 86.7 93.3 73.3 89.7 92.3 48.7 82 84 36
Curvature 86.7 73.3 86.7 89.7 84.6 51.3 86.7 88 49.3
Ratio 86.7 87.2 86.7 89.7 87.2 84.6 86.7 85.5 81.3
Both 26.7 13.3 0 33.3 23.1 7.7 41.3 33.3 17.3
Curvature 26.7 13.3 6.7 30.8 25.6 15.4 40 26.7 14.7
Ratio 13.3 28.3 13.3 28.2 20.5 12.8 26.7 29.3 20

Table 4.3: Maximum and minimum (underlined) misclassification rates obtained after 50
runs of k-means algorithm for different settings (20, 50 and 100 realisations) and respective
subsettings (Both, Curvature and Ratio) when using samples of 10, 20 and ’all’ components,
respectively. Note that the data used are the data obtained using an osculating circle of ra-
dius r = 3.

To illustrate how the choice of the radius of the osculating circle affects the performance

of the classifier, we performed the same procedures as above for the data obtained using the

osculating circle of radius r = 5. In Figure 4.14 we can see that for a data set of only 20

realisations, classifiers based on only the ratio and only the curvature give better results than

for the data obtained with r = 3. The different results for only the ratio, even for the data

sampled with the same seed as in the r = 3 case (meaning that the same realisations and the

same components in each realisation are chosen to calculate the respective means), are due

to the fact that the initial cluster centres in the k-means procedure are chosen differently.

This difference probably could be avoided by setting a really high number of initialisations

from which the one with the best inertia is chosen (the presented results were obtained

for 20 initialisations). When classification is based on both characteristics simultaneously,
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the misclassification rate for 10 and 20 components is higher, while for ’all’ components

it is comparable.

When considering 50 realisations, the results for samples of 10 and 20 components, see

Figure 4.15, are comparable to the results obtained for r = 3. However, the results obtained

when considering ’all’ components are much better, which is justified by the fact that the

curvature is evaluated in more positions.

The results for 100 realisations shown in Figure 4.16 are comparable or slightly better

to those obtained for r = 3 when considering the characteristics separately. However, when

both characteristics are considered simultaneously, the results are slightly better for 10 and

20 components, and worse when considering ’all’ components. This means that a case-specific

optimal weight for ratio should probably be applied.

Each setting is run, as above, 50 times in order to obtain box plots. The results are

shown in Figure 4.17. The maximum and minimum misclassification rates after 50 runs are

shown in Table 4.4.

Number of realisations 20 50 100
Number of components 10 20 ’all’ 10 20 ’all’ 10 20 ’all’
Characteristics considered Misclassification rate [%]
Both 86.7 80 53.3 82.1 87.2 25.6 86.7 84 20
Curvature 86.7 86.7 46.7 89.7 92.3 25.6 85.3 84 20
Ratio 86.7 80 80 87.2 87.2 84.6 84 89.3 80
Both 26.7 20 0 33.3 20.1 0 36 26.7 6.7
Curvature 26.7 6.7 0 33.3 15.4 5.1 38.7 29.3 5.3
Ratio 26.7 13.3 13.3 28.2 15.4 17.9 36 28 21.3

Table 4.4: Maximum and minimum (underlined) misclassification rates obtained after 50
runs of k-means algorithm for different settings (20, 50 and 100 realisations) and respective
subsettings (Both, Curvature and Ratio) when using samples of 10, 20 and ’all’ components,
respectively. Note that the data used are the data obtained using an osculating circle of
radius r = 5.
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Figure 4.10: Histograms of k-means classification accuracy using only the ratio, only the
curvature and both ratio and curvature for discrimination when using a sample of 10, 20,
and ’all’ components, respectively. Misclassification rates are 46.7%, 26.7% and 26.7% for
10, 20 and ’all’ components, respectively, when using only the ratio, 26.7%, 33.3% and 13.3%
when using only the curvature, and 26.7%, 13.3% and 13.3% when using both characteristics
for a sample of 20 realisations that were osculated by a disc of radius r = 3.
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Figure 4.11: Histograms of k-means classification accuracy using only the ratio, only the
curvature and both ratio and curvature for discrimination when using a sample of 10, 20,
and ’all’ components, respectively. Misclassification rates are 41%, 35.9% and 12.8% for 10,
20 and ’all’ components, respectively, when using only the ratio, 30.8%, 41% and 28.2%
when using only the curvature, and 41%, 33.3% and 48.7% when using both characteristics
for a sample of 50 realisations that were osculated by a disc of radius r = 3.



4.3. UNSUPERVISED CLASSIFICATION 43

R
at
io

C
u
rv
at
u
re

B
ot
h

Figure 4.12: Histograms of k-means classification accuracy using only the ratio, only the
curvature and both ratio and curvature for discrimination when using a sample of 10, 20,
and ’all’ components, respectively. Misclassification rates are 26.7%, 44% and 25.3% for 10,
20 and ’all’ components, respectively, when using only the ratio, 42.7%, 26.7% and 22.7%
when using only the curvature, and 52%, 36% and 17.3% when using both characteristics
for a sample of 100 realisations that were osculated by a disc of radius r = 3.
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Figure 4.13: Boxplots of misclassification rate for 50 runs of k-means algorithm when con-
siderring samples of 20 (top), 50 (central) and 100 (bottom) realisations using both ratio
and curvature, only the curvature and only the ratio for discrimination, respectively. For
each setting, misclassification rates for different number of components considered (namely
10, 20 and ’all’) are shown. Note that the characteristics were obtained using an osculating
disc of radius r = 3.
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Figure 4.14: Histograms of k-means classification accuracy using only the ratio, only the
curvature and both ratio and curvature for discrimination when using a sample of 10, 20,
and ’all’ components, respectively. Misclassification rates are 26.7%, 20% and 20% for 10,
20 and ’all’ components, respectively, when using only the ratio, 33.3%, 26.7% and 0% when
using only the curvature and 53.3%, 26.7% and 6.7% when using both characteristics for a
sample of 20 realisations that were osculated by a disc of radius r = 5.
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Figure 4.15: Histograms of k-means classification accuracy using only the ratio, only the
curvature and both ratio and curvature for discrimination when using a sample of 10, 20,
and ’all’ components, respectively. Misclassification rates are 51.3%, 76.9% and 23.1% for
10, 20 and ’all’ components, respectively, when using only the ratio, 46.2%, 41% and 7.7%
when using only the curvature, and 33.3%, 23.1% and 5.1% when using both characteristics
for a sample of 50 realisations that were osculated by a disc of radius r = 5.
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Figure 4.16: Histograms of k-means classification accuracy using only the ratio, only the
curvature and both ratio and curvature for discrimination when using a sample of 10, 20,
and ’all’ components, respectively. Misclassification rates are 41.3%, 40% and 25.3% for 10,
20, and ’all’ components, respectively, when using only the ratio, 42.7%, 29.3% and 9.3%
when using only the curvature and 41.3%, 33.3% and 44% when using both characteristics
for a sample of 100 realisations that were osculated by a disc of radius r = 5.
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Figure 4.17: Boxplots of misclassification rate for 50 runs of k-means algorithm when con-
siderring samples of 20 (top), 50 (central) and 100 (bottom) realisations using both ratio
and curvature, only the curvature and only the ratio for discrimination, respectively. For
each setting, misclassification rates for different number of components considered (namely
10, 20, and ’all’) are shown. Note that the characteristics were obtained using an osculating
disc of radius r = 5.



Chapter 5

Application to Real Data

Once we have shown that the classifier is able to distinguish between simulated random

processes, we will apply it to the real data. Different types of benign or malignant changes can

be indicated by the morphology of the tissue located between the lactiferous duct system and

mammary glands. In our study, we will consider two types of mammary tissue - mastopathic

(referred to as Masto or ’MP’ only from now on) and mammary cancer tissue (referred

to as Mamca or ’MC’ only). Note that this data has already been studied in [4], [25] and [31].

Samples (in the form of binary images containing 10 sub-samples of size 512×512 representing

cross-sections of the duct system), which are used in our study, are shown in Figure 5.1 and

Figure 5.2, with black areas representing the aforementioned tissue. The data of mammary

cancer and mastopathic tissue were kindly provided by the authors of [4] and [25].

Initially, we identified the components conventionally and then calculated the correspond-

ing curvatures and ratios for both values of r. Since we were provided with only 8 images

of size 512 × 5120 pixels of each tissue, for better learning, we had to augment our data.

For mastopathic tissue, we merged the first four images (that is, ’MP1’ – ’MP4’) together,

while for mammary cancer tissues, we merged the first six images (that is, ’MC1’ – ’MC6’)

together and randomly sampled a number of components that roughly corresponds to the

number of components in the original images (60 for mastopathy and 300 for mammary can-

cer). The procedure was repeated 200 times, and in this way we obtained 200 realisations

that would be used for the training stage. Similarly, we merged the last two images (that

is, ’MP5’ and ’MP6’ for ’MP’, and ’MC7’ and ’MC8’ for ’MC’ tissue) together and sampled

the components in the same way as for the training data. This was repeated 50 times, so

in the end we had 50 realisations that would be used for the testing phase. The images

’MP7’ and ’MP8’ were excluded from selection because the results obtained for them in [31]

were not satisfactory in the sense that they were assessed as dissimilar to the remaining

’MP’ observations.

49
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To assess the classification problem, we follow the same procedure as that used for the

simulated data. This means that we will either directly pass the data to the classifier

in the supervised classification case, or first calculate means using samples of 10, 20 and

’all’ components and pass the calculated means to the classifier in the unsupervised case.

The classification is again based on only the ratio, only the curvature or both ratio and

curvature together.

5.1 Supervised Classification

As already mentioned, we follow the same procedure as for the simulated data. This means

that the data are divided into train set and test set with a 3:1 ratio (which means that 75%

of the realisations is used for training, while 25% is used for testing the performance of the

classifier). Since we wanted to test how fast the classifier learns and how much the amount

of data at our disposal affects its performance, we again use three settings:

• in the first setting we used a sample of 20 randomly chosen realisations from each

type of mammary tissue (further ’class’), mastopathic (class ’MP’) and cancerous

(class ’MC’), meaning that in the training set we have 30 realisations (15 of each

class, ’MP’ and ’MC’) in the training set and 10 realisations for testing purpose

(5 of each class)

• in the second setting we used a sample of 50 randomly chosen realisations from each

class, meaning that in the training set we have 74 realisations (37 of each class) in the

training set and 26 realisations for testing purpose (13 of each class)

• in the third setting we used a sample of 100 randomly chosen realisations from each

class, meaning that we have 150 realisations (75 of each class) in the training set and

50 realisations for testing purpose (25 of each class).

Each of the above-mentioned settings is then split into three subsettings according to the

characteristic which is used for discrimination, namely ’ratio’, ’curvature’, and ’both’. After

that, the classifier is learnt three times for different numbers of components which we use

for calculating the N -distance (i.e. 10, 20 and ’all’). After the learning stage, we use the

test set and predict the labels using the posterior probabilities calculated for each class. The

classification results for each setting are shown in Figures 5.3 (20 realisations), 5.4 (50 re-

alisations) and 5.5 (100 realisations) for the data obtained using the osculating circle with

radius r = 3, and Figures 5.7 (20 realisations), 5.8 (50 realisations) and 5.9 (100 realisations)

for the data obtained using the osculating circle with radius r = 5, respectively. We can

see that after the initial run, the classification precision follows the pattern observed for the
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simulated data – it increases with the growing sample size (i.e., it is the lowest when only

10 components are used and the highest when ’all’ components are used) for all settings

(i.e., for different number of realisations considered) in all cases (i.e., for data obtained with

an osculating circle of radius r = 3 and r = 5, respectively). After the initial run, we repeat

the procedure 50 times to obtain box plots of misclassification rates. The results are shown

in Figure 5.6 for the data obtained using r = 3 and Figure 5.10 for the data obtained using

r = 5. The minimum and maximum misclassification rates are shown in Table 5.1 for data

obtained using r = 3 and Table 5.2 for data obtained using r = 5, respectively. We can

see that the values reflect the ones in the initial run, meaning that the classification is most

precise when using ’all’ components in all settings.

Number of realisations 20 50 100
Number of components 10 20 ’all’ 10 20 ’all’ 10 20 ’all’
Characteristics considered Misclassification rate [%]
Both 30 10 0 7.7 0 0 4 0 0
Curvature 20 10 0 7.7 0 0 6 0 0
Ratio 40 20 0 23.1 11.5 0 18 10 0
Both 0 0 0 0 0 0 0 0 0
Curvature 0 0 0 0 0 0 0 0 0
Ratio 0 0 0 0 0 0 4 0 0

Table 5.1: Maximum and minimum (underlined) misclassification rates obtained after 50
runs of k-nearest neighbours algorithm for different settings (20, 50 and 100 realisations)
and respective subsettings (Both, Curvature and Ratio) when using samples of 10, 20 and
’all’ components, respectively. Note that the data used are the data obtained using an
osculating circle of radius r = 3.

Number of realisations 20 50 100
Number of components 10 20 ’all’ 10 20 ’all’ 10 20 ’all’
Characteristics considered Misclassification rate [%]
Both 20 0 0 7.7 3.8 0 6 0 0
Curvature 30 0 0 11.5 0 0 6 2 0
Ratio 40 20 0 19.3 7.7 0 18 6 0
Both 0 0 0 0 0 0 0 0 0
Curvature 0 0 0 0 0 0 0 0 0
Ratio 0 0 0 0 0 0 0 0 0

Table 5.2: Maximum and minimum (underlined) misclassification rates obtained after 50
runs of k-nearest neighbours algorithm for different settings (20, 50 and 100 realisations)
and respective subsettings (Both, Curvature and Ratio) when using samples of 10, 20 and
’all’ components, respectively. Note that the data used are the data obtained using an
osculating circle of radius r = 5.
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Sample ’MP1’
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Figure 5.1: Samples of mastopathic breast tissue [4], [25]
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Sample ’MC1’

Sample ’MC2’
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Figure 5.2: Samples of mammary cancer [4], [25]
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Figure 5.3: Histograms of k-nearest neighbours classification accuracy using only the ratio,
only the curvature and both ratio and curvature for discrimination when using a sample of
10, 20, and ’all’ components, respectively. Misclassification rates are 0%, 0% and 0% for 10,
20 and ’all’ components, respectively, when using only the ratio, 0%, 0% and 0% when using
only the curvature and 0%, 0% and 0% when using both characteristics for a sample of 20
realisations that were osculated by a disc of radius r = 3.
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Figure 5.4: Histograms of k-nearest neighbours classification accuracy using only the ratio,
only the curvature and both ratio and curvature for discrimination when using a sample of
10, 20, and ’all’ components, respectively. Misclassification rates are 4%, 0% and 0% for 10,
20 and ’all’ components, respectively, when using only the ratio, 0%, 0% and 0% when using
only the curvature and 0%, 0% and 0% when using both characteristics for a sample of 50
realisations that were osculated by a disc of radius r = 3.
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Figure 5.5: Histograms of k-nearest neighbours classification accuracy using only the ratio,
only the curvature and both ratio and curvature for discrimination when using a sample of
10, 20, and ’all’ components, respectively. Misclassification rates are 4%, 0% and 0% for 10,
20 and ’all’ components, respectively, when using only the ratio, 2%, 0% and 0% when using
only the curvature and 0%, 0% and 0% when using both characteristics for a sample of 100
realisations that were osculated by a disc of radius r = 3.
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Figure 5.6: Boxplots of misclassification rate for 50 runs of k-nearest neighbours algorithm
when considering samples of 20 (top), 50 (central) and 100 (bottom) realisations using
both ratio and curvature, only the curvature and only the ratio for discrimination, respec-
tively. For each setting, misclassification rates for different number of components considered
(namely 10, 20, and ’all’) are shown. Note that the characteristics were obtained using an
osculating disc of radius r = 3.
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Figure 5.7: Histograms of k-nearest neighbours classification accuracy using only the ratio,
only the curvature and both ratio and curvature for discrimination when using a sample of
10, 20, and ’all’ components, respectively. Misclassification rates are 10%, 20% and 0% for
10, 20 and ’all’ components, respectively, when using only the ratio, 0%, 0% and 0% when
using only the curvature and 0%, 0% and 0% when using both characteristics for a sample
of 20 realisations that were osculated by a disc of radius r = 5.
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Figure 5.8: Histograms of k-nearest neighbours classification accuracy using only the ratio,
only the curvature and both ratio and curvature for discrimination when using a sample of
10, 20, and ’all’ components, respectively. Misclassification rates are 0%, 0% and 0% for 10,
20 and ’all’ components, respectively, when using only the ratio, 0%, 0% and 0% when using
only the curvature and 0%, 0% and 0% when using both characteristics for a sample of 50
realisations that were osculated by a disc of radius r = 5.
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Figure 5.9: Histograms of k-nearest neighbours classification accuracy using only the ratio,
only the curvature and both ratio and curvature for discrimination when using a sample of
10, 20, and ’all’ components, respectively. Misclassification rates are 8%, 2% and 0% for 10,
20 and ’all’ components, respectively, when using only the ratio, 0%, 0% and 0% when using
only the curvature and 0%, 0% and 0% when using both characteristics for a sample of 100
realisations that were osculated by a disc of radius r = 5.



5.1. SUPERVISED CLASSIFICATION 61

20
R
ea
li
sa
ti
on

s
50

R
ea
li
sa
ti
on

s
10
0
R
ea
li
sa
ti
on

s

Figure 5.10: Boxplots of misclassification rate for 50 runs of k-nearest neighbours algo-
rithm when considering samples of 20 (top), 50 (central) and 100 (bottom) realisations
using both ratio and curvature, only the curvature and only the ratio for discrimination,
respectively. For each setting, misclassification rates for different number of components
considered (namely 10, 20, and ’all’) are shown. Note that the characteristics were obtained
using an osculating disc of radius r = 5.
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5.2 Unsupervised Classification

For each newly obtained realisation (using the data augmentation procedure, as described

above), we calculate the means by randomly choosing a sample of components of sizes

10, 20 and ’all’. After that, the data are passed to the classifier. The results are shown

in Figures 5.11 (20 realisations), 5.12 (50 realisations), and 5.13 (100 realisation) for the

data obtained using an osculating circle of size r = 3, and Figures 5.15 (20 realisations), 5.16

(50 realisations), and 5.17 (100 realisations) for the data obtained using a circle with radius

r = 5, respectively. We can see that after the initial run, the classification precision reflects

the results observed for the simulated data – it increases with the growing sample size (i.e.,

it is the lowest when only 10 components are used and the highest when ’all’ components

are used) for all settings (i.e., for different number of realisations considered) for both the

data obtained with an osculating circle of radius r = 3 and the data obtained using a circle

of radius r = 5. After the initial run, the procedure is repeated 50 times for different settings.

The resulting box plots are shown in Figure 5.14, for the data obtained using the osculating

circle with r = 3 and Figure 5.18, for the data obtained using the circle with r = 5. The

minimum and maximum misclassification rates are shown in Table 5.3 for data obtained

using r = 3 and Table 5.4 for data obtained using r = 5, respectively. We can see that the

values reflect those in the initial run, meaning that the classification is most precise when

using ’all’ components in all settings, whereas the increasing number of realisations does not

make the classifier significantly more precise.

Number of realisations 20 50 100
Number of components 10 20 ’all’ 10 20 ’all’ 10 20 ’all’
Characteristics considered Misclassification rate [%]
Both 60 60 10 65.4 42.3 7.7 40 32 6
Curvature 70 60 10 69.2 38.5 3.8 46 36 2
Ratio 80 100 100 84.6 80.8 23.1 64 76 16
Both 0 0 0 11.5 3.8 0 14 4 0
Curvature 0 0 0 3.8 3.8 0 18 8 0
Ratio 10 10 0 30.8 15.4 0 38 22 6

Table 5.3: Maximum and minimum (underlined) misclassification rates obtained after 50
runs of k-means algorithm for different settings (20, 50 and 100 realisations) and respective
subsettings (Both, Curvature and Ratio) when using samples of 10, 20 and ’all’ components,
respectively. Note that the data used are the data obtained using an osculating circle of
radius r = 3.
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Number of realisations 20 50 100
Number of components 10 20 ’all’ 10 20 ’all’ 10 20 ’all’
Characteristics considered Misclassification rate [%]
Both 80 50 20 65.4 38.5 7.7 64 26 6
Curvature 60 40 10 50 30.8 3.8 44 26 2
Ratio 90 100 40 73.1 80.8 15.4 68 76 20
Both 0 0 0 7.7 3.8 0 12 10 0
Curvature 10 0 0 7.7 3.8 0 14 6 0
Ratio 10 10 0 30.8 15.4 0 38 16 4

Table 5.4: Maximum and minimum (underlined) misclassification rates obtained after 50
runs of k-means algorithm for different settings (20, 50 and 100 realisations) and respective
subsettings (Both, Curvature and Ratio) when using samples of 10, 20 and ’all’ components,
respectively. Note that the data used are the data obtained using an osculating circle of
radius r = 5.

.
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Figure 5.11: Histograms of k-means classification accuracy using only the ratio, only the
curvature and both ratio and curvature for discrimination when using a sample of 10, 20,
and ’all’ components, respectively. Misclassification rates are 20%, 20% and 0% for 10, 20
and ’all’ components, respectively, when using only the ratio, 10%, 0% and 0% when using
only the curvature and 20%, 0% and 0% when using both characteristics for a sample of 20
realisations that were osculated by a disc of radius r = 3.
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Figure 5.12: Histograms of k-means classification accuracy using only the ratio, only the
curvature and both ratio and curvature for discrimination when using a sample of 10, 20,
and ’all’ components, respectively. Misclassification rates are 50%, 15.4% and 3.8% for 10,
20 and ’all’ components respectively when using only the ratio, 3.8%, 23.1% and 0% when
using only the curvature and 11.5%, 7.7% and 0% when using both characteristics for a
sample of 50 realisations that were osculated by a disc of radius r = 3.
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Figure 5.13: Histograms of k-means classification accuracy using only the ratio, only the
curvature and both ratio and curvature for discrimination when using a sample of 10, 20,
and ’all’ components, respectively. Misclassification rates are 40%, 24% and 8% for 10, 20
and ’all’ components, respectively, when using only the ratio, 20%, 8% and 2% when using
only the curvature and 22%, 4% and 2% when using both characteristics for a sample of 100
realisations that were osculated by a disc of radius r = 3.
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Figure 5.14: Boxplots of misclassification rate for 50 runs of k-means algorithm when con-
siderring samples of 20 (top), 50 (central) and 100 (bottom) realisations using both ratio
and curvature, only the curvature and only the ratio for discrimination, respectively. For
each setting, misclassification rates for different number of components considered (namely
10, 20 and ’all’) are shown. Note that the characteristics were obtained using an osculating
disc of radius r = 3.
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Figure 5.15: Histograms of k-means classification accuracy using only the ratio, only the
curvature and both ratio and curvature for discrimination when using a sample of 10, 20,
and ’all’ components, respectively. Misclassification rates are 20%, 20% and 10% for 10, 20
and ’all’ components, respectively, when using only the ratio, 20%, 0% and 0% when using
only the curvature and 0%, 10% and 0% when using both characteristics for a sample of 20
realisations that were osculated by a disc of radius r = 5.
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Figure 5.16: Histograms of k-means classification accuracy using only the ratio, only the
curvature and both ratio and curvature for discrimination when using a sample of 10, 20,
and ’all’ components, respectively. Misclassification rates are 30.8%, 19.2% and 15.4% for
10, 20 and ’all’ components, respectively, when using only the ratio, 15.4%, 3.8% and 0%
when using only the curvature and 7.7%, 11.5% and 3.8% when using both characteristics
for a sample of 50 realisations that were osculated by a disc of radius r = 5.
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Figure 5.17: Histograms of k-means classification accuracy using only the ratio, only the
curvature and both ratio and curvature for discrimination when using a sample of 10, 20,
and ’all’ components, respectively. Misclassification rates are 20%, 8% and 2% for 10, 20
and ’all’ components, respectively, when using only the ratio, 20%, 8% and 2% when using
only the curvature and 12%, 10% and 2% when using both characteristics for a sample of
100 realisations that were osculated by a disc of radius r = 5.
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Figure 5.18: Boxplots of misclassification rate for 50 runs of k-means algorithm when con-
siderring samples of 20 (top), 50 (central) and 100 (bottom) realisations using both ratio
and curvature, only the curvature and only the ratio for discrimination, respectively. For
each setting, misclassification rates for different number of components considered (namely
10, 20 and ’all’) are shown. Note that the characteristics were obtained using an osculating
disc of radius r = 5.
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Chapter 6

Conclusion

The first goal of this thesis was to study classification methods for multidimensional and

functional data. A brief summary of the basic theory of nonparametric functional data anal-

ysis, needed to successfully complete the main goal of this thesis, was introduced in Section

2.3. Since the main focus of this thesis is on the (planar) random sets, an introduction

to stochastic geometry was also made in the same chapter.

The second and main goal of this thesis was to suggest and implement a suitable classifier

of realisations of random sets. In Chapter 3 we constructed two classifiers, one for supervised

learning based on the k-nearest neighbours algorithm and kernel-type estimator of poste-

rior probabilities (defined in Section 2.3.1) and one for unsupervised learning based on the

k-means clustering algorithm (defined in Section 2.3.2). In order to access the classification

of realisations of random sets, a link between the methods used for random sets and the

methods used for functional data analysis had to be established. This was done using the

method proposed in [31], where functional data were derived from a realisation of a random

set by evaluating the curvature measure at the points of the boundary and evaluating the

ratio of the perimeter and the area of the components inside the realisation, as described

in Section 2.6.1. In the supervised case, functional data are directly fed to the classifier,

while in the unsupervised case, a mean from a sample of data is first evaluated. After that,

we use an appropriate kernel proposed in [6] for estimating the N -distance (see Section 2.4),

which is used as a semi-metrics for measuring the distance between functional data (or the

evaluated means in the unsupervised case).

In Chapter 4, we validated the procedures by applying them to simulated data studied by

different authors. Due to the potential correlation between the individual components within

a realisation (densely packed components can affect the shape of each other), we decided

to follow the same validation procedure as proposed in [31]. We randomly chose a sample

of components from a realisation, evaluated the functional characteristics and passed it on
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to the classifiers.

From the histograms of the classification accuracy, we conclude that the supervised classi-

fication classifier gives satisfactory results. Of course, the classifier exhibits some limitations.

The first is the dependence of the accuracy on the amount of data at hand. The classifier

gave better results when it had more data to learn from, which was expected. This depen-

dence is observable on both the number of realisations (the more realisations are at hand, the

higher the accuracy of classification) and on the number of components sampled from a reali-

sation (the greater the sample, the higher the accuracy). The highest accuracy was obtained

when both characteristics were used simultaneously for classification, reflecting the results

obtained in [31]. It was also observed that the classification accuracy increases if we evaluate

the functional characteristic reflecting the curvature of the boundary at more points, which

was expected. However, the number of these points is limited by the size of the osculating

disc because a disc too large cannot detect local changes in curvature.

From the histograms of the classification accuracy for the unsupervised classification,

we observed higher misclassification rates than for the supervised case. In this case, de-

pendency on the amount of data at disposal is not straightforward as in the unsupervised

case – the classification accuracy increases with increasing number of components that are

used, while it slightly decreases with increasing number of realisations. This could have been

caused by the usage of the mean, which can be non-informative when data are rough, which

is in our case caused by discretisation, instead some other centrality notion, e.g. mode,

which is more robust since it is less sensitive to the outliers. The evaluation of the functional

characteristic reflecting the curvature in more positions slightly improved the results.

As a final step, we applied the procedure to the samples representing two types of mam-

mary tissue (mastopathic and mammary cancer tissue). The classification accuracy followed

the pattern of the accuracy for simulated data: it increased with increasing number of re-

alisations in the supervised classification while it slightly decreased in the unsupervised

classification case. In both cases, the accuracy increased with increasing number of compo-

nents. Taking into account the challenges posed by the variability in the shapes and sizes

of components within the same type of tissue, as well as the difficulties in identifying distinc-

tive features for different types of tissues, the results obtained can be considered satisfactory

in both cases.

The research brought some possibilities of further study, e.g. the procedure maybe can

be improved by deriving optimal values for the size of the osculating circle or by using the

curve-smoothing methods. However, it is obvious that the presented procedure shows great

potential for being used as a method for the classification of realisations of random sets

in the form of binary images.
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Contents of Enclosed CD

readme.txt.....................................the file with CD contents description
create tissue.py ............................... the program for data augmentation
Kmeans......................................the directory with k-means source codes

average sample simulated.py...the program for calculating the mean of a sample
of components inside the realisation of the simulated data

average sample tissue.py ...... the program for calculating the mean of a sample
of components inside the realisation adapted to work with tissues data

kmeans classifier simulated.pythe program implementing k-means procedure for
simulated data

kmeans classifier tissue.py...the program implementing k-means procedure for
tissues data

Knn..............................the directory with k-nearest neighbours source codes
knn classifier simulated.r ..... the program implementing k-nearest neighbours
procedure for simulated data

knn classifier tissue.r.........the program implementing k-nearest neighbours
procedure for tissue data
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