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Ing. Eduard Bakštein, Ph.D. for a lot of valuable and inspiring advices and constant support
during the whole time of working on this thesis. I would also like to thank the whole Mindpax
company for providing us with all the data.

Bc. Carmen-Anna Konicarová



Abstract

Previous studies have established relationships between actigraphy-measured activities (amount
of activity, sleep and their fragmentation) and clinical status in patients with bipolar disorder
(BD). The main aim of this study was to investigate whether the covariance structure between
different actigraphy parameters varies across different clinical conditions. First, we investigated
an unsupervised approach based on Toeplitz inverse covariance-based clustering. After a compre-
hensive evaluation of this method on a simulated dataset we found it to be unsuitable for our
real data due to short duration of the individual clinical states and low sampling frequency.

Next, we investigated a supervised approach to analyse changes in covariance structure across
changing clinical state. To compare the predictive value of covariance structure to that of median
and variance of individual actigraphy-derived variables, we validated them with a total of three
approaches.

We applied three methods using a Support Vector Machine (SVM) classifier. These methods,
based on covariance matrix (COV), median and standard deviation (SD) values of actigraphic
features, were combined with two dimension reduction techniques, principal component analysis
(PCA) and our own (max-diff) method based on the maximum difference of COV pairs (or
median or SD values) of features between clinical conditions. Three validation scenarios were used
to evaluate these methods: leave-one-patient-out cross-validation (LOOCV), which distinguished
clinical states without time dependence, and classifying each time series in a 7-day window
across all patients and for individuals separately. Three different types of distributions were
used to partition the training and test data sets: patient, state, and time-based splits. All
these validations revealed that the mania-remission was easier to determine than the depression-
remission distinction. The results also show a high variability between patients. It is noteworthy
that using LOOCV, an average accuracy of 72% for mania-remission and 67% for depression-
remission was achieved using the SD method with our dimension reduction method. Time-series
classification over a 7-day window on the patient-based split dataset achieved lower accuracy for
mania using the SD value method with PCA of 67% and depression using the COV PCA of 59%.
The state-split datasets provided significantly better results with 85% accuracy for mania and
59% for depression using the median method with diff feature selection. The time-based split
dataset, which was the most dependent, naturally showed the highest accuracy, reaching 90%
for mania and 80% for depression. In the case of classification, within each patient separately,
especially for mania, the methods achieved almost always perfect classification, and of depression
states slightly lower but still relatively high accuracy of around 81%.

While the covariance structure of actigraphy-derived variables shows changes between clinical
states in BD, the performance did not substantially exceed that of the compared methods, based
on standard deviation and median of the individual variables.

Keywords: bipolar affective disorder, actigraphy, multivariate machine learning methods, feature
space dimensionality reduction



Abstrakt

Předchoźı studie prokázaly vztah mezi aktivitami měřenými aktigrafiı (mı́ru aktivity, spánku a
jejich fragmentaci) a klinickým stavem u pacient̊u s bipolárńı poruchou (BD). Hlavńım ćılem této
studie bylo zjistit, zda se struktura kovariance mezi r̊uznými parametry aktigrafie lǐśı u r̊uzných
klinických stav̊u. Nejprve jsme zkoumali nesupervizovaný př́ıstup založený na Toeplitzově
inverzńım kovariančńım shlukováńı. Po komplexńım vyhodnoceńı této metody na simulovaném
souboru dat jsme zjistili, že je pro naše reálná data nevhodná, vzhledem ke krátkému trváńı
jednotlivých klinických stav̊u a ńızké frekvenci vzorkováńı.

Dále jsme zkoumali supervizovaný př́ıstup k analýze změn kovariančńı struktury při měńıćım se
klinickém stavu. Abychom porovnali prediktivńı hodnotu kovariančńı struktury nav́ıc s mediánovou
hodnotou a hodnotou rozptylu jednotlivých proměnných odvozených z aktigrafie, validovali jsme
je celkem třemi př́ıstupy.

Použili jsme tři metody využ́ıvaj́ıćı metodu podp̊urných vektor̊u (Support Vector Machine,
SVM). Tyto metody založené na kovariančńı matici (COV), mediánu a směrodatné odchylce (SD)
hodnot aktigrafických znak̊u byly kombinovány se dvěma technikami redukce dimenzionality,
analýzou hlavńıch komponent (PCA) a naš́ı vlastńı metodou (max-diff) založenou na maximálńım
rozd́ılu COV dvojic (nebo medián̊u či hodnot SD) př́ıznak̊u mezi klinickými stavy. K vyhodnoceńı
těchto metod byly použity tři validačńı scénáře: leave-one-patient-out (LOOCV), který rozlǐsoval
klinické stavy bez časové závislosti, a klasifikace každé časové řady v 7denńım okně u všech
pacient̊u a u jednotlivc̊u zvlášť. K rozděleńı trénovaćıch a testovaćıch soubor̊u dat byly použity
tři r̊uzné typy děleńı: podle pacient̊u, stav̊u a času. Všechna tato ověřováńı odhalila, že rozlǐseńı
mánie-remise bylo snadněǰśı než rozlǐseńı deprese-remise. Výsledky také ukazuj́ı velkou variabilitu
mezi jednotlivými pacienty. Za zmı́nku stoj́ı, že při použit́ı LOOCV bylo dosaženo pr̊uměrné
přesnosti 72 % pro mánii a 67 % pro depresi pomoćı metody SD s naš́ı metodou redukce dimenze.
Klasifikace časových řad v sedmidenńım okně na souboru rozdělených dat od pacient̊u dosáhla
nižš́ı přesnosti, pro mánii pomoćı metody SD hodnot s PCA 67 % a pro depresi pomoćı COV
PCA 59 %. Soubory dat rozdělených podle stavu poskytly výrazně lepš́ı výsledky s přesnost́ı 85
% pro mánii a 59 % pro depresi při použit́ı metody mediánu s výběrem diferenčńıch př́ıznak̊u.
Časově rozdělená datová sada, která byla nejv́ıce závislá, přirozeně vykazovala nejvyšš́ı přesnost,
90 % pro mánii a 80 % pro depresi. V př́ıpadě klasifikace v rámci každého pacienta zvlášť,
zejména u mánie, dosáhly metody téměř vždy dokonalé klasifikace a u stav̊u deprese o něco nižš́ı,
ale stále poměrně solidńı přesnosti kolem 81 %.

Ačkoli kovariančńı struktura proměnných odvozených z aktigrafie vykazuje změny mezi
klinickými stavy u BD, jej́ı výkonnost nijak výrazně nepřevyšovala výkonnost srovnávaných
metod, založených na mediánu a směrodatné odchylce jednotlivých proměnných.

Kĺıčová slova: bipolárńı afektivńı porucha, aktigrafie, v́ıcerozměrné metody strojového učeńı,
redukce dimenzionality prostoru př́ıznak̊u
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Chapter 1

Introduction

Monitoring and recording large amounts of data about patients is an important part of modern

medicine. Particularly in patients with Bipolar Affective Disorder (BD), whose clinical condition

is closely linked to disturbances in activity and sleep behaviour, there is a great research interest

in monitoring actigraphy and clinical status - usually measured using clinical self-assessment

scales. Previous studies have already shown significant but heterogeneous associations between

actigraphic parameters and clinical status. Therefore, in the present study, we decided to

investigate changes in the structure of the relationships between actigraphic parameters as a

function of changes in the patient’s clinical status.

1.1 Goals of the Thesis

The main aims of this thesis are:

• To study the issue of motor symptoms and actigraphy against clinical status in BD.

• To investigate methods for clustering multivariate time series based on covariance structure

[1].

• To propose an appropriate method and criterion for comparing the clustering results and

clinical status over time.

• Evaluate the impact of the set parameter values on the identification accuracy using

appropriate simulated data.

• Application of selected methods to data from long-term actigraphic follow-up of patients

with BD and critical evaluation and discussion of the results.

• Beyond the original thesis assignment, the goals were extended with supervised methods –

Support Vector Machine (SVM) classifier on COV, median and SD values of actigraphy

features.

1
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Chapter 2

Background

The main aim of this chapter is to provide the reader with a very brief introduction to the

topic of bipolar affective disorder, as expounded in section 2.1. It further delves into the clinical

diagnostics, standard treatment and clinical state assessment associated with the disorder, as

detailed in section 2.2, and continues with long-term monitoring using self-assessment, digital

and actigraphic monitoring, as elucidated in section 2.3.

2.1 Bipolar Affective Disorder

BD, formerly known as manic-depressive disorder, is a group of severe mental illnesses charac-

terised by periods of extreme mood swings. These fluctuations in mental health include relapses,

episodes of emotional highs known as mania or hypomania (less extreme than mania), lows

known as depression or mixed states, with remissions (absence or minimal symptoms of both

mania and depression). The alternating episodes mentioned above can occur infrequently or

several times a year and are more severe than the normal ups and downs experienced by the

normal population. They can affect many areas of life, such as sleep, energy levels, behaviour

and even clear thinking. In 2019, almost 40 million people worldwide were affected by this severe

chronic mood disorder [2].

According to the American Psychiatric Association’s Diagnostic and Statistical Manual of

Mental Disorders (DSM-5), BD is experienced in three forms: bipolar 1, bipolar 2 and cyclothymic

disorder. All types of BD are characterised by episodes of extreme alternating moods. The main

difference between bipolar 1 and bipolar 2 disorders is the intensity of the manic episodes. Bipolar

1 disorder cause full manic episode, while bipolar 2 causes less severe hypomania. Another

noticeable difference is the prevalence of major depressive episodes. A person with bipolar 1 may

or may not experience a major depressive episode whereas person with bipolar 2 will experience

at least one major depressive episode. The critical feature of cyclothymic disorder (cyclothymia),

a milder form of the bipolar disorder, represents episodes of hypomania alternating with mild

depression for at least two years without no symptom-free period lasting longer then 8 weeks. [3]

BD affects men and women equally and the first episode can be any, mania, depression,

hypomania. Manic episodes tend to occur more frequently in men, but depression is the more

3
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common first episode for both men and women. [4]

The factors contributing to relapse in BD are not fully known. Recent findings show that

there could be association with circadian rhythm dysregulation [5], [6] and sleep disturbance

[7]–[10]. Also the pathogenesis of BD is not clearly understood. According to some studies the

pathogenesis is associated with mitochondrial dysfunctions [11], [12].

Almost 800,000 people worldwide commit suicide each year, which is about one death every

40 seconds [13]. People who live with BD are at an increased risk of suicide. Among all mental

health disorders, BD has the highest suicide rate. This rate is about 10 to 30 times higher in

people living with BD than in the general population [14]. Approximately 3–14 % of all suicide

deaths are linked to BD [15]. Various studies indicate that 4-19 % of patients with BD eventually

commit suicide, and 20-60 % attempt suicide at least once in lifetime [16].

2.2 Clinical Practice

2.2.1 Diagnostics

The diagnosis of BD is typically made through a detailed clinical evaluation, which may include

evidence from family members or other sources of third-party information [17]. However, there is

currently no laboratory, imaging nor psychological examination or biomarker that can confirm

this disease definitively. A manic episode is also crucial for the diagnostic process, but during

this period patients do not typically seek medical help, unlike in the depressed state. Therefore,

mania often remains unnoticed, and the patient is treated for a different disease than he should.

Therefore, as it may be challenging to make an accurate diagnosis, doctors may need to do

ongoing evaluations, including tracking mood patterns over time (see section 2.3).

The clinical treatment includes using medication such as mood stabilisers, antidepressants,

and antipsychotics, psychological therapy, and electroconvulsive therapy [17]. The initial phar-

macological therapy is usually monotherapy by mood stabilisers or antipsychotics. Lithium is

the oldest and a commonly used mood stabiliser, but it is only effective in about one-third of

patients [18] and requires not only close monitoring of dosage levels and potential side effects but

also periodical testing with respect to the renal function, since the effective dosage is only slightly

lower than the toxic levels. Other options for monotherapy include valproate or antipsychotics.

During acute episodes, these medications may be used in combination with other mood stabilisers

and it usually takes longer period of time to adjust the optimal dosage for these medication

combinations. Antidepressants are typically not recommended treatment of BD as they may

cause rapid cycling or manic episodes [4].

2.2.2 Standard Treatment

The standard treatment for bipolar disorder typically includes a combination of medication and

psychotherapy. Medications commonly used to treat bipolar disorder include mood stabilisers

such as lithium and valproic acid, as well as atypical antipsychotics such as olanzapine and
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quetiapine [3]. For depressive episodes, antidepressants may also be prescribed in combination

with mood stabilisers, but they must be used with caution as they can trigger manic episodes in

some people with bipolar disorder. It is an evidence-based treatment that has been found to be

effective for a variety of mental health conditions.

Psychological intervention is also an important component of treatment for BD. In most

cases, they are focused on educating the patient on how to cope with their illness. One of these

methods is Cognitive Behavioral Therapy (CBT), which, as stated by the American Psychological

Association (APA), is a type of psychotherapy that helps individuals develop coping strategies

and problem-solving skills to deal with difficult situations and emotions [3]. CBT is based on the

idea that our thoughts, feelings and behaviours are interconnected, and that negative patterns

in one area can affect the other [19]. CBT is widely used to treat a variety of mental health

conditions, including depression, anxiety disorders, and BD, as well as other conditions, such as

chronic pain and insomnia. It is considered a short-term, goal-oriented therapy that takes an

average of 20 sessions followed by enhancement one [20].

2.2.3 Clinical State Assessment

Regular clinical examinations are commonly used for a comprehensive assessment of the patient’s

mental state. Careful assessment of the patient’s condition by an expert is an important part

of evidence-based practice. Clinical scales should be the most objective approach of evaluation

of mental disorders. Manic and depressive symptoms of BD are mostly evaluated separately.

The Montgomery-Åsberg Depression Rating Scale (MADRS) [21], the Hamilton Rating Scale for

Depression [22], the Inventory for Depressive Symptomatology [23], or the Bipolar Depression

Rating Scale [24] are the symptom rating scales used for evaluating depressive symptoms of

BD. Manic symptoms may be assessed by the Young Mania Rating Scale (YMRS) [25], the

Bech-Rafaelsen Mania Rating Scale [26] , the Clinical-Administered Rating Scale for Mania [27],

or the Observer-Rated Scale for Mania [28]. Scales such as the National Institute of Mental

Health’s Prospective Life Chart Method [29], Clinician Monitoring Form [30], Brief Bipolar

Disorder Symptom Scale [31], and Bipolar Inventory of Symptoms Scale [32] evaluate both manic

and depressive symptoms together.

2.3 Long-Term Monitoring

Long-term Monitoring (LTM) systems were developed as a result of the need for a finer progression

monitoring of patient’s disease states over time. These systems may be categorised as subjective

self-assessments and objective activity monitoring and behavioural analyses. The optimal LTM

system would be a combination of self-assessment and at least one of the two objective measures.
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2.3.1 Self-assessment

Self-assessment questionnaires represent a subjective disease progression monitoring approach,

through which patients report their current mental state. In practice, this approach is already

used to monitor the progress of illness between medical check-ups and also for early warning of

an upcoming relapse.

2.3.2 Digital monitoring and actigraphy

Activity monitoring has a long history in sleep studies [33] and in medicine in general [34].

Actigraphy refers to monitoring and collecting data generated by the movements of body parts

using wristwatch-like devices called an actigraph [35] that measure acceleration of the body part

they are attached to and thus detect movement. It is a non-invasive approach that records and

integrates the occurrence and degree of limb movement activity and rest [36] and thus circadian

rhythm over time.

The main concept behind these devices is to make them as simple, non-invasive and long

battery life as possible to ensure that the resulting monitoring is as continuous as possible without

the need for frequent recharging. Another important feature is water resistance, as patients often

forget to put the wearable device back on after hygiene or water activities. Patients suffering

from psychological disorders face daily not only the symptoms of their illness, but also the

discrimination caused by social stigma [37]. The growing popularity of fitness activity trackers

and smartwatches in general makes it easier to use these devices discreetly, thereby reducing the

potential risk of stigmatisation of mental disorders.

In most studies the actigraphy unit is placed on the wrist of the non-dominant hand. However

it can be worn on the wrist, ankle, waist or even finger as a ring. Some authors have reported

that the placement of the actigraph on the dominant or non-dominant hand wrist does not have

influence on the results of the sleep-wake scoring algorithm in spite of significant differences in

activity levels between the dominant and non-dominant hands [38]. Contrastingly, assessment of

actigraph placement by Violani and colleagues has indicated differences of motor activity across

the night between the dominant and non-dominant writs [39]. Therefore cross-study comparisons

would be more accurate if placement was standardised.

Another approach to monitoring psychiatric patients is behavioural analyses examining the

impact of smartphone use on disease development and status. Most of these methods are still

being studied and their practical use would be severely limited by regulations due to privacy

issues. [40]

2.3.3 Activity monitoring in BD

As the manic phase in BD patients is associated with an increase in psychomotor activity

and, on the contrary, in BD depression, longitudinal actigraphy is a very promising approach

to monitor phase shifts and clinical changes. Previous studies [41]–[43] have found distinctly

different patterns of activity in patients with bipolar disorder during episodes of mania and
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depression, as well as clear differences between patients and healthy control subjects, as assessed

by machine-learning actigraphy-based (linear as well as nonlinear mathematical) models. There

is also sufficient evidence of an association between BD and activity, both in remission and

relapse episodes [44].

Existing literature indicates that individuals with BD tend to have lower overall motor

activity and reduced peak activity compared to healthy controls [45], [46]. Mood instability

in BD is associated with increased fragmentation of activity profiles within and across days,

resulting increased variability in actigraphy parameters [47]. Sleep quality reduction in BD is

is reflected by increased motor activity and prolonged wakefulness during nighttime sleep [48].

The assumption of longer and more variable sleep duration in BD is supported by some studies

[7], [49], although conflicting findings exist [50], [51].Longer sleep latency in patients with BD

may be manifested by reduced pre-sleep activity and greater activity after sleep onset, leading to

greater variability in both sleep latency and restlessness [7], [8], [49].
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Chapter 3

Methods

In this chapter we describe the methods used in this thesis. For a better overview, all methods

are shown in the following map:

Used methods

TICC SVM RBF

PCA

COV median SD

max

diff pair

Unsupervised — clustering

method

Supervised — classification

method

The initial approach chosen for

this problem

Additional approach beyond

the thesis assignment

Two different approaches to

feature selection (reduction)

Three methods applied to

the original features

Figure 3.1: Overview of used methods
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The original idea was to use the existing unsupervised technique and novel method based on

the multivariate series of daily actigraphy features: Toeplitz Inverse Covariance-Based Clustering

(TICC) algorithm to identify clinical episodes in BD patients. This method, introduced in

section 3.1, was evaluated on simulated data for testing and deeper investigation. Although this

unsupervised method appeared to be very promising, it did not suit for our real data. Since

this unsupervised approach was applied to a supervised learning problem, we decided to add a

supervised classification using Radial Basis Function (RBF) kernel SVM classifier, detailed in

section 3.2.

For the case of supervised approach, we again used either covariance matrices as in TICC as

input to the classifier, or feature values of the actigraphy data — median and SD. For simplicity,

we tried to identify only remission-mania or remission-depression separately (data annotation

and data preprocessing are described in section 4 ).

For supervised approaches, a feature selection was necessary. This was achieved by two

methods, described in subsection 3.2.1 — using the Principal Component Analysis (PCA) and

our Maximal-Difference Method (max-diff) method based on the maximal difference of feature

pairs in the COV (or median or SD) between the remission and corresponding episode (mania or

depression).

3.1 Unsupervised Approach

This section is dedicated to the unsupervised method: TICC — described in section 3.1.1. This

algorithm appeared to be a good option to apply to this multivariate time-series data. However,

it was necessary to determine if it was suitable for this data due to sampling and dimensionality

(hence we performed experiments on simulated data). And secondly to come up with a reasonable

cluster assignment approach (see section 3.1.1.2) to convert the clustering results to labels, since

we apply this unsupervised method to a supervised learning problem. In the results section 5.1.1,

a comparison of how different cluster evaluation methods behave for different cases of results is

available before evaluating the unsupervised method itself.

3.1.1 Toeplitz Inverse Covariance-Based Clustering

The Toeplitz inverse covariance-based clustering approach proposed by Hallac et al. [1] is a

promising method for clustering multivariate time series data. Their method involves estimating

the inverse covariance matrix for each time series, and then calculating a Toeplitz version of this

matrix that captures the temporal dependencies between the variables. This Toeplitz inverse

covariance matrix is used as a distance metric to cluster the time series data using a spectral

clustering algorithm. The authors validated their approach by comparing TICC to several

state-of-the-art baselines in a series of synthetic experiments and then demonstrated on a dataset

of automotive sensors how TICC algorithm can be used in real-world scenarios. This approach

has the potential to advance the field of time series clustering by enabling the identification of

more complex and nuanced patterns in multivariate time series data.
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TICC approach divides each time serie into several clusters, each characterised by a correlation

network or Markov Random Field (MRF) defined in a short time window of size w. This MRF

manages the time-invariant partial correlation structure of any window on the side of a segment

belonging to this cluster. TICC learns both the cluster MRF and the time series segmentation

using a correlation network. [1]

TICC algorithm could be also applied to the features of actigraphic data for the recognition

of clinical episodes in bipolar disorder. By identifying clusters of individuals with similar patterns

of rest-activity, it may be possible to identify individuals who are at increased risk for clinical

episodes or who may respond differently to treatment.This could potentially lead to more

personalised and effective treatments for bipolar disorder.

TICC involves several steps, including the estimation of inverse covariance matrices, the

transformation of these matrices into Toeplitz matrices, and the use of spectral clustering to

group time series data based on their distance in the Toeplitz inverse covariance-based matrix.

A straightforward visualisation of this method is given below, where n is the number of

sensors (number of parallel time series of length T ), A, B and C are the clusters that TICC

segments into a sequence of states. Each cluster is defined by a correlation network or MRF in a

short time window of length w.

Figure 3.2: Visualisation of Toeplitz Inverse Covariance-based Clustering, reprinted from [1]

The algorithm for TICC can be summarised as follows:
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• Input: Multivariate time series data consisting of n time series with T observations each.

• Estimates the inverse covariance matrix for each subset of data (defined by the time window

w) Xt = xt−w+1, . . . , xt using the graphical lasso algorithm.

• Constructs a Toeplitz inverse covariance matrix for each subset of data (defined by the time

window w) by replicating the inverse covariance matrix along the diagonal and sub-diagonals.

This captures the temporal dependencies between variables.

• Computes the pairwise distances between the Toeplitz inverse covariance matrices for all

pairs of time series using the Frobenius norm.

• Defines each cluster using a multi-layer MRF.

• Updates the MRF clusters by solving the Toeplitz graphical lasso algorithm and finds the

optimal solution.

• Output: Cluster labels for each time series.

The computational complexity of the algorithm is dominated by the inverse covariance estimation

step, which has a complexity of O(nT 3).

The TICC problem can be expressed by the following equation:

argmin
Θ∈T ,P

K∑
i=1

[

sparsity︷ ︸︸ ︷
∥λ ◦Θi∥1+

∑
Xt∈Pi

(

log likelihood︷ ︸︸ ︷
−ℓℓ (Xt,Θi)+

temporal consistency︷ ︸︸ ︷
β1 {Xt−1 /∈ Pi} )], (3.1)

ℓℓ (Xt,Θi) = −1

2
(Xt − µi)

T Θi (Xt − µi) +
1

2
log detΘi −

n

2
log(2π),

where T is the set of symmetric block Toeplitz matrices nw×nw and ∥λ ◦Θi∥1 is the ℓ1-norm

penalisation of the element-wise (Hadamard) product to instigate a sparse inverse covariance

(where λ ∈ Rnwnw is a regularisation parameter). Moreover, ℓℓ(Xt,Θi) is the log-likelihood

that Xt comes from cluster i, where i is the empirical mean of cluster i. β is the parameter

that enforces time consistency, and 1 {Xt−1 /∈ Pi} is the indicator function that checks whether

neighbouring points are assigned to the same cluster. [1]

Since TICC is essentially an Expectation-Maximisation algorithm, we can also express it as

follows [1]:

Algorithm 1: Toeplitz Inverse Covariance-Based Clustering

1 initialize Cluster parameters Θ; cluster assignments P .

2 repeat E-step: Assign points to clusters → P ,

3 M-step: Update cluster parameters → Θ.

4 until Stationarity

5 return (Θ, P )
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3.1.1.1 Regularisation Parameters Setting

To regularise the TICC behaviour the following adjustable parameters are used:

• λ — sparsity,

• β — temporal consistency,

• K — number of expected clusters,

• w — window length,

To set the most appropriate parameters, we used grid-search for the parameters λ and β to

find the best combination as follows:

λ = [0.01, 0.1], β = [10, 100, 500]. (3.2)

The parameters K and w were set manually according to known input data.

3.1.1.2 Cluster Assignment Evaluation

Cluster evaluation measures can be divided into two types: external measures and internal

measures. External measures compare the expected or known ground truth result with the actual

result, while internal measures evaluate the quality of the result based on other characteristics

such as the compactness or separation of the clusters. The key difference between the two types

is that external measures rely on a qualitative comparison, while internal measures do not have

access to the expected result.

The expected or known ground truth results can be class labels which are often created

(semi)manually by experts and can be regarded as a gold standard (classes considered to be

’correct’) [52]. The clustering approaches are not always able to find the correct number of

clusters as in gold standard. Algorithms can both overestimate or underestimate the number of

clusters. In such scenario, the standard criteria used to classify results cannot be used.

One of the most popular information theory measures for evaluating clustering results is

Normalized Mutual Information (NMI) [53]. NMI is Mutual Information (MI) normalised to

scale the results between 0 and 1 (1 indicating complete agreement between the sets).

Most common evaluation criteria according to some previous data binning studies [54]–[56]

that could be also used in our case are precision (also known as Positive Predictive Value (PPV)),

recall (also known as sensitivity), F1-score and Adjusted Rand Index (ARI).

The authors of the TICC algorithm [1] evaluated the clustering accuracy by measuring the

macro-F1 score, which is basically the arithmetic mean of the F1-scores for all the clusters as

mentioned above.

To evaluate the TICC algortihm, we applied the four common criteria: Precision, Recall,

F1-score and ARI. Their detailed description is given below.
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Assume there are N classes present in the manual evaluation by expert and M clusters

predicted by the TICC algorithm. Let Rij be the total number of (time series) samples clustered

to the ith cluster and belongs to the jth class in our true labels. This can be represented using

contingency table as follows:

Classes
j

Clusters 1 2 3 ... N
i

1 R11 R12 R13 ... R1N

2 R21 R22 R23 ... R2N

3 R31 R32 R33 ... R3N

..
.

..
.

..
.

..
. ... ..
.

M RM1 RM2 RM3 ... RMN

Table 3.1: Contingency table of the clustering results

Precision

Precision (also known as PPV) give us information about how many of all positive predictions

are really positive. That can be describe using following formula:

Precision =
TP

TP + FP
, (3.3)

where TP represents true positives and FP false positives.

In the clustering task, each cluster is assigned a true label class with the maximum number

of corresponding samples (represented by the Rij matrix). Then the precision can be expressed

as the sum of the maximum number of samples for each cluster divided by the total number of

clustered samples.

Precision =

∑M
i=1max

j
Rij∑M

i=1

∑N
j=1Rij

. (3.4)

Recall

Recall (also known as sensitivity) represents how many of all real positive cases are predicted

positively. That can be again describe using following formula:

Recall =
TP

TP + FN
, (3.5)
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where TP represents true positives and FN false negatives.

In the clustering task, every true labels class is assigned an obtained cluster with the maximum

number of corresponding samples (represented by the Rij matrix). Then the precision can be

expressed as the sum of the maximum number of samples for each class divided by the total

number of clustered and unclustered 1 samples.

Recall =

∑N
j=1max

i
Rij∑M

i=1

∑N
j=1Rij + number of uncluslustered samples

. (3.6)

F1-score

F1-score is the harmonic mean of precision and recall and is defined as:

F1-score = 2× Precision×Recall

Precision+Recall
. (3.7)

macro-F1-score

macro-F1-score is the arithmetic mean of all per-class F1-scores defined as:

macro-F1-score =
F1-score

number of classes
. (3.8)

ARI

The Rand Index (RI) measures how similar the clustering results are to the reference classes.

The formula of RI is:

RI =
number of agreeing clusters

number of pairs
(3.9)

and range from 0 to 1, where 1 represents perfect match.

In mathematical terms, RI is related to accuracy, but it can also be applied when class labels

are not used. The RI would be non-zero just by chance, assuming random clustering. Therefore

the RI can be “adjusted for chance” into the ARI using the following formula:

ARI =
RI −RIexp

max(RI)−RIexp
, (3.10)

1In our case, when using the TICC algorithm, we will always have the number of unclustered samples equal to
zero.
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where RIexp is the expected RI.

By modifying this, we can again express this formula using the Rij matrix as follows:

ARI =

∑
i,j

(aij
2

)
− t3

1
2(t1 + t2)− t3

, (3.11)

t1 =
∑
i

(∑
j aij
2

)
, t2 =

∑
j

(∑
i aij
2

)
, t3 =

2t1t2(∑M
i=1

∑N
j=1 Rij

2

)
NMI

Let Y be the set of ground truth labels and C the set of computed cluster labels. Then NMI

between these two sets is:

NMI(Y,C) =
2×MI(Y,C)

H(Y ) +H(C)
=

2× (H(Y ) +H(C)−H(Y,C))

H(Y ) +H(C)
,

where H(Y ) and H(C) is the individual entropy, H(Y,C) is the joint entropy and MI(Y,C) is

the mutual information.

This can be expressed using probabilities as follows:

NMI(Y,C) =
2×

∑
y∈Y

∑
c∈C PY,C(y, c) log2

PY,C(y,c)
PY (y)PC(c)∑

y∈Y PY (y) log2 PY (y) +
∑

c∈C PC(c) log2 PC(c)
,

where PY,C is the joint probability mass function and PY and PC are the marginal probability

mass functions.
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3.2 Supervised Approach

As an additional approach beyond the thesis assignment, we chose SVM [57] with RBF kernel —

one of the most generalised form of kernalisation, primarily because of its simplicity and efficiency

to deal with non-linear relationships in data. SVM is essentially a linear supervised learning

algorithm, that can be used for classification and regression tasks. As input to this classifier we

used 3 approaches

• COV — as a supervised parallel approach of the TICC method

• median

• SD

Each of these methods was applied to the input 90 actigraphic features over time, depending

on the one of three validation scenarios, either to all data belonging to a given state (mania,

depression or remission) method or within a 7-day overlapping window for each day as follows:

• Leave-One-Patient-Out Cross-Validation Leave-One-Person-Out Cross-Validation (LOOCV)

– Each method was calculated over all days for a given clinical state for all patients

except one and then tested on this left-out patient subsequently.

• 7-day Window Across All Patients

– In this case, the methods were computed in a 7-day window of training data and then

tested on the testing set again in a 7-day window for different dataset types across all

patients2.

• 7-day Window for Single Patient

– In this case, the methods were computed in a 7-day window of training data and then

tested on the testing set again in a 7-day window for different types of datasets, each

time for a single patient2.

3.2.1 Feature selection

Since we had N = 90 actigraphic features for each day of preprocessed data (see section 4.2.3)

the resulting COV matrix for each day respectively the upper triangular matrix without diagonal

contained N(N − 1)/2 = 4005 values. For median and std methods 90 for each day. Therefore,

it was appropriate to reduce this number of features. Each time we used feature extraction

using PCA on the COV (or one of the feature value methods) of the original features, defined in

section 3.2.1.1. Eigenvectors were obtained from COV (or one of the methods) computed for

each clinical episode for each patient on training dataset (i.e., two matrices for each patient)

2 All used types of dataset splitting are described in section 4.2.4.
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and then applied to correlation matrices computed from a 7-day overlapping window for each

day. In the case of the LOOCV method, COV, median, and SD were calculated on all days

belonging to a given state (mania, depression or remission) for the remaining patients. As a

second approach to reduce the number of features we chose feature selection using the approach

based on maximal difference of feature COV, median, or SD values between the two clinical

episodes (remission-mania or remission-depression) to preserve only the most distinctive features,

described in section 3.2.1.2.

3.2.1.1 PCA Method

Principal component analysis (PCA) is a data analysis technique for a dimensionality reduction

that aims to find a linear projection of data points onto a lower dimensional subspace while

minimizing information loss. To find these new uncorrelated orthogonal variables, which are

called principal components, the eigenvalue/eigenvector problem is solved and the new variables

are defined based on the input data set. [58]–[60]

Consider a set X ∈ RD and a observations {x1, . . . ,xN}. The goal of PCA is to find a

projection onto the space of dimension M < D that maximizes the variance of the projected

data. For simplicity, let us seek a projection onto a one-dimensional subspace M = 1. We define

by an unit vector u1 ∈ RD. Then each data point xn is projected onto the this new space (scalar

value) uT
1 xn. With the assumption of centred data xn = xn − x, the variance of the projected

data can be expressed as

1

N

N∑
n=1

(uT
1 xn)

2 =
1

N

N∑
n=1

(uT
1 xn)(x

T
nu1) = uT

1 Σu1, (3.12)

where Σ is the covariance matrix of the observed data in the original high dimensional space

Σ =
1

N

N∑
n=1

xnx
T
n . (3.13)

Since u1 is a unit vector uT
1 u1 = 1, we can maximise the variance using Lagrange multiplier

λ1 as follows

L(u1, λ1) = uT
1 Σu1 + λ1(1− uT

1 u1)) (3.14)

Setting the derivative by u1 of equation 3.14 to 0

∂L(u1)

∂u1
= 2Σu1 − 2λ1u1 = 0, (3.15)

we get stationary point

Σu1 = λ1u1. (3.16)

It follows that at the stationary point, u1 must be the eigenvector of Σ and λ1 the corre-
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sponding eigenvalue. If we left-multiply the equation with the uT
1 we see that the maximal

variance is equal to the eigenvalue λ1 .

λ1 = uT
1 Σu1 (3.17)

Thus, the variance will be maximal if the vector u1 is equal to the eigenvector corresponding

to the largest eigenvalue - first principal component. Then for a general M -dimensional space,

it can be proven that the optimal projection preserving the largest amount of variance of the

projected data is defined by M eigenvectors{u1, . . . ,uM} of the covariance matrix Σ belonging

to the corresponding M largest eigenvalues {λ1, . . . , λM}. [58], [59]
In this thesis,PCA method was used to feature extraction from the original high-dimensional

space. In each application of this method, only the first 15 components (out of 4005 for the COV

method and 90 for the median and SD method) were used, or fewer if their explained variance of

the original data was greater than or equal to 99%.

3.2.1.2 Maximal Difference Method

In this section we describe the feature selection using the max-diff between the clinical states.

On the training data, we calculated the correlation matrix of all actigraphic features, separately

for remission rrem and for mania repisode (respectively depression), and we sorted all pairs of

features in descending order according to the absolute difference between these episodes (diff

pairs). However, within these pairs there were highly correlated features that were paired with

the same feature. To mitigate this issue, highly correlated feature pairs with a correlation

coefficient greater than 0.6 (rrem or repisode > 0.6), which had the same feature within the diff

pair, were firstly removed. Respectively, only the pair with the highest rdiff value was retained in

the difference correlation matrix. Subsequently, this selected pair was used to create a mask,

which was represented as a matrix with dimensions of n x n, where n corresponds to the number

of original actigraphic elements. This mask facilitated a straightforward selection of feature pairs

from the correlation matrices within the designated time window. The algorithm presented below

(Algorithm 2) provides a comprehensive representation of the step-by-step procedure for this

feature selection.
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Algorithm 2: Feature selection based on maximal difference between clinical states

1 input Correlation matrices rrem, repisode upper triangular matrix without diagonal

2 select rrem, repisode >= 0.6

3 rhigh = join (elements of rrem, repisode)

4 sort elements of rhigh in descending order

5 get names of high correlated feature pairs corresponding to sorted elements of rhigh:

6 HighCorrFeaturePairs[:, 1],

7 HighCorrFeaturePairs[:, 2]

8 sort elements of rdiff = |rrem - repisode| in descending order

9 get names of sorted feature pairs corresponding to sorted elements of rdiff:

10 MaxDiffFeaturePairs[:, 1],

11 MaxDiffFeaturePairs[:, 2]

12 for i = 1, ..., number of HighCorrFeaturePairs do

13 if both feature names HighCorrFeaturePairs in MaxDiffFeaturePairs then

14 if pairs in MaxDiffFeaturePairs are same features then

15 keep only the pair with higher diff value in MaxDiffFeaturePairs

16 update MaxDiffFeaturePairs

17 end

18 end

19 end

20 SelectedFeaturePairs = MaxDiffFeaturePairs

21 return SelectedFeaturePairs.

For the case of the median and SD method, this was a simpler procedure. Since the computed

values were not matrices describing the relationships between pairs of features, only 90 values for

each day, it was only necessary to find the maximal difference between the two states without

any removal of dependent features.

3.2.2 Support Vector Machine

Support Vector Machines (SVMs) are a powerful class of supervised machine learning algorithms

used for classification and regression tasks. SVM models, developed by Corinna Cortes and

Vladimir Vapnik [57] in the 1990s, excel at handling complex datasets by determining optimal

hyper-planes that separate different classes. These hyper-planes, defined by support vectors,

maximise the spread between classes, making SVMs particularly effective in high-dimensional

spaces. [59], [60]

Let us assume a linear classification model for simplicity. Consider a training set X ∈ RD

and a observations {x1, . . . ,xN} and their corresponding classes (labels) {y1, . . . ,yN}, where
y ∈ {−1, 1} then the discrimination function for the binary classification task can be written as

follows

g(xn) = wTxn + b. (3.18)
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In general, g(xn) is a hyper-plane in N-dimensional feature space.

The assigned class ĝ(xn) for the points from the recognition area X is defined as

ĝ(xn) = sign(g(xn)). (3.19)

SVM searches for an optimal separating hyper-plane satisfying the criterion:

yn(w
Txn + b) > 0 (3.20)

Then for the case of a linearly separable training dataset, there is at least one combination

of parameters wn and b satisfying this condition. If there are multiple pairs of parameters wn

and b satisfying this condition, SVM finds the optimal one by maximising the minimum distance

separating the hyper-planes from all elements of the training set — the so-called margin. This is

because the larger the margin, the better the generalisation to the test. [59], [60]

The orthogonal distance of any point xn from the decision hyper-plane is given by the

following expression yn(wTxn+b)
∥wn∥ . Margin is then defined as the orthogonal distance of the decision

hyper-plane to the nearest point xn from the dataset. Since parameter scaling w → κw and

b → κb does not affect the distance of a point from the decision hyper-plane, we can set For the

nearest point yn(w
Txn + b) ≥ 1, thus each point xn meets the condition

yn(w
Txn + b) ≥ 1. (3.21)

Then the task of finding the optimal pair of parameters wn and b can be formulated as

(w∗, b∗) = arg min
w∗,b∗

1

2
∥w∥2, subject to yn(w

Txn + b) ≥ 1. (3.22)

This problem can be further formulated as a dual problem using Lagrange multipliers

α = (α1, . . . , αN )T as follows

L(w∗, b∗,α) =
1

2
∥w∥2 −

N∑
n=1

αn

{
yn(w

Txn + b)− 1
}
, where αn ≥ 0, n = 1, . . . , N. (3.23)

By solving this problem, all non-zero αn will belong to the vectors xn that are closest to the

separating hyper-plane. These vectors will be reflected in the learning result of the classifier and

are called, as already the name of the classifier suggests, support vectors. [59], [60]

If we set the derivatives of 3.23 with respect to wn and b to be zero, we obtain the following

two conditions

w =
N∑

n=1

αnynxn and 0 =
N∑

n=1

αnyn. (3.24)

Substitution of these conditions 3.24 into equation 3.23 to eliminate the variables wn and b leads

to a dual formulation of the problem
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α∗ = argmax
α∗

N∑
n=1

αn − 1

2

N∑
n=1

N∑
m=1

αnαmynymxn
Txm, (3.25)

where

αn ≥ 0, n = 1, . . . , N and
N∑

n=1

αnyn. (3.26)

This constrained optimization of this form satisfies the Karush-Kuhn-Tucker condition, which

in this case requires the following three properties to hold

αn ≥ 0

yny (xn)− 1 ≥ 0

αn {yny (xn) = 1} = 0

(3.27)

Thus, for each data point, either αn = 0 or tny(xn)=1. Any data point for which an =0 does

not appear in the summation in (7.13), and therefore plays no role in making predictions for new

data points. The remaining data points are called support vectors, and since they satisfy the

condition tny(xn)=1, they correspond to points that lie on the hyper-planes of maximal margin

in the feature space. This property is crucial for the practical applicability of support vector

machines. [59], [60]

If the data are not linearly separable, condition will not be satisfied and the classification of

the training data will lead to poor generalization on the test set. The condition can be mitigated

by introducing an additional variable ξn ≥ 0 (called slack variable) for each data point, where

ξn = 0 for correctly classified points. These allow relaxation, i.e. the possibility of breaking some

of the inequalities. Then condition can be rewritten in the following form

yn(w
Txn + b) ≥ 1− ξn, n = 1, . . . N. (3.28)

The points with non-zero weak variable, are located either in the region defined by the margin

(0 < ξ ≤ 1) or on the wrong side of the decision hyper-plane (ξ ≤ 1). The addition of slack

variable leads to a new formulation of the optimization problem

w∗, b∗, ξ∗n = argmin
w,b,ξn

1

2
∥w∥2 + C

N∑
n=1

ξn (3.29)

tn
(
wTxn + b

)
≥ 1− ξn, ξn ≥ 0, n = 1, . . . , N. (3.30)

The regularization parameter C represents the trade-off between margin size and penalty for

misclassified points - or the trade-off between the error on the training set and the complexity of

the model. [59], [60]

For a classification problem whose solution is a nonlinear decision boundary, the kernel trick

can be used. The main idea is to map the data into a higher dimensional space (dimension lifting)
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using nonlinear transformations in which the linear unseparable data are separable. The kernel

trick does not require knowledge of the exact mapping ϕ(x) of points, only the corresponding

kernel function κ (x,x′) = ϕ(x)Tϕ (x′). The kernel function can be any positive semidefinite

function. As a core functions are most commonly used:

• Linear function (identity): K (xi,xj) = xT
i xj .

• Polynomial function: K (xi,xj) =
(
1 + xT

i xj

)k
, where k is the order of the polynom.

• Radial basis function (Gaussian): K (xi,xj) = exp
(
−∥xi−xj∥2

σ2

)
, where σ denotes the

standard deviation in the Gaussian distribution.

• Two-layer perceptron (neural network) K (xi,xj) = tanh
(
axT

i xj + b
)
, where a becomes

positive and b negative.

3.2.3 Hyperparameter Setting and Cross-Validation

We used grid search to set the classifier hyperparameters. Similar to the approach taken by

Chapelle and Zien [61], we applied a heuristic approach to select the appropriate search range

for standard deviation in the RBF kernel σ and regularization parameter C in SVM.

C-parameter controls the smoothness of decision boundary as follows:

• C → 0 — large margin (smooth decision boundary),

• C → ∞ — narrow margin (convoluted decision boundary).

σ-parameter represents inverse of the radius of influence of samples selected by the model as

support vectors:

• σ → 0 — decision boundary tends to be too flexible (hazard of overfitting),

• σ → ∞ — the decision boundary tends to be limited and fails to capture the complexity or

shape of the data (it is affected by the entire training set and behaves similarly to a linear

model and is prone to misclassification in prediction, but avoids the danger of overfitting).

First, we performed a 5-fold cross-validation on the training set with a coarse grid search:

C = 10(−2 : 1 : 4), σ = 10(−2 : 1 : 4) (3.31)

We selected the best pair of these parameters C∗ and σ∗ based on the minimum cross-validated

classification error over all 5 folds and repeated this step with a finer grid:

C = C∗ · 2(−3 : 1 : 3), σ = σ∗ · 2(−3 : 1 : 3) (3.32)

Again, we selected the best pair of hyperparameters by following the procedure in the

preceding step. These selected parameters were then used to re-train the model on the whole
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training set. Subsequent evaluation involved assessing its performance on an independent testing

set.

The hypermeter settings was tested in three validation scenarios

• Leave-One-Patient-Out Cross-Validation LOOCV

– In this case, a 5-fold validation with double grid search was performed within each

patient iteration. Afterwards, the most optimal parameters were used to re-train this

model on the entire training dataset — i.e., on all but one patient. The behaviour of

the new model was then evaluated on this left-out patient.

• 7-day Window Across All Patients,

– Again, a 5-fold validation with double grid search was always performed on the corre-

sponding training dataset, followed by retraining the model with the best parameters

on the whole training set (see section 4.2.4). With the difference that in this case it

was a classification of individual days across all patients not just clinical states.

• 7-day Window for Single Patient.

– This validation scenario is analogous to the previous one, only with classification of

each patient separately not across all.

3.2.4 Evaluation Metrics for Classification Model

Since the exact label assignment is known for the classification task, it is not necessary to use

more complex metrics for evaluation as in the case of clustering. Therefore, we chose the classical

metrics sensitivity (SEN), specificity (SPEC) and accuracy (ACC). There are several key terms

that are commonly used to describe these metrics:

Classification outcome

• TP . . . . . . . . . . . . . . . . . . . . . . . . . real positive and classified as positive (True Positive),

• TN . . . . . . . . . . . . . . . . . . . . . . . real negative and classified as negative (True Negative),

• FP . . . . . . . . . . . . . . . . . . . . . . . . real negative and classified as positive (False Positive),

• FN . . . . . . . . . . . . . . . . . . . . . . . real positive and classified as negative (False Negative).

Reality

• P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of real positive cases,

• N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of real negative cases.

SEN or TPR (True Positive Rate) is a conditional probability

SEN = P (TP |P ) =
TP

TP + FN
=

number of true positive assessments

number of all positive assessments
,
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indicating the relative frequency of correctly classified positive cases.

SPEC or TNR (True Negative Rate) is a conditional probability

SPEC = P (TN |N) =
TN

TN + FP
=

number of true negative assessments

number of all negative assessments
,

showing the relative frequency of correctly classified negative cases.

ACC is the conditional probability

SPEC = P (TN |N) =
TP + TN

TP + TN + FP + FN
=

number of correct assessments

number of all assessments
,

that the classifier correctly evaluates the case.
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Chapter 4

Datasets

This chapter describes all the data processed in this thesis. The first section 4.1 describes the

simulated data used to evaluate and to further explore the TICC method. The second section

is devoted to presenting real longitudinally acquired actigraphy data from BD patients, their

annotation and prepocessiong datasets.

4.1 Simulated data

In order to evaluate the effect of the set parameter values on the identification accuracy using

TICC algorithms, we generated multivariate signals with the require covariance structures. To

do so, we used the Matlab function R = mvnrnd(mu,Sigma,n) which returns a matrix R of n

random vectors selected from the same multivariate normal distribution with mean vector mu

and covariance matrix Sigma [62].

% Parameters

s1 = 1; s2 = 5; % change values of high covariance

N = 5; % Number of simulated features

block_sizes = [10, 10, 10]; % Sizes of the low , high , and low

covariance clusters

num_samples = sum(block_sizes); % Total number of samples

% Create covariance matrix

mu1 = 1*rand(1,N); % mean

Sigma1 = s1*rand(N); % sigma

Sigma1 =(Sigma1 '* Sigma1); % positive semidefinite matrix

mu2 = 1*rand(1,N); % mean

Sigma2 = s2*rand(N); % sigma

Sigma2 =(Sigma2 '* Sigma2); % positive semidefinite matrix

27
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data = zeros(num_samples , N);

% Generate signals

data = [mvnrnd(mu1 , Sigma1 , block_sizes (1));

mvnrnd(mu2 , Sigma2 , block_sizes (2));

mvnrnd(mu1 , Sigma1 , block_sizes (3))];

% Compute covariances of generated signals

bs = [0 block_sizes ];

for i = 1: numel(block_sizes)

COV{i} = cov(data (1+sum(bs(1:i)):sum(bs(1:i+1)) ,:));

end

Since the mean value is not important for this task, we left it unchanged and modified only the

covariance values. Below are visualisations of the required covariances and covariances calculated

from the resulting signal.

Below are visualisations of the desired and calculated covariances from the resulting signal.

The first and third clusters are generated from the same desired covariance matrix and the second

cluster is generated from significantly higher covariance values. For comparison, a short (10

samples for each class) and a long (10 000 samples for each class) signal are shown. In both

cases, the posterior covariances were the same, with an average absolute difference between the

covariance for the first (or third) and second class being 33.
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Figure 4.1: Required and obtained covariances of the generated short signal
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Covariances of generated signals
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Figure 4.2: Required and obtained covariances of the generated long signal

We can note the difference in the similarity of the required and obtained covariances caused

by the Central Limit Theorem . Therefore, it is appropriate to take into account the lower

reliability and accuracy of the shorter generated signals.

4.2 Real data

As part of this thesis, I have adopted and incorporated an extensive data set developed by Ing.

Jakub Schneider Ph.D. as part of his doctoral thesis [42]. The dataset (introduced in section

4.2.1) consists of a 90 calculated features for each day from the long-term actigraphy monitoring

of BD patients within the AKTIBIPO400 clinical study (organized by Mindpax in cooperation

with National Institute of Mental Health (NIMH) in Klecany), including 369 BD patients, out

of which 115 also underwent MADRS and YMRS clinical scales once a month. The follow-up

period was 18 months with a possibility of extension. They were also asked to complete the

weekly Aktibipo Self-rating EMA (ASERT) questionnaire (described in section 4.2.2) through

the provided Mindpax mobile application.

4.2.1 Actigraphic feature dataset

The following list is a brief description of all the actigraphic features developed by Ing. Jakub

Schneider Ph.D. [42].

• date – dates where there were recorded data

• free – [0 or 1] for each represents whether it was a free day (holidays and weekends)
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• Cosine analysis – cosine analyses parameters with variable window length (generally 7 or

14 days marked at the end of each parameter name)

– amplit X – amplitude of fitted cosine function one for each day (based on the window)

– phi X – phase shift of activity fitted cosine function one for each day (based on the

window)

– mesor X – mean value of activity fitted cosine function one for each day (based on

the window)

– DARs X – daily activity rhythm calculated as amplit X/mesor X (also named circa-

dian quotient CQ)

– GoF X – Goodness of Fit represented as Mean Square of Errors (MSE)

– GoF expprc X – Goodness of Fit represented as a percentage of explained variability

100× (TSS−RSS)/TSS where TSS is the total sum of squares and RSS is the residual

sum of squares

• Nonparametric analyses – statical parameters calculated for a window (X at the end of

the name marks the length of the window) or for each day

– IV X – Intradaily variability for the window of X days ignoring days with more than

20% unknown values, sampling period set to 20 min

– IS X – Interdaily stability for the window of X days, ignoring days with more than

20% unknown values, sampling period set to 20 min

– IV60 X and IS60 X – the same as previous but based on the original definition with

the sampling period of 1 hour

– M10 – activity within 10 most active hours of the day, midnight to midnight for each

day (calculation may use data from the previous and following day)

– M10 time – mid-time of the 10 most active hours window

– L5 – activity in the least active 5 hours

– L5 time – mid-time of the 5 least active hours window

– RA – relative amplitude between M10 and L5 parameters

– M10 RMSSD – root mean square of successive differences (RMSSD) of activity

signal in the M10 window

– M10 SD – Standard deviation (SD) of activity signal in the M10 window

– M10 X, M10 time X, L5 X, L5 time X, RA X – the same as previous but

calculated from an average day in the X-day-long window

• Activity profile – mean activity within the days

– daily act – mean activity midnight to midnight
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– midn2morn – mean activity between 0:00-6:00 local time

– morn2noon – mean activity between 6:00-12:00 local time

– noon2even – mean activity between 12:00-18:00 local time

– even2midn – mean activity between 18:00-24:00 local time

– daily acti points – sum of actipoints provided for each 5-min segment based on

physical activity levels associated with different levels of physical activity/exercise

– daily acti points sleep corr – average actipoint score for active (non-sleep) part of

day

• Relative activity levels

– dayAct high – a percentage of activity that for a specific day is higher than 75%

quantile of the whole user’s activity

– dayAct moderate – a percentage of activity in the range between 50% and 75%

quantiles of the whole user’s activity

– dayAct sedentary – a percentage of activity in the range between 25% and 50%

quantiles of the whole user’s activity

– dayAct low – a percentage of activity that for a specific day is lower than 25%

quantile of the whole user’s activity

– RMSSD daily – RMSSD of activity from midnight to midnight

• Sleep analyses –results of sleep analyses based on main daily sleep

– Sleep duration – sleep duration for each day in hours (main - the longest sleep)

– Sleep dur daily18 – a sum of sleep durations of all sleeps longer than 5 minutes

that occur between the previous day 18 o’clock to the associated day 18 o’clock

– Sleep dur daily – a sum of sleep durations of all sleeps longer than 5 minutes that

occur between in a calendar day (midnight to midnight)

– Sleep dur daily – sleep duration for each day (sum of all periods of sleep)

– Miss dur daily – amount (hours) of missing data for each day

– Sleep midtime – the middle of sleep

– Sleep imobile – 0-1 (0 - 100%) part of sleep detected as immobile

– Sleep active – 0-1 part of sleep detected as active

– Sleep on – time of the main daily sleep onset

– Sleep off – time of the main daily sleep offset

– sle imobile BefAftMS 1 – the same as Sleep imobile, but this value represents

only the part before midsleep
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– sle imobile BefAftMS 2 – the same as Sleep imobile, but this value represents

only the part after midsleep

– sle active BefAftMS 1 – the same as Sleep active, but this value represents

only the part before midsleep

– sle active BefAftMS 2 – the same as Sleep active, but this value represents

only the part after midsleep

– RMSSD sleep – RMSSD of activity during the main daily sleep

– RMSSD sleepf – same as previous, but the sleep actigraph is filtered by a

median filter with a dimension of 10

– WASO – wake after sleep onset, a sum of minutes during a night that are not

detected as sleep (based on sleep classifier) (it may be affected by wrongly detected

wearable removal)

– bef fall – activity in 2 hours before the main daily sleep begins

– aft fall – activity in 2 hours after the main daily sleep begins

– bef wake – activity in 2 hours before the main daily sleep ends

– aft wake – activity in 2 hours after the main daily sleep ends

– bef fall std – variability in activity 2 hours before sleep onset (Sleep on)

– aft fall std – variability in activity 2 hours after sleep onset (Sleep on)

– bef wake std – variability in activity 2 hours before wake up (Sleep off)

– aft wake std – variability in activity 2 hours after wake up (Sleep off)

– sl fall step – step in average activity in 1 hour before and after sleep onset

– sl wake step – step in average activity in 1 hour before and after wake up

– RMSSD – root mean square of successive difference (RMSSD) of sleep activity data

• Fractal and other measures of complexity

– SampEnt – Sampling entropy based on physio.net codes parameters set to m = 2, r

= 0.2, window 7 days, sample period one hour

– SlopeEntr M10t – slope entropy for daily M10 window

– min lag aft wake – correlation of activity after wake up with itself shifted by 1

minute

– lag act day – correlation of activity of the active part of the day (no-night-sleep)

and activity shifted by 5 minutes

– RMSSD SD act day – ratio of RMSSD and SD for a calendar day

– RMSSD rel act day – RMSSD for a calendar day normalised by average activity

during that day

– SD rel act day – SD for a calendar day normalised by average activity during

that day
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• Technical monitoring

– Miss dur daily – sum of durations when there are no valid data from the given

wearable, both missing and off

– Miss dur daily18 – same as previous, but the daybreak is set at 18 o’clock

– Offs dur daily – duration of off periods, the time when the wearable was most

probably removed in a given day

– Offs dur n seg – number of separate off periods, how many times the wearable was

removed during a day

– miss day part – missing data part of the day, ranging from 0 to 1 (considering

daylight saving time changes)

– rec day part – valid data ranging from 0 to 1 for a given day (considering daylight

saving time changes)

– miss 7 – missing data for a 7-day window

– miss 14 – missing data for a 14-day window

– nan ratio M10 – missing data in the M10 daily segment

4.2.2 Annotation

Manually created labels based on ASERT questionnaires and MADRS and YMRS clinical scales

(see section 2.2.3) were used as ground truth labels.

The Aktibipo Self-rating ecological momentary assessment (ASERT) is a self-report mood

questionnaire designed for BD patients invented in NIMH [63]. It is a 10-item mobile app-based

questionnaire consisting of depression (4), mania (4), and nonspecific (2) symptom items, each

with 5 possible response levels.
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group question

Depressive

1 I feel sad, downhearted

2 I do not enjoy anything, and nothing pleases me

3 I have no energy

4 I feel gloomy and pessimistic about the future

Manic

5 I feel unusually great, optimistic

6 I have excess energy

7 My thinking is very fast, others cannot keep up with me

8 I need to sleep less than usual

Nonspecific

9 I feel restless, tense

10 I cannot focus

Reply options:

0 = I do not agree; 1 = more likely I do not agree;

2 = I probably agree; 3 = I agree; 4 = I completely agree

Table 4.1: Aktibipo Self-rating questionnaire (ASERT)

Based on these self-assessments and clinical scales, each patient’s day was labelled by one of

the following states:

• remission

• mania-onset

• mania

• mania-offset

• depression-onset

• depression

• depression-offset

• unknown

After aligning the provided labels with the corresponding actigraphic data, a dataset was

obtained. A summary of the lengths of the individual states using descriptive measures—25th

percentile (p25), median and 75th percentile (p75) is given in the following table 4.2.
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labelled states

data length [days] re
m
is
si
o
n

m
an

ia
o
n
se
t

m
an

ia

m
an

ia
o
ff
se
t

d
ep

re
ss
io
n
on

se
t

d
ep

re
ss
io
n

d
ep

re
ss
io
n
off

se
t

u
n
k
n
ow

n

all states

p25 21 0 0 0 0 0 0 0 95

p50 71 0 0 0 9 0 9 0 176.5

p75 172 14 0 9.5 34 31 32 0 324.5

total 10803 991 506 824 2412 2164 2139 261 20100

Table 4.2: Original dataset annotation overview (all 92 patients)

4.2.3 Dataset Preprocessing

As part of the data preprocessing, an analysis of annotated actigraphy data from 92 patients

with BD was performed. The aim was to simplify the task of identifying states and to optimise

the dataset for subsequent scientific analysis. In a first step, the data were filtered based on the

presence of the labels ”onset”, ”offset” or ”unknown”. This removed any days that did not serve

to clearly categorise the states, which resulted in narrowing the dataset to relevant information.

Subsequently, a distinction was made between dates labelled as ”remission” and ”depression”

or ”remission” and ”mania” for the purpose of two separate tasks of identifying relevant states.

This step achieved better segmentation and specialisation of the data for specific analytical tasks.

In order to achieve a more balanced dataset, a reduction of days in remission was performed.

This reduction was performed by selecting blocks of consecutive days of mania or depression and

adding an equal number of days in remission (or the maximal days possible). Specifically, half of

the days before a given block and half of the days after a given block were selected. Overall, the

modifications made to the dataset were aimed at eliminating ambiguity and bias in the data,

while creating a balanced and simplified dataset for subsequent analysis of actigraphic features

structures in BD.

An overview of the dataset before and after preprocessing is shown in the following three

tables using the p25, p50 and p75 of data length in days:
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labelled states

data length [days] re
m
is
si
o
n

m
an

ia

all selected states

p25 19 20 39

p50 22 21 43

p75 38 37 75

total 259 259 518

Table 4.3: Mania-remission dataset annotation overview (9 patients)

labelled states

data length [days] re
m
is
si
on

d
ep

re
ss
io
n

all selected states

p25 20 21 42

p50 25 25 50

p75 43 41 84

total 558 53 1111

Table 4.4: Depression-remission dataset annotation overview (18 patients)

It should be noted that out of the original dataset of 92 patients with approximately 2 years

of monitoring, only 9 patients with manic states and 18 patients with depressive states remained

after this data preprocessing.

4.2.4 Training and Testing Sets Split

From these modified data, described in section 4.2.3, we created 3 different train-test sets splits

to be used for our analyses1:

4.2.4.1 Patient-based split dataset

The first approximately 70% of patients were used for the training and cross-validation set, the

remaining 30% as a test set. This approach aims to evaluate the model’s ability to generalize

across a diverse patient population. Moderate to high accuracy on the test set is expected,

indicating the model’s capacity to generalise to new patients.

1Clearly, only the state-based split and time-based split were used to identify the episode for each patient
separately.
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4.2.4.2 State-based spilt dataset

Independently of the patients, each episode (mania or depression) and remission was divided in

a ratio 7:3 and the longer part was used for the training and cross-validation set and the shorter

part for the test set. This method assesses the model’s capability to discern patterns within

distinct states of the patients’ conditions. Moderate to high accuracy is expected, especially if

the model can effectively capture state-specific features. However, generalisability might be lower

if states vary significantly between patients.

4.2.4.3 Time-based split dataset

In order to generate the most dependent training and testing data possible, we used every

third day (again independently of the patients) for the test set and the remaining days for the

training and cross-validation set. Potentially high accuracy is expected if the model effectively

captures temporal patterns. However, there might be a risk of overfitting to specific temporal

intervals, affecting generalisability to different time-frames. Such a dependent distribution was

developed primarily for the purpose of testing the model itself with the least possible influence

of longitudinal changes in the data.



38 CHAPTER 4. DATASETS



Chapter 5

Results

This chapter presents the results of all experiments. It is divided into two sections based on the

approach: unsupervised 5.1 and supervised 5.2.

5.1 Unsupervised Approach

First, we will focus on selected methods of cluster assignment evaluation in section 5.1.1, followed

by the actual evaluation of the TICC method on simulated data in section 5.1.2.

5.1.1 Cluster Assignment Evaluation

In order to compare the characteristics of selected clustering evaluation criteria for all possible

cases of clustering results, we investigated these approaches (see section 3.1.1.2) on simulated

data with 137 samples. If M is the number of clusters and N is the number of classes in the gold

standard, the possible clustering results can be:

• M = N ... number of clusters is same as the number of classes in the gold standard,

• M < N ... number of clusters is less than the number of classes in the gold standard,

• M > N ... number of clusters is greater than the number of classes in the gold standard.

Case M = N

Let us assume the first case where we have 5 clusters and 5 classes in the gold standard, data with

137 samples, 127 clustered samples and 10 unclustered samples. We get the 5× 5 contingency

table:

The results of clustering evaluation criteria computed using the formulas described in the the

section 3.1.1.2 are:

Precision = 91.34%, Recall = 84.67%, F1-score = 87.88%, ARI = 77.73%.

39



40 CHAPTER 5. RESULTS

Classes
j

Clusters 1 2 3 4 5
i

1 26 1 0 3 0
2 0 13 1 2 0
3 0 0 19 0 0
4 4 0 1 35 0
5 0 0 0 0 23

Table 5.1: Contingency table of the clustering results with same number of clusters and classes

Case M < N

Let us assume the second case where we have 4 clusters and 5 classes in the gold standard,

data with 137 samples, 127 clustered samples and 10 unclustered samples. We obtain the 4× 5

contingency table:

Classes
j

Clusters 1 2 3 4 5
i

1 26 1 0 3 0
2 0 13 1 2 0
3 0 0 19 0 0
4 4 0 0 35 23

Table 5.2: Contingency table of the clustering results with the number of clusters less than the
number of classes

The results of clustering evaluation criteria computed using the formulas described in the the

section 3.1.1.2 are:

Precision = 73.23%, Recall = 84.67%, F1-score = 78.54%, ARI = 53.38%.

Case M > N

Let us assume the last case where we have 6 clusters and 5 classes in the gold standard, data

with 137 samples, 127 clustered samples and 10 unclustered samples. We can get the 6 × 5

contingency table:

The results of clustering evaluation criteria computed using the formulas described in the the

section 3.1.1.2 are:

Precision = 91.34%, Recall = 77.37%, F1-score = 83.78%, ARI = 72.20%.
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Classes
j

Clusters 1 2 3 4 5
i

1 26 1 0 3 0
2 0 13 1 2 0
3 0 0 19 0 0
4 4 0 0 35 0
5 0 0 0 0 13
6 0 0 0 0 10

Table 5.3: Contingency table of the clustering results with the number of clusters greater than
the number of classes

Overview

Let us compare all of the obtained values for each of the example cases. First, the case with a

nonzero number of unclustered samples as above:

Cases

evaluation criteria M = N M < N M > N

Precision 91.34% ↘ 73.23% → 91.34%

Recall 84.67% → 84.67% ↘ 77.37%

F1-score 87.88% ↘ 78.54% ↘ 83.78%

ARI 77.73% ↘ 53.38% ↘ 72.20%

Table 5.4: Precision, Recall, F1-score and ARI values for each of the example cases with nonzero
number of unclustered samples

As shown in table 5.4, if the clustering method under-estimates the number of clusters (case

M < N), in other words, each cluster can be assigned to multiple gold standards, the recall value

will remain the same, and the ARI, precision and thus also F1-score and will decrease compared

to the M = N case. Whereas, if the clustering method over-estimate the number of clusters

(case M > N), in other words, each gold standard can be represented by multiple clusters, the

precision will remain the same, and the ARI, recall and thus also F1-score will again be lower

compared to the M=N case.

If we were to consider the case where all samples are clustered, i.e. the number of unclustered

samples is zero and the number of clustered samples is 127, we would get a similar result. Only

in the case M=N we would get the same value for precision, recall and F1-score as shown in the

following table.
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Cases

evaluation criteria M = N M < N M > N

Precision 91.34% ↘ 73.23% → 91.34%

Recall 91.34% → 91.34% ↘ 83.46%

F1-score 91.34% ↘ 81.29% ↘ 87.22%

ARI 77.73% ↘ 53.38% ↘ 72.20%

Table 5.5: Precision, Recall, F1-score and ARI values for each of the example cases with zero
number of unclustered samples

From the table 5.5, we can see that the number of unclustered samples does not have impact

on the precision and ARI result value (case M = N). On the contrary, recall and F1-score will

increase in the case of zero number of unclustered samples. If the clustering method under-

estimates the number of clusters (case M < N), some ground truth classes may be merged

into a single cluster, resulting in a lower recall value because not all true classes are identified.

However, the precision may increase since merging classes can reduce the number of false positives.

Conversely, if the number of clusters generated by the algorithm is greater than the number

of ground truth classes (case M > N), the precision and recall values will also be affected. In

this case, the algorithm may split some true classes into multiple clusters, resulting in a lower

precision value because of the increased number of false positives. However, recall may increase

since each true class is more likely to be identified in one of the multiple clusters.

Again, here is the criteria evaluation for the case of zero unclustered samples, this time over

10000-iteration in (mean value of criteria for 10000 different datasets):

Cases

evaluation criteria M = N M < N M > N

Precision 76.1% ↘ 68.9% → 76.1%

Recall 76.4% → 77.1% ↘ 63.2%

F1-score 76.2% ↘ 72.6% ↘ 68.8%

ARI 54.2% ↘ 42.7% ↘ 44.3%

Table 5.6: Precision, Recall, F1-score and ARI values for each of the example cases with zero
number of unclustered samples over 10000-iterations

From this table 5.6 it s evident that the above observation is valid even if 10000 different

datasets are used.

5.1.2 TICC Method Evaluation

Based on evaluation using simulated data and parameter tuning using grid-search, we found

that TICC is very robust to the sparsity parameter λ selection and, relatively, to wisely chosen
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window length w. Thus, the key parameters are the one controlling temporal consistency β and

the number of clusters K, which in our case is known in advance.

The following figures show the effect of window length (parameter w) and number of samples

per segment for one selected signal from our simulated dataset, described in section 4.1. This

signal was generated by two repeating classes (class 1 and class 2) as follows: 121212. In the case

of testing the window length (a), the optimal combination of the λ and β parameters was chosen

using a grid search (see section 3.1.1.1) with equal covariance difference between the classes and

25 samples per each segment. In the case of testing the number of samples per segment, the

window size was fixed at w = 3, the covariance difference between the classes were equal and

again the best combination of the λ and β parameters was chosen. Since all selected methods

were correlated, we only displayed the macro-f1-score criterion on the y-axis, since it has the

best predictive value due to its definition (see definition 3.8).

(a) Effect of window size on clustering accuracy (b) Effect of number of samples per segment on

clustering accuracy

Figure 5.1: Evaluation of TICC behaviour on simulated data with 25 samples per segment for
evaluation window size (a) and fixed window length w = 3 for segment size evaluation (b)

As you can see from the figure 5.3 (a) the window size must be much smaller than the length

of the cluster, because as the window size approaches the number of samples per segment the

accuracy decreases. Similar information is given by the figure (b), which shows the decrease in

accuracy with smaller samples per segment.

Although TICC is very robust to even small differences in covariances between classes, it

requires much larger sampling than our real data. The authors of this method presented in their

work a large decrease in accuracy of the method even at 100 samples per segment [1]. i In our

evaluation, we were able to successfully cluster even much shorter segments (20 or more samples

per segment) on suitably simulated data. However, segments with less than 10 samples typically

appear in our real data, therefore this method could not be successfully applied.
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5.2 Supervised Approach

In this section, we present the results of supervised classification of BD states (mania-remission

or depression-remission) using different methods of splitting training and testing datasets. We

employed three distinct approaches: patient-based split, state-based split, and time-based split

(see section 4.2.4). For each dataset, we computed correlation matrices COV from actigraphic

features and their values (median and SD) and then reduced dimensionality using the PCA or

the max-diff method (see results in section 5.2.1) and used the resulting data as input for the

RBF SVM algorithm in three different validation scenarios (described in section 3.2).

5.2.1 Feature selection

In this section, we elucidate the outcomes obtained from by applying feature dimension reduction

techniques. The initial subsection delineates the observed behavior of the data subsequent to

the application of PCA on the COV, median, and SD methods. Following this, the subsequent

segment expounds upon the data characterisation ensuing the implementation of the max-diff

method.

5.2.1.1 PCA method

The following figures show the explained variance of the principal components on the COV as

well as on the median and SD values.
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Figure 5.2: Explained Variance of Principal Components on COV Structures
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Figure 5.3: Explained Variance of Principal Components on Median Values
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Figure 5.4: Explained Variance of Principal Components on SD Values

In most cases, 99% of the variance was explained by less than 15 components — a hand-picked

threshold. In the case of COV on depression-remission states, this variance was the lowest. The

first 15 largest principal components captured only 80% of the variance which is still sufficient.

5.2.1.2 Maximal Difference Pair Method

The optimal strategy involves training the classifier exclusively on a subset of individuals and

then evaluating the performance of the model on different patients. Unfortunately, splitting the

training and testing data patient-based may yield inaccurate results due to the considerable

variability of actigraphy data between different subjects. This phenomenon is clearly illustrated

in the following figures. All following visualisations are created from the original full dataset

(without remission reduction).

In the figure 5.5, which shows the comparison of the absolute difference between the correlation

coefficients for the individual pairs of states (remission–mania, remission–depression, mania–
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depression) on the whole dataset, we can see that the largest absolute difference of the correlation

matrices is between the states of remission–mania, followed by mania–depression, and on the

contrary the smallest difference is achieved by the states of remission–depression. From the

analogously obtained figure 5.6 and the figure 5.7 that shows the values of the correlation

coefficients for the individual features in the states between the patient-based split training and

testing data, we can observe a large difference in the values between the sets – i.e. the patients.

Similarly, from the figures 5.8 and 5.9 for the state-split datasets, we can again see the significant

difference in values between the training and testing sets. Whereas for the remission state, the

values are very similar. The most comparable correlation values between the training and testing

sets are observed for the case of the time-split dataset, shown in the figure 5.10 and figure 5.11,

which are highly dependent. Here we can observe remarkably close values for all states.

Figure 5.5: The difference of the feature correlation matrices between two states on full dataset
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Figure 5.6: The difference of the feature correlation matrices between two states on patient-based
dataset
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Figure 5.7: Correlation coefficient: training vs. testing set for patient-based split dataset.
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Figure 5.8: The difference of the feature correlation matrices between two states on state-based
dataset
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Figure 5.9: Correlation coefficient: training vs. testing set for state-based split dataset.
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Figure 5.10: The difference of the feature correlation matrices between two states on time-based
dataset
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Figure 5.11: Correlation coefficient: training vs. testing set for time-based split dataset.
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5.2.2 Leave-One-Patient-Out Cross-Validation

In this section we present the results of the LOOCV validation scenario. The results are divided

into two sections based on the type of classified state (mania or depression). Details of the

individual patient iterations are shown in the appendix (section A).

Mania

The results in table 5.7 obtained using LOOCV with the PCA feature selection approach

for assessing mania–remission show that COV achieved the highest average accuracy of 61%.

In contrast, median and SD showed comparable results of 56%, suggesting that these methods

may be slightly more limited in their ability to distinguish mania from remission in all patients.

On the other hand, in the case of feature selection using the max-diff method, a lower average

accuracy of 50% was achieved by COV and median, while using the SD value accuracy was

higher — 72%.

Mania-remission (LOOCV)

PCA method max diff pairs method

Method avg ACC avg ACC

COV 61.1% 50.0%

Median 55.6% 50.0%

SD 55.6% 72.2%

Table 5.7: Average accuracy (avg ACC) of classifying mania-remission using LOOCV method

Depression

The results of LOOCV using PCA distinguishing depression-remission states, shown in table

5.8, reveal that COV achieved the highest average accuracy — 61%. The remaining feature value

methods achieved lower average accuracy, the median method performed with 56% accuracy, as

in the case of remission and mania, and SD reached lower average accuracy of 42%. Again, the

max-diff selection method achieved better results in the opposite cases than the PCA. A poor

average accuracy of 50% was obtained for COV, median reached 61%, while for the SD method

the value was higher 68%.
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Depression-remission (LOOCV)

PCA method max diff pairs method

Method avg ACC avg ACC

COV 61.1% 50.0%

Median 55.6% 61.1%

SD 41.7% 66.7%

Table 5.8: Average accuracy (avg ACC) of classifying depression-remission using the LOOCV
method

This result suggests that the SD with a combination of the PCA has the ability to discriminate

both depression and mania from remission most effectively among the compared approaches.

Although the average accuracy values are not very high, we can say that the PCA method of

symptom selection is more suitable for COV, while the max-diff method is more suitable for

other feature value methods.
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5.2.3 7-day Window Across All Patients

In this section we present the results for the classification results of 7-day window across all

patients validation scenario. The results are divided into three groups according to the type of

dataset split and then the type of classified state (mania or depression).

5.2.3.1 Patient-Based Split Dataset

The figures below visualise the classification results on different days for different methods

combined with both feature selection methods with accuracy evaluation on training and test

datasets using ACC, SEN and SPEC. The following figure gives an overview of all methods and

a table with an overview of evaluation metrics for all methods for the patient-based split dataset.

Mania

For the classification task for the mania-remission discrimination, the following results were

obtained:

Figure 5.12: Classification of mania-remission using PCA selected COV structures on a patient-
based split dataset.

Figure 5.13: Classification of mania-remission using max-diff-based selected COV structures on a
patient-based split dataset.
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Figure 5.14: Classification of mania-remission using PCA selected median values on a patient-
based split dataset.

Figure 5.15: Classification of mania-remission using max-diff-based selected median values on a
patient-based split dataset.

Figure 5.16: Classification of mania-remission using PCA selected SD values on a patient-based
split dataset.

Figure 5.17: Classification of mania-remission using max-diff-based selected SD values on a
patient-based split dataset.
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Figure 5.18: Classification overview of all feature selections on mania-remission using all methods
on a patient-based split dataset.

Mania-remission (patient-based split dataset)

PCA method max diff pairs method

Train set Test set Train set Test set

Method ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC

COV 100% 100% 100% 61.22% 42.7% 72.8% 98.6% 98.6% 98.7% 60.2% 55.1% 64.8%

Median 100% 100% 100% 59.2% 71.4% 48.1% 100% 100% 100% 43.7% 55.1% 33.3%

SD 97.6% 97.9% 97.3% 67.0% 75.5% 59.3% 100% 100% 100% 48.5% 40.8% 55.6%

Table 5.9: Performance metrics of classification mania-remission: accuracy (ACC), sensitivity
(SEN) and specificity (SPEC) for all methods using all feature selections on a patient-based split
dataset.

Even though the results are relatively similar, the best results on the testing set according to

the accuracy were achieved by the SD method using PCA dimension reduction with 67%. This

was followed by the COV method which achieved 61% in the case of using PCA and 60 using the

max-diff method. The median value method achieved noticeably better results using the PCA

method, with 59%.
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Depression

Figure 5.19: Classification of depression-remission using PCA selected COV structures on a
patient-based split dataset.

Figure 5.20: Classification of depression-remission using max-diff-based selected COV structures
on a patient-based split dataset.

Figure 5.21: Classification of depression-remission using PCA selected median values on a
patient-based split dataset.

Figure 5.22: Classification of depression-remission using max-diff-based selected median values
on a patient-based split dataset.
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Figure 5.23: Classification of depression-remission using PCA selected SD values on a patient-
based split dataset.

Figure 5.24: Classification of depression-remission using max-diff-based selected SD values on a
patient-based split dataset.

Figure 5.25: Classification overview of all feature selections on mania-remission using all methods
on a patient-based split dataset.
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Depression-remission (patient-based split dataset)

PCA method max diff pairs method

Train set Test set Train set Test set

Method ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC

COV 100% 100% 100% 59.0% 55.0% 62.9% 92.6% 95.5% 89.6% 48.1% 49.7% 46.5%

Median 99.4% 100% 98.9% 57.2% 52.7% 61.8% 99.8% 99.6% 100% 41.9% 45.0% 38.8%

SD 93.5% 91.8% 95.2% 53.1% 57.4% 48.8% 100% 100% 100% 47.2% 33.1% 61.2%

Table 5.10: Performance metrics of classification depression-remission: accuracy (ACC), sensitivity
(SEN) and specificity (SPEC) for all methods using all feature selections on a patient-based split
dataset.

The distinction between depression and remission achieved significantly worse results compared

to mania. This can be seen even by looking at the visualisations. All methods worked slightly

better with PCA. The best accuracy was achieved by the COV 59% method followed by the

median 57% and the worst was the SD method 53% on the testing set. All methods using the

max-diff selection did not even reach the 50% accuracy.

5.2.3.2 State-Based Split Dataset

The following figures again show the classification results on each day using the different methods

in combination with the two feature selection techniques — this time on state-based split dataset.

Accuracy evaluation is performed on both training and test datasets using metrics such as

accuracy (ACC), sensitivity (SEN) and specificity (SPEC). Again, a figure with a complex

summary of all methods is included, supplemented by a table with overview of all results.

Mania

For the classification task for the mania-remission discrimination, the following results were

obtained:

Figure 5.26: Classification of mania-remission using PCA selected COV structures on a state-
based split dataset.
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Figure 5.27: Classification of mania-remission using max-diff-based selected COV structures on a
state-based split dataset.

Figure 5.28: Classification of mania-remission using PCA selected median values on a state-based
split dataset.

Figure 5.29: Classification of mania-remission using max-diff-based selected median values on a
state-based split dataset.

Figure 5.30: Classification of mania-remission using PCA selected SD values on a state-based
split dataset.
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Figure 5.31: Classification of mania-remission using max-diff-based selected SD values on a
state-based split dataset.

Figure 5.32: Classification overview of all feature selections on mania-remission using all methods
on a state-based split dataset.

Mania-remission (state-based split dataset)

PCA method max diff pairs method

Train set Test set Train set Test set

Method ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC

COV 100% 100% 100% 65.4% 85.7% 41.7% 100% 100% 100% 67.3% 64.3% 70.8%

Median 99.6% 99.2% 100% 73.1% 78.6% 66.7% 100% 100% 100% 84.6.0% 75.0% 95.8%

SD 99.2% 99.2% 99.2% 69.2% 71.4% 66.7% 100% 100% 100% 80.8% 75.0% 87.5%

Table 5.11: Performance metrics of classification mania-remission: accuracy (ACC), sensitivity
(SEN) and specificity (SPEC) for all methods using all feature selections on a state-based split
dataset.

The best accuracy was achieved by the median value method with max-diff selection of

attributes (85%). This was followed by the SD method (81%) and the COV method performed

the worst (67%). In general, higher accuracy was achieved by max-diff-based reducing the

dimension of the feature space for all methods.
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Depression

Figure 5.33: Classification of depression-remission using PCA selected COV structures on a
state-based split dataset.

Figure 5.34: Classification of depression-remission using max-diff-based selected COV structures
on a state-based split dataset.

Figure 5.35: Classification of depression-remission using PCA selected median values on a state-
based split dataset.

Figure 5.36: Classification of depression-remission using max-diff-based selected median values
on a state-based split dataset.
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Figure 5.37: Classification of depression-remission using PCA selected SD values on a state-based
split dataset.

Figure 5.38: Classification of depression-remission using max-diff-based selected SD values on a
state-based split dataset.

Figure 5.39: Classification overview of all feature selections on depression-remission using all
methods on a state-based split dataset.
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Depression-remission (state-based split dataset)

PCA method max diff pairs method

Train set Test set Train set Test set

Method ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC

COV 99.8% 99.6% 100% 55.5% 56.2% 54.5% 100% 100% 100% 43.7% 45.3% 41.8%

Median 96.9% 96.7% 97.1% 48.7% 37.5% 61.8% 100% 100% 100% 58.8% 71.9% 43.6%

SD 98.2% 97.4% 98.9% 54.6% 60.9% 47.3% 100% 100% 100% 56.3% 82.8% 25.5%

Table 5.12: Performance metrics of classification depression-remission: accuracy (ACC), sensitivity
(SEN) and specificity (SPEC) for all methods using all feature selections on a state-based split
dataset.

As in the previous dataset, the classification of depression in this case also achieved a

significantly lower accuracy than mania. Best classification results were obtained using the

median value method (59%) followed by SD method (57%) with max-diff selection of actigraphic

features. Whereas the COV method performed better with the use of COV method (55%).

5.2.3.3 Time-Based Split Dataset

As above, the following figures show again the classification results of each day using different

methods in combination with both feature selection techniques, this time on the time-based split

dataset. The accuracy evaluation is once again performed on both training and test datasets

using metrics: accuracy (ACC), sensitivity (SEN) and specificity (SPEC). Again, a figure with

a comprehensive summary of all methods is shown, accompanied by a table presenting the

evaluation metrics.

Mania

Figure 5.40: Classification of mania-remission using PCA selected COV structures on a time-
based split dataset.
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Figure 5.41: Classification of mania-remission using max-diff-based selected COV structures on a
time-based split dataset.

Figure 5.42: Classification of mania-remission using PCA selected median values on a time-based
split dataset.

Figure 5.43: Classification of mania-remission using max-diff-based selected median values on a
time-based split dataset.

Figure 5.44: Classification of mania-remission using PCA selected SD values on a time-based
split dataset.
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Figure 5.45: Classification of mania-remission using max-diff-based selected SD values on a
time-based split dataset.

Figure 5.46: Classification overview of all feature selections on mania-remission using all methods
on a time-based split dataset.

Mania-remission (time-based split dataset)

PCA method max diff pairs method

Train set Test set Train set Test set

Method ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC

COV 100% 100% 100% 86.6% 82.9% 90.6% 100% 100% 100% 67.2% 68.6% 65.6%

Median 99.6% 99.1% 100% 85.1% 80.0% 90.6% 100% 100% 100% 89.6% 82.9% 96.9%

SD 94.0% 94.7% 93.2% 74.2% 88.6% 59.4% 100% 100% 100% 86.6% 88.6% 84.4%

Table 5.13: Performance metrics of classification mania-remission: accuracy (ACC), sensitivity
(SEN) and specificity (SPEC) for all methods using all feature selections on a time-based split
dataset.

The best classification results for mania state on this dataset were achieved by the median

value method with the use of max-diff feature selection with an accuracy of 90%. The COV method

with PCA achieved the same accuracy as the SD value method with max-diff dimensionality

reduction — 87%. Such high values compared to previous datasets are due to the high dependence
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of the training and testing set.

Depression

Figure 5.47: Classification of depression-remission using PCA selected COV structures on a
time-based split dataset.

Figure 5.48: Classification of depression-remission using max-diff-based selected COV structures
on a time-based split dataset.

Figure 5.49: Classification of depression-remission using PCA selected median values on a time-
based split dataset.
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Figure 5.50: Classification of depression-remission using max-diff-based selected median values
on a time-based split dataset.

Figure 5.51: Classification of depression-remission using PCA selected SD values on a time-based
split dataset.

Figure 5.52: Classification of depression-remission using max-diff-based selected SD values on a
time-based split dataset.
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Figure 5.53: Classification overview of all feature selections on mania-remission using all methods
on a time-based split dataset.

Depression-remission (time-based split dataset)

PCA method max diff pairs method

Train set Test set Train set Test set

Method ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC

COV 100% 100% 100% 72.1% 74.4% 69.4% 100% 100% 100% 60.4% 52.4% 69.4%

Median 100% 100% 100% 74.7% 74.4% 75.0% 100% 100% 100% 78.6% 74.4% 83.3%

SD 97.4% 97.2% 97.7% 66.2% 63.4% 69.4% 100% 100% 100% 79.9% 74.4% 86.1%

Table 5.14: Performance metrics of classification depression-remission: accuracy (ACC), sensitivity
(SEN) and specificity (SPEC) for all methods using all feature selections on a time-based split
dataset.

Even in the case of the classification of the depression state, the values are considerably

higher due to the dependence of the training and testing set compared to previous datasets.

Despite this, the accuracies are again lower compared to the mania classification. The highest

accuracy was achieved by the SD method with max-diff feature selection (80%). The median

value method with max-diff feature selection reached 79% accuracy and the COV method using

PCA 72% yielded classification accuracy.

5.2.3.4 Results Summary

To summarise all the results obtained by the validation method using a 7-day window on the

data across all patients, let us compare the results from the individual methods and datasets. In

general, the mania-remission classification had better accuracy than depression-remission on all

datasets. On the patient-based split dataset, the mania classification achieved an accuracy of

67%, whereas the depression classification achieved only 59%. For classification on the state-based
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dataset, the accuracy of mania-remission was 85% and depression-remission again only 59%.

Notably, the accuracy for classification of clinical states on the time-based split dataset whose

training and testing sets contained strongly dependent samples was the highest of all, 90% for

mania and 80% for depression. Optimal methods on the patient-based split dataset were the SD

method with PCA for classification of mania-remission and COV with PCA for depression states.

For the other two state-based split and time-based split datasets, the median value method

with max-diff selection of attributes was the most successful. The increasing accuracy with data

dependence between the training and testing sets suggests that the low classification accuracies

are due to large inter-patient variability and also differences in actigraphic values between clinical

states.

5.2.4 7-day Window for Single Patient

In this section we present the results of the 7-day window classification for single patient. The

results are divided into two groups according to the type of data set distribution and further

according to the type of condition classified (mania or depression). Due to the large number

of patients and the very similar results between individuals, we present only few patients as

examples (id 465 and 528 for mania and id 808 and 864 for depression).

5.2.4.1 State-Based Split Dataset

The following figures show the classification results on different days for the different methods

combined with the two feature selection methods with accuracy evaluation on the training and

test datasets using ACC, SEN and SPEC. Again, a figure with a comprehensive summary of all

methods is shown, accompanied by a table presenting the evaluation metrics for all methods for

the split state-based dataset for a single patient.



5.2. SUPERVISED APPROACH 69

Mania

Figure 5.54: Classification overview of all feature selections on mania-remission using all methods
for patient 465 on a state-based split dataset.

Mania-remission (state-based split dataset) patient 465

PCA method max diff pairs method

Train set Test set Train set Test set

Method ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC

COV 100% 100% 100% 50.0% 20.0% 80.0% 100% 100% 100% 90.0% 100% 80.0%

Median 100% 100% 100% 0.0% 0.0% 0.0% 100% 100% 100% 50.0% 0.0% 100%

SD 100% 100% 100% 90.0% 80.0% 100% 100% 100% 100% 100% 100% 100%

Table 5.15: Performance metrics of classification mania-remission: accuracy (ACC), sensitivity
(SEN) and specificity (SPEC) for all methods using all feature selections for patient id 465 on a
state-based split dataset.

In the case of patient id 465, the max-diff feature selection achieved the best results for all

methods. The highest mania classification accuracy of 100% was obtained by the SD value

method.
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Figure 5.55: Classification overview of all feature selections on mania-remission using all methods
for patient 528 on a state-based split dataset.

Mania-remission (state-based split dataset) patient 528

PCA method max diff pairs method

Train set Test set Train set Test set

Method ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC

COV 100% 100% 100% 71.4% 0.0% 100% 100% 100% 100% 35.7% 50.0% 30.0%

Median 100% 100% 100% 64.3% 50.0% 70.0% 100% 100% 100% 100% 100% 100%

SD 100% 100% 100% 64.3% 50.0% 70.0% 100% 100% 100% 85.7% 50.0% 100%

Table 5.16: Performance metrics of classification mania-remission: accuracy (ACC), sensitivity
(SEN) and specificity (SPEC) for all methods using all feature selections for patient id 528 on a
state-based split dataset.

For patient id 528, the best results were obtained using the max-diff selection of feature

value median and SD. While the COV method performed better using PCA. The highest mania

classification accuracy of 100% was obtained by the max-diff-based selected median value method.



5.2. SUPERVISED APPROACH 71

Depression

Figure 5.56: Classification overview of all feature selections on depression-remission using all
methods for patient 808 on a state-based split dataset.

Deprssion-remission (state-based split dataset) patient 808

PCA method max diff pairs method

Train set Test set Train set Test set

Method ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC

COV 100% 100% 100% 68.8% 100% 37.5% 100% 100% 100% 81.2% 87.5% 75.0%

Median 100% 100% 100% 81.2% 100% 62.5% 100% 100% 100% 62.5% 87.5% 37.5%

SD 100% 100% 100% 43.8% 87.5% 0.0% 100% 100% 100% 37.5% 37.5% 37.5%

Table 5.17: Performance metrics of classification depression-remission: accuracy (ACC), sensitivity
(SEN) and specificity (SPEC) for all methods using all feature selections for patient id 808 on a
state-based split dataset.

In the case of the classification of depression in patient id 808, the best results were achieved

only in the case of COV method. While median and SD methods performed better with PCA.

The highest overall classification accuracy of 81% was then obtained by both median value

methods using PCA and the max-diff dimensionality reduction of COV method.
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Figure 5.57: Classification overview of all feature selections on depression-remission using all
methods for patient 869 on a state-based split dataset.

Deprssion-remission (state-based split dataset) patient 869

PCA method max diff pairs method

Train set Test set Train set Test set

Method ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC

COV 100% 100% 100% 77.3% 100% 54.5% 98.5% 100% 97.0% 54.5% 63.6% 45.5%

Median 100% 100% 100% 81.8% 100% 63.6% 100% 100% 100% 50.0% 100% 0.0%

SD 95.5% 94.1% 97.0% 68.2% 100% 36.4% 100% 100% 100% 77.3% 100% 54.5%

Table 5.18: Performance metrics of classification depression-remission: accuracy (ACC), sensitivity
(SEN) and specificity (SPEC) for all methods using all feature selections for patient id 869 on a
state-based split dataset.

In the case of the classification of depression in patient id 869, PCA feature selection achieved

the best results only in the case of the median value of the method. While the COV and SD

value methods performed better using the max-diff approach. The median value method using

PCA yielded the highest classification accuracy of 82%.
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5.2.4.2 Time-Based Split Dataset

In the following figures, we show the classification results on different days for different methods

combined with two feature selection methods with accuracy evaluation on training and test

datasets using ACC, SEN and SPEC. Once again, a figure with a comprehensive summary of all

methods is presented, accompanied by a table that shows the evaluation metrics of all methods

for the time-based dataset for a single patient.

Mania

Figure 5.58: Classification overview of all feature selections on mania-remission using all methods
for patient 465 on a time-based split dataset.

Mania-remission (time-based split dataset) patient 465

PCA method max diff pairs method

Train set Test set Train set Test set

Method ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC

COV 100% 100% 100% 91.7% 83.3% 100% 100% 100% 100% 91.7% 100% 83.3%

Median 100% 100% 100% 58.3% 16.7% 100% 100% 100% 100% 66.7% 33.3% 100%

SD 100% 100% 100% 66.7% 33.3% 100% 100% 100% 100% 66.7% 83.3% 50.0%

Table 5.19: Performance metrics of classification mania-remission: accuracy (ACC), sensitivity
(SEN) and specificity (SPEC) for all methods using all feature selections for patient id 465 on a
time-based split dataset.
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In the case of the classification of mania state in id 465 patient, PCA and max-diff feature

selection achieved comparable results. Only for the median value method the use of the

dimensionality reduction approach appeared to be more appropriate from an accuracy point

of view. The highest classification accuracy of 92% was then achieved by the COV method in

general.

Figure 5.59: Classification overview of all feature selections on mania-remission using all methods
for patient 528 on a time-based split dataset.

Mania-remission (time-based split dataset) patient 528

PCA method max diff pairs method

Train set Test set Train set Test set

Method ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC

COV 100% 100% 100% 83.3% 50.0% 100% 100% 100% 100% 88.9% 66.7% 100%

Median 100% 100% 100% 94.4% 83.3% 100% 100% 100% 100% 77.8% 66.7% 83.3%

SD 96.2% 100% 93.1% 77.8% 66.7% 83.3% 100% 100% 100% 94.4% 100% 91.7%

Table 5.20: Performance metrics of classification mania-remission: accuracy (ACC), sensitivity
(SEN) and specificity (SPEC) for all methods using all feature selections for patient id 528 on a
time-based split dataset.

In the case of classification of mania state in patient id 528, the median value of the PCA

method of feature selection achieved better results than the max-diff approach. On the other

hand, for the COV method and the SD value method, the use of the max-diff dimensionality

reduction appeared to be more appropriate in terms of accuracy. The highest classification

accuracy 95% for this patient was obtained by both median value with PCA and SD value with

max-diff selection.
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Depression

Figure 5.60: Classification overview of all feature selections on depression-remission using all
methods for patient 808 on a time-based split dataset.

Depression-remission (time-based split dataset) patient 808

PCA method max diff pairs method

Train set Test set Train set Test set

Method ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC

COV 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Median 100% 100% 100% 100% 100% 100% 100% 100% 100% 92.3% 84.6% 100%

SD 100% 100% 100% 70.0% 100% 40.0% 100% 100% 100% 65.0% 30.0% 100%

Table 5.21: Performance metrics of classification depression-remission: accuracy (ACC), sensitivity
(SEN) and specificity (SPEC) for all methods using all feature selections for patient id 808 on a
time-based split dataset.



76 CHAPTER 5. RESULTS

In the case of depression classification in patient with id 808, the COV method achieved the

same results with both PCA and max-diff approach. For the median and SD value methods,

the use of PCA for dimensionality reduction seemed to be more appropriate from the accuracy

point of view. The highest possible classification accuracy of 100% for this particular patient

was achieved by both COV methods with both dimensionality reduction approaches and median

value with PCA.

Figure 5.61: Classification overview of all feature selections on depression-remission using all
methods for patient 869 on a time-based split dataset.

Depression-remission (time-based split dataset) patient 869

PCA method max diff pairs method

Train set Test set Train set Test set

Method ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC

COV 100% 100% 100% 100% 100% 100% 100% 100% 100% 80.8% 92.3% 69.2%

Median 95.2% 90.6% 100% 92.3% 84.6% 100% 100% 100% 100% 100% 100% 100%

SD 95.2% 96.9% 93.5% 57.7% 100% 15.4% 100% 100% 100% 69.2% 100% 38.5%

Table 5.22: Performance metrics of classification depression-remission: accuracy (ACC), sensitivity
(SEN) and specificity (SPEC) for all methods using all feature selections for patient id 86 on a
time-based split dataset.

In the case of depression classification in patient id 869, the COV method achieved better

results with the use of PCA. On the other hand, for the median and SD methods, the use of

PCA for dimensionality reduction seemed to be more appropriate in terms of accuracy. The

highest possible classification accuracy of 100% for this particular patient was achieved by both

COV with PCA and median value with max-diff selection.
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5.2.4.3 Results Summary

For the summary of the performance of the validation method using a 7-day window on individual

patient data, let us compare the results of the used methods and datasets. In general, as in

the previous analogous validation method over all patients, the mania-remission classification

had higher accuracy than the depression-remission on all datasets used. For the classification

of selected individual patients on the state-based dataset, the accuracy of mania-remission and

depression-remission was 100% and slightly lower at 81% and 82%, respectively. Because of

the strongly dependent samples in the time-based split dataset, the accuracy of classification

of clinical states of individuals was higher only for depression 100%, whereas for mania, this

accuracy slightly decreased to 92%, respectively 95%. The best performing method differed

depending on the classified patient and the selected dataset, thus it is not possible to single

out a specific one. The expected higher accuracy with data dependency between training and

testing datasets was only observed for the mania-remission classification, not for depression.

This may be due to the small number of samples for the same person and therefore very similar

dependencies.
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Chapter 6

Discussion

The initial aim of our research focused on established correlations between actigraphy-based

activity measures (specifically activity levels and sleep patterns) — and the clinical status of

individuals with BD. Our chosen novel approach was to investigate whether the covariance

structure among various actigraphy features underwent changes across different clinical states. To

achieve this our initial idea was to apply time series clustering using TICC algorithm. However, it

is important to note certain limitations of the TICC method, such as it is unsupervised approach

and dependence on a substantial number of data points. Given the daily granularity of our

dataset and the brevity of clinical states (e.g. median duration of mania episodes in our dataset

was 21 days and depression 25 days), these limitations required us to change our analytical

framework.

Due to the above limitations and considering the availability of clinical state labels, the logical

step in our methodology was to move to a supervised scenario. This transition facilitated a

more fine-grained and structured exploration of the complex relationship between the covariance

structure of actigraphy parameters and clinical conditions. We added methods based on the

median and SD value of actigraphy attributions in parallel to the COV methods. In addition, we

introduced dimension reduction approaches based on PCA and max-diff method based on the

maximal difference of the feature pair. We applied these methods on a clinician-labelled days

with actigraphy data from 92 BD patients. Unfortunately, only 18 patients had epoch of clinical

depression and remission at the same time, and (patients fulfilled the same criteria for mania.

Each of these three methods was used with one of two methods of reducing the dimensionality

of the symptom space - using the well-known PCA and using our proposed max-diff-based

method based on the maximal difference of feature pairs between clinical states. To evaluate

these methods, we used three validation scenarios: the leave-one-patient out cross-validation

method — distinguishing the entire clinical states of mania-remission, respectively depression-

remission, and two methods classifying time-series in a 7-day window across all patients and

for individuals. For this evaluation, three methods of creating training and testing sets were

used: patinet, state and time-based split, with the aim of creating independent, partially and

maximally dependent datasets to illustrate the upper and lower bounds for performance of the
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investigated methods.

The results of the supervised method show that distinguishing mania-remission is easier

than depression-remission. Another finding is that the variability between patients is quite high.

Using leave-one-patient-out cross-validation, an average accuracy of 72% for the classification

of mania-remission and 67% for the classification of depression-remission was achieved in both

cases using the SD value method with max-diff-based dimensionality reduction. Classification on

patient-based split data using the 7-day window across all patients achieved 67% accuracy in

the case of mania using the SD method and 59% accuracy in the case of depression using the

SD value method, in both cases with PCA features selection. On the state-based split dataset,

significantly better results of 85% were achieved in the case of mania, and the same accuracy

of 59% was achieved in the case of depression as in the previous dataset. Each time using the

method of median values with max-diff-based feature selection. For the time-based split dataset,

the most dependent one, the best results were achieved, as expected. For the classification of

mania 90% accuracy was obtained and 80% for depression, using the median value method

with max-diff-based feature selection. For the last validation scenario for a 7-day window for

each patient, 100% accuracy was achieved in the case of mania and 81%, 82%, respectively,

in the presented patients on the state-based split data. For time-based split data, depression

classification improved to 100%, while mania decreased to 92% and 95% respectively. This is

due to the very small number of sample per patient and thus the small difference between the

data splitting methods.

Considering our awareness of overfitting in supervised methods, it is crucial to comment on the

delicate balance between model complexity and generalisation. Despite our efforts to introduce

constraints and prevent overfitting on the classification set by tuning hyperparameters and

exploring different kernel functions, the results led to a significant deterioration in classification

accuracies even on the test set. Exploring these challenges contributes to a more comprehensive

understanding of the limitations and underscores the complex nature of the dataset and the task

underscores the complex nature of the dataset and the task.

6.1 Limitations

Results of this study need to be interpreted considering the following limitations: One of the

main limitations arises from the composition of the sample and validation sets. The data used

in this study includes a relatively limited number of samples, both in terms of patients and

days. The rarity of these samples is further exacerbated by the overall size of the original data

set. It is important to note that the scarcity of the data is attributed to the low frequency of

manic and depressive states in BD, which, despite their lower occurrence, should not undermine

their severity. Another limitation is the low sampling frequency of actigraphic features and their

annotations since only one sample per day was obtained.
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6.2 Future Work

For future work, the following main steps are to:

• Use supervised principal component analysis (sPCA) method to incorporate clinical state

label information into PCA to increase the usefulness of the extracted features for this

classification task.

• Include all removed clinical states (onsets and offsets of mania and depression) and convert

the classification task into a multi-class one.

• Include healthy control subjects in this study.
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Chapter 7

Conclusion

The aim of this work was to investigate the relationships between clinical status measured by

clinical self-report scales and actigraphic variables such as changes in sleep and physical activity.

Previous studies have shown significant but heterogeneous associations between actigraphic

parameters and clinical status. Therefore, we decided to focus on changes in the structures

of relationships between multiple actigraphic parameters during changes in clinical status.

The original idea was to use a very promising unsupervised approach to multivariate time series

clustering based on Toeplitz inverse covariance matrices [1]. However, by deeper investigation

and evaluation with suitable criteria on simulated data led us to the conclusion, it did not

appear to be a suitable method for our real data. Therefore, we implemented three supervised

methods using the SVM classifier beyond the scope of the assignment. The first method based

on the structures of covariance matrices (COV), and the other two based on the median and SD

values of actigraphic features.

The applied supervised methods showed the classification of clinical states based on multi-

variate actigraphy is feasible, however, the classification accuracy was relatively low, especially

in strict validation scenarios, where the models were applied to completely unseen patients. This

implicates that some level of patient-based individualisation or other approaches using per-patient

models should be investigated.

The approach based on the covariance structure showed higher performance when coupled

with the PCA, rather than with the automatic maximally differing feature pairs - the latter

being better performing when coupled with the feature SD or median values. Also, contrary to

our expectations, the covariance structure-based method did not outperform the variance (SD)

or value (median)-based multivariate methods.

To conclude, while the variability of activity markers has previously been shown to be

connected with clinical worsenings in BD, finding appropriate multivariate methods poses

a challenge, especially with respect to the difficulty of obtaining large-enough dataset on clinical

population.
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Supplementary

A Detailed Results of Leave-One-Patient-Out Cross-Validation

Method

COV median SD

id Days total Days state Reference Prediction Result Prediction Result Prediction Result

rem man rem man rem man rem man rem man

350 40 20 20 0 1 0 1 Both 0 1 Both 0 1 Both
353 43 21 22 0 1 0 0 One 0 1 Both 1 0 None
464 40 20 20 0 1 1 0 None 0 0 One 1 1 One
465 108 54 54 0 1 0 0 One 0 0 One 1 1 One
468 36 19 17 0 1 0 0 One 1 1 One 1 1 One
528 106 53 53 0 1 0 1 Both 0 0 One 0 0 One
577 33 17 16 0 1 1 1 One 0 0 One 0 1 Both
684 64 31 33 0 1 0 0 One 1 0 None 0 0 One
874 48 24 24 0 1 0 1 Both 0 0 One 1 1 One

Table 1: Classification results of mania-remission by LOOCV using COV, median, and SD
method with PCA approach

COV median SD

id Days total Days state Reference Prediction Result Prediction Result Prediction Result

rem man rem man rem man rem man rem man

350 40 20 20 0 1 0 0 One 0 0 One 0 1 Both
353 43 21 22 0 1 0 0 One 1 1 One 1 1 One
464 40 20 20 0 1 0 0 One 0 0 One 0 1 Both
465 108 54 54 0 1 0 0 One 0 0 One 0 0 One
468 36 19 17 0 1 0 0 One 0 1 Both 0 0 One
528 106 53 53 0 1 0 0 One 0 0 One 1 1 One
577 33 17 16 0 1 0 0 One 0 0 One 0 1 Both
684 64 31 33 0 1 0 0 One 1 0 None 0 0 One
874 48 24 24 0 1 0 0 One 0 0 One 0 1 Both

Table 2: Classification results of mania-remission by LOOCV using COV, median, and SD
method with max-diff approach
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COV median SD

id Days total Days state Reference Prediction Result Prediction Result Prediction Result

rem dep rem dep rem dep rem dep rem dep

144 112 56 56 0 1 0 0 One 1 1 One 1 1 One
331 32 16 16 0 1 0 0 One 1 1 One 1 1 One
333 84 41 43 0 1 0 1 Both 1 1 One 1 1 One
339 42 21 21 0 1 1 0 None 1 1 One 0 1 Both
350 36 18 18 0 1 1 0 None 1 1 One 0 0 One
465 50 24 26 0 1 0 0 One 1 1 One 1 1 One
468 36 19 17 0 1 0 0 One 0 1 Both 0 1 Both
573 106 53 53 0 1 1 0 None 1 0 None 1 1 One
574 68 33 35 0 1 0 0 One 0 0 One 1 0 None
575 52 25 27 0 1 1 1 One 0 1 Both 1 0 None
577 40 20 20 0 1 0 0 One 1 1 One 1 1 One
681 42 21 21 0 1 0 0 One 1 1 One 1 1 One
684 64 31 33 0 1 0 1 Both 0 1 Both 1 0 None
804 42 22 20 0 1 0 1 Both 0 0 One 1 0 None
806 47 24 23 0 1 0 1 Both 1 1 One 1 1 One
808 95 48 47 0 1 0 1 Both 1 1 One 1 1 One
811 50 25 25 0 1 0 1 Both 1 1 One 1 0 None
869 113 56 57 0 1 0 1 Both 1 1 One 1 1 One

Table 3: Classification results of depression-remission by LOOCV using COV, median, and SD
method with PCA approach

COV median SD

id Days total Days state Reference Prediction Result Prediction Result Prediction Result

rem dep rem dep rem dep rem dep rem dep

144 112 56 56 0 1 0 0 One 1 1 One 0 0 One
331 32 16 16 0 1 0 0 One 1 1 One 0 1 Both
333 84 41 43 0 1 0 0 One 1 1 One 0 1 Both
339 42 21 21 0 1 0 0 One 0 0 One 1 1 One
350 36 18 18 0 1 0 0 One 1 1 One 0 1 Both
465 50 24 26 0 1 0 0 One 1 1 One 0 0 One
468 36 19 17 0 1 0 0 One 1 1 One 0 0 One
573 106 53 53 0 1 0 0 One 0 0 One 0 0 One
574 68 33 35 0 1 0 0 One 0 0 One 0 0 One
575 52 25 27 0 1 0 0 One 0 1 Both 0 1 Both
577 40 20 20 0 1 0 0 One 1 1 One 0 0 One
681 42 21 21 0 1 0 0 One 1 1 One 0 0 One
684 64 31 33 0 1 0 0 One 0 1 Both 0 0 One
804 42 22 20 0 1 0 0 One 0 0 One 0 1 Both
806 47 24 23 0 1 0 0 One 1 1 One 1 1 One
808 95 48 47 0 1 0 0 One 0 1 Both 0 1 Both
811 50 25 25 0 1 0 0 One 0 1 Both 0 0 One
869 113 56 57 0 1 0 0 One 1 1 One 1 1 One

Table 4: Classification results of depression-remission by LOOCV using COV, median, and SD
method with max-diff approach
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