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Abstrakt / Abstract

Alzheimerova choroba (ACH) je nej-
častější příčinou demence. Narušení
sociálního chování je často časným
příznakem ACH, který se typicky ob-
jevuje před nástupem poruch v oblasti
kognitivních funkcí.

Hlavním cílem této práce je vytvoření
algoritmů pro automatickou detekci a
klasifikaci různých typů specifických
sociálních interakcí u transgenních
potkanů TgF344-AD - animálního mo-
delu Alzheimerovy choroby. Potkani byli
pozorováni pomocí kamer z více úhlů,
což umožnilo sledovat pohyb potkanů v
trojrozměrném souřadnicovém systému.
Potkani byli pozorováni během testu
sociální interakce, při němž se neznámí
jedinci primárně zkoumají očicháváním
anogenitální oblasti, hlavy nebo zbytku
těla v uzavřené aréně.

Práce prezentuje implementaci vhod-
ných metod rozpoznávání akcí, vytvo-
ření datových sad obsahujících akce
potkanů, využití softwaru jako je De-
epLabCut pro získání polohy potkanů
a využití více kamerových pohledů pro
zlepšení odhadu polohy a sledování iden-
tity potkanů. Naše metody spolehlivě
klasifikovaly akce potkanů a, pokud to
bylo platné, iniciátora akce. Práce také
zahrnuje statistickou analýzu pro po-
rovnání sociálních interakcí u potkanů
TgF344-AD a F344 (kontrolní skupina),
s využitím klasifikace z vyvinutých
metod na získaných videozáznamech.
Nenašli jsme žádné významné rozdíly
mezi TgF344-AD a F344 ve vybraných
akcích.

Klíčová slova: Rozpoznávání akcí, Al-
zheimerova choroba, počítačové vidění,
hluboké učení, odhad polohy.

Alzheimer’s disease (AD) is the most
common cause of dementia. Disruption
in social behavior is often an early
symptom of AD, typically appearing
before the onset of cognitive domain
symptoms.

The main focus of this work is the
creation of algorithms for the automatic
detection and classification of various
types of specific social interactions in
transgenic TgF344-AD rats - an ani-
mal model of Alzheimer’s disease. The
rats were observed using cameras from
multiple views, which allowed the as-
sessment of the rat’s motion in a 3D
coordinate frame. The rats were ob-
served during a social interaction test,
in which unfamiliar individuals primar-
ily examine each other by sniffing the
anogenital area, head, or the rest of the
body in a closed arena.

The work presents the implemen-
tation of suitable action recognition
methods, the creation of datasets com-
prehending the rat’s actions, utilizing
software such as DeepLabCut to ob-
tain the pose of the rats, and utilizing
the multiple camera views to improve
the rat’s estimated pose and identity
tracking. Our methods managed to
classify the rat’s actions reliably and, if
applicable, the initiator of the action.
The work also includes a statistical
analysis to compare the social inter-
actions in TgF344-AD and F344 rats
(control group), using the predictions
from the developed methods on the
obtained video footage. We did not
find any significant differences between
the TgF344-AD and F344 in denoted
actions.

Keywords: Action recognition,
Alzheimer’s disease, Computer vision,
Deep learning, Pose estimation.
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Chapter 1
Introduction

The Alzheimer’s disease (AD) is the most common cause of dementia and represents a
significant public health problem. Disruption of social behavior is often an early symp-
tom of AD, which frequently appears before the onset of cognitive impairments. The
main objective of this project is to develop algorithms for the automatic detection and
classification of various types of specific social interactions in rodents, both transgenic
TgF344-AD rats - an animal model of Alzheimer’s disease and healthy control rats.

By using multiple cameras and pose estimation software such as DeepLabCut, we
will be able to track the points of interest on the rodent’s bodies, and we will be
able to preprocess the tracked points and work in a 3D coordinate system to obtain a
more detailed representation of the animal skeleton. We will be able to observe rodent
behavior during a social interaction test, in which unfamiliar individuals investigate
each other primarily by sniffing the anogenital area, head, or body by developing and
employing action recognition algorithms and deep learning. The action recognition
methods will be evaluated on prelabeled datasets such as Pair R24-M or self-made
datasets obtained for the TgF344-AD and control rats.

By comparing the behavior of the transgenic rat’s AD model to that of healthy
control rats, we aim to identify specific changes in social behavior that may serve
as early diagnostic markers for AD. Furthermore, a better understanding of the social
behavior of TgF344-AD rats may lead to the development of targeted treatment options
and slowing the disease’s progression.

1.1 Alzheimer’s Disease
AD is the most common type of dementia, described as a fatal degenerative dementing
disorder with initial mild memory impairment that can progress to a total loss of cogni-
tive and physical abilities. AD affects 10-15% of people over 65 years. Put in numbers,
around 50 million patients (dating year 2020) worldwide are affected by AD, with an
estimated 152 million patients by the year 2050. There is no cure for AD, but there are
available treatments that can improve the symptoms. [1]

The pathological hallmarks in the brain of AD patients can be categorized into two
classes of abnormal structures on a cellular level. The extracellular deposits of insol-
uble amyloid-𝛽 protein (amyloid-𝛽 plaques) and intracellular aggregates or tangles of
hyperphosphorylated tau protein which is accompanied by neuronal loss and gradual
atrophy of the parts of the brain that mediate memory and cognition. The behavioral
symptoms of AD correlate with the accumulation of plaques and tangles. [2]

The symptoms of AD depend on the stage of the disease, which progresses with
age. AD is classified into preclinical, mild, and dementia stages depending on the
degree of cognitive impairment. In the early stages and most commonly, the initial
symptom is episodic short-term memory loss with relative sparing of long-term memory.
That is followed by deterioration in problem-solving, judgment, executive functioning,
lack of motivation, disorganization, abstract thinking, and problems with multitasking,

1



1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
leading to several behavioral dysfunctions [3]. Because AD is currently not treatable,
it is important to focus on early diagnostics, studying behavioral changes (that are
present with AD), and could be an indication to treat the patient before manifestation
of dementia.

1.1.1 AD and Social behavior
Social withdrawal is one of the earliest noticeable non-cognitive symptoms, occurring
up to almost three years before the diagnosis in 40% of AD patients. By degenerating
cells in the brain, AD impacts the patient’s memory, including social memory [4]. The
patients with AD show deficits in social cognition, emotion recognition, and empathy
– the patients have difficulties recognizing known faces, reconstructing memories, or
interpreting social signals, which also leads to anxiety and isolation of the affected
patient [5].

1.1.2 Forms of AD
AD can be categorized into two primary forms – familial and sporadic. The sporadic
form is common (95% of AD cases) and can affect people older than 65 years without
genetic predisposition [6]. The familial form represents �5 % of AD and can affect people
much younger (starting at the age of twenty) [7]. Emerging due to gene mutations (in
APP, PSEN1, and PSEN2 genes), individuals suffering from familial form have a high
probability of fully developing AD. Because the familial form is hereditary with a known
genetic background, it can be imitated in animal models by using genetic engineering
tools [8].

1.1.3 Animal Models
To study and understand a disease, we can model a non-human organism to mimic
the aspects of biological processes, symptoms, or diseases found in humans. These
models are often genetically engineered. In the context of AD, the most commonly
used experimental animal models are transgenic mice or rats, which overexpress human
genes associated with familial AD, leading to the formation of amyloid plaques [9].
While these models are essential for understanding the pathology of AD and finding
potential treatments for humans, they might be limited due to disparities with humans,
such as lifespan or brain structure [10].

1.1.4 Transgenic Model TgF344-AD
The transgenic rat model TgF344-AD expresses the mutation of APP and PSEN1 genes
[11]. Starting at the age of six months, the model shows an age-dependent accumulation
of amyloid plaques in the hippocampus (major structure for learning and memory)
and cortex [12]. While at that age, cognitive impairments are usually not observed
[13], at the age of eight months, the model starts to indicate cognitive impairments
[14]. The social behavior of the TgF344-AD model has not been fully described yet,
although impairments of social behavior are common neuropsychiatric symptoms in the
preclinical stage of AD.

For a thorough understanding of the social behavior of the rats, it is necessary to
develop sensitive instruments that can detect specific changes in social interactions. For
that, we aim our project to develop action recognition models that target rats’ social
behavior and work in a 3D reconstructed scene depicting the detailed rat behavior.
That allows us to look at the tracked animals and their interactions in a much more
detailed view while also working under conditions that are more natural for the animals
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(e.g., an open arena, where the animals can freely interact without the use of distinctive
markers on their bodies, which could attract the attention of another individual, etc.).
Understanding social behavior in the early stages of AD can be essential for better and
early diagnosis of the disease.

1.2 Pose Estimation
To successfully classify actions, the individual’s pose needs to be determined. Pose
estimation refers to a process of determining the spatial orientations and positions
of specific body parts of an individual (human or animal), standardly from image or
video data [15]. The pose can be expressed through joint position – keypoints or angles
between body parts (for example, ankle, hip, etc.). These keypoints are typically defined
in a 2D or 3D coordinate frame. Pose estimation is pivotal in action recognition as it
enables the extraction of meaningful information regarding the subject’s movements and
interactions. Such information can be used in sports [16], healthcare and rehabilitation
– patient monitoring or physical therapy, or behavioral studies, providing insights into
behavioral patterns, social interaction and cognitive processes – whether human or
animal.

Historically, the field was constrained by data availability and computational re-
sources, leading researchers to focus on handcrafted features. However, a growing
number of pose datasets (considering human pose estimation – HPE) and the advance-
ments in deep learning have dramatically increased the accuracy and efficiency of pose
estimation algorithms [17].

Advancements in deep learning, specifically regression methods, have catalyzed a
methodological shift in pose estimation techniques. Toshev and Szegedy proposed a
cascaded deep neural network regressor named DeepPose to learn keypoints from images
[18], making extensive use of Convolutional Neural Networks (CNNs) in Pose Estimation
[19].

CNNs operate through convolutional layers that employ filters to capture spatial
features from input images, starting with simple edges and textures, and building up to
complex structures that can represent parts of the body such as limbs. In the context
of Pose Estimation, CNNs solve a regression problem of pointing the coordinates of a
keypoint on the individual’s body [18].

Multiple algorithms have been published over the past decade for pose estimation
(e.g., OpenPose, DeepLabCut, SLEAP or DeeperCut). These algorithms allow for
utilizing pre-trained networks or training new networks by a rather small number of
labeled examples [20]. In this work, the DeepLabCut (DLC) algorithm will be employed
[21].

DLC is based on multi-task convolutional neural networks (CNNs) by predicting score
maps that encode the probability of a keypoint occurring at a particular location and
location refinement fields (predicting offsets). To solve a problem of multiple individuals
(ergo the CNN predicts the location of a keypoint for more individuals), DLC employs
a network to predict Part Affinity Fields (PAFs) to assemble keypoints into shapes that
define an animal (or a human). Several networks can be used for the pose estimations
in the DLC framework, such as adapted ImageNet, pretrained ResNets, EfficientNets,
or a multiscale DLCRNet-ms5 [21].

PAFs are set of flow fields encoding unstructured pairwise relationships between
different keypoints (essentially, a 2D vector field for each limb, e.g., right shoulder and
right elbow, with each vector in the field pointing along the direction of the limb) [22].
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PAFs provide a structured, spatially coherent representation of the detected keypoints
into full-body poses, especially in scenarios where multiple subjects are present in an
image [22].

1.3 Tracking
In the context of pose estimation, tracking involves following the identified keypoints
across sequential frames in a video and determining a constant identity through time for
the given individual. Such a task can be difficult, especially with multiple individuals
present in a video, where occlusions of the individuals occur. A common approach
involves algorithms that predict the position of a keypoint in the subsequent frame
based on its previous positions or state, such as the Kalman Filter [23], up to deep
learning methods such as DeepSort or Detection Embeddings for Tracking (DEFT)
[24].

The Kalman Filter is a predictive model that estimates the future state 𝑥 ∈ ℜ𝑛 (2D
or 3D points in the case of pose estimation) based on its previous states, adjusting
predictions with new observations, defined as follows:

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘 + 𝑤𝑘−1 (1.3.1)

With a measurement 𝑧 ∈ ℜ𝑚 that is:

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘 (1.3.2)

Where 𝑣𝑘 and 𝑤𝑘 represent the process and measurement noise, respectively, and are
assumed to be independent with normal probability distributions. 𝐴 (𝑛 × 𝑛) represents
the state transition from the previous time step 𝑘 − 1 to the state at the current time
step 𝑘, and 𝐵 (𝑛×𝑙) represents the optional control input 𝑢 ∈ ℜ𝑙 to the state 𝑥. Matrix
𝐻 (𝑚 × 𝑛) relates the state to the measurement 𝑧𝑘 and 𝑥𝑘 denotes the state at time
step 𝑘 [25].

DeepSORT extends the SORT (Simple Online and Realtime Tracking)[23] algorithm
by incorporating a deep learning-based model to maintain identities across frames.
DeepSORT combines motion information predicted by a Kalman Filter with appearance
information gained from a deep neural network to perform robust tracking, even in the
presence of occlusion and overlapping objects [26].

DEFT represents a current state-of-the-art tracking-by-detection system. Compared
to the methods mentioned above, DEFT optimizes tracking and detection simultane-
ously in a single deep neural network. The detection backbone of the network extracts
object embeddings that are used in a matching head of the network to associate ob-
jects during training – the appearance is extracted from multiple receptive fields, which
provides additional robustness. The matching head then estimates similarity scores
between all pairs of detections across the frame at the current and previous steps. As
the motion model DEFT uses motion forecasting based on the LSTM module (a form
of Recurrent Neural Network – see 1.4), which replaces the form of motion model based
on Kalman Filter [24].

In the case of DLC, the tracking is approached as a global minimization problem,
where connecting two candidate tracklets (tracklets represent a path that a particular
keypoint takes across a number of consecutive frames) incurs a cost inversely propor-
tional to the likelihood that they belong to the same track, solving the problem by
optimization techniques. The simplified problem could be defined as follows:

𝐴∗ = arg min
𝐴

∑
𝑖,𝑗

𝐶(𝑖, 𝑗)𝐴(𝑖, 𝑗) (1.3.3)
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Where 𝐴 is the assignment matrix, indicating a keypoint 𝑖 is assigned to keypoint 𝑗 in
the next frame or otherwise, and 𝐶 is the cost function, typically based on the distance
between keypoints and other relevant features. This approach is applied in difficult
cases where, for example, occlusions occur. In the case of the frames where multiple
subjects are distinguishable by the distance between them, a simple online tracking
approach is applied [21].

1.4 Action Recognition
In the field of computer vision, action recognition is a critical task for human-computer
interactions, surveillance, and healthcare to behavioral analysis [27]. The task of ac-
tion recognition is to identify and classify various actions (human or animal) within a
sequence of images or videos and such models need to capture the complex spatial and
temporal dynamic of the actions.

Such dynamics can be captured in various data modalities, such as hand-crafted fea-
tures, skeletal data (refer to Section 1.2), or RGB [28]. Traditional methods relying on
the hand-crafted features derived from the images (descriptors like Histogram of Ori-
ented Gradients or Optical Flow) classify sequences using machine learning techniques
such as Support Vector Machines and Hidden Markov Models [29]. However, due to
the widespread use of deep learning, methodologies like CNN, GCN (graph convolu-
tion network), RNN (recurrent neural network), or their combination can successfully
capture the complex spatial and temporal patterns necessary for recognizing actions.

The GCN defines a first-order approximation of localized spectral filters on graphs,
which can be understood as a generalization of CNN to graph-structured data, perform-
ing graph convolutions across the nodes connected by edges [30]. The approximation
is defined as [30]:

𝑋𝑜𝑢𝑡 = 𝜎 (�̃�− 1
2 ̃𝐴�̃�− 1

2 𝑋𝑖𝑛𝑊 𝑙) (1.4.1)

Where 𝑋𝑖𝑛 represents the input features, ̃𝐴 represents the adjacency matrix, �̃� is the
diagonal degree matrix of ̃𝐴, 𝑊 represents the trainable weights and 𝜎 denotes the
activation function. The RNN maintains a memory while processing sequential data
through internal states, based on which the RNN can make a prediction for the current
prediction step [31].

For the CNN approach, the prior inputs are the RGB images of given sequences.
The model’s backbone is often a 2D CNN, which learns the spatial dependencies of the
images and is followed by RNN-LSTM (long short-term memory) layers to capture the
temporal dynamics [27]. A 3D CNN can also capture the spatial-temporal dependencies
of the sequence, where the images are represented as motion cuboids, which, instead
of an original image, represent absolute difference frames – attained by subtracting the
earlier frame 𝑡 with current frame 𝑡 + 1 on a pixel-by-pixel basis [32]:

𝐷𝑡(𝑥, 𝑦) = |𝐼𝑡(𝑥, 𝑦) − 𝐼𝑡+1(𝑥, 𝑦)| (1.4.2)

Where 𝐼𝑡(𝑥, 𝑦) is the value at image pixel (𝑥, 𝑦), and 𝐷𝑡 is the resulting motion cuboid
at time step (frame) 𝑡. These networks are mainly used for clip-level learning (e.g., 16
frames in each clip) [28].

The CNN approach can also be used on the skeletal data (3D coordinates), where
an image representing a given sequence is obtained from the coordinates of given joints
(JTM – joint trajectory map) [33]. Each pixel in the image can encode the spatial po-
sition of the joint (e.g., x,y,z coordinates, rotation with respect to the other joints) and
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the temporal dependencies [34]. The performance of the coordinate visualization meth-
ods based CNN models can be enhanced using a proper tree structure with reference
joints [35].

The GCN approach focuses on the skeletal data – 2D or 3D coordinates represented
as graph structures with nodes and edges. In such a structure, a node can be defined by
its spatial coordinates, while the edges can encapsulate a link between the given joints
on a body or attributes such as distance between connected nodes. A variety of links
(edges between the nodes) can then be employed to capture the spatial and temporal
dependencies in the sequences (Spatial-Temporal GCN – ST GCN) [36]. ST GCN
approach can then be extended to an Actional-Structural GCN (AS-GCN) or Adaptive
GCN, which employ encoders [37] or backpropagation algorithms, respectively, to adapt
the graph topologies dynamically [36].

Aggregating these modalities and approaches in a multi-modal network can result
in more accurate and robust action recognition [28]. For example, the Model-Based
Multimodal Network (MMNet), fuses skeleton and RGB modalities by a model-based
approach [38].

1.5 3D Reconstruction
To obtain a more detailed view of a scene acquired on an image or video in two-
dimensional space, 3D reconstruction techniques can be employed to extrapolate spatial
depth and provide a three-dimensional representation – improving the understanding
and analysis of the spatial relationships within the scene. The three-dimensional rep-
resentation can be reconstructed if multiple views of the scene are available. The most
common methodologies for 3D reconstruction from 2D keypoints are Stereo Triangula-
tion or Direct Linear Transformation (DLT).

The stereo triangulation can be described such as – given a point 𝑃 in 3D coordinate
system and its projections 𝑝1 and 𝑝2 in two different camera views, the 3D coordinates
of 𝑃 can be determined by finding the intersection of two straight lines originating from
the camera centers and passing through 𝑝1 and 𝑝2, respectively, defined as follows [39]:

𝑝1 = 𝑀1𝑃

𝑝2 = 𝑀2𝑃 (1.5.1)

Where 𝑀1 and 𝑀2 are the projection matrices of the two cameras (which can be com-
puted out of the camera’s intrinsic and extrinsic parameters). Solving these equations
leads to a reconstructed point 𝑃 in the 3D coordinate system, typically with linear
triangulation.

DLT establishes a linear relationship between the point 𝑃 in the 3D coordinate system
and its 2D projections into the image through the corresponding camera matrices, which
can be defined as follows [39]:

𝑃 = [𝑋, 𝑌 , 𝑍, 1]𝑇

𝑝2𝐷 = [𝑥, 𝑦, 1]𝑇

Where the relationship between the 3D point 𝑃 and its 2D projection 𝑝2𝐷 can be defined
as 𝑝2𝐷 = 𝑀𝑃 with 𝑀 being the camera projection matrix. A set of linear equations is
constructed for every point in the 2D projection based on the camera matrices into a
matrix 𝐴, and the solution is found by a Singular Value Decomposition (SVD) [39].
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Chapter 2
Data

2.1 Hardware Setup
For the execution of experiments, model training, data acquisition, and preprocessing,
we assembled the following hardware setup:

. Processor: Intel Core i9-9900K with 8 physical cores (16 threads). Motherboard: GIGABYTE Z390 UD - Intel Z390. CPU Cooler: Scythe SCFM-1100 FUMA Rev.B. RAM: HyperX Fury Black 32GB (2x16GB) DDR4 3200. System Drive: WD SSD Blue 3D NAND, 2.5 - 500GB. Data Processing Drive: Transcend MTE220S, M.2 - 1TB. Data Storage and Archiving Drive: Seagate IronWolf, 3.5 - 6TB. Power Supply: Seasonic Focus Plus Gold - 750W. Graphics Card: GeForce RTX 3080 VISION OC 10 GB. Additional Hardware: Mounted with 4x USB 3 PCIe cards AXAGON PCEU-43V. Software: Microsoft Windows 10 Pro EN 64bit DVD OEM. Cameras: 4x Intel® RealSense™ Depth Camera D435

2.2 Camera Setup
To record the behavior of the rats within the arena, four Intel® RealSense™ D435
cameras were positioned in a quad view setup, each at a ninety-degree angle. Utilizing
a Python 3.10 environment and the pyrealsense2 library (version 2.53.1.4623), these
cameras were configured to capture videos at a resolution of 1280 x 720 at a rate of 30
frames per second. Due to the absence of necessary pins for RGB frame acquisition on
the camera chip, hardware synchronization of the cameras was not feasible. Therefore,
software synchronization was implemented. While this approach posed a risk of losing
a few frames, any such loss was insignificant and did not proportionately impact our
data acquisition process. The camera quad view setup with the rat’s arena can be seen
in Figure 2.1.
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Figure 2.1. The setup of the quad view camera system built for capturing our experiment
video footage.

2.3 Animals
TgF344-AD (N = 8 males, AD group) and F344 (N = 8 males, WT group) rats were used
for social interaction tests. The rats were bred in the Animal Facility of the Institute of
Physiology CAS and used for the experiments at the age of 6 and 10 months. The rats
were housed in pairs in a room with controlled conditions (22 °C, 50–60% humidity, 12
h light/dark cycle) and dimmed light (11 lux) to avoid retinal degeneration. At the age
of 3 weeks, a small piece of tissue was collected from the tip of the tail and used for
genotyping. All animal treatment complied with the Animal Protection Code of the
Czech Republic and the European Community Council directive (2010/63/EC).

2.4 Experiment Setup
For each experimental session, a ten-minute video of two rats interacting in an open
arena was acquired by the quad-view camera setup. To observe the behavioral patterns
that could potentially be related to AD, the pairs of rats were placed on a square-
shaped acrylic arena with dimensions 50x50x45 [cm]. The arena was cleaned before
each session (the 10-minute video-recording of two rats) with a 30% alcohol solution.
To differentiate between the studied rats, we added a mark in the form of color stripes
on the rat’s tails. We used two groups of rats: the transgenic model TgF344-AD (will
be described as AD, refer to Section 1.1.4) and the healthy control specimen F344 (WT
as wild type). Individual pairs of rats were placed in the arena to interact. The pairing
based on the type was WT-AD, WT-WT, AD-AD. We performed two experiments -
Experiment 1 when the rats were 6 months old and Experiment 2 when the rats were
10 months old. Each experiment consisted of two subsequent recording days - Day 1
(habituation, familiar rats in pairs) and Day 2 (interaction, unfamiliar rats in pairs).
Habituation day combinations are described in Table 2.1.

Specific unfamiliar rat pairings were established for Day 2 for each experiment to
focus on the rat’s social interactions rather than their exploration of the arena. In-
teraction day combinations are described in Table 2.2 (the index after the rat type
indicates the specific identity of the rat within that type).
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Day 1 (Habituation) Combinations

AD1 AD2
AD3 AD4
AD5 AD6
AD7 AD8
WT1 WT2
WT3 WT4
WT5 WT6
WT7 WT8

Table 2.1. Table describing the experiment’s pairings of Day 1 (Habituation).

Day 2 (Interaction) Combinations
Age: 6 Months Age: 10 Months
AD1 WT1 AD1 WT2
AD5 AD7 AD5 AD8
AD2 WT2 AD2 WT1
WT5 WT7 WT5 WT8
AD3 WT3 AD3 WT4
AD6 AD8 AD6 AD7
AD4 WT4 AD4 WT3
WT6 WT8 WT6 WT7
AD1 AD3 AD2 AD3
AD5 WT5 AD6 WT5
WT1 WT3 WT2 WT3
AD6 WT6 AD5 WT6
AD2 AD4 AD1 AD4
AD7 WT7 AD8 WT7
WT2 WT4 WT1 WT4
AD8 WT8 AD7 WT8

Table 2.2. Table describing the experiment’s pairings of Day 2 (Interaction).

To see the dependency of the rats’ social interactions on the progression of AD, this
experiment was conducted on two different ages of the rats - at six months and ten
months of age, as stated above.

Note: The experiments conducted at the different ages of the rats were conducted
in a different combination for Day 2 to pair unfamiliar rats. The experiments were
conducted in low-light conditions.

2.5 Camera Calibration
For each experiment set, a camera calibration was done. Cameras were calibrated
using a checkerboard pattern and MATLAB calibrations toolbox. A video capturing
the checkerboard moving within the quad camera setup’s field of view was recorded, and
representative images for each camera were extracted and utilized within the calibration
toolbox to compute the intrinsic and extrinsic parameters of the cameras.
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The checkerboard pattern was generated as follows: 9 x 12 black and white squares

with a side length of 31 millimeters.
In our setup, Camera 1 was stated as the reference camera, with its rotation and

translation parameters set to 0. Therefore, the spatial configuration of the other cam-
eras was determined relative to Camera 1. The calibration process involved calibrating
Camera 1 with each of the other cameras in pairs, i.e., 1-2, 1-3, and 1-4.

2.6 Data Acquisition

After acquiring experiment video footage by the quad view camera setup, pose estima-
tion and tracking were employed by DeepLabCut (DLC). The DLC model was trained
to recognize a pose of nine selected keypoints on the rat’s body. These keypoints were
selected to represent the whole body of the given rat with consideration of the actions
that we wanted to recognize – limbs and tail were omitted. The selected keypoints are
described in Table 2.3. As the DLC model, we trained DLCRNet-MS5.

Keypoint Index Keypoint

P1 Snout
P2 Left Ear
P3 Right Ear
P4 Spine 1
P5 Spine 2
P6 Spine 3
P7 Spine 4
P8 Spine 5
P9 Tail-Base

Table 2.3. Table of keypoints and their corresponding anatomical locations.

DLC setup based on this configuration provided the representation of the rat’s body
in each frame with the identification of the rat based on the DLC tracking (if successful).
Cases where DLC may have misinterpreted the pose or tracking are discussed and
addressed in the following sections. To view the DLC configuration and setup, refer to
Appendices Section.

2.7 Video analysis

Videos were divided into twenty-second segments using the FFmpeg library (version
0.2.0) to limit the possibility of long-term identity swaps. Each segment is then pro-
cessed independently. A preliminary five-second gap is introduced before the video
cutting and analysis to allow for camera stabilization and experiment initialization.
Manual identification of subjects is performed in the first available frame. The seg-
mented videos are subsequently analyzed using the trained DLC model, employing a
skeleton tracking method for increased reliability (refer to Appendices Section).
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2.8 Data Pre-processing
Following the acquisition of two-dimensional coordinates for each video frame from DLC
analysis, it was imperative to preprocess the coordinates to ensure their reliability and
robustness across all models. To briefly summarize the DLC pose estimation and track-
ing, given a video with 600 frames, considering four views for each of the two animals,
we obtained 4800 instances of tracked points. Each instance represents a frame from
a specific view and contains the spatial coordinates of all identified keypoints for the
animal present. Out of these, 3600 instances had correctly assigned positions for mark-
ers (estimated or predicted keypoint with information of their position in the image,
identification of the animal, and identification of the body part – such as snout). The
correctly assigned position was determined by the likelihood of the marker’s coordinate
estimation provided by DLC. The likelihood threshold (𝑇𝑙 = 0.95) was set for the sum
of the likelihoods of the nine selected points in a single frame for one rat. Based on
𝑇𝑙, approximately 0.75 fraction of the analyzed frames accurately represented one rat’s
position. The preprocessing stage involved missing data imputation in a spatial and
temporal manner and outlier detection to address this issue. The preprocessing stage
also involved determining the location of 2D coordinates from multiple views in a 3D
coordinate system using the extrinsic and intrinsic parameters of the calibrated cameras
and triangulation methods.

2.9 3D Coordinate Reconstruction from Multi-View 2D
Projections

To depict the rat’s activity, orientation, and movement patterns, we decided to trans-
form the 2D coordinates into 3D space. Given the option of quad-view recording the
system, where cameras were arranged at 90-degree angles relative to each other, we
could capture the essential features from all sides of the rat’s body. Two primary meth-
ods were considered to perform the 3D reconstruction from 2D coordinates: Direct
Linear Transformation (DLT) and stereo triangulation (refer to Section 1.5). The 3D
reconstruction was done for each marker estimated in at least two of the four views for
a given frame.

The stereo triangulation was employed with the function ’triangulate’ available in
MATLAB, which utilizes pairs of coordinates from various camera view combinations
and their corresponding camera matrices as inputs. After processing all view combi-
nations, the final 3D coordinates were derived by computing the column-wise mean of
the resulting matrix.

To employ the DLT, we used Singular Value Decomposition (SVD) as described
in Section 1.5. The right singular vectors from matrix 𝑉 (computed from the SVD)
corresponding to the three largest singular values are utilized to derive the homogenous
coordinates of the 3D point. To transform these coordinates back to the Cartesian
system, they are divided by the fourth component of the corresponding singular vector.

Triangulation methods were compared using a sum of squared reprojection errors
across all four views. With our current setup and DLC estimated markers, the DLT
method proved more robust, in addition to a faster computation.

To optimize the solution provided by DLT, we used the acquired 3D coordinates as
an initial guess for a Levenberg-Marquardt iterative method (employed in MATLAB).
The objective function for the optimization was the reprojection error. The error was
computed for each 3D point by projecting it back onto each camera plane using the
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respective camera matrices and then computing the Euclidian distances between the
reprojected 2D points. The total reprojection error to be minimized was then computed
as the sum of these distances across all camera views, defined as follows:

𝐸∗ =
𝑉

∑
𝑖=1

𝑀
∑
𝑗=1

𝐸𝑖,𝑗 =
𝑉

∑
𝑖=1

𝑀
∑
𝑗=1

∣∣𝑃 ′
2𝐷,𝑖,𝑗(𝑥, 𝑦) − 𝑃2𝐷,𝑖,𝑗(𝑥, 𝑦)∣∣ (2.9.1)

Where M is the number of markers (18; both rats), V is the total number of views
(4), 𝐸∗ is the total reprojection error, 𝐸𝑖,𝑗 is the reprojection for the given view 𝑖 and
marker 𝑗, 𝑃 ′

2𝐷,𝑖,𝑗 is the reprojected marker’s 𝑗-th position for view 𝑖 in the 2D coordinate
system, and 𝑃2𝐷,𝑖,𝑗 is the marker’s 𝑗-th position for view 𝑖 in the 2D coordinate system
estimated position by DLC.

2.10 3D Coordinate Spatial Imputation
The number of instances where markers were missing in the 3D space was minimized
using the information from multiple camera views if estimated in at least two of them.
When a marker was not estimated in one or two views – potentially due to occlusion or
limitations within the DLC estimations, it could have been projected to the 3D space
using other views. However, if the point was not estimated in more than two views
simultaneously for a given frame, then the marker was absent in the 3D coordinate
system, necessitating the implementation of spatial imputation methods. To address
these instances, we employed two primary methods for spatial imputation: Point Dis-
tribution Models (PDM) and geometric rule-based approaches (refer to Sections 2.10.1
and 2.10.2, respectively). These methods enabled a robust reconstruction of the 3D
coordinates, even if the position of the marker or more was missing. The geometric
rule-based imputation preceded the PDM to lower the number of markers the PDM
had to estimate and the mean squared error (MSE) – refer to Experiments sections 4.2
and 4.3.

2.10.1 Point Distribution Model for 3D coordinate Imputation
To train a PDM [40], each of the shapes (defined by nine markers in the 3D coordinate
system) had to be aligned, and valid shapes for training had to be selected. Such shape
was again selected by the likelihood of the DLC estimations, using the threshold 𝑇𝑙 (see
Section 2.8), however, the sum of the likelihoods was done across all views for the given
instance. To define whether a shape in the 3D coordinate system is considered valid,
the following criterion was used:

𝑉
∑
𝑖=1

𝑀
∑
𝑗=1

𝐿𝑖,𝑗 ≥ 𝑇𝑙𝑉 𝑀 (2.10.1.1)

Where V is the total number of views, M is the total number of markers, and 𝐿𝑖,𝑗 is
the likelihood of estimating marker 𝑗 in view 𝑖.

A reference shape had to be selected to rigidly align all valid shapes, and the trans-
formation (rotation, translation, and scaling) minimizing the sum of squared distances
in the 3D space had to be found. The objective function was defined as follows:

𝐸 =
𝑀

∑
𝑖=1

𝑤𝑖 ∣∣𝑠𝑅(𝛼, 𝛽, 𝛾) ⎛⎜
⎝

𝑥𝑖
𝑦𝑖
𝑧𝑖

⎞⎟
⎠

+ ⎛⎜
⎝

𝑡𝑥
𝑡𝑦
𝑡𝑧

⎞⎟
⎠

− ⎛⎜
⎝

𝑥0𝑖
𝑦0𝑖
𝑧0𝑖

⎞⎟
⎠

∣∣

2

(2.10.1.2)
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Where M is the number of markers, 𝑤𝑖 are weights for each marker (set as one for each
marker being equally important), R is the rotation matrix (refer to equation 2.10.1.3),
s is a scaling factor, (𝑡𝑥, 𝑡𝑦, 𝑡𝑧) are the translations, (x, y, z) are the coordinates of the
markers to be aligned and (𝑥0, 𝑦0, 𝑧0) are the reference markers. The rotation matrix
R is defined as:

𝑅(𝛼, 𝛽, 𝛾) = 𝑅𝑧(𝛾)𝑅𝑦(𝛽)𝑅𝑥(𝛼) (2.10.1.3)

This matrix represents the general 3D rotation matrix obtained by the product of the
rotation matrices for yaw, pitch, and roll by angles 𝛾, 𝛽, and 𝛼 respectively.

The minimization of the objective function 𝐸(𝛼, 𝛽, 𝛾, 𝑠, 𝑡𝑥, 𝑡𝑦, 𝑡𝑧) was decomposed into
an outer minimization with respect to 𝛼, 𝛽, 𝛾 and an inner minimization with respect to
𝑠, 𝑡𝑥, 𝑡𝑦, 𝑡𝑧. The inner minimization was performed by setting the partial derivatives of
the corresponding variables (𝑠, 𝑡𝑥, 𝑡𝑦, 𝑡𝑧) to zero, which led to solving a system of linear
equations (2.10.1.4).

∂𝐸
∂𝑠

= 0, ∂𝐸
∂𝑡𝑥

= 0, ∂𝐸
∂𝑡𝑦

= 0, ∂𝐸
∂𝑡𝑧

= 0 (2.10.1.4)

The outer minimization was performed numerically by employing the function ‘fmi-
nunc‘ in MATLAB. After aligning the selected shapes to a reference one, obtaining
{𝑥1, ̂𝑥2, . . . , ̂𝑥𝑁}, the mean shape was calculated and aligned with 𝑥1 (resulting in ad-
justed mean ̄𝑥). The mean shape ̄𝑥 was then subtracted from the obtained aligned
shapes matrix 𝑆𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 (3𝑀×𝑁) before employing principal component analysis (PCA)
to determine the principal components of the model, which are found as the eigenvec-
tors of the covariance matrix of 𝑆𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑. The resulting PCA was executed in such a
way as to retain principal components that cumulatively explained at least 95% of the
variance in the data.

The principal components were then used to solve a linear system in a subspace
determined by the observed markers to impute the missing markers in the given instance
(the observed markers were aligned with the reference shape by a transformation 𝑇𝑜).
This process involved computing the deviation of the observed markers in the incomplete
shape from the mean shape and determining the weights that, when multiplied with the
principal components, optimally represent the deviation within the observed subspace.
The linear system was defined as follows:

𝑃𝐾,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑏𝐾 = ̌𝑥𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − ̄𝑥𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 (2.10.1.5)

Where ̄𝑥𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 is the mean shape in the observed subspace, 𝑃𝐾,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 is the reduced
eigenvector matrix in the observed subspace, 𝑏𝐾 are the weights, and ̌𝑥𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 is the
observed aligned shape.

The derived weights were subsequently used to reconstruct the complete shape ̃𝑥,
defined as:

̃𝑥 = ̄𝑥 + 𝑃𝐾𝑏𝐾 (2.10.1.6)

Where ̄𝑥 is the mean shape, 𝑃𝐾 is the reduced eigenvector matrix, 𝑏𝐾 are the weights,
and ̃𝑥 is the completely aligned shape.

An inverse transformation to 𝑇𝑜 was employed to complete the imputation process
and transform the complete shape ̃𝑥 to its proper position, rotation, and scaling. The
inverse transformation used the transposed rotation matrix 𝑅 (defined in equation
2.10.1.3), division by the scaling parameter, and translation by the translation param-
eters derived in equation 2.10.1.4.
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To make the model robust for the poses of a given analyzed time window of the

video, it was trained from valid shapes selected from each analyzed window as defined
in Section 2.7. Experiments were conducted to see how the model behaves with an
increasing number of missing markers (refer to Experiments section 4.2). We depict
the alignment of the same set of markers to the reference shape 𝑥1 in Figure 2.2. The
PDM’s visualization of the estimation of missing markers is depicted in Experiment
Section 4.2.

Figure 2.2. The alignment of two shapes (same set of markers to a reference shape) by
PDM representing the rodent’s markers estimated by DLC and reconstructed into a 3D

coordinate system via triangulation and estimation in multiple views.

2.10.2 Geometric Rule-Based Imputation
The positions of markers representing the snout, left ear, and right ear exhibit sym-
metrical properties. When one of these markers’ positions in the 3D coordinate system
could not be triangulated, but the corresponding symmetrical markers were present, we
could estimate their positions based on geometric rules. The snout estimation will be
defined as an example (the remaining two markers - left ear and right ear, follow the
same approach). The following equations define the model:

𝑝𝑚 = 1
2

⋅ (𝑝2(𝑥, 𝑦, 𝑧) + 𝑝3(𝑥, 𝑦, 𝑧))

⃗𝜈 = 𝑝𝑚(𝑥, 𝑦, 𝑧) − 𝑝4(𝑥, 𝑦, 𝑧)
||𝑝𝑚(𝑥, 𝑦, 𝑧) − 𝑝4(𝑥, 𝑦, 𝑧)||

𝑝𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 = 𝑝4 + ⃗𝜈𝑆 ||𝑝𝑚(𝑥, 𝑦, 𝑧) − 𝑝4(𝑥, 𝑦, 𝑧)||

(2.10.2.1)

Where 𝑝𝑚 is the midpoint between the position of two given markers – left (𝑝2) and
right ear (𝑝3) in the provided example, ⃗𝜈 is a directional unit vector describing the

14
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direction of the estimated marker – 𝑝4 being the first spinal marker, and 𝑥, 𝑦, 𝑧 are the
3D coordinates representing the given marker.

To estimate the position of the snout, we first computed the midpoint 𝑝𝑚 between
the positions of the left ear (𝑝2) and right ear (𝑝3). We then formed a vector ⃗𝜈 from
the first spinal marker (𝑝4) to this midpoint. This vector was normalized to convert
into a unit vector, maintaining the direction of ⃗𝜈 but with a magnitude of one, as
shown in the equation. By multiplying this unit vector by a scaled version of the
distance from the first spinal marker to the midpoint, we extended along the direction
of ⃗𝜈 to approximate the position of the snout. The scaling factor 𝑆 was determined
based on training of valid shapes (following extraction described in Equation 2.10.1.1),
minimizing the Mean Squared Error (MSE) between the approximations and valid
shapes. A different scaling factor was set for the snout and ears, and more specifically,
the scaling factor was determined for each of the examined rodents in the given video
subsets. This approximation leverages the geometric and symmetrical properties of the
rat’s body, assuming the snout lies along the line that extends from the first spinal
marker and the midpoint of the rat’s ears.

To find the optimal scaling factor 𝑆, a systematic search was conducted for each rat
and specified marker. This involved computing and minimizing the MSE between valid
shapes and their respective copies with either snout or ear markers omitted. The opti-
mal scale factor was determined within a predefined range from zero to six, evaluating
200 distinct values. Graphs in Figure 2.3 represent the systematic search throughout
400 valid shapes for each rat. The imputation is depicted in Figure 2.4.

Figure 2.4. Example of the geometric rule-based imputation of the missing marker (Ex-
ample of snout imputation). Green markers represent the reference shape, purple marker
represents the estimated snout, and red marker represents midpoint 𝑝𝑚 (see equations

2.10.1.2).
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Figure 2.3. The representation of the systematic search for the optimal scale factor and the
specified marker based on MSE, comparing two distinct exemplary rat’s estimated markers

by DLC.

2.11 3D Coordinate Temporal Imputation

For the temporal imputation of the 3D coordinates, we utilized a piecewise cubic Her-
mite interpolating polynomial (PCHIP) method built in MATLAB. This choice was
based on a simple test, where we compared ground truth sequences and sequences
with removed instances (instance in this section contains not a single view 2D markers
for a given time step, but the markers in the 3D coordinate frame), interpolated by
linear interpolation, piecewise cubic spline, previous non-missing value, nearest non-
missing value, and PCHIP. Based on the sum of squared errors (refer to Experiments
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4.4), PCHIP was the most suitable choice for the rat’s movement, possibly due to its
limitation of peaks and oscillations [41].

A threshold of 15 instances was established as the maximum allowable duration for
these discontinuities. Instances exceeding this threshold were identified as invalid and
subsequently excluded from training and evaluation processes. It was possible for such
instances to be present in our dataset, however, only 3.65% of all instances were found
as such.

2.12 Outlier Detection
We identified and eliminated certain markers within specific frames and views for par-
ticular rats through visual inspection and assessment of the likelihood associated with
DLC marker estimations. The decision to remove specific markers was primarily based
on their estimation likelihood, with a threshold of 0.6 as the minimum acceptable like-
lihood for a marker to be retained. Markers with estimation likelihood below this
threshold were removed and imputed using the PDM or geometrical rule-based impu-
tation methods (see Section 2.10).

In certain frames, it was observed that the DLC estimation lost track of the rat’s iden-
tity, leading to incorrect marker assignments. Such inaccuracies manifested as either
both identities being assigned to a single rat or only one rat’s markers being estimated.
We excluded the entire view from the triangulation process to address this, ensuring
the invalid instances would not affect the 3D coordinates. For the potential identity
swap (in a temporal manner, a rat was assigned the other rat’s identity, which was not
manually assigned to it – refer to Section 2.7), we developed a combinatory optimiza-
tion and iterative 3D tracking (refer to Section 3.1). We represent the correction in
Figure 2.5 and Figure 2.6.

Figure 2.6. An example while excluding view camera 1 from the triangulation leads to
lower reprojection error, and the triangulated points are unaffected by the wrongly assigned

identity (refer to Figure 2.5).
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Figure 2.5. The estimated markers of two rats for the given views by DeepLabCut and
their reprojections after triangulation [Subset: WT1WT4, frame 385]. The yellow and
cyan-colored markers represent the estimations, and the red and blue markers represent
the reprojections after triangulating the estimations. Notice a missing estimation for one
of the rats in camera view 1. We can see a situation where DeepLabCut wrongly assigns
identity and estimates the pose for only one animal (after losing track of the rats in frame),
leading to wrongly triangulated markers (visible on reprojection of camera view 1-2 red

markers).

2.13 Datasets

2.13.1 Custom Datasets

The dataset collected for the primary approach of recognizing the social interactions of
two rats originates from the Laboratory of Neurophysiology of Memory, Czech Academy
of Sciences in Prague. The dataset contains video footage from four camera views of
two rats interacting in a box-shaped arena with low light conditions (refer to Section
2.4). Each subset (four videos of each camera view) averages a duration of 9 minutes
(for one camera view). A total of 48 subsets were collected.

Subsets were manually annotated to label specific rat social interactions. The label
was assigned via viewing sequence windows of fifteen consecutive frames in all four
camera views and determining the label for a given action. Subsets were annotated by
a single person. Two datasets were labeled. Primarily, the first minutes of the subsets
were labeled – the appearances of the examined actions were more prevalent during
these initial moments of the experiments.

The first dataset was designed for the evaluation of the Rule-Based Model (see Section
3.2.1). Five following classes were denoted (classes denoted with apostrophe had the
initiator of given action labeled):

. Absence of Social Interaction [NS] - The action was labeled as such if the rats did
not exhibit any social interest in each other.. The head of one rat is close to the head of the other rat [HH] - The action was labeled
as such if the heads of the rats were close to each other - contact distance.
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. Snout of one rat is close to the tail-base of the other rat [SB]’ - The action was labeled
as such if the snout of one rat was examining the tail-base of the other rat - contact
distance.. One of the rats approaches the other [AP]’ - The action was labeled as such if the
rat started moving towards the other - from enough distance (not contact distance). Passive interaction - close proximity with no active exploration [PS] - The action was
labeled as such if the rats were still and close to each other - contact distance.

A total of 336 sequences were denoted for class [NS], 20 sequences for class [HH], 137
sequences for class [SB], 21 sequences for class [AP], and 58 sequences for class [PS].
We denote the dataset as Rule-TgF344AD Pair 18.

The second larger dataset followed the same sequence lengths and subsets. However,
we employed different classes to evaluate and learn the deep learning action recognition
methods. This divergence in class selection was driven by the strengths of deep learn-
ing in capturing more complex patterns, which might be challenging to define strictly
through rules. Classes are the following:

. Absence of Social Interaction [NS] - The action was labeled as such if the rats did
not exhibit any social interest in each other.. Mutual Social Engagement-exploration [EX] - The action was labeled as such if both
of the rats examined each other.. Olfactory Investigation (one animal inspecting the other by sniffing) [OI]’ - The action
was labeled as such if only one of the rats examined the body parts of the other.. One of the rats approaches the other [AP]’ - The action was labeled as such if one
of the rats suddenly starts moving towards the other rat (even upper body sudden
movements from a closer distance).. Passive interaction - close proximity with no active exploration [PS] - The action was
labeled as such if the rats were still and close to each other - contact distance.. Disengagement (leaving) [DS]’ - The action was labeled as such if one of the rats lost
interest in the other and started moving away from the other rat.. Mounting Behaviour [MT]’ - The action was labeled as such if one of the rats started
rearing above the other - contact distance.. Synchronized (mimicking) action (the animals simultaneously exhibit rearing behav-
ior) [MM] - we noticed that sometimes one of the rats starts mimicking the rearing
behavior of the other. If so, the action was labeled as such without being dependent
on the distance between the rats.

Totally 3143 sequences were denoted – 1859 for class [NS], 121 sequences for class
[EX], 632 sequences for class [OI], 163 sequences for class [AP], 55 sequences for class
[PS], 74 sequences for class [DS], 191 sequences for class [MT], and 48 sequences for
class [MM]. We denote the dataset as TgF344AD Pair 18 (the AD type, two animals
per subset, and 18 markers for both animals). The example of labeled sequences,
represented by one frame, is in Figures 2.7 and 2.8.
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Figure 2.7. An exemplary frame from labeled sequences. The left upper image depicts
[NS], and the left lower image depicts [OI]. The right upper image depicts [EX], and the

right lower image depicts [AP].

Figure 2.8. An exemplary frame from labeled sequences. The left upper image depicts
[PS], and the left lower image depicts [MT]. The right upper image depicts [DS], and the

right lower image depicts [MM].

2.13.2 PAIR-R24M Dataset

The PAIR-R24M is a large dataset for multi-animal 3D pose estimation, which contains
24.3 million frames of RGB video (sampled at a rate of 30 Hz) and 3D ground-truth
motion capture of dyadic interactions in laboratory rats. The dataset contains data
from 18 distinct pairs of rats and 24 different viewpoints. Data were annotated with
eleven behavioral labels and four interaction categories [42]. We will use up to 80,000
annotated sequences (15 consecutive frames) with corresponding 3D ground truth co-
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ordinates from the dataset to evaluate and build the deep learning models, which we
will then train on our datasets.

The behavioral interaction sequences from the PAIR-R24M dataset were classified
into the following categories:

. Absence of Social Interaction [NS]. Mutual Social Engagement-exploration [EX]. Chase-synchronized locomotion [CS]. Passive interaction-close proximity with no active exploration [PS]

A total of 75566 sequences were utilized: 48880 sequences for class [NS], 17677 se-
quences for class [EX], 8681 sequences for class [CS], and 328 sequences for class [PS].

2.13.3 DLC Dataset
For training the DLC DLCRNet-MS5 model, we labeled 845 frames with nine markers
for each rat (18 markers for each frame; refer to Section 2.6 to see the specific types of
markers). Frames were derived from 10 subsets of videos – a total of 40 videos, with a
similar portion for each of the camera views.
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Chapter 3
Methods

We outline the methodologies applied in this study, focusing on the techniques devel-
oped or employed for recognizing and analyzing rat’s social interactions. We explore
the classification of the rat’s actions and their initiators by methods defined as a set
of mathematical rules (refer to Section 3.2.1 Rule-Based Model) and deep learning
methods used, developed, or fine-tuned, such as graph-based models (ST GCN) or con-
volutional networks such as TSRJI-CNN and CNN-LSTM (refer to Section 3.3 for a
detailed implementation). These methods process the obtained 3D point trajectories
or corresponding image sequences.

We introduce tracking adjustments while projecting the markers into a 3D coordinate
system to ensure a correct identity across the analyzed sequences (refer to Section 3.1).
A comprehensive overview of the methods used for data pre-processing (such as spatial
imputation or 3D reconstruction) can be found in the Data Section. To provide a visual
summary leading to the acquisition of corrected sequences for the following sections,
the flow chart diagram presented in Figure 3.1 outlines the entire process.

We develop the methods on datasets Rule-TgF344AD Pair 18, TgF344AD Pair 18,
or Pair-R24M. We focus on denoting the most suitable methods and modalities for our
acquired video subsets together with the corresponding frame-by-frame 3D coordinates
and their concatenation into a multi-modal network (refer to Section 3.3.9). We then
use the methods to analyze the acquired video subsets and statistically determine if
there is a significant difference between the interactions and behavior of the rat types
TgF344-AD and F344 (refer to Section 3.4). We analyze the actions determined by
the Rule-Based model, acquiring time spent in the stricter actions, such as snout to
tail-base contact, and the denoted multi-modal network for the more complex actions,
such as approach or mutual exploration (the actions and dataset details are described
in Section 2.13).
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Figure 3.1. Flow Chart depiction of data acquisition, preprocessing, and methods leading
to corrected sequences in 3D coordinate system, which are used as the input to the action
recognition methods denoted below. The data pre-processing section is focused on reliable
correction and imputation of the DLC estimations using the information from multiple

camera views, 3D reconstruction, and imputation models.

3.1 Pose Estimation and Tracking in 3D
We used DeepLabCut (DLC) to estimate the markers and track the rat’s identity (as
described in the Data Section). While spatial imputation techniques were employed
to address inaccuracies in the estimated pose, solely shortening the analyzed video
sequences (as described in Section 2.7) and manually re-identifying each sequence proved
insufficient in handling potential identity swaps – as the problematic occlusion for DLC
might occur at the start of the sequences.

We employed a combinatorial optimization technique that minimized the reprojec-
tion error to address the potential identity swaps. We aimed to determine the optimal
identity assignment for each instance to minimize the reprojection error across all views.
If DLC lost tracking in one camera view but maintained accurate tracking in the re-
maining views, we could correctly assign the sequence identities for that instance. The
problem was defined as follows:

. A set of camera views 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣4}.. A set of rat identities 𝑅 = {𝑟1, 𝑟2}.
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Objective: The optimal assignment of rat identities to views that minimizes the

reprojection error defined as min𝑟∈𝑅,𝑣∈𝑉 𝐸(𝑇 (𝑟, 𝑣), 𝑃2𝐷), where 𝐸 represents the total
reprojection error function (defined in Equation 2.9.1), 𝑇 represents the reprojections
of the triangulated points for a given combination, and 𝑃2𝐷 represents the original
estimated coordinates.

The solution space consists of all possible combinations of rat identities across views,
leading to 24 potential combinations. For each combination, we compute the total
reprojection error and select the combination that yields the minimum error.

While this solution is valid for tracking the identity when DLC misassigns the identity
in one of the views, if the identity swap occurs in two or more views simultaneously
(such a scenario was observed to be much less probable but possible to occur), the
solution fails (the total reprojection errors might be the same for two combinations
simultaneously).

Another criterion was added (inspired by the DLC approach, which regards tracking
as a global minimization problem – see Section 1.3). The criterion added was one
such that it minimizes the Euclidean distance traveled by the identified rat between
the previous instance (with assigned markers) and the instance being examined for a
potential swap in the 3D coordinate system. The selected combination was then the
one that minimized the total reprojection error and the traveled distance in the 3D
coordinate system. The total Euclidean distance between instances to be minimized
was defined as:

𝑑𝑡𝑜𝑡𝑎𝑙 =
𝑀

∑
𝑛=1

∣∣𝑃 𝑋
𝑛,𝑗(𝑥, 𝑦, 𝑧) − 𝑃 𝑋

𝑛,𝑗−𝑘(𝑥, 𝑦, 𝑧)∣∣ + ∣∣𝑃 𝑌
𝑛,𝑗(𝑥, 𝑦, 𝑧) − 𝑃 𝑌

𝑛,𝑗−𝑘(𝑥, 𝑦, 𝑧)∣∣ (3.1.1)

Where 𝑃 𝑋
𝑛,𝑗 denotes the position of marker 𝑛 in instance 𝑗 for rat X (similarly for rat

Y), and 𝑘 denotes the difference between instance 𝑗 and the previous valid instance.
The identity swap detection was experimentally evaluated in experiments section 4.5.

3.2 Action Recognition

3.2.1 Rule-Based Model

The rule-based model was designed to identify and categorize the behavior patterns
of rats. More specifically, the model distinguishes between the two rats involved and
determines the type of interaction based on predefined rules and states. The rule-based
model can distinguish between actions denoted as [NS], [HH], [SB], [AP], and [PS] from
the dataset Rule-TgF344-AD Pair 18. The primary inputs to this model are the 3D
coordinates and a set of specially derived features. The features used are the following
(features denoted with an apostrophe were derived for each rat):

Note: Throughout the following equations, 𝑃 𝑋 and 𝑃 𝑌 will represent the markers
for the two distinct rats identified as X or Y.

𝐷𝐻 = {𝑑ℎ,1, 𝑑ℎ,2, . . . , 𝑑ℎ,𝑁}

𝑑ℎ,𝑖 = ∣∣1
3

3
∑
𝑚=1

𝑃 𝑋
𝑖 (𝑥𝑚, 𝑦𝑚, 𝑧𝑚) − 1

3

3
∑
𝑚=1

𝑃 𝑌
𝑖 (𝑥𝑚, 𝑦𝑚, 𝑧𝑚)∣∣

(3.2.1.1)

Where 𝑥𝑚, 𝑦𝑚, 𝑧𝑚 are the 3D coordinates representing the marker 𝑚, employed to
obtain the center of the head of the given rat by computing the mean value of the first
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three markers representing snout and ears. 𝑁 is the number of instances (frames), and
𝐷𝐻 represents a set of distances 𝑑ℎ,𝑖 computed for each instance 𝑖.

𝐷′
𝑆𝐵 = {𝑑𝑠𝑏,1, 𝑑𝑠𝑏,2, . . . , 𝑑𝑠𝑏,𝑁}

𝑑𝑠𝑏,𝑖 = ∣∣𝑃 𝑋
𝑖 (𝑥𝑠, 𝑦𝑠, 𝑧𝑠) − 𝑃 𝑌

𝑖 (𝑥𝑏, 𝑦𝑏, 𝑧𝑏)∣∣
(3.2.1.2)

Where 𝑥𝑠, 𝑦𝑠, 𝑧𝑠 are the 3D coordinates representing the marker (snout) of the given rat
X, and 𝑥𝑏, 𝑦𝑏, 𝑧𝑏 are the 3D coordinates representing the marker (tail base) of the given
rat Y. 𝑁 is the number of instances (frames), and 𝐷′

𝑆𝐵 represents a set of distances
𝑑𝑠𝑏,𝑖 computed for each instance 𝑖.

𝑉 ′
𝑅 = {0, 𝑣𝑟,2, . . . , 𝑣𝑟,𝑁}

𝑣𝑟,𝑖 = 1
𝜏

∣∣ 1
𝑀

𝑀
∑
𝑚=1

𝑃 𝑋
𝑖 (𝑥𝑚, 𝑦𝑚, 𝑧𝑚) − 1

𝑀

𝑀
∑
𝑚=1

𝑃 𝑋
𝑖−1(𝑥𝑚, 𝑦𝑚, 𝑧𝑚)∣∣

(3.2.1.3)

Where 𝑣𝑟,𝑖 is the speed of the rat X’s head in an instance 𝑖, 𝑀 is the number of markers
representing the rat X’s head (3), 𝑥𝑚, 𝑦𝑚, 𝑧𝑚 are the 3D coordinates representing the
marker 𝑚, 𝜏 is the time constant representing time between instances calculated as
𝜏 = 1/𝑓, where 𝑓 = 30 Hz, and 𝑉 ′

𝑅 represents a set of velocities 𝑣𝑟,𝑖.

𝑅′ = { ⃗𝑟𝑋,1, ⃗𝑟𝑋,2, . . . , ⃗𝑟𝑋,𝑁−𝑘}

⃗𝑟𝑋,𝑖 = 1
𝑘

𝑖+𝑘−1

∑
𝑓=𝑖

̄𝑃 𝑋
𝑖+𝑓+1 − ̄𝑃 𝑋

𝑖+𝑓

∣∣ ̄𝑃 𝑋
𝑖+𝑓+1 − ̄𝑃 𝑋

𝑖+𝑓∣∣
(3.2.1.4)

Where ⃗𝑟𝑋,𝑖 is the directional unit vector of the rat for a given window starting in an
instance 𝑖, 𝑘 is the window size, ̄𝑃 𝑋

𝑖+𝑓+1, ̄𝑃 𝑋
𝑖+𝑓 are the mean values of the rat’s markers

in the 3D coordinate system in an instance 𝑖 + 𝑓 + 1 and 𝑖 + 𝑓, respectively, and 𝑅′

represents a set of ⃗𝑟𝑋,𝑖.

𝑅𝑀 = { ⃗𝑟𝑚𝑋𝑌 ,1, ⃗𝑟𝑚𝑋𝑌 ,2, . . . , ⃗𝑟𝑚𝑋𝑌 ,𝑁}

⃗𝑟𝑚𝑋𝑌 ,𝑖 =
̄𝑃 𝑋
𝑖 − ̄𝑃 𝑌

𝑖
∣∣ ̄𝑃 𝑋

𝑖 − ̄𝑃 𝑌
𝑖 ∣∣

(3.2.1.5)

Where ⃗𝑟𝑚𝑋𝑌 ,𝑖 is the directional unit vector representing the direction between rat X
and Y in an instance 𝑖, ̄𝑃 𝑋

𝑖 , ̄𝑃 𝑌
𝑖 are the mean values of the rat’s markers in the 3D

coordinate system in an instance for rat X and Y, respectively, and 𝑅𝑀 represents a
set of ⃗𝑟𝑚𝑋𝑌 ,𝑖.

𝑆𝐷′ = {𝜎𝑋,1, 𝜎𝑋,2, . . . , 𝜎𝑋,𝑁−𝑤}

𝜎𝑋,𝑖 = 1
𝑀

𝑀
∑
𝑚=1

𝑠𝑡𝑑(𝑃 𝑋
𝑚,𝑖:𝑖+𝑘)

(3.3.1.6)

Where 𝑠𝑡𝑑(𝑃 𝑋
𝑚,𝑖:𝑖+𝑘) is the standard deviation of the rat’s marker 𝑚 for a given window

starting in an instance 𝑖, 𝑘 is the window size, 𝑀 is the number of markers, and 𝑆𝐷′

represents a set of mean standard deviation values for an instance 𝑖.

Five primary rules describe the model. To summarize, two rules are based on the
distance determining the contact of markers (snout, tail base, head centers) [SB]’, [HH]
(refer to equations 3.2.1.9 and 3.2.1.10, respectively). The rule described by equation
3.2.1.7 is based on the directions and speed of the rat to determine the approach [AP]’
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with a subsequent distance-based rule to determine a successful approach – refer to
equation 3.2.1.8. Lastly, a rule described by equation 3.2.1.11 is based on the standard
deviation of markers to determine a passive contact of the rats [PS]. The rules are
defined as follows:

𝐴𝑃𝑖:𝑖+𝑘 =
⎧{
⎨{⎩

𝑋 if 𝑅𝑋
𝑖𝑅𝑀𝑖 > 𝑅𝑌

𝑖(−𝑅𝑀𝑖) and 𝑉 𝑋
𝑅 𝑖

> 𝑡𝑣
𝑌 if 𝑅𝑋

𝑖𝑅𝑀𝑖 < 𝑅𝑌
𝑖(−𝑅𝑀𝑖) and 𝑉 𝑌

𝑅 𝑖
> 𝑡𝑣

0 otherwise
(3.2.1.7)

Where 𝑡𝑣 is the speed threshold for the approach of the rat to be valid in an instance
𝑖, the rest of the features described in the rule are detailed in the equations above (see
3.2.1.4 and 3.2.1.5). The decision criterion for identifying the approaching rat (identity
X and Y) is determined by comparing the magnitudes of the calculated dot products.
The dot product measures the alignment between each rat by multiplication of each
rat’s directional vector components and the components of the vector pointing from
one rat to the other. A larger dot product value signifies a higher alignment between a
rat’s directional vector and the vector connecting the two rats. We describe an example
of the directional vectors in Figure 3.2.

Consequently, the rat with the larger dot product was considered to be actively
approaching the other (while also satisfying the determined speed threshold). For the
approach criterion to be valid, a condition considering mutual distances had to be
satisfied as follows:

𝐴𝑃𝑖:𝑖+𝑘 = {
𝑋 or 𝑌 if ∣∣ ̄(𝑃 𝑋

𝑓 ) − ̄(𝑃 𝑌
𝑓 )∣∣ + 𝑡𝑚𝑎 < ∣∣ ̄(𝑃 𝑋

𝑖 ) − ̄(𝑃 𝑌
𝑖 )∣∣

and ∣∣ ̄(𝑃 𝑋
𝑖 ) − ̄(𝑃 𝑌

𝑖 )∣∣ > 𝑡𝑚𝑠
(3.3.1.8)

Where ∣∣ ̄(𝑃 𝑋
𝑓 ) − ̄(𝑃 𝑌

𝑓 )∣∣ and ∣∣ ̄(𝑃 𝑋
𝑖 ) − ̄(𝑃 𝑌

𝑖 )∣∣ are the Euclidean distances between the
mean value of rat X and Y for instance 𝑓 = 𝑖 + 𝑘 and 𝑖, respectively. 𝑡𝑚𝑎 is a threshold
value determining the minimal Euclidean distance traveled for the approach criterion
to be valid, and 𝑡𝑚𝑠 is a threshold value determining the minimal Euclidean distance
between rats before the approach starts.

𝑆𝐵𝑖 =

⎧{{
⎨{{⎩

𝑋 if 𝐷𝑋
𝑆𝐵,𝑖 < 𝑡𝑠𝑏

𝑌 if 𝐷𝑌
𝑆𝐵,𝑖 < 𝑡𝑠𝑏

𝑋𝑌 if 𝐷𝑋
𝑆𝐵,𝑖 < 𝑡𝑠𝑏 and 𝐷𝑌

𝑆𝐵,𝑖 < 𝑡𝑠𝑏
0 otherwise

(3.2.1.9)

Where 𝑡𝑠𝑏 is the minimal Euclidean distance threshold between snout and tail base
markers for the contact of the markers to be valid in an instance 𝑖, the rest of the
features are described in equation 3.2.1.2.

𝐻𝐻𝑖 = { 𝑋𝑌 if 𝐷𝐻,𝑖 < 𝑡ℎ
0 otherwise (3.2.1.10)

Where 𝑡ℎ is the Euclidean distance threshold that needs to be reached between the
head centers of both rats for the contact of the markers to be valid in an instance 𝑖,
the rest of the features are described in equation 3.2.1.1.

𝑃𝑆𝑖:𝑖+𝑘 =

⎧{{
⎨{{⎩

𝑋𝑌 if 𝑆𝐷𝑋
𝑖 + 𝑆𝐷𝑌

𝑖 < 𝑡𝑠𝑡𝑑 and
(∣∣ ̄(𝑃 𝑋

𝑓 ) − ̄(𝑃 𝑌
𝑓 )∣∣ and ∣∣ ̄(𝑃 𝑋

𝑖 ) − ̄(𝑃 𝑌
𝑖 )∣∣) < 𝑡𝑚𝑝 and

( ̄𝑉 𝑋
𝑅 𝑖:𝑖+𝑘

and ̄𝑉 𝑌
𝑅 𝑖:𝑖+𝑘

) < 𝑡𝑣𝑝
0 otherwise

(3.3.1.11)
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Figure 3.2. The image representation of the directional vectors in the approach rule deno-
tation in equation 3.2.1.7

Where 𝑡𝑣𝑝 is the maximum speed threshold for mean velocities ̄(𝑉 𝑋
𝑅 ) and ̄(𝑉 𝑌

𝑅 ) across the
given window (𝑖: 𝑖 + 𝑘) for both rats, 𝑡𝑠𝑡𝑑 is the maximum standard deviation threshold
that needs to be between head centers of both rats for the contact of the markers to be
valid in an instance 𝑖, and 𝑡𝑚𝑝 is the maximum Euclidean distance threshold between
the center of both rats for the rats to stay in passive contact.

The arrays determining a label for each class (denoted in the first paragraph of
Section 3.2.1) for each instance have been merged in the following order: firstly, the
instances are classified by label [PS], secondly [AP], followed by [HH], and lastly [SB].
The remaining instances with an unassigned class are classified as no social interaction
[NS]. This succession was determined by the importance of given classes and observed
succession in the sequences (the approach of the rat usually preceded the snout and tail
base contact).

The optimal threshold values 𝑇 ∗ = {𝑡𝑚𝑝, 𝑡𝑠𝑡𝑑, 𝑡ℎ, 𝑡𝑠𝑏, 𝑡𝑚𝑠, 𝑡𝑚𝑎, 𝑡𝑣, 𝑡𝑣𝑝} and two window
sizes 𝑊 ∗ = {𝑤𝑎𝑝, 𝑤𝑝𝑠} for the approach and passive interaction determination have
been found by a Bayesian optimization search with an objective function based on the
weighted 𝐹1 score evaluation of the model on prelabeled dataset Rule-TgF344-AD Pair
18. For the results of the model, refer to the experiments section 4.6. To specify the
window sizes, 𝑤𝑎𝑝 denotes the window size (k) used throughout the determination of
[AP], and 𝑤𝑝𝑠 denotes the window size (k) used throughout the determination of [PS].

The optimization was employed in MATLAB by built-in ‘bayesopt‘, with 300 iter-
ations. The 𝐹1 score weight 𝑤 for each class was computed as 𝑤 = 1 − 𝑘

𝑁 , where 𝑘
represents the occurrence of true labels for the given class, and 𝑁 represents the to-
tal number of labels. This approach was chosen because the classes being determined
are underrepresented compared to [NS] (class defining no social behavior for given in-
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stances). The weights were subsequently normalized. The total weighted 𝐹1 score was
defined as 𝐹1𝑤

= ∑𝑐
𝑖=1 𝐹1𝑖𝑤𝑖, where 𝑐 denotes the number of classes.

3.2.2 Rule-Based Model Label Adaptation

To have a comparable Rule-Based Model with a dataset TgF344-AD Pair 18, we adjust
[HH] and [SB] rules denoted in the strict Rule-Based Model. To adapt 3.2.1.10 [HH] to
capture class [EX], we denote that the snouts of both rats are close to any marker of
the other rat’s markers under threshold 𝑡𝑒𝑥. To adapt equation 3.2.1.9 [SB] to capture
class [OI], we denote that the distance of the snout of a given rat is close to any marker
of the other rat’s markers under threshold 𝑡𝑜𝑖. Rules for approach [AP] and passive
interaction [PS] keep their form as denoted in Section 3.2.1. We denote a new rule for
class [DT] – an adaptation of the approach rule, where the directional vector faces the
opposite direction with detach speed threshold 𝑡𝑣𝑑 and two new distance thresholds are
denoted as 𝑡𝑚𝑑. Threshold 𝑡𝑚𝑑 is the minimal distance that needs to be traveled from
the other rat, and 𝑡𝑑𝑠 is the threshold of the starting distance of the action (following
the concept of equation 3.2.1.8). The window size threshold for detach is denoted as
𝑤𝑑𝑡. To classify one rat mounting [MT] (rearing above the other), we denote the rule
as follows:

𝑀𝑇𝑖 =
⎧{
⎨{⎩

𝑋 if 𝑃𝑖,𝐻𝑋(𝑧) > 𝑡𝑧 and 𝑃𝑖,𝐻𝑌(𝑧) < 𝑡𝑧 and ∣𝑃𝑖,𝑚𝑋 − 𝑃𝑖,𝑚𝑌∣ < 𝑡𝑚𝑡
𝑌 if 𝑃𝑖,𝐻𝑌(𝑧) > 𝑡𝑧 and 𝑃𝑖,𝐻𝑋(𝑧) < 𝑡𝑧 and ∣𝑃𝑖,𝑚𝑋 − 𝑃𝑖,𝑚𝑌∣ < 𝑡𝑚𝑡
0 otherwise

(3.2.2.1)

Where 𝑃𝑖,𝐻𝑋 is the center of rat X’s head in an instance 𝑖, as denoted in 3.2.1.3 (using
the z coordinate), 𝑃𝑖,𝐻𝑌 is the center of rat Y’s head in an instance 𝑖, as denoted in
3.2.1.3 (using the z coordinate), ∣𝑃𝑖,𝑚𝑋 − 𝑃𝑖,𝑚𝑌∣ is the Euclidean distance between the
rat’s mean positions, 𝑡𝑧 is the threshold denoting the minimal height a rat needs to rear
to, and 𝑡𝑚𝑡 is the minimal distance between the rats.

To classify one rat mimicking the rearing of the other rat [MM], we denote the rule
as follows:

𝑀𝑀𝑖 = { 𝑋𝑌 if 𝑃𝑖,𝐻𝑋(𝑧) > 𝑡𝑚𝑚 and 𝑃𝑖,𝐻𝑌(𝑧) > 𝑡𝑚𝑚
0 otherwise

(3.2.2.2)

Where 𝑡𝑚𝑚 is the threshold in the z-axis denoting the minimal height both rats need to
reach. The coordinates were aligned to the XY plane denoted by the arena corners so
that the z-axis is the vertical axis of the 3D coordinate system, following a Rodriguez
transformation denoted in 3.2.3.4a, before applying the rules above.

The added thresholds to the adaptation of the model follow the same evaluation pro-
tocol denoted in 3.2.1, using the dataset TgF344-AD Pair 18 (refer to the experiments
section 4.7).

3.3 Action recognition based on Deep Learning Models
We employed and implemented six methods based on the techniques suitable to our
action recognition task (ST GCN, CNN, etc.) fully outlined in the introduction (refer
to Section 1.4) and the modalities derived from our datasets. The modalities are rep-
resented as sequence windows of 3D coordinates (skeleton of one rat defined through
nine markers in one time step), images from camera views, and features derived from
the coordinates. A sequence window depicts 15 consecutive steps.
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The methods section below outlines the implementation of ST GCN, TSRJI-CNN,
Reference Pivot TSRJI-CNN, CNN – LSTM model based on sequences of images from
four camera views at the scene, 3D CNN model based on motion cuboids defining the
sequence (refer to Section 1.4.1), and a 1D CNN learning from the derived features se-
quence vectors. Each model will be discussed as its method with its corresponding data
processing before connecting the denoted methods into a multi-modal network. The
models are implemented using the PyTorch 2.0.1 library with Python 3.10. Throughout
the models, we use the training protocol defined in Section 3.5.

3.3.1 ST GCN Model

We denote graphs 𝐺𝑠(𝑉 , 𝐸) and 𝐺𝑡(𝑉 , 𝐸) representing the spatial relationships of the
rat’s skeletons and the temporal dependencies of a given node (refer to Figure 3.3 for
an image representation), respectively, where 𝑉 is a set of 𝑛 body joints represented as
nodes and 𝐸 is a set of 𝑚 bones represented as edges.

We define matrix 𝐴𝑠 ∈ {0, 1}2𝑛×2𝑛 as the adjacency matrix of the spatial graph 𝐺𝑠,
where 𝐴𝑠,𝑖,𝑗 = 1 represents a connection between nodes 𝑖 and 𝑗 (𝑛 = 9, multiplied
by 2 for the representation of both rats), 0 otherwise. Similarly, we define matrix
𝐴𝑡 ∈ {0, 1}𝑡×2𝑛 as the adjacency matrix of the temporal graph 𝐺𝑡, where 𝑡 is the
sequence window length – defined as a clip-level sequence window of 15 steps because
the movement of the rat’s actions is rather fast. Node 𝑋 ∈ ℜ𝑡×2𝑛×3 represents the
position of an 𝑛-th body joint in a 3D coordinate system at time step 𝑡, 𝐼𝑠 represents
the edge of the spatial graph 𝐺𝑠 and 𝐼𝑡 represents the edge of the temporal graph 𝐺𝑡.

Two graph topology configurations were tested – a configuration 𝑐1 with determined
connections for the ST GCN, where we set up a specific spatial and temporal topology
of the graphs, and configuration 𝑐2 with fully connected data-driven topology for the
spatial graph 𝐺𝑠 (where the adjacency matrix of 𝐺𝑡 remains the same as for 𝑐1). A
comparison of the methods is described in the experiments section 4.9. The topology
configuration 𝑐1 is defined by an illustration in Figure 3.3. The spatial graph 𝐺𝑠 is
presented to the network as an undirected graph, while the temporal graph 𝐺𝑡 is a
directed graph, where the direction corresponds to the time flow of the sequence.

The ST GCN consists of blocks with the adjacent matrix 𝐴𝑠 and 𝐴𝑡, extracting the
spatial and temporal features. We use the GCN layer from Pytorch Geometric Module
function GCNConv [30], defined in equation 1.4.1, where the adjacent matrix is 𝐴𝑡 or
𝐴𝑠, depending on the temporal stream 𝑡 or spatial stream 𝑠. 𝑋𝑖𝑛 represents the input
features (representation of the body joints as defined above).

The spatial stream 𝑠 consists of two GCN layers with the adjacent matrix 𝐴𝑠 followed
by ReLU activations. The first layer maps an input feature vector 𝑋 to a 64-dimensional
feature vector 𝑋𝑠1. The second layer further transforms 𝑋𝑠1 into a 128-dimensional
feature vector 𝑋𝑠2. A dropout layer is added between the hidden states with a 20%
dropout probability.

𝑋𝑠1 = 𝑅𝑒𝐿𝑈(𝐺𝐶𝑁𝐶𝑜𝑛𝑣(𝑋, 𝐴𝑠, 64))
𝑋𝑠2 = 𝑅𝑒𝐿𝑈(𝐺𝐶𝑁𝐶𝑜𝑛𝑣(𝑋𝑠1, 𝐴𝑠, 128))

(3.3.1.2)

The temporal stream 𝑡 consists of two GCN layers with the adjacent matrix 𝐴𝑡
followed by ReLU activations. The first layer maps an input feature vector 𝑋 to a
64-dimensional feature vector 𝑋𝑡1. The second layer further transforms 𝑋𝑡1 into a 128-
dimensional feature vector 𝑋𝑡2. A dropout layer is added between the hidden states

29



3. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 3.3. A definition of topology for graphs 𝐺𝑠 and 𝐺𝑡 for one rat in two exemplary time
steps (the sequence window consists of 15 such steps) in configuration 𝑐1. The connections
between nodes 1 to 9 and 19 to 27 define the topology of 𝐺𝑠 in each time step. An
undirected edge 𝐼𝑠 represents the spatial connection (example: between nodes 5 and 6, edge
colors: black), and the directed edge 𝐼𝑡 (example: presented between nodes 1 and 19, edge
colors: red) represents the temporal connection between time steps. The configuration 𝑐2
is a fully connected graph across the spatial dimension (for both rats) but is not illustrated

due to its complexity.

with a 20% dropout probability.

𝑋𝑡1 = 𝑅𝑒𝐿𝑈(𝐺𝐶𝑁𝐶𝑜𝑛𝑣(𝑋, 𝐴𝑡, 64))
𝑋𝑡2 = 𝑅𝑒𝐿𝑈(𝐺𝐶𝑁𝐶𝑜𝑛𝑣(𝑋𝑡1, 𝐴𝑡, 128))

The derived features of streams 𝑠 and 𝑡, 𝑋𝑠2 and 𝑋𝑡2, respectively, are concatenated
and followed by two linear layers with ReLU activations, a 20% probability dropout
layers, and a final linear layer.

We also denote a model architecture augmentation as ST GCN-s. The architectural
difference in ST GCN-s is that the streams are not parallel [43] but are put in a series
[44] consisting of four GCN modules. Each module consists of two GCN layers, starting
with the temporal topology applied GCN layer, followed by the spatial topology GCN
layer [44]. The output channels of each module are 64, 128, 256, and 512, followed by
fully connected layers used as for configurations 𝑐1 and 𝑐2. Training and validation of
the models are described in the experiments section 4.9. Both architectures of the ST
GCN layers are depicted in Figure 3.4.

Note: We also made several augmentations, such as representing the node of the
graph as a polar coordinate with respect to the other markers and its 3D coordinates,
resulting in a 30-dimensional vector for a node. The ST GCN then managed to learn
the proposed actions. However, the method did not outperform the TSRJI-CNN model
nor the CNN-LSTM (defined in Sections 3.3.3 and 3.3.5, respectively) and was not as
computationally effective. Refer to the experiments section for the evaluation of the
mentioned methods.
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Figure 3.4. Illustration of the ST GCN layers preceding the fully connected layers. The
left diagram depicts the architecture of the parallel concept of the ST GCN, and the right

diagram depicts configuration 𝑐3 with the ST GCN layers put in series.

3.3.2 Coordinate Data Augmentation

To mitigate overfitting in 3D coordinates-based models, we introduced two augmenta-
tion methods on the coordinates – rotation, translation, and mirroring. The classifica-
tion of actions should be invariant to the rat’s position within the arena. Initially, we
align the Z-coordinate to be perpendicular to the plane of the arena. Three non-collinear
points define the arena plane, the triangulated corners of the arena, denoted as 𝑃1, 𝑃2,
and 𝑃3. The normal to the plane, 𝑛, is computed as 𝑛 = −𝑣1×𝑣2

‖𝑣1×𝑣2‖ where 𝑣1 = 𝑃2 − 𝑃1
and 𝑣2 = 𝑃3 − 𝑃1. The rotation axis 𝑟, and rotation angle 𝜃, are calculated using the
equations 𝑟 = 𝑛 × 𝑧 and 𝜃 = arccos(𝑛 ⋅ 𝑧), respectively, with 𝑧 = [0, 0, 1]𝑇. The rotation
matrix 𝑅 is defined by Rodrigues’ rotation formula [45]:

𝑅 = cos(𝜃)𝐼 + sin(𝜃)𝑁× + (1 − cos(𝜃))𝑟𝑟𝑇 (3.3.2.1)

Where 𝑁× represents the skew matrix of 𝑟.
Each point 𝑃 representing the rat’s coordinates is then rotated, resulting in 𝑃 ′ = 𝑅𝑃

(we also align the corner points of the arena from 𝑃 ′
𝐶1 to 𝑃 ′

𝐶4). This allows us to
augment the training dataset represented via 3D coordinates. The augmentation is
applied with a 50% probability for each sequence being fetched for the batch. We
define the rotation as follows:

From the aligned arena corners 𝑃 ′
𝐶1 to 𝑃 ′

𝐶4, we compute the center of the arena as a
midpoint of the minimum and maximum x,y coordinates of these corners as:

𝐶(𝑥, 𝑦) = (
min(𝑃 ′

𝐶(𝑥)) + max(𝑃 ′
𝐶(𝑥))

2
,

min(𝑃 ′
𝐶(𝑦)) + max(𝑃 ′

𝐶(𝑦))
2

) (3.3.2.2)

For rotation augmentation, each point 𝑃 ′ representing the rat’s coordinates is trans-
lated to a new coordinate system centered at 𝐶 and then rotated around the Z-axis
using a rotation matrix 𝑅𝑧(𝜌), where 𝜌 is the rotation angle uniformly generated be-
tween 0 and 2𝜋. After the rotation around center 𝐶, the point is translated back to its
original coordinate system. We add a translation factor 𝜙 (uniformly generated between
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0 and 1) into the equation to augment the translation. The rotation and translation
augmentation on a point is then defined as:

𝑃 ′′ = 𝑅𝑧(𝜌)(𝑃 ′ − 𝐶) + 𝜙𝐶 (3.3.2.3)

For mirroring augmentation, with a 50% probability, we reflect the coordinates across
the vertical or horizontal axis passing through the center 𝐶. The reflection along the
X-axis (mirror X) and Y-axis (mirror Y) can be represented as 𝑃 ′′

𝑥 = 2𝐶𝑥 − 𝑃 ′
𝑥 and

𝑃 ′′
𝑦 = 2𝐶𝑦 − 𝑃 ′

𝑦, respectively.
These operations ensure that the augmented coordinates stay within the bounds of

the arena while introducing variation in the spatial positioning of the rats. The same
augmentation parameters (uniformly generated 𝜌, mirroring chance, and 𝜙) are applied
to the entire sequence window, to all points, for both rats. Additionally, we introduce
a 50% chance of swapping sets of points in the sequence coordinate matrix for a given
rat with those of the other rat. This approach ensures that the 3D coordinate-based
models are invariant to the identity of the rats, eliminating bias towards a specific rat
being the reason for the action classification.

3.3.3 TSRJI-CNN Model
Tree Structure Reference Joints Image (TSRJI) CNN model processes a TSRJI using
a series of convolution layers. The TSRJ image is constructed based on a predefined
tree structure with reference joints, each representing a sequence of a given action and
the connection between the tree structure and a reference joint. We chose the snout,
second spine point, and tail base for our reference joints for each rat. In the TSRJ
image, we encode the change of spatial relationships through the sequence of the points
of one rat to the reference point on the other rat. This results in six images of 15
× 9 pixels, where each pixel represents distance and rotational information between
two points in the XY-plane and along the Z-axis (polar coordinates with the denoted
reference point). Given a sequence window matrix of coordinates 𝑋 ∈ 𝑅𝑡×2𝑛×3 and the
topology of the tree structure defined, we denote the construction of TSRJI as follows:

𝑑𝑡,𝑖𝑗 = ‖𝑋𝑡,𝑖(𝑥, 𝑦, 𝑧) − 𝑋𝑡,𝑗(𝑥, 𝑦, 𝑧)‖

𝛼𝑡,𝑖𝑗 =
cos(arccos(𝑦𝑡,𝑗 − 𝑦𝑡,𝑖, 𝑥𝑡,𝑗 − 𝑥𝑡,𝑖)) + 1

2

𝛽𝑡,𝑖𝑗 = arccos (
𝑧𝑡,𝑗 − 𝑧𝑡,𝑖

𝑑𝑡,𝑖𝑗
) ⋅ 180

𝜋

(3.3.4.1)

Where, for a given time step 𝑡 and joints 𝑖, 𝑗, 𝑑𝑡,𝑖𝑗 is the Euclidean distance between
joints, 𝛼𝑡,𝑖𝑗 is the azimuthal angle representing the orientation of one point relative to
another in the horizontal plane (XY), and 𝛽𝑡,𝑖𝑗 represents the polar angle between the
Z-axis and the vector between the two joints. The pixel 𝐼 in position 𝑡 and 𝑛 of the
TSRJ image is then defined as 𝐼𝑡,𝑛 = (𝑅 = 𝑑𝑡,𝑖𝑗

𝑑max
, 𝐺 = 𝛼𝑡,𝑖𝑗, 𝐵 = 𝛽𝑡,𝑖𝑗

180 ), where 𝑅, 𝐺, 𝐵
represent the standard RGB color space values for the pixel. We present the RGB
representation in Figure 3.5.

The tree structures are organized based on a systematic pattern: each structure
connects every joint of one rat to a single reference joint of the other rat. We form three
structures per rat, each focusing on one of the three reference joints. This approach
results in six unique configurations, where the first set of three structures connects each
joint of Rat X to the snout, second spine point, and tail-base of Rat Y, respectively. The
second set mirrors this approach, connecting each joint of Rat Y to the corresponding
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Figure 3.5. Example of the derived TSRJ images representing a sequence window for each
rat X (left) and Y (right) reference points.

reference joints of Rat X. Each of the six derived TSRJ images (𝑀) is then passed into
a CNN with two 2D convolution layers and one pooling layer, defined as:

𝑋1 = 𝑅𝑒𝐿𝑢(𝑊1 ∗ 𝑋𝑖𝑛 + 𝑏1) (3.3.4.2)
𝑋𝑜𝑢𝑡,𝑀 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑅𝑒𝐿𝑢(𝑊2 ∗ 𝑋1 + 𝑏2)), where 𝑊 are the trainable weights and 𝑏
is the bias. The first convolution layer takes an input with 3 channels and produces
an output with 16 channels, using a 3 × 3 kernel with stride 1 and padding 1. The
second convolution layer takes the 16-channel input and outputs a 32-channel feature
map using a 3 × 3 kernel with stride 1 and padding 1. The pooling layer is a 2 × 2 max
pooling operation with stride 2 and no padding. The derived features for each image 𝑀
are then concatenated and passed to a linear layer with a ReLU activation and a 20%
dropout layer, followed by a final linear layer. Training and validation of the model are
described in experiments section 4.10. The architecture is depicted in Figure 3.6

Figure 3.6. Illustration of the convolution and pooling layers of the TSRJI-CNN network
for one TSRJ image.

Note: We also test the implementation without normalizing the polar coordinates and
presenting them as an RGB image. The results were similar to the RGB representation
(refer to Experiment Section 4.10), but the loss on training and validation sequences
was diverging, as opposed to the normalized representation.
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3.3.4 Pivot TSRJI-CNN Model

Following the experiments evaluating the 3D coordinate methods (ST GCN, TSRJI-
CNN), we denote a modification to the TSRJI-CNN model (as the GCN-based method
proved insufficient, and the TSRJI otherwise). The modification to the TSRJI-CNN
model follows a concept of a mutual action recognition method on skeletal data based
on a pivotal point and coordinate transformation, proposed by Shian-Yu Chiu, 2021
[46]. We adjust the sequence matrix of coordinates 𝑋 ∈ 𝑅𝑡×2𝑛×3 so that a sequence
is centered to the center of the arena as denoted in equation 3.3.2.2 (with an addition
of the Z coordinate). The center is denoted as 𝐶′(𝑥, 𝑦, 𝑧) = [𝑥 = 0, 𝑦 = 0, 𝑧 = 0] in
the new coordinate system. We denote this center as a pivot to all other points in
the matrix (of both rats) and compute the polar coordinates with the pivot set as the
reference point. The computation of the TSRJI then follows the method in Section
3.3.3, but inputs only two image maps (for both rats), as we have only one reference
point, allowing the model to learn the action features with respect to one point. As a
CNN model to classify the Pivot TSRJI images, we use the model denoted in Section
3.3.3. Training and validation of the model are described in experiments section 4.11.

3.3.5 CNN-LSTM Model
The CNN-LSTM model processes the sequence window images of each camera view
to classify the actions. We fine-tuned a ResNet CNN to derive the spatial features.
We concatenate the features of all views across the sequence window and pass them
to an LSTM layer to process the temporal dependencies. Based on datasets sizes
and computational resources, the backbone of ResNet-18 was chosen as a default pre-
trained network. Prior to the CNN feature extraction, the images undergo resizing and
normalization. We resize the input image of size 1280 × 720 to a fixed size of 112 × 112
with bilinear interpolation (the ResNet-18 is trained on 224 × 224 ImageNet dataset
with bilinear interpolation, however, due to computational resources, a smaller fixed size
was set) [47]. The normalization was based on the standardly used mean and standard
deviation values for the ResNet-18 fine-tuning, which are derived from the ImageNet
dataset and defined as 𝜇𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡 = [0.485, 0.456, 0.406], which represents the mean
value of ImageNet, and 𝜎𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡 = [0.229, 0.224, 0.225], which represents the standard
deviation of ImageNet (RGB channels) [47]. We present the image representation passed
into the CNN in Figure 3.7.

From the ResNet18, we output a 512-dimensional feature vector for each of the views
for each image in the sequence. Those spatial features are further concatenated into a
2048-dimensional feature vector 𝑋𝑀 (images from four views) for each time step in the
sequence window. We then pass 𝑋𝑀 to an LSTM layer with 512-dimensional output
𝑋𝑜𝑢𝑡, with a subsequent mean of the output weights 𝑋𝑜𝑢𝑡, capturing the whole sequence
window, defined as:

𝑋𝑜𝑢𝑡 = 1
𝑇

𝑇 =15
∑
𝑡=1

𝐿𝑆𝑇 𝑀(𝑋𝑀, 128) (3.3.6.1)

Where 𝑇 is the sequence window length, 𝑋𝑜𝑢𝑡 is then passed to a 20% probability
dropout layer, followed by a linear layer with a leaky ReLU activation, a linear layer
with ReLU activation, and a final linear layer. Training and validation of the model
are described in experiments section 4.12.
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Figure 3.7. Example of the preprocessed input images to the CNN-LSTM model. The
example depicts three images of the sequence window of camera view 3 (left) and camera

view 4 (right).

3.3.6 View Image Data Augmentation
We introduced augmentation to the image tensors to prevent overfitting in the camera
image-based models, using the Torchmetrics 1.1.2 library. We adjust rotation, bright-
ness, and contrast augmentations to the images, with a 50% chance for the augmenta-
tion to be applied while fetching the sequence for the model. The same augmentation is
applied across the entire sequence window for a given view. The augmentation param-
eters 𝑟 (rotation angle), 𝐶 (contrast factor), and 𝐵 (brightness factor) are uniformly
generated within the following ranges: 𝑟 ∈ (−15, 15) and 𝐶, 𝐵 ∈ (0.85, 1.15).

3.3.7 3D CNN Model
We employed a 3D convolutional network to process the spatial and temporal depen-
dencies of the image sequence windows. The approach followed the CNN-LSTM model
(refer to 3.2.6) – we preprocessed the images and passed the sequence windows of im-
ages from the four camera views into a backbone of 3D ResNet-18 – an augmented
variant of the ResNet-18 designed to perform convolution in a 3D space, replacing the
LSTM layer. The difference from the LSTM approach was in representing the sequence
window as a motion cuboid, following the equation in 1.4.2. For each camera view, we
computed a motion cuboid of the sequence window as:

𝑋𝑖𝑛,𝑡,1−4 = |𝐼𝑡,1−4 − 𝐼𝑡+1,1−4| (3.2.7.1)

Where 𝐼 denotes the RGB image for the given view 1 to 4, and 𝑡 denotes the time step
in the sequence window. The resulting sequence window is shorter by one time step.
Motion cuboids 𝑋𝑖𝑛,1−4 are then passed to a 3D ResNet-18. The resulting features are
concatenated and passed to a linear layer with a ReLU activation, followed by a 20%
probability dropout layer and a final linear layer. Training and validation of the model
are described in experiments section 4.13.

3.3.8 1D CNN Model
To utilize the sets of features 𝐷𝐻 (head-to-head distance), 𝐷𝑆𝐵 (snout-to-tail-base dis-
tance), and 𝑉𝑅 (head speed) we denoted in 3.2.1, we employ a 1D CNN model. Each
feature set is passed as a 15 × 1 vector into a 1D convolutional layer for a given se-
quence window. The feature matrix 𝐹 is defined as 𝐹 = [𝐷𝐻 𝐷𝑋

𝑆𝐵 𝐷𝑌
𝑆𝐵 𝑉 𝑋

𝑅 𝑉 𝑌
𝑅 ].

35



3. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The convolution layer takes an input with 1 channel and produces an output with 16
channels, using a kernel of size 3 with padding 1. The derived features for each feature
vector 𝐹𝑜𝑢𝑡,𝑥 are then concatenated and passed to a linear layer with a ReLU activa-
tion, followed by a 20% probability dropout layer and a final linear layer. Training and
validation of the model are described in experiments section 4.14.

3.3.9 Multi-Modal Model

We denote a multi-modal model to connect the qualities of the successful methods
described above. Based on the experiment results (refer to Section 4.8), we combine the
TSRJI-CNN model and the CNN-LSTM model. We approach the mentioned model’s
combination by three distinct strategies: model configurations 𝑐1, 𝑐2, and 𝑐3.

In configuration 𝑐1, we concatenated the feature output of each modality – the TSRJI-
CNN feature output and the CNN-LSTM feature output right after the first fully con-
nected layer of the models. The concatenation is followed by three fully connected
layers, with leaky ReLU activation, ReLU activation, and a final layer, respectively,
with two 20% dropout layers in between the fully connected layers.

In configuration 𝑐2, we omit the final fully connected layers and concatenate the fea-
tures into a 16-dimensional vector (eight final weights for each modality). The vector
is passed to a fully connected layer with the same output size (16) to assess the con-
catenated weights with a leaky ReLU activation, a 10% dropout layer, and then passed
into the final fully connected layer.

In configuration 𝑐3, we use the TSRJI-CNN model and the CNN-LSTM model with
pre-trained weights (the choice of the pre-trained weights was based on the least vali-
dation loss throughout the training of the models – refer to experiments section 4.8).
We then omit the final fully connected layers of each of the models and retrain the
concatenated features from the pre-trained models (vector of size 128 + 64) with a
fully connected layer with a ReLU activation and a 20% dropout layer, followed by a
final fully connected layer. Each configuration is reported in experiments sections 4.15
and 4.16.

3.3.10 Action Initiator classification

To classify the initiator of actions predicted as [OI], [AP], [DT], and [MT] (for the
given sequence window), we train an individual model for each of the classes. As for
the model for the initiator classification, we choose the denoted method TSRJI-CNN
(refer to Section 3.3.3) based on the Experiment 4.10 results and the fact that the
TSRJ image carries the information about the rat’s identity (as opposed to the CNN-
LSTM view image-based model). The classification task for the model is then a binary
classification problem. We kept the identity swap random transformation – in that case,
we changed the resulting label accordingly. The results of the experiment are reported
in experiments section 4.18.

3.3.11 Human Predictions

We prepare a labeling GUI to assign and acquire human predictions to compare the
final method denoted to classify actions on TgF344AD Pair 18. The labeling process
involved labeling two subsets - AD1AD3, six months, and AD3AD4, ten months. The
person assigned the labeling task was shown and explained the examples of actions to
be classified as described in Section 2.13.1. The person assigns a label to a hundred
sequence windows (for each window viewing 15 consecutive frames of camera views 1
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and 2 - one action for half a second of the video subset) from each subset (from time 5
seconds to 55 seconds of the video subset).

We calculated three types of accuracy for the comparison of the human and model
predictions. Firstly, we denote accuracy 𝐴𝑐1 as:

𝐴𝑐1 = 1
𝑁

𝑁
∑
𝑖=1

𝜄(𝑦𝑖 = ̂𝑦𝑖) (3.3.11.1)

Where 𝑁 is the total number of sequence windows, 𝑦𝑖 is the human label for a sequence
window 𝑖, ̂𝑦𝑖 is the model’s prediction for a sequence window 𝑖, and 𝜄 is the indicator
function that returns one if the argument is true and 0 otherwise. Because we have
visually inspected situations where the labeler or model differed by one sequence window
- for example, the model predicted [AP] a sequence window earlier, while the person
noted the approach from a closer distance, we introduced latency-based accuracy 𝐴𝑙𝑏
as:

𝐴𝑙𝑏 = 1
𝑁

𝑁
∑
𝑖=1

max
𝑗=𝑖−𝐿,𝑖+𝐿

𝜄(𝑦𝑖 = ̂𝑦𝑗) (3.3.11.2)

Where 𝐿 represents the latency tolerance in terms of sequence window count. We
also denote the event-based occurrence accuracy 𝐴𝑒𝑏 for both correct and incorrect
predictions, comparing the frequency of occurrence of each class, as:

𝐴𝑒𝑏 = 1 − 1
𝑁

𝑀
∑
𝑘=1

∣𝑓𝐻
𝑘 − 𝑓𝑀

𝑘 ∣ (3.3.11.3)

where 𝑀 is the number of classes, 𝑓𝐻
𝑘 and 𝑓𝑀

𝑘 are the frequencies of class 𝑘 in the human
labels and model predictions, respectively. The comparison results of 200 sequence
windows (N) are described in experiments section 4.19.

3.4 Data Analysis
We use statistical methods to analyze the different rat types within our dataset TgF344
AD Pair 18 (TgF344 AD (AD) and F344 (WT)). We differentiate between the age
groups of six months and ten months. The details of the experiment setup are de-
scribed in Section 2.4. We use the derived model MM𝑐3 trained on the labeled part
of TgF344 AD Pair 18 (see section 2.13.1 and experiments section 4.16) to predict the
behavioral actions between rat pairs of obtained video segments of experimental day 2
(interactions) for every 15 consecutive frames (one window) of the segments for each age
group. We analyzed 520 seconds of each recorded video subset (starting at 5 seconds of
the recording to 525 seconds of the recording). We split the analysis into two parts: a
comparison of all the times spent in given actions between different rat pairings which
are AD-AD, WT-WT, and AD-WT) and a comparison of time spent in given actions
as an initiator of the subset of the actions with an initiator determined (actions [OI],
[AP], and [MT]) between different rat types (AD or WT). Class [DT] was analyzed as
a [NS] class based on experimental results (see experiments section 4.19).

To compare the different rat pairings for each classified interaction, we used the
Shapiro-Wilk Test to test the normality of derived data. We use this test as our minimal
sample size is four [48] (there are four subsets of AD-AD pairings, WT-WT pairings,
and eight subsets for AD-WT pairings for a given age group in TgF344 AD Pair 18),
followed by the non-parametric Kruskal-Wallis test (the choice of the non-parametric
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method is based on results of the normality test - see Section 5.1). In our case, the
Kruskal-Wallis Test determines if the populations of times spent in given actions differ
across different rat type pairings.

To compare the time spent as an initiator for given actions between the AD and
WT rat types in a given age group, we use the Shapiro-Wilk Test to test the normality
(sample size is 16 for given rat type), followed by the Mann-Whitney rank sum test as
a non-parametric method to compare the samples for each initiator action.

We repeat the denoted analysis for the predictions on dataset TgF344 AD Pair 18
by the Rule-Based Model (see Section 3.2.1) on chosen classes [HH] and [SB]. The [SB]
class is analyzed with an initiator, as denoted above.

The time spent 𝑡𝑎 in a given interaction is calculated as a sum of each individual
prediction (one predicted sequence window equals 0.5 seconds). We differentiate 𝑡𝑎 for
each action, rat pairings (AD-AD, WT-WT, and AD-WT), and rat type and identity
while differentiating the initiator of the action. The results of predictions made by the
MM𝑐3 model are depicted in Section 5.1. The results of predictions made by the Rule-
Based Model are depicted in Section 5.2. To perform the statistical tests, we employed
MATLAB built-in methods.

3.5 Training protocol
We train the models with the Adam optimizer, with a learning rate 𝑙𝑟 = 0, 001. We
employ a learning rate scheduler multiplying the learning rate with a factor of 0.1 if the
validation loss plateaus. The objective function is the Cross-Entropy loss function. We
implement a weighted sampling strategy to address the imbalance in class representation
within dataset TgF344-AD Pair 18. This approach assigns a distinct weight to each
sample, influencing its likelihood of being selected during training epochs. The weight
for a class is assigned and normalized as 𝑤𝑐𝑙𝑎𝑠𝑠 = 𝑁

𝑐𝑜𝑢𝑛𝑡𝑝
𝑐𝑙𝑎𝑠𝑠

, where 𝑁 is the total number
of samples, and 𝑐𝑜𝑢𝑛𝑡𝑝

𝑐𝑙𝑎𝑠𝑠 is the count of the given class in the dataset with a power
adjustment 𝑝 (a set hyperparameter). The normalization of the weights is defined as
𝑤𝑛𝑜𝑟𝑚.𝑐𝑙𝑎𝑠𝑠 = 𝑤𝑐𝑙𝑎𝑠𝑠

∑𝐶
𝑐𝑙𝑎𝑠𝑠=1 𝑤𝑐𝑙𝑎𝑠𝑠

, where 𝐶 is the number of classes. Batch size is denoted for
each method in the experiment section based on the computational resources.
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Chapter 4
Experiments

4.1 Evaluation of DLC Pose Estimation
We evaluated the DLCRNet-MS5 (refer to Section 2.6) based on root mean squared
error (RMSE) on the dataset consisting of 845 denoted frames with markers (refer to
Section 2.8), where 0.85% of frames was used for training, 0.15% was used for testing.
The tables Table 4.1 and Table 4.2 depict the pixel mean RMSE for each marker
(also differentiated between the two rats) computed with a likelihood threshold for
retaining the markers in a given frame (refer to Section 2.12). The tables display
RMSE evaluation on the training and testing portion of the dataset. The dependency
of likelihood-based marker cut-off and RMSE is depicted in Figure 4.1.

Figure 4.1. Pixel RMSE computed for different likelihood threshold cut-off for estimated
markers by the trained DLCRNet-MS5 on training and testing dataset.
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RMSE on Training Dataset

Body Part Mean RMSE Rat X Mean RMSE Rat Y Mean RMSE

M1: Snout 3.939 3.939 3.939
M2: Left Ear 3.241 3.275 3.207
M3: Right Ear 3.318 3.375 3.261
M4: Spine 1 3.278 3.228 3.329
M5: Spine 2 2.887 2.843 2.931
M6: Spine 3 3.184 3.156 3.211
M7: Spine 4 3.267 3.252 3.282
M8: Spine 5 3.549 3.483 3.616
M9: Tail Base 3.703 3.622 3.783

Table 4.1. Pixel RMSE computed for estimations by the trained DLCRNet-MS5 on the
training dataset (refer to 2.13.3) for each denoted marker.

RMSE on Testing Dataset

Body Part Mean RMSE Rat X Mean RMSE Rat Y Mean RMSE

M1: Snout 6.477 7.350 5.605
M2: Left Ear 4.670 4.440 4.899
M3: Right Ear 4.873 4.974 4.772
M4: Spine 1 5.803 5.836 5.770
M5: Spine 2 7.766 7.620 7.912
M6: Spine 3 8.676 8.083 9.268
M7: Spine 4 9.528 8.841 10.215
M8: Spine 5 8.682 8.581 8.782
M9: Tail Base 7.947 8.104 7.790

Table 4.2. Pixel RMSE computed for estimations by the trained DLCRNet-MS5 on the
testing dataset (refer to 2.13.3) for each denoted marker.

4.2 Point Distribution Model (PDM)
The PDM performance was evaluated by the Mean Squared Error (MSE) between a set
of 800 valid shapes and their respective copies, from which a predetermined number of
markers were removed to be estimated by the PDM.

In each iteration, the indices of the markers to be removed were randomly selected,
to ensure a robust assessment of the PDM’s performance across various instances (the
random selection was employed in MATLAB by a built-in ‘randperm’ function, using
the uniform pseudorandom number generator). The MSE compared to a number of
markers randomly removed from the original shape and estimated by the PDM is de-
picted in Figure 4.4, with a comparison of MSE while using only the mean shape to fill
in the missing markers. The visualization of the estimated markers (of three, four, five,
and six markers) is depicted in Figures 4.2 and 4.3.

Based on a subjective visual evaluation of the PDM, the PDM performs rather well
when it estimates the position of markers between peripheral markers, but the accuracy
diminishes if the PDM tries to estimate the rotation of peripheral markers. We depict
the visualization of PDM in Figures 4.2 and 4.3. On average, given our dataset and
the estimations from DLC, the PDM estimates about 3.7 % markers per instance for a
single rat. Typically, one to three markers are being imputed if given the situation of
missing or removed markers (refer to Section 2.12).
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Figure 4.2. PDM estimation of three missing markers (indexes 2, 5, 8) and four missing
markers (indexes 2, 3, 4, 9). The estimated markers: purple, reference shape: green.
Marker 1 - snout, 2 - left ear, 3 - right ear, 4 - spine 1, 5 - spine 2, 6 - spine 3, 7 - spine 4,

8 - spine 5, 9 - tail-base.
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Figure 4.3. PDM estimation of five missing markers (indexes 2, 3, 4, 8, 9) and six missing
markers (indexes 2, 3, 5, 6, 7, 8). The estimated markers: purple, reference shape: green.
Marker 1 - snout, 2 - left ear, 3 - right ear, 4 - spine 1, 5 - spine 2, 6 - spine 3, 7 - spine 4,

8 - spine 5, 9 - tail-base.
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Figure 4.4. MSE with error bars between original shapes and same shapes with a de-
termined number of markers randomly removed and estimated by the PDM. For visual
purposes, we display up to five removed markers – the MSE of estimating six markers is

around 12000.
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4.3 Comparison of PDM Imputation with PDM and
Geometric Rule-Based Imputation

To see if the PDM imputation performs with a lesser MSE in conjunction with the ge-
ometric rule-based imputation, we conducted an experiment that mirrors the method-
ology of the experiment described in section 4.1. We compared the imputation solely
by PDM and the imputation by PDM, that if the shape to be corrected had the mark-
ers suitable for geometric imputation (that meaning only one of the markers identified
as snout – 1, left ear – 2, or right ear – 3 and present marker spine1 – 4), used the
geometric imputation beforehand.

The experiment results show that the geometric imputation should be included before
using the PDM. The comparison is visible in the graph Figure 4.5 and Figure 4.6, and
visualization in Figure 4.7.

Figure 4.5. Comparison with error bars of using solely PDM (red) and PDM (blue) with
a preceding geometric imputation (as defined in 2.10.2). The results show that the MSE

is lesser with a preceding geometric imputation to the PDM.
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Figure 4.6. Scatter plot between MSE of solely PDM estimation and PDM with preced-
ing geometric imputation. Points below the red line indicate instances where preceding

geometric imputations enhanced PDM performance.

Figure 4.7. The visual comparison of PDM – estimating markers indexed 1,5,8 and geo-
metric imputation of the snout – 1.
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4.4 Temporal Imputation method
We decided on the most suitable temporal imputation method for the 3D coordinates
based on MSE measured while interpolating randomly removed sequences (of the cho-
sen maximal gap size of 15 instances). The sequence was randomly removed throughout
1000 iterations (tested throughout four subsets of 2-minute length). The MSE was mea-
sured for both rats across the whole imputed sequence between the original sequences
and randomly chosen imputed ones (for the randomized algorithm, refer to Section 4.1).
The results of MSE are depicted in Figure 4.8. The best method for temporal impu-
tation on the rat sequences was the piecewise cubic Hermite interpolating polynomial
(PCHIP).

Figure 4.8. Choice of method for temporal imputation of 3D coordinates based on MSE.
The red bar represents the chosen method as a piecewise cubic Hermite interpolating

polynomial – refer to Section 2.11.

4.5 Identity Swap correction
We evaluated the implementation of the identity swap correction (refer to Section 3.1)
by intentionally swapping the identities of rats in the sequences and checking the number
of corrected frames. We randomly selected thirty subsequences of a random length
(ranging from zero to fifteen) for a hundred iterations. We then randomly selected
one, two, three, and four views and intentionally swapped the rat’s identities in those
selections (for the randomized algorithm, refer to Section 4.1). After correcting the
sequences, we obtained the result depicted in Figure 4.9. The instance was considered
successfully corrected if the markers with their assigned identities matched the markers
before the intentional identity swap across all the views.

The experiment results show a slow decrease in the success rate of the correction
with a rising number of views with swapped identities, ranging from 96,5% to 89%.
The total number of instances with intentionally swapped identities was 12466 in four
video subsets.
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Figure 4.9. The Identity Swap correction success rate of the method described in Section
3.1. The blue bars represent the percentage of successfully corrected instances of inten-

tionally swapped identities across all the views.

4.6 Rule-Based Model Evaluation
The Rule-Based Model was evaluated on 596 sequence windows (one sequence window
consisting of fifteen frames) from dataset Rule-TgF344AD Pair 18, denoted in 2.13.1.
Table 4.3, confusion matrice in Figure 4.11, and Figure 4.10 depict the evaluation of
the Rule-Based Model with thresholds 𝑇 ∗ and window sizes 𝑊 ∗ found by the Bayesian
optimization (refer to Section 3.2.1).

Rule-Based Model Class Performance Metrics
Class 𝐹1 Score Precision Recall

[NS] 0.885 0.895 0.904
[HH] 0.800 0.828 0.857
[SB] 0.836 0.827 0.818
[AP] 0.469 0.566 0.714
[PS] 0.829 0.687 0.586

Table 4.3. Table showing the 𝐹1 Score, precision, and recall for each class predicted by the
Rule-Based Model on dataset Rule-TgF344AD Pair 18.
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Figure 4.10. 𝐹1 Score (cyan), precision (blue), and recall (purple) evaluated for each of
the classes predicted by the Rule-Based Model (refer to Section 3.2.1) on dataset Rule-

TgF344AD Pair 18.

Figure 4.11. Confusion Matrix of the classes predicted by the Rule-Based Model (refer to
Section 3.2.1) on dataset Rule-TgF344AD Pair 18.

The model was evaluated using the 𝐹1 score, precision, and recall. The 𝐹1 score
was calculated for each sequence window (and not instances) to follow up the labeling
process. The label for the sequence window was determined by a majority vote from
the 15 consecutive predictions (the sequence window length). Based on this evaluation,
the Total 𝐹1 Score of the Rule-Based Model is 0,769 on dataset Rule-TgF344AD Pair
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Rule-Based Model Thresholds

Variable Threshold Denotation Value Units

Maximal passive interaction distance 𝑡𝑚𝑝 164 mm
Maximal Standard deviation 𝑡𝑠𝑡𝑑 1068 mm
Minimal head contact distance 𝑡ℎ 79 mm
Minimal snout and tail-base distance 𝑡𝑠𝑏 52 mm
Minimal approach starting distance 𝑡𝑚𝑠 171 mm
Minimal approach traveled distance 𝑡𝑚𝑎 90 mm
Maximal approach speed 𝑡𝑣 92 mm 𝑠−1

Maximal passive speed 𝑡𝑣𝑝 108 mm 𝑠−1

Approach window size 𝑤𝑎𝑝 28
Passive interaction window size 𝑤𝑝𝑠 76

Table 4.4. Table showing thresholds found by the Bayesian Optimization for the Rule-
Based Model on dataset Rule-TgF344AD Pair 18 denoted in Section 3.2.1.

18. The found threshold values for set 𝑇 ∗ and window sizes set 𝑊 ∗ (for details denoted
in Section 3.2.1) are depicted in Table 4.4.

4.7 Rule-Based Model – TgF344AD Pair 18 adaptation
Evaluation

Adapting the rule-based model to comprehend the classes denoted for deep learning
models in dataset TgF344AD Pair 18 had a lesser expected performance. Classification
of classes [NS] or [AP] and others without detecting contact classes of mutual explo-
ration or olfactory investigation had an expected decrease in the evaluation metrics.
As for the class [MM], we managed to detect it throughout the dataset, but after the
majority vote on the clip sequence windows, its detection stayed at zero samples. The
evaluation protocol followed the evaluation of the rule-based model denoted in Section
3.2.1. The overall 𝐹1 score of the model is 0,2794 on dataset TgF344AD Pair 18. Table
4.5 and Figure 4.12 depict the evaluation of the Rule-Based Model adaptation. The
Bayesian optimization found thresholds are denoted in Table 4.6.

Rule-Based Model Ad. DClass Performance Metrics
Class 𝐹1 Score Precision Recall

[NS] 0.938 0.840 0.761
[EX] 0.107 0.168 0.400
[OI] 0.252 0.374 0.725
[AP] 0.232 0.285 0.370
[DT] 0.250 0.302 0.382
[MT] 0.214 0.110 0.074
[PS] 0.179 0.155 0.136
[MM] 0.000 0.000 0.000

Table 4.5. Table showing the 𝐹1 Score, precision, and recall for each class predicted by the
Rule-Based Model Adaptation on dataset TgF344AD Pair 18.
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Figure 4.12. 𝐹1 Score (cyan), precision (blue), and recall (purple) evaluated for each of the
classes predicted by the Rule-Based Model Adaptation (refer to Section 3.2.2) on dataset

TgF344AD Pair 18.

Rule-Based Model Adaptation Thresholds

Variable Threshold Denotation Value Units

Maximal passive interaction distance 𝑡𝑚𝑝 84 mm
Maximal Standard deviation 𝑡𝑠𝑡𝑑 1075 mm
Minimal mutual exploration distance 𝑡𝑒𝑥 61 mm
Minimal olfactory exploration distance 𝑡𝑜𝑖 63 mm
Minimal approach starting distance 𝑡𝑚𝑠 156 mm
Minimal approach traveled distance 𝑡𝑚𝑎 85 mm
Maximal approach speed 𝑡𝑣 187 mm 𝑠−1

Maximal passive speed 𝑡𝑣𝑝 72 mm 𝑠−1

Approach window size 𝑤𝑎𝑝 34
Passive interaction window size 𝑤𝑝𝑠 58
Minimal detach starting distance 𝑡𝑚𝑑 175 mm
Minimal detach traveled distance 𝑡𝑑𝑠 210 mm
Minimal detach speed 𝑡𝑣𝑑 81 mm 𝑠−1

Detach window size 𝑤𝑑𝑡 50
Minimal mounting threshold in z-axis 𝑡𝑧 592 mm
Minimal mounting distance threshold 𝑡𝑚𝑡 59 mm
Minimal rear mimicking threshold in z-axis 𝑡𝑚𝑚 1062 mm

Table 4.6. Table showing thresholds found by the Bayesian Optimization for the Rule-
Based Model Adaptation on dataset TgF344AD Pair 18 denoted in Section 3.2.2.

4.8 Experiments: Deep Models Evaluation
We trained and evaluated the models for each of the proposed methods for action
recognition in the methods section. Each model was trained on our dataset TgF344AD
Pair 18, and for the 3D coordinate modality ST GCN-based models, we also include
the report on dataset Pair-R24M. For training purposes, we use 80% of the datasets
and validate on 20%. The random split for the training and testing dataset is set
with a permanent seed to ensure consistency across different methods. The split is
performed using stratified sampling to ensure a uniform representation of each class
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across both the training and validation datasets. In the pages below, we report the
training and validation based on the 𝐹1 score for each class, precision, and recall, the
overall accuracy, loss, and confusion matrices if the model or the proposed method was
denoted as sufficient on dataset TgF344AD Pair 18. We report the 𝐹1 scores, precision,
and recall otherwise for simplicity. The reported model performance values are the ones
with minimal validation loss throughout the training process of a given model. For a
comparison of all denoted methods, refer to experiment section 4.17.

4.9 ST GCN Model Training and Evaluation
We train and evaluate the ST GCN (refer to Section 3.3.1) on datasets TgF344AD Pair
18 and Pair-R24M. In Table 4.7 and Figure 4.13, we display the TgF344AD Pair 18 re-
sults. We report 𝐹1 score values for each class (as denoted in datasets - refer to Section
2.13), overall accuracy and loss for topology configurations passed to the ST GCN 𝑐1
and 𝑐2 and architectural augmentation ST GCN-s using the topology configuration 𝑐2.
Based on the evaluation, the ST GCN method proved insufficient across both presented
topology configurations (with overall validation accuracy of 0.345 on configuration 𝑐2)
and architectural configuration on dataset TgF344AD Pair 18. The presented 3D coor-
dinate sequence window was not sufficient to learn the relations for our denoted actions,
and based on a comparison of results on the Pair R24-M dataset, where the ST GCN
was able to learn to classify the actions, our denoted dataset TgF344AD Pair 18 did not
comprehend enough labels for the ST GCN model. The model was trained on batch
sizes of 48 and 100 epochs. Results on the Pair R24-M are mentioned in the following
paragraph.

ST GCN Class Performance Metrics on TgF344AD Pair 18

Class [T] ST 𝑐1 [V] ST 𝑐1 [T] ST 𝑐2 [V] ST 𝑐2 [T] ST GCN-s [V] ST GCN-s

[NS] 0.420 0.548 0.422 0.500 0.299 0.260

[EX] 0.014 0.000 0.003 0.000 0.000 0.000

[OI] 0.276 0.299 0.297 0.350 0.000 0.000

[AP] 0.000 0.000 0.005 0.000 0.000 0.000

[DS] 0.007 0.000 0.025 0.000 0.000 0.000

[MT] 0.290 0.527 0.300 0.569 0.000 0.000

[PS] 0.233 0.322 0.280 0.482 0.000 0.000

[MM] 0.048 0.000 0.258 0.198 0.000 0.000

Table 4.7. Table showing the class performance 𝐹1 Score metrics for training ([T]) and
validation ([V]) on dataset TgF344AD Pair 18 across ST GCN (ST) topology configurations

𝑐1, 𝑐2 and architectural augmentation ST GCN-s.

In Figure 4.14 and Table 4.8, we present the performance of the ST GCN on the
Pair R24-M dataset. The configurations P24𝑐1 and P24𝑐2 utilize the fully connected
graph topology for the spatial adjacency matrix 𝐴𝑠 used in the spatial GCN layers.
Configuration P24𝑐1 represents the parallel architecture of the network, as denoted in
Section 3.3.1, and configuration P24𝑐2 represents the GCN layers arranged in series
ST GCN-s, also detailed in Section 3.3.1. We performed this experiment to see if the
implementation of ST GCN failed on TgF344 AD Pair 18 due to the model’s architecture
or the dataset size. Based on the evaluation on dataset Pair-R24M, with a sufficient
number of training sequence windows (refer to Section 2.13.2 to see the Pair-R24M
dataset size), the ST GCN implementation was able to learn the spatial and temporal
dependencies of the rats’ actions effectively. The configuration P24𝑐1 demonstrated
superior performance across all classes of the Pair R24-M dataset.
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Figure 4.13. 𝐹1 score class performance for training and validation on dataset TgF344AD
Pair 18 across ST GCN topology configurations 𝑐1, 𝑐2 and architectural augmentation ST

GCN-s (𝑐3).

ST GCN Class Performance Metrics on Pair 24-M Dataset

Class [T] ST P24 𝑐1 [V] ST P24 𝑐1 [T] ST P24 𝑐2 [V] ST P24 𝑐2

[NS] 0.927 0.912 0.775 0.767
[EX] 0.747 0.750 0.647 0.636
[CS] 0.724 0.698 0.560 0.560
[PS] 0.736 0.624 0.418 0.396

Table 4.8. Table showing the class performance 𝐹1 score metrics for training ([T]) and
validation ([V]) on dataset Pair R24-M across ST GCN (ST) configurations P24𝑐1, P24𝑐2.

Figure 4.14. 𝐹1 score class performance for training and validation on dataset Pair R24-M
across ST GCN configurations P24𝑐1, P24𝑐2.

4.10 TSRJI-CNN Model Training and Evaluation
We train and evaluate the TSRJI-CNN Model (refer to Section 3.3.3) on dataset
TgF344AD Pair 18. In Table 4.9, and Figures 4.15 and 4.16, we report 𝐹1 score,
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precision, and recall values for each class (as denoted in dataset TgF344AD Pair 18),
overall accuracy, loss, and the validation confusion matrix. The model was trained with
augmentations denoted in section 3.3.2. In our evaluation, the TSRJI-CNN method
demonstrated adequate performance across most classes, achieving an overall valida-
tion accuracy of 0.696. However, it exhibited limitations in accurately recognizing the
[MT] (mounting) class, which is generally more discernible by human eye observation.
The representation of relative rat positions in polar coordinates with reference markers
was found to be effective. The model was trained on batch size of 48 and 100 epochs.

TSRJI-CNN Class Performance Metrics on TgF344AD Pair 18

Class [T] 𝐹1 Sc. [V] 𝐹1 Sc. [T] recall [V] recall [T] precision [V] precision

[NS] 0.784 0.699 0.726 0.825 0.873 0.644

[EX] 0.875 0.791 0.938 0.785 0.838 0.822

[OI] 0.733 0.557 0.705 0.651 0.787 0.510

[AP] 0.855 0.764 0.865 0.770 0.862 0.777

[DS] 0.891 0.667 0.950 0.537 0.866 0.944

[MT] 0.941 0.358 0.949 0.279 0.947 0.538

[PS] 0.888 0.826 0.944 0.897 0.852 0.793

[MM] 0.947 0.754 0.988 0.740 0.920 0.820

Table 4.9. Table showing the 𝐹1 Score (𝐹1 Sc.), precision, and recall evaluated for the
training ([T]) and validation ([V]) of the TSRJI-CNN Model (refer to Section 3.3.3) on

dataset TgF344AD Pair 18 on each class.

Figure 4.15. Training and validation loss, accuracy, and the validation Confusion Matrix
for TSRJI-CNN Model on dataset TgF344AD Pair 18.
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Figure 4.16. Table showing the 𝐹1 Score (𝐹1 Sc.), precision, and recall evaluated for the
training ([T]) and validation ([V]) of the TSRJI-CNN Model (refer to Section 3.3.3) on

dataset TgF344AD Pair 18 on each class.

4.11 Pivot TSRJI-CNN Model Training and Evaluation
We train and evaluate the Pivot TSRJI-CNN Model (refer to 3.3.4) on dataset
TgF344AD Pair 18. In Table 4.10, and Figure 4.17, we report the 𝐹1 score, precision,
and recall values for each class (as denoted in dataset TgF344AD Pair 18). The model
was trained with augmentations denoted in section 3.3.2. The Pivot TSRJI-CNN
method demonstrated superior performance compared to certain proposed models,
such as the ST GCN and 3D CNN, when tested on the dataset TgF344AD Pair 18.
However, it did not surpass the performance of the TSRJI-CNN method utilizing
multiple reference joints, achieving an overall validation accuracy of 0.492. The model
was trained on batch size of 48 and 100 epochs.

Pivot TSRJI-CNN Class Performance Metrics on TgF344AD Pair 18

Class [T] 𝐹1 Sc. [V] 𝐹1 Sc. [T] recall [V] recall [T] precision [V] precision

[NS] 0.454 0.447 0.477 0.510 0.470 0.410

[EX] 0.481 0.565 0.594 0.701 0.438 0.523

[OI] 0.287 0.123 0.262 0.104 0.342 0.171

[AP] 0.409 0.366 0.400 0.398 0.511 0.376

[DS] 0.522 0.445 0.503 0.391 0.597 0.642

[MT] 0.582 0.540 0.625 0.617 0.586 0.531

[PS] 0.557 0.641 0.634 0.617 0.543 0.697

[MM] 0.746 0.638 0.804 0.747 0.731 0.576

Table 4.10. Table showing the 𝐹1 Score (𝐹1 Sc.), precision, and recall evaluated for the
training ([T]) and validation ([V]) of the Pivot TSRJI-CNN Model (refer to Section 3.3.4)

on dataset TgF344AD Pair 18 on each class.
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Figure 4.17. 𝐹1 Score, precision, and recall evaluated for the training and validation of the
Pivot TSRJI-CNN Model (refer to Section 3.3.4) on dataset TgF344AD Pair 18 on each

class.

4.12 CNN-LSTM Model Training and Validation
We train and evaluate the CNN-LSTM Model (refer to Section 3.3.5) on dataset
TgF344AD Pair 18. In Table 4.11, and Figures 4.18 and 4.19, we report 𝐹1 score, preci-
sion, and recall values for each class (as denoted in dataset TgF344AD Pair 18), overall
accuracy, loss, and the validation confusion matrix. The model was trained with aug-
mentations denoted in 3.3.6. Based on the evaluation, the CNN-LSTM method proved
sufficient for most of the classes with an overall validation accuracy of 0.669. However,
the model exhibited limitations in accurately recognizing the classes [AP] (Approach)
and [DT] (Detach). The [AP] class, characterized by movements and head orientations
towards another rat, presents a challenge due to its potential similarity with mutual
and olfactory exploration behaviors. The [DT] class was predominantly misclassified
as the [NS] (No Social) class. This observation suggests the feasibility of considering
a potential merge of these two classes to improve classification robustness after a dis-
cussion with a biologist. Compared with the TSRJI-CNN method, the CNN-LSTM
model showed improved recognition in the [MT] (Mounting) class, aligning with its dis-
tinguishable characteristics observable by the human eye. To summarize, the sequence
of images throughout all views proved to be a sufficient feature for the denoted actions.
The model was trained on a batch size 16 (the batch size needed to be lowered due to
memory limitations in our hardware setup - refer to Section 2.1) and 60 epochs.
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Class [T] 𝐹1 Sc. [V] 𝐹1 Sc. [T] recall [V] recall [T] precision [V] precision

[NS] 0.454 0.447 0.477 0.510 0.470 0.410

[EX] 0.481 0.565 0.594 0.701 0.438 0.523

[OI] 0.287 0.123 0.262 0.104 0.342 0.171

[AP] 0.409 0.366 0.400 0.398 0.511 0.376

[DS] 0.522 0.445 0.503 0.391 0.597 0.642

[MT] 0.582 0.540 0.625 0.617 0.586 0.531

[PS] 0.557 0.641 0.634 0.617 0.543 0.697

[MM] 0.746 0.638 0.804 0.747 0.731 0.576

Table 4.11. Table showing the 𝐹1 Score (𝐹1 Sc.), precision, and recall evaluated for the
training ([T]) and validation ([V]) of the CNN-LSTM Model (refer to Section 3.3.5) on

dataset TgF344AD Pair 18 on each class.

Figure 4.18. Training and validation loss, accuracy, and the validation Confusion Matrix
for TSRJI-CNN Model on dataset TgF344AD Pair 18.
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Figure 4.19. 𝐹1 Score, precision, and recall evaluated for the training and validation of the
CNN-LSTM Model (refer to Section 3.3.5) on dataset TgF344AD Pair 18 on each class.

4.13 3D CNN Model Training and Validation
We train and evaluate the 3D CNN Model (refer to Section 3.2.7) on dataset TgF344AD
Pair 18. In Table 4.12, and Figure 4.20, we report 𝐹1 score, precision, and recall values
for each class (as denoted in dataset TgF344AD Pair 18). The model was trained with
augmentations denoted in 3.3.7. Based on the evaluation, the 3D CNN method and the
Motion Cuboid built from the view image sequences proved highly insufficient, with an
overall validation accuracy of 0.296. The model was trained on batch size of 16 (the
batch size needed to be lowered due to memory limitations in our hardware setup) and
60 epochs.

3D CNN Model Class Performance Metrics on TgF344AD Pair 18

Class [T] 𝐹1 Sc. [V] 𝐹1 Sc. [T] recall [V] recall [T] precision [V] precision

[NS] 0.181 0.118 0.193 0.126 0.212 0.147

[EX] 0.223 0.102 0.250 0.105 0.231 0.115

[OI] 0.094 0.120 0.098 0.172 0.109 0.109

[AP] 0.270 0.244 0.295 0.283 0.285 0.243

[DS] 0.529 0.216 0.578 0.202 0.524 0.248

[MT] 0.395 0.262 0.445 0.292 0.395 0.279

[PS] 0.498 0.467 0.537 0.483 0.514 0.500

[MM] 0.495 0.232 0.532 0.225 0.496 0.260

Table 4.12. Table showing the 𝐹1 Score (𝐹1 Sc.), precision, and recall evaluated for the
training ([T]) and validation ([V]) of the 3D CNN Model (refer to Section 3.3.7) on dataset

TgF344AD Pair 18 on each class.
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Figure 4.20. 𝐹1 Score, precision, and recall evaluated for the training and validation of the
3D CNN Model (refer to Section 3.3.7) on dataset TgF344AD Pair 18 on each class.

4.14 1D CNN Model Training and Validation
We train and evaluate the 1D CNN Model (refer to Section 3.2.8) on dataset
TgF344AD Pair 18. In Table 4.13 and Figure 4.21, we report the 𝐹1 score, pre-
cision, and recall values for each class (as denoted in dataset TgF344AD Pair 18).
Based on the evaluation, the 1D CNN method and the chosen features sequences
𝐹 = [𝐷𝐻 𝐷𝑋

𝑆𝐵 𝐷𝑌
𝑆𝐵 𝑉 𝑋

𝑅 𝑉 𝑌
𝑅 ] (as denoted in Section 3.2.1) did outperform some

of the models (Pivot TSRJI, or ST GCN), but did not outperform the TSRJI-CNN or
CNN-LSTM Models with overall validation accuracy of 0.498. The model was trained
on batch size of 48 and 100 epochs.

1D CNN Model Class Performance Metrics on TgF344AD Pair 18

Class [T] 𝐹1 Sc. [V] 𝐹1 Sc. [T] recall [V] recall [T] precision [V] precision

[NS] 0.513 0.554 0.508 0.659 0.544 0.486

[EX] 0.626 0.353 0.787 0.385 0.548 0.359

[OI] 0.440 0.436 0.410 0.453 0.527 0.438

[AP] 0.693 0.547 0.775 0.603 0.681 0.554

[DS] 0.809 0.738 0.942 0.752 0.729 0.753

[MT] 0.652 0.160 0.664 0.147 0.698 0.192

[PS] 0.588 0.572 0.530 0.528 0.705 0.681

[MM] 0.571 0.298 0.576 0.378 0.619 0.319

Table 4.13. Table showing the 𝐹1 Score (𝐹1 Sc.), precision, and recall evaluated for the
training ([T]) and validation ([V]) of the 1D CNN Model (refer to Section 3.3.8) on dataset

TgF344AD Pair 18 on each class.
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Figure 4.21. 𝐹1 Score, precision, and recall evaluated for the training and validation of the
1D CNN Model (refer to Section 3.3.8) on dataset TgF344AD Pair 18 on each class.

4.15 MultiModal Model Training and Validation
We trained and evaluated three configurations of the MultiModal Model, which con-
catenates features derived from the TSRJI-CNN and CNN-LSTM models at different
stages. Configurations 𝑐1 and 𝑐2 failed to improve classification performance - that
could be attributed to the disparate learning parameters and training durations used
for each model. Configuration 𝑐3 of the MultiModal Model, utilizing pre-trained weights
(checkpoints were selected based on minimal validation loss from the TSRJI-CNN and
CNN-LSTM models), outperformed the individual TSRJI-CNN and CNN-LSTM meth-
ods, with validation accuracy of 0.896. The 𝐹1 scores, training, and validation results
for all configurations are detailed in Table 4.14 and Figure 4.22. For an analysis of the
configuration (𝑐3) on the TgF344AD Pair 18 dataset, refer to the experiments section
4.16.

MultiModal Models Class Performance Metrics on TgF344AD Pair 18

Class [T] MM 𝑐1 [V] MM 𝑐1 [T] MM 𝑐2 [V] MM 𝑐2 [T] MM 𝑐3 [V] MM 𝑐3

[NS] 0.825 0.628 0.791 0.603 0.675 0.814
[EX] 0.917 0.593 0.815 0.665 0.615 0.911
[OI] 0.789 0.500 0.717 0.512 0.589 0.588
[AP] 0.856 0.658 0.866 0.681 0.610 0.640
[DS] 0.966 0.538 0.935 0.405 0.814 0.867
[MT] 0.949 0.479 0.959 0.639 0.838 0.902
[PS] 0.857 0.798 0.831 0.722 0.768 0.879
[MM] 0.954 0.580 0.943 0.687 0.782 0.896

Table 4.14. Table showing the class performance 𝐹1 score metrics for training ([T]) and
validation ([V]) on dataset TgF344AD Pair 18 of MultiModal (MM) Model configurations

𝑐1, 𝑐2 and 𝑐3.
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Figure 4.22. 𝐹1 score class performance for training ([T]) and validation ([V]) on dataset
TgF344AD Pair 18 of MultiModal Model configurations 𝑐1, 𝑐2 and 𝑐3.

4.16 MultiModal Model Configuration 𝑐3 Training and
Validation

The MultiModal Model configuration 𝑐3 with separately pre-trained weights on the
TSRJI-CNN and CNN-LSTM model. The models successfully extract the features to
classify the actions on the validation set of dataset TgF344AD Pair 18 with an overall
validation accuracy of 0.896. The model exhibited its lowest performance for the [OI]
(olfactory exploration) class, achieving an 𝐹1 score of 0.588. This underperformance
was particularly noticeable in scenarios where the rats were in close proximity, with
one engaged in self-cleaning behavior while moving its head around the other rat. Such
instances often led to misclassifications by the model. A more detailed analysis of these
cases, including a comparative study with human predictions and a visual assessment
of the model’s predictions, is presented in Section 4.19. Table 4.15, and Figures 4.23
and 4.24 depict the 𝐹1 score, recall, and precision of the model training and validation
on dataset TgF344AD Pair 18. For further description, we denote the model as MM𝑐3.

MultiModal Model configuration 𝑐3 Class Performance Metrics on TgF344AD Pair 18

Class [T] 𝐹1 Sc. [V] 𝐹1 Sc. [T] recall [V] recall [T] precision [V] precision

[NS] 0.675 0.814 0.706 0.865 0.738 0.801

[EX] 0.615 0.911 0.668 0.919 0.615 0.946

[OI] 0.589 0.588 0.612 0.685 0.644 0.576

[AP] 0.610 0.640 0.612 0.631 0.648 0.692

[DS] 0.814 0.867 0.864 0.854 0.811 0.914

[MT] 0.838 0.902 0.846 0.913 0.866 0.907

[PS] 0.768 0.879 0.803 0.876 0.767 0.889

[MM] 0.782 0.896 0.814 0.903 0.785 0.917

Table 4.15. Table showing the 𝐹1 Score (𝐹1 Sc.), precision, and recall evaluated for the
training ([T]) and validation ([V]) of the MultiModal Model configuration 𝑐3 (refer to

Section 3.3.9) on dataset TgF344AD Pair 18 on each class.
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Figure 4.23. 𝐹1 Score, precision, and recall evaluated for the training and validation of the
MultiModal Model configuration 𝑐3 (refer to Section 3.3.9) on dataset TgF344AD Pair 18

on each class.

Figure 4.24. Validation Confusion Matrix of the classes predicted by the MultiModal
Model configuration 𝑐3 (refer to Section 3.3.9) on dataset TgF344AD Pair 18.

4.17 Model Comparison
In Table 4.16, we compare the implemented methods based on the validation 𝐹1 score
and the overall validation accuracy on dataset TgF344AD Pair 18. The best method
to predict the behavioral classes on dataset TgF344AD Pair 18 was the MultiModal
Model configuration 𝑐3 with a validation accuracy of 0.862 (for its full report, refer to
Experiment section 4.16). The second overall best model is the TSRJI-CNN, which
has a validation accuracy of 0.696, followed by the CNN-LSTM model, which has a
validation accuracy of 0.669.
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Model Comparison Validation 𝐹1 Score and Accuracy

Class / Model CNN + LSTM TSRJI Pivot TSRJI MM 𝑐2 MM 𝑐3

[NS] 0.595 0.699 0.447 0.603 0.814

[EX] 0.722 0.791 0.565 0.665 0.911

[OI] 0.585 0.557 0.123 0.512 0.588

[AP] 0.273 0.764 0.366 0.681 0.640

[DS] 0.381 0.667 0.445 0.405 0.867

[MT] 0.838 0.358 0.540 0.639 0.902

[PS] 0.773 0.826 0.641 0.722 0.879

[MM] 0.745 0.754 0.638 0.687 0.896

Validation Accuracy 0.669 0.696 0.492 0.667 0.862

Class / Model ST GCN c2 3D CNN 1D CNN Rule-Based

[NS] 0.433 0.118 0.554 0.840

[EX] 0.000 0.102 0.353 0.168

[OI] 0.292 0.120 0.436 0.374

[AP] 0.000 0.244 0.547 0.285

[DS] 0.000 0.216 0.738 0.302

[MT] 0.639 0.262 0.160 0.110

[PS] 0.514 0.467 0.572 0.155

[MM] 0.156 0.232 0.298 0.000

Validation Accuracy 0.345 0.296 0.498 0.279

Table 4.16. Table showing the 𝐹1 score and validation accuracy across implemented models
on dataset TgF344AD Pair 18. MM is a shortcut for the MultiModal model.

Figure 4.25. Figure depiction of the validation 𝐹1 score across implemented models and
denoted actions on dataset TgF344AD Pair 18.

4.18 Action Initiator Classification
The TSRJI-CNN models were specifically trained to identify the initiators in action
classes where such identification is meaningful, namely [AP], [DT], [MT], and [OI].
This training was conducted on the relevant class subsets of dataset TgF344AD Pair
18, incorporating the identity swap augmentation method as denoted in 3.3.2, with the
initiator labels being adjusted accordingly. The TSRJI-CNN models effectively recog-
nized the initiators across all these action classes. This model was selected because the
TSRJ images inherently contain information about the identity of the specific skeleton,
unlike the camera view images used in the CNN-LSTM model. Each initiator class
TSRJI-CNN model was trained on 30 epochs and batch size of 16. The results are
depicted in Table 4.17 and Figure 4.26.
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TSRJI-CNN Initiator Models Performance Metrics

TSRJI-CNN Model Training Accuracy Validation Accuracy

Initiator Mounting 0.889 1.000
Initiator Olfactory Exploration 0.939 0.975
Initiator Approach 0.983 1.000
Initiator Detach 1.000 1.000

Table 4.17. Table showing the training and validation accuracy of TSRJI-CNN Models for
differentiating initiators of dataset TgF344AD Pair 18 subset initiator classes [AP], [DT],

[MT], and [OI].

Figure 4.26. Accuracy evaluated for the training and validation of the TSRJI-CNN Initia-
tor Models on dataset TgF344AD Pair 18 on subset initiator classes [AP], [DT], [MT], and

[OI].

4.19 Comparison of human expert classification with
an automatic method

We compared 200 sequence windows of predictions made by the MM𝑐3 model and
predictions made by a person educated in the labeling process and with expertise in
rat behavior. The mentioned individual labeling 200 sequence windows differs from
the person creating dataset TgF344 AD Pair 18, used for training of the model MM𝑐3.
Class [DT] (detach) was considered as a [NS] (No Social Interaction). We compared the
human predictions and model predictions by accuracy types denoted in Section 3.3.11.
The results are depicted in Table 4.18 and 4.19. Predictions on subsets AD1-AD3 and
AD3-AD4 were compared.

The experiment resulted well for the [NS],[OI] and [AP]. As for the [PS] class, the
model tends to over-predict the interactions compared to the person - upon visual
assessment of the actions. The model would benefit from seeing a longer sequence
window for correctly assigning the [PS] class. The person labeling the passive interaction
was biased by the knowledge that rats need longer to stay still next to each other
before their interaction is classified as such - the model does not have such knowledge.
Similarly, the model predicts the [AP] class a sequence window or two sooner, compared
to the person with the labeling experiment task - which is not essentially wrong, as we
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did label the TgF344AD Pair 18 dataset as such. We will visually discuss the examples of
sequence windows in the experiment subsection 4.19.1. From the 200 sequence windows,
four were denoted as [1004] - we were not able to pre-process those sequence windows
correctly for the model (see Section 2.11 and experiment Section 4.20).

For predicting the actions’ initiator, the trained TSRJI-CNN models (refer to Exper-
iment section 4.18) managed to predict 100% of the initiations correctly (we compared
the actions with the initiator assigned where the human predictions equaled the model
predictions - 37 sequence windows).

Accuracy Comparison

Accuracy Type Value

𝐴𝑐1 71.00%
𝐴𝑙𝑏 (L=1) 81.50%
𝐴𝑙𝑏 (L=2) 86.00%
𝐴𝑒𝑏 64.00%

Table 4.18. Table comparing different types of accuracies: accuracy (𝐴𝑐1), latency-based
accuracy with a tolerance of 1 sequence window (𝐴𝑙𝑏 (L=1)), latency-based accuracy with

a tolerance of 2 sequence windows (𝐴𝑙𝑏 (L=2)), and event-based accuracy (𝐴𝑒𝑏).

Class Count Comparison

Class Human Predictions Model Predictions

[NS] 143 107
[EX] 2 10
[OI] 38 46
[AP] 13 20
[PS] 4 10
[MM] 0 3
[1004] 0 4

Table 4.19. Table comparing the count of classes as predicted by a human (not the one
creating the training dataset TgF344AD Pair 18) and the model MM𝑐3.
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4.19.1 Visual inspection of MM𝑐3 model predictions
The following experiment depicts the visual assessment of the predicted actions denoted
in the TgF344 AD Pair 18 dataset (refer to Section 2.13.1). We prepared several video
segments from the recorded video subsets, rendered with the recognized action as a
text in the left corner of the video. If the segment was also included in the human
expert comparison, the human prediction is depicted in the right corner of the video.
Each segment contains 20 predictions, which equals 10 seconds of video. The presented
subsets were not used for the training and validation of the denoted methods. The
actions were predicted by the model MM𝑐3 (refer to section 3.3.9). In the experiment,
we view the correct predictions and try to pinpoint the misclassifications. The full
file folder of depicted segments together with concrete video links is provided in the
belonging footnote.1.

After visual inspection of the provided segments, we can mostly see the correct pre-
dictions on the olfactory inspection [OI] and approach [AP] (the most common classes
in the provided segments, together with the no social interaction [NS] class). However,
the model tends to predict the [AP] class, even when the movement towards the other
rat is small, which can result in a wrong prediction (for example, segment 2 of subset
WT2-WT32) or the approach does not directly end up with snout to body distance -
which is right by our labeling logic of the approach class but differs from the human
expert labeling of the class (refer to experiment 4.19 above, and video segment 6 of a
subset WT2-WT33, or segment 1 of a subset AD6-WT54).

In video segment 2 of subset AD8-WT7, we can see a wrongly predicted [OI] class
instead of passive interaction [PS] - the alignment of the rats and the snout position
near the tail base of the other rat all suggest that the class is correctly predicted as
[OI], but the interaction should be classified as [PS] because the movement of the rats
is rather stationary. In segment 2 of the subset, we can see the correct prediction of
the [PS] class. A problematic scenario for the model is situations when the two rats
are in close proximity, slowly walking in opposite directions - resembling either [PS] or
mutual exploration [EX] (in this case, both rats inspecting the tail base of the other).
This can be seen in segments 2 of subset AD7-WT85 and 1 of subset WT2-WT36.

In segment 2 of subset AD6-WT57 we can see a mimicking [MM] class being predicted,
even when only one of the rats is rearing - the right example of [MM] can be seen in
segment 5 of a subset AD7-WT88.

The segments with human expert predictions are segments 1 and 2 of subset AD1-
AD39 10 and segments 1 and 2 of subset AD3-AD4 11 12.
1 https://gitlab.fel.cvut.cz/kanoufad/automatic-classification-of-social-interactions-of-

rats-from-video/-/tree/main/predictions_video
2 https://gitlab.fel.cvut.cz/kanoufad/automatic-classification-of-social-interactions-of-

rats-from-video/-/tree/main/predictions_video/wt2_wt3_seg2.avi
3 https://gitlab.fel.cvut.cz/kanoufad/automatic-classification-of-social-interactions-of-

rats-from-video/-/tree/main/predictions_video/wt2_wt3_seg6.avi
4 https://gitlab.fel.cvut.cz/kanoufad/automatic-classification-of-social-interactions-of-

rats-from-video/-/tree/main/predictions_video/ad6_wt5_seg1.avi
5 https://gitlab.fel.cvut.cz/kanoufad/automatic-classification-of-social-interactions-of-

rats-from-video/-/tree/main/predictions_video/ad7_wt8_seg2.avi
6 https://gitlab.fel.cvut.cz/kanoufad/automatic-classification-of-social-interactions-of-

rats-from-video/-/tree/main/predictions_video/wt2_wt3_seg1.avi
7 https://gitlab.fel.cvut.cz/kanoufad/automatic-classification-of-social-interactions-of-

rats-from-video/-/tree/main/predictions_video/ad6_wt5_seg2.avi
8 https://gitlab.fel.cvut.cz/kanoufad/automatic-classification-of-social-interactions-of-

rats-from-video/-/tree/main/predictions_video/ad7_wt8_seg5.avi
9 https://gitlab.fel.cvut.cz/kanoufad/automatic-classification-of-social-interactions-of-

rats-from-video/-/tree/main/predictions_video/ad1_ad3_seg1_expert.avi
10 https://gitlab.fel.cvut.cz/kanoufad/automatic-classification-of-social-interactions-of-
rats-from-video/-/tree/main/predictions_video/ad1_ad3_seg2_expert.avi
11 https://gitlab.fel.cvut.cz/kanoufad/automatic-classification-of-social-interactions-of-
rats-from-video/-/tree/main/predictions_video/ad3_ad4_seg1_expert.avi
12 https://gitlab.fel.cvut.cz/kanoufad/automatic-classification-of-social-interactions-of-
rats-from-video/-/tree/main/predictions_video/ad3_ad4_seg2_expert.avi
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Chapter 5
Data Analysis Results

5.1 Dataset TgF344 AD Pair 18 MM𝑐3 model action
predictions Analysis Results

We used the model MM𝑐3 to classify the sequences and further analyze the recorded
subsets of interaction Day 2 of the experiments (refer to Section 2.4). We analyzed
time spent in denoted interactions between rats TgF344-AD (AD) and F344 (WT) of
age groups of six and ten months to determine if the transgenic genotype impacts the
behavior of the rats across the denoted actions. We compare different rat pairings:
AD-AD, WT-WT, and AD-WT. If an initiator was assigned for the given action, we
analyze the time spent as an initiator of the interaction between AD and WT rat types.
For the methods used in the analysis, refer to Section 3.4. We analyzed the first 5 to
525 seconds of each recording (32 subsets altogether) - the analysis is done for every
half-second sequence window of the subset. The results of the 520-second analysis
are depicted in Tables 5.1 and 5.2. The analysis is done on the time spent 𝑡𝑎 in the
given interaction differentiated between the rat types or their pairings. We depict 𝑡𝑎
for different actions in the form of boxplots in Figure 5.1 and 5.2. We depict 𝑡𝑎 for
different initiator rat types and actions in the form of boxplots in Figure 5.3 and 5.4.

We tested the normality of each group denoted (AD-AD, WT-WT, AD-WT, Initiator
AD, Initiator WT) for each predicted action (refer to Section 2.13) using Shapiro-Wilk
Test. Results of the normality test differentiated between actions, pairings, or initiator
types - to maintain consistency in our analysis, we continued the analysis with non-
parametric methods.

We used the Kruskal-Wallis test to compare if the populations of 𝑡𝑎 for given pairings
and actions differ significantly (with a significance alpha level set as 0.05). The results
are depicted in Table 5.1 for the 520-second analysis. The null hypothesis 𝐻0 for the
Kruskal-Wallis test states that the medians of all groups are equal. As shown in Table
5.1, the null hypothesis was not rejected throughout all the actions of pairings AD-AD,
WT-WT, AD-WT, and both age groups. Based on the results, we did not continue
with post-hoc analysis.
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Figure 5.1. The boxplot depiction of rat pairings (AD-AD: blue, WT-WT: cyan, AD-WT:
magenta) of time spent 𝑡𝑎 in given predicted action for age group 6 months and 520 seconds

for subset analysis.

Figure 5.2. The boxplot depiction of rat pairings (AD-AD: blue, WT-WT: cyan, AD-WT:
magenta) of time spent 𝑡𝑎 in given predicted action for age group 10 months and 520

seconds for subset analysis.

Actions

[NS] [EX] [OI] [AP] [MT] [PS] [MM]

6 months 0.8129 0.6482 0.2844 0.5522 0.0833 0.6723 0.5082
10 months 0.8180 0.1110 0.2410 0.9055 0.2969 0.5873 0.3610

Table 5.1. P-values for different age groups (6 months and 10 months) across time spent
𝑡𝑎 in predicted actions in group pairings AD-AD, WT-WT, AD-WT, as determined by the

Kruskal-Wallis test.

We used the Mann-Whitney U test to compare if the populations of 𝑡𝑎 for given
initiator rat types (AD, WT) significantly differ across given actions (with a significance
alpha level set as 0.05). The results are depicted in Table 5.2. The null hypothesis 𝐻0
for the Mann-Whitney U test states that the AD and WT rat populations are equal.
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As shown in Table 5.2, the null hypothesis was not rejected throughout all the initiator
actions, and no significant difference was found between the TgF344-AD (AD) and F344
(WT) rat types.

Figure 5.3. The boxplot depiction of time spent 𝑡𝑎 in initiation by rat type AD or WT of
given predicted action for age group 6 months and 520 seconds for subset analysis.

Figure 5.4. The boxplot depiction of time spent 𝑡𝑎 in initiation by rat type AD or WT of
given predicted action for age group 10 months and 520 seconds for subset analysis.
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Initiator Actions

[OI] [AP] [MT]

6 months (AD | WT) 0.6921 0.1221 0.0989
10 months (AD | WT) 0.9100 0.4174 0.7547

Table 5.2. P-values for AD and WT rat type comparisons across different initiator actions
([OI], [AP], [MT]) time spent 𝑡𝑎 for age groups of 6 months and 10 months, as determined

by the Mann-Whitney U test.

5.2 Dataset TgF344 AD Pair 18 Rule-Based Model
action predictions Analysis Results

We used the Rule-Based Model to classify the sequences and further analyze the
recorded subsets of interaction Day 2 of the experiments (refer to Section 2.4). The
analysis follows the analysis described in Section 5.1, but we compare the action class
[HH] for the pairings of the rats and the action class [SB] for the initiator analysis
predicted by the Rule-Based Model.

The results of the Kruskal-Wallis test on rat pairings on time spent 𝑡𝑎 in action [HH]
are 𝑝 = 0.936 for the rats aged six months and 𝑝 = 0.181 for the rats aged ten months.
The results of the Mann-Whitney U test on rat types AD and WT populations of time
spent 𝑡𝑎 as an initiator of action [SB] are 𝑝 = 0.608 for the rats aged six months and
𝑝 = 0.805 for the rats aged ten months. Neither test found a significant difference
between the different rat types in actions predicted by the Rule-Based Model as [HH]
and [SB]. The boxplots of the time spent 𝑡𝑎 in action [HH] throughout different pairings
are depicted in Figure 5.5. The boxplots of time spent 𝑡𝑎 of initiator in action [SB] for
TgF344-AD (AD) and F344 (WT) rat types are depicted in Figure 5.6.

Figure 5.5. The boxplot depiction of time spent 𝑡𝑎 in action [HH] throughout pairings
AD-AD, WT-WT, and AD-WT for both age groups in the 520 seconds for subset analysis.
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Figure 5.6. The boxplot depiction of time spent 𝑡𝑎 of rat type initiators in action [SB] for
both age groups in the 520 seconds for subset analysis.
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Chapter 6
Conclusion

In this work, we addressed the classification of interactions between two rats from
video, an area of interest in behavioral neuroscience. To do so, we have implemented
and experimented with several methods and modalities, from which we have built a
multi-modal network, denoted as MM𝑐3. We have also explored a classification of the
rat’s interactions by a rule-based classifier. If applicable, we focused on predicting the
initiator of denoted actions (e.g. assigning the identity of approaching rat).

We have collected and partially labeled a dataset denoted as TgF344-AD Pair 18 for
the purposes of the work.

The video subsets were recorded from four cameras to capture the rats in detail.
To obtain the rat’s pose in each frame, we have used and trained the state-of-the-art
algorithm DeepLabCut (DLC) and the corresponding model DLCRNet-MS5. Leverag-
ing multiple views for pose estimation allowed us to construct a 3D coordinate system
representation of the rats. We implemented imputation models, such as point distribu-
tion model, to correct the rat’s skeleton in frames where DLC encountered limitations,
particularly in scenarios of marker misestimation across multiple views.

One of the observed limitations of the DLC algorithm was tracking the identity of the
rodent in complex situations where, for example, the animals occluded themselves. We
have denoted a method to improve the tracking and correct the misassigned identities,
using the information from multiple views.

We have used the implemented methods to analyze the collected dataset TgF344-AD
Pair 18 and measure the time spent throughout the denoted actions. We have used
statistical methods to compare pairings of different rat types TgF344-AD and F344-
control subjects to inspect the impact of Alzheimer’s disease on the rat’s interactions.

We have trained the multi-modal MMc3 network with overall validation accuracy of
86.2% on dataset TgF344-AD Pair 18 - a reliable classification of the rat’s interactions.
We have trained TSRJI-CNN models to classify the initiator of given actions. The rule-
based classifier was sufficient for contact classes of particular parts of the rat’s body,
but the deep learning methods outperformed the set of rules on more complex actions,
such as approach. We did not find any significant differences between the TgF344-AD
and F344 in denoted actions.

6.1 Future Work
For future work we propose the following:. Classification of actions without a predefined sequence window length - classification

of actions such as passive interaction or approach would both benefit from such
methods.. Larger sample size for the behavioral investigation of the rats - this was a pilot
research, and at six months of age, the rats depicted the expected behavior. However,
a larger sample size (number of examined rats) is encouraged.. The automated methods can be retrained and employed on different types of actions
or different strains of rodents (e.g. mice, black and white rats, etc.) - with new action
and marker labels.
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Appendix A
DeepLabCut (DLC) Project configuration

Throughout our work, we use DeepLabCut (DLC) version 2.3.5. The following para-
graphs discuss the choices and notes for the DLC project configuration found and set
throughout experimentation.

Our model operates in a multi-animal project mode to track two animals simultane-
ously. This mode introduces Part Affinity Fields (PAFs) to model spatial relationships
between body parts across different animals and employs multi-instance learning. We
also considered enabling the Identity parameter, which helps the model extract features
to distinguish between animals (e.g., a red cross on an animal’s back). However, due to
the full white color of the rats and the need to limit external markers or scents affecting
social interactions (for purposes of the research), we did not enable this feature. This
decision was also influenced by recommendations from DLC to avoid reducing model
performance.

Given the number of labeled frames, computational efficiency, and the multi-animal
context, we chose DeepLabCut Refined Network with Multi-Scale 5 (DLCRNet-MS5) as
our default model architecture. The data augmentation method employed was DLC’s
multi-animal-imgaug, designed explicitly for multi-animal scenarios. Additionally, due
to frequent occlusions observed in the video footage, a skeleton-based tracking method
was selected. We set up a data-driven, fully connected skeleton, which effectively han-
dled occlusions between animals and outperformed ellipse and box tracking methods.

To label frames efficiently and select scenarios with a higher probability of being
unseen by the model, frames for labeling were extracted using the automatic K-Means
algorithm in the DLC library. For each extracted frame, nine markers were labeled for
each present animal. Initially, we attempted model training without labeling occluded
markers (e.g., if a rat’s head was hidden). However, intentionally losing track of a point
introduced more errors than generalizing the network with occlusions. With sufficient
occlusions labeled and PAFs set with a higher weight, the model learned to classify
markers in those frames correctly. While label identity was not essential during the
labeling process, it was maintained for testing purposes (while the identity parameter
was enabled). Frames were labeled by a single individual.

To address occlusions in our research setup, we experimentally fine-tuned the
DLCRNet-MS5 network’s training configuration with specific modifications. The
primary adjustments are outlined below:. Part Affinity Fields (PAFs) were enabled to facilitate the prediction of spatial rela-

tionships between body parts. The PAF width was set at 50, and the pairwise loss
weight was configured to 0.6.. Pairwise Huber loss was activated.. Additional data augmentation was employed through the activation of the mirror
setting. This technique expands the training dataset by horizontally flipping the
images, enhancing the dataset size.
Considering the hyperparameters, the network was trained on 60,000 epochs with

a batch size of eight and multi-step learning with the Adam optimizer. To view the
results of the network, refer to section 4.1.
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Appendix B
Contents of attachment, Shortcuts

B.1 Contents of attachment
The implemented processing pipeline in MATLAB 2023a, the implementation and pro-
cessing pipeline for training the methods in PyTorch, camera recording using pyre-
alsense2 library, DeepLabCut project configuration and analysis code, and examples
of videos with predictions of the implemented automatic methods are available online
through a GitLab repository at https://gitlab.fel.cvut.cz/kanoufad/automatic-
classification-of-social-interactions-of-rats-from-video/. The correspond-
ing README file will provide a description of the shown files.
src/matlab-processing-pipeline

Implementation of the processing pipeline in MATLAB used on the recorded video
subsets, including data preprocessing and prediction assessing.

src/models-developing-torch-pipeline
Python implementation of the methods with corresponding training and data load-
ing protocols, implementation and preprocessing of modalities.

src/quad-view-pyrealsense-record
Quad view camera setup and recording, using pyrealsense library.

src/deeplabcut-project-network-configurations
DeepLabCut project and trained network configuration files.

src/dlc-subset-analysis
DeepLabCut video analysis using a trained network - called within the MATLAB
pipeline.

src/action-recog-trained-weights
Trained model weights.

subset_video_example
Video subset example from 4 camera views.

B.2 Shortcuts
. DLC: DeepLabCut. PDM: Point Distribution Model. ST GCN: Spatio-Temporal Graph Convolutional Network. CNN: Convolutional Neural Network. LSTM: Long Short-Term Memory. AD: Alzheimer’s Disease. TSRJI: Tree Structure Reference Joints Image. PCA: Principal Component Analysis. DLT: Direct Linear Transformation. SVD: Singular Value Decomposition. PAFs: Part Affinity fields
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