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Cone Slalom with Automated Sports Car –
Trajectory Planning Algorithm

Zdeněk Hanzálek , Jiřı́ Záhora , Michal Sojka

Abstract—In this paper, we present the system architecture
and algorithms of an automated vehicle to perform a slalom.
We demonstrate a novel trajectory planning algorithm based
on optimization techniques using logic-based Benders de-
composition, where an external loop optimizes the position
of the nearest waypoint and an internal loop generates the
optimal trajectory. The positions of the cones in this use
case are unknown, but a mono camera and LiDAR detect
them. They can be in a line or dispersed, have equal or
unequal spacing, and the U-turns can be symmetric or
asymmetric. A bicycle model is used to formulate a non-
linear quadratic optimization problem aimed at optimal
trajectory generation considering vehicle kinematics. Finally,
the trajectory tracking control keeps the vehicle on the
planned slalom trajectory while driving. The control system
is interfaced with the vehicle via CAN and FlexRay buses.
Much of the work was devoted to experiments with a
real vehicle and fine-tuning the system parameters. During
the validation of the system, interesting observations were
made regarding the components’ precision, frequency, and
sensitivity.

Keywords: automated car, slalom, cone detection,
robotic operating system, trajectory planning, temporal
properties

I. INTRODUCTION
1 The automotive industry is increasingly relying on the

automated functions of cars. Fully self-driving vehicles
will serve us in the future, but new automated functions
are already helping drivers in their daily lives. While many
people appreciate driver assistance on the road, there are
cases where automation is also essential, but for a smaller
audience. One of these cases is repetitive car testing, which
is a motivation behind the paper in hand. Testing new
vehicle prototypes [1] requires many test drives to be
conducted by professional drivers, especially for premium
vehicles known for their excellent performance under ex-
treme driving conditions. Automating this kind of testing
can lead to the easier development of advanced control
algorithms thanks to the test drives’ reproducibility. Com-
pared to highway tests, a cone slalom is an appropriate use
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case for university R&D teams since it does not require
a large experimental space, keeps developers reasonably
safe, and stresses system components in a variety of ways.

This paper describes an entire automated vehicle plat-
form for software prototyping and demonstration. The
platform is based on a series-produced car, add-on sensors,
and a control system. We designed an innovative trajectory
planning algorithm based on optimization techniques and
validated it by maneuvering around a slalom course built
of traffic cones and performing U-turns at its ends. The
cone positions are unknown; they may be in-line or
dispersed, equally or unequally spaced, and the U-turns
may be symmetric or asymmetric. The aim is to close
the perception/planning/control loop and demonstrate its
behavior.

The base of the system is the Porsche Panamera car
(see Fig. 1). The car is instrumented so that our control
system communicates with the car via CAN and FlexRay
buses [2]. We send steering and speed commands to the
actuation-related Electronic Control Units (ECUs) and
read signals from the internal car sensors, such as the
accelerometer. In addition to the internal sensors, we
equipped the car with an external monocular camera,
LiDAR, and a differential GPS (DGPS). The computations
are carried out on an NVIDIA TX2 embedded computer.
For more details, see our illustrative videos 2.

In summary, in this paper, we describe a universal, and
lightweight control system. The particular contributions of
the paper are:
• We propose an efficient trajectory planner for the

slalom drive, including the U-turns. Based on an
optimization algorithm, the planner minimizes the
drive time, respects the vehicle kinematic constraints,
ensures smooth actuation, and can re-plan the trajec-
tory from a vehicle state. We evaluated the planner on
different configurations of cones in both simulation
and practical experiments.

• We describe a holistic control system integrated
within the car infrastructure and fine-tuned in outdoor
experiments on a complex case study. The control
system is based on a commercially available HW,
well-established ROS middleware, standard libraries,
and software components described in this paper.

The paper is structured as follows: After reviewing
the related works, we describe the overall goal, concept,
and architecture in Section II. Section III introduces a
kinematic model used for vehicle motion planning. The pa-
per’s main contributions are the slalom trajectory planning
algorithm, described in Section IV, and the optimization

2https://youtu.be/692lVNWT-MA, https://youtu.be/3V1lD2Hof4Q

https://youtu.be/692lVNWT-MA
https://youtu.be/3V1lD2Hof4Q


2

Fig. 1: Automated car slalom

algorithm, described in Section V. The algorithms are
evaluated by simulation in Section VI and the results of
the experimental drives in the outdoor environment are
analyzed in Section VII. Finally, the outcomes of this
paper are discussed in Section VIII.

A. Related work

In this section, we start with generic automated driving
papers and follow with works related to the main contri-
bution of this paper – trajectory planning.

1) Automated driving: The automotive community dis-
tinguishes six levels of automation [3] from no automation
(level 0) to a fully self-driving vehicle (level 5). Nowadays,
most of the available cars offer assistance technologies in
level 2, such as adaptive cruise control or a lane-keeping
assistant system. These are deeply investigated in many
papers [4], [5], [6], [7], [8]. Zhang et al. [9] designed a
personalized motion planning and tracking control frame-
work to prevent collisions between autonomous vehicles
and the obstacles ahead. They devised a multi-constrained
numerical optimization method used to avoid obstacles
according to the specific needs of the passengers. Li et
al. [10] proposed an interesting semantic-level maneuver
sampling and trajectory planning algorithm to solve this
high-dimensional motion planning problem.

There are commercial vehicles with advanced auto-
mated functions up to fully self-driving cars, but only for
different use cases. Some examples are Tesla or Audi with
the recently presented automatic parking or traffic jam
autopilot [11]. Our cone slalom use case falls between
levels 2 and 3 and can also be considered “well-defined”,
but it is not present in production cars.

The control systems of all automated cars are distributed
systems with a similar architecture [12], [13]; our auto-
mated car is not an exception.

As experimenting with real vehicles is quite time-
consuming and resource-demanding, many automated
driving applications are tested in virtual simulations [14]
or with the use of available datasets [15], but the ability
to experiment with a real car in a real environment opens
a much wider space of experiences that one can gain
during the development. This paper focuses on physical
experiments, and simulations are used only for testing and
developing individual components.

A related technology is vehicular platooning, in which
vehicles automatically follow each other with small inter-
vehicle spacing. Guo and Wang [16] dealt with a two-
layered control architecture, based on a speed planner (cal-

culates the expected platoon speed profile in a fuel–time-
optimal manner) at the top layer and a speed tracking
controller (follows the planned speed with guaranteed
vehicle stability and platoon string stability) at the lower
layer. Herman et al. [17] investigated how the H-infinity
norm and the steady-state gain of bidirectional platoons
scale with the number of vehicles. Distributed trajectory
optimization for the vehicular platoon is considered in
[18], where a quadratic spacing policy is used to improve
the flexibility of the speed planning and control. Further-
more, in [19], Guo et. al, solve the speed optimization
problem using distributed convex optimization based on
spacing error minimization. Compared to platooning, in
our paper dealing with the slalom use case, we concentrate
more on lateral movements rather than longitudinal ones.

Autonomous/automated driving is a topic not only for
traditional passenger cars, but also for racing events. For
example, Roborace3 is an attractive competition for pro-
fessional teams. In the academic world, F1/10 competition
[20], [21], [22] is gaining in popularity, especially when
overtaking maneuvers are considered [23]. Our students
regularly participate in these competitions while winning
medals and learning the concepts applicable to real cars.

The vehicles used in other competitions are also an
inspiration to us. For example, the one developed at ETH
Zurich for racing in Formula Student competitions [24].
Another source of inspiration was Autoware.AUTO [25],
the open-source software for autonomous driving based
on ROS, tools for the control system design [26], LiDAR
simulation [27], localization systems [28] as well as au-
tonomous driving courses taught at various universities,
e.g., [29]. Li et al. [30] observed that an important issue
is the misunderstanding between self-driving systems and
human drivers and proposed a human-like driving system
to give autonomous vehicles the ability to make decisions
like humans.

Turning any car into an automated car does not always
require starting from scratch and controlling the car by
injecting messages into the onboard buses, as was in this
paper. Commercial electromechanical driving robots can
be mounted on the steering wheel and pedals to control
the car. For example, AB Dynamics [31] provides a path-
following system that uses a driving robot and real-time
feedback from GPS-corrected motion information to guide
a vehicle along a specified path.

All of the above projects consume a large amount of

3https://roborace.com/
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computational resources. On the contrary, we are trying
to combine all the basic functions needed for automated
driving into one inexpensive ECU. This allows us to
easily benchmark the system performance, sensitivity, and
reliability of the platform without needing a whole trunk
full of powerful servers.

2) Trajectory planning: Approaches to path and tra-
jectory planning for automated cars are surveyed in [32].
According to their classification, our algorithm falls into
the “Numerical optimization approaches”. Another good
overview of the state-of-the-art motion and trajectory
planners is [33]. Many planners for complex environments
are based on the RRT algorithm [34]. In the following,
we narrow our review to the approaches used for race and
sports cars.

Funke et al. [35] present an approach to control their
autonomous Audi TTS on a race track. With respect to
trajectory planning, they simply follow an offline pre-
computed and optimized path. Such an approach is not
applicable to our task, because the position of the cones,
and thus the path, is not known in advance. Drage [36]
uses a similar approach in their autonomous Formula SAE
race car. They select the waypoints for the trajectory
generator by manual selection based on the path from
a human driver. The trajectory is generated from the
waypoints by interpolating several future waypoints with
a cubic spline which allows them to achieve a mean
lateral error of 70 cm. We experimented with spline-based
trajectories and found them unsuitable for several reasons:
they do not minimize the steering energy (steering wheel
movements), they do not limit the curvature rate of the
resulting trajectory, they are very sensitive to imprecise
position measurements, and it is difficult to join separate
trajectory segments. This turned out to be a problem,
especially for dispersed cones, i.e., when the cones are
not in a line.

A large body of literature is devoted to the calculation
of an optimal racing line – a trajectory around the track
that minimizes the lap time [37]. In the mentioned article,
Vesel uses a genetic algorithm to find the racing line. Such
an approach is not suitable for online trajectory planning.
Another popular approach is the application of model
predictive control (MPC). For example, Liniger et al. [38]
use a non-linear MPC to solve a combination of path
planning and trajectory tracking problems. While their
approach is suitable for real-time applications, it relies on
the offline fitting of the reference trajectory (center line)
with a third-order polynomial. We can neither use this
approach nor a similar one [39] because our reference path
is not known in advance.

Some authors look only at specific parts of the racing
trajectories. For example, You and Tsiotras [40] study
“cornering”, i.e., how to drive through sharp turns. Their
solution involves splitting the trajectory into multiple
phases and using different approaches in different phases.
Our solution is different, but we also detect specific parts
of the trajectory (called scenarios below ) in order to
perform the U-turn, for example.

Determining the waypoints which lie on the optimal
racing line is a difficult problem. In the analysis of paths
driven by professional race drivers, Kegelman et al. [41]

concluded that while different drivers exhibit different
driving styles (and paths) to achieve similar drive times,
certain track features, such as those with high curvature,
lead all the drivers to pass through the same waypoint.
Similar claims were made by professional race drivers,
when we talked to them. Therefore, our planner tries
to find those “important” waypoints and construct the
trajectory through them.

While the literature on racing line construction is easily
available, works on slalom trajectory construction are
much less common. Slalom trajectory planners and related
platforms are often mentioned in the context of drones
[42]. In [43], the authors define the slalom trajectory
through a sequence of waypoints and use quadratic pro-
gramming to find control actions. This is similar to our
internal planning loop (subsequently explained in Sec-
tion V), but we extend it with an external loop that
optimizes the waypoint positions. The drone slalom is
also a use case in [44], where a non-linear MPC is used
to find the trajectory. However, due to the computational
requirements, the MPC solver runs on a powerful off-board
PC rather than on the on-board computer. Moreover, the
kinematics and dynamics of areal vehicles differ signifi-
cantly from car-like vehicles, so all these methods are not
directly applicable to our use case.

II. PROBLEM STATEMENT AND ARCHITECTURE
OVERVIEW

A. Problem statement

The goal is to drive a car through a traffic cone slalom.
The environment is a flat, obstacle-free area with an
arbitrary number of cones arranged approximately in a
line, but not necessarily aligned. The positions of the cones
are not known; they may be aligned or dispersed (displaced
up to 3 meters from the line), they may be equidistant or
unequally spaced (from 9 to 20 meters), and the U-turns
may be symmetrical or asymmetrical. The drive starts with
the car at the beginning of the cone line in the direction
of the line. After passing through the cone slalom (later
called the slalom part), the car turns around the last cone
at the end of the line (makes a U-turn) and drives back
through the slalom part. Then, it makes another U-turn,
and the whole process repeats.

B. Hardware and instrumentation

The main computation unit in our solution is an
NVIDIA TX2 embedded computer. A single monocular
Basler ace camera is used to capture the images for the
cone detection. We use the camera with a wide-angle lens
to detect the cones that are close to the car. A multi-layer
Velodyne LP-16 LiDAR is mounted near the camera. We
use its data to localize the cones, since calculating the
distance from a monocular camera is highly inaccurate.

To localize the car, we employ a differential GPS
(DGPS) consisting of a base station and a rover. The
rover is mounted on the vehicle and measures its position,
receiving corrections from the base station. The rover can
be equipped with a second antenna to measure the car’s
heading, but we do not use it because the heading was
often inaccurate due to the car being too short. To improve
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Fig. 2: Functional block diagram – the software components are in blue, the sensors are in green and the car interface
is in yellow. The thin lines represent the data flow within the software, the thick red lines are the communication buses.

the results of the vehicle localization, we use the data
measured by the vehicle itself, i.e., the longitudinal and
angular velocities and the steering angle.

All the sensors are read at a rate of 10 Hz because
the TX2 computer cannot perform all the calculations
faster. The vehicle is also equipped with a Vector VN8900
computer which interfaces the FlexRay bus in the vehicle
to the TX2 computer (TX2 supports the CAN bus only).

C. Architecture

The general functional architecture of our solution is
visualized in Fig. 2. Each of the depicted blocks solves a
different sub-problem. First, the cones need to be detected
in the camera images. This is called Cone Detection.
Then, the computation of the cone positions on the Earth’s
surface, called Cone Localization, is carried out using
information from the LiDAR and the position and heading
of the vehicle. The localized cones are stored in the map
from which their most probable position is estimated in a
process called Cone Mapping. The Kalman Filter is used
to fuse the DGPS position and the internal car signals to
obtain a robust estimate of the car’s position and heading.
The sub-problems of generating a trajectory for the slalom
and U-turn and driving the vehicle along that trajectory
are referred to as the Trajectory Planning and Trajectory
Tracking. The problem of interfacing the vehicle sensors
and actuators must also have been solved. This paper
concentrates on Trajectory Planning. The other blocks are
described in [45].

We use the ROS4 framework as the software platform.
Our algorithms are implemented in blocks, called ROS
nodes, depicted in blue. ROS significantly simplifies the

4https://www.ros.org/
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Fig. 3: Kinematic bicycle model

development due to its implementation of sensor drivers
and recording/visualization capabilities.

III. VEHICLE MODELING

To model the car, we use a kinematic bicycle model [46]
with a few additional simplifications. Due to the relatively
slow motion of the car, we do not need to work with a
dynamic car model that considers the tires’ behavior since
we do not consider wheel slips. Figure 3 shows a graphical
representation of the kinematic model and Fig. 4 illustrates
its evolution at three different points in time.

The parameter and variable meanings are as follows:

https://www.ros.org/
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Lr, Lf – distance from the center of the car to the
rear/front axle

W – car wheelbase (Lr + Lf )
xg , yg , ψg – position of the car center and heading in

the global-coordinate system
δ – steering angle
vg – velocity vector of the car center in the

global-coordinate system
v = |vg| – velocity magnitude
β – slip angle between the velocity vector and

the car heading
r – car turning radius

The following non-linear differential equations describe
this model:

β = tan−1
(
Lr

W
· tan(δ)

)
ẋg = v · cos(ψg + β)

ẏg = v · sin(ψg + β)

ψ̇g = v · cos(β)
W

· tan(δ).

(1)

The steering angle δ is not so well suited for the
description of the trajectory, since the resulting motion
also depends on the vehicle geometry, so instead we use
the signed steering curvature c, defined as:

c =

{
1/r steering clockwise
−1/r, steering counterclockwise.

While driving through the slalom part, we assume a
relatively big turning radius r and a small steering angle δ.
Therefore, for the trajectory planner, we use the following
simplification of the model:

tan(δ) ≈ δ ≈ c ·W
β ≈ c · Lr

cos(β) ≈ 1.

(2)

x

y

δ

ψ

β

v

Fig. 4: Evolution of the car’s position and heading (the
green arrows represent the car at different points in time)
in the global-coordinate system

A. Model limitations

The kinematic bicycle model is only a rough approxi-
mation of the actual vehicle. This subsection summarizes
the conditions under which we can use this model.

Polack et al. [47] show that the kinematic bicycle model
is suitable for motion planning purposes if we limit the

vehicle’s lateral acceleration to a value lower than 0.5 µ g,
where µ is the tire-road friction coefficient, and g is the
gravitational acceleration. Under this condition, the tire
slip can be neglected. Typically, for a standard tire on a dry
asphalt road, µ is in the range of 0.8 to 1.0 [48]. Therefore,
we can safely set the maximal lateral acceleration ac =
3 ms−2.

Even under the above-mentioned condition, the model
is not completely precise. Its error is caused by (i) the
simplification of the real vehicle geometry and (ii) the
linearization in Equation (2). In our case, the steering angle
error is about 10% for a 6 m turning radius with a 3 m
wheelbase. This error decreases to zero for greater radii
but increases rapidly for lower radii.

The bicycle model is an underactuated non-linear sys-
tem with non-holonomic constraints. The control of such
a system is not straightforward. We assume only forward
motion, which allows us to apply a simple gradient search
for an optimal control strategy, as discussed later in
Section V.

B. Simple state-space model for the slalom trajectory
planner

The state vector xg is given by the variables of the
bicycle model (1). The model inputs ug are longitudinal
acceleration a and curvature rate ε. Formally

xg =


xg

yg

ψg

c
v

 , ug =

[
a
ε

]
. (3)

The state-space model in the form ẋg = f(xg,ug)
based on Eqs. (1) to (3) is the following:

ẋg = v · cos(ψg + c · Lr)

ẏg = v · sin(ψg + c · Lr)

ψ̇g = v · c
ċ = ε

v̇ = a.

(4)

Due to the specifics of the slalom use case, we can sim-
plify the problem by assuming that the vehicle is heading
toward the row of cones (except for the U-turn). Namely,
we transform the global coordinate system xg, yg, ψg

model (4) to the model in the “slalom” coordinate system
x, y, ψ, such that the x axis intersects the cone row (or
minimizes the least-square distance from the cones if they
are dispersed). Before starting the planning algorithm, we
assume that the car is on the x axis, so that the center
position and heading of the car is (x, y, ψ) = (0, 0, 0).
Also, we simplify the longitudinal equation and assume
that it is ẋv since the heading ψ ≈ 0 and the steering
angle δ are small, as suggested in Eq. (2). Moreover, the
longitudinal speed remains constant (except for the U-
turns), and thus v = const. The curvature c remains the
same in both coordinate systems.
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Differential equations (5) summarize the model, the
state vector x, and single input u. Note that v and Lr

are constants.

ẏ = v · sin(ψ + c · Lr)

ψ̇ = v · c
ċ = ε

x =

 y
ψ
c

 u =
[
ε
]

(5)

For the system optimization, we transform (5) into a
discrete-time model with the sample time T given by the
difference equations (6).

yk+1 = v · sin(ψk + ck · Lr) · T + yk

ψk+1 = ck · v · T + ψk

ck+1 = εk · T + ck

(6)

The longitudinal position xk+1 = v · T + xk is not a
part of the dynamic system optimization. Hence, it is not
included in the model.

IV. SLALOM TRAJECTORY PLANNING

In this section, we describe the novel algorithm for
planning slalom trajectories. The algorithm finds a near-
optimal slalom trajectory that minimizes the drive time,
steering “energy” and passenger discomfort, while respect-
ing the vehicle kinematics and dynamics.

The inputs to the algorithm are the positions of the cones
on the map, as well as the initial position, speed, heading,
and steering angle of the vehicle. The online algorithm
calculates the trajectory for both the slalom part and the U-
turns at the ends. We implement a rolling horizon approach
that considers at most three cones in front of the car. In
this way, the algorithm works for any number of cones in
the slalom, even if not all of them are initially detected
by the on-board camera and LiDAR images. Moreover,
as the car approaches a cone, its position becomes more
accurate, allowing it to find a better trajectory.

The algorithm uses the notion of waypoints that must
be driven through by the car. The waypoint is a vector
(x, y, ψ, c)T where x, y are the Cartesian coordinates
on the map, ψ is the car heading, and c is the steering
curvature. The car drives through the waypoint when the
center of the rear axle is at its coordinates, with the given
heading and steering angle matching the curvature. We use
two types of waypoints. The fixed waypoint is defined as
x = (x, y, ψ, c)T , and we use it for the final point on
the planned trajectory. The other type is called a flexible
waypoint, which defines only the position (x, y), and is
used for an intermediate point on the trajectory. The other
state variables, namely ψ and c, are determined later in
the algorithm run.

The online trajectory planning process works as shown
in Algorithm 1. The actual position of the car at
the replanning point is denoted by xrpln. First, the
ScenarioDetect&WaypointsGeneration function de-
termines the actual scenario (see the description of the
three scenarios in Subsection IV-A), the fixed waypoint,
and the initial value of the flexible waypoint. The way-
points and scenario, along with the current car position and
cone map, are passed to the OptimizationAlgorithm,

Algorithm 1: Slalom trajectory planning
Input : xinit, map, replan distance
Output: trajectory Xtrack of whole track
Xtrack ← ∅
xrpln ← xinit
while driving do

[ scenario, wptfixed, wptinitflex] =
ScenarioDetect&WaypointsGeneration(xrpln,map)

X = OptimizationAlgorithm(xrpln, wptfixed,
wptinitflex, scenario,map)

Xtrack = Append(Xtrack(1, . . . , arg(xrpln)),X)
xrpln = X(replan distance)
wait for reaching xrpln while updating map

which finds a flexible waypoint and calculates trajectory
X, which is then appended to the previously calculated
one. A new replanning point is a point on the trajec-
tory determined from the replan distance parameter that
must be smaller than the length of the currently planned
trajectory X. Then the car follows the planned trajectory
until it reaches the replanning point xrpln. A new iteration
is started and the trajectory is replanned. This continues
until the algorithm stops.

To find the best-performing algorithm, we conducted
many simulations and real-world experiments with a vari-
able number of waypoints and different criteria. We exper-
imented with different lengths of the rolling horizon (i.e.,
from the actual position to the most distant waypoint) and
several algorithms combining optimization and exhaustive
search in the space of waypoint parameters.

Our solution uses one flexible waypoint positioned
next to the nearest cone and one fixed waypoint further
away. The only exception is a simple scenario related
to the U-turn, where a fixed waypoint is used without
any flexible waypoint. The exact position, direction, and
curvature of the fixed waypoint are not critical because
the position of the distant cone becomes more accurate
as it gets closer, and the new iteration of Algorithm 1
generates new waypoints and a new trajectory. The flexible
waypoint only specifies the position the car must pass,
and the optimization algorithm computes the trajectory
tangent and curvature at that position. This solution gives
surprisingly good results even if the distances between the
cones are unequal and the cones are not on a straight
line. This ensures a smooth overlap of the trajectories
provided by the subsequent iterations of Algorithm 1.
Experiments in Section VII show that such an approach is
robust enough to handle inaccuracies in the cone detection
and perturbations in the DGPS.

A. Scenario detection

The position of the waypoints depends on what we call
a scenario. We distinguish three different scenarios, which
are shown in Fig. 5 and described below:

a) Scenario 1: When at least three cones are detected
in front of the car, no U-turn will be performed in the near
future. We set the initial position of the flexible waypoint
next to the first cone and the fixed waypoint next to the
second cone, as shown in Fig. 5(a). The trajectory (starting
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Fig. 5: Setting of the fixed and flexible waypoints in three different scenarios

at the current position of the vehicle and ending at the
fixed waypoint) and the final parameters of the flexible
waypoint are determined by the Optimization Algorithm
described in Section V.

b) Scenario 2: When the scenario detected in the
previous iteration of Algorithm 1 was Scenario 1, and
now only one or two cones are detected in front of the
car, we need to perform the U-turn around the last cone
of the slalom. We set the initial position of the flexible
waypoint next to the cone in front of the car. If two cones
are detected, we set the fixed waypoint next to the last
cone, as shown in Fig. 5(b). If only one cone is detected
(see Fig. 5(c)), the fixed waypoint is placed behind the
cone. The trajectory and the final parameters of the flexible
waypoint are determined by the Optimization Algorithm
in the same way as in Scenario 1.

c) Scenario 3: When there is no cone in front of the
car, then we already perform the U-turn around the cone.
We set one fixed waypoint on a circle around the cone 90
degrees from our current position, as shown in Fig. 5(d).
Since there is no flexible waypoint, the trajectory is found
only by the internal loop of the Optimization Algorithm
(as described in Subsection V-B). The parameters of the U-
turn circle are found while considering a constant velocity.
We want to minimize the drive time tc on the circular
path. This time is constrained by the maximum lateral
acceleration ac (related to the tire friction limit) and by
the minimum turning radius r of the vehicle, so that
tc = 2π

√
r
ac

. Therefore, we set the U-turn radius as
low as possible, while still keeping some safety margin
for maneuvering. Specifically, we set r = 6m for our
vehicle. The center of the circle is placed either (based on
the configuration parameter) in the center of the cone (see
symmetric U-turn in Figure 9) or such that the car leaves
the U-turn circle very close to the cone (see asymmetric
U-turn in Figure 10). In the next iteration of Algorithm 1,
Scenario 1 will be used as there will be at least three cones
in front of the car.

B. Waypoints in polar coordinate system
The position x, y of the flexible waypoint is based on

a Cartesian coordinate system, which is unsuitable for

the optimization algorithm because the feasibility space
of the possible car positions around the cone is clearly
non-convex (infeasible car positions are surrounded by
feasible ones). Therefore, in the Optimization Algorithm
(see, e.g., Fig. 7(d)-(f)) we represent the waypoints in the
polar coordinate system determined by distance d from
the corresponding cone center C and angle α from the
direction perpendicular to the cone axis, oriented to the
side where the car passes the cone, as seen in Fig. 5(a).

V. OPTIMIZATION ALGORITHM

In this section, we describe the Optimization Algo-
rithm inspired by the Logic-Based Benders Decomposi-
tion, which is well known to solve various combinatorial
optimization problems [49]. The input of the algorithm is
the current vehicle state xrpln, the initial position of the
flexible waypoint, the fixed waypoint, and the cone map.
The Optimization Algorithm consists of two nested loops
(see Fig. 6):
• an external loop whose iteration starts with the po-

sitioning of the flexible waypoint (determining its
(x, y); the initial position was set in accordance with
the detected scenario) and ends with the evaluation
of the solution feasibility and criterion value,

• an internal loop which plans trajectory X given by
vector x of each discrete-time step of the trajectory
including heading ψ and curvature c of the flexible
waypoint.

After the internal loop is executed and the velocity
profile is computed, the feasibility of the found trajectory
is evaluated (i.e., it is verified that the car avoids colliding
with the cone) and the criterion function described in the
next section is evaluated. The algorithm then performs
another iteration of the external loop to find another
position (x, y) of the flexible waypoint, and repeats the
process as shown in Fig. 6.

The criterion function U of the Optimization Algorithm
is given as a minimization of the weighted sum of the
time to reach the fixed-waypoint, the sum of the squares
of the curvature c (assuming constant speed, which should
correspond to the energy spent on steering), and the sum
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Fig. 6: Flow chart of the Optimization Algorithm (in the
case of Scenario 3, the algorithm simply executes the
internal loop only).

of the squares of the curvature rate ε (corresponding to
the lateral jerk; a large lateral jerk makes discomfort even
for very short periods of time [50]):

U = wt · (kfw − krp) + wc ·
kfp∑

k=krp

c2k + wε ·
kfw∑

k=krp

ε2k

The variables krp and kfw are the indices of the discrete-
time steps when the car is at its replanning point and fixed
waypoint, respectively.

Note: One can also think of a part of the criterion
function related to the energy consumed by the longi-
tudinal motion (as in platooning [51]), namely given by
the variable longitudinal velocity. The energy consumption
(see accurate models for electric cars, e.g., in [52], [53])
is equal to the integral of the power over time. The
power is equal to the velocity of the vehicle times a force
acting on the vehicle, which is composed of the rolling
resistance force between the tires and the road, the force
resulting from the differences in elevation, the resistance
of the car against the air, and the acceleration force.
These forces depend on static parameters (such as the total
mass of the vehicle, rolling resistance, elevation changes
along the way, air density, aerodynamic drag coefficient
expressing the aerodynamics of the vehicle shape, and
vehicle frontal area) and variables such as the speed and
acceleration. Therefore, our optimization algorithm that
derives the velocity profile and then computes the criterion
value might, in principle, be able to optimize the energy
consumption as well, but we would need to investigate
whether the criterion function has a convex shape to make
it fast, i.e., to minimize the number of iterations of the
external loop.

A. External loop – flexible-waypoint positioning and cri-
terion calculation

The position of the flexible waypoint next to the first
cone is a crucial variable of the solution. To observe its
influence on the criterion value, we performed simulations
of several cases shown in Fig. 7(a), (b), (c) (different

positions of the car and the cones). For each of these cases,
we computed the criterion map shown in Fig. 7(d), (e),
(f) in polar coordinates. The color of a small rectangle for
each discrete value of angle α and distance d represents the
value of the criterion function U of the trajectory X found
by running the internal loop separately. Given an unknown
trajectory, it would be quite difficult to analytically deduce
whether the position of the waypoint yields an infeasible
solution, since the car is not a single point. However, using
the internal loop, we obtain the trajectory, and we can
evaluate its feasibility (whether the cone was hit or not).
The white rectangles represent infeasible waypoint posi-
tions that lead the car too close to the cone. The colored
rectangles represent a feasibility set of the given case.
Therefore, the objective of our Optimization Algorithm
is to find a solution represented by one of the dark blue
rectangles, but we want to derive it online without having
the criterion map found by the exhaustive search for the
given case, as in Fig. 7.

To find an optimal feasible solution, we use the Border
Discovery procedure for Scenario 1 and the Local Search
procedure for Scenario 2.

1) Flexible-waypoint positioning by the Border Dis-
covery procedure: Initially, we represented the criterion
map of the position of the flexible waypoint in Cartesian
coordinates (x, y), where the set of feasible solutions is
a nonconvex space (the car goes around the cone, so
there are infeasible positions surrounded by the feasible
ones), making it difficult for the Optimization Algorithm
to escape from the local minimum. Fortunately, we have
changed the representation to polar coordinates [α, d], re-
sulting in convex feasibility space and a (mostly) concave
criterion function, as shown experimentally in Fig. 7(d),
(e) (due to the complexity of the internal loop and feasibil-
ity evaluation, we cannot provide a theoretical proof here).
Minimizing the concave criterion on the convex feasibility
space ensures that the minimum lies on the border of the
feasibility set, thus simplifying the optimization problem.
Taking advantage of this property, we have developed the
Border Discovery procedure using the interval bisection
method in the direction of d and in the direction of α.

Border Discovery procedure:
Init Let [αf , df ] be an initial position of the flexible

waypoint that is undoubtedly feasible (e.g., [0, 4]), and
di be a distance that is undoubtedly infeasible (for
example 0.5 meter) for any angle α. Let ddiff and αdiff

be two constants influencing the precision of the result.
(i) Distance discovery. Using the interval bisection

method (i.e., in each iteration, the interval is divided
between feasible and infeasible endpoints) with initial
endpoints [αf , df ] and [αf , di], find a feasible solution
with the smallest d, using iterative calls to the internal
loop for the given position. Terminate the vertical
discovery when the change in d in two consecutive
iterations is less than ddiff and save the obtained
distance as dv . If the termination condition is satisfied,
then EXIT, otherwise proceed to (ii).

(ii) Angle discovery. Using one sample position, find
whether the feasibility set is on the left or on the right
of [αf , dv]. Find the infeasible position [αi, dv] behind
the feasibility set in the horizontal direction. Using
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Fig. 7: Criterion function for three different cases

the interval bisection method with initial endpoints
[αf , dv] and [αi, dv], find a feasible solution closest to
[αi, dv] using iterative calls to the internal loop for the
given position. Stop the horizontal discovery when the
change in α in two consecutive iterations is less than
αdiff and save the obtained angle as αh. Set [αf , df ] in
the middle of the interval [αf , dv] and [αh, dv]. If the
stopping condition is satisfied, then EXIT, otherwise
continue with (i).

Stop The stopping condition is related to the elapsed
time or distance between [αf , dv] and [αh, dv]. The
algorithm returns the feasible position with the best
value of the criterion function.

2) Flexible-waypoint positioning by the Local Search
procedure: The criterion function of the case in Fig. 7(f)
has its minimum within the feasibility set and thus it must
be found by a simple Local Search procedure. Within the
feasibility set, the Local Search applies local moves in
eight different directions and with constant distance and
chooses the best of them as the starting point for the next
iteration. The next iteration uses a shorter distance. The
best solution is selected among the evaluated ones. The
termination condition corresponds to the elapsed time. The
Local Search procedure can also be used to solve the cases
Fig. 7(d), (e), but the DB procedure was approximately
three times faster in our experiments due to a smaller
number of iterations.

B. Internal loop – trajectory planning via two waypoints

We formulate the internal loop trajectory planning as
a discrete-time dynamic system optimization problem.
The solution is based on the Newton-type optimization
algorithm [54].

We are given the initial state x0 (i.e., the replanning
point), the final state xf (i.e., the fixed waypoint), and,
optionally, a flexible waypoint, xflex. Recall that the state
is [y, ψ, c]T , since we assume a constant speed, see Eq. (6),
and the longitudinal coordinate is computed using the

velocity profile described below in Section V-C. We want
to generate such a control input sequence that leads the
car optimally from the state x0 to the state xf in N
steps, optionally via the position of the flexible waypoint
xflex. In other words, we want to find control inputs that
minimize the cost function L. In mathematical formalism,
the statement of a constrained optimization problem is as
follows:

minimize
x1...xN ,u0...uN−1

L(X)

subject to: xk+1 = f(xk,uk) k = 0 . . . , N − 1

g(xm,xflex) = 0 m = 1, . . . , N − 1

xN = xf

(7)
Where X is a vector of all the states and inputs in

the optimization and L(X) is the general cost function
restricted to be a weighted quadratic function.

X =



x1

...
xN

u0

...
uN−1


, L(X) =

∑
i

wiX
2
i , wi ≥ 0 (8)

Equation xk+1 = f(xk,uk) is a discretized version of
the simplified state-space model (6). Constraint xN−xf =
0 defines the final state, optional constraints g(xm,xflex) =
xm−xi = 0 define that the flexible waypoint must be on
the trajectory (in general, this method allows multiple g()
constraints, but we only use one for one flexible waypoint).

Following [54], this problem can be solved with a
Newton-type iterative algorithm. We determine the number
of samples N in two steps as follows. First, N is estimated
based on the Euclidean distance to the final state and
the sample distance. Then, the calculated curvature rate
control input is applied to model (4) along with a constant
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Fig. 8: Computed trajectory (red) between two fixed
waypoints (magenta). The effect of different weights wi

is visible, namely on the curvature rate.

velocity, and the real final state x′f is obtained, which may
differ slightly from xf . In the second step, we correct N
so that the trajectory ends in the desired final state xf .
The difference between the real and desired final states
can also indicate that we choose the final state outside
the reachable range, as discussed in Section III-A. The
result of the algorithm (found after a single iteration) with
constant weights wi is shown in Fig. 8 with the dashed
line (the weights are constant in the sense that they do not
change for different k = 0, . . . , N − 1). The index m of
the flexible waypoint xflex is calculated in relation to N .

By choosing different weights wi for different states, the
planner can implement several different driving strategies.
For example, to minimize the curvature rate for the driver’s
comfort or to minimize the curvature to drive faster
with maximum lateral acceleration. However, an output
trajectory is not always well suited for driving, as it can
create unacceptable spikes in the curvature and curvature
rate. This can be eliminated by shaping the weights. If
we have a spike at time step i, we set a higher weight
wi for that particular state. The implemented solution sets
the weights proportional to the absolute values of the
associated states of the result with constant weights and
runs the Optimization Algorithm again. Then we obtain
the trajectory with suppressed peaks. We add a small
constant value to the weights to prevent the weights wi

from being zero, which would lead to the infeasibility of
the algorithm. The example result with updated weights
is shown in Fig. 8 with a solid line. The driving strategy
shown in the figure is to minimize the curvature rate. The
result is close to the clothoid curve.

In summary, in two iterations of the algorithm, we
obtain a trajectory that respects the kinematic constraints
of the vehicle.

C. Velocity Profiling

To minimize the drive time, after calculating the tra-
jectory with constant velocity, we recalculate the velocity
to satisfy three constraints. The first constraint is the
maximum value of the longitudinal acceleration and de-
celeration. The second constraint is the maximum value
of the lateral acceleration during steering, which limits
the maximum speed. The third constraint is the maximum
speed that the vehicle can travel.

We adapted the two-pass algorithm presented in [55].
The algorithm consists of the following steps. The max-
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Fig. 9: Slalom with cones-in-line, equal distances, and
symmetric U-turns (the nomenclature is the same as in
Fig. 5).

imum velocity is determined at each point along the
trajectory. The velocity change is given by the equation
v[k + 1] = v[k] + a[k]T . Then the velocity profile is cal-
culated by applying the maximum allowable acceleration
and deceleration. We calculate the velocity profile for the
acceleration by starting at the first point of the trajectory
and applying the acceleration until we reach the velocity
limit. Then the same procedure is performed, starting at
the end of the trajectory, going back to the beginning and
applying the maximum allowable deceleration.

VI. EVALUATION OF TRAJECTORY PLANNER

To evaluate the proposed trajectory planner, we perform
simulations on three different configurations depicted in
Figs. 9 to 11.

Figure 9 shows the cones-in-line configuration with
equidistantly arranged cones. The U-turns are symmetric,
that is, their center lies at the position of the outer cones.
The trajectory starts at replanning point 1, Scenario 1 is
detected, and the vehicle passes over the flexible waypoint
on the left side of the first cone. Later, Scenario 2 is
detected at replanning points 3 and 4 as the vehicle
approaches the U-turn around the last cone. Then the U-
turn is performed and Scenario 3 is detected at replanning
points 5, 6, and 7, where no flexible waypoint is generated.
The car returns when Scenario 1 is detected at replacing
point 8, and the sequence of scenarios repeats.

Figure 10 shows the cones-in-line configuration, but it
is different from Fig. 9 in two aspects:
• The U-turns are asymmetric, e.g., the cone is at

position [15, 0], but the center of the U-turn is at
[15,−3]. The U-turn is placed so that the car leaves
the U-turn in a similar state as if there were no U-
turn. Let us look at the left U-turn – the end of the
U-turn almost overlaps with the trajectory generated
between replanning points 1 and 2. Specifically, at
replanning point 15, we get the flexible waypoint
at [15, 2], which almost overlaps with the flexible
waypoint of replanning point 1. This way of making
asymmetric U-turns, which was advised to us by a
professional driver, has nearly similar drive times as
the symmetric version. However, the trajectory with
symmetric U-turns has much higher sums of squares
of curvature and curvature rate. Thus, the proposed
asymmetric U-turn planning results in lower lateral
acceleration and a more comfortable ride with lower
lateral jerk.

• The distance between the third and fourth cones
is shorter, and therefore the car must pass through
the space between them almost vertically. Therefore,
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when it is at replanning point 3, the flexible waypoint
at [44, 2.5] has a heading that points straight between
the cones (i.e., not parallel to the cone line, as is the
case with replanning point 10 and the corresponding
flexible waypoint at [30, 2.5]).

The last configuration with dispersed cones, unequal
cone spacing, and asymmetric U-turns, shown in Fig-
ure 11, is the most interesting. Figure 12 shows the
remaining states of this trajectory with the replanning
points matching both figures. We see a serpentine slalom
drive from left to right, then an almost straight drive
from right to left. Our simple speed profiling algorithm
results in spikes in the slalom speed profile. The real
driver would instead drive at a constant speed, with the
car swinging on its suspensions. However, we do not
model the suspensions and roll rotation in this paper.
Therefore, the car accelerates and brakes in relatively
straight segments between the cones. The curvature rate
has peaks in Scenarios 1 and 2 (replanning points 1 to 5
and 9 to 12), which is understandable since it must switch
between left and right turns. However, these peaks should
not occur during the U-turns (replanning points 6, 7, 8 and
13, 14, 15). We see two reasons for this behavior. First,
we operate at the limit of the internal loop planner (sharp
steering). Second, we do not consider flexible waypoints
in Scenario 3, so the external loop does not optimize them,
resulting in a spike at the corresponding rescheduling
points. These spikes could interfere with the slalom drive,
but are smoothed out by the feedback control.

From the presented simulation results, we conclude that
the proposed method is suitable for a wide range of slalom
configurations. The results of the experiments with the real
vehicle are presented in Section VII.

VII. EXPERIMENTS

We performed many test drives with the entire setup
described in the previous sections. In this section, we
present data from some of these real-world experiments.
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1 meter grid
Direct cone localizations (hit by LiDAR beam).
Approximate cone localizations (interpolation between
two LiDAR beams).
Cone cluster centers used for the planning.
Actual car position.
Trajectory from the planner.
Real car trajectory (GPS position).

X Cross-references to Fig. 15.

Fig. 13: Automated slalom map

An overview visualization of the data of the slalom drive
is shown in Fig. 13. As mentioned above, the approximate
cone localization (orange dots) is used only during the first
slalom part (detailed in Fig. 14). After the car is close
enough for direct localization, more precise cone positions
(red dots) are used. The approximate positions are only
used to calculate the initial trajectory.

The trajectory tracker exhibits higher tracking errors in
the U-turns, as shown in Fig. 13 on the left. This is due to
the fact that the tracker controller is tuned for the slalom
part.

The graph of the steering angle during a slalom part is
shown in Fig. 15. The matching points in Figs. 13 and 15
are marked with numbers. In the output of the trajectory
tracking controller (blue line), overshoot can be seen at
the beginning of the U-turn after point 4. This is again
due to the trajectory tracker controller being tuned to the
slalom part of the drive. The step changes in the output of
the local planner (green line) caused by the re-planning of
the trajectory are partially filtered by the trajectory tracker
and by the power steering ECU itself, so that the resulting

Fig. 14: Creation of the cone map during the first slalom
part drive. For the legend, see Fig. 13.
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Legend:
Steering angle reported by the car.
Steering angle output of the local planner.
Trajectory tracking controller output (incorporates
communication delay, deviation of the car from the
planned position and interpolation of the old and new
plans).

X Cross-references to Fig. 13.

Fig. 15: Steering angle during the slalom drive
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Fig. 16: Camera view from an experimental drive

steering wheel movement is close to the steering of a
human driver.

Figure 16 shows what the camera and LiDAR see when
the car is in front of the cones.

VIII. CONCLUSION

This paper describes the architecture and algorithms of
a prototype automated vehicle performing slalom drives.
The goal is to automate repetitive vehicle tests to make
them more reproducible, thus facilitating the development
of advanced control algorithms. Our trajectory planner
plans the whole trajectory, including U-turns, that min-
imizes the driving time, steering energy, and passenger
discomfort.

The planner constructs the path from the waypoints
that must be driven through by the car. It places the
waypoints based on the position of the cones detected
by the LiDAR and camera. The initial position of the
waypoints is then optimized by an online optimization
algorithm based on a logic-based Benders decomposition
and Newton-type optimization. Fast computation times
are achieved by formulating the optimization in polar
coordinates, which leads to convex feasibility space. Both
the simulations and practical experiments show that the
method is robust enough to handle disturbances caused by
the inaccuracy of the cone detection and DGPS.

Our prototype is based on a proven modular architecture
that allows for future improvements to the individual

components. A simple initial design, implementation, and
early outdoor experimentation proved to be the right way
to uncover bottlenecks and weaknesses in the development
versions of the system and to enable the improvement
of the individual components in an agile manner. In
particular, it quickly became apparent, in practice, that the
accuracy of one component (heading estimation) is crucial
for the correct behavior of the other components.

Given the limited resources of the project, we have
learned that outdoor experiments are more efficient than
simulating the entire system and environment, which
cannot model every detail of the real world. It proved
beneficial to simulate only certain parts of the system
and environment to reproduce problems encountered in
outdoor experiments.
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[45] J. Záhora, M. Sojka, and Z. Hanzálek, “Perception, planning and
control system for automated slalom with Porsche Panamera,” in
38th FISITA 2021 World Congress, 2021.

[46] R. Rajamani, Vehicle Dynamics and Control. Mechanical Engi-
neering Series, Springer, 2012.
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