
Czech Technical University in Prague

Faculty of Electrical Engineering
Department of Computer Science

Multi-robot Systems

A realistic simulation of a UAV

model in Unity for learning control
policies in OpenAI Gym

Master’s Thesis

Lev Kisselyov

Prague, January 2024

Study programme: Open Informatics
Branch of study: Software Engineering

Supervisor: Ing. Matěj Petrĺık

ii

Acknowledgments

I would like to express my gratitude to my supervisor Ing. Matěj Petrĺık for his exten-
sive guidance during the project and his quick and motivating reaction to numerous arising
questions. Special gratitude goes to Bc. Tomáš Musil, my good friend, and author of the idea
of thesis.

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

483610 Personal ID number: Kisselyov Lev Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Open Informatics Study program:

Software Engineering Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

A realistic simulation of a UAV model in Unity for learning control policies in OpenAI Gym

Master’s thesis title in Czech:

Realistická simulace modelu UAV v Unity pro učení řídicích strategií v OpenAI Gym

Guidelines:

This thesis aims to implement a realistic UAV model in the Unity game engine, connect it to ROS and to OpenAI Gym,
and then develop and evaluate a reinforcement learning-based controller for the UAV that learns visual odometry-aware
flight.
1. Get familiar with the Unity simulation environment and its use in robotics [1], the OpenAI Gym [2] framework, and the
basics of the MRS UAV system [3].
2. Implement a realistic UAV in the Unity simulator, similar to the existing Gazebo MRS simulator for UAVs, and make the
UAV controllable through an interface with OpenAI gym [2].
3. Formulate and design the reinforcement learning task and try several available reinforcement-learning algorithms [4]
to learn a controller with which the UAV can fly without disrupting visual odometry (for example by avoiding quick motions
that cause visual odometry to lose tracking [5]).
4. Implement a ROS-Unity interface and test control of the UAV with the trained model deployed as a node in ROS. Discuss
the effects of the learned control policy on the quality of the visual odometry.

Bibliography / sources:

[1] Song, Yunlong, et al. "Flightmare: A flexible quadrotor simulator." Conference on Robot Learning. PMLR, 2021.
[2] Brockman, Greg, et al. "Openai gym." arXiv preprint arXiv:1606.01540 (2016).
[3] Baca, Tomas, et al. "The MRS UAV system: Pushing the frontiers of reproducible research, real-world deployment,
and education with autonomous unmanned aerial vehicles." Journal of Intelligent & Robotic Systems 102.1 (2021): 26.
[4] Azar, Ahmad Taher, et al. "Drone deep reinforcement learning: A review." Electronics 10.9 (2021): 999.
[5] Wu, Xiangyu, et al. "Perception-aware receding horizon trajectory planning for multicopters with visual-inertial odometry."
IEEE Access 10 (2022): 87911-87922.

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 1 from 2 CVUT-CZ-ZDP-2015.1

Name and workplace of master’s thesis supervisor:

Ing. Matěj Petrlík Multi-robot Systems FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: __________ Date of master’s thesis assignment: 14.08.2023

Assignment valid until: 16.02.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Matěj Petrlík
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 2 from 2 CVUT-CZ-ZDP-2015.1

v

Declaration

I declare that presented work was developed independently, and that I have listed all
sources of information used within, in accordance with the Methodical instructions for ob-
serving ethical principles in preparation of university theses.

Date

vi

Abstract

UAV simulation is a complex field that is rapidly evolving, resulting in numerous
available software options. The integration and cross-compatibility of the simulators
pose a challenge for researchers in designing new robotic applications. Therefore,
there is a constant need to expand the existing toolkit stack and integrate the new
backward-compatible simulation environments that bring new perspectives to the
research by utilizing their advantages. This work introduces Unity3D as a simu-
lation tool in the UAV field, analyzing it from multiple perspectives. The project
introduces a realistic simulation of the drone control system in combination with the
Unity physics engine. Moreover, the references to the control system and other simu-
lation data can be interchanged with the existing ROS tools through the ROS-TCP
connector. Contributing to the multirotor RL research, we provide an examination
of the native to Unity ML-Agents framework in terms of performance, convenience
of the setup, and flexibility. The thesis provides a testing showcase of an RL model
training aimed to teach the drone position control policy while taking into consider-
ation visual odometry constraints. Consequently, the paper compares two state-of-
the-art RL algorithms, PPO and SAC, in multiple categories. The final contribution
of the project is a toolkit that can be utilized to provide a quick start for other
developers in developing their Unity3D multirotor applications.

Keywords : Unmanned Aerial Vehicles, Unity3D, Multirotor Simulation, ML-
Agents, Reinforcement Learning, Visual Odometry, ROS, Multirotor Control System

vii

Abstrakt

Simulace bezpilotńıch multirotor̊u představuje komplexńı oblast, která se rychle
rozv́ıj́ı, což vede k mnoha dostupným softwarovým možnostem. Integrace a vzájemná
kompatibilita simulátor̊u představuj́ı výzvu pro výzkumńıky při návrhu nových
robotických aplikaćı. Je proto stále zapotřeb́ı rozšǐrovat existuj́ıćı sadu nástroj̊u a
integrovat nová zpětně kompatibilńı simulačńı prostřed́ı, která přinášej́ı nové per-
spektivy výzkumu využit́ım svých výhod.

Tato práce představuje Unity3D jako simulačńı nástroj v oblasti UAV a analyzuje
ho z r̊uzných perspektiv. Projekt přináš́ı realistickou simulaci ř́ıdićıho systému
dronu v kombinaci s simulaćı fyziky v Unity. Představený softwarový baĺıček
umožňuje vzajemnou kominukaci simulačńıho prostřed́ı s existuj́ıćımi nástroji v
ROSu prostřednictv́ım rozhrańı ROS-TCP connector. Potenciálńım př́ıspěvkem do
výzkumu posilovaného učeńı (RL) pro multirotory je poskytnut́ı hodnoceńı frame-
worku ML-Agents v Unity z hlediska kvality výsledných metod, možnost́ı nastaveńı
parametr̊u modelu a flexibility.

Práce poskytuje ukázkové testováńı trénováńı modelu zaměřeného na učeńı se ř́ızeńı
polohy dronu s ohledem na omezeńı vizuálńı odometrie. V rámci předvedeného ex-
perimentu práce porovnává dva moderńı RL algoritmy, PPO a SAC, v několika
kategoríıch.

Finálńım př́ınosem projektu je sada nástroj̊u, která může být využita pro rychlý
start vývojář̊u při vytvářeńı svých aplikaćı pro multirotory v Unity3D.

Kĺıčová slova : Bezpilotńı Prostředky, Automatické Ř́ızeńı Multirotor̊u, Unity3D,
ML-Agents, Posilované Učeńı, ROS

viii

Contents

1 Introduction 1

1.1 Related works . 1

1.2 Contributions . 4

1.3 Project Overview . 6

1.4 Mathematical notation . 6

2 Simulation Environment 7

2.1 Unity3D Overview . 7

2.1.1 Rendering Pipeline . 7

2.1.2 Physics Simulation . 8

2.1.3 Unity UI . 8

2.1.4 Unity Terminology . 9

2.1.5 Simulation Technical Aspects . 11

2.1.6 Unity Assets . 14

2.2 Drone Models . 16

2.2.1 Model Files Conversion . 16

2.2.2 Model Import into Unity . 16

3 Connecting ROS and Unity 20

3.1 ROS TCP Connector . 20

3.2 Creating a subscriber in Unity . 21

3.3 Sensoric data publishers in Unity . 21

3.4 OpenVINS . 22

4 UAV Control System 24

4.1 Cascade Control System . 25

4.1.1 PID controller . 25

4.1.2 Position Controller . 25

4.1.3 Velocity Controller . 25

4.1.4 Acceleration Controller . 25

4.1.5 Attitude Controller . 27

4.1.6 Rate Controller . 29

4.1.7 Mixer . 29

4.2 Control Signal Output . 30

5 ML-Agents Framework 32

5.1 ML-Agents Introduction . 32

5.2 ML-Agents Building Blocks . 33

5.3 Open AI Gym . 34

ix

5.4 Reinforcement Learning Algorithms . 35
5.4.1 PPO algorithm . 35
5.4.2 SAC algorithm . 36

5.5 Drone Agent . 37
5.5.1 Agent Class . 37
5.5.2 Inspector Tab Settings . 39

6 Training 41
6.1 Hardware/Software Setup . 41
6.2 RL Task definition . 42

6.2.1 Unity Scene Setup . 42
6.2.2 Episode Formulation . 43
6.2.3 Rewards and Observations . 43
6.2.4 Training Configuration File . 45

6.3 PPO training process . 47
6.4 SAC training process . 48

7 Discussion and Models Evaluation 51
7.1 Training Evaluation . 51
7.2 Algorithms’ Performance Evaluation . 52

7.2.1 Flying with OpenVINS . 53
7.2.2 Evaluation Summary. 55

8 Conclusion 56
8.1 Future Improvements, Project Evolution . 57

References 58

Appendix A 61

1. INTRODUCTION 1/62

Chapter 1

Introduction

The need for realistic and versatile simulations has become paramount in the ever-
evolving landscape of unmanned aerial vehicles (UAVs). Developing robust control systems
and training environments is crucial as the world witnesses many drone applications, from
surveillance and logistics to agriculture and entertainment. Simulations offer an indispensable
tool in the development and testing of UAV systems. They provide a controlled environment
for the development of algorithms, the exploration of new control strategies, and the train-
ing of pilots and autonomous systems. Real-world testing of UAVs can be costly, dangerous,
and highly restricted in various regions. For example, developing approaches for subterranean
search and rescue tasks requires extensive evaluation and expensive testing in vast environ-
ments [4] to verify the maturity of the solution before deployment as an assistive technology
for first-responders. Moreover, to test the robustness of the approaches, they need to be tested
in various environments such as man-made mining tunnels [22], unfinished or collapsed urban
buildings [16], deep-spanning cave networks [17], or historical monuments containing objects
of immense value [3]. Simulations, therefore, serve as a safe and cost-effective alternative.

This thesis embarks on a journey to create a highly realistic UAV simulation in Unity
3D, connect it to the Robot Operating System (ROS), and integrate it with a Reinforcement
Learning (RL) training platform, specifically the Unity ML Agents framework. The primary
objective is to design and assess a realistic physical simulation of a quadrotor model and
corresponding control system for the UAV. Additionally, this research will explore the rein-
forcement learning approach to achieve a model that asserts stable flight control, preventing
disruptions in the visual odometry of the drone. The final contribution of the thesis is a frame-
work that will enable users to conduct simulations effortlessly and test various reinforcement
learning tasks with a quick and configurable set of tools.

1.1 Related works

The area of research for modern robotics simulation environments is booming with
substantial work. Depending on a problem’s specification, several simulators that fit and utilize
their benefits to optimize efficiency can be chosen. On the one hand, the need for perception-
based control and photo-realistic visual-based training can be addressed using game engine
simulators. On the other hand, a resource-consuming rendering engine is often combined with a
more straightforward physics simulation, balancing the computation complexity. The following
analysis underlines the advantages and drawbacks of multiple state-of-the-art simulations and
describes how they address the scalability and continuous RL support.

AirSim is a heavily used simulator with a powerful rendering engine based on gaming
Unreal Engine. The physics of the quadrotor is calculated by the so-called Fast Physics en-
gine, a simplified engine with some shortcomings but efficient calculation. Nevertheless, the

CTU in Prague Department of Computer Science

2/62 1.1. RELATED WORKS

rendering allows working on perception-based RL tasks that rely on photo-realistic image
rendering. Figure 1.1 shows an example of a drone simulation in a suburban area performing
image segmentation.

Figure 1.1: High fidelity rendering of a quadrotor in AirSim [34]

The simulator has been used as a platform for training RL tasks in extensive research
[30]. The efficiency of the simulator was shown in [5], where J. Saunders et al. trained multiple
agents in parallel and obtained significant speed-up in teaching quadrotor visual navigation.
AirSim plugin for the Unreal Engine 4 game engine was used to design an RL-specialized
OpenAI Gym wrapper, AirLearning [15], that offers advanced settings to help mimic real-life
drone behavior. For instance, there is artificial downgrading of the computation efficiency to
simulate on-board processor capability. Lastly, it is essential to note that Microsoft will no
longer support the open-source package, as they are developing a new commercial package
called Project AirSim.

The codependency of the rendering and the physics engine was addressed in the Flight-
Mare simulator [18] by decoupling the rendering and physics engine. Figure 1.2 outlines the
structure of Flightmare, specifically its modular rendering and dynamics modeling and con-
nection to the Python backend for additional advanced applications.

Flightmare represents a fair balance of the simulation’s efficiency by maintaining mod-
ularly separated solid photo-realistic visuals and a flexible physics engine. The decoupling is
a design choice that allows the simulator to achieve noteworthy speed-up in RL. Moreover,
for the physics simulation, depending on the application, Flightmare offers three different
approaches to quadrotor dynamics:

• RotorS, a drone-oriented dynamics package providing more complex and precise but less
efficient results [35];

• Lightweight parallel implementation of classical quadrotor dynamics optimized for high-
speed sample gathering;

• Real-world dynamics presented in [26];

In its most efficient mode, the physical engine reaches 200,000 Hz simulation of a multi-core
CPU. Users can use several camera sensor types, including RGB and depth cameras, as well

CTU in Prague Department of Computer Science

1. INTRODUCTION 3/62

Figure 1.2: Overview of the Flightmare framework [18]

as specialized cameras for segmented views of the environment. However, the provided sensor
suite does not support Light Detection and Ranging (LIDAR) sensors.

Due to its high scalability, gathering a large amount of data crucial for the reinforcement
learning tasks became possible, consequently allowing the development of extreme tasks such
as quadrotor racing [7].

One of the contributions of the thesis discussed in Section 1.2 is its compatibility with
the MRS UAV system [13]. It is a comprehensive software stack providing essential tools for
both real-life and simulation experiments. Currently, the UAV MRS system has three different
types of simulation engines: Gazebo Classic, CoppeliaSim, and its internally implemented MRS
Simulator.

Gazebo Classic is an open-source multi-purpose simulator allowing accurate physics
simulation. The simulator has an extensive user base in the robotics field and is still being
maintained. ROS natively supports Gazebo Classic. One of the benefits of the simulator is
that the objects and models can be added to the environment dynamically during the simu-
lation. As a part of the MRS UAV system, new terrains and maps created in Blender can be
added. At the same time, Simulation In The Loop (SITL) can be sped up, which is benefi-
cial for the data-demanding RL tasks. Gazebo can be combined with the OpenAI framework
to implement a custom RL task; however, it requires implementing backend communication
with the environment in case it resets, is held on pause, or is closed. There are multiple at-
tempts to provide the Gazebo-ROS setup with a ready-to-use framework based on OpenAI
algorithms allowing RL training [36], [25]. However, most of the toolkits do not have consis-
tent maintenance, which means that a custom implementation is needed to keep up with the
simulator updates. Nevertheless, recent publications suggest that Gazebo can still be used
for RL training [1]. Gazebo implements plugin software design, allowing ROS-interconnected
custom plugins to be created. The plugins are written in C++ and loaded into the simulation
in SDF format at the beginning of the simulation. Amongst numerous use cases, plugins sup-
port quadrotor sensors and allow their adjustments and connection to ROS communication
channels. In addition to the sensors, Gazebo provides plugins for manipulation with models
inside the simulation environment, the environment itself, visuals, and GUI elements. Cur-

CTU in Prague Department of Computer Science

4/62 1.2. CONTRIBUTIONS

rently, Gazebo supports 4 physics engines: ODE, Bullet, Simbody, and Dart, with ODE as a
default option.

Constructed using the C/C++ programming language, the Open Dynamics Engine
(ODE) [45] represents an open-source framework featuring a dual-functional core comprising
a robust simulation engine for rigid body dynamics and a collision detection engine. Char-
acterized by its resilience and simplicity, ODE provides a stable foundation for simulating
mechanical interactions, albeit with a performance profile that may be perceived as less effi-
cient compared to more sophisticated counterparts, exemplified by the Bullet physics engine.

In contrast, Bullet, while sharing commonalities with ODE in supporting rigid bodies
and streamlined collision detection, distinguishes itself by incorporating advanced functional-
ities such as multi-threading and native convex hull support. The latter enables the represen-
tation of convex hulls, a category of 3D shapes defined by discernable internal and external
facets formed by an array of infinite planes.

Simbody is an open-source multibody dynamics software toolkit [42] implemented pri-
marily in C++. It emphasizes flexibility and extensibility, providing an adaptable platform
for complex biomechanical systems. As a consequence, it focuses on high-fidelity simulations
of complex multibody systems, where the precision of the calculation has a higher priority
than its efficiency.

DART [29] distinguishes itself in the realm of robotics simulation through its commit-
ment to efficiency and real-time performance. Crafted also as a C++ library, DART empha-
sizes modularity, making it adjustable to the demands of articulated rigid body systems.

While Gazebo excels in simulating intricate robotic dynamics and interactions with
multiple physics engines suitable for different tasks, it may not be ideal for applications that
require a simulation environment with top-tier rendering quality. Gazebo emphasizes the
precision of physics and the accurate representation of robotic systems more than delivering
photo-realistic graphics.

CoppeliaSim is a versatile robotics simulator based on V-REP [41]. It supports various
customization techniques: add-ons, plugins, and remote API clients. Multiple physical engines
can process the physics calculation: Bullet physics, ODE, MuJoCo, Vortex Studio, and New-
ton Dynamics. A user can choose a suitable engine for a specific application depending on
the precision and calculation speed requirements. Moreover, CoppeliaSim tries to utilize kine-
matics instead of only tracking the dynamics of the object to achieve the best performance.
Figure 1.3 shows a position control application with a moving target reference.

Multiple attempts to bridge RL to CoppeliaSim have a limited capability and even less
support for quadrotors training [20], [24].

1.2 Contributions

The limitation of all the simulators presented in Section 1.1 is that they come with a
set of corresponding pre-defined frameworks, meaning that the whole software stack should
be built around them. For a modern, rapidly developing area of UAVs, the trait of flexibility
plays an important role, as switching between different implementations poses a time-resource
challenge. The benefit of the work presented in this thesis is its compatibility with the existing
stack of the MRS (Multirobot Systems) team and its support for custom ROS infrastructure.
It aims to establish a quick transfer between simulation environments.

CTU in Prague Department of Computer Science

1. INTRODUCTION 5/62

Figure 1.3: Position control simulation in CoppeliaSim [41]

Compared to existing Gazebo, CoppeliaSim, or MRS Simulator, simulations in Unity
3D can be beneficial for perception-based tasks. Unity provides multiple rendering options
discussed in Section 2.1.1. Those options allow us to balance the computation speed and
high-fidelity rendering. Potential usage of pre-defined Unity assets can lead to less develop-
ment effort and, therefore, speed-up the development itself. Moreover, Unity provides a Unity
Robotics Hub initiative [11] to support the robotics simulations. It is a toolkit bridging the
Unity environment to standard robotics file formats and infrastructure. Sections 3.1 and 2.2.2
give more insights into their workflow.

Another helpful addition is a connection to the ML-Agents framework, an easy-to-setup
RL toolkit allowing one to quickly develop a highly configurable training environment without
the need for training code development. Despite having a configuration file interface for setting
the model, ML-Agents provides an OpenAI Gym Wrapper and a low-level Python API. This
combination of tools can be beneficial for testing minor RL problems without a long-term
development commitment, as well as training complex networks for challenging tasks. ML-
Agents now explicitly supports training cooperative behaviors. This means that one of the
benefits of the framework would be its possible extension to learning collaborative swarm
tasks with a shared reward function.

Moreover, while adding an entirely new simulation environment to the existing MRS
stack, the presented work stays backward-compatible, allowing the hybrid splitting of different
computations for the simulation between Unity scripts and ROS nodes. One such example
could be the trajectory planning ROS node sending messages to the Unity script listener that
sets the references for the multirotor control system.

The Unity-based physics simulation with a combination C# implementation of the drone
control system makes physics simulation highly scalable. Depending on the hardware, we can
achieve more than 20x time scaling factor even on a single machine.

The scripting features of Unity allow customization of the simulations, including set-
ting up complex scenes and changing the scenes on the run, adding the weather conditions
affecting the visibility of the scene, and other helpful rendering features resulting in powerful
visualization capabilities. The environments can be dynamically changed; game objects can

CTU in Prague Department of Computer Science

6/62 1.3. PROJECT OVERVIEW

be created on the run. The changing conditions allow testing the performance of new custom
algorithms for robustness.

Finally, the thesis provides a practical analysis of the presented tools and caveats en-
countered during the implementation of the framework.

1.3 Project Overview

The project’s main deliverable is a comprehensive framework combining Unity 3D, ROS,
and ML-Agents with an OpenAI Gym wrapper, creating a unified UAV simulation and control
environment. This framework connects the following components:

• A set of tools for enabling a set up of simulation environment, the addition of the drones,
including a walkthrough of the workflow. It explores the caveats in the compatibility
of the simulation environment with the current MRS stack and suggests a solution for
them.

• A MRS multirotor control system adapted to the Unity physics engine.
• ROS-Unity Connector, a bidirectional communication interface between ROS and Unity.
The thesis includes testing the passing of the sensor data for visual odometry of the UAV
and manual control deployed as a ROS node.

• ML-Agents integration in the form of the DroneAgent implementation that provides the
configurable baseline for the training of quadrotors.

• Example of an RL training implementation testing the whole framework, including an-
alyzing the performance of the available algorithms for a specific control learning task.

1.4 Mathematical notation

The mathematical notation used in the thesis is outlined below.

x, α vector, pseudo-vector, or tuple
x̂, ω̂ unit vector or unit pseudo-vector
ê1, ê2, ê3 elements of the standard basis

b̂1, b̂2, b̂3 elements of the right-handed body-fixed coordinate frame
X,Ω matrix
W world frame
B object’s local frame
TB

W translation matrix from local coordinate system to global coordinate system
TW

B translation matrix from global coordinate system to local coordinate system
I identity matrix
X(a,b) a specific matrix element, where a represents row and b column
x = a⊺b inner product of a, b ∈ R3

x = a× b cross product of a, b ∈ R3

x = a ◦ b element-wise product of a, b ∈ R3

x(n) = x⊺ên nth vector element (row), x, e ∈ R3

xd xd is desired, a reference

ẋ, ẍ, ˙̈x, ¨̈x 1st, 2nd, 3rd, and 4th time derivative of x
x[n] x at the sample n
A,B,x LTI system matrix, input matrix and input vector
Rcolumn(i) i-th column of matrix R
SO(3) 3D special orthogonal group of rotations
SE(3) SO(3) × R3, special Euclidean group

Table 1.1: Mathematical notation, nomenclature, and notable symbols.

CTU in Prague Department of Computer Science

2. SIMULATION ENVIRONMENT 7/62

Chapter 2

Simulation Environment

This section describes Unity3D, the engine used for visual and physics simulations con-
ducted in the thesis. It introduces the terminology used throughout the thesis and the tech-
nical features of the simulation. Later, it presents an approach for adding drones’ 1 into the
environment.

2.1 Unity3D Overview

Unity is a cross-platform game development engine encompassing a comprehensive suite
of tools and functionalities for creating interactive digital experiences. Developed by Unity
Technologies, the framework has gained prominence as a versatile and widely adopted solution
in game design. Despite that, Unity facilitates the development of applications not only in the
gaming industry but also extends its utility to areas such as robotics simulations and AI-based
experiments. Integrating numerous packages available for installation from the Unity Assets
Store makes the development of versatile robotics tasks more straightforward.

In this thesis, Unity3D is examined as a framework for both rendering and physics sim-
ulation. The engine is inherently modular, realized through a component-based architecture
[39]. By leveraging this architecture, developers can construct intricate simulated landscapes
by assembling modular components, each contributing to the dynamic and evolving nature of
the simulation. Another potent aspect of Unity is scripting. The adaptability of Unity’s native
scripting language, C#, enhances the flexibility required for crafting complex simulation logic,
behavior, or implementation of custom features (e.g., custom sensors).

2.1.1 Rendering Pipeline

As an engine for graphics rendering, the most recent version of Unity supports multiple
graphics APIs, such as DirectX, Metal, OpenGL, and Vulkan [8]. The availability can vary
from platform to platform.

Every rendering pipeline in Unity is realized by first removing the objects irrelevant
to the current picture and objects that are not visible on the camera2. After that, the 3D
image is projected into a 2D window and put into a pixel buffer, followed by rasterization.
Lastly, Unity’s rendering engine includes a broad suite of post-processing effects that can be
applied to the final rendered image. These effects, such as depth of field, bloom, and ambient
occlusion, add an additional layer of visual adjustments to the simulation.

Unity provides several pre-built options for its rendering pipeline, each providing differ-
ent levels of customization, scalability, and, accordingly, the quality of the graphics:

1the method can be generalized to any robotic 3D models
2in Unity terminology, this is called frustum culling and occlusion culling

CTU in Prague Department of Computer Science

8/62 2.1. UNITY3D OVERVIEW

• Built-In pipeline, default option, which is general-purpose;
• Universal Render Pipeline (URP), scriptable pipeline, which allows scalability as well
as the flexibility of the graphics implementation;

• High Definition Render Pipeline (HDRP), scriptable pipeline, used in case the photo-
realism is essential.

Both URP and HDRP pipelines are inherently customizable. However, the same level of
flexibility in implementing the earlier-mentioned rendering steps for the Built-In pipeline is
a paid option. We currently use the default option for our framework, although scriptable
render pipelines can be considered depending on the application. There is a possibility for
custom shader creation. This empowers developers to tailor the visual aspects of materials and
lighting to suit the specific requirements of a simulation. The ability to create custom shaders
adds a layer of flexibility, enabling the fine-tuning of visual elements for diverse simulation
scenarios. To optimize performance, Unity’s rendering engine incorporates graphics processing
unit (GPU) instancing, which allows for the efficient rendering of multiple instances of the
same object, reducing the computational burden on the device. This optimization enables the
speedup of simulations with complex scenes with numerous elements that must be rendered
in real-time without sacrificing performance.

2.1.2 Physics Simulation

Unity employs NVIDIA’s PhysX SDK as its core physics simulation engine. This SDK is
utilized in several other game engines, including Unreal Engine (version 3 and higher), Game-
bryo, Vision (version 6 and higher), HeroEngine, Instinct Engine, Panda3D, and BigWorld.
PhysX within Unity handles the simulation of rigidbody dynamics, enabling developers to
simulate the physical behavior of objects with mass and simulated properties. Unity’s rigid
bodies are instances of PhysX rigid bodies, and their interactions, such as gravity, forces,
and collisions, are managed by the underlying PhysX engine. Specifically, PhysX provides the
technology for Unity’s collider components for accurate collision detection and corresponding
response, defining shapes and volumes within the simulation. Unity supports various collider
shapes, and PhysX ensures realistic interactions during runtime. When collisions occur, the
engine calculates physical responses, including forces, friction, and restitution, providing vi-
sually plausible and physically realistic interactions. An early analysis of the physics engines
[44] stated that PhysX had the most features and performed better in the integrator test, a
precision examination of calculating a rigid body position due to applying multiple forces on
it.

Being maintained by NVIDIA (as it acquired Ageia, the creators of PhysX), PhysX sup-
ports GPU acceleration, allowing specific physics calculations to be offloaded to the graphics
processing unit. This feature, particularly utilizing CUDA-enabled GeForce GPUs, contributes
to performance optimization, enhancing computational efficiency in simulations with a high
number of physics calculations.

2.1.3 Unity UI

Unity Editor is a development environment provided by Unity Technologies. It serves
as the primary interface through which developers, designers, and artists can build, design,
and iterate on their Unity projects. Users can create objects, interact with scenes, and set the
scripts’ public variables from the editor. It also provides an interface to manage the project

CTU in Prague Department of Computer Science

2. SIMULATION ENVIRONMENT 9/62

Figure 2.1: Unity Editor UI components

setup, graphics, and rendering settings. Part of Unity Editor is the package manager taking
care of downloading the assets.

Figure 2.1 depicts the main UI components of the Unity Editor:

1. Asset Menu: C# scripts, materials, and shaders are located in this menu and can be
directly assigned to objects in the scene.

2. Inspector: view for setting the values for variables, monitoring and adjusting the trans-
formations, and adding new components.

3. Hierarchy window: represents the current hierarchy of game objects in the Unity scene.
4. Scene window: a visual representation of the current scene.
5. View bar: allows to switch between the Scene and Game views (the image rendered

from cameras during the game) and setting the visual representation of some auxiliary
elements (camera angle view, axes).

6. Toolbar: the menu containing project settings, exports, and imports, documentation
reference, access to the package manager, as well as some custom asset dropdowns.

2.1.4 Unity Terminology

It is important to define the terminology used across the thesis that is specific to Unity3D
and this framework:

• Scene: an asset that holds and organizes all the elements of a particular level, environ-
ment, or section of a game or simulation. It serves as a way to structure and manage
the various components, such as game objects, lights, cameras, and more, that make up
a specific part of the game world. A project can contain multiple scenes.

• GameObject: a fundamental entity that serves as a container for components, defining
its properties, behaviors, and interactions within the game or simulation. The game

CTU in Prague Department of Computer Science

10/62 2.1. UNITY3D OVERVIEW

objects are organized in a hierarchy; a game object containing multiple other instances
is called a parent, and the corresponding underlying game objects are children. A single
GameObject can hold a RigidBody (or alternative) for physics simulation, collision
meshes, and numerous user-defined scripts. In a script, the position and rotation of a
GameObject can be accessed through the Transform class.

• MonoBehaviour: the base class for every script component of a GameObject. It should
be implemented to achieve custom functionality during the life cycle by overriding pre-
defined methods.

• Transform: a class that is automatically assigned to every GameObject. In addition to
the position vector and rotation in the form of quaternions, it contains scaling parameters
in each axis direction. To extract position and rotation in a script:

Transform currentTransform = GetComponent<Transform>();
Quaternion currentRotation = currentTransform.rotation;
Vector3 currentPosition = currentTransform.position;

• RigidBody: the cornerstone component for physics simulation that represents the
physics properties of an object in the simulation. The parameters that can be set up for
a RigidBody are mass, drag, and angular drag. Gravity can be turned on and off for it.
It can be configured in the Unity Editor and programmatically through a C# script.
Similarly, the RigidBody class has methods that can be used to extract current linear
and angular velocity (but not acceleration).

• ArticulationBody: an alternative to a RigidBody, but more common for robotics
simulations. Provides simulation efficiency, for example, in the case of multi-joint ma-
nipulators or robots with complex structures. ArticulationBody has more parameters
for setting the type of the joint and its characteristics. Here’s the piece of code that is
used to get a body’s velocity and angular velocity.

ArticulationBody articulationBody = GetComponent<ArticulationBody>();
Vector3 angularVelocity = articulationBody.angularVelocity;
Vector3 velocity = articulationBody.velocity;

• Collider: a base class for all collider types: BoxCollider, SphereCollider, CapsuleCol-
lider, MeshCollider. It is used in the project to check the collisions and triggers. In trigger
mode, the collider does not physically interact with the other rigid bodies. Instead, it
sends events representing whether the collider detected some overlap with the other
collider. MeshColliders, due to their complicated shape, are typically more expensive
computation-wise than primitive colliders.

• Update time: period of calling the Update method of a standard MonoBehaviour Unity
script.

• FixedUpdate time: similarly, time of calling the FixedUpdate of a standard MonoBe-
haviour Unity script. The difference between these times is discussed in detail in sub-
section 2.1.5.

In this thesis, a drone model instance in a simulation is represented by a GameObject with
an ArticulationBody attached. The choice of ArticulationBody over RigidBody is given as it
is the default physical component added by URDF converter3.

3URDF convertor’s benefit is that it can add a robotic manipulator as a whole and set the correct joint
types.

CTU in Prague Department of Computer Science

2. SIMULATION ENVIRONMENT 11/62

(a) RigidBody in Unity Editor. (b) ArticulationBody in Unity Editor

Figure 2.2: Comparison of the available parameters for physical components

2.1.5 Simulation Technical Aspects

In this subsection, we present the technical aspects and important nuances encountered
during the implementation of the project.

Left-hand coordinate system.

One of the things that is not fully compatible with the ROS notation is the internal left-
handed coordinate system depicted in Figure 2.3. To overcome this issue, the ROS connector
described in Section 3.1 offers the methods to convert from Unity’s coordinate system4 to
ROS system and back. The conversion is straightforward but cannot be overlooked.

Figure 2.3: Illustration of the RUF Unity native coordinate system axes, where the red x-axis
is directed to the right, the green y-axis is directed up, and the blue z-axis is directed forward.

4Left-handed system is called RUF (right-up-forward) and the standard to robotics right-handed system is
called FLU (forward-left-up).

CTU in Prague Department of Computer Science

12/62 2.1. UNITY3D OVERVIEW

The conversion is different depending on the nature of the target values:

• Conversion of position and linear velocity vectors. Suppose that the position of the drone
in FLU is represented by vector rFLU , or:

rFLU = (rx, ry, rz), (2.1)

then the same position in the RUF coordinate system is:

rRUF = (−ry, rz, rx). (2.2)

• Conversion of angular velocity and torques. The angular velocity of an object is repre-
sented by vector ωFLU .

ωFLU = (ωx, ωy, ωz). (2.3)

To get the ωRUF we transform it:

ωRUF = (ωy,−ωz,−ωx). (2.4)

Note that to convert the vectors back, an inverse operation is performed.

The general suggestion when working with the framework presented in this thesis is to
keep the state of the objects logically separated by methods and naming conventions to outline
their corresponding coordinate system. The implementation of the drone’s control system (see
Chapter 4) has its internal coordinate system, and the coordinates are being transformed only
on the inputs and outputs of the control blocks. The separation shown in Figure 2.4 prevents
undefined coordinate states and undesired behavior.

Figure 2.4: Example of conversion between Unity and ROS coordinate systems for a drone
control system.

Simulation update rate.

Another critical simulation aspect is asynchronous Update and FixedUpdate rates. The
Update method is invoked every frame update; therefore, it usually takes care of the anima-
tions and rendering. The rate is inconsistent and depends on the FPS (Frames per Second)
the hardware platform achieves. On the contrary, FixedUpdate always has the identical period
of invocation. This corresponds to the need for stable physics computation, which should be
computed despite low FPS. Therefore, every physics-related calculation and assigning con-
tinuous rewards for RL training takes place there. The fixed time step can be set up in the
project settings.

CTU in Prague Department of Computer Science

2. SIMULATION ENVIRONMENT 13/62

Coordinate systems transformation.

The change in the physical state of a rigid object, e.g., a drone’s position, is simulated
by applying corresponding forces and torques. They are defined by vectors of 3 values:

f = (fx, fy, fz), (2.5)

where each of the elements of the vector represents the force applied along one of the global
axes. However, the force is usually calculated in the coordinate system of an object itself.
Conversion is applied by multiplication with a corresponding transformation matrix of TB

W :

fW = TB
W · fB. (2.6)

In Unity, RigidObject class has pre-defined methods for the application of force vectors
in both global and local coordinate systems, AddForce() and AddRelativeForce() accordingly.

Similarly, to apply torques to the body in global and local coordinate systems, Ad-
dTorque() and AddRelativeTorque() can be utilized.

Another important conversion should happen in case the model of dynamics of a body
in Unity uses the angular velocity getter method and expects the angular velocities in the local
frame. Wrong conversion can cause the model’s undesired behavior that is observed when its
rotation along the y-axis (RUF) exceeds 180 degrees.

Vector3 globalCoordAngularVelocity = GetComponent<ArticulationBody>().angularVelocity;
Vector3 localCoordAngularVelocity =

transform.InverseTransformDirection(globalCoordAngularVelocity);

Colliders

Collider components and their combination represent the shape of a body used for
collision detection during the simulation. There are three main types of colliders supported
in Unity:

• Primitive Colliders: These represent fundamental shapes such as Box, Circle, and
Sphere.

• Compound Colliders: Formed by the union of various Primitive Colliders, these col-
liders provide more complex collision shapes.

• Mesh Colliders: This type utilizes a mesh similar in shape to the visual mesh to create
highly accurate collision meshes.

However, it’s important to note that Mesh Colliders have a limitation: they cannot
collide with other Mesh Colliders. To address this limitation, a convex hull of the collision
mesh must be used to enable collisions with other Mesh Colliders. In Unity, these collision
meshes are restricted to 255 triangles. This limitation can result in sub-optimal performance
during simulation, as the volume of these collision meshes often exceeds that of the visual
meshes, leading to erratic behavior in the Articulation Body. To detect a collision with an
object, special tags could be assigned to classify collision types. By interpreting the tags, the
environment can react accordingly. In this thesis, the colliders are used for triggering the end
of a training episode presented in Section 6.2.2.

CTU in Prague Department of Computer Science

14/62 2.1. UNITY3D OVERVIEW

2.1.6 Unity Assets

Unity has an extensive community that contributes and shares its work, which is realized
through the Unity Assets Store. The assets include software packages, scenes, animations,
GUI elements, and 3D models. Some of the assets are not free to encourage the creators.
In the thesis, multiple assets were tested to create worlds for the UAVs to fly in. The forest
environment depicted in Figure 2.5 is suitable for odometry-aware flights as it contains a large
number of detectable features. The mine environment, such as the one displayed in Figure 2.7,
is suitable for precise control and navigation tasks. The scene contains multiple pre-defined
game objects that can be placed and adjusted. Lightning assets also play a significant role in
simulating camera output in dark areas. For more specific applications, a user can choose to
use numerous available assets, such as an industrial scene in Figure 2.6.

Figure 2.5: Forest testing environment with drone model using free asset [14].

Depending on the application, a user can choose to either load a pre-defined scene from
the Asset store or build a simple scene using easy-to-use tools like ProBuilder [9]. It is a tool
that allows the creation and design of polygon shapes that can be incorporated into terrain
features.

CTU in Prague Department of Computer Science

2. SIMULATION ENVIRONMENT 15/62

Figure 2.6: Drones placed in an industrial scene environment.

Figure 2.7: X500 drone flying in a mine environment.

CTU in Prague Department of Computer Science

16/62 2.2. DRONE MODELS

2.2 Drone Models

This chapter discusses the import of robotic models, specifically quadrotors, into Unity
3D. There is no standard way to represent a robot model for a simulation in robotics, and the
format is simulator-dependent. Usually, they are represented by a text file, but its structure is
different depending on the simulation environment. Therefore, it is vital to establish the rules
for the import of new models into the simulation world. The format for adding a new robot
to the Unity scene is Unified Robotics Description Format (URDF), an XML specification
used to represent a robot consisting of multiple parts. However, the thesis utilizes the models
provided by the MRS UAV system [13] that should be first converted to URDF.

2.2.1 Model Files Conversion

MRS simulation in Gazebo tends to work with the drone models in Structured Data
File (SDF) format. The file can define the characteristics of the robot, store the setup for the
world environment, and manage the plugin insertion. To convert the SDF drone model into
URDF, a development branch of the SDFormat library [23] was used. Note that the latest
release of the library does not contain this functionality. The library’s branch should be built
from the source. Before the conversion, we have to adjust the SDF file by changing the prefixes
of the paths inside the file from the prefix model:// to package://. The following command
can be utilized for that:

sed -i 's@model://@package://@g' model.sdf

All the prefixes inside the model.sdf were changed in place. To convert the file format from
SDF to URDF, we use the terminal command:

ign sdf -u model.sdf

The model.sdf should be substituted with the correct path to the SDF model. The name of
the newly produced file is model.urdf.

2.2.2 Model Import into Unity

The conversion is achieved; however, the files are not ready for import yet. The produced
file contains the paths for uploading the meshes of the modular parts of the robot. In the case
of MRS drone models, the paths are relative to the corresponding MRS simulation project
setup. The files are placed into a Resources folder under Unity’s Assets. The meshes are also
moved to the Unity Assets folder, respecting the original file hierarchy. After this step, the
URDF file is ready for import.

Unity Robotics Hub, mentioned in Section 1.2, provides an interface called URDF Con-
verter that supports adding the model into a scene and translating the URDF-specific param-
eters to Unity syntax. It is distributed as an Asset via the Package manager (recommended
installation from GitHub source) and adds a new option into the toolbar (see Subsection
2.1.3).

Upon the selection of the Import Robot from URDF option from the dropdown menu,
the UI gives a couple of options defining the import mode as Figure 2.8 outlines.

CTU in Prague Department of Computer Science

2. SIMULATION ENVIRONMENT 17/62

Figure 2.8: URDF Importer menu for import customization

The creation of the collider for the model is addressed in the convex hull parameter.
The overly complex mesh collider issue discussed in subsection 2.1.5 is addressed in URDF
Converter by implementing the Volumetric Hierarchical Approximate Convex Decomposition
(VHACD) algorithm for convex hull5 creation suitable for dynamic meshes introduced by
Daniel Thul et al. [31]. The URDF file can also be configured to ignore collisions between
specific links composing the robot. Figure 2.9 shows that the Unity Mesh Collider represents
the visual shape with less precision, resulting in additional colliders, whereas the VHACD
algorithm mimics the shape of the drone landing gear.

Figure 2.9: Comparison of Unity MeshCollider decomposition versus the VHACD for NAKI
II model

The URDF Converter takes into consideration the materials and textures of the im-
ported model and adds corresponding assets to the project. Drones are not the only robots
supported by the tool. The Unity team initially tested the tool on the industrial robotic ma-
nipulators. Therefore, by default, it assigns an ArticulationBody, pictured in Figure 2.11, to

5A convex hull is the smallest convex shape that completely encloses a given set of points in space, ensuring
that any line segment connecting two points within the shape lies entirely within the shape itself.

CTU in Prague Department of Computer Science

18/62 2.2. DRONE MODELS

Figure 2.10: Drone models available in the framework, from left to right: X500, F330, F450,
F550 and NAKI II

simulate the physics of the model and fill the parameters defined in the URDF file. Note that
in the case of a drone, the tool also creates the bodies for each rotor. Experiments with the
multi-link drone model confirmed this causes a weird behavior in the simulation as the rotors
start to rotate constantly. Therefore, in this project, we disable the ArticulationBodies for the
rotors.

Figure 2.11: Inspector view on the newly added drone model.

CTU in Prague Department of Computer Science

2. SIMULATION ENVIRONMENT 19/62

The tool also adds auxiliary components to the GameObject in a hierarchical manner.
However, they are more specific to the robotic manipulators and thus are not used in the
drone context.

Independently from the model obtained by the URDF Importer, to store the custom
parameters for the drone models, such as the motor constants or articulation matrix used
in the calculation of the control signal, the project keeps JSON configuration files in the
Resources folder. The parameters are loaded dynamically through the C# script to avoid
hardcoding. To prevent undesired behavior, these parameters should always be aligned with
the URDF file before its import into the scene or directly through the Inspector tab in the
Unity Editor after the import.

CTU in Prague Department of Computer Science

20/62

Chapter 3

Connecting ROS and Unity

This chapter describes the way the connection between Unity and ROS works and how
to set up communication between ROS nodes and Unity Scripts. The chapter presents the
reasoning for the choice of the connector and gives a short overview of the alternative ways
of communication.

Currently, there are multiple available options for communication between ROS and
Unity. The most widely used are ROS#, ROS-TCP-Connector, and ROS.NET. The exten-
sive overview and benchmarks were recently presented by J. Allspaw, G. LeMasurier, and H.
Yanco [2]. The performance evaluation showed that the more recent ROS TCP Connector
can transfer small to medium-sized messages with less overhead than other implementations
in most scenarios. The reason is that sending messages requires a serialization step, which
is implemented in ROS TCP Connector more efficiently than its alternatives. However, the
potential bottleneck of the connector is its dependency on routing a single routing node. The
performance of this design choice is visible in the instances of larger size, where ROS.NET
outperforms ROS TCP Connection because it connects to each actively communicating ROS
node directly. For the framework presented in this thesis, the ROS TCP Connection imple-
mentation was chosen due to its continuous ongoing maintenance by the Unity team as part
of their Unity Robotics Hub project. However, we have to note that multiple publications
([10], [2]) stress that the TCP connector is still the main bottleneck of the whole ROS-Unity
simulation pipeline.

3.1 ROS TCP Connector

The cornerstone of connection between a Unity scene and ROS infrastructure is a so-
called ROS TCP connector [32]. The package can be installed from a Git repository or the
Unity package manager. The TCP Endpoint runs as a ROS node on a local URL specified in a
launch file (default is 127.0.0.1) and manages the transfer of the data packages. As mentioned
earlier, each message undergoes a serialization step before the actual sending. The package
supports serialization of multiple types of standard ROS messages; here are several examples1:

• Standard messages: floats, integers, byte arrays;
• Geometry messages: vectors, rotation and translation matrices, quaternions;
• Sensor messages: images, IMU data, battery state;
• Machine Learning (ML) messages: facilitating object recognition;
• Message format: allowing the sending of octomaps.

For more complex applications, the connector must handle the transfer of custom mes-
sage types. Therefore, as a part of the thesis, the feature of creating a custom message type
was tested in Section 3.2.

1More message types can be found in ROS TCP Connector GitHub page [32]

CTU in Prague Department of Computer Science

3. CONNECTING ROS AND UNITY 21/62

Figure 3.1: Connecting publisher node to ROS using TCP connector

3.2 Creating a subscriber in Unity

This section describes the process of adding a new subscriber to a ROS topic inside
Unity. The process is presented by creating a custom message for manual drone control by
sending references from the PS4 controller through the ROS publisher. The pipeline was set
up in this way to provide a communication gateway between the reference definition on the
ROS side and the control system simulation on the Unity side.

The PS4 controller publishing node is implemented in Python. The message is defined
in the following way in a file with .msg extension. It consists of a vector representing the
current reference interpreted on the Unity side according to the corresponding control input
modality chosen in advance.

To ensure the correct message parsing, a C# message class representing the custom type
is generated using a message-generation tool, which is a part of the ROS-TCP-Connector. The
same message file used for the ROS publisher node definition should be imported as input for
the importer.

The final step for the connection is to add a callback for the communication through a
topic:

ROSConnection.GetOrCreateInstance()
.Subscribe<VelocityRefMsg>("controller_command", SetVelocityRosCallback);

Here, the VelocityRefMsg is the name of the message being transferred through the topic
controller command and SetVelocityRosCallback is the name of a callback interpreting the
values passed in the message. The callback sets the values for the internal variables.

On the ROS side, the required topics and subscription to the joystick controller are
initialized by a tmuxinator configuration file and corresponding bash script.

It is crucial to note that this code should be part of a Unity script, specifically the main
agent script. The PS4 Controller ROS publisher mode presented here is an example and can
be exchanged for trajectory planning nodes publishing consecutive references.

3.3 Sensoric data publishers in Unity

In this section, we establish a critical use case involving the integration of a publisher on
the Unity side. This communication setup entails the drone publishing data from its Inertial
Measurement Unit (IMU) sensor and RGB camera image into specific ROS channels. Subse-
quently, this data is utilized for estimating the drone’s odometry by applying the OpenVINS
software, as discussed in Section 3.4.

CTU in Prague Department of Computer Science

22/62 3.4. OPENVINS

The IMU sensor is critical to a drone’s navigation and control system. The sensor
provides information about the drone’s orientation, acceleration, and angular velocity. The
IMU sensor is emulated through a C# script, which is a part of the Unity Robotics Hub toolkit
[11], designed to support robotics navigation applications. Besides data collection, the script
facilitates necessary conversion steps between coordinate system notations. Furthermore, it
allows for the introduction of Gaussian noise2 or bias error. Another script, IMUROSPublisher,
handles the publication of IMU data by collecting it during each FixedUpdate and transmitting
it to ROS in a pre-defined ImuMsg format, as explained in Section 3.1. The ROS connection
is established as follows:

ROSConnection.GetOrCreateInstance()
.RegisterPublisher<ImuMsg>(topic_name);

It’s worth noting that topic name serves as a variable for the topic name within the script,
and it can be set up via the Inspector tab in the Unity Editor.

Similar to the IMU sensor, the RGB camera image is extracted using the RGBCamera
script and periodically published by the RGBCameraROSPublisher into specified topics. How-
ever, working with the camera image simulated in Unity involves several setup steps within
the Editor. By default, the picture’s resolution extracted from the simulation changes based
on the current window size inside the Editor. To address this, we created a fixed-resolution
camera with a hardcoded resolution of 800×600 pixels. The camera setup is saved as a preset,
and the published image is compressed to enhance communication efficiency.

3.4 OpenVINS

OpenVINS (Visual-Inertial Navigation System) is an open-source software package for
visual-inertial odometry and SLAM (Simultaneous Localization and Mapping). It is used in
robotics and computer vision applications, particularly for estimating a vehicle’s or camera’s
pose (position and orientation) in real-time. A fork of the original OpenVINS is included in the
stack of the MRS UAV system. The functioning of OpenVINS hinges on the availability of IMU
data and RGB images, which jointly contribute to establishing the drone’s visual odometry.
As defined in Section 3.3, dedicated publishers provide the necessary data. However, a crucial
step lies in mapping this data correctly to serve as input for OpenVINS. The steps to establish
a connection between the Unity environment and the OpenVINS odometry processing ROS
node are:

• Assign the sensor data publishing scripts to the drone GameObject.
• Set up the required image quality of the RGB publisher and image publishing rate.
• Calibrate the position and rotation of the camera relative to the IMU coordinate system
within the Unity simulation. This involves considering coordinate system conversions.
Similarly, calibrate the position of the IMU sensor relative to the body frame of the
UAV. On the OpenVINS side, the resulting translation and rotation parameters for the
camera and IMU are incorporated into matrices specified in the configuration files.

• Set up the OpenVINS launch file and configuration files to subscribe to the topics with
IMU data and decompressed RGB images. This step should be aligned with the sensor
publishing scripts.

2Gaussian noise is a type of signal interference characterized by a probability density function aligned with
the normal distribution, commonly known as the bell curve.

CTU in Prague Department of Computer Science

3. CONNECTING ROS AND UNITY 23/62

• Initialize the ROS-TCP Connector communication channel and run the simulation in
Unity Editor.

• Execute a ROS node for republishing, which takes a compressed image and outputs the
raw image in its original size:

rosrun image_transport republish compressed
in:=<raw_image_topic> out:=<decompressed_image_topic>

• (Optional) The feature detection can be visualized using RViz 3

• In case the feature extraction is struggling with stable feature detection, fine-tune pa-
rameters in the OpenVINS configuration files that impact odometry, including but not
limited to FPS, noise parameters, etc. Often, the issue lies in incorrect camera position
calibration.

All required topics and terminal commands are put together into a tmuxinator config-
uration and are run through a bash script.

3RViz serves as a 3D visualization software tool designed for robots, sensors, and algorithms, providing the
capability to visualize the robot’s perception of its environment, whether in a real-world scenario or within a
simulated environment.

CTU in Prague Department of Computer Science

24/62

Chapter 4

UAV Control System

This chapter explains the part of the framework that implements the control system
based on the MRS UAV system [13]. The control system has a hierarchical structure and can
accept references on different levels.

Supported reference input modes are:

Mode Definition Size (elem.)

PositionCmd position vector rref , heading angle ηref 4
VelocityHdgCmd velocity vector ṙref , heading angle ηref 4
VelocityHdgRateCmd velocity vector ṙref , heading rate η̇ref 4
AccelerationHdgCmd acceleration vector r̈ref , heading angle ηref 4
AccelerationHdgRateCmd acceleration vector r̈ref , heading rate η̇ref 4
TiltHdgRateCmd tilts vector t, heading rate η̇ref , throttle Ftref 5
AttitudeCmd orientation matrix Rd, throttle Ftref 10
AttitudeRateCmd roll, pitch, yaw rates, throttle Ftref 4
ControlGroupCmd roll, pitch, yaw torques, throttle Ftref 4
ActuatorCmd motor rpm vector ω NMotors

Table 4.1: The hardware characteristics device used for conducting the experiments presented
in the thesis. The number of the motors depends on the type of the UAV.

The workflow is that the references located higher in the hierarchy are step-by-step
converted to the lower hierarchy references until they reach the ActuatorCmd. Each level is
processed by a corresponding controller; therefore, in the thesis, the controllers presented
are position, velocity, acceleration, attitude, attitude rates controllers and the lowest level,
which is called a mixer. For the purpose of compatibility, we provide the interface accepting
the ActuatorCmd mode. However, the physics simulation of the control system’s output is
realized by applying the corresponding forces and torques to the ArticulationBody. More
details about the application of the output are discussed in Section 4.2

A reference dispatcher addresses the versatility of reference modes. It adjusts the control
to accept references on a specified level.

Figure 4.1: Abstract model of the reference passing to the control cascade.

Note that the diagram 4.1 depicts abstract reference refCmd, error e and output y;

CTU in Prague Department of Computer Science

4. UAV CONTROL SYSTEM 25/62

however, the output of the control cascade is always the motor’s angular velocity represented
in rotations per minute (RPM).

4.1 Cascade Control System

This section describes the internal view inside the control cascade on each level. It
outlines the step-by-step propagation of the reference. For the purpose of demonstration of
the calculation, we assume a quadrotor with four motors.

4.1.1 PID controller

Multiple controllers are using PID controllers internally. Therefore, the project imple-
mentation provides an abstract PID class that incorporates the proportional, derivative, and
integral feedback, saturation limits, and anti-windup filters. To calculate the derivative, the
controller keeps track of the error from the previous update and performs the difference be-
tween it and the current error. A cumulative sum of the error represents integral feedback.
The PID block accepts the update period as an input argument, making it adaptable to in-
creased simulation speed. The controller works with a scalar error; therefore, we initialize an
instance of this class for each element of the error vector. Lastly, the constants for the PID
controller can be initialized with default values, but usually, the values are passed during the
initialization of the class.

4.1.2 Position Controller

Position control takes reference position rref , current position r and calculates a simple
error:

rerr = rref − r. (4.1)

Each element of the vector rerr is passed through the corresponding PID controller, and the
output control signal is passed as a VelocityHdgCmd type reference to the following velocity
controller.

4.1.3 Velocity Controller

Velocity controllers can work in two modes:

• Input: VelocityHdgRate, output: AccelerationHdgRate;
• Input: VelocityHdg, output: AccelerationHdg ;

In both cases, the controller calculates a similar error as in the case of the position
controller:

ṙerr = ṙref − ṙ, (4.2)

and passes the reference through the PID controller. However, depending on the provided
input reference, the controller outputs either the heading angle or the rate of its change.

4.1.4 Acceleration Controller

The calculation of the control signal of the acceleration controller varies depending on
what type of input signal is passed.

CTU in Prague Department of Computer Science

26/62 4.1. CASCADE CONTROL SYSTEM

AccelerationHdgRate mode

First, we calculate the desired force vector, i.e., the force the drone’s acceleration con-
troller aims to achieve. It is computed as the sum of the reference acceleration vector and a
gravity vector g scaled by the drone’s mass m:

fd = (r̈+

00
g

) ·m. (4.3)

The desired force is then normalized:

fdnorm =
fd

∥fd∥2
. (4.4)

The output control signal is represented as an instance of the TiltHdgRate class. The
tilt vector provides information about what inclination the drone should apply to achieve
the desired force direction. AccelerationHdgRate doesn’t change the input heading rate and
passes it directly into the TiltHdgRate instance. The last part is a calculation of the normalized
throttle. The designed method first calculates the thrust force by taking the dot product of
the desired force vector fd and the drone’s upward direction, which is represented by the third
column of the rotation matrix R in the drone’s state.

Ft = fd ·Rcolumn(3). (4.5)

The thrust force Ft is then normalized and mapped to a normalized throttle value.

throttle =

√
Ft

Kf ·NMotors − ωmax

ωmax − ωmin
, (4.6)

where

• Kf is a linear coefficient of the motor
• ωmax, ωmin are the maximum and minimum rotations per minute the motor can achieve
• NMotors represents the number of motors the drone has

Finally, the tilt vector, heading rate, and throttle are passed to the attitude controller.

AccelerationHdg mode

In this mode, the goal is to construct a rotation matrix Rref ∈ SE(3) and throttle from
the AccelerationHdg to provide an Attitude reference. The calculation follows the same steps
presented in equations (4.3) and (4.4) to obtain the desired force vector. The next step is to
calculate the reference direction in the XY plane based on the desired heading η:

bxd =

cos(η)sin(η)
0

 . (4.7)

An oblique projector is constructed to project vectors onto the plane orthogonal to the
desired force vector fdnorm. This is achieved through the following matrix operations.

CTU in Prague Department of Computer Science

4. UAV CONTROL SYSTEM 27/62

Pzcomp = I− fdnormfTdnorm. (4.8)

The equation (4.8) obtains a projection matrix that projects vectors onto the orthogonal
subspace (complementary) to the direction of the fdnorm vector. We calculate matrices A and
B:

A =
[
Pzcomp1 Pzcomp2

]
, (4.9)

B =
[
ê1 ê2

]
, (4.10)

and then we multiply the BT with A and obtain the pseudoinverse matrix:

L+ = ((BTA)TA)−1(BTA)T . (4.11)

The oblique projector is the following:

Poblique = AL+BT . (4.12)

Finally, we use the projector to construct the orientation matrix Rref :

Rref =
[

Pobliquebxd

∥Pobliquebxd∥2 fdnorm ×Pobliquebxd fdnorm

]
. (4.13)

The throttle is calculated according to the equations (4.5) and (4.6). The orientation
matrix Rref and throttle are sent as Attitude reference to the attitude controller.

4.1.5 Attitude Controller

Attitude controller accepts Attitude and TiltHdgRate input references. The workflow
for each reference is described in the following subsections.

Attitude mode

In this mode, we calculate the orientation error Rerr between the reference Rref and
the orientation R of the current state:

Rerr =
1

2
(RT

refR−RrefR
T). (4.14)

This approach to error calculation was introduced in [43] and has a constraint for relatively
minor deviations between the reference and current orientations. From the error matrix, only
relevant values are extracted into error vector rerr:

rerr =

1
2(Rerr(1,2) −Rerr(2,1))
1
2(Rerr(2,0) −Rerr(0,2))
1
2(Rerr(0,1) −Rerr(1,0))

 . (4.15)

Consequently, each value of the vector rerr is passed through the PID controller, and
the control signal ωd is passed into an AttitudeRate reference in combination with the throttle
coming directly from the Attitude reference.

CTU in Prague Department of Computer Science

28/62 4.1. CASCADE CONTROL SYSTEM

TiltHdgRate mode

We start by forming the reference orientation matrix from the tilts vector t:

tnorm =
t

∥t∥2
. (4.16)

Then, we consequently calculate each column of the Rd:

Rdcolumn(3) = tnorm, (4.17)

Rdcolumn(2) =
Rdcolumn(3) ×Rcolumn(0)

∥Rdcolumn(3) ×Rcolumn(0)∥2
, (4.18)

Rdcolumn(1) =
Rdcolumn(2) ×Rdcolumn(3)

∥Rdcolumn(2) ×Rdcolumn(3)∥2
. (4.19)

After this step, the calculation follows the same approach to calculate the Rerr by applying
the equation (4.14), vectorizing the error as in equation (4.15) and passing it to the PID
controller resulting in desired angular rates ωd.

However, according to [13], the produced ωd, in this case, falls into a phenomenon called
parasitic heading rate that has to be compensated. To estimate it, we calculate the heading
rate η̇ starting with forming the angular velocity tensor:

ωtensor =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (4.20)

Then, we calculate the rotation matrix derivative by multiplying the current rotation
R with the ωd:

Ṙ = R · ωd, (4.21)

η̇ =
−R(1,0)

R2
(0,0) +R2

(1,0)

Ṙ(0,0) +
R(0,0)

R2
(0,0) +R2

(1,0)

Ṙ(1,0), (4.22)

where the coefficients of Ṙ(0,0) and Ṙ(1,0) represent the atan2 partial derivatives. The whole
equation (4.22) represents the total differential. The method responsible for the calculation
of the heading rate from intrinsic angular rates also ensures proper handling of potential
numerical issues when the denominator is close to zero. Note that this computation is only
valid for the small tilts that are typically less than 10◦. The parasitic heading is then converted
to yaw rate correction. To achieve that we perform multiple steps outlined below, starting
with defining the heading vector η and orbital velocity νorbital:

η =
[
R(0,0) R(1,0) 0

]T
, (4.23)

νorbital =
[
0 0 η̇

]T × η. (4.24)

CTU in Prague Department of Computer Science

4. UAV CONTROL SYSTEM 29/62

The projector to the heading orbital velocity vector subspace is then:

P = (
ê3 × η

∥ê3 × η∥2
)T

ê3 × η

∥ê3 × η∥2
. (4.25)

The body yaw orbital velocity vector is projected onto the subspace spanned by the heading
orbital velocity vector.

Rpcolumn(2) = P ·Rcolumn(2). (4.26)

The direction of the yaw rate is determined based on the dot product between the heading
orbital velocity vector and the projected vector. The yaw rate magnitude is calculated by
dividing the norm of the orbital velocity vector by the norm of the projected vector.

direction = sign(νorbital ·Rpcolumn(2)). (4.27)

ω3corr = direction ∗ (∥νorbital∥2
∥Rpcolumn(2)∥2

). (4.28)

If the yaw rate ω3corr is finite, it is added as a correction to control signal from PID
forming the final ω3:

ω3 = ω3pid + ω3corr. (4.29)

The output control signal from the attitude controller working in TiltHdgRate input
reference mode is again the AttitudeRate reference containing the angular velocities ω and
throttle.

4.1.6 Rate Controller

The allowed input the controller accepts is the AttitudeRate reference. The workflow
is straightforward. First, the angular velocity error ωerr is computed based on the difference
between the reference ωref and current state velocity ω:

ωerr = ωref − ω. (4.30)

Each element is then passed to the corresponding PID controllers, and the ControlGroupCmd
output reference is formed by passing the outputs of the PIDs combined with the unchanged
throttle from the input AttitudeRate reference.

4.1.7 Mixer

In the mixer controller, the final motor output is calculated. It takes the input in the
form of a ControlGroupCmd reference and multiplies it by the inversion of the allocation
matrix Γ−1. The values are normalized in the range between 0 and 1.

CTU in Prague Department of Computer Science

30/62 4.2. CONTROL SIGNAL OUTPUT

4.2 Control Signal Output

To apply the control output (motors rpm vector), we conduct the force-torque allocation:
Ft

τ1
τ2
τ3

 = Γ

F1

F2

F3

F4

 , (4.31)

where F1, F2, F3 and F4 are the forces produced by each of the rotors. The result thrust force
Ft is applied along the b̂3 vector converted to the left-handed coordinate system using the
AddRelativeForce() method of the ArticulationBody. The torques vector τ is similarly applied
(after the conversion) by executing the AddRelativeTorque() function. The allocation matrix
Γ is pre-computed during the initialization of the control system:

Γ =

1 1 1 1

− d√
2

d√
2

d√
2

− d√
2

− d√
2

d√
2

− d√
2

d√
2

−ctf −ctf ctf ctf

 . (4.32)

The inversion Γ−1 exists when then the linear force constant ctf ̸= 0 and d ̸= 0. Here, ctf
represents a propeller’s drag that changes according to the aerodynamic characteristics of a
multirotor’s propeller, and d is the length of the drone’s arms.

Note that we can avoid this step and directly apply the ControlGroupCmd reference
to the drone’s ArticulationBody. Still, we include the mixer controller for the purpose of
completeness of the cascade control system.

Figure 4.2 depicts the whole cascade system and its references. It shows the consequent
processing of the references from the higher-level controllers to the low-level ControlCmd.
The control system, however, can directly accept and process any of the outlined reference
commands. For example, for the standard drone manual control with a joystick, the imple-
mentation allows control of the drone in the attitude mode.

CTU in Prague Department of Computer Science

4. UAV CONTROL SYSTEM 31/62

Figure 4.2: The whole cascade control system hierarchy.

CTU in Prague Department of Computer Science

32/62

Chapter 5

ML-Agents Framework

The simulation framework should be able to provide state-of-the-art tools for training
UAV agents to test the robustness of new algorithms and intricate behaviors. RL is a complex
domain that has encountered extensive academic attention, resulting in a vast theoretical
base. For the simulation presented in the thesis, we aim for the simplest way of integrating
and adjusting the hyperparameters for modern algorithms, therefore mitigating the complexity
of the setup. The most suitable option for the Unity environment is the ML-Agents toolkit, as
it provides a balance of customization and configuration complexity. It offers the algorithms
that proved to be the most successful according to multiple studies, including the off-policy
PPO algorithm and on-policy SAC. Finally, we present the practical implementation of the
drone agent that can be used for various RL tasks.

5.1 ML-Agents Introduction

In the field of artificial intelligence and machine learning, the progression of ML-Agents
from an open-source package to a widely utilized academic tool has been noteworthy. Origi-
nating as a project by Unity Technologies in 2017, ML-Agents initially targeted game devel-
opment within the Unity framework. Early publications [28] showed the framework’s potential
in combination with complex physics simulation and various sensory inputs provided by the
Unity simulation environment. Over time, its application expanded beyond gaming, gaining
traction in academic research and serving as a platform for benchmarking and evaluating RL
algorithms’ performance for various tasks [6].

ML-Agents’ primary objective is to empower developers to create agents capable of
learning and decision-making based on their interactions with the environment. Using the
reinforcement learning (RL) approach, these agents receive observations from the environment
and feedback in the form of rewards or penalties for their actions, iteratively refining their
decision-making processes.

The choice of ML-Agents for this thesis is explained by its several characteristics. The
framework is native to the Unity environment, meaning it is already incorporated into the
engine, adequately tested, and actively maintained. It provides a communication channel
between the Unity scene and Python training scripts, mitigating the time complexity of its
custom implementation.

Versatility is a crucial attribute contributing to ML-Agents’ acceptance as a tool for
academic research. Benefitting from the Unity native C# scripting, the developers can adjust
the framework to various scenarios. The usage of pre-defined assets can significantly speed up
the development process.

ML-Agents framework is open-source, which enables developers and researchers to un-
derstand the code base and provide their feedback, therefore contributing to the enhancement

CTU in Prague Department of Computer Science

5. ML-AGENTS FRAMEWORK 33/62

Figure 5.1: Overview diagram of the ML-Agents toolkit provided by ML-Agents documenta-
tion. [12]

of the software. This collaborative effort resulted in continual refinements, addressing specific
academic requirements and challenges. ML-Agents evolved into a dynamic, community-driven
tool shaped by the collective intelligence of its user base.

5.2 ML-Agents Building Blocks

On the Unity side, ML-Agents provides ML-Agents Unity SDK, allowing developers
to set up any Unity scene as a learning environment. It requires identifying the agents and
specifying the RL task to establish and define behavior. Behavior is a component containing
the global parameters of an agent and acting as a function. It takes the input rewards and
observations and outputs the corresponding action. The logic behind the decision-making
process defines the type of behavior: learning, heuristic, or inference. Learning type means
that the behavior is currently in the active training stage. After training, the model is saved
and can be attached to a behavior. This time, the actions will be generated by an already
trained network without adjusting its internal weights. This behavior type is called inference.
The last type is called heuristic and practically means that the decisions are hard-coded
without considering the observations and reward; therefore, the actions have no impact on
the model, and no training is happening. Heuristic mode is used in case of user input to test the
game or simulation environment, for example, by using a keyboard or controller. Creating a
behavior requires implementing an Agent class and overriding pre-defined methods. This way,
we can provide observations and rewards in a custom manner suitable for the RL task. Before
training, global behavior parameters have to be set up in line with the Agent script. They
include the number of observations, actions, or even their types (discrete or continuous). The
length of an observation array should always be set up correctly for behavior as, inherently,
it is represented by a float array with no additional explicit meaning.

A training scene in Unity can have multiple behaviors, as emphasized in Figure 5.1,
as well as multiple agents sharing the same behavior. Each behavior has a unique name
specified in Unity Editor under the Inspector tab. The name is crucial, as it serves as a key
for connection to the backend. Developers should adjust the name in other parts of the toolkit

CTU in Prague Department of Computer Science

34/62 5.3. OPEN AI GYM

depending on what behavior they want to train.

It is important to note that the agents sharing the same behavior do not share the same
observations or actions. However, their experience contributes to the update of the whole
network. This allows training a model on multiple agents with one learning type behavior,
providing a significant speed-up. Other agents with different behavior types can coexist in the
same learning scene. For example, we can simultaneously allow an agent with an inference
behavior type to take action using the pre-trained model and control another agent using
heuristic manual input.

The learning environment on the Unity side uses an external communicator to send
the simulation results to the Python Low-Level API, making it decoupled from the Unity
SDK. The Python code for the backend is distributed as a package called mlagents envs.
The API allows interaction with the Unity simulation flow from a Python script. Moreover,
the package allows the use of custom machine-learning algorithms that are not included as
standard options.

The final part of the standard pipeline is the Python package responsible for the training
pipeline, Python Trainer. It provides a command named mlagents-learn that initiates the
training configurable by the optional arguments.

Additionally, as part of the mlagents-envs, ML-Agents offers a wrapper for the OpenAI
Gym. The wrapper currently supports single-agent tasks. However, it can be helpful as it al-
lows for quick testing of other algorithms than PPO and SAC. This functionality is mentioned
in Chapter 5.3.

It’s important to mention that ML-Agents offers an additional wrapper for PettingZoo
in the context of multi-agent collaborative environments. This Pythonic interface is designed
to represent general multi-agent reinforcement learning (MARL) problems, although its func-
tionalities are not explored within the scope of this thesis.

Monitoring the training process and displaying the results in the plot for more straight-
forward interpretation and comparison is facilitated using TensorBoard. It is a web-based
visualization tool provided by TensorFlow, a popular open-source machine-learning library
installed as part of the mlagents Python package. It serves as a tool for visualizing various
aspects of the training process. The tool is used to provide analysis of the learning conducted
in Sections 6.3, 6.4.

5.3 Open AI Gym

OpenAI Gym is a toolkit that allows the design, development, and comparison of var-
ious RL algorithms. It offers a standardized and modular interface for interacting with di-
verse RL environments. The toolkit also includes a range of pre-built environments covering
classic control tasks, robotics, and Atari games. OpenAI Gym serves as a benchmarking plat-
form, enabling fair comparisons between different RL algorithms. The toolkit is open-source,
widely adopted, and integrated with popular RL libraries, making it a valuable resource for
researchers and developers in the RL domain. However, the development of the Gym was
moved to a new platform called Gymnasium in 2021. At the moment, ML-Agents provides
a wrapper only for the OpenAI Gym, which makes it a possible source of dependency issues
and problems with the lack of maintenance.

The wrapper is a part of themlgents envs Python package. It connects the Gym environ-
ment to the simulation in Unity and allows interactions with it. Combined with the OpenAI

CTU in Prague Department of Computer Science

5. ML-AGENTS FRAMEWORK 35/62

baselines [21], it can be used to test other RL algorithms in Unity that are not included in
the standard ML-Agents set.

However, it has several limitations. Among the most crucial is the lack of support for
providing stacked vectors of observations that are used to keep track of the agent’s past states.
Moreover, it only supports training single agent behaviors, excluding collaborative tasks. Some
Gym features are not implemented, e.g., environment registration using gym.make() method
and rendering of the next step of the environment using env.render().

Due to the limitations of the wrapper and the dependency conflicts of the required
Python packages (the legacy Gym code base requires outdated package versions that are
deprecated), it was decided to focus on the native to Unity ML-Agents environment and
actively maintained algorithms provided as a part of the standard ML-Agents Python backend.

5.4 Reinforcement Learning Algorithms

ML-Agents offers two differently designed RL algorithms: Proximal Policy Optimization
(PPO) and Soft Actor-Critic (SAC). Both algorithms are prepared to be used out of the box.
It means a user doesn’t have to interact with the underlying backend training code in Python.
The point of interaction with the setup is the YAML file with the definition of the network
itself, its hyperparameters, and settings for the training process.

5.4.1 PPO algorithm

Proximal Policy Optimization (PPO) is a reinforcement learning algorithm introduced
by John Schulman [33] and is currently the default option the ML-Agents offers. PPO has
two primary loss functions: the policy loss and the value function loss. Each serves a distinct
purpose in training the agent. The algorithm is associated with the on-policy optimization
methods, and its contribution is the following formulation of the policy loss:

LCLIP (θ) = Et[min(rt(θ))Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât], (5.1)

where:

• θ represents the policy.
• E operator means the empirical average over a finite batch of samples.
• rt(θ) is a ratio between probabilities of the new and old stochastic policies.
• Ât is an estimator of the advantage function at a time stamp t.
• ϵ is a hyperparameter of the network.

Its difference from the previous on-policy algorithms as Trust Region Policy Optimization
(TRPO) [40] is that it clips the rt, i.e., the probability ratio. Consequently, it means that
the algorithm penalizes such changes of a policy θ that move the ratio further away from
1. Practically, it means that it prevents excessively large updates of the policy. The impact
of this change on the training is better performance, sample complexity, and ease of tuning
while staying stable as previous trust-region methods. The training process, however, involves
a combination of two losses, with the second being the value function loss.

LV F (θ) =
1

2
Et[(Vθ(st)− Vtarget(st))

2], (5.2)

where:

CTU in Prague Department of Computer Science

36/62 5.4. REINFORCEMENT LEARNING ALGORITHMS

• Vθ(st) is the predicted value function for the state st.
• Vtarget(st) is the target value function for the state st.

The target value function is a combination of the immediate reward rt and the estimate of
the value function at the next state Vθ(st+1) discounted by the factor γ:

Vtarget(st) = rt + γVθ(st+1). (5.3)

This loss represents the average difference between the learning algorithm’s expectation
of a state’s value and the empirically observed value of that state. It is associated with training
the value function, which estimates the expected cumulative reward from a given state. The
value function is crucial for assessing the advantage of chosen actions in the policy update.
A well-trained value function helps determine the quality of actions, contributing to PPO’s
overall performance stability.

The algorithm has shown stable performance in training agents for robotics and gaming
applications [19]. It provides a balance between the performance of the trained models and
the sample efficiency.

5.4.2 SAC algorithm

Soft Actor-Critic (SAC) is another policy optimization reinforcement learning algorithm
developed by UC Berkeley and Google [27]. It differs from PPO’s approach to data sampling
as it is an off-policy algorithm. The original publication reveals that it is more sample-efficient
than on-policy methods due to not losing the samples while performing the policy updates.
However, the benefit of efficiency in sampling brings the complexity of setup compared to
PPO. At the same time, SAC outperforms other off-policy algorithms such as Deep Deter-
ministic Policy Gradient (DDPG) [38] and Twin Delayed Deep Deterministic Policy Gradient
(TD3PG) in terms of robustness in hyperparameter tuning. Additionally, the unique feature
of SAC compared to DDPG and TD3PG is the optimization of the policy entropy within the
objective function. It naturally encourages exploration, preventing the network from executing
the same actions.

SAC is categorized as a Q-learning algorithm. However, it employs several features. SAC
concurrently learns two Q-functions Qϕ1 , Qϕ2 and a policy πθ. The corresponding losses are:

• Critic Loss (or Value Function Loss) is designed to minimize the difference between
the predicted state-action value and the current value incorporating the clipped double-
Q trick. SAC takes the minimum Q-value between the two Q approximators. The loss
is computed over a batch of experiences sampled from the replay buffer and can be
formulated into the following equation:

L(ϕi) = E(s,a,r,s′)∼D[
1

2
(Qϕi

(s, a)− (r + γ(min
j=1,2

Qϕtarg,j
(s′, a′)− α logπθ(a′|s′)))))

2], (5.4)

where:
– s′ is the next state.
– a′ is the action chosen by the policy.
– Qϕi

(s, a) is the current state-action value.
– Qϕtarg is another Q-function representing the running average of itself called the

target [37].
– γ is a discount factor.

CTU in Prague Department of Computer Science

5. ML-AGENTS FRAMEWORK 37/62

– α logπθ(a′|s′)) represents the entropy regularization term of the policy πθ, where α
is the hyperparameter.

– E(s,a,r,s′)∼D is the expectation taken over a batch of experiences sampled from the
replay buffer D. This batch-based approach ensures the optimization is performed
on a representative subset of the agent’s experiences.

The targets are updated as follows:

ϕtarg,j = (1− τ)ϕtarg,j + τϕj . (5.5)

The τ hyperparameter can be set up through the configuration file in the ML-Agents
framework; however, most of the time, its value is 0.005. Critic Loss aims to minimize the
squared difference between the predicted and target state-action values. This encourages
the critic to accurately estimate the expected cumulative reward, providing a reliable
signal for the policy update in the SAC algorithm.

• Actor Loss (or Policy Loss) aims to adjust the policy parameters to maximize the
expected cumulative reward. It is designed to encourage actions that lead to higher
returns while accounting for the entropy of the policy distribution. The equation of the
loss is as follows:

Lπ(θ) = Es∼D

[
α logπθ(a|s)))− min

j=1,2
Qϕj

(s, a)

]
, (5.6)

where:
– Qϕj

(s, a) is the value function term. It represents the estimated value of the minimal
of the Q-function approximators. The goal is to subtract this value from the entropy,
effectively encouraging actions that have higher expected returns according to the
critic.

– Es∼D is, similarly as in equation (5.4), the expectation taken over a batch of states
sampled from the replay buffer D.

The ML-Agents framework helps to mitigate the complexity of the SAC algorithm setup
due to the abstraction layer between the training Python backend and the Unity environment.

5.5 Drone Agent

Section 5.1 introduced a way to set up a simulation scene for training by creating
various behaviors. This section presents a practical example of such behavior for the drone.
The behavior is defined by overriding methods of an Agent class, resulting in DroneAgent.cs
script. The script is attached to a drone placed in a scene to ensure the behavior is applied.
After that, the framework has the actual GameObject that represents an agent.

5.5.1 Agent Class

Inside the custom definition of the Agent class, provided by the ML-Agents SDK, we
define the routines needed for the training workflow depicted in Figure 5.2. To implement the
application of incoming actions, the OnActionReceived() method is overridden. This method
is called at every decision requesting point of the simulation and translates the actions into a
reference for a controller on a specific level1 based on pre-defined reference mode. To achieve

1Currently, the supported options are references for position, velocity, acceleration, attitude, and attitude
rate controllers

CTU in Prague Department of Computer Science

38/62 5.5. DRONE AGENT

that, the reference is sent to the UAV system, and we perform one step of the control cal-
culation discussed in Section 4. A decision is every new action produced by the network. At

Figure 5.2: DroneBehavior workflow cycle while training a model on agent detail level

the same time, each time step of the fixed update of the environment, CollectObservations()
method is called. Inside this method, we pass the model state (or additional data) to the agent
to provide relevant task information to the agent. The observation is technically represented
by an array of float values (each provided observation is stacked into one array). The length
of the array should be set up in the Unity Editor similarly to the actions array mentioned
earlier.

Assigning a reward to the agent is realized by passing a reward value to the AddReward()
method. Because the implementation of reward is specific to a particular RL task, it can be
called in any method of an agent class. However, for the task presented in this thesis, the
reward is assigned every fixed update. Section 6.2 discusses more details about the concrete
reward.

Among practical simulation-related pre-defined methods of the Agent class, there are
Initialize() andOnEpisodeBegin(). Initialize() is called upon once at the start of the simulation
upon enabling the agent. It is used to provide references to other GameObjects or optionally
connect to ROS. On the contrary, the OnEpisodeBegin() method is called each time the agent
starts a new learning episode to establish the same starting conditions of the experiment. The
environment and the state of the drone are reset.

DroneAgent is designed in a way that it is a wrapper of the UAV quadrotor model that
is, at the same time, an ML-Agents behavior that can be trained for various tasks. However,
training a control task is impossible without assuring the correctness of implementing all
consequential parts of the control pipeline. For that purpose, the agent’s Heuristics() method

CTU in Prague Department of Computer Science

5. ML-AGENTS FRAMEWORK 39/62

is designed to take the references from the ROS node. We utilize the approach presented in
Section 3.2 to achieve that. Generally, Heuristics() method can take any form of manual input
suitable for the task.

5.5.2 Inspector Tab Settings

Once the Agent class is implemented, the parameters on the Unity side should also be
adjusted. The script should be assigned to the agent GameObject, which automatically adds
the components depicted in Figure 5.3.

(a) Behavior Parameters Menu (b) DroneAgent class parameters and Deci-
sion Requester

Figure 5.3: DroneAgent GameObject’s set up in the Inspector tab

BehaviorParameters menu provides the interface for setting up the name of the train-
ing behavior, length of the actions and observations arrays, and current behavior type. The
StackedVectors option allows to save multiple observations from the past, keeping the agent
aware of the previous states. This comes with the increased training complexity. Action space
can be continuous or discrete. DroneAgent’s action space is continuous, therefore, the Dis-
creteBranches parameter is set to zero, while the number of ContinuousActions is four, rep-
resenting the length of the provided reference vector. For the model parameters, the options
are either to use a pre-trained model or leave the model as None to start training the agent.
Behavior type has one of the possible values discussed in Section 5.1: Inference, Default, or
Heuristics. The default type is used when training. Additionally, there is a TeamId parameter
for grouping the agents into teams with shared reward and UseChildSensors flag to look for
the sensors in the lower hierarchy (children) GameObjects. Those parameters are not relevant
for the DroneAgent.

One of the crucial Unity components of an agent instance needed for the training of
the model is a component called DecisionRequester shown in Figure 5.3b that is provided
by the ML-Agents Unity package. Its purpose is to trigger the extraction of observations
from an agent with a pre-defined regularity. The extraction period can be set by changing
the DecisionPeriod parameter, e.g., with the current settings, it will trigger the observations
every 5 FixedUpdate steps. The exact step within the DecisionPeriod when the observation
is taken is addressed by the DecisionStep parameter. The same action is repeated when the
TakeActionsBetweenDecisions flag is activated. Otherwise, the agent is waiting for the decision
point. Without the DecisionRequester, the decision could only be triggered manually using

CTU in Prague Department of Computer Science

40/62 5.5. DRONE AGENT

RequestDecision() method inside an Agent class. For the Drone Agent, the decisions should
be taken during every FixedUpdate to prevent delays in control system signals.

The reference mode is set as DroneAgent’s parameter in Figure 5.3b under the
DroneAgent script view. The provided implementation allows switching between the training
and testing modes without changing the underlying code. The drone model has to be speci-
fied to read the additional parameters from JSON files. A user can choose what type of input
reference messages the drone will expect during the simulation.

CTU in Prague Department of Computer Science

6. TRAINING 41/62

Chapter 6

Training

This chapter illustrates the experiments with the RL training conducted using the ML-
Agents framework combined with the drone’s control system discussed in Chapter 4. More
task-specific details of the drone agent’s implementation and the Unity Scene setup that were
not addressed in Section 5.5 are introduced here. Consequently, the Sections 6.3 and 6.4 outline
training specifics with particular algorithms1.

6.1 Hardware/Software Setup

The following table contains the characteristics of the laptop used for the experiments.

Hardware Device Characteristics

Laptop Lenovo Legion 5 Pro 16ACH6H
RAM 16 GB, DDR4-3200
CPU AMD Ryzen 7 5800H / 3.2 GHz
GPU NVIDIA® GeForce RTX™ 3060 Laptop GPU, 6GB GDDR6
WLAN Wi-Fi® 6, 802.11ax 2x2 Wi-Fi
Bluetooth Bluetooth 5.1, M.2 card

Table 6.1: The hardware characteristics device used for conducting the experiments presented
in the thesis.

Similarly, the software setup during the project is the follows:

Software Version

Unity Editor 2022.3.7f1
Rider IDE 2023.3
Python 3.10.12
ML-Agents SDK 3.0.0-exp.1 2023-10-09
mlagents (python package) 1.0.0
mlagents-envs (python package) 1.0.0
ROS TCP Connector 0.7.0-preview
URDF Importer 0.5.2-preview

Table 6.2: The software packages and corresponding versions.

1A video of the training process can be found on https://mrs.felk.cvut.cz/kisselyov2024thesis

CTU in Prague Department of Computer Science

42/62 6.2. RL TASK DEFINITION

6.2 RL Task definition

This experiment aimed to teach the drone to reach a specific position without creating
excessively aggressive motion that would cause the drone to lose visual odometry in the
possible real scenario. The model has to achieve the goal by controlling the references on the
velocity control level in every FixedUpdate step. The task should be designed in a generalizable
way, i.e., the drone should be able to accept any position state and not rely on the assumption
of getting the same every time.

6.2.1 Unity Scene Setup

The scene setup is crucial as it has to allow multiple DroneAgents to train simultaneously
without interrupting each other. Therefore, several training environments were created for nine
agents, forming a training grid displayed in Figure 6.1. With this scene, it is possible to train
all agent instances in parallel, as every agent contributes to updating the same behavior.
The number of agents was estimated empirically according to the hardware capabilities. Each
training platform is identical and consists of the following parts: a simple horizontal plane, an
internal cube for representing the visual range of target position spawn, and an external cube
to restrict the allowed flying space. The size of the reference spawning area is 80 × 80 × 19
meters (leaving 1 meter above the ground to prevent collision with the ground), and the
corresponding size of the flying space is 190 × 190 × 95 meters. The plane and the external
borders are equipped with colliders that send callbacks when the drone’s mesh overlaps with
them. This grid can be created quicker by utilizing the Unity prefabs. It allows to store one

Figure 6.1: Training scene setup with multiple agents.

environment with all nested GameObjects and quickly transfer it into any scene within the
project.

CTU in Prague Department of Computer Science

6. TRAINING 43/62

Figure 6.2: Image of a drone with the target goal position during a training episode.

To help visually represent the training process, allowing a quick heuristic assessment
of the learning state, we provide a set of auxiliary routines as shown in Figure 6.2. Upon
the simulation, the target is represented by a dynamically spawned GameObject that has no
colliders and serves only a visual purpose. Every Update of the simulation, the script draws
a line from the drone to the target position that helps to establish the movement direction of
the drone. During the simulation, to speed up the sample gathering, the timescale is increased
to 20 (20 FixedUpdates during the original fixed step).

6.2.2 Episode Formulation

The learning is split into episodes. During an episode, the agent performs actions and
collects a cumulative reward. The episodes aim to provide unified initial conditions for the
DroneAgent and limit the number of actions it can take. The state of the agent is reset every
time the OnEpisodeBegin() method is executed. The position of the drone and target is set
to different random positions inside the reference spawning area. The duration of an episode
is specified through the configuration file discussed in Section 6.2.4. However, the episode can
end before the maximal simulation step upon reaching the target position or triggering the
colliders of the plane or outside borders with corresponding static rewards.

6.2.3 Rewards and Observations

Following each drone action, the environment provides feedback in the form of rewards
and concurrently supplies observations to facilitate the agent’s understanding of the evolving
dynamics. The observations must provide enough information for the agent to achieve the
target position. Here’s the outline of the observations used during the training:

• Normalized linear velocity vector (3 values).

CTU in Prague Department of Computer Science

44/62 6.2. RL TASK DEFINITION

• The magnitude of the linear velocity vector normalized by the maximal allowed speed
of the drone (1 value).

• Normalized vector from the current position to the target (3 values).
• Normalized angular velocity vector (3 values).
• Normalized quaternion representing the rotational transformation qrel required to
achieve the target rotation qtarget from the current rotation qcurr.(4 values):

qrel = qtargetq
−1
current. (6.1)

• Normalized angle between two quaternions qcurr and qtarget (1 value):

θ = cos−1(2⟨qcurr, qtarget⟩2 − 1), (6.2)

where ⟨qcurr, qtarget⟩ is the dot product of quaternion vectors. This metric represents the
magnitude of rotation needed to transition from one orientation to another, computed
in Unity using the built-in method Quaternion.Angle(qcurr, qtarget).

The aggregate number of observations, represented by the length of the concatenated array,
stands at 15. Normalizing the observations is a crucial step, as the model cannot learn properly
from non-normalized inputs. To enhance the model’s generalizability and mitigate the risk of
over-fitting to a particular target, the observations are intentionally designed to be relative to
the final target. This relative design fosters adaptability. A key facet of the observation process
involves their periodic extraction at each FixedUpdate, ensuring a consistent and well-timed
data input.

The presented reward function underwent multiple tuning iterations. In alignment with
the dynamic nature of the drone’s control actions, the reward is assigned at every FixedUp-
date, allowing instantaneous responsiveness to changes in the model’s behavior. This frequent
feedback loop contributes to the efficiency of the training process.

Comprising various components, the reward function is intricately structured to capture
and reinforce desired behaviors in the learning process:

• Distance reward, which is calculated as the Euclidean norm of the vector between the
current position and the target. The reward is gradually scaled up when the drone
approaches the target.

• Velocity direction reward, which is calculated as the dot product of the current linear
velocity vector and expected direction of movement, i.e., again, the vector from between
the current position and the target.

• High acceleration penalty, a penalty for sending references that significantly differ from
the current velocity.

• (Optional) Angular velocity stability reward, although the reasoning for this reward is
the same, it directly rewards the model for the stable changes of orientation, which
experimentally proved effective.

• Final positive reward for reaching the target with threshold tolerance for both position
and orientation.

• Final negative reward for triggered collision with the border area or the horizontal plane.

Each part of the reward is normalized to stabilize the output of the whole reward function.
To address different scales, every modular part has a corresponding coefficient for fine-tuning.
The list of the coefficients is included in Appendix 8.1 in Table 1.

Notably, the most substantial relative coefficients are assigned to the position and ve-
locity rewards, given their pivotal role in propelling the agent towards the target. The penalty

CTU in Prague Department of Computer Science

6. TRAINING 45/62

for high acceleration is delicately calibrated to 10% of the position reward, maintaining a
nuanced balance. Similarly, the penalty associated with angular velocity stability is scaled at
50% relative to the position reward, establishing a proportionate adjustment. To ensure the
drone’s stabilization at the destination, the final positive reward is intentionally set at a high
value, compellingly encouraging the agent to converge successfully. Conversely, a negative
equivalent is attributed to the drone in response to triggering a collision with the borders,
thereby reinforcing the consequence of undesired actions.

During the exploration of alternative reward functions, various modifications to the
distance reward were examined. One approach involved dynamically adjusting the distance
reward based on the drone’s proximity to the target compared to the previous state gauged
at each FixedUpdate. Specifically, if the drone exhibited a trajectory bringing it closer to the
target, the distance reward was augmented by a factor ranging between 10−20%. Conversely,
if the drone’s distance increased compared to the previous update, the distance reward was
diminished by the same coefficient — this reward adaptation aimed to mitigate issues related
to excessive motion. Another explored variation focused on assigning the distance reward
exclusively for reductions in the distance between the target and the drone. However, this
specific reward configuration proved more challenging to scale within the broader reward
function.

Throughout the training process, a recurring challenge surfaced in the form of target
overshooting, leading to undesirable oscillations. In response, a preventive measure was imple-
mented by fine-tuning the velocity reward under circumstances where the drone approaches
proximity to the target. More precisely, when the drone reaches a distance of 1 meter, the
velocity reward undergoes a multiplicative adjustment determined by the deviation of the
drone’s current velocity from the target velocity. The target velocity is intentionally set at
a low value, progressively decreasing (from 0.1 down to 0 m/s) as the drone approaches the
target. This deliberate configuration compels the drone to decelerate gradually as it nears
the goal, mitigating the tendency for overshooting and encouraging the agent to smoother
converge to the target.

6.2.4 Training Configuration File

The configuration file is the interface for interaction with the model parameters and the
RL algorithms. RL is sensitive to the tuning of the hyperparameters, so the settings should
be addressed carefully and tested during the training. Therefore, multiple combinations were
tested and tracked during the training for further analysis. We list the values used during the
training in Appendix 8.1. The following are the observations of the impact of the tuning of
relevant parameters:

• trainer type: specifies which RL to use, PPO or SAC.
• keep checkpoints: the number of checkpoints that ml-agents keeps. It allows us to
keep track of the previous states of the network in case it is needed to return while
removing unnecessary backups.

• checkpoint interval: the number of experiences collected between each save of a check-
point, i.e., the period of checkpoints.

• max steps: the number of total experiences for one whole training. The simulation
stops upon reaching the maximum amount. Moreover, the optional changes of some
parameters such as learning rate are relative to this value.

CTU in Prague Department of Computer Science

46/62 6.2. RL TASK DEFINITION

• time horizon defines the number of steps collected before saving them to the experience
buffer. When the number is reached, the value estimation is used to predict the final
potential reward considering the current state. Due to frequent reward assignments
(every FixedUpdate), a smaller number was used because a consequent reward tends to
result in a better estimate.

• threaded: allows asynchronous simulation steps at the same time as the model updates.
Setting this parameter to true resulted in a marginal speed-up of the computation in
the case of the SAC algorithm due to its on-policy nature.

• network settings is a group of parameters defining the network structure:
– hidden units: represents the number of nodes in each fully connected neural net-

work layer. The relation between the observations and actions is considered not
complex during the position control training. Therefore, the number is low.

– num layers: represents the number of layers in the network. Similarly to the hid-
den units parameter, setting this parameter too low reduces the size of the net-
work, i.e., its complexity. The default value was left.

– vis encode type: the parameter is relevant to the tasks with visual observations
and, therefore, not utilized in current training.

– normalize: this parameter allows providing non-normalized observation values as
the normalization is happening on the Python side using the moving average. The
parameter is set to false as the observations are normalized before the input into the
model inside the C# script. This assures stable and consistent normalized values.

• general hyperparameters is the group of parameters that are shared for both presented
algorithms:

– batch size: the number of decisions realized before each gradient descent. Because
the presented task is continuous, the batch size is set higher than default. That
is explained by the fact that continuous problems require more samples to learn
because the state space is more extensive. At the same time, the parameter was
set differently for PPO and SAC due to the specifics of the algorithms.

– buffer size: the number of experiences collected before the training script up-
dates the model. The model learns from the accumulated rewards and observations.
Should have the size of multiple batch size. Bigger buffer size results in more stable
updates. Corresponding to the batch size was set to different values for PPO and
SAC.

– learning rate: learning rate used when performing the gradient descent. Experi-
mentally, it was identified that high learning rate (∼ 0.003) results in slower growth
of the cumulative reward and, therefore, slower learning.

– learning rate schedule: provides two options, linear or constant. By default, the
linear decline option is set for the PPO algorithm to ensure its stable convergence
and kept constant for SAC to establish the natural convergence of its Q-function.

• reward signals the parameters affecting the incorporation of the reward signal into
the training:

– gamma: determines the discount factor for future rewards originating from the
environment. This factor reflects how far into the future the agent should consider
potential rewards. A bigger value is appropriate when the agent needs to act in
the present to prepare for rewards in the distant future. Set to 0.99, considerably
a high value.

– strength: reward multiplier. Left as default because the C# script internally ad-
dresses the reward’s scaling.

CTU in Prague Department of Computer Science

6. TRAINING 47/62

6.3 PPO training process

The entire configuration file used for training is included in the Appendix 8.1. The
whole grid of 9 drones was utilized for the training, creating more samples in a shorter time.
The max step parameter is set accordingly to provide enough samples for the model to reach
the maximum possible reward from the training. Setting the buffer size to a relatively higher
number, 20480, which is ten times higher than the batch size, is a requirement of the algorithm
connected to its relatively lower sample efficiency.

Among the PPO-specific hyperparameters that we can adjust in the ML-Agents training
configuration file, there are:

• beta: is an entropy parameter. Adjusting the beta hyperparameter influences the level
of exploration undertaken by the agent. A higher value encourages more exploration. In
the context of the current task, a relatively elevated value was chosen to foster extensive
exploration.

• beta schedule: change of the beta parameter over time, which determines the evolution
of the entropy parameter over time and offers two options: linear or constant. Opting
for the linear schedule facilitates a gradual reduction of the entropy parameter, reaching
0 by the end of the training. This linear progression ensures a smooth transition from
exploratory to exploitative behavior.

• epsilon: corresponds to the ϵ from equation (5.1). Regulating it means finding the
balance between the training speed and the updates’ stability. Taking into consideration
the quick positive reward gain observed during the training, stability was given the
preference; therefore, the parameter’s value is low.

• epsilon schedule: change of epsilon over time, linear or constant. The decline of the
epsilon parameter was set to be linear to provide more stability by the end of the
training.

• num epoch: the hyperparameter denotes the number of times the experience buffer is
employed for gradient descent optimization. Setting this parameter to 7 (default is 3)
speeds up the training as is possible due to large batch size, which balances the stability
of the updates.

The observed changes of the cumulative reward plot are depicted in Figure 6.3. The
plot is smoothed to remove the outliers. We also provide the graphs (Figure 6.4) of the loss
functions for analysis of the training process.

CTU in Prague Department of Computer Science

48/62 6.4. SAC TRAINING PROCESS

Figure 6.3: Reward plot during training with PPO algorithm.

Figure 6.4: Loss functions observed during the training with PPO.

6.4 SAC training process

Due to high sample efficiency, we don’t need to speed up the generation of experience
samples for training with the SAC algorithm. Therefore, the training grid was reduced to one
drone. Moreover, when multiple drones are training in parallel, they tend to quickly collect a
batch of experiences before being able to explore the action space. To fill several episodes into
a single batch, its size should be significantly increased, which would result in computational
complexity the testing hardware cannot provide. The buffer size is increased mainly due to
the off-policy nature of SAC, which relies on a diverse set of experiences for effective learning.

In the training configuration file, specifically for SAC, we can set the following param-
eters:

CTU in Prague Department of Computer Science

6. TRAINING 49/62

• buffer init steps: specifies the number of steps the algorithm initially uses to fill the
buffer. This parameter is set to 1000 to prefill a couple of episodes before the start of
the training.

• init entcoef : the entropy coefficient set at the beginning of training. During training,
the coefficient is adjusted to the predefined target entropy defined in [27]. However,
this parameter allows controlling the exploration at the beginning of the training. This
coefficient is set to a relatively high value to provide early exploratory behavior.

The training workflow is periodic and follows the same pattern: the agent executes
actions and collects experiences until the batch size is reached. Then, the whole environment
is paused while the training script performs an update of the model.

The behavior during training is depicted in the cumulative reward and the loss plots in
Figure 6.5 and Figure 6.6.

Figure 6.5: Reward during the training with SAC algorithm

CTU in Prague Department of Computer Science

50/62 6.4. SAC TRAINING PROCESS

Figure 6.6: Loss functions observed during the training with SAC algorithm

CTU in Prague Department of Computer Science

7. DISCUSSION AND MODELS EVALUATION 51/62

Chapter 7

Discussion and Models Evaluation

Following the experimentation detailed in the previous chapter, this section undertakes
an analysis of the observations, discusses outcomes, and evaluates the performance of the
trained models.

7.1 Training Evaluation

During the training, we observed multiple characteristics of the algorithms, which make
them suitable for different applications, depending on their requirements. Several critical
aspects are considered during the training evaluation:

• Sample Efficiency.
As anticipated, the PPO algorithm required more experiences to attain a comparable to
SAC reward level. In Figure 6.3, we observe rapid reward growth over the first million
samples, followed by a gradual convergence, reaching its maximum at 2.5 million sam-
ples. In contrast, SAC achieved a similar reward level within 200 thousand samples. The
substantial early growth in SAC corresponds to a rapid acquisition of the basic desired
behavior facilitated by a large update based on the successful action sequences.

• Real time training length.
Despite SAC’s superior sample efficiency, training the model with the SAC algorithm
took significantly longer than PPO. This discrepancy is attributed to the extensive
processing of collected samples during SAC’s model update. However, this bottleneck
might be the attribute of the underlying hardware platform, not the algorithm itself.
Conversely, PPO discards samples progressively during training, making its training
speed more contingent on sample acquisition rather than model update. We can claim
that with the current setup, we can achieve comparably similar performance quality in
a shorter real-world time using the PPO algorithm. Moreover, tuning hyperparameters
for SAC requires more time due to the slow training speed.

• Update Stability.
Under the presented hyperparameter setup, PPO demonstrated more stable reward
growth without sudden and abrupt changes. The clipping of the probability ratio, pre-
venting large policy updates (as discussed in Section 5.4.1), contributes to this stability.
However, SAC’s update stability can be fine-tuned by adjusting the size of the experi-
ence buffer. Another possible explanation for the more rapid updates during the training
of the SAC model is the usage of a single agent. In contrast, PPO was trained while
exploiting nine drones in parallel1.

1Note that for SAC the number of agents training in parallel would not significantly affect the real-world
time spent on the training because the bottleneck was the model update based on gathered samples.

CTU in Prague Department of Computer Science

52/62 7.2. ALGORITHMS’ PERFORMANCE EVALUATION

• Loss Analysis.
In PPO, the evolution of the value loss function (see Figure 6.4) over time is another
indicator of successful training. This correlates to the quality of the model’s estimate of
the value of each state. The plot is growing as long as the agent is learning. The policy
loss, in turn, corresponds to the changes in the policy, and it has oscillatory behavior.
The vital characteristic here is the magnitude of changes, which should be less than
1. In our case, the oscillations are small in magnitude, with the difference between the
maximum and minimum value being ∼ 0.009.
The loss plots depicted in Figure 6.6 offer valuable insights into the evolving dynamics
of the SAC algorithm during training. The decreasing trend observed in the policy loss
function indicates the algorithm’s progressive learning in generating policies that yield
higher rewards. At the same time, the diminishing Q1 and Q2 loss functions signify the
algorithm’s improving capability to predict expected rewards accurately. The value loss
function also decreases over time. Still, it fluctuates more than the other loss functions,
corresponding to the algorithm learning to predict the expected reward for a given state.
Notably, the policy loss function is decreasing at a faster rate than the Q1 and Q2 loss
functions. This suggests that the algorithm prioritizes learning the policy over learning
the Q-functions.

7.2 Algorithms’ Performance Evaluation

Both algorithms successfully trained the model to reach the desired position and orien-
tation. Nevertheless, certain aspects of the desired behavior were more challenging to achieve.
Subsequent convergence is crucial as the agent learns to eliminate excessive motions and quick
accelerations. Notably, mitigating undesired oscillations (discussed in Section 6.2.3) is one of
the most intricate aspects of the behavior, sensitive to tuning. The additional reward for
the lower angular velocity helped to improve the stability of the drone’s angular movements,
removing the undesired rotations and helping the agent slowly achieve the final rotation. Ex-
periments revealed that capturing nuanced motion near the goal is more challenging for PPO,
requiring multiple reproductions of successful sequences. In contrast, SAC efficiently extracts
complex behavior without excessive reproduction. At the same time, despite both algorithms
achieving the training target, SAC demonstrated smoother motions overall (see Figure 7.2),
exhibiting fewer undesired deviations from the direction to the goal than PPO (depicted in
Figure 7.1). Based on multiple observations, the model trained by the PPO algorithm tends
to approach the target by a parabolic trajectory.

The adjustments of the reward function for the close distances to the target successfully
provided the agent with enough information to reduce the overshoot. In the case of SAC, the
model learned to avoid them entirely.

Due to the relative definitions of the reward, the algorithms can be generalized to any
position in the world frame within the trained range, which makes both models adaptable to
different environments.

CTU in Prague Department of Computer Science

7. DISCUSSION AND MODELS EVALUATION 53/62

Figure 7.1: Trajectory of the trained PPO model for DroneAgent behavior

Figure 7.2: Trajectory of the trained SAC model for DroneAgent behavior

7.2.1 Flying with OpenVINS

In this section, we provide an analysis of the ability of the algorithms not to lose tracked
features used to estimate the UAV odometry while flying toward the target. The observations
were captured in the forest environment (Figure 2.5) and industrial side (Figure 2.6) as dif-
ferent scenes provide different graphics settings, shaders, and lighting.

In our experimental setup, we deployed agents in a forest environment, specifying target
positions in the Inspector for both PPO and SAC pre-trained models. The forest environment,
with dynamic elements like wind and constant movement, poses challenges for feature detec-
tion. Figure 7.3a illustrates that during rotational movements, the agent potentially loses

CTU in Prague Department of Computer Science

54/62 7.2. ALGORITHMS’ PERFORMANCE EVALUATION

(a) Features tracking stabilized after rotation. (b) Features tracking during a slow direct flight.

Figure 7.3: Flying with OpenVINS in the forest scene

unstable features and instead primarily focuses on static environment objects, such as trees
and ground textures. Direct flights (Figure 7.3b) can be problematic, especially if the model
hasn’t properly learned slow acceleration behavior.

Both algorithms aimed to preserve the odometry during the flight by avoiding quick
accelerations and keeping the low average velocity; however, they showed different stability.
Due to the quality of the trajectory, the PPO model has a higher tendency to create excessive
motions than the model trained with SAC. That often results in losing some of the tracked
features. Moreover, the smooth angular rotations adapted from training in the SAC model
helped in keeping the awareness of its current position. The models performed better in
proximity to the target, benefiting from reward adjustments for close distances as discussed
in Section 6.2.3.

(a) Feature tracking with low resolution input. (b) Feature tracking with high resolution input.

Figure 7.4: Flying with OpenVINS in an industrial docking bay scene.

Experiments with the quality of the image showed that feature tracking benefits from
having a higher resolution and higher quality picture, directly affecting the status of visual

CTU in Prague Department of Computer Science

7. DISCUSSION AND MODELS EVALUATION 55/62

odometry2. The quality of the image was regulated through a compression parameter for the
JPG encoding. The tolerance for rotational movements can be pushed higher by providing
better inputs and enabling a higher FPS rate. During the flight depicted in Figure 7.4a, the
agent had occasional issues with feature detection. At the same time, the problems were not
reproduced in the case of the flight with a better quality camera input shown in Figure 7.4b.

7.2.2 Evaluation Summary.

For the same reward function and observations, SAC outperformed the PPO algorithm
in the precision of the control task. It achieved a better quality flying trajectory and smoother
motion without accidental high angular velocity changes resulting in more stable visual odom-
etry tracking. However, large updates of the policy performed by SAC mean that it is more
dependent on encountering the correct sequence of action. Multiple training sessions outlined
that SAC can show a consistently bad training curve before it finds the high-reward sequence.
PPO utilized more agents simultaneously, therefore the model had more experiences to per-
form gradual and stable updates. At the same time, using PPO for the tuning of the reward
function proved effective, as it takes significantly less time to train the model on the hardware
platform used during the experiments.

2For image quality experiments, we used the SAC model.

CTU in Prague Department of Computer Science

56/62

Chapter 8

Conclusion

In this thesis, we introduced a Unity-based simulation environment tailored for drone
applications, integrating multiple software frameworks into a unified toolkit. Section 1.1 com-
pared existing simulators, examining their physics, rendering engines, and reinforcement learn-
ing (RL) capabilities, establishing the motivation for adapting a novel simulation environment.
Chapter 2 provides an introduction to Unity-specific simulation aspects and terminology, em-
phasizing their relevance in the unmanned aerial vehicle (UAV) domain. The discussion out-
lines potential challenges and proposed solutions for transitioning from other drone simulation
environments, notably the MRS UAV system.

Our toolkit facilitates the swift setup of Unity scenes, whether custom-created or im-
ported as assets (Section 2.1.6), for comprehensive testing of UAV-related scenarios. Addition-
ally, the incorporation of new drone models through URDF format files is detailed in Section
2.2.

Chapter 3 showcases a bidirectional connection between Unity and the Robot Oper-
ating System (ROS), enabling the adaptation of existing ROS stacks to the new simulation
environment. A critical use case involving the transmission of sensor data from the drone to
ROS, specifically the Inertial Measurement Unit (IMU) and RGB camera for visual odometry
calculation (Section 3.4), is highlighted.

The drone control system, implemented in C# and integrated with the Unity physics
engine, enables realistic simulations of various control tasks. Chapter 4 elucidates the theo-
retical foundations behind the implementation, showcasing its adaptability to references from
Unity scripts or ROS nodes.

A notable contribution of this thesis is the examination of the Unity ML-Agents frame-
work in Chapter 5. The framework’s natural integration into the Unity workflow sets it apart
from alternatives, leading to the implementation of the DroneAgent behavior. This behavior
acts as a wrapper for the physical simulation of the drone, designed explicitly for RL training.
ML-Agents also contains a wrapper for training in the (now deprecated) OpenAI Gym, which
was in the end not used for the actual training for the reasons explained in Section 5.3.

The practical application of all modular parts of the thesis into a position control RL task
provides a showcase of the toolkit and tests the implementation at the same time. Training an
RL model is sensitive and involves multiple iterations of hyperparameter and reward signal
tuning. An extensive analysis of the available parameters and options for setting up the
environment is provided in Chapter 6. The observations of the training process are discussed
in Chapter 7 to understand the advantages and disadvantages of PPO and SAC algorithms.
The agents’ performance is assessed in an unseen environment, incorporating visual odometry
calculations using OpenVINS as a final evaluation test. The evaluation of the trained model
concluded that while training a PPO model can be fairly easy, the higher quality and precision
of the policy is achieved by SAC due to its thorough optimization of Q-functions.

CTU in Prague Department of Computer Science

8. CONCLUSION 57/62

8.1 Future Improvements, Project Evolution

The framework introduced in this thesis has accomplished its predetermined objectives,
providing a new drone simulation environment. At the same time, its deliberate inherent
modular design and adaptability leave a potential for extensive expansion, presenting mul-
tiple areas for future developments and enhancements. Among multiple areas that could be
explored:

• The simulator could be included as another MRS simulation option. That would enable
more developers to contribute to the research using the toolkit.

• For area-specific simulations, the toolkit can potentially include a set of predefined
custom-designed assets suitable for quick RL tests. That would make the testing of
research theories simpler and even more convenient.

• RL learning can be expanded and tested on visual-based tasks to utilize Unity’s diverse
rendering features to a higher degree. That would provide an additional benchmark for
the speed of the ROS-Unity communication.

• For more stable odometry-aware flights, we can explore further fine-tuning of the rewards
and hyperparameters that would help increase the quality of the flying trajectories and
even more efficiently remove excessive movements.

• The toolkit can also be expanded to not only drone-specific simulations but also other
types of robots or UAVs. The explored setup of the training would be similar.

CTU in Prague Department of Computer Science

58/62

References

[1] A. T. Azar, M. Z. Sardar, S. Ahmed, A. E. Hassanien, and N. A. Kamal, “Autonomous robot
navigation and exploration using deep reinforcement learning with gazebo and ros,” in Proceed-
ings of the 9th International Conference on Advanced Intelligent Systems and Informatics 2023,
Cham: Springer Nature Switzerland, 2023, pp. 287–299.

[2] A. Jordan, L. Gregory, and Y. Holly, “Comparing performance between different implementa-
tions of ros for unity,” 2023.

[3] P. Petracek, V. Kratky, T. Baca, M. Petrlik, and M. Saska, “New era in cultural heritage preser-
vation: Cooperative aerial autonomy for fast digitalization of difficult-to-access interiors of his-
torical monuments,” IEEE Robotics and Automation Magazine, pp. 2–19, 2023.

[4] M. Petrĺık, P. Petráček, V. Krátký, et al., “Uavs beneath the surface: Cooperative autonomy for
subterranean search and rescue in darpa subt,” Field Robotics, vol. 3, pp. 1–68, Jan. 2023.

[5] J. Saunders, S. Saeedi, and W. Lil, “Parallel reinforcement learning simulation for visual quadro-
tor navigation,” in 2023 IEEE International Conference on Robotics and Automation (ICRA),
2023, pp. 1357–1363.

[6] Y. Savid, R. Mahmoudi, R. Maskeliunas, and R. Damaševičius, “Simulated autonomous driving
using reinforcement learning: A comparative study on unity’s ml-agents framework,” Informa-
tion, vol. 14, p. 290, May 2023.

[7] Y. Song, A. Romero, M. Müller, V. Koltun, and D. Scaramuzza, “Reaching the limit in au-
tonomous racing: Optimal control versus reinforcement learning,” Science Robotics, vol. 8, no. 82,
Sep. 2023.

[8] “Unity user manual 2022.3 (lts).” (2023), [Online]. Available: https://docs.unity3d.com/
Manual/UnityManual.html (visited on 12/21/2023).

[9] “Worldbuilding in the unity editor.” (2023), [Online]. Available: https://unity.com/features/
probuilder.

[10] J. Platt and K. Ricks, “Comparative analysis of ros-unity3d and ros-gazebo for mobile ground
robot simulation,” Journal of Intelligent Robotic Systems, vol. 106, no. 4, 2022.

[11] “Unity robotics hub.” (2022), [Online]. Available: https://github.com/Unity-Technologies/
Unity-Robotics-Hub/tree/main.

[12] “Unity technologies.” (2022), [Online]. Available: https://unity-technologies.github.io/ml-
agents/.

[13] T. Baca, M. Petrlik, M. Vrba, et al., “The MRS UAV System: Pushing the Frontiers of Repro-
ducible Research, Real-world Deployment, and Education with Autonomous Unmanned Aerial
Vehicles,” Journal of Intelligent & Robotic Systems, vol. 102, no. 26, pp. 1–28, 1 May 2021.

[14] “Dream forest tree.” (2021), [Online]. Available: https://assetstore.unity.com/packages/3d/
vegetation/trees/dream-forest-tree-105297.

[15] S. Krishnan, B. Boroujerdian, W. Fu, A. Faust, and V. Janapa Reddi, “Air learning: A deep
reinforcement learning gym for autonomous aerial robot visual navigation,” Machine Learning,
vol. 110, pp. 1–40, Sep. 2021.

[16] V. Krátký, P. Petráček, T. Báča, and M. Saska, “An autonomous unmanned aerial vehicle system
for fast exploration of large complex indoor environments,” Journal of Field Robotics, vol. 38,
May 2021.

[17] P. Petráček, V. Krátký, M. Petrĺık, T. Báča, R. Kratochvil, and M. Saska, “Large-scale ex-
ploration of cave environments by unmanned aerial vehicles,” IEEE Robotics and Automation
Letters, vol. PP, pp. 1–1, Jul. 2021.

CTU in Prague Department of Computer Science

https://docs.unity3d.com/Manual/UnityManual.html
https://docs.unity3d.com/Manual/UnityManual.html
https://unity.com/features/probuilder
https://unity.com/features/probuilder
https://github.com/Unity-Technologies/Unity-Robotics-Hub/tree/main
https://github.com/Unity-Technologies/Unity-Robotics-Hub/tree/main
https://unity-technologies.github.io/ml-agents/
https://unity-technologies.github.io/ml-agents/
https://assetstore.unity.com/packages/3d/vegetation/trees/dream-forest-tree-105297
https://assetstore.unity.com/packages/3d/vegetation/trees/dream-forest-tree-105297

REFERENCES 59/62

[18] Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza, “Flightmare: A flexible
quadrotor simulator,” in Proceedings of the 2020 Conference on Robot Learning, 2021, pp. 1147–
1157.

[19] C. Yu, A. Velu, E. Vinitsky, Y. Wang, A. M. Bayen, and Y. Wu, “The surprising effectiveness
of ppo in cooperative multi-agent games,” in Neural Information Processing Systems, 2021.

[20] “Coppeliasim reinforcement learning.” (2020), [Online]. Available: https : / / github . com /
moliqingwa/coppeliasim deeprl (visited on 12/26/2023).

[21] “Openai baselines.” (2020), [Online]. Available: https://github.com/openai/baselines.

[22] M. Petrĺık, T. Báča, D. Hert, M. Vrba, T. Krajńık, and M. Saska, “A robust uav system for
operations in a constrained environment,” IEEE Robotics and Automation Letters, vol. PP,
pp. 1–1, Feb. 2020.

[23] “Sdformat.” (2020), [Online]. Available: http://sdformat.org/.

[24] S. James, M. Freese, and A. J. Davison, “Pyrep: Bringing v-rep to deep robot learning,” ArXiv,
vol. abs/1906.11176, 2019.

[25] N. G. Lopez, Y. L. E. Nuin, E. B. Moral, et al., “Gym-gazebo2, a toolkit for reinforcement
learning using ros 2 and gazebo,” ArXiv, vol. abs/1903.06278, 2019.

[26] M. Faessler, A. Franchi, and D. Scaramuzza, “Differential flatness of quadrotor dynamics subject
to rotor drag for accurate tracking of high-speed trajectories,” IEEE Robotics and Automation
Letters, vol. 3, no. 2, 620–626, Apr. 2018.

[27] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor,” in Proceedings of the 35th International
Conference on Machine Learning, J. Dy and A. Krause, Eds., ser. Proceedings of Machine Learn-
ing Research, vol. 80, PMLR, 2018, pp. 1861–1870.

[28] A. Juliani, V. Berges, E. Vckay, et al., “Unity: A general platform for intelligent agents,” CoRR,
vol. abs/1809.02627, 2018. arXiv: 1809.02627.

[29] J. Lee, M. Grey, S. Ha, et al., “Dart: Dynamic animation and robotics toolkit,” The Journal of
Open Source Software, vol. 3, p. 500, Feb. 2018.

[30] J. Luo, S. Green, P. Feghali, G. Legrady, and Ç. K. Koç, “Reinforcement learning and trustworthy
autonomy,” in Cyber-Physical Systems Security, Ç. K. Koç, Ed. Cham: Springer International
Publishing, 2018, pp. 191–217.

[31] D. Thul, L. Ladický, S. Jeong, and M. Pollefeys, “Approximate convex decomposition and trans-
fer for animated meshes,” ACM Transactions on Graphics, vol. 37, pp. 1–10, Dec. 2018.

[32] “Ros tcp connector.” (2017), [Online]. Available: https://github.com/Unity-Technologies/
ROS-TCP-Connector (visited on 12/10/2023).

[33] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization
algorithms.,” CoRR, vol. abs/1707.06347, 2017.

[34] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual and physical simulation
for autonomous vehicles,” in International Symposium on Field and Service Robotics, 2017.

[35] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “Rotors – a modular gazebo mav simulator
framework,” Studies in Computational Intelligence, vol. 625, pp. 595–625, Jan. 2016.

[36] I. Zamora, N. G. Lopez, V. M. Vilches, and A. H. Cordero, “Extending the openai gym for
robotics: A toolkit for reinforcement learning using ros and gazebo,” ArXiv, vol. abs/1608.05742,
2016.

[37] H. V. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-learning,” in
AAAI Conference on Artificial Intelligence, 2015.

[38] T. P. Lillicrap, J. J. Hunt, A. Pritzel, et al., “Continuous control with deep reinforcement learn-
ing,” CoRR, vol. abs/1509.02971, 2015.

CTU in Prague Department of Computer Science

https://github.com/moliqingwa/coppeliasim_deeprl
https://github.com/moliqingwa/coppeliasim_deeprl
https://github.com/openai/baselines
http://sdformat.org/
https://arxiv.org/abs/1809.02627
https://github.com/Unity-Technologies/ROS-TCP-Connector
https://github.com/Unity-Technologies/ROS-TCP-Connector

60/62

[39] F. Messaoudi, G. Simon, and A. Ksentini, “Dissecting games engines: The case of unity3d,” in
2015 International Workshop on Network and Systems Support for Games (NetGames), IEEE,
2015, pp. 1–6.

[40] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy optimization,”
in Proceedings of the 32nd International Conference on Machine Learning, F. Bach and D.
Blei, Eds., ser. Proceedings of Machine Learning Research, vol. 37, Lille, France: PMLR, 2015,
pp. 1889–1897.

[41] E. Rohmer, S. Singh, and M. Freese, “V-rep: A versatile and scalable robot simulation frame-
work,” Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1321–1326,
Nov. 2013.

[42] M. A. Sherman, A. Seth, and S. L. Delp, “Simbody: Multibody dynamics for biomedical re-
search,” Procedia IUTAM, vol. 2, pp. 241–261, 2011, IUTAM Symposium on Human Body Dy-
namics.

[43] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control of a quadrotor uav on
se(3),” in 49th IEEE Conference on Decision and Control (CDC), 2010, pp. 5420–5425.

[44] A. Boeing and T. Braunl, “Evaluation of real-time physics simulation systems,” in Conference
on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia, Dec. 2007,
pp. 281–288.

[45] “Open dynamics engine.” (2004), [Online]. Available: https://www.ode.org/.

CTU in Prague Department of Computer Science

https://www.ode.org/

APPENDIX A 61/62

Appendix A

The reward coefficients used in training for relative scaling of its modular parts:

Reward Name Reward Coefficient Assignment Period

Distance Reward 1 Every FixedUpdate
Velocity Reward 0.5 Every FixedUpdate

High acceleration penalty -0.01 Every FixedUpdate
Angular velocity stability 0.005 Every FixedUpdate
Final positive reward 100 Maximum once per episode
Final negative reward -100 Maximum once per episode

Table 1: Relative reward scaling coefficients.

The full version of the configuration file used for the training of the RL task with the
PPO algorithm described in Section 6.3:

Parameter Value

trainer type ppo
keep checkpoints 5
checkpoint interval 500000

max steps 3000000
time horizon 64
summary freq 10000

threaded true
batch size 2048
buffer size 20480

learning rate 0.0005
beta 0.001

beta schedule linear
epsilon 0.2

epsilon schedule linear
lambd 0.95

num epoch 7
learning rate schedule linear

normalize false
hidden units 128
num layers 2

goal conditioning type hyper
deterministic false

gamma 0.99
strength 1.0

Table 2: PPO algorithm training configuration file.

CTU in Prague Department of Computer Science

62/62

The full version of the configuration file used for the training of the RL task with the
SAC algorithm described in Section 6.3:

Parameter Value

trainer type sac
keep checkpoints 5
checkpoint interval 10000

max steps 100000
time horizon 64
summary freq 1000

threaded true
batch size 500
buffer size 500000

learning rate 0.001
buffer init steps 0.001
save replay buffer false

tau 0.005
learning rate schedule constant

normalize false
hidden units 128
num layers 2

goal conditioning type hyper
deterministic false

gamma 0.99
strength 1.0

Table 3: SAC algorithm training configuration file.

CTU in Prague Department of Computer Science

	Introduction
	Related works
	Contributions
	Project Overview
	Mathematical notation

	Simulation Environment
	Unity3D Overview
	Rendering Pipeline
	Physics Simulation
	Unity UI
	Unity Terminology
	Simulation Technical Aspects
	Unity Assets

	Drone Models
	Model Files Conversion
	Model Import into Unity

	Connecting ROS and Unity
	ROS TCP Connector
	Creating a subscriber in Unity
	Sensoric data publishers in Unity
	OpenVINS

	UAV Control System
	Cascade Control System
	PID controller
	Position Controller
	Velocity Controller
	Acceleration Controller
	Attitude Controller
	Rate Controller
	Mixer

	Control Signal Output

	ML-Agents Framework
	ML-Agents Introduction
	ML-Agents Building Blocks
	Open AI Gym
	Reinforcement Learning Algorithms
	PPO algorithm
	SAC algorithm

	Drone Agent
	Agent Class
	Inspector Tab Settings

	Training
	Hardware/Software Setup
	RL Task definition
	Unity Scene Setup
	Episode Formulation
	Rewards and Observations
	Training Configuration File

	PPO training process
	SAC training process

	Discussion and Models Evaluation
	Training Evaluation
	Algorithms' Performance Evaluation
	Flying with OpenVINS
	Evaluation Summary.

	Conclusion
	Future Improvements, Project Evolution

	References
	Appendix A

