
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Design and implementation of a multiple
time-slot appointment calendar for effective
planning of consultations

Bc. Anton Striapan

Supervisor: RNDr. Ladislav Serédi
May 2023

ii

ZADÁNÍ DIPLOMOVÉ PRÁCE​

I. OSOBNÍ A STUDIJNÍ ÚDAJE

478877 Osobní číslo:​Anton Jméno:​Striapan Příjmení:​

Fakulta elektrotechnická Fakulta/ústav:​

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatika Studijní program:​

Softwarové inženýrství Specializace:​

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:​

Návrh a implementace kalendáře s vícenásobnými časovými úseky pro schůzky pro efektivní plánování
konzultací

Název diplomové práce anglicky:​

Design and implementation of a multiple time-slot appointment calendar for effective planning of
consultations

Pokyny pro vypracování:​
Proveďte rešerši existujících sdílených kalendářů s ohledem na plánování vícenásobných událostí (např. řadu konzultací)​
v daném časovém úseku. Analyzujte způsoby zlepšení uživatelské přívětivosti rozhraní kalendáře a navrhněte architekturu​
pro její implementaci. Vytvořte prototyp sdíleného kalendáře s implementací oboustranného potvrzení schůzek. Zaměřte​
se na interoperabilitu s dalšími kalendáři (i.e. Google Calendar, Microsoft Outlook) prostřednictvím API pro vytvoření​
vícenásobných událostí („aggregated time slots “). Umožněte sdílení těchto událostí mezi populárními aplikacemi typu​
kalendář. Implementované řešení otestuje: do build pipeline doplňte jednotkové testy, přidejte integrační testy a specifické​
testy pro front-end. Proveďte neformální uživatelské testování důležitých funkcionalit řešení, jako například vytvoření účtu,​
přihlášení, dále vytvoření, import, export a nastavení viditelnosti kalendáře, vytvoření a správu konzultací jak ze strany​
pedagoga tak i studenta. Diskutuje výsledky uživatelských testů, a rovněž slabé a silné stránky Vašeho řešení.​

Seznam doporučené literatury:​
Scheduling Meetings in Distance Learning, Jian Wang, Changyong Niu & Ruimin Shen​
https://link.springer.com/chapter/10.1007/978-3-540-76837-1_63​
Time Management - Meaning and its Importance, MSG MANAGEMENT STUDY GUIDE,​
https://www.managementstudyguide.com/time-management.htm​
Meeting Scheduling: Face-to-Face, Automatic Scheduler, and Email Based Coordination, Bongsik Shin &Kunihiko Higa,​
https://www.tandfonline.com/doi/abs/10.1207/s15327744joce1502_3​

Jméno a pracoviště vedoucí(ho) diplomové práce:​

RNDr. Ladislav Serédi kabinet výuky informatiky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:​

Termín odevzdání diplomové práce: 26.05.2023 Datum zadání diplomové práce: 15.02.2023

Platnost zadání diplomové práce: 22.09.2024

___________________________​___________________________​___________________________​
prof. Mgr. Petr Páta, Ph.D.​

podpis děkana(ky)​
podpis vedoucí(ho) ústavu/katedry​RNDr. Ladislav Serédi​

podpis vedoucí(ho) práce​

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Acknowledgements
I am very thankful to RNDr Ladislav
Serédi, my mentor, for his significant
contribution to my writing assignment.
His valuable comments throughout the
semester have been immensely helpful in
refining my work. I would also like to ex-
press my gratitude to all those who have
supported and aided me in this journey.
I am grateful to my family and friends
for their unwavering support and encour-
agement throughout my academic jour-
ney. Their love and belief in me have con-
stantly motivated and inspired me. Lastly,
I would like to thank all of those people
who have contributed to the development
of the resources and tools used or refer-
enced in my project. Their efforts have
enabled me to conduct my research effec-
tively and efficiently.

Declaration
I declare that this work is all my work
and I have cited all sources I have used in
the bibliography. Prague, May , 2023

v

Abstract
The thesis begins with a comprehensive
literature review of existing calendar so-
lutions for multi-slot appointments, par-
ticularly for planning consultations. This
includes analyzing their features, usability,
and user experience. This analysis identi-
fies pain points and areas for improvement
in existing solutions. The thesis proposes
an architecture for a new shared calendar
solution that addresses these issues and
provides a more intuitive and user-friendly
experience. The proposed calendar solu-
tion includes multiple time-slot reserva-
tions, two-way appointment approval, and
easy interoperability with other calendar
tools such as Google Calendar and Out-
look. This is achieved by implementing
an API interface for communication with
other calendar tools, allowing for the cre-
ation of persistent aggregated time slots
and easy import and export of appoint-
ments in an appropriate format for other
popular calendar tools. The thesis also
includes the implementation of a proto-
type of the proposed calendar solution.
This prototype demonstrates the function-
ality and usability of the proposed archi-
tecture, as well as how it improves the
user experience of calendar solutions for
multi-slot appointments. Finally, the the-
sis concludes by discussing the results and
recommendations for future work. The
proposed calendar solution is easy to use,
efficient, and interoperable with other cal-
endar tools, providing a better user expe-
rience for scheduling multi-slot appoint-
ments, particularly for planning consulta-
tions

Keywords: Calendar solutions,
Multi-slot appointments, Consultations,
Usability, User experience, Architecture,
User-friendly, Two-way appointment
approval, Interoperability, API interface,
Aggregated time slots, Import/export,
Prototype, Functionality, Testing,
Feedback, Efficiency, Recommendations

Supervisor: RNDr. Ladislav Serédi
Praha, Resslova 9, E-429 (vchod Karlovo
náměstí 13)

vi

Abstrakt
Práce začíná obsáhlým přehledem litera-
tury o existujících řešeních kalendáře pro
schůzky s více časovými úseky, zejména
pro plánování konzultací. Zahrnuje to ana-
lýzu jejich funkcí, použitelnosti a uživa-
telských zkušeností. Tato analýza identi-
fikuje nedostatky a oblasti pro zlepšení
stávajících řešení. Práce navrhuje archi-
tekturu nového řešení sdíleného kalendáře,
které tyto problémy řeší a poskytuje intui-
tivnější a uživatelsky přívětivější prostředí.
Navržené řešení kalendáře zahrnuje více-
násobné rezervace časových slotů, obou-
směrné schvalování schůzek a snadnou in-
teroperabilitu s dalšími nástroji kalendáře,
jako jsou Kalendář Google a Outlook.
Toho je dosaženo implementací rozhraní
API pro komunikaci s jinými kalendářo-
vými nástroji, které umožňuje vytváření
trvalých agregovaných časových slotů a
snadný import a export schůzek ve vhod-
ném formátu pro jiné populární kalendá-
řové nástroje. Součástí práce je také imple-
mentace prototypu navrhovaného kalen-
dářového řešení. Tento prototyp demon-
struje funkčnost a použitelnost navržené
architektury a také způsoby, kterými zlep-
šuje uživatelské prostředí kalendářových
řešení pro schůzky s více časovými sloty.
V závěru práce jsou diskutovány výsledky
a doporučení pro další práci. Navržené ře-
šení kalendáře je snadno použitelné, efek-
tivní a interoperabilní s jinými nástroji
kalendáře a poskytuje lepší uživatelský
zážitek při plánování schůzek s více sloty,
zejména při plánování konzultací

Klíčová slova: Řešení kalendáře,
Schůzky s více časovými sloty,
Konzultace, Použitelnost, Uživatelská
zkušenost, Architektura, Uživatelsky
přívětivé, Oboustranné schvalování
schůzek, Interoperabilita, Rozhraní API,
Sdružené časové sloty, Import/export,
Prototyp, Funkčnost, Testování, Zpětná
vazba, Efektivita, Doporučení

Překlad názvu: Návrh a implementace
kalendáře s více násobnými časovými
úseky pro schůzky pro efektivní
plánování konzultací

vii

Contents
1 Introduction 1
1.1 Non Functional requirements 2

1.1.1 Common requirements 2
1.1.2 Student requirements 2
1.1.3 Staff requirements 2

1.2 User scenarios 3
1.2.1 Login and connect CTU account 3
1.2.2 Connect new calendar 4
1.2.3 Create calendar event 4
1.2.4 Assign on event 5

2 Done research 7
2.1 Calendar Server 8

2.1.1 Zuul OAAS 9
2.1.2 Sirius API 11

2.2 SSO Gate . 15
2.3 KOS API . 15
2.4 Google Calendar API 17

2.4.1 Concepts overview 17
2.4.2 Calendars events 18
2.4.3 Sharing & attendees 19

3 Proposed architecture 21
3.1 Database . 22
3.2 Backend . 23
3.3 Frontend . 26
4 Implementation 29
4.1 Backend . 29
4.2 Frontend . 30

4.2.1 Architecture and Business Logic
Description 30

4.2.2 UI/UX 31
5 User service 37
5.1 Database . 37

5.1.1 Architecture description 38
5.1.2 ORM implementation 39
5.1.3 Repository 40

5.2 Backend . 41
5.2.1 Architecture description 41
5.2.2 Data Validation 42
5.2.3 Eureka Service visibility 44

6 Calendar service 45
6.1 Database . 45

6.1.1 Architecture description 46
6.1.2 ORM implementation 48
6.1.3 Repositories 50

6.2 Backend . 52

6.2.1 Architecture description 53
6.2.2 Data Validation 54
6.2.3 Calendar Export 58
6.2.4 CalendarEvent creation 59

7 Authorization 63
7.1 Internal Authorization 63

7.1.1 Frontend 64
7.1.2 Backend 64
7.1.3 Database 65

7.2 External Authorization 66
7.2.1 Google API 66
7.2.2 CTU API 68

8 Testing 71
8.1 Backend . 71
8.2 Frontend . 72
8.3 Gitlab CI/CD 73
9 Conclusion 75
A Application setup instructions 77
A.1 How to run and serve application 78

A.1.1 With backend 78
A.1.2 With mocked backend 79

B Glossary 81
C List of Abbreviations 83
D Bibliography 85

viii

Figures
1.1 Flowchart diagram of login and

subsequent connecting of CTU
account process 3

1.2 Flowchart diagram of connecting
the new calendar to user account
process . 4

1.3 Flowchart diagram of creating a
new calendar event for the user with
role STAFF process 4

1.4 Flowchart diagram of how can
student assign himself for timeslot . 5

2.1 Home page of AppManager service 9
2.2 Project settings page of

AppManger service 10
2.3 Available additional services for

mine project 10
2.4 Sirius API documntation 11
2.5 Sirius API request example 12
2.6 Sirius API response example . . . 13
2.7 SSO gate authorization page . . . 15
2.8 KOS API documntation 16
2.9 KOS API user controller

documentation 16
2.10 Google concept of shared

calendars diagram 17
2.11 Relationships between the user,

calendar, and event entities 18

3.1 Entity relationship diagram of the
database . 22

3.2 Ordinary microservices
architecture . 24

3.3 Mine version of microservices
architecture for this project 25

3.4 Ngrx state management lifecycle
diagram . 27

4.1 Frontend sign up page 31
4.2 Frontend login page 32
4.3 Frontend User Config age 33
4.4 Frontend Calendar Config Page . 34
4.5 Frontend Calendar Page, Calendar

Is Not Private 34
4.6 Frontend Calendar Page, Month

View Mode . 35

4.7 Frontend Calendar Page, Week
View Mode . 35

4.8 Frontend Calendar Page, Calendar
Event Creation 36

5.1 UML diagram of the UserService
database . 38

5.2 UserService layered architecture 41

6.1 Architecture of calendar database 46

7.1 Frontend login page 64
7.2 Google console homepage 66
7.3 Google Cloud setting up

environment 67
7.4 Google cloud credentials 67
7.5 CTU login page 68

8.1 Gitlab CI/CD 73

ix

Tables
2.1 Example of the interface that will

be mocked . 14

5.1 User entity mapped on the Java
class with ORMl 39

5.2 Location entity mapped on the
Java class with ORMl 39

5.3 Implementation of UserRepository
for database data accessl 40

5.4 Example of aggregated validation
function for registration datal 42

5.5 Example of validation function
that adds validation for name field 43

5.6 Eureka dependency 44
5.7 Eureka dependency 44

6.1 ORM implementation for calendar
entity . 48

6.2 ORM implementation for
calendarDate entity 49

6.3 ORM implementation for
calendarEvent entity 49

6.4 ORM implementation for calendar
entity . 50

6.5 CalendarRepository
implementation 50

6.6 CalendarEventRepository
implementation 51

6.7 Example of aggregated validation
function for calendar data 54

6.8 Example of aggregated validation
function for calendar event creation
data . 56

6.9 Example of aggregated validation
function for calendar timeslot data 57

6.10 Example of export calendar
service . 58

6.11 Example createEvent function . 60
6.12 Example create TimeSlots

function . 61

7.1 Example of user repository 65
7.2 Example uri returned after code

retrieval from CTU auth server . . . 69
7.3 Example JSON response with

token . 69

x

Chapter 1
Introduction

The goal of this master thesis is to study user cases of interaction with shared
Calendars and create a new tool with new functionality which is not used
in another solution. The future tool will combine Calendars from different
sources, sources can be as cloud Calendar or imported from *.ICal format
file. The tool will be connected to the CTU info system, which will allow
retrieving user roles, such as STUDENT or STAFF, to load their calendars, for
future work with them. The default user will be able to create his own sets of
Calendars, set them a level of visibility, PUBLIC or PRIVATE, if PRIVATE type
was selected the calendar won’t be visible for other users of the application, it
can be visible only if they were added to the whitelist. The type of Calendar
can be changed in Calendar settings. It will allow creating shared Events, in
our case main type of Events is teacher-student consultations, with better
user experience, Events can be split into time slots, and users, mostly with
role STUDENT can book them. An additional functionality, which can be not
implemented is to create different time areas, depending on the user with
role STAFF schedule, with different possibilities of additional consultation
time zones: green, yellow, and red. For example, students want to offer a
consultation for the teacher and the teacher has a lesson at that time, and
the area will be background painted red. If the teacher will create a calendar
event for consultation and define how many time slots it will be divided it will
be background painted with green. And all other times will be background
painted yellow. But for this type of consultation, the student should apply,
and add a note, about why the teacher should approve it. So after the creation
of this consultation student should wait for approval. It can be accepted
or declined. Calendars can be also exported into *.ICal format file, and
transferred into another more preferred calendar.

1

1. Introduction
1.1 Non Functional requirements

In the next chapter, I will describe the basic nonfunctional requirements
throw the application. They will be divided into three different groups:. Common requirements. Unique student requirements. Unique staff requirements

1.1.1 Common requirements

Common requirements for all types of users will be. Create account. Log in. Login to CTU workspace. CRUD on Calendar. CRUD on Event.Assign the time slot of the Event to an authorized user. Import external Calendars. Export Calendar in *.Ical format

1.1.2 Student requirements

For users with role STUDENT will be the next requirements. Suggest an extra time slot for a consultation, not during the defined
consultation time period.Assign or unassign the time slot of consultation to the Event to an
authorized user

1.1.3 Staff requirements

As staff users will be possible, to.To approve extra consultation. Create consultation Event. Setup consultation settings such as duration, amount of time slots on
which this event will be divided, amount of students who can be assigned
into one slot

2

.................................... 1.2. User scenarios

1.2 User scenarios

In this section, I will show diagrams of some use case scenarios for a better
understanding of application features. Diagrams will be placed in a logical
order, so each next diagram can reuse described processes above.

1.2.1 Login and connect CTU account

This diagram shows us the process of login into or creating an account in the
application, then the user can connect the CTU account to it. After that
depending on user data loaded from CTU servers, the system will detect the
role of the user, STUDENT or STAFF and finishes the user account setup.

Figure 1.1: Flowchart diagram of login and subsequent connecting of CTU
account process

3

1. Introduction
1.2.2 Connect new calendar

This diagram shows the process of adding a new calendar to the user, and if
the calendar was added successfully the data from it will be displayed to the
user.

Figure 1.2: Flowchart diagram of connecting the new calendar to user account
process

1.2.3 Create calendar event

Here I will show how users with role STAFF can create a time slot for consul-
tation

Figure 1.3: Flowchart diagram of creating a new calendar event for the user
with role STAFF process

4

.................................... 1.2. User scenarios

1.2.4 Assign on event

This diagram shows how students can assign themselves to available timeslots
for consultation.

Figure 1.4: Flowchart diagram of how can student assign himself for timeslot

5

6

Chapter 2
Done research

In this chapter, I will describe the first steps which should be done before
starting to design the system architecture or implementation phase. At
this moment I expect to find out how to efficiently parse user information
from CTU open API, calendar events, which technologies to use, and the
approximate architecture of the application. In the next chapter I will
figure out how it can be implemented calendar server and a general idea of
implementations.

7

2. Done research
2.1 Calendar Server

After basic research implementation of a calendar server can be done in two
ways, the first is to use one of the existing solutions (CalDAV) servers and
the second one is to implement a new calendar server for my own purposes.

Calendaring Extensions to WebDAV, or CalDAV, is an Internet standard
allowing a client to access and manage calendar data along with the ability
to schedule meetings with users on the same or on remote servers. It lets
multiple users share, search and synchronize calendar data in different loca-
tions. It extends the WebDAV (HTTP-based protocol for data manipulation)
specification and uses the iCalendar format for the calendar data. The access
protocol is defined by RFC 4791. Extensions to CalDAV for scheduling are
standardized as RFC 6638. The protocol is used by many important open-
source applications. Known CalDAV servers are: Google Calendar, Apple,
Bedework, Chandler Server, DavMail, Oracle Siebel CRM

Implementation of my own calendar server will cost much longer time but
can be more efficient in terms of functionality and exploring time. The basic
requirements for a calendar server are:.Allows storing the events..Allows merging events into a defined sequence..Allows editing and deleting events..Allows setting the visibility and accessibility of calendars and calendar

events..Allows importing data from third-party APIs..Allows exporting data into different formats.

Unfortunately, my attempts to test and evaluate the various APIs under
consideration were hindered by privacy concerns and the lack of available
contacts. Despite these challenges, I was able to make some progress towards
identifying a suitable API for my proposed solution. Specifically, I was
fortunate to receive documentation from the individual responsible for the
KOS API, which provided valuable insights into its functionality and potential
applicability.

Additionally, I learned that FelSight is currently developing an API under
the Sirius platform, which would provide access to calendar events. Although
this information could not be incorporated into my project within the required
timeframe, it could be leveraged to create a dummy connector interface that
utilizes the appropriate date formats and API calls. By doing so, we could
save significant implementation time in the future when integrating this
service.

8

................................... 2.1. Calendar Server

Despite the setbacks encountered during my research, I remain confident
that the insights gained through this process will prove valuable in identifying
the most suitable API for my proposed solution. Moving forward, I plan to
continue exploring other potential APIs, leveraging my newfound knowledge
to evaluate their functionality and applicability. Ultimately, the goal is to
develop a robust and efficient solution that meets the needs of our users,
while also adhering to the highest standards of data privacy and security.

2.1.1 Zuul OAAS

CTU develops its own OAuth 2.0 authorization server (hereinafter referred
to as OAAS), which is called Zuul OAAS. It’s open-source and you can
find it on GitHub. It is a separate OAAS, i.e. it is not part of the own
service exposing the API (resource server), but multiple separate services
can use one (remote) OAAS that issues and validates tokens. OAAS runs at
https://auth.fit.cvut.cz/ and can be used by anyone from the CTU academic
community (not only FIT). The addresses of the individual "endpoints" are
as follows:. Authorization Endpoint. Token Endpoint. Check Token Endpoint

The next step will be to log into AppsManager and create a new project.

Figure 2.1: Home page of AppManager service

9

http://github.com/cvut/zuul-oaas
https://auth.fit.cvut.cz/
https://auth.fit.cvut.cz/oauth/authorize
https://auth.fit.cvut.cz/oauth/token
https://auth.fit.cvut.cz/oauth/check_token
https://auth.fit.cvut.cz/manager/index.jsf

2. Done research
After the successful creation of the project, we will receive client_id and

client_secret which will be used in future APIs calls.

Figure 2.2: Project settings page of AppManger service

In the services tab, we can enable or request access for specific CTU API

Figure 2.3: Available additional services for mine project

After that preparation is done we can start the authentication and data-
retrieving processes, which will be described in the chapters below.

10

................................... 2.1. Calendar Server

2.1.2 Sirius API

So the best API to communicate with to receive data about calendar events
such as lectures, labs, and other university events is Sirius API. By utilizing
Sirius API, we can obtain the latest information on all the upcoming university
events, including their dates, times, and locations. The API also allows us
to filter the data based on various criteria, such as the event type or the
department offering it. This flexibility ensures that we will receive only
the information that is relevant to us, rather than having to sift through
a mountain of irrelevant data. In the figure below we can see the Swagger
styled API description which provides us a clear vision of what endpoints it
provides, how to trigger them and what data should be sent, and what data
will be received in the response.

Figure 2.4: Sirius API documntation

11

2. Done research
In the next figure, we can see an example of what parameters can be added

to the request to receive more accurate data.

Figure 2.5: Sirius API request example

The figure below is an illustration of sample data that is intended to be
transmitted as a response. This set of data is used as a framework for defining
the interface that specifies the type and structure of the expected response
payload. Subsequently, this interface is employed to generate mock objects
that replicate the behavior and format of the actual response data.

The interface serves as a contract between the client and the server, ensuring
that the data is transmitted in a structured and consistent manner. The
interface specifies the data elements, their types, and the structure of the
payload. In essence, it defines the blueprint for the expected response payload.

By defining this interface beforehand, we can effectively model the behavior
and structure of the data that will be transmitted, and subsequently use that
interface to generate mock objects that simulate the behavior and structure
of the actual response data.

These mock objects are especially useful in our situation where there
is insufficient time to develop and integrate the complete set of system
functionality. In this case, mock objects can serve as a stand-in or substitute
for the actual data, allowing us to test and verify the overall system behavior
and integration, without the need for fully functional components.

12

................................... 2.1. Calendar Server

Figure 2.6: Sirius API response example

The provided code below is a Java class called EventsResponse that
represents a response from an API call. It uses the Lombok library to generate
getter, setter, and setter methods, reducing the amount of boilerplate
code required.

The EventsResponse class has two instance variables: meta and events.
meta represents metadata about the response, including the number of items
returned, the offset used for pagination, and the maximum number of items
that can be returned. events is a list of objects that represent individual
events.

There are three nested classes defined within the EventsResponse class:
Meta, Event, OriginalData, and Links.

The Meta class contains the metadata variables mentioned earlier. The
Event class contains information about an individual event, such as its ID,
name, start and end times, capacity, and occupancy. Additionally, the Event
class contains two other nested classes, OriginalData and Links, which
contain further information about the event.

The OriginalData class contains data specific to the event, such as the
start and end times, and the ID of the room in which it will take place.
Finally, the Links class contains links to other resources related to the event,
such as the room, course, and lists of teachers and students involved.

13

2. Done research
import java.util.List;
import lombok.Data;
import lombok.NoArgsConstructor;

@Data
@NoArgsConstructor
public class EventsResponse {

private Meta meta;
private List<Event> events;

@Data
@NoArgsConstructor
public static class Meta {

private int count;
private int offset;
private int limit;

}

@Data
@NoArgsConstructor
public static class Event {

private int id;
private String name;
private int sequence_number;
private String starts_at;
private String ends_at;
private boolean deleted;
private int capacity;
private int occupied;
private String event_type;
private String parallel;
private OriginalData original_data;
private Links links;

}

@Data
@NoArgsConstructor
public static class OriginalData {

private String starts_at;
private String ends_at;
private String room_id;

}

@Data
@NoArgsConstructor
public static class Links {

private String room;
private String course;
private List<String> teachers;
private List<String> students;
private List<Integer> applied_exceptions;

}
}

Table 2.1: Example of the interface that will be mocked

14

...................................... 2.2. SSO Gate

2.2 SSO Gate

SSO means Single Sign-On, you can get access to all participant applications
at one time by entering your username and password. This principle is a
lot on the university websites like KOS, Moodle, and CourseWare. It allows
access to other systems of the CTU information system (IS CTU) for 10
hours without re-entering the name and password. For user authentication,
it is necessary to use CTU Password.

Figure 2.7: SSO gate authorization page

Throughout the entire duration of the project, no individual contacts or
documentation were discovered. This can be attributed to the fact that
authorization logic was implemented on other servers (OAuth), while my
application merely serves as a redirect to that resource. The responsibility
of managing the authorization process falls under a different entity, while
my application’s task is to securely store the access token and utilize it for
request authorization.

2.3 KOS API

KOSapi provides an application interface as a RESTful web service that
accesses a selected portion of KOS data.

It enables and supports the creation of school and student applications that
require online application access to education-related data for their operation.
It eliminates the need to process exports, the constant duplication of all data
and the hassle of maintaining it. It builds on the proven concepts of the Web
as a distributed environment of interrelated information.

15

2. Done research

Figure 2.8: KOS API documntation

As opposed to the Sirius AP, KOS API doesn’t provide good-looking and
well-formed documentation from where would be visible what data structure
should be sent and what will be received.

Figure 2.9: KOS API user controller documentation

16

................................. 2.4. Google Calendar API

2.4 Google Calendar API

The Google Calendar API is a RESTful API that can be accessed through
explicit HTTP calls or via the Google Client Libraries. The API exposes
most of the features available in the Google Calendar Web interface.

2.4.1 Concepts overview

Each Calendar user is associated with a primary Calendar and a number of
other Calendars that they can also access. Users can create Event and invite
other users, as shown in the following diagram:

Figure 2.10: Google concept of shared calendars diagram

This example shows two users, Susan A and Wei X. Each has a primary
Calendar and several other associated Calendars. The example also shows
two Events: an end-of-year presentation and a team offsite. Here are some
facts shown in the diagram:. Susan’s Calendar list includes her primary Calendar as well as Calendars

for her team and cello lessons..Wei’s Calendar list includes his primary Calendar as well as the team
Calendar, a status tracking Calendar, and Susan’s primary Calendar..The end-of-year presentation event shows Susan as the organizer and
Wei as an attendee..The team off-site in Hawaii Event has the team Calendar as an organizer
(meaning it was created in that Calendar) and copied to Susan and Wei
as attendees.

17

2. Done research
2.4.2 Calendars events

A calendar is a collection of related events, along with additional metadata
such as summary, default time zone, location, etc. Each calendar is
identified by an ID which is an email address. Calendars can have multiple
owners. An event is an object associated with a specific date or time range.
Events are identified by a unique ID. Besides a start and end date-time,
events contain other data such as summary, description, location, status,
reminders, attachments, etc. Google Calendar supports single and recurring
Events:.A single Event represents a unique occurrence..A recurring Event defines multiple occurrences.

Events may also be timed or all day:.A timed Event occurs between two specific points in time. Timed Events
use the start.DateTime and end.DateTime fields to specify when they
occur..An all-day Event spans an entire day or consecutive series of days. All-
day Events use the start.date and end.date fields to specify when they
occur. Note that the timezone field is insignificant for all-day Events.

Events have a single organizer which is the Calendar containing the main
copy of the Event. Events can also have multiple attendees. An attendee is
usually the primary Calendar of an invited user. The following diagram shows
the conceptual relationship between Calendar, Events, and other related
elements:

Figure 2.11: Relationships between the user, calendar, and event entities

18

................................. 2.4. Google Calendar API

2.4.3 Sharing & attendees

There are two ways to share Calendar and Event data with others. Firstly,
you can share an entire Calendar, with a specified level of access. For example,
you can create a team Calendar, and then do things like:.Grant all members of your team the right to add and modify Events in

the Calendar.Grant your boss the right to see the Events on your Calendar.Grant your customers the right to only see when you are free or busy,
but not the details of the Events

You can also adjust the access to individual Events on the shared Calendar.
Alternatively, you can invite others to individual Events on your Calendar.
Inviting someone to an Event will put a copy of that event on their Calendar.
The invitee can then accept or reject the invitation, and to some Event also
modify their copy of the Event — for example, change the color it has in
their Calendar, and add a reminder.

19

20

Chapter 3
Proposed architecture

When research is done we can move into the system architecture phase. From
the information that we got we can make next conclusions:. System will have a frontend and backend parts.. System will need an internal database for storing sensitive data.. Backend should be time efficient with big data sets and multiple users.. Backend should be divided into micro-services architecture for reducing

the point of failure.. Backend should have authorization, for secure communication.

Parts of the system will be described more in the chapters below:. Frontend: Angular, NGRX, Rx js, Angular Material. Backend: Java Spring Boot, Micro-services. Database: MongoDB

21

3. Proposed architecture
3.1 Database

We don’t have any restrictions for the database, so the choice of the database
is not that important. For this project, I would like to use a NoSQL database
such as MongoDB. MongoDB is a source-available cross-platform document-
oriented database program. Classified as a NoSQL database program, Mon-
goDB uses JSON-like documents with optional schemes. The core of the
MongoDB developer data platform is a multi-cloud database service built for
resilience, scale, and the highest levels of data privacy and security. Mon-
goDB Atlas provides a reliable and user-friendly platform for managing data,
allowing for deployment in various regions on multiple cloud providers, and
automatically implementing security measures for optimal performance. It is
a flexible solution that can scale to meet global, multi-region, or multi-cloud
needs. I will show one of the first possible future database views in the
following diagram.

Figure 3.1: Entity relationship diagram of the database

22

...................................... 3.2. Backend

As we can see there are 6 basic database entities, which will be used with
ORM:. Location. User. Calendar. CalendarDate. CalendarEvent. CalendarTimeSlot

3.2 Backend

As I described above, there are basic requirements for backend. Backend should be time efficient with big data sets and multiple users.. Backend should be divided into micro-services architecture for reducing
the point of failure.. Backend should have authorization, for secure communication.

For the back-end side application was chosen Java Spring Boot was. I stopped
my view on Spring Boot because of the features and benefits it offers as given
here:. It provides a flexible way to configure Java Beans, XML configurations,

and Database Transactions.. It provides powerful batch processing and manages REST endpoints.. In Spring Boot, everything is auto-configured; no manual configurations
are needed.. It offers an annotation-based spring application. Eases dependency management. It includes Embedded Servlet Container

23

3. Proposed architecture
As backend architecture was chosen microservices architecture. Microser-

vices is an architectural style that structures an application as a collection of
services that are:. Distributed coarse-grained services provide functionality for each other.. Shared user interface.. Shared database (logical partitioning).. Flexible, domain-driven.. Highly maintainable, and testable.. Loosely coupled.. Independently deployable..Organized around business capabilities..This architecture can be owned by a small team, in my case it will be

only me.

The microservice architecture enables the rapid, frequent, and reliable delivery
of large, complex applications. It also enables an organization to evolve its
technology stack. In the diagram below I will show you the basic micro-services
structure.

Figure 3.2: Ordinary microservices architecture

24

...................................... 3.2. Backend

But due to the specifics of my implementation, which will be described
later, I changed a bit of basic architecture but the idea is still the same.
Changes can be found in the next diagram.

Figure 3.3: Mine version of microservices architecture for this project

The idea was to connect Api Gateway gateway and user service, due to
the amount of should be done work and the limited time. But they can
be split in the future. The main functionality of Api Gateway is to accept
and filter all HTTP requests, hide all other backend services, so they won’t
be visible and accessible from the global network and redirect requests to
different non-visible services according to the data which should be returned.
But for the correct functioning of this architecture, we need to create a local
network, so our backend services will be hidden, and implement authorization
methods on each service, to protect from unexpected sensitive data stilling.
And this will cost a lot of time which I don’t have for now. My solution is, to
add a gateway functionality to the user service, so it will handle all requests,
filter them, perform authorization of the user, and if it will be successful
returns or request the data from another service. It will be more time and
work effectively for my case but will keep the basic ideas, functionality, and
pros from microservices architecture.

25

3. Proposed architecture
3.3 Frontend

For the frontend side was chosen Angular, because I have a lot of experience
with it, so the development will be done much faster and with a lower amount
of problems during the development. Angular is a development platform,
built on TypeScript. As a platform, Angular includes:

.A component-based framework for building scalable web applications.

.A collection of well-integrated libraries that cover a wide variety of fea-
tures, including routing, forms management, client-server communication,
and more.

.A suite of developer tools to help you develop, build, test, and update
your code.

With Angular, you’re taking advantage of a platform that can scale from
single-developer projects to enterprise-level applications. Angular is designed
to make updating as straightforward as possible, so take advantage of the latest
developments with minimal effort. For the design of UI components Angular
Material was chosen because it provides a lot of implemented solutions that
can be reused, reworked, or extended for my application. As state manager,
I decided to choose NGRX library. NGRX is a library for Angular that
implements the Redux pattern. It is used for managing state in Angular
applications. The Redux pattern is a way of managing the application state
in a predictable and consistent manner. It is based on the principles of
immutability and unidirectional data flow. NGRX provides a set of tools for
implementing this pattern in Angular applications, including a centralized
store for the application state, actions and reducers for the modifying state,
and selectors for the querying state. NGRX also provides integration with the
RxJS library, which allows for powerful and efficient handling of asynchronous
data streams. This allows NGRX to handle complex, real-world scenarios
such as handling network requests and handling complex user interactions.
NGRX is a popular library among Angular developers as it helps to make
their application more predictable and easy to test by centralizing the state
and logic of the application and making it more manageable. The data flow
is described in the diagram below.

26

...................................... 3.3. Frontend

Figure 3.4: Ngrx state management lifecycle diagram

Also, as second main technology will be used Nx monorepo, which brings us
a different project structure. A monorepo is a code management strategy in
which multiple projects are stored in a single repository. In an Nx monorepo,
these projects are managed using the Nx workspace tool. There are many
benefits to using an Nx monorepo for your project.

One key advantage is improved code sharing and reuse. Because all projects
are stored in a single repository, it’s easy to share code between them. This
means that if we have multiple projects that require similar functionality,
we can write the code once and reuse it across all the projects. This can
significantly reduce development time and increase code quality.

Another advantage of an Nx monorepo is simplified configuration and
tooling. Because all projects are managed using the Nx workspace tool, we
only need to configure tooling once for the entire monorepo. This can reduce
the amount of time spent on setup and configuration and can help ensure
consistency across projects.

In addition, an Nx monorepo can make it easier to maintain a consistent
coding style across projects. Because all projects are managed using the same
tooling and configuration, it’s easier to enforce coding standards and ensure
consistency.

An Nx monorepo can also make it easier to manage dependencies. Because
all projects are stored in a single repository, it’s easier to manage dependencies
between them. This can help reduce the likelihood of dependency conflicts
and make it easier to upgrade dependencies when necessary.

Furthermore, an Nx monorepo can help improve testing and code quality.
Because all projects are stored in a single repository, it’s easier to test them
together and ensure that changes made to one project don’t break another.
This can help improve overall code quality and reduce the likelihood of bugs
and regressions.

Another benefit of an Nx monorepo is improved deployment and release

27

3. Proposed architecture
management. Because all projects are managed using the same tooling and
configuration, it’s easier to deploy and release them together. This can help
reduce the likelihood of deployment issues and make it easier to roll back
changes if necessary.

An Nx monorepo can also make it easier to scale my project. Because all
projects I stored in a single repository, it’s easier to add new projects and
features as my project grows. This can help reduce the overhead associated
with managing multiple repositories and make it easier to keep track of
everything.

In addition, an Nx monorepo can make it easier to refactor my code.
Because all projects are stored in a single repository, it’s easier to make
changes to shared code without having to update multiple repositories. This
can help reduce the time and effort required for refactoring.

Finally, an Nx monorepo can help reduce development costs. Because all
projects are stored in a single repository, it’s easier to manage them and
reduce duplication of effort. This can help reduce development time and costs
and improve overall project efficiency.

In conclusion, there are many benefits to using an Nx monorepo for this
project. From improved code sharing and reuse to simplified configuration
and tooling, also Nx monorepo can help improve project efficiency.

28

Chapter 4
Implementation

This chapter thoroughly explains how a calendar application has been imple-
mented. It encompasses the frontend and backend design, as well as database
design. The primary emphasis is on the collaboration of the two backend
services: the CalendarService and the UserService. In this chapter, we
will explain the process of storing and retrieving data for each service. More-
over, we will guide you through the implementation of different features
in a calendar application, such as user registration, login, data modifica-
tion, calendar administration, and event scheduling from both front-end and
back-end perspectives. In addition to functional requirements, we will cover
non-functional requirements like performance, availability, and security. We
will then clarify how they are incorporated into the back-end, front-end, and
database. Ultimately, this chapter will provide you with a comprehensive
comprehension of the design and architecture of the calendar application.

4.1 Backend

The backend of this application consists of two parts: the CalendarService
and the UserService. These services have their own databases and are
responsible for different functions of the application. The CalendarService
manages users’ calendars, events, and time slots. Users can create, update,
and delete their calendars and events. They can also assign other users to
specific time slots and import external calendars to keep all their appointments
and events in one place.

The CalendarService is capable of handling a large number of users
and events without slowing down, making it scalable. In contrast, the
UserService takes care of managing user data and authentication processes,
such as user sign-up, login, and account information. It also ensures that
user data is kept secure, encrypted, and adheres to the application’s privacy
requirements.

The purpose of the UserService is to make sure that users can access
their accounts at all times, even if there are problems. The application has a
prototype that demonstrates how these services work, including features like
sign-up, log-in, managing user data, updating calendars and events, assigning
users to specific time slots, importing external calendars, exporting calendars,

29

4. Implementation....................................
and more.

The application features are specifically designed to allow testing of all
use cases and functionality. Aside from the functional requirements, there
are also several non-functional requirements that the application must meet.
These include high performance to ensure quick access to user data, high
availability to allow users access to their data anytime, and security to protect
and encrypt user data during transmission and while at rest.

4.2 Frontend

4.2.1 Architecture and Business Logic Description

The frontend part of the application is built using Angular with an nx
monorepo structure. The application is organized into different libraries that
handle various parts and features. The four basic library types used are
data-access, component, feature, and utils. The frontend provides a range of
functionalities for the users. Users can sign up or sign in to the application,
and their access tokens are stored securely in the local storage of the browser.
This allows for seamless authentication and authorization throughout the
user’s session. The application supports CRUD operations for both user-
related entities and calendar-related entities. Users can create, read, update,
and delete records associated with users and calendars. These operations are
implemented using ngrx, which provides a convenient and efficient way to
manage state and handle actions. To enhance authentication capabilities, the
frontend integrates with Google and CTU. Users can authenticate using their
Google accounts, which is achieved through the integration with the Google
Calendar API. Additionally, the integration with the CTU API enables users
to authenticate using CTU credentials. One of the core functionalities of the
frontend is the ability to fetch calendars from the Google Calendar API and
the Sirius API. This allows users to access and manage their calendars within
the application. The fetched calendar data can be displayed, edited, and
synchronized with the backend. In order to facilitate development and testing,
the frontend also includes a mockProviderService. This service allows the
application to run without a backend, providing simulated responses for API
calls and enabling a smooth development experience.

30

...................................... 4.2. Frontend

4.2.2 UI/UX

Sign up

In this figure we can see the frontend sign-up page, where the user should fill
all input forms because all of them are required, also frontend will validate
each input by a different rule, for example for email field will be used email
regex patterns to check the if the user provides a valid email address. After
successful registration user will be notified and redirected to the login page
to process the next steps in user authentication.

Figure 4.1: Frontend sign up page

31

4. Implementation....................................
Login

In this figure, there is a screenshot of the login page of the application. It also
has all fields marked as required and after data validation /login endpoint
will be triggered to retrieve access token. If the response code is 200 the
user will be redirected to the /home frontend page where he will be able to
check his calendar.

Figure 4.2: Frontend login page

32

...................................... 4.2. Frontend

User Config Page

If the user clicks on the cogwheel on the header he will be redirected to the
/settings page. By default to user will be displayed user config page, where
he can change basic personal data and connect external calendars such as
Google or CTU. Same as for the login or sign-up process all input fields will
be validated on the frontend part also. On the right side, the user has a list
of his calendars, if he clicks on it, the calendar config page will be opened.

Figure 4.3: Frontend User Config age

33

4. Implementation....................................
Calendar Config Page

On this page, the user can change the visibility of his calendar, and the name
of the calendar, by default external imported calendars are created with a
private option.

Figure 4.4: Frontend Calendar Config Page

Also, the user can add or remove viewers for the calendars, if the user has
a calendar markered with private false this block won’t be shown.

Figure 4.5: Frontend Calendar Page, Calendar Is Not Private

34

...................................... 4.2. Frontend

Calendar Page

This is the main component of this application and allows the user to perform
all necessary operations with the calendar itself. Display options can be
changed in the right top corner between - Day, Week, and Month. Screenshots
of Week and Month viewer mode will be bellow.

Figure 4.6: Frontend Calendar Page, Month View Mode

Figure 4.7: Frontend Calendar Page, Week View Mode

35

4. Implementation....................................
Calendar Event Creation

This figure shows us a calendar event creation UI. Same as other forms of
the application they have local validation. And after that, the process will
be started on the frontend part and finished on the backend.

Figure 4.8: Frontend Calendar Page, Calendar Event Creation

36

Chapter 5
User service

In this section, we will dive into the implementation details of the UserService,
which serves as the root of the application and handles user authentication and
management. This service manages user data and redirects HTTP requests
to the CalendarService, which manages calendars and events. Additionally,
the UserService handles service visibility by Eureka, a service discovery tool
that allows services to find and communicate with each other.

We will also cover the database design for this service, which stores user
data and supports various application functionalities. Specifically, we will
describe how user sign-up and login processes are implemented, and how
user data is stored and retrieved from the database. Additionally, we will
cover the implementation of functionality for updating user data, such as
email addresses, Access tokens, and other settings. We will also discuss how
the UserService interacts with the Eureka service registry to register and
discover other services in the application.

Finally, we will discuss the non-functional requirements of the UserService,
such as security and performance, and how they are implemented in the
database design and service discovery mechanisms. By the end of this section,
you will have a comprehensive understanding of the implementation details
of the UserService and the associated database and service discovery tools.

5.1 Database

In this section, we will discuss the database architecture for the UserService,
which is responsible for managing user data and authentication. A well-
designed database is critical to the success of any application, and the
UserService is no exception. The database must be able to efficiently
store and retrieve user data, support various functionalities of the application,
and maintain data integrity and security. We will begin by discussing the
requirements for the database, including the types of data that need to be
stored and how it will be accessed. We will then cover the design decisions for
the database schema, such as table structure, relationships between tables,
and data types. Additionally, we will describe the database management
system used for the UserService and how it handles tasks such as data
indexing, query optimization, and data backup and recovery.

37

5. User service
5.1.1 Architecture description

Figure 5.1: UML diagram of the UserService database

The diagram shows the database schema for the UserService, which is
responsible for managing user data and authentication. The central entity in
the schema is the User entity, which has attributes:. id. username. password. name. surname. email

The id attribute is a string that uniquely identifies each user in the system.
The User entity also has a relationship with the UserRoleEnum entity, which
is an enumeration that defines two values: STUDENT and STAFF. This
relationship indicates the role of the user in the system. Additionally, the
User entity can store the user’s location with three attributes:. id. name. address

The User entity has an array of strings with calendarIds. This attribute
stores an array of strings that represent the unique identifiers of the calendars
associated with the user. In the final representation of the application, the
cvutAC parameter has been removed, explanations of this decision will be
given in the next chapters. This UML database diagram provides a clear
representation of the schema for the UserService, which is critical to the
success of the application.

38

...................................... 5.1. Database

5.1.2 ORM implementation

@Document
@Data
@NoArgsConstructor
public class User {

@Id
private String id;
private String username;
private String password;
private String name;
private String surname;
private String email;
private LocalDateTime createdDate;
private List<Role> roles;
private List<Location> locations;
private List<Integer> calendars;
private List<Integer> calendarsTimeSlots;

}

Table 5.1: User entity mapped on the Java class with ORMl

@Document
@Data
@NoArgsConstructor
public class Location {

@Id
private String id;
private String name;
private String address;

}

Table 5.2: Location entity mapped on the Java class with ORMl

These Java classes are designed to work with an Object-Relational Mapping
(ORM) framework that connects to MongoDB databases. To indicate that a
class should be treated as a MongoDB document, the @Document annotation
from the Spring Data MongoDB library is used. This annotation, combined
with MongoTemplate, associates the Java class with a MongoDB collection.
Additionally, the @Data annotation from Lombok generates getter and setter
methods, as well as toString, equals, and hashCode methods for the class
automatically, reducing the amount of code that needs to be written.

The annotation @NoArgsConstructor can be used with Lombok to gen-
erate a constructor that has no arguments. This allows you to create an
instance of the class without specifying any field values. The field id is
marked as the primary key using the @Id annotation. The other fields rep-

39

5. User service
resent the properties of the document. The List<Role>, List<Location>,
List<Integer>, and List<Integer> fields are used to represent relationships
to other documents in the database.

The Java classes are used to define the schema for MongoDB documents
in the application, and the ORM framework handles the mapping of these
documents to and from Java objects.

5.1.3 Repository

In the figure bellow, I will show how is implemented access to the database
via the repository.

public interface UserRepository extends MongoRepository<User,
String> {

User findByEmail(String email);

User findByUsername(String username);

boolean existsUserByUsername(String username);

boolean existsUserByEmail(String email);
}

Table 5.3: Implementation of UserRepository for database data accessl

The interface called UserRepository works with MongoDB to perform
CRUD operations on the User entity. It builds upon the basic CRUD functions
already provided by the MongoRepository interface. Along with standard
CRUD methods, the UserRepository interface contains four extra meth-
ods: findByEmail(), findByUsername(), existsUserByUsername(), and
existsUserByEmail(). The methods findByEmail() and findByUsername()
help users search for a User entity using their email address or username re-
spectively. On the other hand, existsUserByUsername() and existsUserByEmail()
methods are used to verify the existence of a User entity in the database
with the provided username or email address. Using repositories such as
UserRepository can offer several advantages. The main benefit is that they
simplify the process of working with a database. This means I do not have to
deal with low-level database queries or handle database connections on my
own as the repository manages these complex details. Moreover, repositories
provide a uniform approach to accessing data, ensuring that the consistency of
the application is maintained. But repositories have their disadvantages. One
drawback is that when not optimized properly, repositories can slow down
performance. Moreover, repositories may pose challenges when executing
intricate database queries that exceed basic CRUD operations.

40

...................................... 5.2. Backend

5.2 Backend

The UserService is a crucial component of the system that requires secure
user management, particularly in a microservices architecture. It is responsible
for user authentication, authorization, and validation, and is designed to
be highly scalable, making it suitable for systems that require secure user
management on a large scale. In a microservices architecture, services need
to communicate with each other, and Eureka service visibility is essential for
allowing this communication to happen securely.

The UserService implements the Eureka service visibility feature, which
ensures that only authenticated users can access the system’s resources,
including other microservices. Furthermore, the UserService is designed
to integrate seamlessly with other services within the system, such as the
CalendarService. Its ability to handle a large number of users and integrate
with other services makes it an essential part of any system that requires
secure user management in a microservices architecture.

5.2.1 Architecture description

In the next diagram, I will show how layered architecture UserService handle
requests that are coming from the frontend part.

Figure 5.2: UserService layered architecture

Every request will be handled with this approach:. Controller will be triggered.. Controller will call the service method.. If it is DELETE or GET then no data validation is required, in all other
cases the data will be validated.

41

5. User service
. Service will perform the call to the MongoDB to retrieve the data..After that the needed data will be serialized and returned to the con-

troller.. Controller will return data to the frontend as JSON object.

I will provide a more detailed description of each of the processes in the
chapters below using sequential diagrams for better visual acceptance.

5.2.2 Data Validation

In the UserService, it is important to validate the data of each DTO that
the application will use in the future. This will ensure that the data being
transferred is accurate and meets the system requirements, which helps
avoid errors and inconsistencies. Validation involves verifying for missing or
incorrect values, checking that data types are suitable, and ensuring that
data falls within acceptable limits or ranges. In addition to checking for
errors, validation can also involve verifying if a user has enough permissions
to perform a certain action. By validating DTOs before storing them in the
database, we can ensure accurate and clean data. This helps to avoid problems
such as data corruption, data loss, and security vulnerabilities. Validating
DTOs is important as it helps to detect and resolve potential issues early in the
development process, thereby improving the overall quality of the system. It
also helps to save time and resources required for testing and debugging since
problems are caught early. To ensure an application’s accuracy, reliability,
and security, it’s crucial to validate DTOs before processing and storing them
in the database.

In the next figures, I will show how is been handled validation for registration
data.

public ValidCreateUserRequestDto
validateRegister(CreateUserRequestDto request, PasswordEncoder
passwordEncoder) {
var builder = ValidCreateUserRequestDto.newBuilder();
var validations = new AggregatedValidation()

.add(FirstNameSecondName.validate(request.getName(),
request.getSurname()), builder::name)

.add(validateEmail(request.getEmail()), builder::email)

.add(Password.validateAndHash(request.getPassword(),
passwordEncoder), builder::password)

.add(Username.validate(request.getUsername()),
builder::username);

return
ValidationUtils.getCheckedResult(validations.validate(builder::build));

}

Table 5.4: Example of aggregated validation function for registration datal

42

...................................... 5.2. Backend

On this figure is a validation function that is used to validate a CreateUserRequestDto
object, which contains information about a user that is being registered. The
function takes in two parameters: the CreateUserRequestDto object and a
PasswordEncoder object that is used to encode the user’s password.

The function returns a ValidCreateUserRequestDto object that contains
the validated information about the user. The ValidCreateUserRequestDto
object is created using the ValidCreateUserRequestDto.newBuilder() method.

The validation process is performed by creating an AggregatedValidation
object that is used to aggregate the results of multiple validation checks. The
AggregatedValidation object is instantiated with the new AggregatedValidation()
method.

The validation checks are performed by calling a series of methods on the
AggregatedValidation object. The validation checks include validating the
user’s first name and second name, email, password, and username.

For each validation check, a lambda function is passed to the add() method
of the AggregatedValidation object. The lambda function takes the vali-
dated result of the validation check and sets the corresponding field in the
ValidCreateUserRequestDto object.

Once all the validation checks have been performed, the ValidCreateUserRequestDto
object is built using the builder::build method.

Finally, the ValidationUtils.getCheckedResult() method is called to
get the checked result of the validation process. If any errors occur during
the validation process, a ValidationException is thrown with the error
message. If no errors occur, the validated ValidCreateUserRequestDto
object is returned.

private static Validation<FieldError, String> validateName(String
name, String fieldName, boolean required) {
return new StringValidator(name, fieldName, required)

.deduplicateSpaces()

.minLength(2)

.maxLength(40)

.patterns(NAME_PATTERN)

.validate();
}

Table 5.5: Example of validation function that adds validation for name field

The above figure displays a validation function for a person’s name. It
requires three parameters: the name as a String, the fieldName as a String,
and a boolean value indicating if the field is mandatory. The function returns
a Validation object that deals with validation errors. The Validation
object is a generic class that comprises of a FieldError object and a String
representing the field that is being validated.

To validate the input string, we create a StringValidator object within
the function and call a series of methods on it. These methods include
deduplicateSpaces() to remove extra spaces, minLength() to set a mini-

43

5. User service
mum length of 2 characters, maxLength() to set a maximum length of 40
characters, and patterns() to apply any custom regular expressions.

The validation process is carried out by calling the validate() method on
the StringValidator object. In case any errors arise, a FieldError object
is returned with details about the field name, error message, and error type.

5.2.3 Eureka Service visibility

Eureka is a tool that enables microservices to register themselves with a server
and find other dependent services, which improves communication reliability.
This helps enhance the scalability and resiliency of the microservices within
a system.

Eureka simplifies the management of microservices by offering a directory
of services. This directory helps users locate and communicate with other
services within the system. It can also balance the load, which means incoming
requests can be divided among multiple instances of a service to improve
performance and availability.

Eureka offers health checks that can keep track of the real-time availability
and status of services. By doing so, administrators can detect and promptly
address any issues that may arise, leading to better system reliability and
uptime.

In order to utilize Eureka within a microservices architecture, it is necessary
for each service to register itself with the Eureka server upon initiation. This
can be accomplished using a client library such as the Eureka client for Spring
Boot, which can be added as a dependency in your microservice’s pom.xml
file.

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-eureka-server</artifactId>

</dependency>

Table 5.6: Eureka dependency

Next we should configure the Eureka server in application.properties
file:

server.port=8761
eureka.client.register-with-eureka=false
eureka.client.fetch-registry=false

Table 5.7: Eureka dependency

After registering a service, other services can find its location by searching
the Eureka server. This makes it possible for services to interact with each
other using RESTful APIs or other protocols.

44

Chapter 6
Calendar service

In this chapter, we will discuss the implementation details of the CalendarSer-
vice, including its architecture, design patterns, and code structure. We will
also explore its functionality, key features, and integration with other services
and components in the system. Furthermore, we will cover the challenges
encountered during its development and the corresponding solutions.

6.1 Database

The implementation of the CalendarService database will be responsible for
managing all calendar-related operations across various entities, including
calendar, calendarDate, calendarEvent, and calendarTimeSlot. In addition,
the database will support the functionality of fetching data from external cal-
endars for importing events and exporting operations for extracting calendars
in Ical format.

Designing a well-structured database is crucial for the efficient functioning
of any application, and CalendarService is no exception. To achieve this, we
must identify the types of data that need to be stored and accessed efficiently.
We will then proceed to make decisions about the database schema, such as
table structure, relationships between tables, and data types.

Furthermore, we must ensure that the database management system used
for the CalendarService can perform crucial tasks such as data indexing, query
optimization, and data backup and recovery. These features will guarantee
the integrity and security of the data stored in the database.

45

6. Calendar service
6.1.1 Architecture description

Figure 6.1: Architecture of calendar database

The database architecture for the UML diagram containing the entities
CalendarEvent, CalendarDate, and CalendarTimeSlot involves multiple
tables and relationships. The CalendarEvent table contains the parameters:. id. name. description. from. to. timeInterval (represented by the TimeIntervalEnum enumeration with

options Quarter, Half, Hour, Two). numberOfStudents. creator

This table has a Many-to-one relationship with the CalendarDate table,
allowing multiple events to be associated with a single date.

The CalendarDate table contains the parameters:

46

...................................... 6.1. Database

. id. date

and has a Many-to-one relationship with the Calendar table. The Calendar
table includes the fields:. id. name. isPrivate. viewers. owner

and represents the parent entity for the CalendarDate table.
Finally, the CalendarEvent table has a One-to-many relationship with the

CalendarTimeSlot table, which contains the parameters:. id. start. end. numberOfParticipants. users

This relationship allows multiple time slots to be associated with a single
event.

In summary, the UML diagram’s database architecture involves three tables:
CalendarEvent, CalendarDate, and CalendarTimeSlot, with various fields
and relationships between them. The structure of this database is designed to
support the requirements of a calendar-based application, enabling efficient
management of events, dates, and time slots.

47

6. Calendar service
6.1.2 ORM implementation

The provided code is written in Java and demonstrates a Calendar model
that uses ORM with the help of MongoDB and Lombok annotations. The code
includes several annotations that serve different purposes. The @Document
annotation indicates that this class is going to be mapped to a MongoDB
document. @Data annotation is used to generate methods like getters, setters,
equals, hashCode, and toString. Lastly, @NoArgsConstructor is used to
create a no-argument constructor.

The Calendar model consists of fields such as id, name, isPrivate,
viewers, owner, and dates. The id field is designated as the Primary
key for the Calendar document and is annotated with @Id. The information
about a calendar is stored in specific fields. The name field contains the
calendar’s name. The isPrivate field indicates if the calendar is private.
The viewers field is a set of user IDs who can view the calendar. The owner
field contains the ID of the user who made the calendar. And lastly, the
dates field is a list of CalendarDate objects connected to the calendar.

The code shows how to use ORM along with the MongoDB database to
manage data persistence in a Java application. The use of Lombok annotations
helps to reduce repetitive code and improve the readability and maintenance
of the code.

@Document
@Data
@NoArgsConstructor
public class Calendar {

@Id
private String id;
private String name;
private Boolean isPrivate;
private Set<String> viewers;
private String owner;
private List<CalendarDate> dates;

}

Table 6.1: ORM implementation for calendar entity

The following Java ORM code provided represents the CalendarDate
model in MongoDB using Lombok annotations. The model is designed to store
and retrieve calendar dates along with the events associated with them. The
use of Lombok annotations helps in reducing the boilerplate code and makes
the code more concise and readable.

The id field is of type String and is used to store the Primary key. The
date field is of type LocalDate and is used to store the calendar date. The
events field is a List of CalendarEvent objects and is used to store the
events associated with the calendar date.

48

...................................... 6.1. Database

@Document
@Data
@NoArgsConstructor
public class CalendarDate {

@Id
private String id;
private LocalDate date;
private List<CalendarEvent> events;

}

Table 6.2: ORM implementation for calendarDate entity

This model is intended for saving and accessing details about calendar
events. The field labeled id, which is of type String, serves as the primary
key. The field labeled name, also a String, is meant to hold the name of the
event. As for the description field, it is also a String and is intended for
storing the event’s description.

The fields for storing the start and end times of an event are named from
and to, respectively, and they are both of type LocalDateTime. The field for
storing the time interval of the event is of type TimeInterval and is named
timeInterval. Finally, the field for storing the time slots of the event is a
List of CalendarTimeSlot objects named calendarEventTimeSlots.

The "location" field is a string that stores the event’s location, while the
"numberOfStudents" field is an integer that stores the count of students
attending the event. The "creator" field is a string that holds the name of
the event’s creator.

@Document
@Data
@NoArgsConstructor
public class CalendarEvent {

@Id
private String id;
private String name;
private String description;
private LocalDateTime from;
private LocalDateTime to;
private TimeInterval timeInterval;
private List<CalendarTimeSlot> calendarEventTimeSlots;
private String location;
private Integer numberOfStudents;
private String creator;

}

Table 6.3: ORM implementation for calendarEvent entity

Next figure represents the Calendar model in MongoDB using Lombok

49

6. Calendar service
annotations. The id field is of type String and is used to store the Primary
key. The name field is a String and is used to store the name of the calendar.

The isPrivate field is a Boolean and is used to indicate whether the
calendar is private or not. The viewers field is a Set of String objects and
is used to store the names of the viewers who have access to the calendar.
The owner field is a String and is used to store the name of the owner of
the calendar.

The dates field is a List of CalendarDate objects and is used to store the
calendar dates associated with the calendar. Each CalendarDate object in
the list represents a date and the events associated with it.

@Document
@Data
@NoArgsConstructor
public class Calendar {

@Id
private String id;
private String name;
private Boolean isPrivate;
private Set<String> viewers;
private String owner;
private List<CalendarDate> dates;

}

Table 6.4: ORM implementation for calendar entity

6.1.3 Repositories

public interface CalendarRepository extends
MongoRepository<Calendar, String> {

List<Calendar> findCalendarsByOwner(String owner);

Calendar findCalendarByOwnerAndId(String owner, String id);

Calendar findCalendarByOwnerAndName(String owner, String name);

Boolean existsByName(String name);
}

Table 6.5: CalendarRepository implementation

50

...................................... 6.1. Database

public interface CalendarEventRepository extends
MongoRepository<CalendarEvent, String> {

Boolean existsByCreatorAndName(String creatorId, String name);

List<CalendarEvent> findAllByCreator(String creator);

CalendarEvent findByCreatorAndId(String creator, String id);
}

Table 6.6: CalendarEventRepository implementation

The following Java code includes two interfaces - CalendarRepository
and CalendarEventRepository. These interfaces are employed to carry out
CRUD (Create, Read, Update, and Delete) operations on two MongoDB
database models - Calendar and CalendarEvent.

The CalendarRepository interface extends the functionality of the MongoRepository
interface by leveraging its existing methods for performing CRUD operations.
The MongoRepository interface requires two generic parameters. The first
parameter corresponds to the model class that is being managed, which in
this case is the Calendar model. The second parameter denotes the primary
key type of the model class, which is a String in this particular case.

The CalendarRepository interface has custom methods that can be used
to search for specific information in the database. One such method is
findCalendarsByOwner, which takes an owner parameter and returns a list
of all the Calendar objects that belong to that particular owner. Another
method is findCalendarByOwnerAndId, which takes both owner and id
parameters and returns a single Calendar object that matches these criteria.
The function called findCalendarByOwnerAndName requires an owner and a
name parameter to find and return a matching Calendar object. Whereas, the
existsByName function only needs a name parameter to check if a Calendar
object with that name exists in the database and will return a boolean
accordingly.

The interface called CalendarEventRepository builds upon the MongoRepository
interface. It includes additional methods that can be used to search for
particular information about the CalendarEvent model in the database.
One of these methods is called existsByCreatorAndName. This method
requires a creatorId and a name as input and returns a boolean value
indicating whether a CalendarEvent object with the specified creator and
name can be found in the database. The methods findAllByCreator and
findByCreatorAndId both require a creator parameter to be provided. The
first method returns a list of all CalendarEvent objects created by the speci-
fied creator, while the second method returns a single CalendarEvent object
that matches both the specified creator and id parameters.

51

6. Calendar service
6.2 Backend

The CalendarService backend part plays a pivotal role in the system, pro-
viding a range of functionalities related to calendar management. While the
UserService handles user authentication/authorization and other operations
related to the user, the CalendarService focuses on handling external cal-
endar connections, calendar exports, and other CRUD operations involving
calendar entities.

In the microservices architecture, the CalendarService operates as an
independent service, employing its own set of logic to manage calendars
effectively. It follows the principles of microservice architecture, enabling it
to function autonomously while seamlessly integrating with other services
within the system.

One of the primary responsibilities of the CalendarService is to establish
connections with external calendars, allowing users to synchronize their
events and schedules. It leverages various protocols and APIs to facilitate
this synchronization process, ensuring that events from external calendars
are accurately reflected within the system.

Additionally, the CalendarService provides functionalities for exporting
calendar data in different formats, enabling users to share their schedules
with external applications or individuals. It implements logic to generate
standardized calendar files, such as ICal or Google Calendar files, that can
be easily imported by other calendar applications.

Alongside the external calendar integrations, the CalendarService im-
plements typical CRUD operations for managing calendar entities within the
system. This includes creating new calendars, retrieving existing calendars,
updating calendar details, and deleting calendars when necessary. These
operations are performed securely, ensuring that only authorized users can
manipulate calendar data within the system.

It’s important to note that while the CalendarService handles various as-
pects of calendar management, it does not provide authorization functionality.
The responsibility for user authorization lies with the UserService, which
determines the access privileges of users within the system. By separating the
concerns of user management and calendar management, the system achieves
a modular and scalable design.

52

...................................... 6.2. Backend

6.2.1 Architecture description

Similar to the UserService, the CalendarService shares the same layered
architecture approach described in the previous chapter. It handles requests
related to calendar management and integrates seamlessly with the microser-
vices architecture. Let’s briefly explore how the CalendarService aligns with
the established architecture:. Controller Trigger.When a request targeting calendar operations is received from the

frontend, the corresponding controller in the CalendarService is
triggered.. Service Method Invocation.The controller invokes the appropriate service method in the CalendarService..The service method encapsulates the business logic and data pro-
cessing related to calendar operations.. Data Validation. Data validation is performed based on the specific requirements of
the calendar operations.. Depending on the request type, such as creating a new calendar or
updating existing calendar data, the incoming data is validated to
ensure its accuracy and completeness.. Retrieval of Data from MongoDB.The CalendarService interacts with the MongoDB database to
fetch or manipulate calendar-related data..The service leverages MongoDB’s capabilities to efficiently query
and manage calendar information.. Serialization and Return of Data. Retrieved or processed data is serialized into a suitable format, in
our case JSON. Serialization enables the structured representation of calendar data
for seamless transmission and interpretation.. Response to Frontend.The controller receives the serialized data from the service method..The controller sends the JSON-formatted data back to the frontend
as a response to the initial calendar-related request.

Adhering to the established layered architecture, the CalendarService seam-
lessly integrates with the microservices architecture while providing dedicated
logic for handling external calendar connections, calendar exports, and other
CRUD operations with calendar entities.

53

6. Calendar service
6.2.2 Data Validation

The following code represents a class that is responsible for validating calendar-
related requests and names.. validateCreate(CreateCalendarDto request) takes a CreateCalendarDto

object as input, representing the request for creating a calendar. It cre-
ates a ValidCreateCalendarRequestDto builder instance to construct
a validated create calendar request. The method performs validation
using an AggregatedValidation object, which aggregates multiple vali-
dation rules. One specific validation is performed on the name field of
the CreateCalendarDto object using the Name.validate method. The
validated name value is set using the builder::name reference method.The
isPrivate field of the CreateCalendarDto object is set directly on the
builder. The final validated ValidCreateCalendarRequestDto object is
returned after checking the result of all validations using ValidationUtils.getCheckedResult.. validateName(String name) takes a name string as input, representing
the name of a calendar. It creates a ValidCalendarName builder instance
to construct a validated calendar name object. The method performs a
single validation on the name string using the Name.validate method.
The validated name value is set using the builder::name reference method.
The final validated ValidCalendarName object is returned after checking
the result of the validation using ValidationUtils.getCheckedResult.

public class CalendarValidator {

public ValidCreateCalendarRequestDto
validateCreate(CreateCalendarDto request) {
var builder = ValidCreateCalendarRequestDto.newBuilder();
var validations = new AggregatedValidation()

.add(Name.validate(request.getName()), builder::name);

builder.isPrivate(request.getIsPrivate());

return
ValidationUtils.getCheckedResult(validations.validate(builder::build));

}

public ValidCalendarName validateName(String name) {
var builder = ValidCalendarName.newBuilder();
var validation = new AggregatedValidation()

.add(Name.validate(name), builder::name);
return

ValidationUtils.getCheckedResult(validation.validate(builder::build));
}

}

Table 6.7: Example of aggregated validation function for calendar data

54

...................................... 6.2. Backend

The validateRequest method in the next part of the code is responsible
for validating a CalendarEventDto object, which represents a request for
creating a calendar event.

. It takes a CalendarEventDto object as a parameter.

. Creates a ValidCreateCalendarEventRequestDto builder to construct
a validated create calendar event request.

. Initializes an AggregatedValidation object to combine multiple valida-
tion rules.

.The AggregatedValidation object performs the following validations:

.Validates the name and description fields of the CalendarEventDto
object using the CalendarEventInfo.validate method. The vali-
dated values are set on the builder using the builder::info refer-
ence method.

.Validates the timeInterval field of the CalendarEventDto object
using the validateInterval method. The validated value is set on
the builder using the builder::timeInterval reference method.

.Validates the from, to, and timeInterval fields of the CalendarEventDto
object using the FromTo.validate method. The validated values
are set on the builder using the builder::fromTo reference method.

.Validates the numberOfParticipants field of the CalendarEventDto
object using the validateNumberOfParticipants method. The
validated value is set on the builder using the builder::numberOfParticipants
reference method.

. Sets the location and calendarId fields of the CalendarEventDto
object directly on the builder.

. Returns the validated ValidCreateCalendarEventRequestDto object
after checking the result of all validations using ValidationUtils.getCheckedResult.

55

6. Calendar service
public ValidCreateCalendarEventRequestDto

validateRequest(CalendarEventDto calendarEventRequestDto) {
var builder = ValidCreateCalendarEventRequestDto.newBuilder();
var validations = new AggregatedValidation()

.add(CalendarEventInfo.validate(calendarEventRequestDto.getName(),
calendarEventRequestDto.getDescription()),
builder::info)

.add(validateInterval(calendarEventRequestDto.getTimeInterval()),
builder::timeInterval)

.add(FromTo.validate(calendarEventRequestDto.getFrom(),
calendarEventRequestDto.getTo(),
calendarEventRequestDto.getTimeInterval()),
builder::fromTo)

.add(validateNumberOfParticipants(calendarEventRequestDto.getNumberOfParticipants()),
builder::numberOfParticipants);

builder.location(calendarEventRequestDto.getLocation());
builder.calendarId(calendarEventRequestDto.getCalendarId());
return

ValidationUtils.getCheckedResult(validations.validate(builder::build));
}

Table 6.8: Example of aggregated validation function for calendar event creation
data

The following code snippet demonstrates the implementation of the valida-
tion for the timeSlotDto..The method validCreateTimeSlotDto takes a CreateTimeSlotDto pa-

rameter named createTimeSlotDto, representing the data of a time slot
to be validated.. Inside the method, a new ValidCreateTimeSlotDto builder object is
created using ValidCreateTimeSlotDto.newBuilder(). This builder
will be used to construct the validated time slot DTO..A Validations object named validations is created using AggregatedValidation().
This object will hold all the validations to be performed on the createTimeSlotDto..The validations are added to the validations object using the add
method. Two validations are performed:.The FromTo.validate method is called with the start and end

times from the createTimeSlotDto. The result is assigned to the
fromTo field of the builder using a method reference..The validateNumberOfParticipants method is called with the
number of participants from the createTimeSlotDto. The result is
assigned to the numberOfParticipants field of the builder using
a method reference.

56

...................................... 6.2. Backend

.The ownerId and eventId fields of the builder are set with the corre-
sponding values from the createTimeSlotDto.. Finally, the validations are executed using ValidationUtils.getCheckedResult
to obtain the validated ValidCreateTimeSlotDto object. This object is
returned from the method.

public class CalendarTimeSlotValidator {

public ValidCreateTimeSlotDto
validCreateTimeSlotDto(CreateTimeSlotDto createTimeSlotDto){
var builder = ValidCreateTimeSlotDto.newBuilder();
var validations = new AggregatedValidation()

.add(FromTo.validate(createTimeSlotDto.getStart(),
createTimeSlotDto.getEnd()), builder::fromTo)

.add(validateNumberOfParticipants(createTimeSlotDto.getNumberOfParticipants()),builder::numberOfParticipants);

builder.ownerId(createTimeSlotDto.getOwnerId());
builder.eventId(createTimeSlotDto.getEventId());

return
ValidationUtils.getCheckedResult(validations.validate(builder::build));

}
}

Table 6.9: Example of aggregated validation function for calendar timeslot data

57

6. Calendar service
6.2.3 Calendar Export

This chapter will explore a class called CalendarExportService. It has
a method called exportToICal which is responsible for converting a list of
CalendarEvent objects into the iCalendar (ICal) format. The exportToICal
method needs a List of CalendarEvent objects as input. Once executed, it
will return a String that represents the generated CalendarEvent data.The
code creates a StringBuilder named iCalData to store iCalendar data.
The method then adds the necessary headers to the iCalData StringBuilder,
including the BEGIN:VCALENDAR, VERSION:2.0, and PRODID lines. After that,
it loops through each CalendarEvent in the calendarEvents list. The
method adds the line "BEGIN:VEVENT" to the iCalendar data for each
CalendarEvent, marking the beginning of a new event. Then, the UID, start
time, end time, title (summary) and event description are added to the
iCalData StringBuilder in the correct iCalendar format.

import java.util.List;

public class CalendarExportService {

public String exportToICal(List<CalendarEvent> calendarEvents) {
StringBuilder iCalData = new StringBuilder();

iCalData.append("BEGIN:VCALENDAR\r\n");
iCalData.append("VERSION:2.0\r\n");
iCalData.append("PRODID:-//CVUT//MTAP//EN\r\n");

for (CalendarEvent event : calendarEvents) {
iCalData.append("BEGIN:VEVENT\r\n");
iCalData.append("UID:").append(event.getUid()).append("\r\n");
iCalData.append("DTSTART:").append(event.getStartTime()).append("\r\n");
iCalData.append("DTEND:").append(event.getEndTime()).append("\r\n");
iCalData.append("SUMMARY:").append(event.getTitle()).append("\r\n");
iCalData.append("DESCRIPTION:").append(event.getDescription()).append("\r\n");
iCalData.append("END:VEVENT\r\n");

}

iCalData.append("END:VCALENDAR");

return iCalData.toString();
}

}

Table 6.10: Example of export calendar service

58

...................................... 6.2. Backend

6.2.4 CalendarEvent creation

In this section, we will explore how the entity CalendarEvent is created.
The process includes validating the data, and once the data is validated
successfully, a private method, createCalendarEvent, is executed.

The method creates a CalendarEvent object using the given ValidCreateCalendarEventRequestDto
and owner ID. It begins by initializing the object and then parsing the
from and to fields from the ValidCreateCalendarEventRequestDto into
LocalDateTime objects using the LocalDateTime.parse method. The ValidCreateCalendarEventRequestDto’s
timeInterval field is converted into a TimeInterval object via the parseTimeInterval
method. The name, description, location, from, to, and timeInterval
fields of the resulting CalendarEvent object are then populated with the
corresponding fields from the ValidCreateCalendarEventRequestDto.

The value of the timeInterval field in the CalendarEvent object depends
on the value of the timeInterval field in the ValidCreateCalendarEventRequestDto.
If the value is one of the predetermined options (15 min, 30 min, 60 min,
120 min), the timeInterval field is set to that value. Otherwise, a custom
TimeInterval object is created with the specified number of minutes and
used as the timeInterval for the CalendarEvent.

The provided owner ID is used to set the creator field of the CalendarEvent.
To set the calendarEventTimeSlots field of the CalendarEvent, we call the
calendarTimeSlotService.createTimeSlots method and pass the from,
to, timeInterval, and numberOfParticipants from the ValidCreateCalendarEventRequestDto.
More information about the createTimeSlots method will be provided be-
low.

The numberOfStudents field of the CalendarEvent is set with the value
of requestDto.getNumberOfParticipants(). The created CalendarEvent
object is then returned by the method. This method effectively creates
a CalendarEvent object based on the provided request DTO and owner
ID, initializing its fields with the corresponding values. It also handles the
conditional assignment of the timeInterval field based on the value of
requestDto.getTimeInterval().

59

6. Calendar service
private CalendarEvent

createCalendarEvent(ValidCreateCalendarEventRequestDto
requestDto, String ownerId) {
var calendarEvent = new CalendarEvent();
var from = LocalDateTime.parse(requestDto.getFromTo().from());
var to = LocalDateTime.parse(requestDto.getFromTo().to());
var timeInterval =

parseTimeInterval(requestDto.getTimeInterval());

calendarEvent.setName(requestDto.getInfo().name());
calendarEvent.setDescription(requestDto.getInfo().description());
calendarEvent.setLocation(requestDto.getLocation());
calendarEvent.setFrom(from);
calendarEvent.setTo(to);
if (requestDto.getTimeInterval() == 15 ||

requestDto.getTimeInterval() == 30 ||
requestDto.getTimeInterval() == 60 ||
requestDto.getTimeInterval() == 120) {

calendarEvent.setTimeInterval(timeInterval);
} else {

TimeInterval customInterval = TimeInterval.CUSTOM;
customInterval.setMinutes(requestDto.getTimeInterval());
calendarEvent.setTimeInterval(customInterval);

}
calendarEvent.setCreator(ownerId);
calendarEvent.setCalendarEventTimeSlots(calendarTimeSlotService.createTimeSlots(

from, to, timeInterval,
requestDto.getNumberOfParticipants()

));
calendarEvent.setNumberOfStudents(requestDto.getNumberOfParticipants());

return calendarEvent;
}

Table 6.11: Example createEvent function

Next, we will have a look at the createTimeSlots method which was
mentioned above, that is responsible for creating a list of calendar time slots
within a specified time range. The method takes four parameters:. from - a LocalDateTime object representing the start of the time range.. to - a LocalDateTime object representing the end of the time range.. timeInterval - a TimeInterval object representing the duration of each

time slot.. numberOfStudents - an Integer indicating the number of students that
can be accommodated in each time slot.

The method begins by initializing an empty list called calendarTimeslots to
store the created time slots. Next, it calls a method TimeIntervalCreator.create()

60

...................................... 6.2. Backend

to generate a list of intervals based on the provided from, to, and timeInterval
values. The TimeIntervalCreator.create() method calculates the inter-
vals between the start and end time based on the duration specified in
minutes. Then it iterates over each interval in the intervals list. For each
interval, it calls a method createTimeSlot() to create a CalendarTimeSlot
object using the interval’s start and end times, along with the provided
numberOfStudents. The created CalendarTimeSlot object is added to
the calendarTimeslots list. After adding the time slot to the list, it ap-
pears that the code also persists the CalendarTimeSlot object by calling
calendarTimeSlotRepository.save(). This suggests that there is a reposi-
tory or database interaction involved in storing the created time slots. Finally,
the method returns the calendarTimeslots list containing all the created time
slots.

@Override
public List<CalendarTimeSlot> createTimeSlots(LocalDateTime from,

LocalDateTime to, TimeInterval timeInterval, Integer
numberOfStudents) {
List<CalendarTimeSlot> calendarTimeslots = new ArrayList<>();
List<TimeIntervalCreator.Interval> intervals =

TimeIntervalCreator.create(from, to,
timeInterval.getMinutes() * 60);

for (TimeIntervalCreator.Interval interval : intervals) {
var calendarTimeSlot = createTimeSlot(interval.start(),

interval.end(), numberOfStudents);
calendarTimeslots.add(calendarTimeSlot);
calendarTimeSlotRepository.save(calendarTimeSlot);

}
return calendarTimeslots;

}

Table 6.12: Example create TimeSlots function

61

62

Chapter 7
Authorization

One of the most important parts of an application is security so in this
chapter, I will describe it in terms of different parts of the MTAP app. The
authorization process is divided into two parts - internal and external. In-
ternal authorization is authorization in the MTAP app using a username
and password which is user-defined during the registration process. Exter-
nal authorization is authorization and granting access to a different online
calendar.

7.1 Internal Authorization

In this part, we will have a closer look at internal authorization and how it
works on different levels of application. It is divided into 3 parts - Database,
Back end, and Front-end. DB is responsible for storing and searching the
data. It can be granted access, get contact info about the user, and get all
tokens that are connected to the user. The back end is responsible for security
and DB manipulations and the Front end for the user interface.

63

7. Authorization.....................................
7.1.1 Frontend

In the next figure, we can see a screen shoot from the application showing us
a login page.

Figure 7.1: Frontend login page

For sign-in user should fill in all mandatory fields (all mandatory fields are
marked with *). The frontend will validate all fields before sending data to
the back end and preventing XSS, CSRF attacks. After control data will be
converted to JSON format and sent to user/authentication endpoint. As
a response, a JWT token will be received. This token will be injected in all
next backend calls to allow us API’s calls such as getting current signed users,
getting calendars, updating entities, adding new events, and so on. Also, this
JWT token will be stored in local storage.

7.1.2 Backend

The internal authorization back end is responsible for authorizing the user’s
access for performing operations that will change the data structure, storing
data in the database, and authenticating the user. For this version of the
application, I used JWT-based authorization. What does it mean? If a user
with this combination of username and password exists in the database user
will get the JWT token, frontend will store it for future usage in local storage.
After the user gets his JWT token the front end will automatically sign all
his HTTP requests with it. The back end will get the HTTP GET/POST
request with an authorization header and will validate the JWT token from
there. If the token is valid - the HTTP request will be processed, if not - the

64

.................................7.1. Internal Authorization

user will get a 403 error - “Forbidden error”

7.1.3 Database

The role of the database, specifically MongoDB in this case, in the authoriza-
tion process is quite simple - it serves as a storage system to securely store
the usernames and their corresponding hashed passwords for future usage.
MongoDB is a NoSQL database that provides a flexible and scalable solution
for managing data.

To facilitate the storage and retrieval of user information, a repository is
created.

User findByUsername(String username);

boolean existsUserByUsername(String username);

Table 7.1: Example of user repository

This repository serves as a bridge between the application and MongoDB
database, facilitating efficient search and modification of user records. Its
functions include storage, updating, and searching of user data in the database.

Using MongoDB and the repository improves the security of the authoriza-
tion process by allowing user credentials to be securely stored and retrieved.
When a user sets or changes their password, the repository encrypts the
password and stores it in the database. To authenticate a user, the repository
searches for the username and retrieves the corresponding hashed password.
It then returns the user object to the backend for further authorization.

65

7. Authorization.....................................
7.2 External Authorization

7.2.1 Google API

Figure 7.2: Google console homepage

To begin the process, we must navigate to the Google Cloud Platform in
order to create a project. The specific name given to the project is not crucial,
although it may be beneficial to align the project name with the API that
will be utilized. The project serves as a container wherein the OAuth 2.0
client ID will be housed. Once the project has been successfully created, the
next step involves accessing the credentials screen and generating an OAuth
Client ID using the provided Create Credentials dropdown option.

In some cases, it may be necessary to create an OAuth consent screen
prior to being able to generate the OAuth Client ID. This particular step
can seem somewhat daunting due to the various questions that need to be
answered, as the consent screen can serve multiple purposes beyond the API
authentication being discussed. However, accepting the default options and
proceeding should be sufficient in most cases. The user type required for this
process is typically External.

66

................................ 7.2. External Authorization

Figure 7.3: Google Cloud setting up environment

At this point, an app registration prompt will appear, where only a name
(which can be any name) and an email address are required. Scopes do
not need to be a concern at this stage. It is important to note that either
planning to publish the app or setting up as a test user will be necessary to
authenticate with the app. Progressing further through the process will lead
to the creation of the OAuth consent screen, which is needed to generate the
OAuth client ID.

Creating the OAuth client ID can be slightly confusing, as it requires
selecting the "TVs and Limited Input devices" application type. This specific
application type is chosen in order to obtain a refresh token that can be
utilized in the future to acquire tokens for accessing Google API’S.

Figure 7.4: Google cloud credentials

Once the OAuth client ID has been successfully created, it can be down-

67

7. Authorization.....................................
loaded from the Google Cloud Platform. It is crucial to securely store the
client_id, client_secret, and redirect_uris and avoid committing the
client_id and client_secret to source control. The Google authentication
provider must be provided with the client_id and client_secret, and in
return, it will provide an authentication URL.

Opening the authentication URL in a browser and granting consent will
result in the provider issuing a code. This code needs to be provided to the
Google authentication provider, along with the client_id and client_secret.
As a result, the provider will obtain and supply the user with a refresh token
that can be used for subsequent token acquisition to access Google API’s.

7.2.2 CTU API

To start CTU authorization process frontend should trigger the oauth/oauth/authorize
endpoint and send the next data as URL parameters:. response_type=code. client_id=<our_generated_client_id_from_apps_manager>. state=<defined_state>. redirect_uri=<redirect_uri_defined_in_apps_manager>

After that user will be showed log in page

Figure 7.5: CTU login page

After successful login and granting access to third-party service user will
be redirected to the user-settings page and the URL will contain a code that
is needed for further steps in the authorization process.

68

................................ 7.2. External Authorization

http://localhost:4200/?code=v1v5JI&state=xyz

Table 7.2: Example uri returned after code retrieval from CTU auth server

After that application will perform on the background API call for retrieving
the CTU access token that will be saved in the local storage for future injection
in the API calls to the CTU API.

{
"access_token": "ea173f10-babc-404f-b88d-f0ee8d95ff7c",
"token_type": "bearer",
"refresh_token": "aba6d32d-4f17-49e6-afcc-1f042f3e6d3c",
"expires_in": 1209599,
"scope": "urn:zuul:oauth:kosapi:public.readonly"
}

Table 7.3: Example JSON response with token

Here is an example of the response of CTU API with an access token that
will be used in request authorization.

69

70

Chapter 8
Testing

Testing will be done in two different ways because we can’t use a single
approach, time, and resources to test the back and frontend parts effectively.
The full application can be user tested and depending on the result application
will be changed. For both parts, a CI/CD pipeline can be created for testing
and deployment.

8.1 Backend

Mock Unit tests will be used to cover the backend using the JUnit framework.
Each part of the backend will be tested with a mocked level that follows
it in the three-layer architecture. JUnit testing is essential in ensuring the
quality and reliability of Java backend development. To incorporate JUnit
testing into the development pipeline, specific steps need to be taken to ensure
the process’s success. During the development process, the Java backend
code undergoes several stages of construction and refinement. Maven, a
powerful build automation tool, plays a crucial role during this process. It
helps in managing dependencies and executing project-related tasks, including
JUnit testing. The Maven framework has two important commands - "maven
package" and "maven compile." They compile the source code, package it
and resolve required dependencies, ensuring proper building and preparation
of the project for testing and deployment. Following these commands can
help developers ensure readiness for further development stages. In addition,
Maven has a testing framework that comes with a user-friendly wizard. This
framework can execute JUnit tests smoothly for developers. It conducts all
unit tests for the Java backend application. Through this approach, developers
can ensure that the codebase is correct and consistent. To ensure the code’s
expected behavior and requirements are met, it’s important to evaluate the
test results. Passing tests ensure a smooth process while failing tests don’t
necessarily mean a complete pipeline failure. Instead, failures are flagged,
giving developers feedback on specific test cases that need debugging and
refinement until all tests pass successfully.

71

8. Testing
8.2 Frontend

I don’t want to use manual user testing for the single frontend features,
because it is more time-consuming than regular Unit tests. So the strategy
for a frontend will be: create Unit tests with Jest framework, and set up
a pipeline on git, so every new feature will be tested in case of regression
older features, perform manual user testing only on major versions, and such
a way, lower the time spent on testing. By default, Angular applications
are tested by Karma framework out of the box, but nx monorepo provide us
a Jest framework for it. Let’s have a look at why we should migrate our
project to the Jest.

. Faster Execution: Jest has a reputation for being significantly faster
than Karma. Jest optimizes test execution by running tests in parallel,
which can result in faster feedback during development.

. Zero Configuration: Jest requires minimal configuration out of the
box, making it easier to set up and get started with testing Angular
applications. On the other hand, Karma requires more configuration to
set up test runners, browsers, and frameworks.

. Built-in Features: Jest comes bundled with many useful features for
testing, such as mocking, code coverage, snapshot testing, and built-in
assertions. This reduces the need for additional libraries or configurations.

While Karma is a widely-used testing framework and can be suitable for testing
Angular applications, Jest offers a more modern and streamlined approach
to testing, resulting in faster test execution, better developer experience, and
built-in features that make testing Angular applications more efficient and
straightforward. I provide the Jest tests mostly for all features that I develop
in MTAP application and by doing that I earn I good code base so every
time when I’m adding a new feature I have a lot of the tests that should be
run in order to not broke some old functionality.

72

.................................... 8.3. Gitlab CI/CD

8.3 Gitlab CI/CD

Figure 8.1: Gitlab CI/CD

In this figure, you can see the list of pipelines that were executed in the
development. So every time when git commit is detected the TEST and
BUILD pipeline is called. Firstly it runs the test target for both the backend
and frontend parts, for example for the frontend that stage contains lint,test,
code format checks. And after the successful TEST stage, it calls build target
for frontend and backend parts. After successful build pipeline can be easily
extended by the push to the docker registry and deploy pipelines.

73

74

Chapter 9
Conclusion

In the following section, I would like to sum up all the experiences and
problems I faced in this project. In the beginning, the project was meant to
be a common micro-services project, but due to the low amount of developers
on the project, because it is only me, and my lack of experience in projecting
and developing the micro-services architecture for the project, I decided to
change into the more simple micro-services model. It will still have divided
logic as usual micro-services but the logic of Api Gateway and Find-Service
will be moved into User service. Also, I choose the database for my project -
MongoDB. With this part, I didn’t have any problems, because it runs under
Docker container and I had experience working with it. Another component
is the CTU API, it has several approaches to how to start, but none of them
is entirely clear.

The first one is to use the official CTU gateway for authentication of
students and teachers - SSO Gateway, but the main problem with this is a
lack of documentation and communication. The second way is to use Zuul
OAAS which is - in spite of the problems with documentation - still possible.s
I would prefer to use the SSO Gate because it looks like a more finished
project than Zuul OAAS, but we will see what we will have access to. But
unfortunately, I didn’t manage to implement this type of authentication and
it ended up with the Zuul OAAS authorization server. They provide the
same functionality, but on my side, CTU gateway provides a better UI for
user experience.

Also, I would like to sum up the done work about shared calendars and
events. I studied some Google Calendar documentation about it and I’ve
shared some basic practices in this document. The main idea of the application
is to allow users to combine their calendars in one interface, to achieve this
first application should allow the import of external calendars, in my project I
would like to implement it in several ways, so user can import their calendar via
a link or via *.Ical format. But unfortunately, I didn’t manage to implement
import calendars from file and for now Google and CTU options are available.
External calendars could be injected into the MTAP application with the
same name as it was in the external system, but with private option, which
can be changed immediately. All changes are stored locally and available to
be exported via *.ical format. The next version of the application can be

75

9. Conclusion......................................
extended by dynamic option that will allow to dynamically update external
calendars on the fly.

Also, I implemented an option of exporting a calendar as *.Ical file,
because for better user experience I should allow users to extract calendars
and use the tools that they are used to more. After exploring calendar and
time planning literature I got a lot of ideas about which features should be
must-have features, like automatic time slot calculation, better view for events
and event members, calendar export, calendar sharing, calendar visibility,
calendar import as a link, and which can be delayed - automatic export to
Google Calendar or Outlook, advanced view modes.

This semester gave me a lot of experience and understanding of what steps
should be done and when. I increased my skills in frontend development, even
though this is my major specialization. I earned new experience in architecture,
development, and delivery of software projects. I used new technologies in
all steps of development, using docker container for the database storing,
creating visible microservices with Eureka, using ngrx framework for better
store management on the frontend side, and creating CI/CD pipelines that will
allow to detect of all changes and test them for not breaking any functionality.

76

Appendix A
Application setup instructions

To start using the application firstly you should clone the git repository from
QR code above (also you can click on it). Instructions how to run and serve
the application you can find below.

77

https://gitlab.fel.cvut.cz/striaant/design-and-implementation-of-a-multiple-time-slot-appointment-calendar-for-effective-planning-of-consultations
https://gitlab.fel.cvut.cz/striaant/design-and-implementation-of-a-multiple-time-slot-appointment-calendar-for-effective-planning-of-consultations

A. Application setup instructions
A.1 How to run and serve application

A.1.1 With backend.Open application.properties file for each of the projects (User and
Calendar services). Set up you database there.You should have MongoDb installed or started MongoDB docker

container.Add your credentials to line 20 in application.properties file.Add the name of the database to line 21, or leave it as it is. Run the docker command which is commented on the line 20 to
initiate the database access. Run the CalendarApplication.java in the back/src/main/java/cz/cvut/fel/calendar

folder. Run the UserApplication.java in the back/src/main/java/cz/cvut/fel/user
folder.You should have Node.js and npm package manager.You can download Node.js from (https://nodejs.org/en/), it will install
Node.js and npm.Then run the npm install -q @angular/cli command in terminal
window.Open the front folder with your favorite ide/text editor (my choice is
VS code). Use npm I -force command for installing all dependencies from package.json.To start the application open the package.json and run the start_local_network
command.

78

............................A.1. How to run and serve application

A.1.2 With mocked backend.You should have Node.js and npm package manager.You can download Node.js from (https://nodejs.org/en/), it will install
Node.js and npm.Then run the npm install -q @angular/cli command in terminal
window.Open the front folder with your favorite ide/text editor (my choice is
VS code). Use npm I -force command for installing all dependencies from package.json.Add mockBackendProvider to the app.module.ts in the apps/frontend/src/app.To start the application open the package.json and run the startlocalnetworkcommand

79

80

Appendix B
Glossary

Access token Access tokens are used in token-based authentication to allow
an application to access an API. The application receives an access token
after a user successfully authenticates and authorizes access, then passes
the access token as a credential when it calls the target API.. 37

Angular Angular is an application-design framework and development plat-
form for creating efficient and sophisticated single-page apps.. 26

API An application programming interface (API) is a way for two or more
computer programs to communicate with each other. It is a type of
software interface, that offers a service to other pieces of software.. viii,
8–11, 13, 17, 19, 52, 64, 67–69, 75

Api Gateway An API gateway is an API management tool that sits between
a client and a collection of backend services.. 25, 75

Calendar A collection of events. Each calendar has associated metadata,
such as calendar description or default calendar time zone. The metadata
for a single calendar is represented by a Calendar resource.. 1, 2, 17–19

CTU Password CTU password is the main password for controlling access
and protecting your information within the university and other involved
reliable applications. 15

Docker is a set of the platform as a service (PaaS) products that use OS-level
virtualization to deliver software in packages called containers.. 75

DTO is an object that carries data between processes. The motivation for its
use is that communication between processes is usually done by resorting
to remote interfaces (e.g., web services), where each call is an expensive
operation.. 42

Event An event on a calendar containing information such as the title, start
and end times, and attendees. Events can be either single events or
recurring events. An event is represented by an Event resource.. 1, 2,
17–19

81

B. Glossary.......................................
HTTP The Hypertext Transfer Protocol (HTTP) is an application layer

protocol in the Internet protocol suite model for distributed, collaborative,
hypermedia information systems.. 8, 17, 25, 37

Many-to-one A many-to-one relationship refers to one entity (typically a
column or set of columns) that contains values and refers to another
entity (a column or set of columns) that has unique values. 46, 47

NGRX is a library for Angular that implements the Redux pattern. It is
used for managing state in Angular applications.. 21, 26

Non Functional requirements describe the general properties of a system.
They are also known as quality attributes.. viii, 2

OAuth is the industry-standard protocol for authorization. OAuth 2.0 fo-
cuses on client developer simplicity while providing specific authorization
flows for web applications, desktop applications, mobile phones, and
living room devices. . 15

One-to-many is the most common kind of relationship. In this kind of
relationship, a row in table A can have many matching rows in table B.
But a row in table B can have only one matching row in table A.. 47

ORM in computer science is a programming technique for converting data
between type systems using object-oriented programming languages.
This creates, in effect, a "virtual object database" that can be used from
within the programming language. There are both free and commercial
packages available that perform object-relational mapping, although
some programmers opt to construct their own ORM tools.. 23, 39, 40,
48

Primary key is the column or columns that contain values that uniquely
identify each row in a table.. 48, 50

Swagger is a set of rules and tools for building and documenting RESTful
APIs. It provides a standardized way of describing the structure and
functionality of an API, allowing developers to understand and interact
with it easily.. 11

UML is a general-purpose modeling language that is intended to provide a
standard way to visualize the design of a system. 38

82

Appendix C
List of Abbreviations

. CRUD - Create Read Update Delete.API - Application Programming Interface. REST - Representational State Transfer. HTML - HyperText Markup Language. SCSS - Sassy CSS. CSS - Cascade Style Sheets. SQL - Structured Query Language. JSON - JavaScript Object Notation. JWT - JSON Web Token.XSS - Cross-Site Scripting. CSRF - Cross-Site Request Forgery. DB - Database. PM - Project Manager. CORS - Cross-Origin Resource Sharing. UI - User Interface.ORM - Object Relation Mapping

83

84

Appendix D
Bibliography

[1] CTU SSO About [online] https://ist.cvut.cz/pojmy/
vyhody-a-nevyhody-prihlaseni-sso/

[2] FIT Zuul OAAS Documentation [online] https://rozvoj.fit.cvut.cz/

[3] Google Calendar API Documentation [online] https://developers.
google.com/calendar/api

[4] MongoDB Documentation [online] https://www.mongodb.com/atlas/
database

[5] Angular Documentation [online] https://angular.io/

[6] Implementing a Shared Calendar. In: Practical Liferay. Apress. [chapter]
https://doi.org/10.1007/978-1-4302-1848-7_8

[7] Tullio, J., Mynatt, E.D. (2007). Use and Implications of a Shared, Fore-
casting Calendar. In: Baranauskas, C., Palanque, P., Abascal, J., Barbosa,
S.D.J. (eds) Human-Computer Interaction – INTERACT 2007. INTER-
ACT 2007. Lecture Notes in Computer Science, vol 4662. Springer, Berlin,
Heidelberg. [book] https://doi.org/10.1007/978-3-540-74796-3_26

[8] KOS API documentation [online] https://kosapi.fit.cvut.cz/

[9] Web API Design https://offers.apigee.com/
web-api-design-ebook/

[10] RESTful Java with JAX-RS (O’Reilly, 2009) http://ww7.freshwap.
net/ebooks/53935-restful-java-with-jax-rs.html

[11] RESTful Web Services Cookbook (O’Reilly,
2010) http://ww7.freshwap.net/ebooks/
239061-restful-web-services-cookbook-solutions-for.html

[12] Integrated user interface for effective utilization of multiple project
management tools, Anton Striapan (2021) https://dspace.cvut.cz/
handle/10467/94713

85

https://ist.cvut.cz/pojmy/vyhody-a-nevyhody-prihlaseni-sso/
https://ist.cvut.cz/pojmy/vyhody-a-nevyhody-prihlaseni-sso/
https://rozvoj.fit.cvut.cz/
https://developers.google.com/calendar/api
https://developers.google.com/calendar/api
https://www.mongodb.com/atlas/database
https://www.mongodb.com/atlas/database
https://angular.io/
https://doi.org/10.1007/978-1-4302-1848-7_8
https://doi.org/10.1007/978-3-540-74796-3_26
https://kosapi.fit.cvut.cz/
https://offers.apigee.com/web-api-design-ebook/
https://offers.apigee.com/web-api-design-ebook/
http://ww7.freshwap.net/ebooks/53935-restful-java-with-jax-rs.html
http://ww7.freshwap.net/ebooks/53935-restful-java-with-jax-rs.html
http://ww7.freshwap.net/ebooks/239061-restful-web-services-cookbook-solutions-for.html
http://ww7.freshwap.net/ebooks/239061-restful-web-services-cookbook-solutions-for.html
https://dspace.cvut.cz/handle/10467/94713
https://dspace.cvut.cz/handle/10467/94713

	Introduction
	nonfunctionalrequirements
	Common requirements
	Student requirements
	Staff requirements

	User scenarios
	Login and connect CTU account
	Connect new calendar
	Create calendar event
	Assign on event

	Done research
	Calendar Server
	Zuul OAAS
	Sirius API

	SSO Gate
	KOS API
	Google Calendar api
	Concepts overview
	Calendars events
	Sharing & attendees

	Proposed architecture
	Database
	Backend
	Frontend

	Implementation
	Backend
	Frontend
	Architecture and Business Logic Description
	UI/UX

	User service
	Database
	Architecture description
	ORM implementation
	Repository

	Backend
	Architecture description
	Data Validation
	Eureka Service visibility

	Calendar service
	Database
	Architecture description
	ORM implementation
	Repositories

	Backend
	Architecture description
	Data Validation
	Calendar Export
	CalendarEvent creation

	Authorization
	Internal Authorization
	Frontend
	Backend
	Database

	External Authorization
	Google API
	CTU API

	Testing
	Backend
	Frontend
	Gitlab CI/CD

	Conclusion
	Application setup instructions
	How to run and serve application
	With backend
	With mocked backend

	Glossary
	List of Abbreviations
	Bibliography

