
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Reinforcement Learning for Quadrupedal
Robot Control with Novel Kinematics

Bc. Andrej Kružliak

Supervisor: Rastislav Marko, MSc.
Field of study: Cybernetics and Robotics
January 2024

ii

Acknowledgements

I would like to thank my supervisor,
Rastislav Marko, MSc., for his guidance
and support. The always precise, con-
structive criticism and morale boost kept
me progressing through the whole thesis
in a rapid manner. Another big thanks
go to the whole team of Panza Robotics,
who made this thesis possible by creating
an amazing robotics masterpiece called
Artaban, creating a welcoming working
atmosphere, and making my high-school
robotic dreams come true. I appreciate
the initial conversations with the second
supervisor doc. Ing. Karel Zimmermann,
Ph.D. which led to the settling of this
Diploma thesis in cooperation with the
external company, Panza Robotics s.r.o.
Thanks go to my family, close loved ones,
and friends who understand the role of
university in my life and showed me great
support through the whole academic jour-
ney.

Declaration

I declare that the presented work was
developed independently and that I have
listed all sources of information used
within in accordance with the method-
ical instructions for observing the ethical
principles in the preparation of university
theses.

Prague, January , 2024

Prehlasujem, že som predloženú prácu
vypracoval samostatne a že som uviedol
všetky použité informačné zdroje v súlade
s Metodickým pokynom o dodržiavaní et-
ických princípov pri príprave vysokoškol-
ských záverečných prácí.

V Prahe, január, 2024

iii

Abstract

This thesis aims to implement and assess
an innovative kinematics solution of the
quadruped robotic platform Artaban by
Panza Robotics, in a simulation environ-
ment within a deep reinforcement learn-
ing setting. The innovative kinematics
include two distinct parallel mechanism
types. One transfers the torque from the
motor through a universal joint mecha-
nism called Cardan mechanism, and the
other is a four-link mechanism on the rear
legs. The innovative kinematics are im-
plemented and tested in three kinematic
configurations: the original with distinct
front and rear legs, a uniform front-legged
configuration, and a front-legged Cardan
configuration optimizing the transmission
of torque. The Cost of Transport (CoT)
metric, judging the amount of effort per
robot velocity, is used for assessing the
performance of gaits produced by those
configurations. The original configura-
tion encountered simulation issues due
to improper loop-closure, leading to non-
viable gaits. These challenges were absent
in the front-legged configuration, which
successfully generated a valid gait. The
subsequent implementation of the Cardan
mechanism yielded an even more efficient
and visually pleasing gait. The Cardan
mechanism’s gait was identified as the
most efficient from the point of view of
the CoT metric, highlighting the mech-
anism’s potential for enhancing robotic
locomotion. The results obtained from
the front-legged configuration with the
Cardan mechanism are expected to trans-
late effectively to the original kinematic
configuration once a stable simulation of
the rear legs is achieved.

Keywords: deep reinforcement learning,
Isaac Sim, Nvidia, quadruped legged
robotics, Artaban robotic platform,
Cardan mechanism, parallel mechanism,
PPO, Proximal policy optimization,
Actor-Critic methods

Supervisor: Rastislav Marko, MSc.
Panza Robotics, s.r.o., Trnava, Slovakia

iv

Abstrakt

Táto diplomová práca sa zameriava an im-
plementáciu a porovnanie inovatívneho ki-
nematického riešenia pre štvornohú robo-
tickú platformu Artaban od firmy Panza
Robotics, v simulačnom prostredí za po-
moci hlbokého posilovaného učenia. Ino-
vatívna kinematika zahŕňa dva typy para-
lelných mechanizmov. Jeden prenáša krú-
tiaci moment z motora cez univerzálny kĺb
zvaný Kardanov mechanizmus, druhý je
štvortyčovým mechanizmom na zadných
nohách. Inovatívna kinematika je imple-
mentovaná a testovaná v troch kinema-
tických konfiguráciach: originálna s odliš-
nými zadnými a prednými nohami, jed-
notná konfigurácia s oboma pármi nôh
vo forme predného páru a jednotná kon-
figurácia s oboma pármi nôh vo forme
predného páru s modelom Kardanového
mechanizmu na každej nohe, optimalizu-
júc prenos krútiaceho momentu. Metrika
účinnosti pohybu, ktorá posudzuje vyna-
ložený výkon v pomere k výslednej rých-
losti robota, je použitá na posúdenie účin-
nosti chôdze, ktorá bola vyprodukovaná
pre spomínané kinematické konfigurácie.
Originálna konfigurácia robota preukazuje
simulačné problémy kvôli neúplnému do-
držiavaniu kinematického obmedzenia na
slučkový uzáver zadného štvortyčového
mechanizmu, vedúc k nerealistickým dru-
hom chôdze. Avšak, tieto simulačné prob-
lémy sa neprejavujú pre konfiguráciu s
prednými nohami, ktorá produkuje rea-
listickú chôdzu. Nasledujúca implementá-
cia Kardanového mechanizmu poskytuje
značne efektívnejšiu a prirodezene vyze-
rajúcu chôdzu robota. Chôdza za pomoci
Kardanového mechanizmu je identifiko-
vaná ako najefektívnejšia z pohľadu met-
riky účinnosti pohybu, zdôrazňujúc po-
tenciál mechanizmu na zlepšenie robotic-
kej chôdze v budúcnosti. Očakáva sa, že

výsledky získané z konfigurácie s pred-
nými nohami s Kardanovým mechaniz-
mom bude možné po dosiahnutí stabilnej
simulácie zadných nôh efektívne preniesť
do pôvodnej kinematickej konfigurácie.

Kľúčové slová: hlboké posilované
učenie, Isaac Sim, Nvidia, štvornohá
robotika, robotická platforma Artaban,
Kardanový mechanizmus, paralelný
mechanizmus, PPO, Proximal policy
optimization, Actor-Critic metódy

Preklad názvu: Posilované učenie pre
ovládanie štvornohého robota s
inovatívnou kinematikou

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 2

2 Related Work 3

2.1 Blind legged locomotion 3

2.2 Legged locomotion with
exteroceptive information 4

2.3 General world model learning . . . 6

2.4 Training criteria and parameters . 6

3 Quadruped robot kinematics 9

3.1 Kinematics of quadrupedal robots 10

3.1.1 Fully revolute actuation chain 10

3.1.2 Mixed revolute-linear actuation
chain . 11

3.1.3 Mixed revolute-universal
actuation chain 12

3.1.4 Closed-loop fully revolute
articulation chain 13

4 Reinforcement learning for learning
quadrupedal gait 17

4.1 Supervised, unsupervised and
reinforcement learning 17

4.2 Introduction to deep reinforcement
learning . 18

4.3 Proximal Policy Optimization . . 20

4.3.1 Introduction to policy gradient
methods . 20

4.3.2 Proximal Policy Optimization
method (PPO) 24

4.3.3 Popular PPO implementations 26

5 Materials & Methods 27

5.1 Robotic platform Artaban 27

5.1.1 Platform description 27

5.1.2 Rear leg 30

5.1.3 Cardan mechanism detail . . . 30

5.2 Simulation environment 32

5.2.1 Omniverse & Isaac Sim 34

5.2.2 Isaac Sim 34

5.3 Gym convention 36

vi

5.3.1 Definition of Gym environment 36

5.3.2 Omniverse Gym for
Reinforcement Learning 37

5.4 Artaban simulation environment 38

5.4.1 Environment implementation 39

5.4.2 Reinforcement learning
pipeline . 41

5.4.3 Reinforcement learning pipeline
parameters 43

6 Experiments & Results 45

6.1 Evaluation environment 45

6.2 Reward function benchmark 46

6.2.1 Reward decomposition 47

6.2.2 Reward ablation 48

6.3 Influence of batch size on gait
quality . 50

6.4 Training progression 51

6.4.1 Original kinematic
configuration - rear-legged 51

6.4.2 Evaluation of different training
runs - rear-legged 53

6.4.3 Front-legged kinematic
configuration 58

6.4.4 Front-legged kinematic
configuration - Cardan mechanism 58

6.4.5 Evaluation of different training
runs - front-legged 59

6.5 Overall training results 62

6.5.1 Payload stability assessment . 63

7 Conclusion 65

8 Discussion & Future work 67

8.1 Discussion 67

8.2 Future work 67

Bibliography 69

Project Specification 75

A Cardan mechanism to knee angle
computation 77

B Detailed reward function
definition 79

C Original kinematic configuration —
photography strips of gaits 81

vii

D Front-legged kinematic
configuration — photography strips
of gaits 85

E Cardan: front-legged kinematic
configuration — photography strips
of gaits 87

F Video documentation of the
provided gaits 89

viii

Figures

2.1 Description of the encoding (C)
and decoding (D) of the
proprioceptive and exteroceptive
information into and from the belief
state respectively. 4

2.2 Heatmap representing the tracking
error of converged curricular
strategies . 5

3.1 A general quadruped schematic . 11

3.2 Robots ANYmal by ANYbotics
serve as a good example of a fully
revolute actuated kinematic chain
forming a leg. Newer models still
adhere to the fully revolute actuation
serving as a proof of robustness. The
pictures are sourced from [1]. 12

3.3 Examples of a mixed
revolute-linear actuation chain 14

3.4 Cardan joint use for robotic leg
articulation . 15

3.5 The close-up and overall picture of
Minitaur’s closed-loop articulation
chain by Ghost Robotics 15

5.1 Artaban robotic platform by Panza
Robotics, s.r.o. 28

5.2 Front leg of the Artaban robotic
platform . 29

5.3 Artaban robotic platform by Panza
Robotics, s.r.o. 31

5.4 The Cardan mechanism with the
notation: 2) motor, 3.a) motor yoke,
3.b) cross joint, 3.c) counter piece
yoke, 3.d) clevis fork 32

5.5 Snippets picturing the
configurations in the original patent
filed by Panza Robotics s.r.o. 32

5.6 A comparison and ranking of the
most well-known simulators 34

5.7 A non-exhaustive visualization of
the Isaac Sim relationship with the
extensions, inputs, outputs, and
bridges . 35

5.8 Illustration of CPU bottlenecks in
previous DRL techniques, red color
represents CPU computation, green
GPU computation, sourced from [2] 38

5.9 Two editions of Artaban with
different kinematics, as rendered in
Isaac Sim . 39

5.10 Illustration of the articulation
loop implementation, overlapped on
top of a simulation render of the rear
left leg . 41

5.11 Tentative diagram of the RL
pipeline, showing the environment in
peach orange, agent model in blue,
and the PPO blocks on the right . . 43

ix

6.1 Evaluation environment
configuration 45

6.2 Reward decomposition results
overview . 48

6.3 Reward ablation results overview,
the names in the legend and bar
graphs represent the name of the
inspected reward 49

6.4 Evaluation environment
configuration 50

6.5 Example of position error of a joint
excluded from articulation 52

6.6 Time-series data comparison for
both pantographs and lower links on
both rear legs 52

6.7 The time-series of collected
rewards showing rapid oscillation to
large negative numbers in the early
training, the graph is cropped for
better clarity 53

6.8 Illustration of the distance joint
implementation, overlapped on top of
a simulation render of the rear left
leg . 54

6.9 The baseline gait for the original
kinematic configuration of Artaban 54

6.10 Training run with stronger
penalties on knee height 55

6.11 The training run with penalties
for being close to joint limits 56

6.12 The gait for the original
kinematic configuration of Artaban
with distance joints 56

6.13 Comparison of chosen rear-legged
runs . 57

6.14 Side view of the front-legged
configuration 58

6.15 Example of forced trot with the
Cardan mechanism 59

6.16 The baseline gait for the
front-legged kinematic configuration
of Artaban . 59

6.17 The gait for the front-legged
kinematic configuration of Artaban
with rewards incentivizing placement
of rocker joints close to nominal
position . 60

6.18 The gait for the front-legged
kinematic configuration of Artaban
with Cardan mechanism in place,
which is backwards because the
forward gait was not clearly visible in
pictures . 60

6.19 The gait for the front-legged
kinematic configuration of Artaban
with Cardan mechanism in place with
rewards incentivizing higher velocity
of the motor shaft on the mechanism 61

6.20 The gait for the front-legged
kinematic configuration of Artaban
with forced Cardan mechanism trot 62

x

6.21 Comparison of chosen front-legged
runs . 63

6.22 Overview of mean CoT of all
training runs together 63

6.23 Overview of mean PSQ of all
training runs together 64

A.1 Computation of the knee angle
from the Cardan mechanism 77

C.1 The baseline gait for the original
kinematic configuration of Artaban 81

C.2 The gait for the original kinematic
configuration of Artaban with
penalties incentivizing lower knee
height error . 82

C.3 The training run with penalties on
being close to joint limits 82

C.4 The gait for the original kinematic
configuration of Artaban with
distance joints 83

D.1 The baseline gait for the
front-legged kinematic configuration
of Artaban . 85

D.2 The gait for the front-legged
kinematic configuration of Artaban
with rewards incentivizing placement
of rocker joints close to nominal
position . 86

E.1 The gait for the front-legged
kinematic configuration of Artaban
with Cardan mechanism in place . . 87

E.2 The gait for the front-legged
kinematic configuration of Artaban
with Cardan mechanism in place with
rewards incentivizing higher velocity
of the motor shaft on the mechanism 88

E.3 The gait for the front-legged
kinematic configuration of Artaban
with forced Cardan mechanism trot 88

xi

Tables

6.1 Rewards scale overview for
front-legged and original kinematic
configuration 47

B.1 Computation of reward signals for
reinforcement learning. J represents
set of all joints, Aπ represents number
of actions available to the agent, e.g.,
12 in the case of 12 motors, x, v and
ω represent the robots position state,
linear and angular velocity
respectively, θ represents a motor or
joint angular position, Fj represents
force measured in the link forward
from the j − th joint, MC represents
the set of C motors which are
responsible for spinning the Cardan
mechanism for the Cardan kinematic
configuration. 80

xii

Chapter 1

Introduction

1.1 Motivation

The locomotion of a legged robot is much more complex and computationally
demanding than it is for tracked robots but provides many more opportuni-
ties when walking on either uneven, unknown, or otherwise difficult terrain.
Puddles, tall grass, differences in terrain surface friction, and overall sen-
sor imperfections add to the difficulty of legged locomotion. Historically,
approaches to legged robot locomotion have not always contained machine
learning. Various classical locomotion approaches include utilizing Central
Pattern Generators (CPG) [3] or incorporating engineering dynamics through
optimal control methods like Model Predictive Control (MPC) [4, Chapter 4],
[5]. These methods aim to fulfill specific constraints, such as the Zero Moment
Point, as well as satisfying trajectories for robot legs or the center of gravity.
Even though the progress in classical predictive control without machine
learning is impressive, the progressively cheaper computing and more efficient
memory management in reinforcement learning algorithms brought a fresh
breeze into legged locomotion. Reinforcement learning (RL) is not a new
paradigm, but the new and cheaper computation hardware opened opportuni-
ties for more researchers and projects. RL algorithms win at popular games
such as GO, help with protein folding, and legged robot locomotion, among
other things, is no exception.

The current state-of-the-art solutions to the legged locomotion problem
usually contain some form of terrain property sensing, i.e., exteroceptive
sensing combined with the readings from the robot’s IMU, motor torques,

1

1. Introduction
etc., i.e., interoceptive sensing. Although recent papers on quadrupedal
robotics [6, 7] suggest that simply using so-called privileged information in
simulation training is sufficient for blind locomotion. Although this means
that recovery from slippery terrain or stairs is robustly possible, the quality
of such gait is not outstanding from the point of view of gait speed. Miki et
al. [7] show that using privileged learning in tandem with vision provides
even more robust, quick, and smooth traverse of stairs and other difficult
terrains. The notion of privileged information is explained in more detail in
Section 2.
Simulating the environment for such a complex problem as locomotion may
seem excessively hard. One might assume that to robustly simulate a robotic
gait on a complex surface, such as sand, we must simulate all the particles
that come into contact with the robot. Or that whatever representation of the
environment, unless it simulates the real world exhaustively and completely,
the trained policy for walking will be only asymptotically robust [8]. Therefore,
people such as Rodney Brooks, the founder of the iRobot company, said
“Simulations are doomed to succeed” [8]. This draws attention to the common
caveats that become progressively more and more tempting for researchers the
more their application fails, such as tweaking the simulation environment until
the results are favorable. Although recent publications consistently prove
that sim-to-real transfer is possible and actually tweaking the simulation
environment by granting some parts of the policy access to the ground truth
information is beneficial if done right. Publications extensively described in
Section 2 show that the reinforcement learning approach via simulation is
taking the main stage in robotic locomotion, not with a whimper but a bang
[9].

1.2 Goals

The main goal of this thesis is to train a quadruped gait with the model of
the Artaban robotic platform and its special kinematics and compare it to the
conventional approach to kinematics. The main goal consists of partial goals,
such as implementing the closed-loop actuation for the specific linkage the
robot possesses, training a gait with this specific linkage, then implementing a
kinematic configuration without this specific linkage (conventional), training
the gait with it, and comparing. The last partial goal is implementing
the specific torque transmission mechanism called the Cardan mechanism,
training another gait, and again, comparing. For the comparison, a metric
called Cost of Transport is chosen.

2

Chapter 2

Related Work

2.1 Blind legged locomotion

It is possible to solve the problem of legged locomotion problem without
the exteroceptive data. This “blind” locomotion, as mentioned in work by
T. Azayev et al. [10], uses the combination of different so-called expert
policies. The expert policies are modeled by independently trained Artificial
Neural Networks (ANNs) multiplexed by a Recurrent Neural Network (RNN)
conditioned on the state history. The agent navigates a partially observable
environment consisting of discrete environment parts that differ in slopes,
may contain small bumps, hills, pipes, or consist of some form of stairs. The
problem was modeled and solved using a hexapod, a six-legged robot in
a physics simulation environment, MuJoCo. The agent’s navigation in a
partially observable environment is formally modeled as POMDP (Partially
Observable Markov Decision Process). In this work, a two-layer recurrent
policy is proposed. The multiplexing of independently trained policies shows
better results than using a single RNN policy, resulting in a walking gait
that is somewhat an average over all terrains. Such policy has trouble
adjusting to the current environment and results in a suboptimal gait for
the whole sequence of environments. Deep Reinforcement Learning (DRL) is
utilized with a slightly modified Proximal Policy Optimization (PPO) as an
optimization strategy to train the model.

3

2. Related Work.....................................
2.2 Legged locomotion with exteroceptive
information

With the computational power and sensors available, a more informed ap-
proach results in better and more robust locomotion that produces good
sim-to-real results, such as in Miki. et.al. [7], or G. B. Margolis [11]. In Miki
et al., the locomotion aims at high generality of locomotion in virtually (and
also physically) any terrain. The so-called perceptive locomotion approach is
preferred since the robots usually come with all the sensors already installed
onboard. The quadruped ANYmal from the ETH Zurich Robotic Systems
Lab was the physical platform. The result of this paper is that using privi-
leged learning, a more robust locomotion controller can be constructed that
has minimal problems traversing rugged terrain, such as hills, grasslands,
dirt roads, and so on. So was demonstrated on a 2.2 km hike through Etzel
Hill with 120 m elevation without a single fall. The exteroceptive data is
incorporated using Teacher and Student policy training. The first policy, the
teacher is trained using so-called privileged information, such as noiseless
terrain measurements, ground friction, and external disturbances. All of that
privileged information is completely known and available to the teacher policy.
The student policy is trained to reproduce the teacher policy’s actions without
using the privileged data. The world dynamics are modeled as POMDP, and
the employed optimization technique for the teacher policy, modeled as a
Gaussian policy, is PPO. Since the model is partially observable, a belief
state encoder accounts for the hidden states of the environment. The authors
provide a graphical overview of the belief encoder and decoder architectures,
shown in Fig. 2.1.

Research Article ETH Zurich and Intel 13

Select with probability

Height scan noise model

Per point noise (sampled every timestep)

Per foot noise (sampled every timestep)

Per foot noise (fixed through episode)

Per point outlier (only applied to some points)

Nominal noiseZero noise

Large offset Large noise

A B Different noise levels

exteroceptive

RNN
proprioceptive c

gate

+

attention

belief state

hidden
next

hidden

Belief encoder
C D

exteroceptive

gate

attention

estimated

privileged info
hidden

Belief decoder

+
estimated

exteroceptive info

privileged decoder

exteroceptive decoder

Fig. 6. Details of robust terrain perception components. (A) During student training, random noise is added to the height samples. The noise is
sampled from a Gaussian distribution N (0, zl ∈ R8), where each zl

i controls a different noise component i per leg l. (B) We use multiple noise
configurations z to simulate different operating conditions. “Zero noise" is applied during teacher training, while “nominal noise" represents
normal mapping conditions during student training. “Large offset" noise simulates large map offsets due to pose estimation drift or deformable
terrain surfaces. “Large noise" simulates a complete lack of terrain information due to occlusion or sensor failure. (C) The student policy belief
encoder incorporates a recurrent core and an attentional gate that integrates the proprioceptive and exteroceptive modalities. The gate explicitly
controls which aspects of exteroceptive data to pass through. (D) The belief decoder has a gate for reconstructing the exteroceptive data. It is
only used during training and for introspection into the belief state.

Figure 2.1: Description of the encoding (C) and decoding (D) of the propriocep-
tive and exteroceptive information into and from the belief state respectively.

Here, the proprioception, exteroceptive noisy observations, and hidden
states are encoded by the RNN into an intermediate belief state. From this,
an attention vector is computed that controls the amount of the exteroceptive
information that enters the final belief state. A Gated Recurrent Unit (GRU)
is the RNN architecture of choice.

In Margolis et al. [11], a similar teacher-student policy is implemented with

4

.................... 2.2. Legged locomotion with exteroceptive information

0.0 0.5 1.0 1.5
Error Threshold [m/s] + [rad/s]

0

20

40

60

80

C
om

m
an

d
A

re
a

[m
·ra

d/
s2]

No Curriculum
Box Adaptive
Grid Adaptive

(a) Command area vs. error threshold

-5

0

5

No Curriculum Box Adaptive Grid Adaptive

-5 0 5
vx [m/sec]

-5

0

5

z [
ra

d/
se

c]

-5 0 5 -5 0 5
0.0

0.5

1.0

1.5

2.0

2.5

Tr
ac

ki
ng

 E
rr

or
,

z
Tr

ac
ki

ng
 E

rr
or

, v
x

(b) Heatmap of converged tracking error for curricular strategies.

Fig. 3: (a) Forward and angular velocity tracking performance. The Grid Adaptive curriculum tracks a larger range of velocities
than the Box Adaptive curriculum for all error thresholds. (b) Velocity tracking error in the forward axis (top) and yaw axis
(bottom); darker is better. In each heatmap, the x-axis varies the forward velocity command between [−6, 6m/s] and the y-axis
varies the yaw rate between [−6, 6 rad/s]. From left to right: No Curriculum fails to learn meaningful velocity control; its
heatmaps correspond to a robot jittering in place, as its tracking error is equal to the command. Box Adaptive curriculum learns
to control the robot but excludes extremes of the command space. Grid Adaptive curriculum covers a larger command area by
accounting for the combined impact of running and turning speed on task difficulty.

and the reward threshold is met. In that case, this update will
result in that distribution expanding.

2) Grid Adaptive Curriculum Update Rule: At episode k,
the linear and angular velocity commands for the agent are
sampled from the joint distribution: vcmd

x ,ωcmd
z ∼ pkvx,ωz (·, ·).

As before, if the agent succeeds in this region of command
space, we would like to increase the difficulty by adding
neighboring regions to the sampling distribution. However, the
distributions of vcmd

x and vcmd
y are no longer constrained to be

independent. This enables us to revise our update with a new
definition of the neighboring commands. Upon termination
of an episode with command [vcmd

x ,ωcmd
z] where the agent

received rewards rvcmd
x
, rωcmd

z
, we use the following update:

pk+1
vx,ωz (v

n
x,ω

n
z)←

{
pkvx,ωz (v

n
x,ω

n
z) rvcmd

x
< γ or rωcmd

z
< γ,

1 otherwise.
(11)

This update adds probability density to the neighboring
velocity commands [vn

x,ω
n
z] of [vcmd

x ,ωcmd
z], if those com-

mands have not already been added. Here, neighboring com-
mands are defined as neighbors in the 4-connected grid do-
main of pkvx,ωz (·, ·), which is a discrete grid with resolution
[0.5m/s, 0.5 rad/s]. If [vcmd

x ,ωcmd
z] is among the most chal-

lenging commands in the joint distribution, and the reward
threshold is met, this update will result in the distribution
expanding locally.

E. Evaluation Metrics

The controller is tasked to track body velocity commands.
Consider a command: (vcmd

x ,ωcmd
z) corresponding to a point in

the vcmd
x -ωcmd

z plane. We discretize this plane into a grid with
resolution [0.5m/s, 0.5 rad/s] with grid cell indices denoted
as i, j. Then, for each grid cell, we define the tracking error
εij as the root mean square deviation, averaged over trials in

that grid cell:

εij [vcmd
x] = Evcmd

x ∼[i−1,i],ωcmd
z ∼[j−1,j]

√
Et(vcmd

x − vtx)2 , (12a)

εij [ω
cmd
z] = Evcmd

x ∼[i−1,i],ωcmd
z ∼[j−1,j]

√
Et(ωcmd

z − ωtz)
2 ,
(12b)

where vtx,ωtz are the forward and yaw velocity of the robot
measured at time t. In our experiments, we compute tracking
error from 5 trials per grid cell.

Measuring either the longitudinal or yaw velocity in iso-
lation does not provide a complete picture of controller
performance. Instead, we want a metric that captures the
combinations of longitudinal and yaw velocity that the robot is
able to track. To this end, we constructed an aggregate metric
that captures the diversity of commands the controller can
actuate given some maximum error tolerance. For a certain
error threshold ε0, we define the command area as the area
of the region in the vcmd

x -ωcmd
z plane for which the tracking

errors satisfy

εij [vcmd
x] + εij [ω

cmd
z] < ε0. (13)

The dimension of the command area is m/s · rad/s. In-
tuitively, if one controller has a larger command area than
another, the former can achieve a greater range of speeds
while remaining below the same error threshold ε0. When we
report the command area, we evaluate policies trained with
five random seeds and indicate their standard deviation using
an error bar.

IV. RESULTS

A. Curriculum Learning Enables High-Speed Locomotion

Figure 3(a) visualizes the tracking error (see Section III-E)
of the policies learned from the three command sampling
strategies as heatmaps in the vcmd

x -ωcmd
z plane. The shading

on each heatmap corresponds to tracking error, with darker

Figure 2.2: Heatmap representing the tracking error of converged curricular
strategies

the addition of a curriculum regarding also the target speed, not only terrain
and domain randomization, as it was in [7]. Such a curriculum makes it easier
to recover rewards from high-speed movement training, which is the goal of
the paper. The probability of obtaining the reward in higher-speed scenarios
rises by slowly ramping up the target speed as the robot progresses. This
solves the problem of sparse rewards for agile movements. The curriculum
update rule the authors provide is called the Grid Adaptive Curriculum
Update Rule. The update rule works by adding neighboring commands to
the speed and direction the agent is given. The update adds probability
density to the neighboring commands of the agent’s speed and direction if
those commands have not already been added. The neighboring commands
are defined as those close to the agent’s original command in a grid. If the
agent succeeds in a difficult command and the reward threshold is met, the
neighboring commands will be added to the update to make the task even
more challenging. Such curriculum learning, of which tracking errors are
shown as presented by the authors in Fig. 2.2, enables high-speed locomotion.

Tsounis et al. [12] address in their work the challenge of legged locomo-
tion in uneven terrain by creating a two-level system merging two distinct
methodologies: model-based motion planning with reinforcement learning to
train neural network policy for terrain-aware locomotion. Their approach
combines dynamic feasibility criteria with Markov decision processes. The
two-level system comprises a Gait Planner (GP) and a Gait Controller (GC),
integrating both exteroceptive and interoceptive data. The GP acts as a
terrain-aware planner, while the GC functions as a motion planner and
controller. This structure allows for responsive and adaptive control of the
robot’s movement. The authors use a Linear Program (LP) for transition
feasibility, which respects the robot’s movement capabilities while simplifying
the training process. Their approach reduces the computational demands
typically associated with DRL since invalid robot configurations are not

5

2. Related Work.....................................
allowed by definition, so the policy does not need to spend time learning the
valid configurations first. However, this work was published in 2019. Since
then, major progressions have been made in computational efficiency (such
as [13]), which makes this approach slightly less relevant. However, applying
the key takeaway in using the knowledge about the robot’s kinematics as a
prior and incorporating it into the training process reduces the training time
even if the computational efficiency grows independently.

2.3 General world model learning

A more advanced approach to the locomotion problem may be to use a more
general agent. Using encoders or similar architectures that learn the world
model, we can get a more general approach to solving the locomotion task.
Such an approach was chosen by Hafner et al. from DeepMind with the
DreamerV3 agent. This agent achieved great results in [14] sparse-reward
problems like physical control and DMLab. As the first out-of-the-box
algorithm, it also collected diamonds in the video game Minecraft. Collecting
the diamonds in this game is a strongly sparse reward requiring multiple
intermediate steps to go right beforehand. The part that is related to this
work is the Control Suite division, where different locomotion tasks were
studied. The agent consists of 3 NNs: the world model, which predicts
future outcomes of potential actions; the critic that judges the value of each
situation; and the actor who learns to reach those valuable situations. The
learning in this model is purely reinforcement learning without expert data or
manually-crafted curricula. The world model is trained using autoencoding
of actions via a Recurrent State-Space Model (RSSM). The actor chooses
what to do next in the game based on what it has learned so far, without
thinking too far into the future, limited by a discount factor. The critic helps
the actor learn by predicting how good each decision will be in the long run.
To explore more options in a sparse-reward world, an entropy regularizer is
employed to scale the rewards appropriately so small rewards do not get too
amplified and large rewards get more limited.

2.4 Training criteria and parameters

Choosing a quality criterion function for optimization is vital for good learning
results. This concerns the creation of a reward function in such a way that
the agent’s goal is aligned with ours. Previous papers [7, 10, 11] dedicated

6

............................ 2.4. Training criteria and parameters

whole appendix sections to describe their exact choice of rewards. The
rewards were usually hand-crafted and embodiment-specific, which makes
sense, given the scope of this project being quadrupedal locomotion. If only
the distance is used as a reward, then erratic behavior might emerge from the
reinforcement learning because there are no constraints on jumping or other
abrupt movements. By giving restrictions on the tilt of the top plane of the
robot, the authors actively encourage the robot to stay level, making future
use of cameras much more robust. An embodiment-non-specific reward is
the Cost of Transport (CoT). The CoT has various definitions but generally
refers to a ratio of power consumption divided by the robot’s momentum. So
the lower the cost, the better momentum per effort is obtained, resulting in
movement with the least effort.

In more difficult terrains, the CoT is not easily computed and needs to be
estimated from training data. This was done in the work by Prágr et al. [15].
The authors discuss a method for predicting the CoT based on the terrain it
traverses. The method uses a combination of terrain features and low-level
ML algorithms, such as Hoeffding trees, Support Vector Regression, etc., to
learn how different types of terrain affect the robot’s energy consumption.
The framework has two stages: a learning phase, where the robot collects data
about the terrain and energy consumption, and an inference phase, where
the learned model is used to predict the energy consumption of new terrain
using an aerial view. The method uses temporary feature storage to maintain
a dictionary of terrain features extracted from the robot’s field of view, which
gets randomly pruned when the capacity is reached. This allows for training
the robot locally instead of keeping an ever-growing feature map.

In the 2021 paper “Learning to Walk in Minutes Using Massively Parallel
Deep Reinforcement Learning,” Rudin et al. [13] describe how massive paral-
lelism helps with training time and training efficiency. The implementation
style and insights are closely followed up on in this work. The main focus is
on the effects of using a large number of parallel robots (massive parallelism)
in training simulations on policy performance. Initially, a baseline is set with
20,000 robots and 50 steps, leading to a large batch size and effective policy
but with longer training times. Experiments were then conducted to find a
balance between the number of robots, batch size, and training duration. It
was observed that too many robots led to a decrease in policy performance,
explained by a reduced time horizon for each robot. Conversely, below a
certain number of robots, a gradual decrease in performance was noted. The
study aims to find an optimal trade-off between training time and policy
effectiveness. The whole reinforcement learning pipeline is parallelized and
delegated to GPU, including the physics simulation, reward and observation
calculations, policy inference, and backpropagation.

7

8

Chapter 3

Quadruped robot kinematics

Kinematics is a pivotal aspect of robotics. It studies the motion of robotic
systems without accounting for the forces causing the movement. Kinematics,
given that the model is idealized relates rigid parts of the body with joints that
move them. The joints may take different forms, such as revolute, prismatic,
spherical, and so on. Understanding robot kinematics is crucial for designing
and controlling articulated robots. The discipline of designing kinematic
chains is important and strongly present in legged robotics, although wheeled
robots have kinematic constraints and, therefore, problems of their own [16].

In robotics, one is mainly concerned with forward and inverse kinematics.
Forward kinematics (FK) aims to provide a solution to the position of an
end-effector, given the angles of the joints preceding the end-effector. The
inverse kinematics (IK) aims to provide a solution to the joint angles given
the position of the end-effector. The inverse kinematics is a more complicated
question, mainly in the situation of multiple joints, where a subset of the
joints is redundant, i.e., njoints > nDOF. The problem of inverse kinematics
is usually independent of gait planning. I.e., the robot is tasked with an
end-effector trajectory (points in space with a time-stamp that demand some
position of a leg in space and time), and some solver of IK provides a solution,
usually based on proximity of the solution to the current joint configuration.
The solving of IK is a complicated subject and a discipline of its own, moreover
if solved under specific constraints.

The dynamics are of great importance when the manipulator is not fixed at
its base. In contrast to a classic 7 DOF robotic arm, a legged robot has a more
substantial need for incorporating dynamics, to ensure stability and safety

9

3. Quadruped robot kinematics
of the surroundings. A 7 DOF robotic arm may simply track the error in
joint angles and, if needed, apply larger torques to minimize the end-effector
position error. This is also possible in floating-base robots, although any fast
movement with a heavy effector further away from the center of mass moves
the whole robot in space in an unwanted manner. Therefore, even though
the end-effector error may still be minimized in a floating-base robot, the
whole robot may have inadvertently moved and may have introduced errors
into other degrees of freedom, such as rotations around its pivotal axis. A
control system that accounts for kinematics and dynamics can be created
by meticulously engineering a modular solution for kinematics, dynamics,
motion planning, and path planning or by trying to solve the kinematics,
dynamics, and motion planning in one compound problem in the form of a
policy using deep reinforcement learning.

3.1 Kinematics of quadrupedal robots

This section provides an overview of conventional approaches to building
a legged robot, particularly a quadrupedal robot. One part of solving a
quadruped’s kinematics is providing formulas or algorithms to solve the FK
and IK problems given a robotic actuator. Another part is actually designing
the kinematic chain that will serve as the robotic actuator. In the following
subsections, I provide different approaches to building the articulation chain.
A quadruped robot usually consists of 12 degrees of freedom (DOF) with
three DOF per leg. A general quadruped schematic is provided in Fig. 3.1.
The motors/joints are usually regarded in alphabetical order from the base
(B in the figure) to the end effector (E in the figure) as JA, JB, and JC

when talking about joints, or MA, MB, and MC when pointing to motors.
The orange dashed arrows depict the axis of rotation of the motor, and the
spinning arrow signifies the positive direction of rotation according to the
right-hand rule. The joints are sometimes referred to by the type of rotation
they provide to the robot, i.e., the MA would be a rolling motor, MB and
MC would be pitching motors. In this thesis, regarding the Artaban platform,
motors MA are often written about as rockers, motors MB as shoulders or
hips and MC as knees or wrists.

3.1.1 Fully revolute actuation chain

This is perhaps the most straightforward design of the articulation chain. For
clarity, in this work, a revolute joint is understood as a joint with strictly one

10

........................... 3.1. Kinematics of quadrupedal robots

Figure 3.1: A general quadruped schematic

rotational axis. One revolute joint is at the forward-facing axis of the robot,
and one or more revolute joints are on the robot’s side-facing axis. The upside
of this approach is that the design and manufacture of the robot parts and
kinematic equations are straightforward. The downside is that the motors
on each joint are often coupled with planetary transmission, encoders, and
other accompanying components, all adding up to the weight of each leg and,
therefore, moving the center of mass (CoM) of each leg. This, as mentioned
in the introduction of this section, brings further problems while solving the
gait because each movement of a relatively heavy point outside of the robot’s
center of gravity introduces unwanted forces. A concrete example of this
joint configuration is the ANYmal robot series by ANYbotics. ANYmal is
actuated using series elastic drive [17] in each joint, all encompassed in a
similarly named actuator ANYdrive.

3.1.2 Mixed revolute-linear actuation chain

As mentioned in the previous subsection 3.1.1, mounting a motor with all
its relevant components directly on the actuated joint might result in a
massive leg with an undesirable mass distribution. Therefore, moving the
heavy actuator parts closer to the robot’s CoM is an advantageous step.
On the other hand, this approach often brings restrictions on the range of
motion since the driving power of articulated joints is transported using some
mechanism to undriven mechanical joints. One approach to designing a mixed
revolute-linear actuation is using a screw drive to actuate a lower joint, as

11

3. Quadruped robot kinematics

(a) : ANYmal with
ANYdrives visible

(b) : ANYmal B with
ANYdrives visible

(c) : ANYmal C, not
visible ANYdrives

Figure 3.2: Robots ANYmal by ANYbotics serve as a good example of a fully
revolute actuated kinematic chain forming a leg. Newer models still adhere to
the fully revolute actuation serving as a proof of robustness. The pictures are
sourced from [1].

done in the robotic platform Spot by Boston Dynamics. The revolute motion
of the motor is translated through the screw shaft that moves a carrier that
moves the knee pivot, similar to the way the piston in a combustion engine is
moved, i.e., the head of the piston (here the carrier - 414) is moved up and
down, and the engine crankshaft (here the lower leg 412) rotates around the
pivot (here the knee pivot - 426). The numbers in the former explanation
correspond to those in the graphic in Fig. 3.3a, as published in the patent
[18].

Another approach is transferring the torque from an electric motor through
a belt instead of a screw drive. This has the advantage of easy manufacturing
and installation but limited torque and risk of slippage. Such a belt mechanism
is used to transfer the torque from an upper drive to another joint in the
quadruped robot Cheetah by the Massachusetts Institute of Technology.
This mechanism is also mentioned in this section because the actuation is
transferred to another joint in a linear fashion, compared to the Anymal
robot that has drives installed directly in the location of the joint itself. The
upper drive is close to the CoM of the body, and the belt transfers the torque
to an undriven mechanical joint, rotating the lower link of the quadruped leg.
The belt mechanism is clearly visible in Fig. 3.3b. The Cheetah’s degrees of
freedom are driven by a motor-integrated gearbox drive [17].

3.1.3 Mixed revolute-universal actuation chain

The approach of the platform Artaban by Panza Robotics is similar to the
prior examples in the sense of the mixture of articulation chain elements.
However, Artaban’s legs consist of a unique patented mechanism based on a

12

........................... 3.1. Kinematics of quadrupedal robots

universal joint, often called the Cardano joint or Cardan joint. This joint,
in its basic form, is quasi-spherical in the sense the joint can transfer axial
rotation between two links under an arbitrary angle, see Fig. 3.4a. This joint
is most known for its use in the driving shaft of automobiles with all four
wheels drive to transfer torque from the engine to the other wheels opposite
the engine location.

Each Cardan mechanism introduces a parallel four-bar linkage into the
articulation chain. Front legs have one four-bar linkage surrounding the
Cardan mechanism, while the rear legs have two foud-bar linkages. That is,
one surrounding the Cardan mechanism and another one pulling the lower
link through the connecting pantograph link. More detail is provided in the
Chapter 5. The example of the

3.1.4 Closed-loop fully revolute articulation chain

Even though the previous subsections do not provide an exhaustive overview
of possible kinematic solutions, the robot platform Minitaur is an honorable
mention in its unique leg design. The whole articulation chain is closed-loop,
in the sense that each leg starts and ends with a directly driven motor [17]
attached to the body. The two motors are connected via a four-bar linkage.
In the middle of this chain is the end-effector. This end-effector is offset in one
dimension connected by another bar. Therefore, the author of [17] references
the linkage as a five-bar. However, the author of the original mechanism
states [22], that even though it is technically a five-bar mechanism when
viewed from a side view, the actual linkage is four-bar in its geometry and
offset in the depth dimension that is not visible when viewed from the side.

13

3. Quadruped robot kinematics

(a) : Screw drive actuation patent drawing by Boston Dynamics [18]

(b) : Assembly of the Cheetah robot’s legs, showcasing the belt drive actuation [19]

Figure 3.3: Examples of a mixed revolute-linear actuation chain

14

........................... 3.1. Kinematics of quadrupedal robots

(a) : Exemplary showcase of the Cardano joint in the basic form, source: [20]

(b) : An example of usage of two Cardan joints in a robotic leg, patented by Panza
Robotics s.r.o. [21]

Figure 3.4: Cardan joint use for robotic leg articulation

(a) : Showcase of the 5-bar linkage
forming a closed-loop articulation,
sourced from [22]

(b) : The robot Minitaur as con-
structed by Ghost Robotics [23]

Figure 3.5: The close-up and overall picture of Minitaur’s closed-loop articulation
chain by Ghost Robotics

15

16

Chapter 4

Reinforcement learning for learning
quadrupedal gait

Reinforcement learning is a general paradigm in the realm of machine learning
that formulates a learning strategy in which an agent learns based on interac-
tion with its environment. Reinforcement learning is well suited for problems
in which the task definition is relatively simple, but the task execution is
complicated. The reinforcement learning tasks might be defined as walk
forward, win the game by maximizing score, keep a system variable steady,
etc. The discipline that aims to formalize the definition of task complexity
into tractable format is often called reward shaping. Reward shaping puts
deliberate penalties, rewards, and constraints on the agent’s behavior in order
to shape it in a desired direction.

4.1 Supervised, unsupervised and reinforcement
learning

Supervised learning trains a classificator or other agent on a labeled
dataset that defines a mapping from inputs to outputs. The goal is to learn
this mapping. The objective is to generalize well on data that are out of
the training distribution. Good examples of supervised learning are image
classification, speech recognition, or other general classification problems.
Supervised learning can also be used for regression problems where the output
is not strictly a mapping from inputs to discreet outputs but a prediction of
continuous values.

17

4. Reinforcement learning for learning quadrupedal gait....................
Unsupervised learning, in contrast, operates without the availability of a
labeled dataset. The algorithm is used to discover patterns and structures
in the data without prior insight. Unsupervised methods include genera-
tive models such as autoencoders, clustering techniques such as k-means,
dimensionality analysis such as principal component analysis, and many more.

Reinforcement learning does not entirely fit any of those categories but
rather is a category itself. It might be reasonable to categorize reinforcement
learning as unsupervised learning because the agent learns by itself without
the supervision of labels. However, the agent in the RL setting is provided
with a reward signal that is absent in unsupervised learning. Therefore, one
could view RL as supervised learning because the rewards aim to at least
partly substitute the supervision of labels. However, this is not true either.
Reinforcement learning aims to learn a strategy - a policy through time that
differs from the act of prediction of the input-output setting of the supervised
learning.

4.2 Introduction to deep reinforcement learning

R. S. Sutton and A. G. Barto, in their textbook Reinforcement Learning:
An Introduction, define deep reinforcement learning (DRL) as a “group of
nonlinear methods that include some form of an artificial neural network
(ANN) trained by backpropagation and variations of the stochastic gradient
descent (SGD)” [24, Chapter 9.12].

The usual approach to RL is collecting observations from an environment,
creating state-action pairs, computing a value based on the value function and
then storing the values in a tabular fashion. An example of this RL framework
is Q-learning, Value and Policy iteration, state-action-rewrad-state-action
tuple called SARSA, etc. Reinforcement learning is often split in its taxonomy
into model-based and model-free branches [25]. The model in question is
the model of the environment. In designing a RL system, we have to decide
whether it is beneficial or imperative for the agent to learn the model of the
environment.

In model-based RL, the model of the environment is represented by the
state transitions and rewards. An example of model-based RL might be
to learn the Model representation for a model predictive control (MPC) or
Expert iteration.

18

....................... 4.2. Introduction to deep reinforcement learning

Model-free frameworks are usually represented by a Policy optimization
method or a Q-learning method. In policy optimization, the agent learns the
policy as πθ(a|s) whereas in Q-learning the agent learns the policy in a form of
an approximator Q(s, a) directly. This is mot suited for discrete environments.
For this thesis, the policy optimization method is of greater importance than
Q-Learning. Policy Optimization Policy optimization methods optimize θ by
gradient ascent/descent directly on the objective function J(πθ) or maximize
the local approximation of J(πθ) [25]

Actor-critic framework signifies a family of actor-critic methods where a
so-called advantage plays a key role in the training process. Actor-critic
methods combine the basic notions of policy and value learning. The policy
is responsible for choosing actions for the agent, and the value function is
responsible for criticizing this choice. Therefore, the policy is referred to as an
actor, and the value function as a critic, hence the name actor-critic methods.
[24, Chapter 13.8].

The advantage of a state-action pair is the difference between the state-
action pair value and the state’s value function. More formally as

A(s, a) = Q(s, a)− V (s). (4.1)

The value function V (s) represents the value of the state in the environment
before the actor takes an action, and Q(s, a) represents the value of the state
after action a is taken. The meaning of the advantage function in eq. 4.1
is that when the agent is in a favorable state (V (s) is large) and takes an
unfavorable action (Q(s, a) is small) then the advantage is small, possibly
negative, and vice versa. However, the calculation of Q(s, a) is a problem of
its own. Therefore, the estimation of the reward at the end of the episode is
used to approximate the real value of Q as the sum of the expectation of the
value of V (st+1) and the reward of a given action-state pair as

Q(st, at) = r(st, at) + Est+1 [V (st+1)]. (4.2)

Therefore the advantage from eq. 4.1 may be rewritten [26, Page 8] with
additional subscripts for clarity as

A(st, at) ≈ r(st, at) + V (st+1)− V (st). (4.3)

This approximation of advantage, as stated above in eq. 4.3 may then be
used as the surrogate advantage for policy optimization denoted in eq. 4.21
in the next section on Proximal Policy Optimization. In the framework of
actor-critic methods, policy estimation and value estimation are both learned
simultaneously. The difference between the rewards the agent collects during
the episodes and the expected rewards in the form of the agent’s learned
value function is how the actual advantage is calculated for every episode.
Advantage, therefore, helps to identify the important actions that maximize
the reward throughout the episodes [27, Chapter 12].

19

4. Reinforcement learning for learning quadrupedal gait....................
4.3 Proximal Policy Optimization

In this work, Proximal Policy Optimization is used to optimize the policy of
the deep reinforcement learning setting. Although the work is not focused on
the theoretical foundations of the PPO algorithm, I provide a whole section
that delivers a medium insight into the optimization strategy of choice.

4.3.1 Introduction to policy gradient methods

In the reinforcement learning framework, an agent interacts with the envi-
ronment, collects observations, and receives rewards as a function of those
observations. The rewards are a proxy function for a goal we want the agent
to pursue. Therefore to pursue the goal, agent must maximize the collected
reward. This notion was described by Richard S. Stutton and Andrew G.
Barto in the canonical book Reinforcement Learning: An introduction, second
edition [24] as The reward hypothesis:

That all of what we mean by goals and purposes can be well thought
of as the maximization of the expected value of the cumulative sum
of a received scalar signal (called reward).

The Proximal Policy Optimization algorithm (PPO), as defined by J. Schul-
man et al. [28] is a family of policy gradient methods for reinforcement
learning, which alternate between sampling data through interaction with the
environment and optimizing a so-called surrogate objective function using
stochastic gradient ascent. To understand better this widely used method
in the Reinforcement Learning field, we must first look at the method’s
foundations. The main underlying concept is the policy gradient method,
which is also employed in popular methods such as Deep Deterministic Policy
Gradient (DDPG), REINFORCE, Twin Delayed Deep Deterministic (TD3),
Trust Region Policy Optimization (TRPO), and many others. TRPO had a
major influence on the state-of-the-art PPO that is still considered state-of-
the-art despite the defining paper being published in 2017. This underlines
the importance of the method, which has supported the RL frameworks for
more than 6 years and still continues to do so. As of writing this thesis, the
PPO has vastly outnumbered other policy gradient methods’ defining papers
in the number of citations, according to Papers With Code. [29]

20

............................. 4.3. Proximal Policy Optimization

Policy gradient method

In order to define the policy gradient method, we need to define some useful
reinforcement learning concepts, such as policy πθ, MDP, on-policy vs. off-
policy methods, reward function vs objective function, etc.
A policy π is a mapping from perceived states of the environment to actions
taken when inhabiting those states. It is the cornerstone of reinforcement
learning and may range in complexity from a simple lookup table to complex
functions. In Markov decision process (MDP) understanding, a policy is a
mapping from states to probabilities of selecting each possible action [24]. A
policy for an MDP is written formally as

π(a|s), (4.4)

where a represents actions and s represents states. The policy, therefore,
represents the probability of choosing any action a given any state s.
A Markov decision process (MDP), usually understood as a finite Markov
decision process, formalizes a sequential decision-making problem in which
the Markov property applies for the state transitions. Markov property states
that the history of taken actions does not influence the probability of choosing
the next action because the probability of choosing the next action is only
dependent on the current state. More formally, the next state s′ depends on
the choice of action a from within the state s.
An on-policy method evaluates and attempts to improve the same policy that
delivered the observations, in contrast to an off-policy method, that aims to
improve its policy that was not used to deliver the observations. In other
words, the on-policy method judges and improves itself based on its own data,
whereas the off-policy method judges and improves itself on data generated
by some other source.
A reward function is understood as a mapping from state-action pairs (s, a)
to a scalar reward r. Reward function, as opposed to an objective function,
defines the relation of actions and individual rewards, whereas an objective
function defines the optimization criterion that defines the computation of
the cumulative reward over time, usually including some discount factor γ.
An example of an objective function can be formulated as

∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)] (4.5)

where s, s′ are the current state and some next state, a, r are current chosen
action and the associated reward, γ is a discount factor and vπ(s′) is the value
of being in the state s′ given some policy π. An objective function as stated
above 4.5, is the result of the Bellman optimality equation that unravels the

21

4. Reinforcement learning for learning quadrupedal gait....................
optimal value equation into its cardinal terms as follows:

v∗(s) = max
a∈A(s)

qπ∗(s, a)

= max
a

Eπ∗ [Gt|St = s, At = a] (4.6)

= max
a

Eπ∗ [Rt+1 + γGt+1|St = s, At = a] (4.7)

= max
a

Eπ∗ [Rt+1 + γv∗(St+1)|St = s, At = a] (4.8)

= max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s′)] (4.9)

where Gt is discounted reward at timestep t, Rt is reward at timestep t, v∗ is
the optimal policy, qπ∗(s, a) is the optimal action-value function, the steps
(4.6) and (4.7) represent the unrolling of the discounted reward as

Gt
.= Rt+1 + γRt+2 + γ2Rt+3 + . . .

= Rt+1 + γ(Rt+2 + γRt+3 + . . .)
= Rt+1 + γGt+1,

and the steps (4.8) and (4.9) state the Bellman optimality equation according
to [24, Chapter 3.6]. This covers the basic theory needed to build on towards
policy gradient methods, eventually summarizing the main points of the PPO
algorithm.

A typical objective in reinforcement learning could be defined as maximizing
the expected reward over a trajectory while following a parametrized policy.
The trajectory may represent different notions in different disciplines, like
planning, reinforcement learning, physics, etc. In the context of reinforcement
learning, trajectory represents the whole agent vector for a set of time stamps.
The agent vector is a custom concatenation of values, such as body rotation,
velocity, and acceleration, optionally a contact vector, actuator positions,
laser scans, etc. This vector of relevant information is usually regarded to as
an observation, or an observation vector o. A trajectory τ describes a set of
observations over time. Therefore, the objective function may be written as

J(θ) = Eπ[r(τ)]. (4.10)

If we adhere to simplifying the actual problem to a finite MDP, we may state
that the MDP has at least one optimal policy that gives the maximum reward
and is stationary and deterministic [24, Chapter 3.6]. In order to find the
set of the optimal parameters θ∗ that maximizes the objective function, we
may employ a set of optimization strategies, namely some form of gradient
descent/ascent. The basic form of gradient ascent is

θt+1 ← θt + α∇J(θt). (4.11)

Using the Policy gradient theorem [24, Chapter 13.2] that basically applies
the log-derivative identity

∇θπθ

πθ
= ∇θ log πθ (4.12)

22

............................. 4.3. Proximal Policy Optimization

which does not look obvious in this formulation, but it does in the formulation
of scalar logarithm derivative

∂
∂xf(x)
f(x) = ∂

∂x
log f(x). (4.13)

When applied to the gradient of the objective function 4.10 we get the
following:

∇θEπθ
[r(τ)] = ∇θ

∫ ∞

−∞
πθ(τ)r(τ)dτ (4.14)

=
∫ ∞

−∞
∇θπθ(τ)r(τ)dτ (4.15)

=
∫ ∞

−∞
πθ(τ)∇θ log πθ(τ)r(τ)dτ (4.16)

= Eπθ
[r(τ)∇θ log πθ(τ)] (4.17)

At the beginning of this section, we defined trajectory τ as a set of observations
over time. One time step on a trajectory is understood as a transition from
one state to another. The probability of a specific trajectory is therefore
a product of states taken to reach the end state of the trajectory. In the
log-likelihood form, the product transforms into a sum, therefore we can write

∇θ log πθ(τ) =
T∑

t=1
∇θ log πθ(at|st). (4.18)

Using the result (4.18) above and substituting it into the Policy gradient
theorem (4.17) we get

∇θEπθ
[r(τ)] = Eπθ

[r(τ)
T∑

t=1
∇θ log πθ(at|st)] (4.19)

which shows that now all terms are dependent on θ, except the reward
function r(τ) which is still dependent on the taken trajectory τ . This is the
only “expensive” problem, in the sense that the solution to a given problem
via the policy gradient method is directly dependent on how costly it is to
sample the trajectory reward function. The most basic use of policy gradient
method is in the historically significant method REINFORCE, which directly
utilizes the result (4.19) by approximating the long-term result of the reward
function r(τ) with the discounted reward Gt at each step t as

∇θEπθ
[r(τ)] = Eπθ

[
T∑

t=1
Gt∇θ log πθ(at|st)]. (4.20)

A whole part is dedicated to this result in Sutton’s et al. publication [24,
Chapter 13.3]. However, a small clarification must be made for the interested
reader: the authors chose the usage of a more fractional notation containing
the likelihood ratio instead of the logarithm notation. In other words, they
use the left part of the identity (4.12) rather than the right side.

23

4. Reinforcement learning for learning quadrupedal gait....................
Trust region policy optimization (TRPO)

To explain the PPO method we shall first go through the main points of
Trust region policy optimization (TRPO) by Schulman et al. [30]. This
publication brings the usefulness of trust region from gradient descent/ascent
into the policy updates. Schulman et al. describe “an iterative procedure
for optimizing policies, with guaranteed monotonic improvement.” The
trust region generally describes a neighborhood of policy or another object of
optimization in its abstract optimization space. The trust region is constructed
based on a step size/radius within which the policy update is still acceptable.
This is computed based on so-called advantage function Aπ and KL divergence
of current and proposed policy distribution. The advantage function holds a
similar meaning to the expected discounted reward Gt from previous sections,
for example, in (4.20). It is constructed as the difference between the state-
action value function Qπ and the value function Vπ

Aπ(s, a) = Qπ(s, a)− Vπ(s). (4.21)

The advantage is then used to compute the expected return of the new
policy based on the advantage of the previous policy, using the Kakade &
Langford identity [31] as

η(π̃) = η(π) + Eπ̃[
∞∑

t=0
γtAπ(st, at)] (4.22)

where η(π) = Eπ[
∑∞

t=0 γtr(st)]. Next in the publication follow various defini-
tions of terms such as discounted visitation frequencies ρπ(s), local approxi-
mation of η using ρπ, noted Lπ(π̃), theorem for the relationship between total
variation divergence DT V and the Kullback-Leibler divergence DKL. That
results in the formulation of the TRPO constrained optimization problem

πi+1 = argmaxπ[Lπi(π)− CDmax
KL (πi, π)] (4.23)

where the C is a constant constructed from analytical parameters [30].

4.3.2 Proximal Policy Optimization method (PPO)

The PPO method was defined in the introduction of this section as a gradient
method optimizing a surrogate objective function. That is true, although
not exclusive to PPO. TRPO also optimizes some surrogate/proxy objective
function, and while doing so, it calculates a set of analytical parameters and in

24

............................. 4.3. Proximal Policy Optimization

the numerical optimization steps, uses the inversion of the Fisher information
matrix (numerical approach to the optimization problem in 4.23 was not
discussed for brevity). This is not only costly from the point of inversion of a
large matrix, but also from the point of computing the Fisher information
matrix which consists of second-order derivatives. Therefore, using strong
first-order stochastic optimization tools like Adaptive Moment Estimation
(ADAM) is not possible.

The PPO implementation drifts away from the usage of second-order
derivatives and compared to the TRPO, loses some analytical rigor due to
introducing heuristics rather than analytical parameters. Although the cost
of analytical rigor comes with a boost in overall performance [28, Section 6.2].
PPO comes in two versions, as proposed by the author [28]. Either PPO-Clip
with a clipped surrogate objective function or PPO-Adapt with an adaptive
Kullback-Leibler divergence penalty. An important aspect of PPO and TRPO
is that updating the policy “slowly and carefully” is even more important
than in the case of supervised learning. In supervised learning, if a policy
update is too large and therefore degrades the prediction accuracy, the next
training episodes will correct for this problem because the data is independent
of the network parameters. In the case of reinforcement learning, a policy
update that is too large may produce undesirable performance of the policy.
The agent with the undesirable policy in return may fail to collect useful
observations and, therefore, fail to recover from this local extreme. This
briefly illustrates the stark need for smart policy updates.

PPO-Clip

PPO-Clip uses a clipping of surrogate advantage (expected improvement in
the policy) which is based on a hyper-parameter and, therefore does not
block the backpropagation. This means that the optimization function is
differentiable and of the first order, which provides a significant efficiency
boost. A surrogate objective function L, compared to the previously described
reward objective function J , optimizes a given probability ratio not cumulative
reward. Authors denote this ratio r which is ambiguous with the notation of
reward over trajectory r(τ) as it is not directly the reward meanwhile using
the same notation. The notation of choice here will be as similar as possible,
R. Schulman et al. describe the clipped surrogate objective as

LCLIP (θ) = Et[min(Rt(θ)At, clip(Rt(θ), 1− ϵ, 1 + ϵ)At]) (4.24)

where Rt(θ) = πθ(at|st)
πθold

(at|st)At, ϵ is a hyperparameter proposed as ϵ = 0.2. The
ratio Rt(θ) provides a weight for the advantage function At, similar to the

25

4. Reinforcement learning for learning quadrupedal gait....................
expected discounted reward in TRPO. Rt(θ) clipping is done from both sides,
depending on whether At is positive or negative, up to 1± ϵ.

PPO-Adapt

PPO-Adapt is another approach that can be used instead of clipping, but
may also be used as an addition. The main principle is limiting the rate of the
KL divergence of the policy distribution before and after the policy update
by introducing a penalty coefficient for the KL divergence and adapting
the coefficient to achieve a target divergence value, denoted as dtarg by the
authors. The surrogate objective in this case is as follows:

LADAP T (θ) = Et[Rt(θ)At − βDKL[πθold
(·|st), πθ(·|st)]] (4.25)

where the dot in the notation π(·|st) represents π(·) as a function itself
given some state st, unrelated to a specific value. To update parameters dtarg

and β we do

d = Et[DKL[πθold
(·|st), πθ(·|st)]

if d < dtarg/1.5, β ← β/2
if d > dtarg × 1.5, β ← β × 2

where values 1.5 and 2 for parameter updates were chosen heuristically
and do not matter much in the long run [28, Chapter 4].

4.3.3 Popular PPO implementations

The popular implementations of PPO are rsl_rl [13], skrl [32], stablebaselines3
[33], OpenAI Spinning Up [25], CleanRL [34] and rl_games [35] which is the
implementation used in this work. Those repositories differ mainly in the
implementation details and the training backends (Torch, JAX, TensorFlow,
etc.).

26

Chapter 5

Materials & Methods

5.1 Robotic platform Artaban

The platform used for this thesis is Artaban v0.2 by Panza Robotics, s.r.o.
The word platform is a deliberate choice as the main goal of this robot,
currently, is to serve as a mobile sensor. Plans for widening the repertoire
of the platform with manipulation actions via either an additional robotic
arm on its back or with its own body (holding doors with the leg, etc.) are
already in the works. The platform has four built-in camera modules that
serve internal navigation purposes. One camera module is in the front of the
robot, two on the sides, and one in the back. Each module consists of two
evenly spaced RGB cameras for stereovision and one infrared depth sensor,
together working in a configuration generally known as an RGB-D camera.
The robot is shown in Fig. 5.1b, wearing yet another Time-of-flight (ToF)
camera module in its “dog collar”, strictly for foot placement purposes.

5.1.1 Platform description

Artaban, the robotic platform, is a four-legged robot with 12 degrees of
freedom (DOF). Even though the robot has 12 DOFs, the overall number of
joints is 36, 9 for each leg. With 3 degrees of freedom and 9 joints per leg,
it is imperative that the rest of the joints exist only as some form of torque
transfer. The unactuated joints are moved according to kinematic constraints

27

5. Materials & Methods

(a) : Concept render of Artaban
robot in red color

(b) : The second physical prototype
Artaban v0.2

Figure 5.1: Artaban robotic platform by Panza Robotics, s.r.o.

and according to the motion of the actuated joints. Each leg is constructed
out of 3 segments: upper, middle, and a lower segment.

Front leg

The front leg consists of a total sum of 9 joints, out of which 8 are shown
as red circles in Fig. 5.2a. The ninth joint moves the whole leg to or from
the body. Presently, and for the scope of this thesis, the middle and lower
segments of the front leg (labels 4. and 5. in Fig. 5.2b) are rigidly fixed
together, creating a stiff link without moving joints.

The reason for picturing the joints between the middle and lower segments
is that the front leg is planned to contain a linear actuator that would also
articulate the lower link. The actuation would be somewhat similar to a
human wrist or dog paw. The elbow joint that connects the upper and middle
link (labels 1. and 4. respectively in 5.2b) is physically constructed out of
two joints but can be modeled as one. The Cardan joint, represented in
yellow color, transfers the angular motion of the motor (label 2.) through
the drawbar in orange color (label 3e.) to the lower link in a quasi-sinusoidal
motion. This, as a result, moves the middle and lower link together (labels 4.
and 5. respectively) up and down.

28

............................... 5.1. Robotic platform Artaban

(a) : Red lines show the chain of articulation links and
joints over a photorealistic visualization

1.

3a.

4.
5.

3b.

3c.

3d.

3e.

2.

(b) : A blueprint of the front leg. Labels: 1) upper segment,
2) motor, 3.a) motor yoke, 3.b) cross joint, 3.c) counter
piece yoke, 3.d) clevis fork, 3.e) drawbar, 4) middle segment,
5) lower segment

Figure 5.2: Front leg of the Artaban robotic platform

29

5. Materials & Methods
5.1.2 Rear leg

The rear leg similarly consists of a total sum of 9 joints, out of which 8 are
shown as red circles in Fig. 5.3a. The ninth joint moves the whole leg to
or from the body. However, in contrast to the front leg, the rear leg has
two sets of four-bar linkages, one in red color and one in orange color. The
front leg has the middle and lower segments fixed together, compared to the
rear leg where the middle and lower segments (5. and 6. respectively in Fig.
5.3b) move according to kinematic constraints. The reason for the different
coloring of the two four-bar linkages in Fig. 5.3a is that the red one can
be modeled with a quasi-sinusoidal model, whereas the orange one needs
additional computation based on the current model of inverse kinematics.
This orange four-bar linkage creates a closed loop in the articulation chain
that brings computational difficulties when simulated in a physics simulator.

5.1.3 Cardan mechanism detail

The Cardan joint was already briefly mentioned in the section 3.1.3 and at
the beginning of this chapter as a quasi-spherical joint. That is true in the
use case of automobiles, where this joint must transfer torque from the engine
to the rear axle under different angles relative to the compression of the rear
suspension of the car. However, in our robot, the setting is inverse. The
rotation of the motor spins the Cardan mechanism around and moves the
clevis fork in a sinusoidal motion up and down. The motion closely follows a
cosine approximation in the form

ϕc = π

2 + π

4 cos(ϑm) (5.1)

where ϕc is the angle of the clevis fork and ϑm is the angular position of
the motor. The resulting angle of the knee follows equations relating to the
four-link mechanism. Those equations are mentioned in the Appendix A.

The Cardan, in this and a few different configurations, is a patented
mechanism under Slovak and International patent law [21]. The mechanism
and legs configuration are shown in Fig. 5.5.

30

............................... 5.1. Robotic platform Artaban

(a) : Red lines show the chain of articulation links and joints over a photorealistic
visualization

1.

3a.

3e.

2.

3b.

3c.

3d.

4.

5.

6.

(b) : A blueprint of the front leg. Labels: 1) upper segment, 2) motor, 3.a) motor yoke,
3.b) cross joint, 3.c) counter piece yoke, 3.d) clevis fork, 3.e) drawbar, 4) pantograph,
5) middle segment, 6) lower segment

Figure 5.3: Artaban robotic platform by Panza Robotics, s.r.o.

31

5. Materials & Methods

3a.

3b.

3c.

2.

3b. 3d.

3d.

(a) : Visualisation of the resulting
motion of clevis fork when the motor
shaft spins. The motor spinning (left
side) results in the motion of the cle-
vis fork up and down (right side)

0 5 10 15 20
Motor location m [rad]

1.0

1.5

2.0

2.5

Cl
ev

is
fo

rk
 a

ng
le

c [

ra
d]

2 + 4cos(m)

(b) : The cosine approximation of
the motion transfer from the motor
(2) to clevis fork (3.d)

Figure 5.4: The Cardan mechanism with the notation: 2) motor, 3.a) motor
yoke, 3.b) cross joint, 3.c) counter piece yoke, 3.d) clevis fork

(a) : A snippet from the patent
[21] picturing the configurations
of front and rear legs using the
Cardan mechanism

(b) : A snippet from the patent [21] picturing
the actual Cardan mechanism used on the
robot.

Figure 5.5: Snippets picturing the configurations in the original patent filed by
Panza Robotics s.r.o.

5.2 Simulation environment

In reinforcement learning, a simulation environment serves as a virtual plat-
form where agents learn to perform tasks or make decisions. It’s a controlled
setting where agents interact, taking actions and receiving feedback in the
form of states and rewards. It is desired that the simulator models reality as
closely as possible.

When choosing a simulation environment, one must review its priorities

32

................................ 5.2. Simulation environment

and demands on the simulation pipeline. Until recently, this meant choosing
between robustness and ease of use. The choice of a simulation environment
for this RL task is highly motivated by factors such as parallelization, GPU-
accelerated simulation, user-friendliness, availability, etc. The most used
simulators are CoppeliSim, ROS with Gazebo, Pybullet, MuJoCo, RaiSim,
and NVIDIA IsaacGym / IsaacSim. Using a ranking approach by Kim et al.,
[36], IsaacGym is the best, followed by RaiSim, Unity ML, and Pybullet. It
is important to note that in the year of publishing the report by [36] (2021),
MuJoCo was still closed-source with quite expensive licensing, which changed
when DeepMind acquired the simulator engine and made it publicly available.
IsaacGym also supports GPU-Accelerated Simulation of environment interac-
tion, which enables major speed-ups in training, on top of parallelization and
GPU acceleration of the backpropagation processes.

The authors use different simulator traits to assess each platform’s quality
and overall usefulness. All of the traits are summarized into a Total Score.
The traits are given as follows:

.Reproducible: Capability to yield the same results consistently for the
same experiments..Parallel: Simultaneous collection of rollout data from multiple simula-
tion environments..Photorealistic Rendering: Graphic rendering of the environment
aiming for realistic photography, often used for training of robotic vision..Accelerated: Faster or slower simulation than real-time..Modular: Component-based SW architecture. Good for code reuse and
integration..GPU-Accelerated Simulation: Fast simulation based on GPU accel-
eration. It allows collecting the rollout data fast without a CPU cluster
and maximizes the performance by removing CPU-GPU data exchange..Open Source: The availability of the complete source code on the
internet, ready for personalization and further development by anyone.

The authors provide a ranking of those simulation environments in the Fig.
5.6.

The top three are IsaacGym, Unity ML, and RaiSim. Unity ML is notori-
ously known for its heavy learning curve due to the prerequisite of learning

33

5. Materials & Methods
TABLE I

COMPARISON OF SIMULATION ENVIRONMENTS FOR REINFORCEMENT LEARNING

Simulation
Environment Reproducible Parallel

Photorealistic
Rendering Accelerated Modular

GPU-Accelerated
Simulation Open Source Total Score

ROS & Gazebo 1.55

CoppeliaSim 2.0

Pybullet 3.4

MuJoCo 3.0

RaiSim 3.8

IsaacGym 4.8

Surreal 3.0

Unity ML 3.8

TABLE II
SCORE AND WEIGHT OF EACH FEATURE AND CRITERION

Feature Score Criterion Weight

Reproducible 1.0 Simulation Quality 1.0

Parallel 1.0 Learning Time 1.0

Photorealistic Rendering 0.8 Simulation Quality 1.0

Accelerated 1.0 Learning Time 1.0

Modular 0.3 User-friendliness 0.5

GPU-Accelerated 1.0 Learning Time 1.0

Open Source 0.5 Cost 0.8

group has conducted world-class researches for the past few
years [14], [15], [16], [17], and from these experiences, we
conclude that the four criteria of learning time (1.0), user-
friendliness (0.5), cost (0.8) and simulation quality (1.0) are
the most important factors in a pragmatic point of view (the
values in parentheses indicate the weight between zero to
one). Even though we analyzed the features from our point
of view, they can be evaluated by other criteria, for example,
the parallel can also be evaluated in terms of randomization.
For this reason, we separated the score into individual score
and weight so that other people can weight them by their
own perspective. Table 2 represents the score and the scoring
criteria of each feature and the total score of each simulation
environment is calculated by the following equation.

Total Score =
∑
i,j

Fi ∗Wj (1)

where Fi and Wj are the feature score and weight
respectively, i = {reproducible, . . . , open source} and j =
{learning time, user-friendliness, cost, simulation quality}.
We set the learning time and the simulation quality high
because they directly affect the learning process and results.
User-friendliness was set to mid-range weight because once
users become skilled at the simulator, it has less impact

on learning. Even though modular structure gives us some
advantages of the code reuse and simplicity of integration,
it also brings about the complex software architecture which
makes difficulties on package installation and management.
For this reason, we set the lowest weight to the modular
feature.

IV. DISCUSSION

Compared to the traditional algorithm based approaches,
learning based method is occasionally difficult to guarantee
the reproducibility due to its stochasticity and high dimen-
sional space [18]. This problem would be more deteriorated
if the data sampling is not consistent. Generally in RL, the
agent collects the dataset from simulator, thus the repro-
ducibility of simulation environment is important factor.

ROS & Gazebo are the only one that does not satisfy
the reproducibility among the simulation environment inves-
tigated in this paper. The main reason is the socket based
client-server data transfer structure. As a result, though ROS
& Gazebo take some advantages mentioned in the previous
section by adopting the modular structure, they cannot guar-
antee the reproducibility. We also did not mark the parallel
column of the ROS & Gazebo in Table 1. Strictly speaking,
they are able to run multiple instances simultaneously by
taking additional work. However, we decided to exclude
the feature because it is neither default function nor simple
work. Besides, the installation and usability of the packages
are relatively complicated than other environments and their
dependencies are high. Moreover, depending on a operating
system, it is required for a separate version management of
ROS engine and packages. Though they support the packages
compatible with OpenAI Gym, they are not widely used in
recent RL researches in comparison with other simulation
environments.

Unlike ROS & Gazebo, CoppeliaSim provides an inte-
grated development environment for robot simulation. Note
that users should use a synchronous communication mode
when building a learning framework using remoteAPI to
achieve the reproducibility during learning. In such a syn-
chronization work, time loss can be occurred. From our past

65

Authorized licensed use limited to: CZECH TECHNICAL UNIVERSITY. Downloaded on November 14,2023 at 14:54:56 UTC from IEEE Xplore. Restrictions apply.

Figure 5.6: A comparison and ranking of the most well-known simulators

the workings of the Unity engine and its API. RaiSim is a simulator from
the workings of ETH Zürich. They officially provide the simulator on request
for educational purposes; however, my request was repeatedly left without
an answer. Therefore IsaacGym is the best candidate in all directions. The
IsaacGym is currently discontinued as a standalone application (Isaac Gym
Preview; since 2023, it comes as a part of the Isaac Sim Omniverse family by
NVIDIA.

5.2.1 Omniverse & Isaac Sim

The simulation environment of choice is, therefore, Isaac Sim. The nomencla-
ture surrounding the Omniverse family is somewhat confusing, therefore, I
follow with a brief overview. The Omniverse by NVIDIA itself is a concept
that refers to the all-encompassing general omniverse which is a philosophical
concept. A universe so big, there is none greater. The NVIDIA Omniverse is
a platform for the creation and simulation of 3D worlds with an emphasis on
easy shared access. Every Omniverse module works with a common file format
called OpenUSD [37], an acronym for Open Universal Scene Description. The
platform provides a number of connectors for accessing third-party modules,
such as the Unity engine, 3D modeling programs by Autodesk, popular archi-
tecture CAD program ArchiCAD, Houdini, the Adobe Suite, popular Blender
3D editor and many more. The majority of those connectors are mainly useful
for game developers and graphics enthusiasts. The most relevant extension
for this work is the Isaac Sim.

5.2.2 Isaac Sim

NVIDIA built their own physics engine, called PhysX [38], which is the
default engine throughout the Omniverse. An important property of the

34

................................ 5.2. Simulation environment

PhysX engine is This simulator has “essential features for building virtual
robotic worlds and experiments. It provides researchers and practitioners
with the tools and workflows they need to create robust, physically accurate
simulations and synthetic datasets” [39]. Furthermore, it provides ROS/ROS2
communication interfaces, sensor integration such as RGB-D cameras or Lidar,
domain randomization, segmentation, and more. The developer’s choice was
to enable the use of Isaac Sim only for NVIDIA RTX cards that are best suited
for efficient ray tracing since the simulation network aims to be photorealistic.
The simulator can be run locally or in the cloud. For the local setup of Isaac
Sim, one needs a CUDA-enabled RTX card with as much VRAM as possible;
ideally, more than 6 GB. 16 GB of computer RAM is the viable minimum.
Isaac Sim has the ability to communicate with multiple extensions that are
either production-made or provided by the community. For the future possible
adaptation of this work, the replicator, occupancy map, contact and range
sensor extensions are quite useful. The replicator allows the creation of similar
data to a provided dataset or generates data on demand, given specifications.
This is mostly useful for simulating production pipelines to train mobile or
static robotic manipulators in the simulation. A general Isaac Sim scheme
can be seen in Fig. 5.7.

Figure 5.7: A non-exhaustive visualization of the Isaac Sim relationship with
the extensions, inputs, outputs, and bridges

An important feature of Isaac Sim for this thesis is that it supports closed-
loop articulations for robotic manipulators. Other names for closed-loop
articulation might be parallel articulation, parallel robot, or parallel mecha-
nism. Other simulators support importing robot meshes and other primitives
in formats such as URDF or other XML-based formats. Those formats require
that the robot’s articulation is defined in a tree structure, therefore making
closed loops impossible on import. Popular ROS-native open-source simula-
tor Gazebo allows closed-loop linkage with special add-ons complementing
the URDF syntax, resulting in an SDF, an abbreviation for the Simulation
Description Format. Although this format is native for Gazebo, it is possible
to use bridges between Gazebo and Isaac Sim to share meshes directly [40],
although there are differences in default frame orientations for meshes which

35

5. Materials & Methods
complicate any transfer. Therefore, the URDF of our robot is loaded into the
standalone Isaac Sim, where the linkage is closed, and the robot is saved as a
USD file for further work. This is, in theory, quite straightforward, although
the incompleteness of the documentation by NVIDIA makes any learning
process taxing. That is caused mainly by the fact that the production of the
Omniverse tools is still ongoing and still a work in progress. Isaac Gym is an
implementation of the OpenAI gym format [41], that utilizes the backend of
Isaac Sim, mostly the NVIDIA-made physics engine PhysX for collisions and
world simulation. The labeling of the Gym environment for reinforcement
learning has changed multiple times throughout the development process. It
is generally regarded as Isaac Gym, although first, there was a standalone
implementation called Isaac Gym Preview, which was used to create the
influential paper exercising the massive parallelism Isaac Gym offers [13].
This framework was standalone and limited in API. The whole Isaac Gym
implementation was recently integrated into the Isaac Sim in the form of an
extension and, as of November 2023, is named Omniverse Isaac Gym or, in
short, OmniGym.

5.3 Gym convention

The general Gym format was pioneered by OpenAI in 2016 as a “toolkit
for developing and comparing reinforcement learning algorithms” [42]. This
led to an overall standardization in how the general and academic public
approached reinforcement learning and made benchmarking of algorithms
strikingly easy. OpenAI handed the versioning and further development of
the original Gym to an outside team; therefore, the current correct name for
Gym is Gymnasium, but Gym will still be used for brevity.

5.3.1 Definition of Gym environment

The Gym environment is the cornerstone of the Gymnasium API framework.
This environment encompasses the main loop of the reinforcement learn-
ing paradigm and provides a platform-wide standardization of the training
pipeline. The Gym environment is simulator-agnostic. The most important
API [41] methods are:..1. step() method updates the simulation by applying chosen actions,

stepping the simulation, returning observations, rewards, information

36

................................... 5.3. Gym convention

whether the environment has terminated or truncated due to the latest
action, and optional debugging data...2. reset() method restarts the environment to the original state for the
next rollout...3. render() method renders the environment for the human viewer or a
virtual camera export, for example, in the RGB array format...4. close() method that signalizes the environment is being closed because
of internal reasons, such as finishing the training or the occurrence of an
exception.

Another required part of the gym format is defining the observation_space
and actions_space for purposes of normalization and asserting whether data
observed in or input to the simulation are in a correct range.

5.3.2 Omniverse Gym for Reinforcement Learning

NVIDIA provides its own Gym extension that builds on top of the Gym
standard. Since reinforcement learning algorithms involve collecting large
amounts of data and a great deal of policy updates, the need for parallelization
arises very quickly. While policy updates can be efficiently parallelized
on the GPU, parallelizing data collection is more challenging. Traditional
pipelines handle simulation and reward/observation calculation on the CPU,
limiting the potential throughput of GPU to policy inference only, due to
communication bottlenecks. The usual way of collecting observation data
and computing the physics for the environment was, until recently, done
on CPU time. PCIe data transfer can be significantly slower than GPU
processing. Therefore, collecting data from the environments in a serial
manner on the CPU and then transferring the data from the memory to GPU
for policy optimization is the slowest point in the deep reinforcement learning
pipeline. The pipeline is illustrated in Fig. 5.8. Using multiple CPU cores
and processes helps to mitigate this issue but is limited by the number of
cores and RAM, ultimately using the serial processing power for a task that is
in nature parallel. Multiple environments collect data independently; they do
not affect each other. Omni Isaac Gym offers extensive parallelism, enabling
GPU-based data collection and policy updates, reducing data copying, and
making the simulations drastically more sample-efficient.

NVIDIA also provides the OmniIsaac Gym Environments (OIGE) [43]
repository that contains examples of different RL tasks using the Gym API

37

5. Materials & Methods

5

TYPICAL RL TODAY

CPU

GPU

Environment Simulation

Physics

Rendering

Reward &

Observation

Calculations

Rollout Buffer

DNN Controller

(Policy Network)
Action Output

Forward (Simulation) Pass

Many simultaneous runners

Backward (Training) Pass

Runs periodically after many forward steps

Weight updates

(Periodic)

Value

Network

RL Algorithm (IE: PPO)

Policy

Network

Figure 5.8: Illustration of CPU bottlenecks in previous DRL techniques, red
color represents CPU computation, green GPU computation, sourced from [2]

and the OmniIsaac Gym extension. One example is the Cartpole environment,
which is a typical control engineering toy problem. The goal may be, for
example, to balance the inverted pendulum at a local extreme. This may
be done in different ways, computed or trained by different reinforcement
learning algorithms. The efficiency of those algorithms is then easily compared
with other algorithms without the need for each researcher to do the heavy
lifting in the form of physics and environment API implementation on their
own.

5.4 Artaban simulation environment

This section describes the implementation of the robotic platform Artaban. It
describes the creation of the model and the gait training. Training of the gait
can be divided into three distinct parts. The training of the robot with an
identical pair of front and rear legs, training of the robot with different front
and rear legs, and training of the robot modeling the torque transmission of
the Cardan joint. This can be theoretically done for both front-legged Artaban
configuration (Fig. 5.9b) as well as for the original configuration, pictured
in Fig. 5.9a. However, the original configuration brings some simulation
difficulties that are examined in greater detail later.

38

............................ 5.4. Artaban simulation environment

(a) : The original Artaban version
with different rear and front legs

(b) : The front-legged Artaban ver-
sion with all legs as in the front

Figure 5.9: Two editions of Artaban with different kinematics, as rendered in
Isaac Sim

5.4.1 Environment implementation

The environment is implemented on top of OmniIsaac Gym Environments
(OIGE) taking inspiration from the environment for Anymal. This environment
uses the Isaac Sim API (omni.isaac.core), taking advantage of the powerful
PhysX physics engine, and Isaac Gym API (omni.isaac.gym) using the
additional environment development based on the Gym format. The Isaac
Gym adds to the methods described in 5.3.1, among other things, two
methods:..1. pre_physics_step() method takes care of what needs to be done before

the physical simulator is stepped, e.g. compute position targets based
on actions, compute torque or position transformations of a transmis-
sion mechanism. In this work, this is where the Cardan joint position
transmission is computed...2. post_physics_step() method does what the usual step() method
does in the original Gym framework, like computing rewards, processing
observations and states, resets, extras, etc.

The Isaac Sim was developed with robotics in mind. That is also reflected
in its API, which provides a more functional and physically stable simulation
of robot-like structures. When two rigid bodies are connected by a joint in the
simulation, they still may collide with each other. However, this behavior is
often not desirable when simulating robotic structures. Therefore, an object

39

5. Materials & Methods
Articulation and ArticulationView are provided. An articulation is “an
alternative, and often superior approach to creating mechanisms versus adding
joints to rigid bodies” [44]. The main practical advantage is its extensive range
of methods that allow getting and setting of relevant parameters, variables,
and properties such as measured joint forces, measured joint efforts, joint
angular velocities, link velocities, transformation between links, calculating
inertial tensors, and much more. An implementation advantage is that the
joints in an articulation are simulated in a reduced-coordinate system. This
means that instead of simulating each rigid body in world coordinates, the
positions and orientations are computed relatively to the root joint of the
articulation and “that reduced coordinate articulations are guaranteed to
exhibit no joint error” [45]. In articulation, two links that are connected
together by a joint do not collide by default, but unconnected rigid bodies do
collide. This is regarded as self-collision. For our robotic platform Artaban,
self-collision is taken care of by software joint limits. Those limits are set in a
way that prevents collision with other robot parts if respected. Since checking
of self-collision uses up some computation time, it is recommended to leave it
off by default unless the robotic learning task requires so. Collisions between
two articulations are, naturally, respected.

Closing an articulation loop

The articulation is defined as a tree structure in terms of the rigid body
links and joints between them. In order to create an articulation loop, some
joint in the loop needs to be excluded from the articulation. When a joint is
excluded from articulation, the physics simulator lowers this joint’s priority
in the resulting position computation. Therefore, other joints are prioritized,
and this joint is computed only according to usual joint restrictions. The
joint that needs to be excluded from articulation is shown in red color in Fig.
5.10. The joints in blue are actuated; the rest of them are green. Those green
joints are included in the articulation, although they are not powered but
only moving according to kinematic restrictions. The actuation of the lowest
part of the leg is done purely via physics interactions in the simulation. That
means there is no driven (actuated) joint moving the lowest link directly, only
indirectly via the middle link (blue line connecting blue and green joint) and
pantograph (upper green line), using nomenclature described in Fig. 5.3b.

The fact that the joints excluded from articulation are load-bearing and
great torques are generated in order to keep the robot standing proves to be
a major problem for the simulator. There are various choices for the joint
type in the articulation:

40

............................ 5.4. Artaban simulation environment

excluded

Figure 5.10: Illustration of the articulation loop implementation, overlapped on
top of a simulation render of the rear left leg..1. Fixed joint - fixes two links together under an arbitrary angle..2. Revolute joint - allows rotation only around one axis..3. Prismatic joint - allows linear motion in the direction of the joint axis..4. Spherical joint - allows rotation in a cone centered in the joint axis..5. D6 joint - allows configurable motion - specification of individual degrees

of freedom either to move freely or to be locked together..6. Distance joint - introduces distance constraint between two origins,
allowing also elastic limits via stiffness setting, simulating, e.g., a rubber
rope. If no stiffness is introduced, the distance is kept strictly as defined.

5.4.2 Reinforcement learning pipeline

The RL pipeline consists of the environment, the agent, and an optimization
algorithm. The library of choice is the rl_games that implements the PPO
and the Actor-Critic model. In Fig. 5.11 on the left, the training environment
is depicted. OIGE API stands for Omni Isaac Gym Environments API. The

41

5. Materials & Methods
Gym Wrapper represents that the whole environment is built on Gym API.
The agents are spawned in parallel, thanks to the creation of instancable
assets. Insatncable assets are a specification of OpenUSD where the meshes
and collider maps are imported into the simulation only once, and the rest
of the agents use the central instancable asset as a reference, becoming only
instances of the agent.

The agents are then run in the environment given a random velocity
command in the XY horizontal plane and yaw. The policy decides what
actions to take, given observations. The actions represent a difference from
the current goal and are clipped by a maximum magnitude. I.e., given that
the drives are set to a position control mode, the actions add or subtract
from the latest position goal of each drive. The position goal is then fulfilled
by a PD controller via the PhysX API, as the simulation is stepped.

Following, the observations are collected, and the cycle continues. The
observations are collected until the end of an episode into mini-batches and
are used for computing rewards, values, and advantages into the loss function
that, through stochastic gradient descent (SGD), optimizes the policy. A
single observation vector consists of:

. base linear velocity: vbase ∈ R3. base angular velocity: ωbase ∈ R3. projected gravity: gbase ∈ R3. commands: vcmd
x , vcmd

y , ωcmd
z ,∈ R. DOF positions: θJ ∈ R|J |. DOF velocities: ωJ ∈ R|J |. actions: aπ ∈ R|Aπ |

Where |J | represents the number of joints and |Aπ| represents the number
of actions. The notation is different for those two parameters because the
robot may have more joints than it can articulate. It is beneficial for the RL
pipeline to gather observations about all of the joints, not only the articulated
ones.

The value function is optimized on its own axis according to the discrepancy
in its value function for the predicted and recorded state. The details of
PPO-Clip were explained in Section 4.3.2.

42

............................ 5.4. Artaban simulation environment

Actor:
policy

Critic:
value
func.

Shared
Layers

EL
U

EL
U

reward

Reward
function

Advantage

Advantage
function

actions

values

PPO-Clip
loss

function

SGD backprop.

SGD backprop.Actor-Critic modelEnvironment

Parallel Simulation
Ag

en
t i

ns
ta

nc
e

0

Ag
en

t i
ns

ta
nc

e
1

Ag
en

t i
ns

ta
nc

e
N

Gym Wrapper

OIGE API

actions

obs.

Figure 5.11: Tentative diagram of the RL pipeline, showing the environment in
peach orange, agent model in blue, and the PPO blocks on the right

5.4.3 Reinforcement learning pipeline parameters

Machine learning and, most importantly, deep learning, whether reinforcement
learning or supervised learning, are a matter of parameter optimization.
Network parameters are optimized in a learning procedure. However, the
hyperparameters of the reward function and optimization algorithm are
optimized in a brute-force way. The number of parameters is, therefore,
counted in double digits at best and is subject to the combinatorial explosion.
Any reward or optimization algorithm space search is very time-consuming
and resource-demanding, therefore, the training pipeline is kept the closest
to default hyperparameters as possible. Some tweaks to the parameters are
nevertheless needed. The reward function implementation and parameters
take inspiration from works described in the Chapter 2, mainly [13] and [7].

Although for a stronger intuition on what effect each reward implemen-
tation and scale have on the training result, two types of experiments were
undertaken: reward decomposition and reward ablation. Reward de-
composition aims to see which rewards are sufficient for gait training (one-hot
analysis), and reward ablation aims to see what qualitative effect each of the
rewards provides (one-cold analysis). Reward decomposition sets all rewards
except the chosen one to zero. This is done for each non-zero reward in a
configuration file, generating a set of trainings, which are benchmarked on a
Cost of Transport qualitative basis. Reward ablation follows a similar process.
The whole reward configuration is left as-is except one reward, which is set
to zero. This is done for all non-zero rewards, similarly as before, generating

43

5. Materials & Methods
a set of trainings that are benchmarked on a Cost of Transport qualitative
basis. The word ablation originates from the Latin ablā- or ablatus, meaning
“removal” or “carrying away.” Ablation is a neurosurgical method for treating
neurological diseases and an experimental neurological method for finding
causation between actions and brain regions [46].

44

Chapter 6

Experiments & Results

The reward function provides the agent with instrumental smaller goals to
pursue its ultimate goal. In this thesis, the main agent’s goal is to follow
velocity commands showing some form of gait. To compare different gaits
against each other, I reserve the Cost of Transport (CoT) metric for the
sole purpose of evaluation. CoT was not used as a reward signal during the
training.

6.1 Evaluation environment

(a) : Configuration of robots in the
evaluation environment

(b) : Top-view of the evaluation envi-
ronment with command directions

Figure 6.1: Evaluation environment configuration

In Fig. 6.1 is shown the configuration of the evaluation environment.
This environment serves as a benchmark for comparing different gaits. The
commands are the same for all tested policies. The six robots in Fig. 6.1

45

6. Experiments & Results.................................
represent all the same policy but are getting different velocity commands in
the order shown in Fig. 6.1b.

6.2 Reward function benchmark

The following reward and other benchmarking were run on the front-legged
kinematic configuration in order to eliminate pathologies brought by imprecise
simulation of the loop closure on the original kinematic configuration. The
agent was spawned in 6 instances, with commands as in 6.1b. The Cost
of Transport (CoT) was computed for linear velocity commands only (i.e.,
angular velocity commands were not taken into account) in order to avoid
mixing angular and linear velocity (i.e., [m/s] and [rad/s]), and by doing so
making the physical meaning of CoT inconsistent.

The Cost of Transport metric is used in the form

CoT =
∑

j∈J τj

|vXY| ·mr · g
, (6.1)

where J is the set of joints, τj is effort expended for joint j per second
[Nms−1], i.e., magnitude of torque per second, |vXY | is the magnitude of the
velocity in the horizontal XY plane [ms−1], mr is the mass of the robot in [kg]
and g is the gravitational constant [ms−2]. The purpose of the CoT metric is
to generate a ratio of effort to velocity that approximates optimal movement
strategies; the mass and gravitational constant serve a normalization role,
and the metric is unitless [−].

Reward decomposition and reward ablation studies were conducted to
enhance understanding and establish benchmarks for different rewards, as
described in 5.4.3. The scales given for different rewards are denoted in Tab.
6.1. Note that some of the rewards have different scales (highlighted in bold
for clarity) for the front-legged and original kinematic configurations of the
robot. This is due to different demands of the kinematics. For example, the
robot with original kinematics (with rear legs different from the front) had
a common failure mode of dropping down to the limits of the knees. The
gait was stable but not desirable since such gait would quickly destroy the
chassis of the legs. Therefore, the penalty for deviation from set knee height
and base height was amplified. The evaluation for the reward benchmarking
experiments was run for 200 steps. The first 30 simulation steps are ignored,
because that corresponds to the spawning time of the agents. The spawning
introduces sudden forces on touch-down with the floor and brings unnecessary
noise to the results.

46

.............................. 6.2. Reward function benchmark

Reward name Front-legged Original

Action rate -0.01 -0.01
Angular Z vel. 0.5 0.5
Base height -0.1 -2.0
Cosmetic -0.06 -0.06
Collision -0.5 -0.5
Fallen over -1.0 -1.0
Feet force -0.01 -0.01
Joint acc. -0.0003 -0.0003
Joint vel. 0.15 0.25
Knee height 0.0 -1.0
Linear XY vel. 1.0 1.0
Linear Z vel. -2.0 -2.0

Table 6.1: Rewards scale overview for front-legged and original kinematic
configuration

6.2.1 Reward decomposition

Decomposing the reward landscape into separate parts helps to identify
which rewards are sufficient to incentivize some form of gait. The reward
decomposition reveals only three rewards that were able to create a valid gait.
A valid gait is understood as a series of motions that move the robot without
forbidden collision. A forbidden collision is a collision between the ground
and any upper part or the base of the robot. As shown in Fig. 6.2, only the
rewards related to either the velocity of the robot or the velocity of the joints
led to a valid gait. Unsurprisingly, a reward that reinforced linear motion in
the XY plane led to the most efficient gait from the reward decomposition
experiment. This gives an insight into the importance of the velocity rewards.
However, reward decomposition does not bring useful information about other
rewards that are meant to tweak the quality of the gait without the gait
existing. The time-series and bar graphs in the 6.2 represent the performance
of the gait with the inspected reward used as the only reward signal. For
example, the time-series of the Angular vel. in 6.2a displays the Cost of
Transport metric value over time when the scale rewarding the Angular
velocity was the only one used (reward function decomposed into parts, in
this instance inspecting the Angular vel. reward).

47

6. Experiments & Results.................................

0 25 50 75 100 125 150 175
Simulation step

0

1

2

3

4

5

Co
st

 o
f T

ra
ns

po
rt

[-]

Angular vel.
Joint vel.
Linear vel.

(a) : CoT time-series for runs that incentivized valid gaits with the
corresponding rewards as the name

Angular vel. Joint vel. Linear vel.
Rewards

0

2

4

M
ea

n
of

 C
oT

 [-
]

(b) : Mean ± standard deviation of CoT for valid gaits with the
corresponding rewards as the name

Figure 6.2: Reward decomposition results overview

6.2.2 Reward ablation

The reward ablation approach to understanding the reward landscape provides
an orthogonal perspective compared to reward decomposition. In other words,
when decomposing the reward function to single reward signals, often the
robot does not learn a valid gate. Therefore, those runs cannot be judged on
the basis of the Cost of Transport. Given that at least some other reward
alone leads to a valid gate, the other rewards, when ablated, show an average
increase or decrease of the CoT metric, hinting at their importance.

In Fig. 6.3a, the training run with the Linear XY velocity reward signal
ablated shows greater variation and mean value compared to the rest of the
reward signals. This confirms the observations from the reward decomposition.
Figures 6.3b and 6.3c provide a clearer visual understanding of the time-
series in Fig. 6.3a. Vertical movement of the robot’s base, erratic jumping,
and collisions of the lower links with the ground result in an uneven gait.
This translates into larger variance, and therefore, tweaking the top-ranking
rewards in the 6.3c helps with the motion smoothness.

48

.............................. 6.2. Reward function benchmark

0 25 50 75 100 125 150 175
Simulation step

0.5

1.0

1.5

2.0

2.5
Co

st
 o

f T
ra

ns
po

rt
[-]

Action rate
Angular vel.
Base height
Cosmetic
Fallen over
Feet forc.
Joint acc.
Joint vel.
Linear vel.
Vertical vel.
Collision

(a) : CoT time-series for runs that incentivized valid gaits

Lin
ea

r v
el.

Joi
nt

 ac
c.

An
gu

lar
 ve

l.
Co

llis
ion

Ac
tio

n r
at

e
Fa

lle
n o

ve
r

Joi
nt

 ve
l.

Ba
se

 he
igh

t
Co

sm
et

ic
Ve

rti
ca

l v
el.

Fe
et

 fo
rc.

Rewards

0.0

0.5

1.0

1.5

2.0

M
ea

n
of

 C
oT

 [-
]

(b) : Training runs sorted by the
magnitude of the CoT mean, carry-
ing the name of the corresponding
ablated reward

Lin
ea

r v
el.

Ve
rti

ca
l v

el.
Co

llis
ion

Joi
nt

 ac
c.

Joi
nt

 ve
l.

An
gu

lar
 ve

l.
Ac

tio
n r

at
e

Co
sm

et
ic

Ba
se

 he
igh

t
Fe

et
 fo

rc.
Fa

lle
n o

ve
r

Rewards

0.0

0.1

0.2

0.3

0.4
St

an
da

rd
 d

ev
ia

tio
n

of
 C

oT
 [-

]

(c) : Training runs sorted by the
magnitude of the CoT standard devi-
ation, carrying the name of the cor-
responding ablated reward

Figure 6.3: Reward ablation results overview, the names in the legend and bar
graphs represent the name of the inspected reward

It is important to note that the purpose of the reward benchmarking
experiments is to gain a data-driven intuition on the importance of individual
rewards. Reward decomposition and ablation do not show the whole picture
of the interdependencies of individual rewards. It is often desired to design a
reward function in such a way that different reward signals balance each other.
For example, giving a penalty on the knee height difference and simultaneously
rewarding joint velocity creates an interdependency.

49

6. Experiments & Results.................................
6.3 Influence of batch size on gait quality

The work of Rudin et al. [13, Section 2.2.1], among other things, inspects the
meaning of batch size in the massive parallelism setting of GPU training. The
gist of this section is that the batch size, consisting of nagents × nsteps cannot
be too small or too large. Too small means that the agents would not have
enough simulation steps to understand the temporal effects of their actions.
Too large means that the agents would have too many simulation steps to
observe, more than what they could gather new insight from, hence wasting
simulation time. A minimal horizon length is described in the publication.
This length is a number set arbitrarily and describes the minimal number
of simulation steps that contain enough temporal information. However,
the simulation can run for longer. The maximum length proposed in the
publication is 20 seconds; I kept this hyperparameter set to this value. Runs
with mini-batch sizes computed as nagents × nhorizon × 1

m where m is the
number of mini-batches ranging 1 to 4 were conducted and are shown in Fig.
6.4.

10M 20M 30M 40M 50M
Training Steps

0

5

10

15

20

Re
wa

rd

Minibatch 12288
Minibatch 16384
Minibatch 24576
Minibatch 49152

(a) : Cumulative rewards obtained by agents with different mini-batch sizes

0 100 200 300 400
Simulation step

0.6

0.8

1.0

Co
st

 o
f T

ra
ns

po
rt

[-]

Minibatch 12288
Minibatch 16384
Minibatch 24576
Minibatch 49152

(b) : Mini-batch runs performance in
the CoT metric

12288 16384 24576 49152
Minibatch sizes

0.0

0.2

0.4

0.6

M
ea

n
of

 C
oT

 [-
]

(c) : The mean value of mini-batch runs
performance in the CoT metric

Figure 6.4: Evaluation environment configuration

50

................................. 6.4. Training progression

An interesting observation is that even though not much difference can be
seen between the cumulative rewards in Fig. 6.4a, the larger mini-batch size
helps minimize the CoT metric. The number of epochs was smaller than in
[13], 1000 in this work compared to 1500 in the paper. However, during the
training runs, the overall trend was that if reward scales were balanced and
the simulation environment was implemented correctly, the gait took form
in the first 1000 episodes, and the rest of the additional episodes was only
fine-tuning or even overfitting the policy that led to pathological behaviors.
The trend of better performance with larger mini-batch sizes still stands.
According to those findings, the agents were trained in a configuration that
was possible to run on my computer setup - 2048 agent instances at 49152
minibatch_size.

6.4 Training progression

This section traverses the iterative training process, points out simulation
infidelities, describes differences in training of different kinematic configura-
tions, and shows what worked and what did not work. The first training
checkpoint was to learn some form of valid gait with the original Artaban
configuration, as shown in Fig. 5.9a with the excluded articulation joint as
pictured in Fig 5.10.

6.4.1 Original kinematic configuration - rear-legged

Isaac Sim approaches the articulation loop in a manner where the positions of
the joints included in the articulation are computed with higher priority than
the ones that are excluded. However, the joint excluded from articulation
still has a major role in the location of the leg and carries a major load.
This proves to be a problem for the simulator, as it either lacks in holding
the joint firmly together (i.e., introduces position error, which is allowed in
the simulation of bare joints, contrasted with the articulation joints - see
Section 5.4.1), or generates parasitic forces when the solver iteration count
is set to larger values. The parasitic forces result in an instability of the
simulation, and the whole robot erratically flies away in a manner that does
not match the laws of physics. The lack of joint integrity is obvious to the
naked eye because the pantograph is visible during walking, which is not a
valid behavior, see Fig. 6.5b.

This effect is observable thanks to the model of direct kinematics used for

51

6. Experiments & Results.................................

(a) : Artaban before stepping on the
rear left leg

(b) : Artaban after stepping on the
rear left leg with joint non-integrity

Figure 6.5: Example of position error of a joint excluded from articulation

the real-life robot, which was made available to me by Panza Robotics. With
the direct kinematic model of the rear four-link mechanism, I can compare
what should be the joint location of the pantograph and lower link joint given
the angle of the middle knee joint. The comparison of the time-series data
corresponding to the photographs from the simulation in Fig. 6.5 is shown in
Fig. 6.6. The graphs in orange represent joint positions in Isaac Sim, and
in blue, the positions that should take place if the kinematics were to be
fully respected. The lower left graph is particularly concerning as the orange
graph fails to follow the blue line almost completely, signalizing the limping
behavior shown in the simulation photographs.

0 200 400 600
0.0

0.5

1.0

1.5

Jo
in

t p
os

. [
ra

d]

Left leg pantograph

0 200 400 600
0.0

0.5

1.0

1.5
Right leg pantograph

Kinematics
Isaac Sim

0 200 400 600
Simulation step

0.0

0.5

1.0

1.5

Jo
in

t p
os

. [
ra

d]

Left leg lower link

0 200 400 600
Simulation step

0.0

0.5

1.0

1.5
Right leg lower link

Figure 6.6: Time-series data comparison for both pantographs and lower links
on both rear legs

Tweaking various simulation parameters followed to address this problem,
although with no satisfactory result. The first approach was to run the
simulation with more simulation steps per second. However, this parameter
did not and apparently should not help in this scenario. That is because
the length of the simulation step only dictates how frequently the policy
is able to act per perceived time. According to the Nvidia forums and

52

................................. 6.4. Training progression

documentation, the simulation position iteration is the key factor in the
computing of forces and positions of rigid bodies in the simulation. The
position iteration parameter dictates what is the maximum of iterations per
simulation step of the physics engine to find a suitable solution to kinematic
constraints. Increasing the position iteration parameter from 4 to 8 or even
to 16 seemingly helped, although on closer inspection of the collected rewards
and resulting gait, it was obvious that unstable explosive behavior occurred
during some epochs of training. That is because the gait turned out to be
very conservative (barely moving the rear legs from a straightened pose)
and barely putting weight on the rear legs. The policy seems to rather put
weight on the front legs instead of risking the explosion and, therefore, a large
penalty. The large penalty occurs because of restrictions on the height of the
base link of the body. The error in the body height is squared and used as
a scaled negative penalty. When the instability occurs, the robot flies away
at great speeds into great heights and collects great penalties. Therefore,
the policy learns to avoid those motions that result in great penalties, ergo
avoiding using the rear legs with full weight. See the videos in appendix F.

0 200 400 600 800 1000
Epochs

4

2

0

Re
wa

rd

2 × 1019

Base height reward

Figure 6.7: The time-series of collected rewards showing rapid oscillation to
large negative numbers in the early training, the graph is cropped for better
clarity

A similar fate met configurations with a spherical or distance joint instead
of the revolute joint when excluding from the articulation. The joint nomen-
clature was described in detail in Section 5.4.1. For the distance joint, the
pantograph had to be removed, and the distance joint supplemented its role.
The implementation visualization is pictured in Fig. 6.8.

6.4.2 Evaluation of different training runs - rear-legged

None of the actors with rear-legged configurations were able to discover a gait
that would be deemed satisfactory enough. Even though the trained gaits
were technically valid, some of them showed non-integrity in the joint excluded
from the articulation. When focusing the reward function implementation, its
parameters, and the parameters of the simulation environment on addressing
this problem, the agent still discovered gaits that show traits of so-called

53

6. Experiments & Results.................................

dista
nce

joint

Figure 6.8: Illustration of the distance joint implementation, overlapped on top
of a simulation render of the rear left leg

Goal misgeneralization. Goal misgeneralization is a reinforcement learning
phenomenon that describes the difference between what the author meant
to achieve with the reward function definition compared to what the agent
achieved while still formally adhering to the definition of the reward function
[47]. This behavior is witnessed so often in reinforcement learning settings
that it should actually be considered to be the default.

Baseline gait

The first successfully obtained gait is named the Baseline gait. This gait
produces small velocities and moves in a motion resembling gallop, i.e., the
motion that horses or dogs use when running fast: jump synchronously from
rear legs to front legs and then again. The gait can be minimally observed in
the photograph strip in Fig. 6.9, in a longer format in the Appendix C.1 or
in the video part of the Appendix F.

Figure 6.9: The baseline gait for the original kinematic configuration of Artaban

54

................................. 6.4. Training progression

Knees reward gait

Since the previous Baseline gait was landing on the whole body of the rear
lower link instead of only on its foot, a greater penalty was introduced that
penalized the squared distance of the knee from the reference height. This
penalty worked as intended and produced the Knees reward gait. However,
the problems with joint integrity occurred, as described in Section 6.4.1 and
shown in Fig. 6.5 and in the time-series graph Fig. 6.6. The resulting gait
with emphasis on knee height penalty can be seen in the photograph strip in
Fig. 6.10, in a longer format in the Appendix C.2 or in the video part of the
Appendix F.

Figure 6.10: Training run with stronger penalties on knee height

Joint limits gait

The limping shown in the previous subsection in Knees reward gait occurs
when the rear leg falls all the way toward the limit of the joint. In order
to penalize this behavior, a soft limit penalty was introduced. This penalty
penalized the robot when turning the joints to the edge 20% of the range
on each side, creating the Joint limits gait. This, however, produced yet
another instance of Reward misspecification / Goal misgeneralization where
the agent found a gait that led to minimizing the soft limit penalty, leaning
mostly on the front legs and stretching the rear legs while still being below
the penalty region of the joint space. The motion captured on the photograph
strip in Fig. 6.11 is a backward motion because the forward motion was
insignificant, perhaps impossible with this reward setting. A longer format in
the Appendix C.3 or in the video part of the Appendix F.

Distance and Spherical joint gaits

Those two gaits are mentioned together because they look visually very
similar, mostly in the forward motion. The agent, again, learned that the

55

6. Experiments & Results.................................

Figure 6.11: The training run with penalties for being close to joint limits

gait is more stable when jumping on the whole lower links of the lower legs,
instead of only standing on the end of the feet. This is mostly because the
large forces start to create parasitic forces as described in Section 6.4.1 and
shown the typical evidence of this behavior in the body height rewards in Fig.
6.7. The Distance joint gait and Spherical joint gait are shown together
in 6.12. A longer format can be seen in the Appendix C.4 or in the video
part of the Appendix F.

Figure 6.12: The gait for the original kinematic configuration of Artaban with
distance joints

Results for the chosen training runs in the CoT metric

In order to compare the gaits between themselves and also with gaits of
different kinematic configurations, a Cost of Transport metric was chosen
since it is agnostic to the number of joints previously defined in eq. 6.1. The
baseline gait without the knee rewards or soft limits did fairly well compared
to the gaits with the reward implemented. It ranked among the top three in
the CoT metric ranking. The first in the ranking is the Spherical joint gait,
however, it is almost identical to the Baseline gait and Knee rewards gait.
The time-series of the CoT throughout simulation steps and runs with the
mean values of CoT ranked from the largest to the smallest can be seen in Fig.
6.13. The graphs also contain some training runs that were not mentioned in
this section for brevity; however, they can be accessed in the video appendix.

56

................................. 6.4. Training progression

0 100 200 300 400
Simulation step

0.6

0.8

1.0

1.2

Co
st

 o
f T

ra
ns

po
rt

[-]
Baseline
Rew.
Rew. Ffeet

Rew. knees
Rew. limits
Sim. pos. iter.
Spherical joint
Distance joint

(a) : CoT time-series for chosen rear-legged gaits

Rew. lim
its

Sim. pos. it
er.

Rew. F feet

Dista
nce joint

Rew.

Rew. knees
Baseline

Spherica
l joint

Different training runs with rear legs

0.0

0.5

1.0

M
ea

n
of

 C
oT

 [-
]

(b) : Mean ± standard deviation of CoT for chosen rear-legged gaits

Figure 6.13: Comparison of chosen rear-legged runs

Note on bugs in Isaac Sim

Yet another problem that made the implementation of the closed-loop ar-
ticulation difficult is a confirmed bug in the implementation of Isaac Sim
importer that incorrectly assigned the articulation loop to a random rigid
body instead of to the base link. This hidden problem resulted in strange
behavior, causing unwanted rotations on spawning. The problem was that the
articulation root was set to the left pantograph primitive instead of the base
link, which led to the rotation of the whole body when setting the nominal
position of all degrees of freedom at the beginning of the simulation. After a
long back-and-forth with the developers, they recorded and fixed this bug
for the next release, which was sadly not yet available during the writing of
this thesis. This problem could be partially resolved by creating a custom
‘ArticulationView‘ for the base link and reading the rotations and positions
directly, not through the articulation root. However, the spawning routine is
not accessible and needs to be fixed from within. Therefore, the robot needed
to spawn at a slight angle because that is the default pose of the pantograph.
The GitHub issue is in the reference [48].

57

6. Experiments & Results.................................
6.4.3 Front-legged kinematic configuration

The rear-legged configuration proved unreliable in the simulation environment,
and therefore the simpler, front-legged configuration is trained. The goal
of this thesis is to implement the novel patented kinematics solution, which
means modeling the Cardan mechanism, spinning the motor in one direction,
and then benchmarking whether the overall effort-to-velocity ratio (CoT) is
better with the novel kinematics. Because the original kinematic configuration
often provides gaits that take advantage of the lack of integrity of the joint
excluded from articulation, the benchmarking with and without Cardan
mechanism modeling could become unclear. In order to eliminate those
unknowns, first, a gait on the front-legged configuration without the Cardan
mechanism is trained. The front-legged configuration can be clearly seen in
Fig. 6.14.

Figure 6.14: Side view of the front-legged configuration

6.4.4 Front-legged kinematic configuration - Cardan
mechanism

The mathematical modeling of the Cardan mechanism was already mentioned
in Section 5.1.3. The policy has access to the action for the motor output
shaft of the Cardan mechanism directly. That is what is possible to observe
and control by the real robot. The advantage of this mechanism is that the
motor can spin in one direction while the actuator (the Cardan mechanism)
follows a sinusoidal trajectory. This embodiment-specific motion generator
can be theoretically used to help the robot discover efficient gaits more quickly.
The way the motor shaft of the Cardan mechanism spins can be influenced
either indirectly via reward shaping or directly by forcing the motors to a
constant angular velocity. When setting an offset of π [rad] to the motors of
the Cardan mechanism on front-right and rear-left legs, a simple “forced trot”
can be achieved. An illustration of how such a trot looks like can be seen in
Fig. 6.15

58

................................. 6.4. Training progression

Figure 6.15: Example of forced trot with the Cardan mechanism

6.4.5 Evaluation of different training runs - front-legged

Since this kinematic configuration is less complex than the original one, the
training was expected to be more straightforward.

Baseline gait

The rewards described in the column named Front-legged in Tab. 6.1 produced
the Baseline gait for the front-legged configuration. Larger dynamic friction
had to be used for the legs because the robot lacked grip compared to the
original configuration. The training produced a decent gait that is valid and
looks as expected. The gait can be seen in the photography strip in Fig. 6.16
and in the appendix in the form of a video.

Figure 6.16: The baseline gait for the front-legged kinematic configuration of
Artaban

Cosmetic gait

In the Baseline gait, the robot helps its movement by moving the rocker
joints up and down. The rocker joints are the first joints connecting the legs

59

6. Experiments & Results.................................
to the body. Those joints are responsible for moving the legs to and from the
body. Increasing the penalty on those joints resulted in a stiffer motion, and
the robot dragged the rear legs mostly behind. This signals that perhaps the
knee/elbow limits are not large enough for the robot to close and open the
leg comfortably when the rockers are penalized for movement. Nevertheless,
this approach was not successful, and the gait was less visually appealing
while also being less cost-effective. The gait may be observed in Fig. 6.17, in
a longer format in the Appendix D.2 or in the video part of the Appendix F.

Figure 6.17: The gait for the front-legged kinematic configuration of Artaban
with rewards incentivizing placement of rocker joints close to nominal position

Cardan: Baseline gait

This training run produced a Cardan: Baseline gait. The name suggests
that the rewards did not reflect the Cardan mechanism and were left as was
the case for the front-legged Baseline gait. I.e., there were no rewards that
would penalize or incentivize any motion of the motor or cardan mechanism.
The actions were directly remapped from the knee joints to the positions
of the motor shafts of the Cardan mechanisms, and a gait emerged. This
learned gait did not provide a good-looking or effective motion. The agent
had, similar to the previous gait, trouble with going forward but managed
the sideways and backward motions. The backward motion is visible in the
photography strip in Fig. 6.18, in a longer format in the Appendix E.1 or in
the video part of the Appendix F.

Figure 6.18: The gait for the front-legged kinematic configuration of Artaban
with Cardan mechanism in place, which is backwards because the forward gait
was not clearly visible in pictures

60

................................. 6.4. Training progression

Cardan: Velocity reward gait

As mentioned in Section 6.4.4, the goal is to spin the motor in one direction
and let the agent figure out the rest. Therefore, rewarding the velocity of
the motor shaft of the Cardan mechanism is an obvious choice for a reward.
The resulting Cardan: Velocity reward gait is shown in Fig. 6.19, or in a
longer format in the Appendix E.2 or in the video part of the Appendix F.
The forward motion was, again, problematic, and therefore, the backward
motion is shown. The video in the appendix provides more insight. Mainly
the fact that the period of the oscillation is too low to produce meaningful
gait. A most probable explanation for this fact is that the action that
would constantly increase the speed of the shaft motor had to be consistent
for too long. My explanation is that the sole purpose of Proximal Policy
Optimization restricted the agent from trying out actions that are too large
and too different, therefore staying in a worse local maximum. Reinforcement
learning is employed in settings where the solution is often complex. The
goal of this approach is clear - make the motors rotate. Therefore, directing
the motors to spin might reach this goal in an easier way.

Figure 6.19: The gait for the front-legged kinematic configuration of Artaban
with Cardan mechanism in place with rewards incentivizing higher velocity of
the motor shaft on the mechanism

Cardan: Forced trot gait

Reaching a trot gait purely by reward shaping has shown to be more difficult
than expected. Therefore, a training experiment was conducted with the
motors spinning at a constant rate and their starting positions alternatively
offset as described previously in Section 6.4.4, by π [rad]. This Cardan:
Forced trot gait has shown great results. The gait is both visually appealing
and cost-effective. The gait is showcased in Fig. 6.20, or can be seen in a
longer format in the Appendix E.3 or in the video part of the Appendix F.

61

6. Experiments & Results.................................

Figure 6.20: The gait for the front-legged kinematic configuration of Artaban
with forced Cardan mechanism trot

Results for the chosen training runs in the CoT metric - Cardan

The front-legged Baseline gait does already very well in the CoT metric
even without any Cardan mechanism implementation. The straightforward
implementation of Cardan as Cardan: Baseline did worse than the baseline
without Cardan. That is because the resulting gait was not synchronized
with the walking rhythm. Forcing the motors to spin and, therefore, enforcing
a trot covered the gap between the asynchrony of the walking frequency and
the Cardan mechanism oscillations, which was probably too large for PPO
to cross. The experiment labeled C: No-cross in the 6.21 shows another
training run that penalized the Cardan motor shaft for changing the direction
of motion (crossing zero velocity) in order to minimize oscillations. This
was not enough and the gait ranks last in the chosen training runs. The C:
Forced trot gait ranks the best in CoT and seems to provide a good result
for this thesis, suggesting that utilizing the Cardan mechanism fully leads to
efficiency.

6.5 Overall training results

To finish up the results, an overview of CoT of all training runs is provided
in 6.22. Generally, the original kinematic configuration has 4 out of 7 runs in
the best half of the CoT score order. However, the front-legged configuration
and front-legged configuration with Cardan and forced trot occupy the second
and the first place in the CoT order, respectively. This shows that the
configuration using the full potential of Cardan for trotting brings great
results in cost efficiency and overall visual form of the gait. However, it is
important to note that the Cardan mechanism is simplified in this work, and
its detailed implementation is left for future work.

62

................................ 6.5. Overall training results

0 100 200 300 400
Simulation step

0.4

0.6

0.8

1.0

1.2

1.4
Co

st
 o

f T
ra

ns
po

rt
[-]

Cosmetic
Baseline
C: Baseline
C: No-cross
C: Vel. rew.
C: Forced trot

(a) : CoT time-series for chosen front-legged gaits, the “C” stands for Cardan

C: No-cro
ss

C: Vel. re
w.

C: Baseline
Cosmetic

Baseline

C: Forced tro
t

Different front-legged training runs

0.0

0.5

1.0

M
ea

n
of

 C
oT

 [-
]

(b) : Mean ± standard deviation of CoT for chosen front-legged gaits, the “C” stands
for Cardan

Figure 6.21: Comparison of chosen front-legged runs

Rew
. lim

its

Sim
. p

os.
 ite

r.

C: N
o-c

ros
s

Rew
. F fee

t

Dista
nce

 jo
int

C: V
el.

 re
w.

C: B
ase

line
Rew

.

Cosm
eti

c

Rew
. k

ne
es

RL:
Base

line

Sp
he

ric
al

join
t

FL:
 Base

line

C: F
orc

ed
 tro

t

All training runs

0.0

0.5

1.0

1.5

M
ea

n
of

 C
oT

 [-
] Cardan

Original
Front-legged

Figure 6.22: Overview of mean CoT of all training runs together

6.5.1 Payload stability assessment

Even though the Cost of Transport is a physically valid and understandable
metric, it does not include information about the smoothness of the gait,
although it is not completely unrelated. Roll and pitch in the movement of the
body do not matter much for the overall gait, but they matter when mounting

63

6. Experiments & Results.................................
payload and/or sensors onto the robot. Therefore, an additional metric to
the CoT is proposed: Payload stability quotient (PSQ), described as:

PSQ = vz
base + ωx

base + ωy
base

|vXY|
(6.2)

This metric takes into consideration the linear velocity in the Z axis vz
base (

movement up and down), roll and pitch angular velocities (movement around
the X and Y axis, ωx

base and ωy
base respectively), and the overall linear velocity

of the robot in the XY plane |vXY|. The angular and linear velocities are not
in the same units ([rad/s] vs. [m/s]). This theoretical detail is neglected as
the metric is used as a quotient, the scales of the described velocities are in a
similar range, and the units are not critical to the usefulness of the metric.
The best-ranking gait in the CoT metric was overtaken by other gaits, and the
best gait according to PSQ metric is the FL: Baseline. This provides another
point of view on the previously favorable C: Forced trot gait. For future
work, it is important to investigate further reward shaping to disincentivize
the agent from learning a gait that is effective but cannot transport payload
safely or perform other activities such as scanning of surroundings without
the need for substantial postprocessing of the gathered data. The ordering
of the gaits according to PSQ can be seen in Fig. 6.23. The lower the PSQ
value, the more stable the potential payload.

Rew
. lim

its

C: N
o-c

ros
s

Rew
.

Rew
. F fee

t

C: V
el.

 re
w.

Sim
. p

os.
 ite

r.

Rew
. k

ne
es

Dista
nce

 jo
int

Cosm
eti

c

RL:
Base

line

C: F
orc

ed
 tro

t

C: B
ase

line

Sp
he

ric
al

join
t

FL:
 Base

line

All training runs

0.0

0.1

0.2

0.3

0.4

M
ea

n
of

 P
SQ

 [-
] Cardan

Original
Front-legged

Figure 6.23: Overview of mean PSQ of all training runs together

64

Chapter 7

Conclusion

The goal of this work was to implement special kinematics that are specific to
the robotic platform Artaban and compare it to conventional kinematics. The
special kinematics include the Cardan mechanism containing one four-link
mechanism that transfers torque and the second four-link mechanism on
the rear legs. In order to benchmark each part of the mechanism, three
kinematic configurations were tested: the original one with front and rear legs
different (including only the second four-link mechanism for the rear legs), the
front-legged configuration with both pairs of legs the same as in front, and the
front-legged cardan configuration that models the torque transmission from
motor shaft to the lower link of the legs (i.e., the first four-link mechanism).
It was possible to produce some form of a gait with all three configurations;
however, the original kinematic configuration, sometimes also referred to as
rear-legged, met simulation difficulties. The simulation difficulties manifested
in improper loop-closure implementation that was often too elastic. This
should not have happened and resulted in gaits that were not valid, even
though the robot was able to move around. Different measures were tried to
stop this behavior from occurring. However, instead, the robot learned not to
use the rear legs properly in order to avoid gaits that caused the inconsistency.
Trying out different simulation step lengths and position iteration counts
of the physics solver did not bring positive results. The closed articulation
loop is still problematic for the simulation pipeline. Adding strength to the
argument, I uncovered a bug relating to the closed-loop articulation during
the implementation of this thesis. The reported bug has been confirmed and
allegedly fixed. The fix will, however, be only implemented in the next release
of Isaac Sim. The front-legged configuration did not cause implementation
problems, and a valid gait was discovered successfully. After the front-legged
baseline gait was discovered, the implementation of the Cardan mechanism
followed. Using the mechanism while spinning the last motors in the legs’

65

7. Conclusion......................................
actuation chains in one direction, an even more efficient and visually appealing
gait was produced. All of the described gaits were qualitatively compared on
the basis of the Cost of Transport metric and produced a favorable outcome:
the gait using the patented Cardan mechanism for walking was the most
efficient of all of the discovered gaits. This gives hope for future work with this
mechanism in taking advantage of its hinted efficiency. To assess the future
trajectories of the robot’s gait, an additional metric, named the Payload
stability quotient (PSQ), was proposed. This metric measured how stable is
the center of gravity of the robot relative to the z-axis linear movement and x
and y-axis angular movement, normalized by the linear speed in the XY-plane.
The lower this metric, the more stable per velocity unit the payload would
be. The gait produced by the Cardan mechanism brought additional angular
movements of the body around the x-axis, and therefore, it did not rank as
well in this metric; however, stayed in the top five.

With this section, all of the goals set in the thesis assignment were achieved,
starting with the review of common approaches to DRL for quadrupedal
gait, an overview of different approaches to building the robot was shown in
Chapter 3, Cardan kinematics were described in multiple sections and the
training progression and comparison in terms of load cycles (CoT metric)
was provided in the Chapter 6.

66

Chapter 8

Discussion & Future work

8.1 Discussion

This work explored implementations of different kinematic configurations of
the Artaban robotic platform. The original kinematic configuration faced
simulation difficulties that should be investigated in greater depth than was
possible in the scope of this thesis. Simulating the rear legs one way or the
other will be important in crossing the sim-to-real gap, which is notoriously
hard to cross. Any infidelities in the simulation of the rear legs will make it
hard for the agent to control its motion reliably when the actual behavior of
the hind legs is different. An assumption is therefore made that the findings in
this work, summarized in Chapter 7, will be similarly effective on the original
kinematic configuration as they were on the front-legged configuration when
the rear legs are stably simulated.

8.2 Future work

This thesis is only the beginning of the reinforcement learning journey of the
Artaban robotic platform. In this thesis, only a flat terrain was included in
the training, and the importance of including different terrains and further
domain randomization was shown to be great for the robustness and overall
quality of the produced gait. Therefore, curricular environments, training

67

8. Discussion & Future work
with vision, and/or laser scanning of the environment are left for further work.
The horizon of possibilities does not necessarily stop at locomotion only. The
trends in robotics show that robots that only walk are already the baseline
and are expected to be able to traverse difficult terrains with ease and agility,
able to perform simultaneous mapping and localization, perform smart tasks
using large language models, and interact with the surrounding with either
its legs (opening doors, kicking ball) or an additional robotic arm that often
needs to be implemented completely into the robots sensing pipeline.

68

Bibliography

[1] Marco Hutter. Anymal - robotic systems lab. https://rsl.ethz.ch/
robots-media/anymal.html, 2023. Accessed: 2023-12-29.

[2] Isaac gym: End-to-end gpu-accelerated reinforcement learning. https://
www.nvidia.com/en-us/on-demand/session/gtcspring21-s32037/,
2023. Accessed: 2023-12-29.

[3] Auke Jan Ijspeert. Central pattern generators for locomotion control in
animals and robots: a review. Neural Netw, 21(4):642–653, May 2008.

[4] A. Agrawal. Model-Based Design for Legged Robots: Predictive Control
and Reinforcement Learning. PhD thesis, UC Berkeley, 2022. ProQuest
ID: Agrawal_berkeley_0028E_21920. Merritt ID: ark:/13030/m557908b.
Retrieved from https://escholarship.org/uc/item/9qc8d6kz.

[5] Joseph Norby, Yanhao Yang, Ardalan Tajbakhsh, Jiming Ren, Justin K.
Yim, Alexandra Stutt, Qishun Yu, Nikolai Flowers, and Aaron M. John-
son. Quad-SDK: Full stack software framework for agile quadrupedal
locomotion. In ICRA Workshop on Legged Robots, May 2022.

[6] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and
Marco Hutter. Learning quadrupedal locomotion over challenging terrain.
CoRR, abs/2010.11251, 2020.

[7] Takahiro Miki, Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen
Koltun, and Marco Hutter. Learning robust perceptive locomotion for
quadrupedal robots in the wild. CoRR, abs/2201.08117, 2022.

[8] Princeton University. A quiet revolution in robotics - vladlen koltun,
sept 12, 2023, September 2023.

69

https://rsl.ethz.ch/robots-media/anymal.html
https://rsl.ethz.ch/robots-media/anymal.html
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32037/
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32037/
https://escholarship.org/uc/item/9qc8d6kz

8. Discussion & Future work
[9] T.S.Eliot. The hollow men, 1925.

[10] Teymur Azayev and Karel Zimmerman. Blind hexapod locomotion in
complex terrain with gait adaptation using deep reinforcement learning
and classification. Journal of Intelligent Robotic Systems, 99, 09 2020.

[11] Gabriel B Margolis, Ge Yang, Kartik Paigwar, Tao Chen, and Pulkit
Agrawal. Rapid locomotion via reinforcement learning, 2022.

[12] Vassilios Tsounis, Mitja Alge, Joonho Lee, Farbod Farshidian, and Marco
Hutter. Deepgait: Planning and control of quadrupedal gaits using deep
reinforcement learning. CoRR, abs/1909.08399, 2019.

[13] Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning
to walk in minutes using massively parallel deep reinforcement learning.
CoRR, abs/2109.11978, 2021.

[14] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap.
Mastering diverse domains through world models, 2023.

[15] Miloš Prágr, Petr Čížek, and Jan Faigl. Cost of transport estimation for
legged robot based on terrain features inference from aerial scan. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 1745–1750, 2018.

[16] Kenneth Waldron and James Schmiedeler. Kinematics, pages 9–33.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[17] Ligang Yao, Hao Yu, and Zongxing Lu. Design and driving model for
the quadruped robot: An elucidating draft. Advances in Mechanical
Engineering, 13(4):16878140211009035, 2021.

[18] Steven D. Potter, Zachary John Jackowski, and Adam Young. Screw
actuator for a legged robot, 6 2018. Application number US15/380,561.

[19] Ben Katz. Building all the robots. https://build-its-inprogress.
blogspot.com/2019/11/building-all-robots.html, November 2019.
Accessed: 2023-12-29.

[20] Cardan joints din 808 form e normal version with
sliding fit g. https://www.mbo-osswald.de/en/shop/
cardan-joints-din-808-form-e-normal-version-with-sliding-fit-g,
2023. Accessed: 2023-12-29.

[21] Ing. Radoslav Balajka. Robot leg, 9 2021. Application number
SK9321Y1, filed on 2021-02-12 and published on 2021-09-29. Priority to
PCT/SK2022/050001 on 2022-02-14.

[22] [Author’s Name]. Minitaur. Master’s thesis, Florida State University,
Tallahassee, FL, Year of Publication. Accessed: 2023-12-29.

70

https://build-its-inprogress.blogspot.com/2019/11/building-all-robots.html
https://build-its-inprogress.blogspot.com/2019/11/building-all-robots.html
https://www.mbo-osswald.de/en/shop/cardan-joints-din-808-form-e-normal-version-with-sliding-fit-g
https://www.mbo-osswald.de/en/shop/cardan-joints-din-808-form-e-normal-version-with-sliding-fit-g

..................................... 8.2. Future work

[23] Evan Ackerman. Ghost robotics’ minitaur quadruped conquers stairs,
doors, and fences and is somehow affordable. IEEE Spectrum, Sep 2016.
Accessed: 2023-12-29.

[24] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. The MIT Press, second edition, 2018.

[25] Joshua Achiam. Spinning Up in Deep Reinforcement Learning. 2018.

[26] Sergey Levine. Deep reinforcement learning: Actor-critic algorithms,
October 2017.

[27] Pumperla Max and Ferguson Kevin. Deep Learning and the Game of
Go. Manning Publications Co., 2019.

[28] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. CoRR,
abs/1707.06347, 2017.

[29] Papers With Code. An overview of policy gradient methods.

[30] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and
Pieter Abbeel. Trust region policy optimization. CoRR, abs/1502.05477,
2015.

[31] Sham Kakade and John Langford. Approximately optimal approximate
reinforcement learning, 2002.

[32] Antonio Serrano-Muñoz, Dimitrios Chrysostomou, Simon Bøgh, and
Nestor Arana-Arexolaleiba. skrl: Modular and flexible library for rein-
forcement learning. Journal of Machine Learning Research, 24(254):1–9,
2023.

[33] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian
Ernestus, and Noah Dormann. Stable-baselines3: Reliable reinforce-
ment learning implementations. Journal of Machine Learning Research,
22(268):1–8, 2021.

[34] Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga,
Dipam Chakraborty, Kinal Mehta, and João G.M. Araújo. Cleanrl:
High-quality single-file implementations of deep reinforcement learning
algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.

[35] Denys Makoviichuk and Viktor Makoviychuk. rl-games: A high-
performance framework for reinforcement learning. https://github.
com/Denys88/rl_games, May 2021.

[36] Taewoo Kim, Minsu Jang, and Jaehong Kim. A survey on simula-
tion environments for reinforcement learning. 2021 18th International
Conference on Ubiquitous Robots (UR), pages 63–67, 2021.

71

https://github.com/Denys88/rl_games
https://github.com/Denys88/rl_games

8. Discussion & Future work
[37] Pixar Animation Studios. Universal scene description. https://openusd.

org/release/index.html, 2021. Accessed: 2023-12-29.

[38] NVIDIA Corporation. Nvidia physx sdk 4.1 documentation.
https://gameworksdocs.nvidia.com/PhysX/4.1/documentation/
physxguide/Index.html, April 2021. Accessed: 2023-12-29.

[39] NVIDIA Corporation. Isaac sim. https://docs.omniverse.nvidia.
com/isaacsim/latest/overview.html, 2023. Accessed: 2023-12-29.

[40] Oyndamola. Ros discourse forum, nvidia isaac sim latest release update
with gazebo bridge and new features. https://shorturl.at/dgxA1,
June 2022. Accessed: 2023-12-29.

[41] Gymnasium documentation. https://gymnasium.farama.org/, 2023.
Accessed: 2023-12-29.

[42] Openai gym beta. https://openai.com/research/openai-gym-beta,
April 2016. Accessed: 2023-12-29.

[43] NVIDIA Corporation. Reinforcement learning environments for
omniverse isaac gym. https://github.com/NVIDIA-Omniverse/
OmniIsaacGymEnvs, 2023. Accessed: 2023-12-29.

[44] NVIDIA Corporation. Articulations - omniverse extensions.
https://docs.omniverse.nvidia.com/extensions/latest/ext_
physics/articulations.html, 2023. Accessed: 2023-12-29.

[45] NVIDIA Corporation. Articulations - nvidia physx sdk 4.0
documentation. https://gameworksdocs.nvidia.com/PhysX/4.0/
documentation/PhysXGuide/Manual/Articulations.html, 2018. Ac-
cessed: 2023-12-29.

[46] J. L. McGaugh. Searching for memory in the brain: Confronting the
collusion of cells and systems. In F. Bermúdez-Rattoni, editor, Neural
Plasticity and Memory: From Genes to Brain Imaging, chapter 1. CRC
Press/Taylor & Francis, Boca Raton (FL), 2007.

[47] Jack Koch, Lauro Langosco, Jacob Pfau, James Le, and Lee Sharkey. Ob-
jective robustness in deep reinforcement learning. CoRR, abs/2105.14111,
2021.

[48] dhajnes. Github issue, get_world_poses() and set_world_poses()
getting/setting orientation outside of the base_link. https://github.
com/NVIDIA-Omniverse/OmniIsaacGymEnvs/issues/110, 2023. Issue
#110 opened on November 16, 2023.

[49] Zuzana Mačicová. Implementácia aproximácie priamej
a inverznej kinematiky paralelného mechanizmu nôh rob-
ota artaban. Bakalárska práca, Univerzita Komenského v
Bratislave, Fakulta matematiky, fyziky a informatiky, 2021.

72

https://openusd.org/release/index.html
https://openusd.org/release/index.html
https://gameworksdocs.nvidia.com/PhysX/4.1/documentation/physxguide/Index.html
https://gameworksdocs.nvidia.com/PhysX/4.1/documentation/physxguide/Index.html
https://docs.omniverse.nvidia.com/isaacsim/latest/overview.html
https://docs.omniverse.nvidia.com/isaacsim/latest/overview.html
https://shorturl.at/dgxA1
https://gymnasium.farama.org/
https://openai.com/research/openai-gym-beta
https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs
https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs
https://docs.omniverse.nvidia.com/extensions/latest/ext_physics/articulations.html
https://docs.omniverse.nvidia.com/extensions/latest/ext_physics/articulations.html
https://gameworksdocs.nvidia.com/PhysX/4.0/documentation/PhysXGuide/Manual/Articulations.html
https://gameworksdocs.nvidia.com/PhysX/4.0/documentation/PhysXGuide/Manual/Articulations.html
https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs/issues/110
https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs/issues/110

..................................... 8.2. Future work

https://opac.crzp.sk/?fn=detailBiblioFormChildUM4PS&sid=
A770A18E340C6018B58DE7BDD5C2&seo=CRZP-detail-kniha.

[50] Chin Pei Tang. Lagrangian dynamic formulation of a four-bar mechanism
with minimal coordinates. 2010.

73

https://opac.crzp.sk/?fn=detailBiblioFormChildUM4PS&sid=A770A18E340C6018B58DE7BDD5C2&seo=CRZP-detail-kniha
https://opac.crzp.sk/?fn=detailBiblioFormChildUM4PS&sid=A770A18E340C6018B58DE7BDD5C2&seo=CRZP-detail-kniha

74

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

483496 Personal ID number: Kružliak Andrej Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and Robotics Study program:

II. Master’s thesis details

Master’s thesis title in English:

Reinforcement Learning for Quadrupedal Robot Control with Novel Kinematics

Master’s thesis title in Czech:

Posilované učení pro ovládání čtyřnohého robota s inovativní kinematikou

Guidelines:

1) Study the conventional solutions for kinematics of quadrupedal robots.
2) Study the conventional approaches to solve quadrupedal gait using reinforcement learning.
3) Implement the special properties of novel kinematics* into the simulation environment.
4) Employ reinforcement learning algorithm of choice to solve the quadrupedal gait in the simulation.
5) Verify the implemented control system in the simulation environment in the terms of load cycles.
* novel kinematics relates to a patented joint

Bibliography / sources:

[1] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter (2022). Learning robust perceptive locomotion
for quadrupedal robots in the wild. Science Robotics, 62(7), 317- 328.
[2] T. Azayev & K. Zimmerman (2022). Blind Hexapod Locomotion in Complex Terrain with Gait Adaptation Using Deep
Reinforcement Learning and Classification. Journal of Intelligent & Robotic Systems, 3-4(99), 659-671.
[3] N. Rudin, D. Hoeller, P. Reist & M. Hutter (2022). Learning to Walk in Minutes Using Massively Parallel Deep
Reinforcement Learning, ArXiv arXiv:2109.11978v3.
[4] V. Tsounis, M. Alge, J. Lee, F. Farshidian & M. Hutter (2020). Deepgait: Planning and control of quadrupedal gaits
using deep reinforcement learning. IEEE Robotics and Automation Letters, 2(5) (3699-3706).

Name and workplace of master’s thesis supervisor:

Rastislav Marko, MSc. Panza Robotics, s.r.o.,Trnava, Slovakia

Name and workplace of second master’s thesis supervisor or consultant:

doc. Ing. Karel Zimmermann, Ph.D. Vision for Robotics and Autonomous Systems FEE

Deadline for master's thesis submission: 09.01.2024 Date of master’s thesis assignment: 21.06.2023

Assignment valid until: 19.02.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Rastislav Marko, MSc.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

76

Appendix A

Cardan mechanism to knee angle
computation

The following set of equations A.1a describes the computation of the angle of
the knee θ from the angle of the clevis fork of the Cardan mechanism ϕ. The
lengths of the four-link li correspond to the li noted in the Fig. A.1b. The
complete methodology behind the given equations can be found in [49] and
in [50].

k1 = −2l1l3 sin(ϕ)
k2 = −2l1(l0 + l3 cos(ϕ))
k3 = l20 + l21 − l22 + l23 + 2l0l3 cos(ϕ)

θ = 2 arctan 2
(
−k1 +

√
k2

1 + k2
2 − k2

3, k3 − k2

)

(a) : Cardan mechanism to knee an-
gle computation

(b) : Four-bar Cardan
mechanism, shown on
the front leg

Figure A.1: Computation of the knee angle from the Cardan mechanism

77

78

Appendix B

Detailed reward function definition

The given Table B.1 describes the mathematical definition of the reward
signals. The capital letter R stands for the given reward scale adjusted for the
simulation time step as R = r×dt where r is the reward scale relevant for the
given reward as seen, for example, in Table 6.1 and dt is the simulation step
size. If the simulation runs at 100 FPS, that means that dt = 1/100 = 0.01.
Those reward signal definitions were built on top of the Anymal environment
of OIGE by Nvidia [43], which provided a meaningful starting point for the
reward shaping that followed.

79

B. Detailed reward function definition

Reward name Reward definition
Linear XY vel. exp(−(vXY

cmd − vXY
base)2/0.25)×R

Angular Z vel. exp(−(ωXY
cmd − ωXY

base)2/0.25)×R

Linear Z vel. (vZ
base)2 ×R

Joint acc.
∑

j∈J [a2
j]×R

Joint vel.
∑

j∈J [∥vj∥]×R

Action rate
∑

aπ∈Aπ [(aπ − aπ
prev)2]×R

Cosmetic
∑

j∈Jrockers
[∥θj − θdefault

j ∥]×R

Soft limit
∑

j∈J [1 if ∥θj − θlimit
j ∥ < ϵ, else 0]×R

Base height (xZ
base − zdefault

base)2 ×R

Knee height
∑

j∈Jknees
[(xZ

j − zdefault
j)2]×R

Fallen over (if fallenOver==True 1, else 0)×R
Feet force

∑
j∈Jfeet

[∥Fj − Fmax∥]×R

Collision
∑

j∈J [if forbiddenCollision(j)==True 1, else 0]×R

Motor C zero-cross
∑

m∈MC
[if ∥vm∥ < ϵ 1, else 0]×R

Motor C vel.
∑

m∈MC
[v2

m]×R

Table B.1: Computation of reward signals for reinforcement learning. J repre-
sents set of all joints, Aπ represents number of actions available to the agent, e.g.,
12 in the case of 12 motors, x, v and ω represent the robots position state, linear
and angular velocity respectively, θ represents a motor or joint angular position,
Fj represents force measured in the link forward from the j − th joint, MC

represents the set of C motors which are responsible for spinning the Cardan
mechanism for the Cardan kinematic configuration.

80

Appendix C

Original kinematic configuration —
photography strips of gaits

Figure C.1: The baseline gait for the original kinematic configuration of Artaban

81

C. Original kinematic configuration — photography strips of gaits

Figure C.2: The gait for the original kinematic configuration of Artaban with
penalties incentivizing lower knee height error

Figure C.3: The training run with penalties on being close to joint limits

82

............... C. Original kinematic configuration — photography strips of gaits

Figure C.4: The gait for the original kinematic configuration of Artaban with
distance joints

83

84

Appendix D

Front-legged kinematic configuration —
photography strips of gaits

Figure D.1: The baseline gait for the front-legged kinematic configuration of
Artaban

85

D. Front-legged kinematic configuration — photography strips of gaits.............

Figure D.2: The gait for the front-legged kinematic configuration of Artaban
with rewards incentivizing placement of rocker joints close to nominal position

86

Appendix E

Cardan: front-legged kinematic
configuration — photography strips of gaits

Figure E.1: The gait for the front-legged kinematic configuration of Artaban
with Cardan mechanism in place

87

E. Cardan: front-legged kinematic configuration — photography strips of gaits

Figure E.2: The gait for the front-legged kinematic configuration of Artaban
with Cardan mechanism in place with rewards incentivizing higher velocity of
the motor shaft on the mechanism

Figure E.3: The gait for the front-legged kinematic configuration of Artaban
with forced Cardan mechanism trot

88

Appendix F

Video documentation of the provided gaits

A file VIDEO_APPENDIX_SUBSET.zip is uploaded to the appendix section of the
thesis. It contains folders video_subset_front_legs and video_subset_rear_legs
carrying videos of the most important results, and a text file README.txt
that includes further instructions on how to watch the videos in the most
convenient manner. The videos are only a bare subset in order to respect
the file capacity cap of 100 MB per work (thesis + appendix). The rest of
the videos documenting the results of different training runs are uploaded to
two unlisted YouTube playlists. Links to those playlists are attached in the
README.txt file.

89

	Introduction
	Motivation
	Goals

	Related Work
	Blind legged locomotion
	Legged locomotion with exteroceptive information
	General world model learning
	Training criteria and parameters

	Quadruped robot kinematics
	Kinematics of quadrupedal robots
	Fully revolute actuation chain
	Mixed revolute-linear actuation chain
	Mixed revolute-universal actuation chain
	Closed-loop fully revolute articulation chain

	Reinforcement learning for learning quadrupedal gait
	Supervised, unsupervised and reinforcement learning
	Introduction to deep reinforcement learning
	Proximal Policy Optimization
	Introduction to policy gradient methods
	Proximal Policy Optimization method (PPO)
	Popular PPO implementations

	Materials & Methods
	Robotic platform Artaban
	Platform description
	Rear leg
	Cardan mechanism detail

	Simulation environment
	Omniverse & Isaac Sim
	Isaac Sim

	Gym convention
	Definition of Gym environment
	Omniverse Gym for Reinforcement Learning

	Artaban simulation environment
	Environment implementation
	Reinforcement learning pipeline
	Reinforcement learning pipeline parameters

	Experiments & Results
	Evaluation environment
	Reward function benchmark
	Reward decomposition
	Reward ablation

	Influence of batch size on gait quality
	Training progression
	Original kinematic configuration - rear-legged
	Evaluation of different training runs - rear-legged
	Front-legged kinematic configuration
	Front-legged kinematic configuration - Cardan mechanism
	Evaluation of different training runs - front-legged

	Overall training results
	Payload stability assessment

	Conclusion
	Discussion & Future work
	Discussion
	Future work

	Bibliography
	Project Specification
	Cardan mechanism to knee angle computation
	Detailed reward function definition
	Original kinematic configuration — photography strips of gaits
	Front-legged kinematic configuration — photography strips of gaits
	Cardan: front-legged kinematic configuration — photography strips of gaits
	Video documentation of the provided gaits

