
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

MASTER’S THESIS

Robust Vision-Based Navigation in Extreme
Environments Inspired by the Hippocamal-Entorhinal

System

Tomáš Musil

Thesis supervisor: Ing. Matěj Petrĺık

Department of Cybernetics

January 2024

I declare that the presented work was developed independently and that I have listed
all sources of information used within it in accordance with the methodical instructions
for observing the ethical principles in the preparation of university theses.

Prague, date

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

483430 Personal ID number: Musil Tomáš Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and Robotics Study program:

II. Master’s thesis details

Master’s thesis title in English:

Robust Vision-Based Navigation in Extreme Environments Inspired by the Hippocamal-Entorhinal

System

Master’s thesis title in Czech:

Robustní vizuální navigace v extrémních prostředích inspirovaná hippokampem a entorhinálním

kortexem

Guidelines:

1. Review the state of SLAM and its connection to biological spatial cognition, cognitive maps and current AI trends [1].

Discuss the open problems not solved by current SLAM algorithms.

2. Construct a simulator for benchmarking multi-session vision-based navigation [2] of autonomous agents in large-scale,

3D, changing environments with high perceptual aliasing, dynamic objects and weather effects. Take inspiration from

existing simulators [3].

3. Develop a robust SLAM-inspired vision-based spatial perception and action system that can navigate in the extreme

environments of the simulator.

4. Discuss the performance of the designed system and compare it to existing spatial perception systems [4].

Bibliography / sources:

[1] Safron, Adam, Ozan Çatal and Tim Verbelen. “Generalized Simultaneous Localization and Mapping (G-SLAM) as

unification framework for natural and artificial intelligences: towards reverse engineering the hippocampal/entorhinal system

and principles of high-level cognition.” Frontiers in Systems Neuroscience 16 (2021).

[2] Anderson, Peter, Angel X. Chang, Devendra Singh Chaplot, Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana

Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva and Amir Roshan Zamir. “On Evaluation of Embodied Navigation

Agents.” ArXiv abs/1807.06757 (2018).

[3] CARLA - Dosovitskiy, Alexey, Germán Ros, Felipe Codevilla, Antonio M. López and Vladlen Koltun. “CARLA: An Open

Urban Driving Simulator.” Conference on Robot Learning (2017).

[4] Campos, Carlos, Richard Elvira, Juan J. G'omez Rodr'iguez, José M. M. Montiel and Juan D. Tardós. “ORB-SLAM3:

An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap SLAM.” IEEE Transactions on Robotics 37

(2020): 1874-1890.

Name and workplace of master’s thesis supervisor:

Ing. Matěj Petrlík Multi-robot Systems FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 09.01.2024 Date of master’s thesis assignment: 18.09.2023

Assignment valid until: 16.02.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

prof. Ing. Tomáš Svoboda, Ph.D.
Head of department’s signature

Ing. Matěj Petrlík
Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

III. Assignment receipt

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Acknowledgements

I would like to thank my family and friends for supporting me through the hard
times of my studies and while writing this thesis. They have always been there for me and
I cannot thank them enough for that.

I will also be forever grateful to all the amazing members of the Multi-Robot Systems
Group, as without them, I this thesis would by no means be possible. They made me truly
fall in love with robotics. At MRS, I was given the ability and the support to work amongst
brilliant roboticists on the hard problems in robotics, and they have always been supportive
of me and helped me learn. They are truly great people, and I want to specifically thank
Ing. Matěj Petrĺık for guiding me while writing this thesis and our previous works. He has
been the best research advisor anyone could ever hope for.

i

Abstract

This thesis deals with bio-inspired monocular visual navigation and is
divided into three main parts. First, we survey the research in cogni-
tive neuroscience on human and animal navigation, compare it with the
currently best robotic vision-based navigation systems, and identify core
strengths of biological navigation which could be worth replicating in
robotics. Second, we present a novel simulator that we purpose-build to
simulate challenging scenarios and find the limits of existing vision-based
systems, which often assume small-scale, static, and unambiguous envi-
ronments. We also propose a method of evaluating navigation holistically,
using the simulator. Third, we present a new vision-based autonomous
navigation, map-building and exploration approach. We also show that
by using large-scale spatial geometry instead of visual appearance, one
can achieve robust multi-session localization even in a highly perceptu-
ally aliased environment. Finally, we demonstrate the exploration and
safety-aware planning of the designed system both in simulation, and in
the real world on an inexpensive unmanned aerial vehicle with limited
sensing capabilities.

Keywords: navigation, vision-based navigation, exploration, cogni-
tive science, hippocampus, entorhinal cortex, unmanned aerial vehicle,
SLAM

ii

Abstrakt

Tato diplomová práce se zabývá bio-inspirovanou robotickou vizuálńı
navigaćı a je rozdělena na tři hlavńı části. Prvńı část́ı je porovnáńı nav-
igace zv́ı̌rat a lid́ı oproti navigaci v aktuálńıch robotických systémech
a krátké shrnut́ı výzkumu na téma navigace lid́ı a zv́ı̌rat. Druhá část
je o novém simulátoru, který jsme navrhli tak, aby v něm výzkumńıci
mohli rozb́ıjet aktuálńı robotické systémy založené na počátačovém
viděńı. Dále také představujeme novou metodu vyhodnocováńı navigace
jako celku, pomoćı navrženého simulátoru. Posledńı část́ı je systém pro
vizuálńı navigaci, mapováńı a prozkoumáváńı, spolu s metodou hledáńı
korespondenćı mezi v́ıce mapami, která pro tyto účely použ́ıvá geometrii
velkých úsek̊u prostřed́ı. Funkcionalitu tohoto systému demonstrujeme
na experimentech v simulovaném i reálném prostřed́ı.

Kĺıčová slova: navigace, vizuálńı navigace, prozkoumáváńı, kognitivńı
vědy, hipokampus, entorinálńı kortex, bezpilotńı helikoptéra, SLAM

Contents

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Motivation . 1

1.2 100km wide Cognitive Maps and Repeatable Navigation in Bats 2

1.3 Contributions and Outline . 2

2 Artificial versus Biological - A Navigation and Mapping Survey 5

2.1 Biological Navigation Types and their Robotic Counterparts 5

2.2 Navigation and Mapping in Robots . 6

2.2.1 Simulatenous Localization and Mapping (SLAM) 6

2.2.2 Open Questions in SLAM relevant to Navigation 8

2.3 Navigation and Cognitive Maps in Mammals 9

2.3.1 HES Cells Identified for Spatial Cognition 10

2.4 Opportunities for HES-Inspired Mapping, Navigation and Intelligence . . . 12

2.4.1 Geometry or Visual Appearance as Stable Descriptors? 12

2.4.2 Multiple Maps and Reference Frames 13

2.4.3 Task-Specific Cognitive Maps and Higher Level Cognition 14

3 Simulating and Benchmarking Vision-based Navigation in Extreme En-
vironments 17

3.1 Why another Simulator? . 17

3.2 HARDNAV Simulator Description . 18

3.2.1 Unity Engine for Robotics Simulation 18

iv Contents

3.2.2 Supported Robots, Sensors, Actuators 22

3.2.3 World Configuration Resetting . 23

3.2.4 Worlds, Objects, Textures and Extreme Conditions 23

3.3 Proposed Benchmarking of Robust Navigation 25

3.4 Comparison with other Simulators . 27

3.5 Discussion and Future Work . 29

4 Multi-Map Visual-Inertial Navigation and Exploration System 31

4.1 System Overview and Design Choices . 31

4.2 SphereMap Builder . 33

4.3 Local Perception-Aware Navigation and Exploration 34

4.4 Large-Scale Geometry-Based Map Matching 35

4.5 Learning-Free Visual Inverse-Depth Estimator 36

4.6 Vision-based Exploration in HARDNAV 39

4.7 Vision-based Exploration in the Real World 41

4.8 Limitations and Future Work . 43

5 Conclusion 45

Bibliography 47

List of Figures

2.1 The primary entorhinal cell types for spatial cognition 10

3.1 Changing conditions in HARDNAV . 19

3.2 The Implemented Robots in HADNAV . 23

3.3 The Station World in HARDNAV . 24

3.4 Symmetric World in HARDNAV used for Matching and Simulation Naviga-
tion Experiments . 25

4.1 System Overview . 32

4.2 Estimation of Relative Transformation of Clusters of Submaps Visualized . 35

4.3 Submap ICP Matching Visualization . 37

4.4 Filtering vs No Filtering for Inverse Depth 38

4.5 Drift in the simulation . 40

4.6 HARDNAV Directed Exploration Experiment 41

4.7 Tello UAV Experiment Showcase . 44

vi List of Figures

List of Tables

3.1 The challenges for place recognition and navigation implemented (and planned,
in italics) in HARDNAV. The upper portion of the challenges in the table
can all be individually enabled or disabled in the session config YAML string
for each session. The lower half challenges are caused by the design of the
individual environments and are thus not toggleable. 26

viii List of Tables

Chapter 1

Introduction

Contents
1.1 Motivation . 1

1.2 100km wide Cognitive Maps and Repeatable Navigation in
Bats . 2

1.3 Contributions and Outline . 2

1.1 Motivation

Humans and animals can navigate both known and unknown physical space — a city,
a forest, or the open sea, efficiently and reliably over many sessions, without relying on
any global positioning systems. That, however, cannot be said for today’s mobile robots.
Through decades of research, SLAM and autonomous navigation have come a long way
towards systems that are as good at navigating and spatial reasoning as biological ones,
but there still remain many unsolved fundamental questions

The potential impact of building inexpensive systems that can reliably navigate any
given environment is immense. From agriculture robots that would work sprawling fields
to swarms of low-cost drones that would search for survivors during a natural disaster,
all robots that operate in the real world require reliable and efficient systems for knowing
where they are, where they have been, and how to reach any given relevant place.

The main question of this thesis is thus ”How can we build artificial systems
that could navigate real-world, large-scale, dynamic environments as reliably
and effortlessly as animals?” As an example, we propose to take the egyptian fruit bat,
described in the following section, as the target for vision-based navigation systems.

2 Chapter 1. Introduction

1.2 100km wide Cognitive Maps and Repeatable Nav-

igation in Bats

The authors of [1] documented that the Egyptian fruit bat is capable of returning
to its nest after being translocated by up to 80km in arbitrary directions from it. After
a thorough dicsussion in the paper, the authors conclude that the bat most likely relies
primarily on visual information in such navigation, likely using faraway mountain ranges as
its primary visual cue. This is an incredible feat of navigation, considering that single-robot
missions without global position systems have so far reached only up to a few kilometers,
and that is most often using powerful depth sensors such LIDARs [24].

Additionally, the fruit bats are capable of repeatedly navigating to one particular
fruit tree, 15km away from their nest, night after night [1]. Such repeatability is also a very
impressive and inspiring achievement, compared to how difficult it is to realize repeatable
robotic navigation even in a very controlled small-scale setting.

Bats possess superb sensory systems [2] – vision; somatosensation which helps with
flight control and path integration; echolocation which helps them sense distance, relative
velocity, shape and texture of objects up to approx. 17 meters; magnetoperception which
helps them obtain their rotation relative to Earth’s magnetic field; and sensitive olfaction
which helps them distinguish many different smells. However, aside from olfaction and the
sensitivity of their echolocation system, this sensory equipment is not that different from
what one can achieve on a robot with an IMU, global shutter cameras, and compass sensors.
Thus, it might be possible to replicate such large-scale navigation and map building even
with existing sensory and computational technology.

1.3 Contributions and Outline

In this thesis, we focus on searching for answers as to how we could achieve such
incredible navigation in robotic systems. The thesis is divided into three main parts:

In chapter 2, we analyze the fields related to navigation used in robotics today, make
a brief survey of the current research on mammalian navigation, and then attempt to find
comparisons and potential inspiration that can be taken from biology. We also briefly touch
on how navigation might be a core component of higher-level cognition in general and why
that makes it that much more interesting to study.

In chapter 3, we present a new simulator that we built to assist researchers in de-
veloping robust navigation systems, and describe a new replicable benchmarking method
that can be used to evaluate navigation as a whole, using the simulator.

In chapter 4, we present a novel visual-inertial navigation system that takes heavy
inspiration from biology, combines it with the best available modules for robotic navigation,

1.3. Contributions and Outline 3

and thus achieves multi-session navigation and exploration on a UAV platform in the new
simulator and in the real world.

4 Chapter 1. Introduction

Chapter 2

Artificial versus Biological - A
Navigation and Mapping Survey

Contents
2.1 Biological Navigation Types and their Robotic Counterparts 5

2.2 Navigation and Mapping in Robots 6

2.3 Navigation and Cognitive Maps in Mammals 9

2.4 Opportunities for HES-Inspired Mapping, Navigation and In-
telligence . 12

2.1 Biological Navigation Types and their Robotic

Counterparts

In cognitive science, navigation is commonly divided into the below mentioned cate-
gories, as summarized for example in [2]. Animals are thought to use all of these behaviors
and to switch between them according to need. The categories are:

� Beaconing is the simplest navigation type where an animal navigates directly to-
wards a visual feature that it can currently see. This is reflected in visual servoing
[3], where a system detects, tracks and then aligns itself to move towards a particular
goal object or area. This is a fairly mature field and applications exists for example
in military settings.

� Route Following is when an animal remembers a route to a given place and then
follows that route. This is best reflected in teach-and-repeat navigation [4, 5],

6 Chapter 2. Artificial versus Biological - A Navigation and Mapping Survey

which is today also a mature field with real-world robotic applications where it is
sufficient to follow unchanging paths between places.

� Path Integration is the ability of animals to integrate self-motion cues (e.g. accel-
eration sensing, counting steps, rotations etc.) and visual measurements to estimate
its traveled path in an environment. This corellates to odometry estimation [6, 7]
methods, which are a critical part of any mobile system and vary for different sensory
setups. An example of this are ants, which when kidnapped and moved away from
their position, will execute the same route they traveled in an attempt to return to
their nest and thus not reach the nest.

� Map-based navigation is the most advanced level of navigation, where an animal
constructs a cognitive map and uses it to navigate. What differentiates this strategy
from others is the ability of animals to navigate to a goal even when their preferred
path is blocked or to use shortcuts in an environment to use paths that haven’t been
traveled before. The observation of this behavior in rats led Tolman in 1948 to propose
[8] the existence of cognitive maps for navigation, and since then, researchers have
discovered many systems in mammalian brains that support this hypothesis, which
we discuss more in subsection 2.3.1. In robotics, this corresponds to systems that
perform Simulatenous Localization and Mapping (SLAM) and employ path
planning and path following methods to navigate in their created maps. We will
focus on this type of navigation in this thesis.

2.2 Navigation and Mapping in Robots

2.2.1 Simulatenous Localization and Mapping (SLAM)

SLAM is a wide research field that focuses on the chicken-and-egg problem of si-
multaneously building a map and localizing in it. To localize within a map, one needs a
map, and to update a map with new measurements, one needs to localize oneself relative
to the map. Thus arises the difficulty in this task. The authors of [9] thoroughly survey
the history, current state and open questions of SLAM, and the text in this section is our
attempt at summarizing the parts that are relevant for comparison with biological spatial
intelligence.

The most common way of thinking about SLAM is the graph-based, probabilistic
approach [10, 11]. In that paradigm, the problem is generally formulated as finding robots’
trajectories and locations of observed spatial objects (points, lines, surfaces etc.) in a single
coordinate frame from a number of sensory measurements (cameras, range sensors, IMUs,
magnetometers, barometers etc.).

Several algorithms can solve (in a sense that the output is useful for spatial navigation
tasks) the SLAM problem in specific environments in real time. The two most common

2.2. Navigation and Mapping in Robots 7

ones are smoothing and filtering. Smoothing approaches, the most popular being iSAM
[12, 13], represent measurements, observations, and prior knowledge as factors that con-
strain the unknown states in a factor graph. The smoothing process finds the Maximum A
Posteriori (MAP) estimate of the probabilistically constrained states based on the uncer-
tainties of the factors using nonlinear optimization methods such as the Gauss-Newton or
Levenberg-Marquardt algorithms. Because with increasing time the factor graph grows and
optimizing the whole graph would become intractable in real time, smoothing approaches
often marginalize states and measurements, meaning that they only optimize variables in
some sliding window and previous variables outside the window become fixed. Such ap-
proaches are called fixed-lag smoothing. When the size of the window accomodates only
a single state, then we speak about filtering. Filtering approaches most often describe the
full robot state and measurements using a Kalman filter [14]. These are generally more
computationally efficient, but less accurate.

Localization without global pose sensors (such as GNSS, compass or uniquely iden-
tifiable landmarks with known positions) will always encounter odometry drift – the esti-
mated pose relative to the specified coordinate frame will accumulate errors and become
increasingly different from the true pose. To solve this, SLAM systems use place recognition
methods, which are well summarized by the authors in [15]. This usually means that there
is a thread that checks whether the current context (camera image, lidar scan, ...) is similar
enough to some previously seen context. If it is similar enough based on some metric, the
existing trajectory and map are deformed (often using pose-graph optimization) so that
the current pose aligns with the pose of the previously visited context.

Visual place recognition is a large research field in itself, and many advances have been
done in the last decades to make place recognition efficient, accurate and thus useful for
SLAM and other applications [15]. Deep learning approaches have been strongly researched
in the recent years and offer good solutions to this problem [16, 17]. The majority of visual
SLAM algorithms [18, 19] however use a different method – describing features in a given
image using descriptors such as SURF, SIFT or ORB descriptors without the need of a
GPU, and then converting each image into a bag of visual words [20]. This bag-of-words
database is extremely fast to query for similar images, and usually the SLAM algorithms
keep the positions and descriptors of each image, so that when a word-level match is found,
they also compute a homography between the images using the features and see if they
reproject well between the images, often called geometrical verification.

There is only a handful of SLAM systems that do not use the paradigm of estimat-
ing a metrically accurate trajectory and landmark positions. The most noteworthy are
those using different variants of continuous attractor networks, inspired by the cells of
the hippocamal-entorhinal system, described more in subsection 2.3.1. A detailed survey
of these systems is available in [21], but the most influential one is RatSLAM [22, 23].
RatSLAM takes heavy inspiration from biological cognitive maps, using a pose cell attrac-
tor network instead of traditional odometry. They describe spaces through a ”local view
network” that injects activity into the pose cell network. The authors demonstrate a re-
markable loop closing ability of this method on the KITTI dataset, and the ability of a

8 Chapter 2. Artificial versus Biological - A Navigation and Mapping Survey

system using RatSLAM to navigate repeatedly in an office environment. One disadvantage
of that system, however, is that in it too, wrong loop closures can lead to the map being
deformed, and lead to navigation failures.

2.2.2 Open Questions in SLAM relevant to Navigation

SLAM is usually the backbone of many real-world mobile robot applications [24,
25] and we rely on it for building other higher-level spatial representations such as for
occupancy [26] or semantics [27]. Most of the above mentioned approaches work quite well
in enabling mobile robots to navigate environments in short-term missions. However, there
are still many open problems, which need to be addressed if we want to have systems that
can navigate as reliably and effortlessly as humans or fruit bats described in section 1.2.

The authors of the survey [9] in 2016 have already covered the open questions in
SLAM, the vast majority of which are still relevant today [28]. Thus, we analyze the
following open problems related to navigation specifically:

� Handling SLAM failure – Nearly all navigation software stacks make one very
strong assumption – that SLAM works. If SLAM loses tracking (in case of LiDAR
odometry, for example in a smooth corridor) or performs a wrong loop closure, such
systems break down completely (e.g. the robot will explore an area forever, thinking
it is always a new part of the environment, or crash into obstacles due to map
misalignment). We hypothesize that this is the main reason why reliable vision-based
navigation systems are still not commonplace in the world, because in visual SLAM
especially, it is very easy to lose tracking due to fast motions, textureless areas, low
illumination and other problems. For LIDAR-based SLAM, some recent approaches
[29] model environment degeneracy and can avoid such breakdown situations to some
extent, but there is still much more work to be done, especially in vision.

� When to gather more information and when to act on the most likely
hypothesis? – This is a question important to answer in any kind of action systems
where there is perceptual aliasing in the environment, which happens very often in
the real world. Active SLAM methods [30] are a modern class of methods that deal
precisely with that question in the context of creating a good map. Most notable is
ARAS [31], where the authors present a system which explicitly models ambiguity
and actively revisits mapped areas to reduce possible hypotheses. For the context of
navigating, we can take inspiration from such methods, and the methods we design
for this problem will be shaped by the specific navigation task at hand.

� Scalable Spatial Representations – The navigation of bats through both 100km
wide areas and tight cave systems is still unthinkable today, as there is no existing
system that could navigate both such large scale and small scale environments. For
that, we need spatial representations that can adapt well to widely different scales and

2.3. Navigation and Cognitive Maps in Mammals 9

describe space in a compact and actionable way, as the authors of [9] put it. A point
cloud or a voxel occupancy grid is almost certainly an unsuitable way to describe
the entire world for the purpose of navigation. In our previous work [26], we have
made a small contribution in this direction, by describing free space with spheres,
so that tight spaces are described with a high density of spatial elements (spheres)
and large open areas can be described with a few spheres, and the representation
does not suffer from the many problems of grids. It remains an open question worth
pursuing how to give the navigation systems the ability to describe space efficiently
for navigation. Additionally, scalability in time – i.e. handling large-scale maps over
many sessions and doing computations such as detecting changes between sessions –
is also still not solved.

� Using semantic knowledge in navigation – Humans use semantic knowledge
when navigating, along with episodic knowledge and maps [32]. For example, one
can detect that some patch of ground is muddy and avoid it, or know that a door
is a door, and thus it can be opened to reach some area. Such knowledge is usually
hardcoded into the spatial perception and planning systems for each such chunk of
semantic knowledge. It remains a very difficult question how such knowledge could be
used in navigation, for example for clustering of large parts of space, so that robots
can for example describe a forest not as a multiple-gigabyte point-cloud, but as for
example ”a forest with approx. such density, of approx. circular shape, with notable
large-scale ridges and hills here and here” or ”a room with many books relative to
other rooms”. Modern spatial perception systems [27] for example label all surfaces
with their labels given by a visual semantic segmentation system, but how to use such
knowledge remains largely unexplored. Additionally, in [27], the authors propose a
way of clustering space in real time into rooms, hallways, floors and buildings, which
can definitely be a useful method of abstraction for fast high-level planning. However,
the way these abstractions are constructed is hard-coded, while animals and humans
seem to create these spatial clusterings very flexibly both in physical space and in
conceptual spaces as well [33]. It is thus another interesting problem how to engineer
these efficient abstractions, and a more difficult question, how could such efficient
abstractions be created autonomously without needing to be hard-coded.

2.3 Navigation and Cognitive Maps in Mammals

As we discussed in section 1.2, animals possess remarkable navigational capabilities.
In the recent decades, researchers have provided high amounts of insight into the behavior
of regions in mammalian brains (mostly of rodents and bats navigating in small arenas, but
recently also of long-range flying bats [1, 2, 34]) related to navigation and spatial reasoning.

The most important of these regions is the hippocamal-entorhinal system (HES)
[CITE-HES OVERVIEW], found to function similarly in mammals such as humans, mon-

10Chapter 2. Artificial versus Biological - A Navigation and Mapping Survey

keys, bats, and rats. In brief, it consists of the hippocampus, entorhinal cortex and sur-
rounding regions, and damage to this part of the brain results in severe deficiencies in
navigation and memory abilities. In humans, the importance of this region to memory-
related functions was best documented thanks to the patient known as H.M [35],

2.3.1 HES Cells Identified for Spatial Cognition

The most commonly investigated cells in the HES related to spatial cognition are
the place cells, grid cells, border cells and head direction cells, illustrated in Figure 2.1. In
this section, we briefly explain these cells’ behaviors and discuss the current understanding
of their interactions and significance to spatial navigation, and also mention other cells
encoding spatiotemporal concepts in the HES.

Figure 2.1: The primary entorhinal cell types for spatial cognition found in the HES, found
both in bats and in rats. Source: [2]

Place Cells

In 1971, place cells were discovered in rat’s hippocampi [36], which served as a key
piece of evidence towards confirming Tolman’s hypothesis that the hippocampus may serve
for construction of a cognitive map [8]. A place cell is a neuron that fires only in a specific
area of an environment, called a place field of that particular neuron. These firing fields
can vary in size, and any particular place cells can also fire in other places in different
environments, but in one given environment, it always fires in the same place. In some
situations, they are heading-agnostic (meaning that they fire regardless of which way the
rodent is oriented), mostly in open areas, but in some situations, they are heading-specific,

2.3. Navigation and Cognitive Maps in Mammals 11

meaning that the cell fires only if the rodent is in a given place and aligned in some
direction, which mostly happens in long corridors, where it is important for navigation to
know which direction the rodent is coming from.

Grid Cells

Another major discovery was that of grid cells in 2005 [37]. A grid cell is a neuron in
the entorhinal cortex that fires in a regular triangular pattern across the entire environment,
best described by the firing field in Figure 2.1. Rodents have many of these cells, each with
a slightly different offset and scale. If you imagine many of these hexagonal patterns with
different offsets and scale for each cell, and know which of the cells are firing at a given
time, then by seeing the overlaps of the active cells, you could determine where in the
environment a rodent is located. Thus, it is mostly agreed that the main purpose of grid
cells is that they are somehow important in path integration and provide a coordinate
system for rodents (and of bats, even though in bats, a firing field does not form one
perfect grid, but is composed of many smaller grids [38]). They are interlinked with place
cells and head-direction cells, and continue to fire even in total darkness, which likely means
that rodents are integrating their self-motion sensory inputs, as a robot might do using
wheel encoders. As with place cells, the firing field of a grid cell remaps when entering a
topologically distinct part of the environment, e.g. going through a doorway, but is stable
inside any given environment.

Border Cells

In 2005, border cells (also known as boundary vector cells) were discovered [39]. A
given border cell fires when there is an environmental boundary at a specific distance and
direction from the animal, and as with the place and grid cells, an animal usually has
many of them with different direction and distance sensitivities. Border cells are sensitive
to boundaries that prohibit motion – walls, cliffs alike, but not for example to colored lines
on the ground.

Head-direction Cells

A head-direction cell is a neuron find in multiple brain areas, which fires when the
animal’s head is pointing in a specific direction, not relative to the body, but relative to the
environment, similar to a compass. They continue firing even in total darkness, suggesting
that their firing is determined by a combination of self-motion integration and of visual
cues.

12Chapter 2. Artificial versus Biological - A Navigation and Mapping Survey

Other Important Cells of HES and their Interplay

The above mentioned cells have been studied the most in existing literature, but the
way they affect one another and form their firing fields is not yet fully understood, even
though many models that describe their behavior to some extent have been proposed. We
will now mention a few more cells (there are many more) to illustrate how many varied
types of cells have been discovered so far, which will be important for the concluding point
in subsection 2.4.3.

Object vector cells [40] are a fascinating type of cell that fires when an object is present
near the rodent, and each cell has a firing field relative to the rodent’s position, regardless of
the rodent’s orientation, suggesting that the objects are anchored to the rodent’s cognitive
map. Interestingly, when an object is removed, another type of cell fires with the same
place field as a corresponding object vector cell, and these cells are called trace cells. These
fire for a vast array of objects, suggesting that the animal represents the presence of any
distinct object relative to the environment. Such representation of general object presence
or removal could be useful to a wide array of behaviors that the rodent might need to
perform. This is mentioned due to the fact that many artificial intelligence systems, which
deal with object detection or object-based tasks, do not detect presence of any object but
rather specific objects (e.g. YOLO [41] which is popular in robotics [24]). Thus, it could
be useful, for example for reinforcement-learning models, to have preprocessing modules
that provide separate representations of an object (even if unidentifiable) being present at
a location and the type of the object.

Lastly, in bats, when a bat is observing the flight of another bat, cells representing the
location of another bat in the environment have been identified [42], which suggests that
bats, being social animals, are predicting the trajectory of one another. Such representation
can be useful for many types of social interactions.

2.4 Opportunities for HES-Inspired Mapping, Navi-

gation and Intelligence

The cells described in subsection 2.3.1 are just a small part of existing neuroscience
research, and there is much more that could serve as inspiration to robotics and artificial
intelligence research. In this section, we attempt to find some take-home messages from
the research surveyed in this thesis and propose ideas that work well in biology and might
be worth exploring more in robotics and artificial intelligence research.

2.4.1 Geometry or Visual Appearance as Stable Descriptors?

A mostly unexplored idea in visual navigation systems is using large-scale spatial
geometry for place recognition instead of visual apperance. Yes, indeed, the method of

2.4. Opportunities for HES-Inspired Mapping, Navigation and Intelligence13

geometric verification is commonplace in place recognition systems, but that usually means
reprojecting visually distinct features between images and seeing if they reproject near
other features given some putative transformation between images. To the author’s best
knowledge, current vision systems do not utilize information about a more general shape
of the environment as might be the case with 3D scan matching, often used in place
recognition in LiDAR-based systems.

In biology, there is significant evidence that animals utilize the overall geometry of
an environment to reorient and might not use information about textures at all. The most
prominent experiment is [43] where researchers were putting a rodent into a rectangular
box, and putting food in one of two opposing corners. Of course, if the walls were the
same, and the animal was rotated randomly, it had a 50% chance of going into the correct
corner to get the food. But strikingly, if one of the shorter walls was painted with a pattern
and the food was always put to the corner left of the pattern, the rodent still continued to
randomly pick one of the corners, so it did not use the information about the patterned wall
at all. In the same study, human babies were found to perform the same inefficient search
behavior as the mature rats, not using the non-geometric cues until the age of approx. 21
months.

A possible hypothesis as to why geometry is so important is that large-scale spatial
geometry is stable. Intuitively, and with evidence from neuroscience [44], the larger an
object or contour is, the more stable it usually is, and thus it is more useful and trusted as
a landmark. For example, for large-scale navigation, even if a person is lost while hiking
in for example a valley or mountain range, they can always walk for some time to gauge
the shape of the valleys and mountains around them to reorient and navigate.

An interesting direction to research is thus finding ways of encoding and using this
large-scale geometry, likely from time sequences rather than single camera or LiDAR mea-
surements, to enable more efficient and reliable place recognition. The closest research to
this is the iterative closest point (ICP) algorithm [45, 46] or newer scan-matching algo-
rithms [47], which are often used in LiDAR-based SLAM. Another reasonable step in this
direction is adapting these scan-matching algorithms to maps built on vision-based sys-
tems. A possible reason this has not been done is that most Visual SLAM systems build
sparse maps, which are not very suitable for scan matching algorithms.

2.4.2 Multiple Maps and Reference Frames

The firing fields of the cells mentioned in subsection 2.3.1 are not globally stable.
They remap in different environments or parts of the environment. This strongly suggests
that mammals do not describe the world by one metrically accurate map in
a single coordinate frame, but instead they construct (and potentially reuse) smaller
submaps, where the metrically accurate SLAM problem is computationally easier to solve.
The authors of [48] go into detail of this phenomenon, make arguments about the potential
reasons of such fragmentation and demonstrate on a robot in 2D with a LiDAR how such

14Chapter 2. Artificial versus Biological - A Navigation and Mapping Survey

fragmentation can speed up path planning times. We find this phenomenon as a strong
argument towards building and matching submaps instead of having one big map when
constructing spatial navigation systems and build the system described in chapter 4 based
on this idea.

2.4.3 Task-Specific Cognitive Maps and Higher Level Cognition

With the immense amount of discoveries of cells that encode different spatial concepts
in HES, researchers are proposing interesting theories of how exactly the HES might be a
crucial element in not just spatial map making, but also higher level cognition and abstract
space reasoning. For detailed summaries of evidence and existing research in exploring this
idea, we refer the reader to the section on the HES in [49] and the final section of [50]. We
will now briefly summarize the arguments in these works, which have also been discussed
in recent talks from researchers working at the neuroscience-AI intersection.

The most striking point seems to be that there has been recent evidence that the
cells of HES do not encode only physical space, but abstract spaces as well. For example
in [51], authors found signals similar to grid-cell signals in humans in a task where they
had to make decisions about pictures of birds whose shapes were encoded by 2 variables –
their neck length and legs length. The researchers found signals that correlate with these
2 dimensions, and they found them in the area related to spatial navigation. Theories
that try to explain this kind of reasoning are proposed for example in [52]. In addition,
in the area which houses place and grid cells, researchers have discovered many other cell
types, which encode abstract, nonspatial contexts relevant to a particular given task – e.g.
splitter cells [53, 54] which encode whether the rat is on an even or odd experiment when
the researchers switched the food’s location between two places on each experiment, time
cells [55] which represent time when the task requires the rat to track time, or frequency
cells [56], which describe chunks of frequencies similarly to place cells and were found to
emerge in a task where rodents have to push levers to move the frequency coming from a
speaker up or down so that it matches a previously heard frequency. This suggests that the
HES is capable of building different types of cognitive maps that efficiently and flexibly
encode important contexts and their relationships relevant to any given task.

In this line of research, several models have been developed in which there is emer-
gence of cells that encode space and time similarly as cells in the HES, which is important
because the emergence of such cells in biological systems is not yet fully understood. The
most notable is the Tolman-Eichenbaum Machine (TEM) [57]. It is also very important
to note that TEM is mathematically equivalent to the currently very popular transformer
network [58].

We conclude this chapter by proposing that this navigation-and-mapping-based view
of artificial intelligence might be very interesting to explore given the recent advances of
SLAM, autonomous systems, artificial intelligence and cognitive science research. This is
of course entirely outside the scope of a master’s thesis, and thus the rest of this thesis

2.4. Opportunities for HES-Inspired Mapping, Navigation and Intelligence15

is focused more on implementing the insights described in subsection 2.4.2 and subsec-
tion 2.4.1.

16Chapter 2. Artificial versus Biological - A Navigation and Mapping Survey

Chapter 3

Simulating and Benchmarking
Vision-based Navigation in Extreme
Environments

Contents
3.1 Why another Simulator? . 17

3.2 HARDNAV Simulator Description 18

3.3 Proposed Benchmarking of Robust Navigation 25

3.4 Comparison with other Simulators 27

3.5 Discussion and Future Work . 29

3.1 Why another Simulator?

To test navigation holistically, one needs to evaluate the result of a system acting
upon an environment, not just to passively process datasets. To evaluate robustness or
reliability, one needs to test the system in multiple sessions under many different condi-
tions, e.g. lighting conditions, environment object, appearance or topology changes. It is,
however, virtually impossible to create repeatable conditions for such multi-session navi-
gation experiments in the real world, and thus a simulator is the logical choice for such
evaluations. For this reason, we constructed and open-sourced the HARDNAV 1 simulator.
We have presented this simulator at a poster session of a workshop at IROS2023 2 and
currently, it is being used 3 by at least one PhD student at CTU for researching visual

1https://github.com/MrTomzor/navigation unity testbed
2https://mrs.felk.cvut.cz/hardnav
3https://github.com/Zdeeno/vtr-sim-ws

https://github.com/MrTomzor/navigation_unity_testbed
https://mrs.felk.cvut.cz/hardnav
https://github.com/Zdeeno/vtr-sim-ws

18
Chapter 3. Simulating and Benchmarking Vision-based Navigation in

Extreme Environments

teach-and-repeat navigation.

There are many simulators available for robotics research, but most of them are
strongly specialized for a particular domain (e.g. for cars only [59], for UAVs only [60] indoor
environments only [61] etc.) and often are difficult to modify for other domains/tasks.
Furthermore, in most of them, it would be difficult to set up systems for automatically
resetting the simulated worlds to configurations defined by a particular benchmark and
evaluating the reaching of goals specified by the benchmark.

For these reasons, we formulated a new method of benchmarking multi-session visual
navigation and constructed a simulator that supports such benchmarking. The simulator
allows user-friendly world state modification and resetting through a ROS service call (or,
in the future, through an AI Gym interface), and also features minimalistic general-purpose
robotics infrastructure, so that any robots or world behaviors can be easily added into the
simulator.

3.2 HARDNAV Simulator Description

3.2.1 Unity Engine for Robotics Simulation

The core of HARDNAV is the Unity game engine, which offers physics, rendering and
a GUI called the Unity Editor for editing scenes and objects in them. As of now, Unity is
free of charge for users who earn less than some arguably high amount of money from their
use of Unity, and has been used for many robotics projects in the past [60]. HARDNAV itself
is then an open-source collection of Unity scripts, worlds, release builds, and accompanying
ROS packages for connecting Unity and ROS, and for the robust navigation benchmarks.
Users can interact with HARDNAV either by downloading a compiled build (which allows
customizing the world through the world config service described in subsection 3.2.3) or by
opening the project in the Unity Editor, which allows full modification of worlds, robots
etc.

To briefly introduce how Unity is used - each Unity project is made up of scenes and
GameObjects within them. Each GameObject has a position and rotation in the world,
and can contain any number of Component instances. A Component is for example a
mesh rendering component, collider component, rigidbody component, or a user-defined
component specified by a C# file. For example, to implement a simple velocity controller,
a user would create a new C# file in the project’s filesystem and attach an instance of
it to the objects they want to move. They would define parameters such as movement
force as variables which can be modified in the GUI for each component’s instance, and
then write the calls for reading user keyboard input and applying forces to a rigidbody
component based on the input into the FixedUpdate() function in the script, which gets
automatically called on every physics update of the engine. This is the main structuring
of Unity projects. Note that there are no explicit game-related definitions, because Unity

3.2. HARDNAV Simulator Description 19

Figure 3.1: An illustration of the possible changes in the environmental conditions, mod-
ifiable through calling the World Config ROS service described in subsection 3.2.3. Note
that in the upper image, the sun is shining very bright and reflecting on the water. In
the second image, fog and rain are turned on, sunlight is limited and the large wall and
mountain in the back are nearly invisible. Also notice how in the second image, the trees
and bushes are bending to the right due to the simulated wind.

20
Chapter 3. Simulating and Benchmarking Vision-based Navigation in

Extreme Environments

is more of a ”sandbox” than only a game engine compared to its main competitor, Unreal
engine, which for example has an explicitly defined ”Player” object at all times in each
scene, and in that regard, one may argue that Unity is more suitable for robotics simulation
purposes.

Unity itself offers many great features as a game engine, and the Unity development
team has released several official packages that link Unity and Robot Operating System
(ROS), and even a package for machine learning agents which turns any Unity scene into
an AI Gym environment. There is also an immense amount of game development tutorials
for Unity on the internet, so it is very easy to implement features seen often in games,
such as visual effects, particle effects or world generation into Unity by following those
tutorials. This is, for example, how we implemented rain, moving water and Compared
to this, traditional robotics simulators such as Gazebo do not have such wide community
support.

Here are the following main packages provided by Unity that we used in constructing
the simulator:

� ROS-Unity Connection – is facilitated through the Unity Robotics 4 package on
the side of Unity After importing this package in Unity, users can write functionality
for ROS subscribers, publishers an messages with virtually the same syntax as in
C++ or Python ROS nodes. From Unity, data is sent outside of the Unity process
through TCP. This is the main bottleneck in data transfer, but as we demonstrate
later, it is sufficiently fast for our purposes. On the other side, the communication
is handled by the ROS TCP-Connector node, also provided by the Unity team. All
subscribers, publishers and services are then registered under the TCP connector
node under topics specified in Unity. This integration is quite easy to work with and
even allows even custom message types.

� URDF Importer Package – Another great package provided by the Unity team
allows importing any robot specified in the popular Universal Robot Description
Format (URDF) into Unity. As with the Robotics package, users install this inside
Unity, copy their URDF into the project’s filesystem, click a button, and the package
constructs an array of GameObjects corresponding to robot links in the URDF, with
matching physical, visual and collision properties. One disadvantage is that this is
not usable on runtime, so when a user wants to add a new robot, they need to open
the project in the editor and import their robot with the package. Additionally, the
importer package does not support any sensors, because there are no standardized
sensor implementations in Unity. Thus, we needed to add the camera and IMU sensor
scripts to the robot GameObject manually, but this only needs about 5 minutes of
drag-and-dropping the sensor scripts onto the object and setting up the ROS topic
names.

4https://github.com/Unity-Technologies/Unity-Robotics-Hub

https://github.com/Unity-Technologies/Unity-Robotics-Hub

3.2. HARDNAV Simulator Description 21

� Terrain Simulation and Sculpting – To truly test robots in a variety of scenarios,
it would be beneficial to have a way of easily crafting large-scale terrains with different
textures, trees, rocks etc. Fortunately, this need is shared in game development, and
the Unity Editor has built-in tools for that. Specifically, Unity allows users to sculpt
terrain meshes, select tree types, how they are randomized and rendered at different
distances (which dramatically speeds up rendering and allows simulation of enormous
worlds), and paint trees, vegetation and textures onto the terrain mesh. The Terrain
engine also supports wind simulation, meaning that trees and vegetation sway in the
wind with different direction and intensity, which could certainly break some spatial
perception methods. All the worlds in the simulator were created using these tools
in just a few hours.

� NavMesh Navigation for Dynamic Objects – Pathfinding and moving agents
towards some goal is a universally needed feature in game development. Unity has
built-in packages for constructing, even during runtime, navigation meshes. Thus,
one can easily implement for example pedestrians or other ”distracting” robots that
move around the world intelligently, by just specifying several parameters and calling
a single function that makes the NavAgent component navigate a GameObject to a
given location on the navmesh.

� Asset Store and Free Assets – The last feature we want to mention is Unity’s
asset store. It is not a unique thing, the Unreal engine has one too, and Gazebo has its
own library of plugins, but it is important to mention. There are thousands of assets
that are free of charge on the asset store and importing them is very simple and well
documented. This gives researchers the ability to quickly add new scenes, textures or
models into their simulation setups (e.g. the humans package, One downside is that
the assets cannot legally be redistributed, and thus when someone clones a Unity
project, they need to redownload the assets from the asset store. For this reason,
HARDNAV is dependent on only three assets from the store - one for trees and
natural textures, one for metal textures and one for working with YAML files.

Despite Unity’s great features and support for robotics research, we encountered
several difficulties in using it for simulation, which were not documented anywhere, and
we needed to find solutions to them in other existing Unity projects:

� Time step control is primarily for games – Likely the hardest implementation
problem in this chapter was controlling Unity’s time steps. Unity has different update
loops (rendering, primary update and physics update, among others) and it is difficult
to force it to render images at a target rate. However, we have achieved this and the
simulator contains a script that overrides a camera object’s base functionality and
forces it to renderer at a fixed rate relative to Unity’s physics time. We chose to use
the physics time of Unity as the simulation time and that works reasonably well. With
these edits, the simulation of all sensor data is now synchronized, and the current
real-time-factor is visualized in the game screen when the simulator is running.

22
Chapter 3. Simulating and Benchmarking Vision-based Navigation in

Extreme Environments

� No standardized sensor implementations – Unity does not provide any imple-
mentation of a camera, IMU or any other sensor in its base robotics package. They
do have an example project with a C# script for simulating a 2D LiDAR, but noth-
ing else. Thus, to implement an IMU and a camera that would publish at a fixed
resolution and rate, we needed to implement our own scripts, in which we took in-
spiration from several different open-source Unity Robotics projects. We also made
several improvements to make the rendering and image data transfer more efficient.
There are other projects that also feature for example a 3D lidar or depth camera [60]
so in future work, these could be assimilated into HARDNAV too. For the purposes
of benchmarking robust visual navigation however, IMUs and cameras are sufficient
and biologically-mirrored sensors.

� Different coordinate systems and Transform publishing – One big inconve-
nience is that Unity uses a left-handed coordinate system where the ’y’ axis points up,
whereas in robotics and ROS a right-handed system with ’z’ pointing up is used. The
Robotics package does contain functions for converting between these systems but
has no documentation, and so to implement anything custom, we needed to guess the
functionality from the code of the package. The Unity packages also do not offer any
way of automatically publishing transforms as in Gazebo. Unity has a project with a
publisher of transforms between a robot imported through the URDF importer, but
not any two general GameObjects. Thus, for calibration, evaluation and debugging,
we wrote scripts for publishing a transform between any two objects and use it to
output ground truth pose and poses between robot sensors into ROS.

With all these difficulties handled, Unity works very well as a simulator. We hope
that this in-depth description of the simulator’s workings and the challenges identified in
working with Unity can help other researchers in expanding HARDNAV for their purposes
or building their own simulation environments.

3.2.2 Supported Robots, Sensors, Actuators

As of now, HARDNAV features two robots - a super-simplified underwater/space box
robot with disabled gravity and a Clearpath Husky robot, both shown in Figure 3.2. For
simplicity, and to focus on large-scale, long-term navigation, we created scripts in Unity
for ”perfect” velocity and force control, which are used on both the flying robot and the
Husky robot. These scripts have access to the robots’ true velocities in Unity. We believe
that controlling velocity is generally attainable in most robotic platforms, and thus it seems
like a reasonable place where to draw the simplification line, so that researchers can more
easily focus on perception and navigation. Unity does supports precise simulation of wheel
dynamics (after all, it is a game engine), and it is possible to implement many forms of
dynamics, so if anyone needs such features for their spatial navigation experiments, they
can spend the time to implement them.

3.2. HARDNAV Simulator Description 23

Figure 3.2: The two so-far implemented robots in HARDNAV — Left: Jackal robot with a
camera with the field of view visualized and IMU. Right: idealized gravity-disabled flying
robot with the same sensory setup. Both have a simple built-in velocity controller.

Both these robot types feature an IMU and a monocular pinhole camera, and their
parameters and publishing rates can be changed in the Unity Editor. Importantly, there
is no limit to the number of robots in the simulator. One can simply drag-and-drop the
blueprint of the robot from the project’s filesystem anywhere in the world, rewrite the
topic names and thus create an instance of one of the robots. In future work, we intend to
implement spawning and despawning robots and automatically through a ROS subscriber
or service server. One other student is also working on implementing UAVs of the Multi-
Robot Systems Group [62] into Unity and this will be merged into HARDNAV in the near
future.

3.2.3 World Configuration Resetting

In the simulator, we built a software pipeline that allows the user to change pre-
defined world states (such as enabling/disabling rain, dynamic objects, clouds, changing
ambient light intensity and angle, changing spawn pose of robot and robot type) through a
ROS service. The configuration is specified as a YAML file, and we provide an script that
loads a default world state from the file and calls the service to reset the world with that
config. The contents of the service message are simply the entire YAML file as a string,
which is parsed inside Unity.

3.2.4 Worlds, Objects, Textures and Extreme Conditions

The core idea behind the simulator is that by taking navigation ad absurdum, we
could find solutions that cover all corner cases where SLAM or exploration or navigation

24
Chapter 3. Simulating and Benchmarking Vision-based Navigation in

Extreme Environments

Figure 3.3: Left - The Station world custom-built for HARDNAV. This world was pur-
posefully designed to have many areas that are nearly identical, such as the grid-like pro-
tuberances in the central left part (inspired by silos or water treatment plants in the real
world). Not only does the environment look very similar at each crossroads in area environ-
ment, but this same environmental structure is also present in the bottom left portion of
the map. Top-Right - In this image, you can see the ”workspace” area with dynamically
moving robots that avoid the user-controlled robot, many crates (whose position can be
randomized through the world config service) and flickering light sources. This area is also
mirrored on the other side of the valley. Bottom-Right - Another view of the world, with
the world config tuned so that the lighting hue is red. Both of the two ”workspace” areas
are visible, alonng with the dust particles that are present in those areas. Additionally,
there are the large white flying dynamic objects above the surface - these are meant to be
moving ”airship-like” objects that shine strong spotlights onto the map, which will pose
difficulties to many static-world-assuming visual spatial intelligence methods.

3.3. Proposed Benchmarking of Robust Navigation 25

Figure 3.4: A top-down view of the ”Symmetric1” world in HARDNAV used for the submap
matching and exploration experiments in section 4.4 and section 4.6. The world has many
levels of symmetry. First, it is symmetric along the plane cutting it in the middle of the
image. Second, the 2 small rooms on the right and 2 on the left are completely identical.
We set the tiling of the ground texture so that pairwise, the small rooms have even the
same ground texture. It is designed primarily to test the limits of appearance-based and
small-scale (e.g. from a single LiDAR scan) geometry-based place recognition and to show
how our method is able to achieve place recognition using large-scale spatial geometry.

break down today. For this reason, we have implemented a wide array of objects, particle
effects, environmental behaviors and worlds that are designed specifically to break today’s
navigation systems. A full list of these features can be found in Table 3.1. One of the
worlds, desgined to be large-scale and highly ambiguous, and with dynamic objects in the
air and on the ground, is described in Figure 3.3.

Many even more exciting situations could be made possible thanks to using a game
engine – moving platforms such as ships or trains, completely abstract worlds made of
objects and visual effects that are not encountered in the real world, and perhaps even non-
euclidean worlds that humans can still navigate, as in the videogame ”Antichamber”, which
could lead us towards generalized navigation principles, as discussed in subsection 2.4.3.
This is set as future work.

3.3 Proposed Benchmarking of Robust Navigation

In our proposed method of evaluating navigation as a whole, we build on the work of
[63]. In [63], the authors define several possible task specification for evaluating navigation
capabilities of embodied agents. Our task can be categorized as ’area navigation’, as the
goal is always to reach a given area of arbitrary shape.

26
Chapter 3. Simulating and Benchmarking Vision-based Navigation in

Extreme Environments

Challenge Examples Expected negative effect on
SLAM, VPR and VBN

Visual corruption Dust particles, leaves, rain, motion blur, lens dirt, big
exposure changes

all of vision

Dynamic objects Ground and air robots randomly moving around envi-
ronment; grass and trees swaying in the wind, clouds

odometry drifting if many objects
nearby, faulty object-based place
recognition

Dynamic lights Flickering lights, fires, many light sources on dynamic
objects

purely visual odometry drifting due
to many outliers or perceived mo-
tion

Illumination and
visibility changes

Global directional light of varying intensity, color, an-
gle; fog of varying color and density

faulty visual place recognition,
odometry having low amount of
features

Small structural
change across
sessions

Object positions being randomized, trees falling down
between sessions

wrong place recognition, relocaliza-
tion

Drastic structural
change across
sessions

Passages being blocked, buildings being built, distant
landmarks disappearing, several meters of snow

wrong place recognition, relocaliza-
tion, teach-and-repeat navigation

Robot affecting
scene

Leaving footprints/tracks, moving objects on collision place recognition, relocalization

Featureless areas,
transparent objects

textureless corridors (lack of visual features), straight
smooth corridor/wide open area (depth features),
fences, window

odometry drift, depth estimation
failures in case of vision

Perceptual aliasing
/ self-similarity

Multiple areas having the same appearance -
appearance-based, topology-based or both. Medium in
Forest1, heavy in ScifiBase1

relocalization, loop closure

Scale variation Having both small areas (buildings, small corridors)
and comparably larger areas (forest, big rooms) in one
environment

fixed-resolution mapping/naviga-
tion

Large environment
scale

The environments are approx. 2km wide with robots
being approx. 1m wide

SLAM memory problems, difficulty
learning with deep learning methods

Table 3.1: The challenges for place recognition and navigation implemented (and planned,
in italics) in HARDNAV. The upper portion of the challenges in the table can all be
individually enabled or disabled in the session config YAML string for each session. The
lower half challenges are caused by the design of the individual environments and are thus
not toggleable.

We name our task definition as multi-session area navigation (MSAN). Because
navigation requires an agent interacting with an environment, a navigation task can be
tested only in the real world or in simulation [61], and thus the benchmark is tied to the
simulator or real-world environment used. A specific MSAN benchmark is defined by a
robot R, an environment E, a set of datasets D taken in E, and a set of trials T performed
in E. Because we intend to design very difficult benchmarks, we select the evaluated metric
as simply the percentage of successful trials.

Each dataset D is a sequence of sensory inputs at variable rates and a mapping A(t)
of each timestep to a set of area labels for all pre-defined areas that the robot is intersecting
with at time t. Pragmatically, we realize A(t) by using Unity’s built-in collider system —
we define areas as oriented bounding boxes in the Unity Editor (although more complicated
shapes are also possible) with unique labels, and in HARDNAV, we implement a script
that finds all intersecting areas at each timestep and publishes a ROS message containing
the corresponding labels. The labels are not meant to carry any semantic meaning, which

3.4. Comparison with other Simulators 27

differentiates our task from vision-language navigation [64]. In the real world, the label
setting can be implemented for example as a button that defines a new area in a given
radius around the robot’s current position when a person is driving the robot around a
work area.

Each trial is given by a world configuration WT (its implementation is discussed in
subsection 3.2.3), a target area label AT and a duration τT . In each trial, the simulated
world is reset to a state specified by WT , which also contains the robot type (should be
same across all trials) and robot pose. Then, the trial is marked as successful if the robot
arrives within the area AT and sends a ”area reached” signal within time τT . In other
words, the trial does not end when the robot reaches AT , but only when the robot sends
the signal or if the time runs out. If the robot does not send the ”area reached” signal in
time or if it sends it but is not within AT , the trial is unsuccessful.

Our reasoning for having the ”area reached” signal is inspired by the authors’ ar-
guments in [63]. For a wide array of tasks that we might want robots to perform and
which require them to be in a specific area (e.g. sowing seeds at a specific part of a field,
searching for objects in a given room, patrolling a given area), it can be too expensive or
even impossible to implement any infrastructure, such as RFID tags, that would inform a
robot that it has reached the target area This adds an interesting layer of difficulty, as the
robot needs to weigh searching the environment for more information against navigating
to the most likely location in the current session, which is a hard and still mostly unsolved
problem in robotics, as we discuss in subsection 2.2.2.

This task definition is quite general, and can encompass both small-scale, static-
environment navigation with no appearance changes between sessions to kilometer-scale
navigation trials with dynamic objects and heavy appearance change. Most of the software
for evaluating the benchmarks (the world configuration system, area definition and auto-
matic checking) is already in place, but the design of specific benchmark instances is out
of scope of this thesis and we leave it for future work.

3.4 Comparison with other Simulators

There are many robotics simulators available for development of spatial navigation,
so why construct a new one? Most of the popular simulators already allow changing envi-
ronmental conditions [59], [65].

The most traditional and commonly used, general purpose simulator for robotics is
the Gazebo simulator. Its main advantage is that it does not rely on any external physics or
rendering engine and is completely open-source. Additionally, the simulator runs as a ROS
node, and thus sensor data can be obtained from it directly as ROS messages. Compared
to this, simulators based on the Unity engine [59, 60] need to compress and send the sensor
data out of the simulator through a net socket, and then convert it to a ROS message which
slows down simulation time. However, Unity has been shown by the authors in [66] to have

28
Chapter 3. Simulating and Benchmarking Vision-based Navigation in

Extreme Environments

plentiful advantages over Gazebo, mainly the ability to render large-scale scenes. It is,
therefore, better suited for the purposes of benchmarking robust autonomy in large-scale,
changing and realistic environments.

Then there is the FlightMare Simulator [60] for UAVs, also based on the Unity engine.
This simulator is unique in the fact that it has a separate high-fidelity physics simulator
for UAV dynamics. This makes it very useful for reinforcement learning of UAV behavior
that can then be better transferred to the real world than if the Unity’s base physics engine
were used. However, it makes it specialized for UAVs, and thus not usable for simulating
navigation of varied robots in varied environments.

The most similar simulator to HARDNAV is the AirSim [65] simulator. AirSim offers
simulation of UAVs in outdoor environments with weather effects, and is extremely popular
among robotics researchers. It has been used to demonstrate AirSim is using the Unreal
game engine, which is the competing game engine to Unity. Same as Unity, Unreal features
an asset store, so developers can easily take premade assets (e.g. a hyperrealistic, hand-
crafted forest environment and its accompanying 3D models and textures). Its benefit over
Unity is definitely the rendering – Unreal has much more easily accessible photorealistic
rendering capabilities. Its downside compared to Unity is that Unreal is more of a game
engine than Unity, meaning that a large part of the UI in the editor and many structures
are organized specifically for game development (for example there must be a ”Player”
object in the scene). Unity is a game engine, but is more of a ”sandbox” than Unreal.
For this reason, we chose Unity as the base engine for HARDNAV. One other major issue
of AirSim is that in 2017, its development was taken over by Microsoft and is no longer
open-source. HARDNAV, compared to AirSim, is fully open-source, offers multiple robot
types (and simple tutorials that show how to import new robots), and is built on top of the
Unity engine which allows easier setup and modifications of worlds and interactive objects
and task-specific logic.

Another popular robotics simulator is CARLA [59], built on top of the Unreal engine.
This simulator offers large-scale environments, changing weather, but is only for cars.

In the machine learning community, there are also many simulators available for
embodied AI aresearch - for example Habitat [67] and RoboTHOR [61]. These are mostly
aimed on the task of ”vision-language navigation” in which deep learning models are trained
to perform tasks specified in human language [64]. The Habitat and RoboTHOR simulators
support changing the textures of objects and environmental surfaces, and they have been
used for research of vision-based navigation, for example navigation with damaged wheels
or cracked camera lens [68]. These simulators however only offer indoor environments and
not much in the terms of dynamic objects or lighting.

None of these simulators can be directly used or easily modified for benchmarking
robust navigation on varied robotic platforms in varied large-scale, realistic, dynamic en-
vironments in the way described in section 3.3. HARDNAV is thus different and it offers
ways of developing and testing robust general vision-based navigation. Furthermore, its
modular nature allows other simulation developers to easily take the scripts or prefabs for

3.5. Discussion and Future Work 29

things such as camera data publishing, organizing random ground and air objects, flickering
lights, closing gates etc., and copy them to their Unity robotics projects. Thus, it can also
help the robotics community by simply being another open-source project of Unity-based
robotics simulation, as not many such projects (more so well documented) are available.

3.5 Discussion and Future Work

In the future, we envision having many of these benchmarks available within the
simulator, so that anyone can download a dataset, a compiled build of the simulator, and
start solving these challenges using their vision-based autonomy systems. This could serve
as a new way to evaluate spatial intelligence systems (place recognition, SLAM, ...) in the
context of navigation, which passive dataset-based evaluation cannot do.

30
Chapter 3. Simulating and Benchmarking Vision-based Navigation in

Extreme Environments

Chapter 4

Multi-Map Visual-Inertial Navigation
and Exploration System

Contents
4.1 System Overview and Design Choices 31

4.2 SphereMap Builder . 33

4.3 Local Perception-Aware Navigation and Exploration 34

4.4 Large-Scale Geometry-Based Map Matching 35

4.5 Learning-Free Visual Inverse-Depth Estimator 36

4.6 Vision-based Exploration in HARDNAV 39

4.7 Vision-based Exploration in the Real World 41

4.8 Limitations and Future Work 43

4.1 System Overview and Design Choices

Navigating and mapping any environment with only a single camera and inertial
measurement unit (IMU) is a challenging task for many reasons. First, visual and visual-
inertial SLAM will inevitably accumulate large amounts of drift with respect to the starting
pose. Usually, this is corrected through place recognition methods that deform the pose
graph of the traveled trajectory. However, taking inspiration from the findings that animals
use many fragmented spatial maps, we attempt to move away from the notion of storing
and optimizing the poses of all spatial objects in a single coordinate frame.

For this reason, we decide that in our system, there is no one fixed frame
used in any way, the whole map is composed of submaps, some of which might

32 Chapter 4. Multi-Map Visual-Inertial Navigation and Exploration System

SphereMap
Construction

Active
Submap

Current
Map

Previous
Map

Map MatchingLocal Navigation
and Exploration

exploration
direction

submap
storing

Trajectory
Generation and

Following

target path predicted
trajectory

Robot Controller position/velocity
commands

goal submap in
previous map

Visual-Inertial
SLAM

IMU Camera

odometry

visible 3D points

OUR SYSTEM

ROBOT

Global Navigation

most likely transformation of
latest submap in current map

to previous map

Figure 4.1: Diagram of the designed system

have extremely noisy data, and all computations are using relative poses. This
has made the implementation problematic, as this opens many problems concerning data
association (such as ”How to decide that one submap is the same as another?” or ”When
to merge submaps?”), but we believe this difficulty must be embraced to enable systems
that do not break down due to erroneous loop closures, which is always a possibility, and
can navigate long-term in many sets of environments. This direction could hypothetically
also lead to more generalizable navigation principles, which could be applied to abstract
space mapping and navigation, as we discuss in subsection 2.4.3.

Furthermore, a large variety of motions (fast motions, pure rotations, etc.) can cause
visual and visual-inertial odometry to lose tracking of visual features (and on aerial sys-
tems, will force the robot to physically crash). To tackle this, we designed the planning
modules and methods so that local motion planning is odometry-aware, safety-
aware, sampling-based, replanned at a high rate and only uses a few of the
most recent submaps in which the odometry drift is negligible.

The system’s modules are illustrated in Figure 4.1 and the modules are described in
detail in the following sections. Implementation-wise, the system is written in python, uses
ROS, and runs in real time on a standard laptop computer. The ”Visual-Inertial SLAM”
and ”Trajectory Generation and Following” modules vary in implementation between our

4.2. SphereMap Builder 33

simulation and real-world variants of the system due to the properties of the used Tello
UAV platform, and are described in more detail in the following sections.

4.2 SphereMap Builder

The input of this module is odometry, a point-cloud specifying points and their
positions relative to the robot, and inverse depth covariance for each point. We assume the
points are estimated from a camera in the current implementation, but as the reader will
see, the map update function can easily be changed to use different field-of-vision models
than just for a camera.

The local map is composed of obstacle points, free space spheres and frontier points,
as visualized for example in Figure 4.7. This is a major extension of our previous work [26]
which relied on a preexisting occupancy grid built from LIDAR data. The main advan-
tage of this representation is that it can easily be deformed and scaled in different axes.
Furthermore, in search-based planning methods such as A*, planning speeds can be much
faster than using an occupancy grid (3 orders of magnitude in our previous work [26]), be-
cause the spheres can describe free space in fewer nodes than grids, and they also explicitly
encode obstacle distances at each sphere’s center, which is often important for planning.

The local map is updated at 10 Hz, and one update can be described thus: As in
FLAME [69], we first perform Delaunay triangulation on the input points, projected to the
camera’s image plane. In FLAME, the authors tear apart the triangles where the points
are too far from one another, but for simplicity, we do not do that. We then construct an
obstacle mesh Mo from the connected 3D points, and an FOV mesh Mfov from a point in
the camera’s position and points that form a convex hull of the points in projected in the
image plane. Together, they form a visible freespace mesh Mvis, which is watertight.

A fixed amount of points inside Mvis are sampled during each update, and we check
their distance to Mvis. If the potential free-space radius of a new sphere at a given point
is larger than some minimum radius rmin, we add it.

Updating existing spheres is trickier. Some previously added sphere might be seen
in the current frame only partially and thus be much closer to the current Mfov, and it
would not make sense to decrease its radius r because of that. Thus, for existing spheres
intersecting or inside Mvis, we compute the distances dfov from Mfov and do from Mo. If
max (do, dfov) < r, we increase the radius r to max (do, dfov) < r. If do < r, we decrease the
radius r to do, and delete it if do < rmin. To keep the number of the spheres not exploding
to infinity, we perform a check for redundancy whenever we update the radius of an existing
sphere or add a new sphere. The redundancy check is identical to the one in our previous
work [26].

Adding obstacle points to the map is simple – if some input 3D point is less than
rdetail away from any existing points in the map, it is added. Updating them robustly is
again slightly harder, because in our system, we assume that the depth estimates can be

34 Chapter 4. Multi-Map Visual-Inertial Navigation and Exploration System

very inaccurate. For the purpose of this thesis, we simply delete points that fall at least
some pre-defined distance into free space defined by the spheres.

We also update frontiers [70] (this can be turned off and is used only for planning)
as the boundary of free and unknown space – frontier points are simply sampled at the
edges of Mfov, added if not too close to other frontier or obstacle points, their normals
with respect to freespace are computed using distances to nearby spheres, and if they are
found to be inside existing spheres, they are deleted.

Taking inspiration from how fragmentation seems to play a very important role in
mammalian navigation and spatial cognition, as described in subsection 2.4.2, we do not
build one large map, but rather fragment the world into many submaps. As of now, the
fragmentation occurs whenever the UAV has traveled a pre-defined ”context” distance,
which is a weighted sum of traveled euclidean distance and integrated heading changes
(rotation around the gravity axes), which is tuned according to the severity of drift in the
used odometry.

When a map fragmentation occurs, a new map is initialized and the previous one is
stored into a long-term storage. Currently, this could pose some difficulties for the planning
module, but in future work, we intend to use close stored submaps, if they align with the
current submap and are not too old. This becomes largely more challenging if we consider
dynamic environments, where the robot should likely always look with its cameras in the
direction it is moving, but this is completely out of scope of this thesis.

4.3 Local Perception-Aware Navigation and Explo-

ration

For the action pipeline, we choose the standard approach of planning a path and then
sending it to some module that converts the path to a feasible trajectory and follows that
trajectory by giving lower-level control inputs to the robot. We chose path planning to be
sampling-based and we conceputally build on RRT* [71], first because of how easy it is
to modify the sampling strategy and rules for pruning or adding new nodes, and second,
because the quality of path founds corresponds to the time spent on pathfinding, which
is similar to path planning in biology. The action pipeline of course depends on the robot
used, and for the purposes of this thesis, we chose to work with a real-world Tello UAV
connected to the MRS system [62], and in simulation with the idealized velocity-controlled
flying robot described in subsection 3.2.2.

On both platforms, the pipeline can be described in short as follows: Whenever the
UAV has no target goal, we allow the planner to search for paths via RRT through free
space and away from obstacle points, with some user-defined minimal distance to the edge
of free space. We check the leaves of the RRT tree and allow selecting only the ones, in
which at least one frontier point would fall into the FOV of the robot. To not lose odometry,
we also only allow adding an RRT node if at least 3 obstacle points (which correspond to

4.4. Large-Scale Geometry-Based Map Matching 35

Figure 4.2: A visualization of the relative map transformation estimation described in sec-
tion 4.4. Red lines represent the most likely match between a given submap in the current
map (multi-colored submaps) to submaps in the previous map (yellow). One can see that
many of the red matches are wrong, but since we take the top 3 most similar submaps
as possible correspondences, the RANSAC algorithm is capable of converging to a correct
solution, visualized as the grey map transformed by the most likely transformation between
the maps. In both images, the algorithm is able to compute an approximately correct trans-
formation (surely useful for navigation) with 3 (left) and 5 (right) inlier correspondencies,
with inlier distance set to 15 meters. Grid cell size is 10 meters and the grid is at the same
height as the current map.

triangulated visual keypoints) are visible from that node. Additionally, we limit the rotation
per meter of translation, so that the robot does not perform purely rotating motions, which
can break visual SLAM. We then rank the RRT leaf nodes based on the cost of the path
found to them, and weigh path length and safety in the same way as in our previous work
[26]. We also allow directed exploration by adding the distance of the leaf position from
the robot’s current position in the exploration direction to the cost function.

When a goal is selected, the UAV then sends the path to it to a module that converts
the path into a trajectory and track that trajectory (on Tello, we use the trajectory genera-
tor of the MRS system and in HARDNAV, we implement a simple path follower that sends
velocity commands to the robot’s controller in Unity). Because the distance measurements
can be very noisy, we also check the predicted trajectory of the UAV, for whether it would
get too close to obstacles. If that happens, we trigger a replanning procedure.

4.4 Large-Scale Geometry-Based Map Matching

We designed this module as a proof-of-concept that even in vision-based systems
which have sever odometry drift and depth measurement uncertainty, it is possible to

36 Chapter 4. Multi-Map Visual-Inertial Navigation and Exploration System

extract rough environmental 3D geometry and match it between parts of the two maps for
place recognition. We intended to use a particle filter algorithm to obtain the most likely
place on the previous map from these outputs, then to plan a path from there to a target
submap in the old map, and to follow that path by setting the exploration direction of
the local navigation and exploration module described in section 4.3. Unfortunately, due
to time constraints, we did not manage this in a reliable manner, so we only showcase this
as a proof of concept of using large-scale geometry as an alternative, or even better – as
an addition to apperance-based place recognition.

Given a current map A and a previous map B, the map matching works as follows:
at a fixed rate, we select one random submap X ∈ A and a random submap Y ∈ B We
take up to N (tested with N = 4) adjacent submaps (because we do not use any submap-
submap association yet, these are the submaps that were explored before and after the
given submap, but when we do place association, we will use the associated maps as well).
The obstacle points from the adjacent submaps to X are all assimilated into one pointcloud
and the same is done for Y and its adjacent submaps. We then perform point-to-plane ICP
matching, initialized with random relative rotation, and slight random offset. We store
the result of the ICP matching, and set its inlier root mean square error (RMSE) as the
similarity score S(X, Y) and the resulting transformation.

This is done around 3 times per second and not computed in larger batches, because
the system needs to have other threads running to plan and build its current new submap.
Ideally, we should have some way of describing each submap by a vector descriptor and
then take distances of the descriptors in the feature space as S(X, Y), but we have not
encountered an applicable descriptor computation.

To compute an estimated transformation between two sets of submaps in A and B, we
essentially do the same thing as in classical homography computation between two camera
images. We establish correspondence of each submap X to another submap Y ′ in B at
random, but with choice probability proportional to the score S(X, Y ′) with some score
cutoff (currently we take only the 3 most similar submaps, but this can cause problems
in larger scenes). Then, we perform around 1000 iterations of selecting one X− > Y ′

correspondence, retrieving their transformation T , which is the candidate transformation,
project all submaps in A to B using T and with some pre-defined distance, determine
which correspondences are inliers or outliers. We then rank the hypotheses first by numer
of inliers, and when tied, take the one with the smallest summed inlier reprojection error.
An illustration of this matching can be seen in Figure 4.2.

4.5 Learning-Free Visual Inverse-Depth Estimator

Estimating distances using a monocular camera is a difficult task with extreme po-
tential for real-world applications, thanks to the low cost of cameras compared to RGB-D
or LiDAR sensors. With a single moving camera and without prior knowledge on object

4.5. Learning-Free Visual Inverse-Depth Estimator 37

Figure 4.3: A visualization of the matching described in section 4.4. The previous map is
yellow (up in left image, down in right image) and the multi-colored map is the current
map, with colors representing submaps. In the left image, the red lines signify the 3 most
likely matches, and blue lines are the other matches for each submap, with line width
signifying the match score. In that image, the matching is shown after stopping motion for
about 1 minute and letting the randomized ICP matching selection gather enough matches
between all possible pairs, and one can see that the correspondencies are corrrect. In the
right image, the first most likely match is visualized in red. The small room on the right-
hand side of the image is not yet matched to the second small room in the original map,
as this image is taken shortly after exploring the small room and the matches have not yet
converged.

38 Chapter 4. Multi-Map Visual-Inertial Navigation and Exploration System

Figure 4.4: The effect of using Bayesian filtering of feature inverse depth - disabled on the
left, enabled on the right. The map is a corridor on the left, with is completely smooth with
textured walls, which opens up to a large open area on the right side of each image. Green:
spheres of the single submap in this example, Red: map points Red arrows: OpenVINS
odometry used as the base for the triangulation, Blue arrows: purely monocular SLAM of
the FIRE module (see section 4.5), scaled to the OpenVINS odometry scale.

sizes, it is only possible to recover distances of features in space up to scale. Imagine seeing
a video from a UAV flying through a city – it is impossible to estimate from the camera
data alone, without any prior world information, whether the video is of a normal UAV
flying through a normal-size city, or from a tiny UAV flying through a small tabletop model
of a city.

Deep learning approaches have made progress in this regard, and some models are able
to estimate scaled depth by learning the objects and spatial relations in their datasets, for
example in [72]. However, theoretically, if a camera frame contains very unfamiliar objects
and environments, that approach will fail to give a reliable depth estimate. Models for
estimating unscaled depth also exist, and it would be interesting as future work to try
using them in combination with metric scale sensors (such as an IMU). However, for the
purpose of this thesis, we chose a different approach.

Because GPUs have high power requirements, are more expensive and can add weight
to robots, it is of particular utility for roboticists to use methods that do not require GPUs
to run in real time. For depth estimation, the authors of FLAME [69] presented a method
of estimating scaled depth from images and known camera positions. Their method track
visual keypoints in the camera data, which is similar to any other indirect visual SLAM
[18], but taking just the tracked points would result in a very sparse depth map, which
would not cover a large part of the visual field. In FLAME, the authors perform Delaunay
triangulation on the tracked features in 2D, and thus interpolate the depth between any 3
connected points, which gives a more rich depth estimate.

We have tried using OpenVINS [73] in combination with FLAME, but encountered

4.6. Vision-based Exploration in HARDNAV 39

an issue with FLAME, most likely cause is that the inverse depth updates of visual features
happens at every frame, even if the robot is stationary. Thus, if the robot is stationary for
a longer time, the inverse depth coming from FLAME gets corrupted after a few seconds.
Another option we considered was that OpenVINS, which estimates robot trajectory and
positions of SLAM points in space (with no loop closures), outputs its SLAM points in the
form of a pointcloud, so they could be used in a similar way as in FLAME. Unfortunately,
OpenVINS uses SLAM points only at very close ranges to the robot, and thus the range
sensing of this method is limited.

For both of these problems, we could engineer a workaround, but to learn about
depth estimation and visual SLAM, the author of this thesis has decided to implement a
custom pipeline similar to FLAME for inverse depth estimation (for benefits of using inverse
depth opposed to depth, see [74]). The pipeline is functionally very similar to FLAME —
it also requires odometry, but allows it to be noisy, which is the case for the Tello UAV
platform in the real-world experiments. As in FLAME, FIRE tracks visual keypoints,
performs some triangulation between keyframes, and fuses inverse depth measurements
in a Bayesian manner in the same way as the authors of FLAME. However, FLAME
makes the assumption that the odometry is very precise. In our system, we perform a
purely visual SLAM, by estimating the unscaled transformation between the current and
previous keyframe, and then scaling it so that the distance traveled in the purely monocular
FIRE SLAM matches the metric distance traveled according to the odometry, up to some
time in the past (approx. 5 seconds in the experiments.) Scaling the visual SLAM over
a large window of time allows us to deal with image-odometry delays and small-scale
odometry errors, as we demonstrate in the real-world experiments. The tracked 2D points
are projected to 3D based on their inverse depth estimate and given to the SphereMap
builder module in real-world experiments instead of the OpenVINS 3D points used in
simulation.

4.6 Vision-based Exploration in HARDNAV

The demonstration of mapping and exploration capabilities of our system in simula-
tion is rather simple compared to the real world experiment, and is depicted in Figure 4.6.
In this experiment, compared to the real world, we used OpenVINS as the main odometry
source, and the map is built using the triangulated points provided by OpenVINS, which
it uses internally for SLAM. In the terms of directed exploration, the system did what we
wanted it to do. Larger-scale area-specified exploration requires handling the drift induced
in the submaps, which is severe even in simulation and can be seen in Figure 4.5, which is
left for future work.

40 Chapter 4. Multi-Map Visual-Inertial Navigation and Exploration System

Figure 4.5: Visualization of drift encountered during a manual flight through the environ-
ment depicted in Figure 3.4 while running the mapping pipeline using OpenVINS. In this
example, we flew the robot to the rightmost end of the map, rotated it, and moved back
towards the middle of the map. One can see that the overall map is severely shifted relative
to the world’s layout.

4.7. Vision-based Exploration in the Real World 41

Figure 4.6: Visualization of the directed exploratint experiment on the flying robot in
HARDNAV, in the world visualized in Figure 3.4. The UAV system was iteratively plan-
ning next best views that should uncover some frontiers and reached them. We set the
exploration direction as left relative to the starting pose (in the direction of the red axis
of the global frame visualization in the bottom-right corner). The UAV explored, did not
crash into any walls, including the wall in the middle of the large room (center of the im-
age), and we ended the experiment when the UAV started oscillating between exploration
goals in the corner in the left part of the image, as that was the local maximum of that
exploration direction.

4.7 Vision-based Exploration in the Real World

For the real-world demonstration, we used the DJI Telo UAV platform, pictured in
Figure 4.7. The Tello UAV sends its camera data stream from its frontal camera and its
internal velocity measurements (computed onboard the UAV using DJI’s internal odometry
software that supposedly uses the UAV’s downward-facing camera and IMU) over WiFi to
a connected computer. On the computer (in the experiments a standard laptop), we use
an open-source MRS wrapper 1 that attaches the Tello API to the MRS UAV System [62]
and integrates the velocity measurements to provide odometry ROS messages. With the
image and odometry, we use our custom inverse depth estimator (see section section 4.5)
for triangulating points of environmental surfaces, which we normally get from OpenVINS
in simulation, as we weren’t able to get OpenVINS running with Tello data).

We ran several experiments at the Charles’ Square campus of CTU. In them, our

1https://github.com/ctu-mrs/mrs uav dji tello api

https://github.com/ctu-mrs/mrs_uav_dji_tello_api

42 Chapter 4. Multi-Map Visual-Inertial Navigation and Exploration System

goal was for the Tello to explore as far as possible, and we set the preferred exploration
direction to face forward from the origin of the latest submap, to simply ”explore forward
and avoid obstacles”. Many of them resulted in a crash or emergency landing due to the
problem we encountered that Tello requires relatively high amount of ambient lighting to
work, and will often give incorrect estimates or land unexpectedly or even refuse to take
off, and even at noon, there is not much light in the campus’s courtyard. A good example
of how bad the odometry is, can be seen in Figure 4.5.

We have achieved three experiments where the UAV flew more than approx. 10
meters by itself and the crash was a result of severe odometry failure. In the most notable
experiment, visualized in figure Figure 4.7, the UAV explored for roughly 30 meters forward,
dodged a large obstacle, and experienced a forced landing due to high control errors, likely
due to the odometry being noisy due to low illumination. In another experiment at the same
location, the system explored the obstacle from another side, but crashed in a tight spot,
most likely due to a combination of the odometry being incorrect and the MRS controller
not handling such errors For the experiments, we used the default control settings of the
MRS Tello wrapper, where the control is very ”floaty”, with large oscillations from the
target position, and this could also be tuned in future experiments. In the last notable
experiment, the UAV correctly detected obstacle points on two very thin threes, and thus
(arguably) correctly estimated obstacles and free space and only crashed, again, due to
high control errors triggering a safety landing. Videos from the experiments showcase the
system’s workings best, and are available at 2.

The scale of these experiments might not seem that impressive at first, as robotic
systems have achieved navigation of kilometer scales for example in the DARPA SubT
Challenge [25, 24, 75]. However, the reader should note that in SubT, the long-distance
navigating systems were equipped with LiDARs or global-shutter RGB or RGBD cam-
eras, and were built by teams counting dozens of engineers. The system presented in this
thesis achieves small-scale exploration and volumetric mapping on a flying robot with
only a single camera with variable image-to-odometry delays and very noisy
visual-inertial odometry, with no prior map, which, to the author’s best knowledge,
has not yet been explored in existing literature (see the 2023 survey [76] of vision-based
navigation methods for UAVs). From the related works that are the closest to our sys-
tem, in [77] the authors present a UAV system that performs monocular-inertial SLAM,
but makes assumption that the world is composed of 3D corners, lines and corridors, and
only demonstrate flights indoors, albeit longer ones. Our method makes no such spatial
structure assumptions. In newer approaches, many camera-based exploration systems also
utilize depth cameras [78], while our system has no depth camera sensors. Monocular (e.g.
[79]) and visual-inertial SLAM (e.g. [73]) have been researched for a long time, but not
many systems exist that can perform autonomous exploration, on a UAV, without depth
sensors.

2https://mrs.felk.cvut.cz/musil2024thesis

https://mrs.felk.cvut.cz/musil2024thesis

4.8. Limitations and Future Work 43

4.8 Limitations and Future Work

The system has many avenues for improvement of all the components — the planning,
collision avoidance, exploration logic, but most work remains to be done in connecting the
multi-session submap-to-submap place recognition back to the planning modules, so that
the system can navigate to a previously visited submap in a previous map. The local-map
navigation and map-to-map matching is in a working state as of now, but we have to leave
it for future work to connect them in a robust manner.

Other promising future work is to combine the geometry-based place recognition
with appearance-based place recognition. In this thesis, we purposefully did not use visual
appearance for matching at all, and instead used the shapes of the submaps, captur-
ing larger-scale geometry, as a proof of concept that it can be done. Combining it with
appearance-based methods could lead to place recognition systems, that would quickly
generate potential matches from apperance, and filter them out after seeing a larger part
of the environment, because matching geometry on its own requires a large portion of the
scene to be seen, but leads to few outliers after that, which is useful in visually ambiguous
environments.

44 Chapter 4. Multi-Map Visual-Inertial Navigation and Exploration System

Time = 30s, the UAV has
triangulated its first features
and initialized enough free

space to plan a path, after the
operators manually moved it
~3m from the liftoff position

Time = 56s, the UAV has
reached the first goal. It

measures the distance to the
chimney (marked as white
dots) and plans a path to
explore further behind the

chimney

Time = 84s, the UAV has
mapped more points on the

right-hand wall and the space
behind the chimney. Note the

small railing in front of it, which
the UAV will fly around in the

next displayed step.

Time = 140s, the UAV has
explored around the railing,

closer to the ground. It selects
the next viewpoint to the right,
but soon after this, the Tello

odometry becomes too noisy,
causing an emergency landing.

Figure 4.7: The main Tello UAV exploration experiment, described in section 4.7. Purple
points in camera picture: triangulated points at that given frame corresponding to white
map points with yellow depth covariance. Red points in map: accumulated 3D points. Gold
arrow in map: current exploration viewpoint. Purple points in map: frontier points.

Chapter 5

Conclusion

In this thesis we tackled 3 main tasks leading to a robust bio-inspired navigation
system using only a monocular camera with inertial measurements All parts of the thesis
assignment have been completed.

In chapter 2, we made an introductory-level summary of cognitive science research on
animal navigation and map-making, compared it to SLAM and identified the open prob-
lems that today’s SLAM-using vision-based robotic navigation systems struggle with, but
animals handle with ease. We also identified potential ways of taking inspiration from natu-
ral intelligence, which have not been replicated in embodied artificial intelligence research,
but seem worthy of doing so.

In chapter 3, we presented a new simulator dubbed HARDNAV, which we built as a
tool to help robotics researchers build robust systems that can be transferred well to the
real world with all of its often ignored difficulties. Additionally, we proposed a specific way
of evaluating navigation as a whole using the simulator, and provided software tools for
this type of evaluation. We have presented the simulator at a workshop of the IROS2023
conference, advertised it to researchers, and it is currently being used by one doctoral
student, that we know of, for researching visual teach-and-repeat navigation. We plan to
make a few more improvements, design several benchmarks of the proposed type, and then
submit a publication on the new simulator and benchmarks, in the following months.

In chapter 4, we presented a system that can build volumetric maps and navigate
in them using only a monocular camera and IMU on a flying robot, which is a mostly
unexplored area in literature. As of now, the system is capable of autonomously exploring
for approx. 100 meters on a simulated flying robot and approx. 30 meters in the real world
on an inexpensive UAV platform without crashing into obstacles. Its current main point of
failure is losing odometry tracking and this can be solved by improving the odometry-aware
planning, which is very rough at this stage. We introduced a module for matching large-
scale geometry of a set of submaps to submaps in another such map built in a previous
navigation session, but due to time constraints, we have not yet connected the output of

46 Chapter 5. Conclusion

this map matching to the local navigation module to navigate to areas seen in previous
maps. Despite its challenges, we plan to keep the submap-based structure of the system,
implement a prototype weak loop closing method similar to [22] and particle-filtering,
where the pose graph is not deformed by loop closing, and to submit a conference paper
on this system for IROS2024.

In conclusion, all of the thesis assignments have been completed and any of the three
main contributions of this thesis — the artificial and biological navigation survey, the new
challenging-scenario simulator and the submap-based visual-inertial navigation system can
be easily expanded upon to be ready for publication in robotics journals.

Bibliography

[1] A. Tsoar, R. Nathan, Y. Bartan, A. L. Vyssotski, G. dell’Omo, and N. Ulanovsky,
“Large-scale navigational map in a mammal,” Proceedings of the National Academy
of Sciences, vol. 108, pp. E718 – E724, 2011.

[2] M. Petrlik, P. Petráček, V. Krátký, T. Musil, Y. Stasinchuk, M. Vrba, T. Báča, D. Heřt,
M. Pecka, T. Svoboda, and M. Saska, “Uavs beneath the surface: Cooperative auton-
omy for subterranean search and rescue in darpa subt,” Field Robotics, vol. 3, no. 1,
p. 1–68, Jan. 2023.

[3] M. Geva-Sagiv, L. Las, Y. Yovel, and N. Ulanovsky, “Spatial cognition in bats and
rats: from sensory acquisition to multiscale maps and navigation,” Nature Reviews
Neuroscience, vol. 16, pp. 94–108, 2015.

[4] T. Báča, P. Štěpán, V. Spurný, D. Hert, R. Pěnička, M. Saska, J. Thomas, G. Loianno,
and V. Kumar, “Autonomous landing on a moving vehicle with an unmanned aerial
vehicle,” Journal of Field Robotics, vol. 36, 01 2019.

[5] T. Krajńık, J. Faigl, V. Vonasek, K. Košnar, M. Kulich, and L. Preucil, “Simple yet
stable bearing-only navigation,” Journal of Field Robotics, vol. 27, pp. 511 – 533, 09
2010.

[6] T. Krajńık, P. De Cristóforis, K. Kusumam, P. Neubert, and T. Duckett, “Image
features for visual teach-and-repeat navigation in changing environments,” Robotics
and Autonomous Systems, vol. 88, 11 2016.

[7] K. S. Chong and L. Kleeman, “Accurate odometry and error modelling for a mobile
robot,” Proceedings of International Conference on Robotics and Automation, vol. 4,
pp. 2783–2788 vol.4, 1997.

[8] D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial],” IEEE Robotics &
Automation Magazine, vol. 18, pp. 80–92, 2011.

[9] E. C. Tolman, “Cognitive maps in rats and men.” Psychological review, vol. 55 4, pp.
189–208, 1948.

48 Bibliography

[10] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. D. Reid, and
J. J. Leonard, “Past, present, and future of simultaneous localization and mapping:
Toward the robust-perception age,” IEEE Transactions on Robotics, vol. 32, pp. 1309–
1332, 2016.

[11] S. Thrun and M. Montemerlo, “The graph slam algorithm with applications to large-
scale mapping of urban structures,” The International Journal of Robotics Research,
vol. 25, pp. 403 – 429, 2006.

[12] S. Thrun, “Probabilistic robotics,” Commun. ACM, vol. 45, pp. 52–57, 2002.

[13] M. Kaess, A. Ranganathan, and F. Dellaert, “isam: Incremental smoothing and map-
ping,” IEEE Transactions on Robotics, vol. 24, pp. 1365–1378, 2008.

[14] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert, “isam2:
Incremental smoothing and mapping using the bayes tree,” The International Journal
of Robotics Research, vol. 31, pp. 216 – 235, 2012.

[15] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Trans-
actions of the ASME–Journal of Basic Engineering, vol. 82, no. Series D, pp. 35–45,
1960.

[16] S. Lowry, N. Sünderhauf, P. Newman, J. J. Leonard, D. Cox, P. Corke, and M. J.
Milford, “Visual place recognition: A survey,” IEEE Transactions on Robotics, vol. 32,
no. 1, pp. 1–19, 2016.

[17] R. Arandjelović, P. Gronát, A. Torii, T. Pajdla, and J. Sivic, “Netvlad: Cnn architec-
ture for weakly supervised place recognition,” 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 5297–5307, 2015.

[18] M. Dusmanu, I. Rocco, T. Pajdla, M. Pollefeys, J. Sivic, A. Torii, and T. Sattler,
“D2-net: A trainable cnn for joint description and detection of local features,” 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
8084–8093, 2019.

[19] C. Campos, R. Elvira, J. J. G. Rodr’iguez, J. M. M. Montiel, and J. D. Tardós,
“Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap
slam,” IEEE Transactions on Robotics, vol. 37, pp. 1874–1890, 2020.

[20] Y. Tian, Y. Chang, F. H. Arias, C. Nieto-Granda, J. P. How, and L. Carlone, “Kimera-
multi: Robust, distributed, dense metric-semantic slam for multi-robot systems,” IEEE
Transactions on Robotics, vol. 38, pp. 2022–2038, 2021.

[21] J. Sivic and A. Zisserman, “Video google: a text retrieval approach to object matching
in videos,” Proceedings Ninth IEEE International Conference on Computer Vision, pp.
1470–1477 vol.2, 2003.

Bibliography 49

[22] F. Yu, J. Shang, Y. Hu, and M. Milford, “Neuroslam: a brain-inspired slam system
for 3d environments,” Biological Cybernetics, vol. 113, pp. 515 – 545, 2019.

[23] M. Milford, G. Wyeth, and D. Prasser, “Ratslam: a hippocampal model for simulta-
neous localization and mapping,” in IEEE International Conference on Robotics and
Automation, 2004. Proceedings. ICRA ’04. 2004, vol. 1, 2004, pp. 403–408 Vol.1.

[24] M. Milford and G. F. Wyeth, “Mapping a suburb with a single camera using a biolog-
ically inspired slam system,” IEEE Transactions on Robotics, vol. 24, pp. 1038–1053,
2008.

[25] M. Tranzatto, M. Dharmadhikari, L. Bernreiter, M. Camurri, S. Khattak, F. Mas-
carich, P. Pfreundschuh, D. Wisth, S. Zimmermann, M. Kulkarni, V. Reijgwart,
B. Casseau, T. Homberger, P. D. Petris, L. Ott, W. Tubby, G. Waibel, H. Nguyen,
C. Cadena, R. Buchanan, L. Wellhausen, N. Khedekar, O. Andersson, L. Zhang,
T. Miki, T. Dang, M. Mattamala, M. Montenegro, K. Meyer, X. Wu, A. Briod, M. W.
Mueller, M. F. Fallon, R. Y. Siegwart, M. Hutter, and K. Alexis, “Team cerberus wins
the darpa subterranean challenge: Technical overview and lessons learned,” ArXiv,
vol. abs/2207.04914, 2022.

[26] T. Musil, M. Petrĺık, and M. Saska, “Spheremap: Dynamic multi-layer graph structure
for rapid safety-aware uav planning,” IEEE Robotics and Automation Letters, vol. 7,
pp. 11 007–11 014, 2022.

[27] N. Hughes, Y. Chang, and L. Carlone, “Hydra: A real-time spatial perception system
for 3d scene graph construction and optimization,” Robotics: Science and Systems
XVIII, 2022.

[28] K. Ebadi, L. Bernreiter, H. Biggie, G. Catt, Y. Chang, A. Chatterjee, C. Denniston, S.-
P. Deschênes, K. Harlow, S. Khattak, L. Nogueira, M. Palieri, P. Petráček, M. Petrĺık,
A. Reinke, V. Krátký, S. Zhao, A.-a. Agha-mohammadi, K. Alexis, and L. Carlone,
“Present and future of slam in extreme environments: The darpa subt challenge,”
IEEE Transactions on Robotics, vol. PP, pp. 1–20, 01 2023.

[29] K. Ebadi, M. Palieri, S. Wood, C. W. Padgett, and A. akbar Agha-mohammadi,
“Dare-slam: Degeneracy-aware and resilient loop closing in perceptually-degraded en-
vironments,” Journal of Intelligent & Robotic Systems, vol. 102, 2021.

[30] M. F. Ahmed, K. Masood, and V. H. J. Fremont, “Active slam: A review on last
decade,” Sensors (Basel, Switzerland), vol. 23, 2022.

[31] M. Hsiao, J. G. Mangelson, S. Suresh, C. H. Debrunner, and M. Kaess, “Aras:
Ambiguity-aware robust active slam based on multi-hypothesis state and map estima-
tions,” 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 5037–5044, 2020.

50 Bibliography

[32] M. T. Banich and R. J. Compton, Cognitive Neuroscience, 4th ed. Cambridge Uni-
versity Press, 2018.

[33] K. M. Lynch, “The image of the city,” 1960.

[34] T. Eliav, S. Maimon, J. Aljadeff, M. Tsodyks, G. Ginosar, L. Las, and N. Ulanovsky,
“Multiscale representation of very large environments in the hippocampus of flying
bats,” Science, vol. 372, 2021.

[35] L. R. Squire, “The legacy of patient h.m. for neuroscience,” Neuron, vol. 61, pp. 6–9,
2009.

[36] J. O’Keefe and L. Nadel, “The hippocampus as a cognitive map,” 1978.

[37] T. Hafting, M. Fyhn, S. Molden, M.-B. Moser, and E. I. Moser, “Microstructure of a
spatial map in the entorhinal cortex,” Nature, vol. 436, pp. 801–806, 2005.

[38] G. Ginosar, J. Aljadeff, Y. Burak, H. Sompolinsky, L. Las, and N. Ulanovsky, “Locally
ordered representation of 3d space in the entorhinal cortex,” Nature, vol. 596, pp. 404
– 409, 2021.

[39] C. Barry, C. Lever, R. M. A. Hayman, T. Hartley, S. Burton, J. O’Keefe, K. J. Jeffery,
and N. Burgess, “The boundary vector cell model of place cell firing and spatial
memory,” Reviews in the Neurosciences, vol. 17, pp. 71 – 98, 2006.

[40] Ø. A. Høydal, E. R. Skytøen, S. O. Andersson, M.-B. Moser, and E. I. Moser, “Object-
vector coding in the medial entorhinal cortex,” Nature, vol. 568, pp. 400 – 404, 2019.

[41] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 779–788, 2015.

[42] A. Forli and M. M. Yartsev, “Hippocampal representation during collective spatial
behaviour in bats,” Nature, vol. 621, pp. 796 – 803, 2023.

[43] L. Hermer and E. S. Spelke, “A geometric process for spatial reorientation in young
children,” Nature, vol. 370, pp. 57–59, 1994.

[44] R. M. Yoder, B. J. Clark, and J. S. Taube, “Origins of landmark encoding in the
brain,” Trends in Neurosciences, vol. 34, pp. 561–571, 2011.

[45] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting of two 3-d point
sets,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-9,
pp. 698–700, 1987.

[46] A. V. Segal, D. Hähnel, and S. Thrun, “Generalized-icp,” in Robotics: Science and
Systems, 2009.

Bibliography 51

[47] H. Yang, J. Shi, and L. Carlone, “Teaser: Fast and certifiable point cloud registration,”
IEEE Transactions on Robotics, vol. 37, pp. 314–333, 2020.

[48] M. Klukas, S. Sharma, Y. Du, T. Lozano-Perez, L. P. Kaelbling, and I. R. Fiete,
“Fragmented spatial maps from surprisal: State abstraction and efficient planning,”
bioRxiv, 2022.

[49] A. Safron, O. Çatal, and T. Verbelen, “Generalized simultaneous localization and map-
ping (g-slam) as unification framework for natural and artificial intelligences: towards
reverse engineering the hippocampal/entorhinal system and principles of high-level
cognition,” Frontiers in Systems Neuroscience, vol. 16, 2021.

[50] R. Epstein, E. Z. Patai, J. Julian, and H. Spiers, “The cognitive map in humans:
Spatial navigation and beyond,” Nature Neuroscience, vol. 20, pp. 1504–1513, 10 2017.

[51] A. O. Constantinescu, J. X. O’Reilly, and T. E. J. Behrens, “Organizing conceptual
knowledge in humans with a gridlike code,” Science, vol. 352, pp. 1464 – 1468, 2016.

[52] J. L. S. Bellmund, P. Gärdenfors, E. I. Moser, and C. F. Doeller, “Navigating cognition:
Spatial codes for human thinking,” Science, vol. 362, 2018.

[53] P. A. Dudchenko and E. R. Wood, “Splitter cells: Hippocampal place cells whose firing
is modulated by where the animal is going or where it has been,” in Derdikman, D.,
Knierim, J. (eds) Space,Time and Memory in the Hippocampal Formation. Springer,
Vienna, 2014.

[54] N. R. Kinsky, W. Mau, D. W. Sullivan, S. J. Levy, E. A. Ruesch, and M. E. Hasselmo,
“Trajectory-modulated hippocampal neurons persist throughout memory-guided nav-
igation,” Nature Communications, vol. 11, 2020.

[55] R. Cao, J. H. Bladon, S. J. Charczynski, M. E. Hasselmo, and M. W. Howard, “In-
ternally generated time in the rodent hippocampus is logarithmically compressed,”
eLife, vol. 11, p. e75353, oct 2022.

[56] D. Aronov, R. Nevers, and D. W. Tank, “Mapping of a non-spatial dimension by the
hippocampal/entorhinal circuit,” Nature, vol. 543, pp. 719 – 722, 2017.

[57] J. C. R. Whittington, T. H. Muller, S. Mark, G. Chen, C. Barry, N. Burgess, and
T. E. J. Behrens, “The tolman-eichenbaum machine: Unifying space and relational
memory through generalization in the hippocampal formation,” Cell, vol. 183, pp.
1249 – 1263.e23, 2019.

[58] A. Vaswani, N. M. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Neural Information Processing Sys-
tems, 2017.

52 Bibliography

[59] A. Dosovitskiy, G. Ros, F. Codevilla, A. M. López, and V. Koltun, “Carla: An open
urban driving simulator,” ArXiv, vol. abs/1711.03938, 2017.

[60] Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza, “Flightmare: A
flexible quadrotor simulator,” in Proceedings of the 2020 Conference on Robot Learn-
ing, 2021, pp. 1147–1157.

[61] M. Deitke, W. Han, A. Herrasti, A. Kembhavi, E. Kolve, R. Mottaghi, J. Salvador,
D. Schwenk, E. VanderBilt, M. Wallingford, L. Weihs, M. Yatskar, and A. Farhadi,
“Robothor: An open simulation-to-real embodied ai platform,” 2020 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 3161–3171, 2020.

[62] T. Baca, M. Petrlik, M. Vrba, V. Spurny, R. Penicka, D. Hert, and M. Saska, “The
mrs uav system: Pushing the frontiers of reproducible research, real-world deployment,
and education with autonomous unmanned aerial vehicles,” Journal of Intelligent &
Robotic Systems, vol. 102, no. 26, pp. 1–28, May 2021.

[63] P. Anderson, A. X. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta, V. Koltun,
J. Kosecka, J. Malik, R. Mottaghi, M. Savva, and A. R. Zamir, “On evaluation of
embodied navigation agents,” ArXiv, vol. abs/1807.06757, 2018.

[64] P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Sunderhauf, I. Reid, S. Gould,
and A. Hengel, “Vision-and-language navigation: Interpreting visually-grounded nav-
igation instructions in real environments,” 06 2018, pp. 3674–3683.

[65] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual and physical
simulation for autonomous vehicles,” in International Symposium on Field and Service
Robotics, 2017.

[66] J. Platt and K. Ricks, “Comparative analysis of ros-unity3d and ros-gazebo for mobile
ground robot simulation,” Journal of Intelligent & Robotic Systems, vol. 106, 12 2022.

[67] A. Szot, A. Clegg, E. Undersander, E. Wijmans, Y. Zhao, J. Turner, N. Maestre,
M. Mukadam, D. Chaplot, O. Maksymets, A. Gokaslan, V. Vondrus, S. Dharur,
F. Meier, W. Galuba, A. Chang, Z. Kira, V. Koltun, J. Malik, M. Savva, and D. Ba-
tra, “Habitat 2.0: Training home assistants to rearrange their habitat,” in Advances
in Neural Information Processing Systems (NeurIPS), 2021.

[68] P. Chattopadhyay, J. Hoffman, R. Mottaghi, and A. Kembhavi, “Robustnav: Towards
benchmarking robustness in embodied navigation,” 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 15 671–15 680, 2021.

[69] W. N. Greene and N. Roy, “Flame: Fast lightweight mesh estimation using variational
smoothing on delaunay graphs,” 2017 IEEE International Conference on Computer
Vision (ICCV), pp. 4696–4704, 2017.

Bibliography 53

[70] B. Yamauchi, “A frontier-based approach for autonomous exploration,” in Proceed-
ings 1997 IEEE International Symposium on Computational Intelligence in Robotics
and Automation CIRA’97. ’Towards New Computational Principles for Robotics and
Automation’, 1997, pp. 146–151.

[71] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path planning,” Tech.
Rep., 1998.

[72] A. Masoumian, H. A. Rashwan, J. Cristiano, M. S. Asif, and D. Puig, “Monocular
depth estimation using deep learning: A review,” Sensors, vol. 22, no. 14, 2022.

[73] P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. P. Huang, “Openvins: A re-
search platform for visual-inertial estimation,” 2020 IEEE International Conference
on Robotics and Automation (ICRA), pp. 4666–4672, 2020.

[74] J. Civera, A. J. Davison, and J. M. M. Montiel, “Inverse depth parametrization for
monocular slam,” IEEE Transactions on Robotics, vol. 24, pp. 932–945, 2008.

[75] T. Rouček, M. Pecka, P. Č́ıžek, T. Petř́ıček, J. Bayer, V. Šalanský, D. Heřt, M. Petrĺık,
T. Báča, V. Spurný, F. Pomerleau, V. Kubelka, J. Faigl, K. Zimmermann, M. Saska,
T. Svoboda, and T. Krajńık, “Darpa subterranean challenge: Multi-robotic explo-
ration of underground environments,” in Modelling and Simulation for Autonomous
Systems, 2019, pp. 274–290.

[76] M. Y. Arafat, M. M. Alam, and S. Moh, “Vision-based navigation techniques for
unmanned aerial vehicles: Review and challenges,” Drones, 2023.

[77] K. Çelik and A. K. Somani, “Monocular vision slam for indoor aerial vehicles,” 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1566–
1573, 2009.

[78] B. Zhou, Y. Zhang, X. Chen, and S. Shen, “Fuel: Fast uav exploration using incre-
mental frontier structure and hierarchical planning,” IEEE Robotics and Automation
Letters, vol. 6, no. 2, pp. 779–786, 2021.

[79] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “Monoslam: Real-time sin-
gle camera slam,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 29, no. 6, pp. 1052–1067, 2007.

54 Bibliography

Bibliography 55

	List of Figures
	List of Tables
	Introduction
	Motivation
	100km wide Cognitive Maps and Repeatable Navigation in Bats
	Contributions and Outline

	Artificial versus Biological - A Navigation and Mapping Survey
	Biological Navigation Types and their Robotic Counterparts
	Navigation and Mapping in Robots
	Simulatenous Localization and Mapping (SLAM)
	Open Questions in SLAM relevant to Navigation

	Navigation and Cognitive Maps in Mammals
	HES Cells Identified for Spatial Cognition

	Opportunities for HES-Inspired Mapping, Navigation and Intelligence
	Geometry or Visual Appearance as Stable Descriptors?
	Multiple Maps and Reference Frames
	Task-Specific Cognitive Maps and Higher Level Cognition

	Simulating and Benchmarking Vision-based Navigation in Extreme Environments
	Why another Simulator?
	HARDNAV Simulator Description
	Unity Engine for Robotics Simulation
	Supported Robots, Sensors, Actuators
	World Configuration Resetting
	Worlds, Objects, Textures and Extreme Conditions

	Proposed Benchmarking of Robust Navigation
	Comparison with other Simulators
	Discussion and Future Work

	Multi-Map Visual-Inertial Navigation and Exploration System
	System Overview and Design Choices
	SphereMap Builder
	Local Perception-Aware Navigation and Exploration
	Large-Scale Geometry-Based Map Matching
	Learning-Free Visual Inverse-Depth Estimator
	Vision-based Exploration in HARDNAV
	Vision-based Exploration in the Real World
	Limitations and Future Work

	Conclusion
	Bibliography

