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Abstract
This master’s thesis develops a novel
method for exploring unknown spaces
with a heterogeneous team of Unmanned
Aerial Vehicles (UAVs) of different sizes
and sensory equipment. It employs
frontier-based exploration with two task
allocation strategies: a greedy strategy
that assigns Points of Interest (POIs)
based on Euclidean distance and UAV pri-
ority and an optimization strategy that
solves a minimum cost flow problem. It
utilizes the SphereMap algorithm to assess
the accessibility of the POIs and generate
paths that account for obstacle distances.
It also employs the MRS SubT planning
library to implement collision avoidance
maneuvers among UAVs. The method
was validated through simulation testing
and real-world experiments that evalu-
ated the method’s performance onboard
the UAV. The results demonstrated the
method’s efficacy and applicability to real-
world deployment while indicating poten-
tial areas for future improvement.

Keywords: multi-robot exploration,
unmanned aerial vehicles, indoor
exploration, frontier-based exploration,
task allocation, planning

Supervisor: Ing. Václav Pritzl
ČVUT,
Resslova 307/9,
Praha 2

Abstrakt
Tato diplomová práce představuje novou
metodu pro exploraci neznámých prostorů
pomocí heterogenního týmu bezpilotních
letounů (UAVs). Využívá explorace zalo-
žené na navádění UAV k hranici mezi zná-
mým a neznámým prostředím s dvěma
strategiemi pro rozdělování cílů: hlado-
vým algoritmem, který vybírá body zájmu
(POIs) na základě euklidovské vzdálenosti
a priority UAV, a optimalizační strate-
gií, která formuluje problém toku s mi-
nimální cenou. K posouzení dostupnosti
bodů zájmu a generování tras, které zo-
hledňují vzdálenosti od překážek, je vy-
užíván SphereMap algoritmus. K imple-
mentaci manévrů na vyhýbání se srážkám
mezi UAVs pak slouží plánovací knihovna
MRS SubT Planner. Metoda byla ověřena
prostřednictvím simulačních testů a reál-
ných experimentů, které zhodnotily vý-
kon navržené metody na palubě UAV. Vý-
sledky demonstrovaly funkčnost metody
a odhalily potenciální oblasti pro zdoko-
nalení.

Klíčová slova: multirobotická explorace,
bezpilotní helikoptéry, explorace
vnitřních prostor, průzkum podél
hraničního prostoru, alokace úloh,
plánování

Překlad názvu: Multirobotická
explorace týmem heterogenních UAV
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Chapter 1
Introduction

Robotic exploration is the frontier of scientific discovery and innovation.
Environments deemed too dangerous, distant, or inaccessible for humans,
such as deep oceans, volcanoes, or caves, can be explored and mapped [1],
[2], [3]. Data gathering, experimentation, and the testing of technologies that
can advance our knowledge are made possible through the use of robots.

Unmanned Aerial Vehicles (UAVs) have opened up new opportunities for
exploration of a priori-unknown environment, surpassing the limitations of
traditional ground robotic systems. They have become very popular in the
last decade as they can be used for many real-world applications. Unlike
ground robots, these aerial vehicles can move fast over different terrains to
access many hard-to-reach spaces. However, navigating them through complex
environments demands a balance between accurate obstacle perception and the
weight and cost constraints imposed on UAVs. The integration of sophisticated
sensors to ensure precise perception becomes a challenge when faced with the
size, weight, and power limitations inherent in UAVs.

One possible solution is to use multi-UAV teams that can share information
and cooperate with each other. By distributing the sensing and computation
tasks among multiple UAVs, the individual requirements for each UAV can
be reduced, allowing for smaller, lighter, and cheaper platforms. Moreover,
multi-UAV teams can increase the robustness and reliability of the exploration
mission, as the failure of one UAV can be compensated by the others [4].

Heterogeneous UAV teams consist of UAVs with different types, roles, and
capabilities, each equipped with different sensors, actuators, and commu-
nication devices. The teams have the advantage of being able to handle
diverse challenges by leveraging different capabilities. By combining UAVs
with different sensory modes, endurance levels, and maneuvering skills, these
teams can better adapt to complex and dynamic environments.

An example of this approach is mapping indoor areas with narrow passages
and openings. A team consisting of a bigger UAV with precise sensors and
high computing capabilities and one or multiple smaller dependent UAVs
capable of fitting through narrow entrances at the cost of the quality of the
sensors can be useful in complex environments. The smaller UAVs can be sent
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1. Introduction .....................................
to scan places that are hard to reach, while the bigger UAV uses its hardware
to create global maps, synchronize the fleet, and guide the exploration. This
approach protects the more expensive UAV while the cheaper ones perform
riskier tasks.

However, heterogeneity in UAV teams also comes with challenges. Coor-
dinating different agents requires advanced algorithms and communication
protocols to ensure smooth collaboration. Furthermore, incorporating vari-
ous UAV platforms complicates system design, maintenance, and resource
allocation. These challenges require careful attention to balance the benefits
of heterogeneity with the overall effectiveness of the exploration mission.

This thesis aims to investigate the complexities of multi-UAV exploration,
focusing on the interactions within heterogeneous teams. The intentional vari-
ation of UAV capabilities within a team adds a new dimension to exploration
missions. Understanding the inherent advantages and disadvantages of such
teams is essential for evaluating the impact on system efficiency, adaptability,
and overall mission success.

1.1 Problem Statement

The primary challenge addressed in this thesis is an exploration of complex
environments, such as an indoor office space, through cooperative deployment
of multiple UAVs featuring different physical characteristics and sensory
capabilities. In this context, two UAVs are considered for exploration: a larger
primary Unmanned Aerial Vehicle (pUAV), equipped with high computation
power and 3D Light Detection and Ranging (LiDAR) sensor with substantial
range and high-precision data acquisition capabilities, and a comparatively
smaller secondary Unmanned Aerial Vehicle (sUAV), intentionally designed
to navigate through narrow spaces, although limited to a Red-Green-Blue-
Depth (RGBD) camera with considerably reduced Field of View (FOV)
and lower-quality mapping functionality. The UAVs are capable of mutual
communication over a wireless network, and the algorithms are designed
to run fully onboard the UAVs with no external computational resources
utilized.

The exploration framework builds upon several already existing components
which are not part of this work. These include the control algorithms that are
responsible for the flight behavior, mapping on both UAVs to generate local
maps, and the merging of these maps (conducted on pUAV), localization
systems determining UAVs’ positions, and the utilization of LiDAR data
on the pUAV to establish the relative localization of the sUAV. The next
chapter provides a more detailed overview of these algorithms.

The goal is to optimize the collaborative efforts of these two UAVs to
explore and map a priori-unknown environment where physical constraints
and differing sensory inputs impact their exploration capabilities. This can
be divided into a few key components:

2



................................... 1.2. State of the art..1. Selecting Point of Interest (POI) - the challenge of selecting relevant
points within the environment to guide the UAVs’ exploration efforts...2. Accessibility Problem - the consideration of accessibility constraints,
particularly indoors with confined spaces, ensuring that the selected
points are reachable...3. Task Allocation - the problem of distributing specific exploration tasks
among the UAVs efficiently to maximize exploration coverage...4. Planning - path planning strategies for the UAVs to navigate from their
current location to the selected points of interest...5. Obstacle Avoidance - the UAVs must safely navigate around static
obstacles like walls and furniture, as well as dynamically moving objects
(other UAVs).

1.2 State of the art

The exploration by multi-UAV systems has been a subject of significant
research, focusing on developing efficient and effective strategies for UAVs to
navigate and map unknown environments. In [5], a comprehensive overview
of the applications and the next steps in using multiple UAVs is provided,
pointing out the advancements and challenges in the field. This section will
focus only on different approaches in exploration strategies and tasks using
multi-UAV teams.

1.2.1 Exploration Strategies

In this part, a review of the existing methods and techniques for robotic
exploration is provided, and their advantages and disadvantages are discussed.
The focus is on two main categories of methods: sampling-based and frontier-
based. Sampling-based methods use probabilistic models to generate and
evaluate candidate viewpoints. In contrast, frontier-based methods work with
geometric information to identify and reach the borders between known and
unknown regions. We will also examine how various methods can combine or
enhance these methods.

Sampling-based exploration methods have been widely used in robotic
exploration. The idea is to sample candidate viewpoints and evaluate their
information gain to advance the exploration. These approaches are linked
with the Next-Best-View (NBV) approach [6] focused on selecting informative
views based on the spatial context. In [7], the authors introduced the NBV
idea in 3D space by using Rapidly Exploring Random Tree (RRT) and
selecting the most informative branch. Subsequently, the research [8] improves
the approach by implementing RRT*. Furthermore, the rising popularity of

3



1. Introduction .....................................
machine learning inspired [9], which proposes to learn an informed distribution
of views based on the spatial context.

Identifying frontiers, the boundaries between known and unknown areas,
is a common strategy. Robots aim to move toward these frontiers to gather
information about unexplored regions. This approach was initially proposed
in [10] for single-robot exploration and a year later in [11] for multi-robot
scenarios. Even though this method depends on accurate mapping to detect
the boundaries, it provides easy identification of unexplored areas and efficient
information gathering. Popular approaches to searching for frontiers are the
Wavefront Frontier Detector (WFD), a graph-search-based algorithm, and
the Fast Frontier Detector (FFD), which process only the newly acquired
laser data [12]. The main advantage of these algorithms is that they do not
process the entire map data. In [13], both of these methods are compared
and innovations are proposed to WFD that take advantage of the properties
of FFD.

Another challenge of the frontier detection-based algorithm is selecting the
goal from the set of frontiers that is the best for the mission objective. Com-
mon approaches include clustering frontiers based on distance and selecting
relevant points from these clusters. In [14], K-means clustering is used to
represent the found borders by only a few points, and the goal is selected
from these points based on Euclidean distance and number of frontiers in
the cluster. The authors of [15] have proposed a frontier-selection method
designed specifically for high-speed flight. For that, the algorithm prioritizes
POI in the UAV’s FOV. In [16] and [17], computing information gain was
proposed to evaluate the possible goals.

The combination of sampling-based and frontier-based approaches aims to
reduce computational complexity by targeted sampling around the detected
frontiers [18], [19], [20].

1.2.2 Task Allocation Strategies

A key challenge in multi-robot exploration is to assign tasks effectively so
that each robot can explore different areas without interference. A common
solution is using a central server that communicates with all robots and
distributes tasks. Thanks to its low computational complexity, one of the
basic methods popular to this day is the greedy approach [21], which selects
goals for UAVs based on distance and information gain. However, this
approach does not ensure effective coordination of the robot system. The
segmentation method [22] addresses this issue by sending robots to different
parts of the explored area using a Voronoi graph. Advanced methods like
reinforcement learning can also help the system’s coordination [23].

Task allocation can be seen as a combinatorial optimization problem. The
authors of [24] propose multiple Traveling Salesman Problem (TSP) formula-
tion for a predefined set of goals. For unknown space exploration, the goals
are not usually known beforehand. Other methods from the combinatorial
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................................... 1.2. State of the art

optimization field, such as the Hungarian method [25] or reduction to a flow
problem [26], are used to solve this situation. These approaches depend on a
central unit and reliable communication, which may cause problems when
exploring large areas of complex environments where communication can be
obstructed.

In contrast, decentralized multi-robot systems are composed of robots that
can coordinate their actions without relying on a central controller or a global
communication network. This makes them more robust and scalable than
centralized systems, especially in dynamic and uncertain environments. The
concept was introduced in [27], where robots share map information and
navigate toward the closest frontiers. This, however, can result in multiple
robots moving to the same area. Also, it heavily relies on communication.
Various methods have been proposed to address these challenges, such as
auction-based mechanisms [28], potential fields [29], and a decentralized
Monte Carlo tree search method [30]. These methods aim to achieve a high
level of coordination among robots while minimizing the communication
overhead and the computational complexity.

1.2.3 Multi-robot Systems

The research of systems for exploration using legged, wheeled, and flying
robots is supported by competitions, such as Defense Advanced Research
Projects Agency (DARPA) Subterranean Challenge (SubT Challenge) [3],
[31], [32], [33], [34]. These papers focus on various multi-robot systems and
their application in underground environments with very limited communi-
cation. In [31], an approach of a centralized multi-robot system that allows
long-term autonomy of the individual robots is proposed. The research is
centered around using various legged and flying robots, whereas in [34], the
authors focus on the advantages of the use of both range and vision-sensing
modalities.

Communication with a central controller can be problematic in complex
environments. The research [35] proposes an exploration approach for a
decentralized multi-UAV fleet. With space decomposition, it ensures simulta-
neous exploration of distinct regions, using only limited and asynchronous
communication. Unreliable communication and limited battery life are the
motivations in [4]. This work also proposes a decentralized approach but
introduces the possibility of sacrificing part of the team for information gain.

This thesis focuses on a centralized heterogeneous multi-UAV team with
different sizes and sensor quality. The decision-making and planning pro-
cesses are executed on board one of the UAV with no available external
computational device.

To the best of the author’s knowledge, the implementation of a cooperative
exploration approach that delegates motion planning to another UAV has
not occurred within a UAV-only team, apart from previous work done by
the Multi-robot Systems group (MRS group) [36] and [37]. Deploying such
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1. Introduction .....................................
a strategy onboard UAVs poses challenges due to size, weight, and power
limitations. However, it offers many advantages, such as distributing multiple
sensors throughout the system and exploring diverse environments unsuitable
for ground robots and where communication with external computational
resources is unavailable.

1.3 Outline

Motivation for this thesis is described in Chapter 1, along with problem
definition and overview of related work.

Chapter 2 describes the used multi-UAV system. Section 2.1 goes over
the hardware specification of both UAVs. The software pipeline, used in
simulation and real-life experiments, is outlined in Section 2.2.

In Chapter 3, the approach for unknown space exploration using the de-
scribed system is proposed. Section 3.1 describes a frontier-based exploration
strategy, including selecting POI. The solution for the accessibility problem,
using a SphereMap representation, is explained in Section 3.1.2. Section 3.1.3
provides information about two implemented task allocation strategies. Path
planning using various planners is described in Section 3.2, and Section 3.3
proposes a collision avoidance algorithm.

Chapter 4 contains verification and tests of the algorithms’ performance
in simulations, including indoor office space and a 3D model of a real-world
warehouse. Section 4.2 provides data from real-world experiments executed
in the warehouse.

Finally, Chapter 5 provides a summary of the algorithms proposed in this
thesis and the results.

1.4 Mathematical Notation

Vectors are denoted with bold lowercase letters, matrices with bold uppercase
italic letters, and frames of reference with uppercase upright letters. Sets and
sequences are detonated by uppercase calligraphic letters. The transformation
matrix describing the transition from frame A to frame B is represented as
B
AT ∈ SE(3). Let Ax ∈ R3 be a 3D position vector in frame A, and let APB

be a sequence of UAV reference poses (Axi,
Aϕi), with position Axi ∈ R3 and

heading/yaw orientation Aϕi ∈ [−π, π], for UAV B in reference frame A.

6



Chapter 2
Description of the System

This chapter provides an overview of the hardware and software used for the
UAVs. It covers technological elements and setups essential for this work.

2.1 Hardware

This part goes through the main hardware specifications for pUAV and sUAV
visualized in Figures 2.1a and 2.1b. The detailed description of the UAV
platform is available in [38] and [39].

The low-level control of both UAVs is performed by the Pixhawk 4 Flight
Controller, which includes a built-in Inertial Measurement Unit (IMU) with
an accelerometer, a gyroscope, a magnetometer, and a barometer.

2.1.1 Primary UAV

The primary UAV employed in this research project is built upon the Holybro
X500 frame, offering structural integrity and support for the onboard hardware.
With dimensions of 0.7 by 0.7 meters, including the propellers, it can still
safely navigate through larger indoor spaces, such as open-space offices or
warehouses. Its computational core features the Intel NUC 10iFNH onboard
computer with the processing power of the Intel i7-10710U CPU with six
cores and 16 GB of RAM. This computer is also equipped with a Wi-Fi
module vital for data exchange.

The sensory capabilities are primarily provided by the Ouster OS0-128
Rev D 3D LiDAR. This sensor offers 360◦ horizontal and 90◦ vertical FOV,
and with 1024x128 resolution and a maximum range of 50 meters, it enables
precise data capture, detailed mapping, and obstacle detection. Operating at
a rate of 10 Hz, this LiDAR provides a consistent and real-time data stream.
Exact specifications of the LiDAR can be found at 1.

1https://data.ouster.io/downloads/datasheets/datasheet-revd-v2p4-os0.pdf
(accessed November 2023)
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2. Description of the System ...............................

(a) : Primary UAV (b) : Secondary UAV

Figure 2.1: Used UAV platforms

2.1.2 Secondary UAV

The smaller UAV is constructed around the DJI F330 frame, providing a
lightweight structure. It has compact physical dimensions, including the
propellers, measuring approximately 0.45 by 0.45 meters. This design ensures
that the UAV is agile enough to easily navigate through standard doorways
and confined indoor spaces. It is equipped with an Intel Core i7-10710U CPU,
a capable processor with six cores, complemented by 16 GB of RAM. This
hardware configuration provides adequate computing resources for real-time
data processing.

Additionally, the UAV is equipped with a tracking camera, the RealSense
T2652, and a depth camera, the RealSense D4353. The RealSense T265
compact camera includes two fisheye lens sensors with 173◦ diagonal FOV, an
IMU, and an Intel Movidius Myriad 2 VPU. It contains the sensors needed
to track sUAV’s location and orientation by Visual Inertial Odometry (VIO)
algorithms. The RealSense D435 is a stereo-depth camera that uses stereo
vision to calculate depth. It includes a pair of infrared (IR) sensors with
87◦ × 58◦ FOV, a Red-Green-Blue (RGB) sensor with 69◦ × 42◦ FOV, and
an IR projector.

2.2 Software

This section provides an overview of a multi-UAV software pipeline, shown
in Figure 2.2 as a high-level diagram.

The software operating on both UAVs is designed to offer a robust and
adaptable framework for achieving the mission objective. The software
stack is based on the Ubuntu 20.04 operating system with Robot Operating

2https://www.intelrealsense.com/wp-content/uploads/2019/09/Intel_
RealSense_Tracking_Camera_Datasheet_Rev004_release.pdf?_ga=2.242768065.
257479683.1698752765-1326342669.1698335160 (accessed November 2023)

3https://www.intelrealsense.com/depth-camera-d435/ (accessed November 2023)
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Figure 2.2: Diagram of the multi-UAV software pipeline

System (ROS) 1 Noetic4 as a middleware for development. The UAVs run on
Multi-robot Systems Group UAV system (MRS UAV system)5, which can be
effectively employed onboard the UAVs, and the system time of the onboard
PCs of the UAVs is synchronized over the wireless network.

One of the main attributes of the MRS UAV system is the easy transition
between simulation and real-world environments, enabling both safe experi-
mentation and reliable real-world deployment. The system also integrates
many functionalities, including control mechanisms, pose estimation, mapping,
and planning. Detailed information can be found in [40].

Before deployment on the real UAVs, the Gazebo robotic simulator6 was
used. As an open-source 3D simulator, it enables testing and optimizing
exploration strategies, sensor configurations, and algorithms in a controlled,
risk-free environment.

2.2.1 Control Pipeline

The system shown in Figure 2.3 represents the control pipeline executed on
board the UAVs. It was developed by the MRS group and is described in
[40], [41] and [42] in detail. This work provides only a short overview of the
used components.

The trajectory generation algorithm is based on polynomial trajectory plan-
ning described in [43] and [44], with some changes to fit the MRS UAV system.

4http://wiki.ros.org/noetic (accessed November 2023)
5https://github.com/ctu-mrs/mrs_uav_system (accessed November 2023)
6https://gazebosim.org/home (accessed November 2023)
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Figure 2.3: Diagram of the control pipeline

It takes the desired path defined by Cartesian coordinates r = [x, y, z]T and
returns a time-parametrized trajectory that satisfies the existing dynamical
constraints of the UAVs and minimizes the path’s completion time.

Using the Model predictive control (MPC)-based tracker as the reference
tracker, originally published in [42], the system takes in a desired trajectory,
comprised of a series of waypoints with a fixed time step ∆t. Each point is
defined by its Cartesian coordinates rD = [xD, yD, zD]T and the preferred
UAV yaw orientation ϕD. The tracker produces a smooth and feasible
trajectory, maintaining a consistent sampling step. This trajectory includes
velocities and accelerations at each point, considering the UAV’s translational
dynamics and the constraints imposed on both inputs and states.

The SE(3) controller, as described in [45], operates as a nonlinear state
feedback controller. It takes in a trajectory defined by specific positions xD,
yaw angles ϕD, linear velocities ẋD, angular velocities ϕ̇D, linear accelerations
ẍD, and angular accelerations ϕ̈D, along with the current UAV state. The
output comprises the desired UAV attitude and total thrust, subsequently
transmitted to the attitude controller.

The Pixhawk 4 Flight Control unit is equipped with an embedded attitude
controller that takes in the desired UAV orientation R and desired total
thrust TD. The controller then generates commands for the electronic speed
controllers controlling the motors to gain the specified attitude.

The UAV hardware block represents configurations specified in Section 2.1.

2.2.2 Primary UAV

The pUAV’s software pipeline, visualized in Figure 2.2, starts by odome-
try computation and self-localization using Simultaneous Localization And
Mapping (SLAM) algorithm LiDAR Odometry and Mapping (LOAM) [46],
specifically Advanced implementation of LOAM (A-LOAM)7. It takes LiDAR
point cloud data and returns position PxP and orientation PϕP in pUAV
SLAM frame P.

The pUAV’s odometry, and LiDAR data are then processed by the MRS
Octomap Server8, which, using the OctoMap [47] approach, produces a local

7https://github.com/ctu-mrs/aloam (accessed December 2023)
8https://github.com/ctu-mrs/mrs_octomap_server (accessed December 2023)
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occupancy map PMP . To optimize computational efficiency, the map PMP

focuses on a constrained region of the environment, centered at the current
position of the pUAV.

The relative localization provides accurate transformation S
PT from the

frame P to the sUAV VIO frame S. It is composed of multiple actions. First,
the sUAV is identified within LiDAR point cloud data in frame P, based on
prior work on autonomous interception of intruder UAVs [48], [49]. Then, the
LiDAR-based detections of the sUAV PxS are fused with the sUAV VIO pose
(SxS , SϕS) received over a wireless network [36]. Such an approach allows
precise guidance of sUAV by more capable pUAV [37].

The map merger algorithm creates a global occupancy map GM in a
common global frame G, using the transformations S

PT , G
PT , local occupancy

map PMP produced by pUAV’s mapping algorithm, and local occupancy
map SMS , received over a wireless network from sUAV. This map keeps
all the information throughout the exploration and is used for high-level
planning.

The high-level planning and decision-making algorithms, the main objects
of this thesis, work in the global frame G. Without loss of generality, we set
the global frame G to be equivalent to the pUAV SLAM frame P. This means
that transformation G

PT is an identity matrix, and (PxP , PϕP ) = (GxP , GϕP )
for the specific case of a single LiDAR-equipped pUAV cooperating with a
single camera-equipped sUAV. For better clarity, the superscript G, denoting
the global frame, is omitted in the description of the algorithms unless its
usage is necessary to prevent ambiguity.

2.2.3 Secondary UAV

Mapping and localization of the sUAV is executed by processing data from the
two RealSense sensors. The OpenVINS algorithm [50] offers a state-of-the-art,
filter-based, VIO. It takes the camera images and IMU data provided by the
RealSense T265 and computes pose in sUAV VIO frame S.

The RealSense D435 provides depth information, which is, with odometry
from OpenVINS, sent to the occupancy mapping module, which creates local
occupancy map SMS .

The map SMS , and pose (SxS , SϕS) are sent to the pUAV. The sUAV
receives path SPS for the control pipeline.
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Chapter 3
Multi-UAV Exploration Framework

The exploration algorithm runs on board the pUAV and coordinates the
behavior of the entire UAV team. The algorithm itself consists of the following
submodules, each running in parallel in a separate thread:..1. Selecting POIs - The first thread focuses on identifying POIs. A

frontier detection algorithm identifies unexplored regions. The system
also assigns goals to individual UAVs, based on the goal’s accessibility
and distance, optimizing the distribution of exploration efforts across
the fleet...2. Path planning - The second thread handles the planning of paths
to already selected POIs. It identifies UAVs completing their current
task and requiring a new path. This ensures effective and continuous
exploration of the unknown space...3. Collision avoidance - The third thread addresses the crucial aspect of
collision avoidance among UAVs. This algorithm continuously monitors
the spatial dynamics of the two UAVs and employs safety measures if
needed.

The implementation is written in C++, using the ROS. It offers a config-
uration file to allow prompt adjustments to environmental conditions and
mission requirements. Through this, operators can fine-tune numerous pa-
rameters without program recompilation. It enables, for example, to specify
UAVs’ dimensions, define the exploration area, or set minimal safety distance
between the UAVs.

It is assumed that all poses (x, ϕ), paths P , and other variables dependent
on a specific frame without a prefix are in global frame G, for example,
P = GP.

13



3. Multi-UAV Exploration Framework ...........................
3.1 Selecting Points of Interest (POIs)

There are multiple ways to approach the exploration of unknown space.
This work focuses on frontier-based exploration but implements various task
allocation methods. They were selected from the state-of-the-art approaches
with respect to time complexity and efficiency. Low computational cost is
critical so the software can easily run onboard UAVs.

3.1.1 Frontier Detection

As mentioned in section 2.2.2, the explored space is represented by an Oc-
toMap, enabling simple detection of frontiers. The nodes without any children,
called leaf nodes, are the only candidates for frontiers. In Algorithm 1, let L
represent the set of all the leaf nodes l from global OctoMap M. The map
M can be divided into two subsets: the set of free nodes Mfree and the set
of occupied nodes Mocc, therefore

M =Mfree ∪Mocc (3.1)

Let Munk represent nodes whose state is currently unknown and are not
part of the map M.

The exploration can be limited to a particular area by creating a virtual
border. It is defined in the configuration file and represents the maximum
distance of UAVs from pUAV’s initial position for each axis separately. The
set B contains all the (x, y, z) coordinates that are inside the exploration area.
If no border is defined, B is equal to the whole 3D space.

A leaf node l is declared frontier if it is not occupied, is inside B, is not
inside a set of already visited points V , and has at least one unknown neighbor.
The frontiers are divided into clusters f based on their mutual Euclidean
distance, meaning that frontiers close to each other are put in the same group
to reduce computational requirements. The set of all the frontier clusters
is defined by F . Finally, the POIs are selected from these clusters f by
computing the centroid m of individual groups and finding the closest frontier
voxel v ∈ f to the cluster’s centroid m.

In the case of a very complex environment, it is beneficial to draw random
samples from the clusters to add POIs. Number of samples from each group
depends on its size. The number of samples is calculated as

k = α · length(f) (3.2)

where α is a parameter defined by the user.

3.1.2 Accessibility Problem

The accessibility problem in multi-robot exploration of unknown spaces is a
crucial aspect of ensuring the safety of drone operations. In complex 3D envi-
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........................... 3.1. Selecting Points of Interest (POIs)

Algorithm 1: Selecting POIs
Input: set of leaf nodes L, visited points V, set of free map nodes

Mfree, unknown space Mukn
Output: set of POIs G
Parameters : exploration area B, maximal Euclidean distance from

cluster df

1 F ← ∅ ▷ set of frontier clusters
2 for ∀l ∈ L do
3 if l ∈Mfree and l ∈ B and l /∈ V then
4 N ← l.neighbors
5 if N ∩Munk ̸= ∅ then
6 d← minf∈F ∥l − f∥2 ▷ from the closest point in the

cluster f
7 fold ← arg minf∈F ∥l − f∥2
8 if d ≤ df then
9 fold ← fold ∪ {l}

10 else
11 fnew ← {l}
12 F ← F ∪ fnew
13 end
14 end
15 end
16 end
17 for ∀f ∈ F do
18 n← length(f)
19 m← 1

n

∑n
i=1 vi; v ∈ f

20 g ← arg minvi∈f ∥m− vi∥2
21 G ← G ∪ {g}
22 end

ronments, where the map is large, and obstacles are numerous, determining the
accessibility of POIs poses a significant computational challenge. The method
of obstacle inflation, commonly used in 2D maps, is not computationally
efficient for 3D representation.

To address the challenge, this work proposes an approach that utilizes
the SphereMap, described in [51], a technique designed to simplify the rep-
resentation of 3D space. It fills free space using intersecting spheres with
a predefined minimal radius and creates a graph connecting the centers of
the intersecting spheres. An example of such a representation of free space
can be seen in Figure 3.1. SphereMap effectively reduces the computational
complexity of path planning and obstacle avoidance. It was developed by
the MRS group and successfully employed for the DARPA SubT Challenge,
demonstrating its effectiveness in single UAV exploration.

Even though the challenge in this thesis is more complex, not just by
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3. Multi-UAV Exploration Framework ...........................

(a) : OctoMap (b) : SphereMap with OctoMap

Figure 3.1: Map representations

working with multi-UAV system but also by having UAVs with different sizes,
it is possible to use SphereMap. It only enforces the predefined distance
when necessary, maintaining a safer distance otherwise, which means that
safety is the main priority rather than the path’s speed. Moreover, thanks
to the spheres, detecting the closest obstacle to every point in the path is
simple. So, it is possible to set the minimal sphere radius according to the
smallest UAV’s size, ensuring that areas that are not accessible by any UAV
are excluded and check the obstacle distance for the rest.

To determine the accessibility of a POI, a path to the POI is planned using
the SphereMap representation. If the path exists and the distance to the
closest obstacle remains greater than the UAV’s radius, the point is marked
as accessible. This approach ensures that the path to the POI can be safely
navigated by the UAV without colliding with any obstacles.

The SphereMap-based accessibility check is computationally efficient enough
to operate in real time, even for a large number of POIs. However, in practice,
the aim is to minimize the number of planned paths to reduce computational
overhead. This is achieved by identifying the most interesting POIs by
considering other criteria, as described in the following section.

3.1.3 Multi-Robot Task Allocation (MRTA)

Task allocation presents a complicated challenge in multi-robot systems, and
its definition varies depending on the application - coverage, surveillance,
distribution, etc. The problem, defined as NP-hard, becomes even more
challenging in larger environments containing many robots and tasks. This
work focuses on effectively exploring unknown spaces, minimizing traveled
distance in a confined environment using only a few UAVs.

Exploration can be seen as a matching problem, one of the combinatorial
optimization tasks, as it is possible to assign only one goal to one UAV at
a time. A common approach to address this challenge is to represent the
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........................... 3.1. Selecting Points of Interest (POIs)

Figure 3.2: Task allocation represented as a bipartite graph

UAVs and the POIs as a bipartite graph G = (U, V, E), where xP , xS ∈ U
are nodes represented by UAVs’ position, gi ∈ V is a node which stands for
corresponding POI i, and (x, g, c) ∈ E are edges defined by three values:
starting node, end node, and cost c (see Figure 3.2. For example, arc from
pUAV node to POI g1 with cost c1 would be described as (xP , g1, c1).

An edge between a UAV and a POI indicates the feasibility of the UAV
visiting that specific point. The minimum weight matching problem can
be employed to find an optimal task assignment within this bipartite graph
representation. This identifies the UAV-POI pairings that minimize a defined
cost function, such as the total distance traveled by the UAVs or the overall
completion time of the tasks.

This formulation is referenced as an assignment problem in the following
sections. From the definition, the assignment problem is a minimum weight
perfect matching, meaning there should be the same number of UAVs and
POIs. However, from the nature of unknown space exploration, the number
of POIs is usually different than the number of UAVs, but the goal is the
same: to assign some task (POI) to every worker (UAV). The only change is
that the final solution can leave some unmatched POIs.

The primary constraint in choosing algorithms for this purpose is the
necessity of real-time execution onboard one of the UAVs in a dynamic
environment. This means that the goals for each UAV cannot be selected
before the flight, but the assignment problem needs to be solved multiple
times during the exploration (with every update of the global map). This
work offers two approaches: a simple greedy algorithm based on Euclidean
distance and a more complex algorithm that reduces the matching problem
to a flow problem.
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Greedy Approach

To verify the functionality of the system and provide a baseline for comparison,
this work offers a greedy approach based on Euclidean distance d and heading
θ. The heading computation is necessary for sUAV due to the depth camera’s
limited horizontal FOV. This creates the need to change sUAV’s heading
during the flight to explore new areas, which is time-consuming. To minimize
the time required to change the heading of the sUAV, the greedy approach
prefers points located in the same direction as the sUAV is facing. For pUAV,
the heading change is not necessary, thanks to the 360◦ horizontal FOV, and
due to the low update frequency of the global map. Therefore, the greedy
approach selects the point with the lowest Euclidean distance for the pUAV.
The costs ciP and ciS are computed for each POI gi ∈ G as

ciP = ∥xP − gi∥2 (3.3)
ciS = α∥xS − gi∥2 + β|ϕS − θi| (3.4)

where α, β ∈ R are predefined parameters.

The UAVs are assigned priority in goal selection to consider the different
UAV sizes. This means that the pUAV selects its destination first as it fits
only in spacious areas. The Algorithm 2 follows a step-wise approach. First,
it computes the Euclidean distance for each POI gi ∈ G for the pUAV and
determines the distance and heading change for the sUAV. These values
establish minimum priority queues QP and QS . The algorithm then identifies
the closest accessible point gPn

for the pUAV by planning on SphereMap, as
described in Section 3.1.2. Subsequently, it finds the first accessible point gSn

for the sUAV using the same method, excluding the goal gPn
chosen for the

pUAV. If no accessible point is found, the UAV stays at its current position.

Algorithm 2: Task allocation - greedy approach
Input: pUAV pose (xP , ϕP ), sUAV pose (xS , ϕS), the set of POIs G
Output: pUAV next goal gPn

, sUAV next goal gSn

Parameters : pUAV size sP , sUAV size sS

1 QP ← priority_queue(G, xP ) ▷ based on distance from pUAV
2 QS ← priority_queue(G, xS , ϕS) ▷ based on distance and heading

change from sUAV
3 gPn

← find_first_accessible(QP , xP , sP )
4 gSn

← find_first_accessible(QS \
{
gPn

}
, xS , sS)

The algorithm’s advantages include speed, low computational complexity,
simplicity, and memory efficiency. However, its drawbacks lie in treating the
UAVs independently rather than as a unified system. Furthermore, it does
not consider path length, which can lead to high travel time despite proximity
to the selected point.
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Minimum-cost flow (MCF) Algorithm

Thanks to the graph properties, the assignment problem can be reduced
to a flow problem: a network optimization problem that involves finding
the maximum flow from a source node to a sink node, subject to capacity
constraints on the edges, and subsequently, be solved by an algorithm for
Minimum-cost flow (MCF) problem, which has polynomial time complexity
on a bipartite graph. To represent the assignment problem as a flow problem,
the following terms need to be defined:. Source Node S: The source node is a single node that represents all

the UAVs.. Sink Node T : The sink node is a single node representing all the POIs..Arcs A: There is an arc from a UAV to a POI if the UAV can safely
visit the POI. The cost c of an arc is the weight of the corresponding
edge in the bipartite graph..Capacity u: The capacity of an arc from a UAV to a POI is one if the
UAV can visit the POI. Otherwise, the capacity is 0 (in this case, these
arcs are not created)..Balance b: Balances refer to the conservation of flow at each node in
the network. Each feasible solution must satisfy that the amount of flow
leaving minus the amount of flow entering the node must be equal to
the node’s balance.

Let N be the set of all nodes, f(a) ∈ R+
0 the flow on arc a ∈ A, δ+(n) the

set of arcs leaving node n ∈ N , δ−(n) the set of arcs entering node n ∈ N ,
c(a) the cost per unit of flow on arc a ∈ A, u(a) the capacity of arc a ∈ A,
and b(n) the balance of node n ∈ N . The MCF problem with zero lower
capacity bound can be formulated as

min
a∈A

c(a) · f(a) (3.5)

s.t.
∑

∀a∈δ+(n)
f(a)−

∑
∀a∈δ−(n)

f(a) = b(n) ∀n ∈ N (3.6)

0 ≤ f(a) ≤ u(a) ∀a ∈ A (3.7)

The cost from the source node to each UAV and from each POI to the sink
node are set to 0. These arcs exist only to transfer a matching problem to a
flow problem and are irrelevant to the final solution. The balance for each
node except source S and sink T is set to 0. As an example, see Figure 3.3.

The Algorithm 3 creates priority queues, QP and QS , to manage the
POIs’ order based on the distance from the pUAV and the combined metric
of distance and heading change from the sUAV. These computations are
identical to Equations 3.3 and 3.4. The assignment of the next goals involves
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S T

Figure 3.3: Representation of the assignment problem as a minimum
cost flow problem, the notation of edge labels 0, 0, 1 represent

capacity’s lower bound, current value, and upper bound u, respectively

iteratively selecting POIs g from these priority queues, computing paths using
SphereMap planning, and assessing the feasibility of the paths. The planning
incorporates considerations for the sizes of the UAVs, sP and sS , ensuring
paths can be traversed safely.

This algorithm proceeds to construct arcs, AP and AS , connecting the
UAVs with accessible POIs, considering their associated costs and path
length. To minimize the computational complexity, this work takes advantage
of priority queues QP and QS and the fact that the POI are examined
for accessibility in a specific order from the most interesting to the least.
Parameter N is set, which indicates a sufficient number of arcs for each UAV,
meaning that when there is already N accessible POIs found, no additional
arcs for that UAV are created.

To ensure that the problem can be solved even if AP or AS is empty,
special arcs (xP , gxP

, cxP ) and (xS , gxS
, cxs), with high costs cxP and cxS ,

are created. Nodes gxP
and gxP

, added to the POIs’ set, represent current
xP and xS positions. So, if no accessible POIs are found, the UAV does not
move.

Then, the MCF problem is formulated. The nodes N include source S and
sink T , the current positions of the UAVs xP , xS , the set of POIs G, and
the added points gxP

and gxP
. The set of all arcs A contains arcs Asource

from source S to each UAV, arcs Asink from each POI g ∈ G to sink T and
computed arcs AP and AS .

To solve the MCF problem, C++ solver from Min-Cost-Flow-Class library1

was used. The library offers multiple methods, described in [52], but this
work incorporates only a solver based on the primal and dual revised network
simplex algorithm. It was selected due to its open-source properties.

1https://github.com/frangio68/Min-Cost-Flow-Class/tree/master (Accessed De-
cember 2023)
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Algorithm 3: Task allocation - assignment problem
Input: set of POIs G, pUAV position xP , sUAV pose (xS , ϕS),

source node S, sink node T , arcs from source node Asource,
arcs to sink node Asink

Output: pUAV next goal gPn
, sUAV next goal gSn

Parameters : pUAV size sP , sUAV size sS , cost cxP , cost cxS ,
number of maximum arcs N for each UAV

1 gxP
← xP , gxS

← xS

2 QP ← priority_queue(G, xP ) ▷ based on distance from pUAV
3 QS ← priority_queue(G, xS , ϕS) ▷ based on distance and heading

change from sUAV
4 AP ← ∅ ▷ arcs from pUAV
5 i← 0
6 while i < N and QP ̸= ∅ do
7 c, g ← QP .pop() ▷ cost and POI
8 P ← find_path(xP , g, sP ) ▷ SphereMap planning
9 if P ≠ ∅ then

10 c← c+length(P) ▷ number of waypoints
11 AP ← AP ∪ {(xP , g, c)}
12 i← i + 1
13 end
14 end
15 AP ← AP ∪ {(xP , gxP

, cxP )} ▷ to secure feasibility
16 repeat lines 4-15 for sUAV with QS , xS , sS , gxS

, cxS and AS

17 N ← {S, T, xP , xS} ∪ G ∪ {gxP
, gxS
}

18 A ← Asource ∪ Asink ∪ AP ∪ AS

19 gPn
, gSn

← solve_min_cost_flow(N ,A) ▷ dual revised network
simplex algorithm

3.2 Path Planning

Safe and fast path planning is critical for successful robot exploration. Safe
planning ensures that the robot navigates without compromising its integrity,
while quick planning allows it to complete its mission efficiently. These two
aspects are complementary, enabling robots to explore unknown environments
with minimal risk and maximum efficiency.

The Algorithm 4 outlines a planning process for a cooperative exploration
scenario. It operates in two states: monitoring and planning. In the
monitoring state, the algorithm checks if either UAV u ∈ U , where U =
{pUAV, sUAV}, has reached its current goal guc

, creating a set of UAVs
waiting for new path W and updating the set of already visited points V
used in Algorithm 1. When at least one UAV is waiting for new action, the
algorithm transitions to the planning state.
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During the planning stage, the algorithm first waits for a map M update.

This is necessary to ensure that newly explored areas are also searched for
POIs. Then, it computes paths for each UAV w ∈ W using one of the two
existing planners in the MRS UAV system incorporated in this work:..1. Planning on SphereMap - This representation is already described in

Section 3.1.2 with its advantages and disadvantages...2. MRS SubT planning library - An A* planner and path post-processing
on OctoMap, described in [53], developed for the DARPA SubT Challenge.
This library provides the shortest found path with respect to minimum
obstacle distance dO, but the computation is significantly slower than
planning on SphereMap.

When planning the path to the selected POI, the first option (planning on
SphereMap) was deployed, as it aligns with the priorities of fast computation
and safety, as the sUAV is designed to fly through narrow spaces. However,
in specific scenarios involving collision avoidance, where the objective is to
plan the shortest path to increase mutual UAV distance, the MRS SubT
planner is used. This is discussed in Section 3.3. However, it is possible to
use the second option even for general planning by setting the corresponding
parameter in the configuration file.

The computed paths are transformed into the UAVs’ local frames. For
pUAV, the transformation matrix P

GT is identity, as the global frame G
is initialized from pUAV SLAM frame P. For sUAV, the matrix S

GT is
continuously updated by the relative localization described in Section 2.2.2. In
Algorithm 4, these two transformations are labeled as L

GT , where L substitutes
the frame corresponding to UAV w.

Each UAV is then instructed to follow its respective path, and the algorithm
returns to the monitoring state.

3.3 Obstacle Avoidance

Obstacle avoidance is essential for multi-robot exploration to ensure safe
navigation, prevent collisions, and achieve mission goals. Effective algorithms
enable robots to navigate complex environments, maintain safe separation,
and accomplish their objectives in real-world applications.

The choice of obstacle avoidance method depends on the specific require-
ments of the multi-robot exploration task. Reactive approaches are well-suited
for environments where obstacles are constantly moving or changing. Proac-
tive strategies are more efficient for static or predictable environments, where
the robots have more time to plan their movements.

In this thesis, it is assumed that the environment does not contain dynamic
obstacles, so only static obstacles and the possible collision of the two UAVs
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..................................3.3. Obstacle Avoidance

Algorithm 4: Planning
Input: Map M, pUAV pose (xP , ϕP ), sUAV pose (xS , ϕS), pUAV

current goal (gPc
, θPc), sUAV current goal (gSc

, θSc), pUAV
next goal (gPn

, θPn), sUAV next goal (gSn
, θSn), visited

points V, set U including both UAVs
Output: None or paths PPP and SPS sent to the UAVs’ control

pipelines
Parameters : pUAV minimum obstacle distance dOP

, sUAV
minimum obstacle distance dOS

1 switch state do
2 case monitoring do
3 W ← ∅
4 for ∀u ∈ U do
5 if

∥∥xu − guc

∥∥
2 ≤M.resolution then

6 W ←W ∪ {u}
7 V ← V ∪ {gu}
8 state ← planning
9 end

10 end
11 end
12 case planning do
13 wait for M update
14 for ∀w ∈ W do
15 Pw ← find_path(M, xw, ϕw, gwn

, θwn , dOw) ▷ SphereMap
planning or MRS SubT planning library

16 LPw ← transform_path( L
GT ,Pw)

17 w.follow(LPw)
18 end
19 state ← monitoring
20 end
21 end
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3. Multi-UAV Exploration Framework ...........................
are considered. The static obstacles are handled by the planning process
described in Section 3.2. It ensures a safe path in the already explored space.

The Algorithm 5 prevents collision of the two UAVs. It creates three safety
zones based on the UAVs’ distance. The first one, bounded by the critical
distance dC parameter (set in the configuration file), marks the area where
the UAVs are too close to each other, and an avoidance maneuver is necessary.
The maneuver takes advantage of the small size of the sUAV. The pUAV
stops and is stationary the whole time. A new goal position gS ∈ R3 and
heading θS ∈ [−π, π], computed by adding normalized direction u ∈ R3 from
pUAV to sUAV to sUAV’s current position xS , and setting desired heading
θS to sUAV current heading ϕS , is assigned to the sUAV (the value of the
z-axis stays the same as the current altitude):

u = xS − xP

∥xS − xP ∥2
(3.8)

gS = xS + u (3.9)
gSz

= xSz (3.10)
θS = ϕS (3.11)

The path PS to the goal gS is planned by the MRS SubT planning library
on global map M, described in Section 3.2, ensuring that it is feasible, short,
and safe. It is found even if the goal gS is not accessible, but there is reachable
point in its proximity. This path is then transformed to sUAV VIO frame
S using transformation matrix S

GT ∈ SE(3 ) and sent to the control pipeline.
When the sUAV reaches its goal, the whole process is repeated until the
distance between the UAVs is bigger than the critical distance dC .

In the second zone, when the distance is smaller than the safety distance
dS parameter but bigger than dC , the safety of pUAV is prioritized, as it is
equipped with more precise and more expensive sensors. The pUAV stops its
action and waits until the sUAV, which continues in its current action, is far
enough.

The last zone, where the distance is bigger than the safety distance dS ,
is marked as safe, and the UAVs explore the space as described in previous
sections.

This approach is repeated at a high frequency, which can be set in the
configuration file. It offers a fast and computationally inexpensive way to
avoid collision. It has low time and computational complexity but suffers
from several issues. It is not robust to odometry error; it assumes that the
computed distance is always precise. It slows down the exploration efforts
and, in confined environments, can lead to situations where the sUAV has no
free space available and, therefore, is unable to move away from the pUAV.
This creates a deadlock, which can be solved only by human intervention.
Solving these issues is a subject of future work.
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Algorithm 5: Safety check and avoidance
Input: Map M, pUAV pose (xP , ϕP ), sUAV pose (xS , ϕS),
Output: None or path SPS sent to the sUAV’s control pipeline
Parameters : minimum safety distance dS , minimum critical

distance dC , sUAV minimum obstacle distance dO

1 if ∥xS − xP ∥2 ≤ dC then
2 pUAV.stop()
3 sUAV.stop()
4 while ∥xS − xP ∥2 ≤ dC do
5 u← xS−xP

∥xS−xP ∥2

6 gS ← xS + u
7 θS ← ϕS ▷ Desired orientation is the same as current

orientation
8 PS ← find_path(M, xS , ϕS , gS , θS , dO) ▷ Using A* MRS

SubT planner
9 SPS ← transform_path( S

GT ,PS)
10 sUAV.follow(SPS)
11 wait until gS is reached
12 get updated UAVs’ poses (xP , ϕP ) and (xS , ϕS)
13 end
14 else if ∥xS − xP ∥2 ≤ dS then
15 pUAV.stop()
16 sUAV.continue()
17 else
18 pUAV.continue()
19 sUAV.continue()
20 end
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Chapter 4
Experiments

This chapter provides an analysis of the proposed method, demonstrates
its function in two simulation environments, and shows results from real-
world experiments. Videos of the performed simulations and experiments are
available on https://mrs.felk.cvut.cz/cihlarova2024thesis.

The performance of all the algorithms proposed in Chapter 3 is evaluated,
and the greedy approach and the reduction to the flow problem for solving
the task allocation problem are tested and compared. The desired result of
an exploration mission is an occupancy map of the environment containing
information from both UAVs.

Two different colors, red and blue, distinguish the parts of the environment
explored by different UAV. Red is used for space, which was scanned by
pUAV’s LiDAR and possibly also seen by sUAV, but the LiDAR data are
more precise, therefore information from pUAV’s occupancy map is prioritized.
The blue color marks space seen only by sUAV. The occupancy maps are
shown from the top view, and the floor and ceiling are not visualized in the
figures but are part of the results.

The speed, acceleration, jerk, and snap of the UAVs are limited. These
values are listed in Table 4.1 and are identical for all the experiments described
in this chapter.

Speed Acceleration Jerk Snap
[m/s] [m/s2] [m/s3] [m/s4]

Horizontal 0.5/1.0 1.0/1.0 20.0/20.0 20.0/20.0
Vertical (Asc) 0.5/1.0 1.0/1.0 20.0/20.0 20.0/20.0
Vertical (Des) 0.5/1.0 1.0/1.0 20.0/20.0 20.0/20.0
Heading 0.5/0.5 0.5/1.0 10.0/20.0 10.0/20.0

Roll Pitch Yaw
[deg/s] [deg/s] [deg/s]

Angular Speed 10.0/60.0 10.0/60.0 10.0/60.0

Table 4.1: pUAV/sUAV movement constraints
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4. Experiments .....................................
4.1 Simulation

Before executing real-world experiments, the proposed algorithms were ex-
tensively tested in the Gazebo robotic simulator.

This chapter goes over two simulation environments. The first one is an
office space created in the Gazebo robotic simulator, and the second one,
obtained by a 3D scanner, provides a model of a real-world warehouse near
Prague. In both cases, the UAVs were spawned with almost exact hardware
specifications as described in Section 2.1. The only difference is a substitution
of Ouster OS0-128 for LiDAR with only 512 × 32 resolution to reduce the
computational requirements of the simulation. The UAVs do not have any
prior knowledge of the environments, and all the information is obtained
during the exploration mission, which is started after initialization of the
simulation and run without any user intervention.

To evaluate the performance of the proposed algorithms in isolation from
localization errors and to reduce the computational demands of the simulation,
ground-truth data were used for self-localization of both UAVs and relative
localization between the UAVs.

Table 4.2 provides a list of parameters used for the simulations. These
parameters are defined in the configuration file and are identical for both
environments.

Parameter Notation Value Unit
pUAV size (radius) sP 0.45 m
sUAV size (radius) sS 0.25 m
minimum safety distance dS 2.5 m
minimum critical distance dC 2.0 m
minimum radius of spheres rsph 0.35 m
frontier detection rate Ffront 0.5 Hz
path planning rate Fpath 2 Hz
collision avoidance rate Fcoll 10 Hz

Table 4.2: Exploration parameters for the simulation experiments

4.1.1 Office

The first set of experiments was executed in an environment created in the
Gazebo robotic simulator visualized in Figure 4.1. It simulates an office
space, approximately 23× 23× 3 meters, with a spacious common area and
multiple smaller rooms accessible through open doors, around 0.75 meters
wide, where only the sUAV can safely fit. This creates appropriate testing
conditions, as the correct execution of proposed algorithms can be easily
examined. The environment also includes multiple objects, such as tables,
chairs, whiteboards, etc., to make it more complex.
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(a) : Top view (b) : Side view

Figure 4.1: Gazebo model of an office environment used for the
experiments

sUAVpUAV

Figure 4.2: Occupancy map of the office space at the end of the
4-minute mission. The red color represents an area scanned by the

pUAV using LiDAR, the blue color represents space explored only by
sUAV.
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4. Experiments .....................................
Figure 4.2 shows the final occupancy map created by the map merger

node described in Section 2.2.2. This map was obtained as the result of an
exploration mission that lasted around 4 minutes using the greedy approach
described in 3.1.3 to solve the allocation challenge. It can be observed that
the common, spacious area is explored by the pUAV, whereas the smaller
rooms, accessible only through the door, are explored only by the sUAV. The
space’s floor and ceiling are not visualized in the figure but are part of the
result.

To analyze separate parts of the method, the processing times of frontier
detection, goal assignment, and path planning were measured. These values
were obtained during the experiments and provide a general idea about the
algorithms’ complexity. The results are shown in Figure 4.3. The x-axis
represents the time in milliseconds, and the y-axis represents the counts of
how many times each algorithm completed its objective within a certain time
interval.
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Figure 4.3: Execution time of the algorithms in the office environment
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Frontier detection’s processing time (see Figure 4.3a) depends on the map.
In an indoor environment, the processing time is significantly higher at the
beginning of the exploration, as most of the leaf nodes to be explored are
free. As the exploration progresses, the number of free leaf nodes l ∈Mfree is
decreasing, therefore, the condition in Algorithm 1 at line 3 is satisfied fewer
times. The median processing time of frontier detection was 59.64 ms.

The number of found POIs directly affects the processing time of both
implemented methods for goal assignment. These effects are discussed later
with the comparison of the two methods.

The processing time of the path-planning algorithm differs based on the
state variable. However, the monitoring state’s processing time is insignifi-
cant in comparison to the planning and therefore was not measured. The
number of UAVs waiting for new action has the main effect on the plan-
ning state’s time. Figure 4.3b shows two peaks in the histogram. This is
expected as there are two UAVs, and when both of them need a new path,
the processing time doubles.

To compare the two algorithms for solving the task allocation challenge
described in Section 3.1.3, experiments with identical exploration parameters
(see Table 4.2) and identical UAVs’ initial position were executed. The
parameter N used in the MCF approach is set to N = 5, meaning the
algorithm looks only for the first five accessible POIs for each UAV.

Both approaches successfully explored the environment and created the
occupancy map visualized in Figure 4.2. However, the MCF approach sig-
nificantly improves the exploration efforts. As shown in Figure 4.4c, using
the greedy approach, it took tgreedy = 240.68 s to explore 95 % of the
space, whereas the MCF algorithm was able to achieve the same result in
tmcf = 186.55 s. The 95% boundary is marked by a red horizontal dashed
line in Figure 4.4c, and the gray vertical dashed lines correspond to tgreedy

and tmcf . If the greedy approach and time tgreedy is considered the baseline
solution, the MCF results in almost 30% improvement. This is directly linked
to the total traveled distance by the UAVs. Figures 4.4a and 4.4b show the
distance traveled during the exploration in both scenarios, and it is clear
that thanks to the earlier finish when using the MCF approach, the traveled
distance is lower. The green vertical dashed line is at value tgreedy in Figure
4.4a, and at tmcf in Figure 4.4b. The gray vertical dashed lines show the
corresponding traveled distance for the pUAV and the sUAV.

However, the drawback of the MCF lies in higher execution time. The
performance of the two algorithms was evaluated by measuring their respective
processing times. The results are shown in Figure 4.3c, a histogram of both
algorithms’ goal assignment processing time created from 100 samples for
each method. It is visible that even though the MCF approach overall speeds
up the exploration, the computation of the global objective is more expensive.
The median processing time of the greedy approach was 144.53 ms, and the
median processing time for the MCF approach was 253.76 ms.
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Figure 4.4: Comparison of the greedy and the MCF approach for
solving the task allocation challenge in the office environment

4.1.2 Warehouse

The environment visualized in Figure 4.5 was selected as it provides a 3D
model of an existing industrial warehouse, where the real-world experiments
described in the following section were executed. The 3D model was captured
by the Leica BLK360 laser scanner.

The transition from simulation to the real world is challenging, as the
simulation creates a perfect world without measurement errors and mainly
without hardware malfunction. These experiments aimed to prepare the
algorithms, mainly the configuration file, as much as possible to avoid tuning
the parameters in the limited time window for real-world experiments. They
also provide an idea of what can be expected from the real-world test.

Figure 4.6 shows the occupancy map at the end of the 3-minute exploration
mission. The aisles are wide enough to fit both UAVs, so the pUAV can
precisely scan the whole space. However, the exploration efforts were divided,
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(a) : Front view (b) : Back view

Figure 4.5: Gazebo model of a warehouse environment used for the
experiments

pUAV

sUAV

Figure 4.6: Occupancy map of the warehouse at the end of the
3-minute mission in simulation

which led to lower exploration time.
The same analysis as in the office environment was executed. The histogram

of processing times can be seen in Figure 4.7. These values correspond to the
expected results described in Section 4.1.1. Figure 4.8 shows the results from
comparing the goal allocation methods, and as expected, the MCF method
explored 95% of the space faster. However, the distance traveled by the pUAV
is slightly higher. This is due to the fact that it went exploring the room on
the left by itself and then traveled all the way back to help the sUAV.

4.2 Real World

The proposed algorithms were tested in a real-world industrial warehouse
environment. The task was identical to the simulation: to explore as much
space as possible and generate an occupancy map. Used hardware described
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Figure 4.7: Execution time of the algorithms in the warehouse
environment in simulation

in Section 2.1 provided the only available computational resources. The
proposed algorithms and the ones described in Section 2.2.2 ran fully on
board the pUAV. Section 2.2.3 provides an overview of algorithms executed
on the sUAV.

The UAVs could not explore the entire space presented in Section 4.1.2.
During the experiment, the main focus was on the safety of the pUAV due to
the expensive equipment it was carrying. This was ensured by significantly
increasing the UAV’s size sP in the configuration file, the safety distance dS ,
and the critical distance dC . The size of the sUAV sS was also increased
(see Table 4.3). The pUAV was then placed in the main aisle to provide as
much data about the environment as possible; see Figure 4.10. So, these
changes in the configuration prevented the sUAV from properly exploring
the surroundings as the safety measures often blocked it. Additionally, the
experiments were executed during working hours, which resulted in a limited
available area and prematurely finished experiments to secure the warehouse
staff’s safety.
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Figure 4.8: Comparison of the greedy and the MCF approach for
solving the task allocation in the warehouse environment in simulation

However, the experiments provided useful data regarding the real-life
execution time of the proposed approach. The environment was complex, so
random samples from the frontiers cluster were selected to enlarge the POIs’s
set. Unfortunately, this resulted in around 300 POI due to a mistake in the
algorithm at the start of the exploration, but as it progressed, the number of
POIs rapidly decreased.

The assignment challenge was solved using the MCF, which outperformed
the greedy method in simulation experiments. However, due to security
measures, none of the POIs were reachable by the pUAV. This led to the
worst-case scenario, where the accessibility of all the POIs had to be verified
by computing and checking their paths at least once. Despite the large
number of POIs, the maximum time required to solve the assignment problem
was tassign = 1.15 s. This time was measured during the exploration. It
indicates that the algorithm can handle large and complex environments with
hundreds of POIs. The final map from one of the successful experiments is
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4. Experiments .....................................
Parameter Notation Value Unit
pUAV size (radius) sP 1.8 m
sUAV size (radius) sS 0.4 m
minimum safety distance dS 4.0 m
minimum critical distance dC 3.5 m
minimum radius of spheres rsph 0.9 m
frontier detection rate Ffront 0.5 Hz
path planning rate Fpath 2 Hz
collision avoidance rate Fcoll 10 Hz

Table 4.3: Exploration parameters for real-world experiments

(a) : Initial position

‘

(b) : Final position

Figure 4.9: Global occupancy map during real-world experiments

shown in Figure 4.9b. Figure 4.9 also includes the occupancy grid at the
initial position to show the exploration progress. Figures 4.10 and 4.11 show
photographs taken during the real-world experiment.

During the experiment, drifts in the estimated position provided by the
relative localization were noticed. The transformation S

GT was not always
correct, and, therefore, the path followed by the sUAV differed from the one
planned by the pUAV. This occurred mainly in cases where the sUAV was
not tracked by the pUAV for a prolonged period, and the only information
available about its position was from received odometry. This behavior is
dangerous as it does not ensure the safety of the sUAV, and methods to
resolve this issue are part of future work.

These experiments proved that the proposed method is able to run in real
time on the available hardware. Even during the worst-case scenario, where
there are no accessible POIs for pUAV, the algorithms are fast enough to
ensure smooth exploration. However, they also pointed out issues that must
be addressed before executing additional real-world tests.
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pUAV

sUAV

Figure 4.10: Photograph of the initial position during the real-world
experiment

pUAV

sUAV

Figure 4.11: Photograph taken during the real-world experiment
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Chapter 5
Conclusion

This master’s thesis presented a novel method for unknown-space exploration
using a heterogeneous UAV team. The method consisted of multiple al-
gorithms that optimized different aspects of the exploration process. The
frontier-based exploration strategy was the foundation for the team’s collective
movement and information gathering.

Two distinctive approaches were proposed to solve the task allocation
problem. Firstly, the greedy approach was implemented that prioritizes
selecting POIs based on Euclidean distance and individual UAV priority,
ensuring low computational complexity. Secondly, a reduction to a minimum
cost flow problem was employed, considering global objectives derived from
mutual distances to POIs and corresponding path lengths.

A key component of the method involves determining the accessibility of
POIs. This task was addressed using SphereMap. The approach enables fast
path computation while assessing the distance to the nearest obstacle along
the designated path.

Path planning was performed using two different methods. The first involves
planning on SphereMap, characterized by its speed and emphasis on safety.
The second employs the MRS SubT planning library. The method has higher
computational complexity but provides the shortest path considering a given
obstacle distance. The MRS SubT planning library is used during collision
avoidance maneuvers, which prevents collision of the two UAVs.

The algorithms were tested and analyzed in simulation environments to
validate this method. Additionally, real-world experiments were conducted,
and the performance on board the UAVs was evaluated. These experiments
not only showed the properties of the proposed method but also provided
valuable insights into its real-world applicability and potential for further
improvement.

The entire thesis assignment has been successfully fulfilled. According to
the assignment, the following tasks have been completed:..1. An overview of the current state of the art in exploration strategies and

multi-UAV exploration is provided in Section 1.2.
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5. Conclusion........................................2. A multi-robot exploration method for a team of heterogeneous UAVs
was designed. The description can be found in Chapter 3...3. The method was built upon MRS UAV system described in Chapter 2...4. The method was tested in two simulation environments and analyzed.
The results of performed simulation tests are described in Chapter 4,
Section 4.1...5. The approach was tested in real-world experiments, and the results are
described in Chapter 4, Section 4.2.

5.1 Future Work

The main object of future work, as mentioned in Section 3.3, could be
improving the collision avoidance method. Different approaches, for example,
RRT* planning, could be implemented to re-plan the part of the path provided
by the SphereMap at which the collision would occur.

Additionally, all the algorithms except the collision avoidance approach
were implemented to work with any number of dependent UAVs. In the
future, a scalable collision avoidance approach could also be created.

The odometry drift detected during real-world experiments could be re-
solved by scheduling UAV meet-ups. When the sUAV would be out of the
LiDAR-based detector range for a longer time period, a request for a meet-up
could be made. This would trigger a special goal assignment approach that
selects goals for the UAVs based on mutual visibility.

Finally, to solve the assignment problem, additional methods from the MCF
library could be incorporated. Moreover, the problem could be formulated as
minimum weight perfect matching by adding fake UAVs to match the number
of POIs. Using this formulation, the Hungarian algorithm, with guaranteed
polynomial time complexity, could be implemented to solve the problem.

5.2 Utilization of Generative AI tools

During the preparation of this work, the author used ChatGPT and Bing
Copilot to improve readability and language. Also, the AI tool Perplexity
was used to search for additional related work in Section 1.2. Each provided
research paper was thoroughly checked. After using these services, the author
reviewed and edited the content as needed and takes full responsibility for
the content of this work.
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