
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Online Organisation of Trips

Bc. Daniel Koten

Supervisor: Ing. Petr Aubrecht, Ph.D.
Field of study: Open Informatics
Subfield: Software Engineering
January 2024

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

483828 Personal ID number: Koten Daniel Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Open Informatics Study program:

Software Engineering Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

Online Organization of Trips

Master’s thesis title in Czech:

Online organizace výletů

Guidelines:

For planning of a bigger and complex event, there are available multiple simple, freely available solutions, which concentrate
only on one part of the problem. Collect all needs of organizers and how they can be solved using current tools.
Design your solution, which will cover the requirements. One user will create an event, invite other users as event members.
Together, they work on checklists of items and actions required for the event. Consider reusability of final checklist as a
template for future events.
1. Analyze the current state of online tools available for organizing complex group event, specifically checklist of required
items and actions. What are the requirements and what approaches the tools use.
2. Design a solution, which will cover the requirements. It must include management of members, shared and private
checklists of items and actions, the progress of preparation.
3. Implement your solution. The server-side should use Jakarta EE a PostgreSQL. The client side should provide a mobile
application -- select the technology and explain your motivation.
4. Test your application from user's point of view. Implement functional tests -- REST API or UI tests.

Bibliography / sources:

[1] The Jakarta EE 8 Tutorial: https://eclipse-ee4j.github.io/jakartaee-tutorial/toc.html
[2] Jakarta EE Cookbook - Second Edition, https://www.packtpub.com/programming/jakarta-ee-cookbook-second-edition
[3] Patterns of Enterprise Application Architecture — Martin Fowler

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Name and workplace of master’s thesis supervisor:

Ing. Petr Aubrecht, Ph.D. Department of Computer Science FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: __________ Date of master’s thesis assignment: 28.08.2023

Assignment valid until: 16.02.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Petr Aubrecht, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Acknowledgements

I would like to thank Ing. Petr Aubrecht,
Ph.D., for his guidance, helpfulness, and
valuable advice. I would also like to thank
all my family, my partner, and friends for
their support during my studies and for
their help in testing the application.

Declaration

I declare that I have prepared the submit-
ted thesis independently and that I have
listed all the information sources used
in accordance with the Methodological
Guidelines on the observance of ethical
principles in the preparation of university
final theses.

In Prague, 7. January 2024

.............................

v

Abstract

After a long period of restrictions due
to the coronavirus, the world has started
moving again, and people are looking for
an application to organize their events.
The purpose of this thesis, which focuses
on checklist management and the social
aspect, is to cover this area.

The goal is to design and implement a
mobile application to give users essential
online features to organize an event, fo-
cusing mainly on lists of items.

The whole solution should also focus on a
cooperative aspect. Because of that, there
is also a need for a backend part of the
system, which brings many challenges and
problems that need to be addressed. For
example, the login process, user manage-
ment, permissions, and performance.

Keywords: Event, Checklist, Flutter,
Mobile Application, Jakarta EE,
PostgreSQL, Auth0, Docker

Supervisor: Ing. Petr Aubrecht, Ph.D.

Abstrakt

Po dlouhém období spousty omezení v dů-
sledku koronaviru se svět opět dal do po-
hybu a lidé potřebují aplikaci pro orga-
nizaci různých událostí. Záměrem této
práce, která se zaměřuje zejména na
správu seznamů položek a sociální aspekt,
je pokrýt tuto oblast.

Cílem je navrhnout a implementovat mo-
bilní aplikaci, která uživatelům poskytne
potřebné online funkce pro organizaci
akce, přičemž se bude soustředit přede-
vším na seznamy položek.

Celé řešení by se mělo zaměřit také na
kooperativní aspekt. Z tohoto důvodu je
také potřeba vytvořit backendovou část
systému, což přináší řadu výzev a pro-
blémů, které je třeba vzít v úvahu a řešit,
například přihlašování, správu uživatelů,
oprávnění a výkon.

Klíčová slova: Událost, Seznam
položek, Flutter, Mobilní aplikace,
Jakarta EE, PostgreSQL, Auth0, Docker

Překlad názvu: Online organizace
výletů

vi

Contents

1 Introduction 1

2 Related Work 3

2.1 Google Keep 3

2.2 TripIt . 4

2.3 Wanderlog . 5

2.4 Summary . 7

3 Proposed Solution 9

4 System Requirements 13

4.1 Functional Requirements 13

4.2 Non-functional Requirements . . . 16

5 Technology Stack 19

5.1 Application Server 19

5.2 PostgreSQL 20

5.3 Flutter . 20

5.4 Auth0 . 22

6 Design and Architecture 23

6.1 System Architecture 23

6.2 Database Design 25

6.3 Dockerized Backend 25

6.3.1 Server . 25

6.3.2 Database 26

6.3.3 Liquibase 27

6.3.4 Nginx . 27

6.3.5 Certbot 28

6.4 External Services 28

6.4.1 Auth0 . 29

6.4.2 OpenAI GPT API 30

6.4.3 Let’s Encrypt 31

6.5 Frontend . 31

6.5.1 Flutter Riverpod 2.0 31

6.5.2 Auth0 SDK 31

6.6 Mobile Application Design 32

6.7 Integration and Deployment 34

6.7.1 Jenkins 34

6.7.2 GitHub 35

6.8 Complete System Overview 35

7 Implementation 37

7.1 Mobile Application
Implementation 37

vii

7.2 Backend Implementation 39

7.3 Final Application 40

8 Testing and Evaluation 45

8.1 Unit Testing 45

8.2 Integration Testing 46

8.3 Performance Testing 48

8.4 User Testing 51

8.4.1 Testing Scenarios 52

8.4.2 Participants 57

8.4.3 Results Evaluation 57

9 Conclusion 59

Bibliography 61

A Installation 65

B List of Abbreviations 67

viii

Figures

2.1 Google Keep 4

2.2 TripIt . 5

2.3 Wanderlog . 6

3.1 How many smartphones are in the
world? [1] . 10

6.1 Deployment diagram – overview 24

6.2 Database schema 26

6.3 Authorization Code Flow with
Proof Key for Code Exchange
(PKCE) – retrieved from the official
documentation [2] 32

6.4 Low fidelity prototype screens . . 33

6.5 Jenkins build using GitHub
Webhooks - sequential diagram . . . 35

6.6 Deployment diagram 36

7.1 Client project structure (simplified
for demonstration purposes) 38

7.2 Final application – trip list and
detail . 41

7.3 Final application – personal list
with AI suggestions 42

7.4 Final application – shared list and
member’s list 43

7.5 Final application – item edit screen
and payments 43

7.6 Final application – payment detail
and login screen 44

8.1 Unit tests results 46

8.2 Integration tests results 48

8.3 Number of Users 49

8.4 Total Requests per Second 50

8.5 Response Times (ms) 50

8.6 The performance test for too many
users . 52

8.7 DNS Load Balancing – taken from
AWS article Resolve DNS names of
Network Load Balancer nodes to
limit cross-Zone traffic.[3] 53

ix

Tables

8.1 Request Statistics 51

8.2 Response Time Statistics 51

8.3 User testing results 58

x

Chapter 1

Introduction

Since the world has started traveling again after the covid lockdown, people
have begun organizing trips, especially in groups. Such an event requires a
significant amount of preparation and organization, which includes negotiating
and agreeing on various aspects. And that is exactly the area I would like to
pursue in my work.

A mobile application tailored for this purpose could ease this task. It allows
people to cooperate asynchronously and add or improve ideas anytime and
anywhere. Either sitting on a couch, walking a dog, or shopping. It is also
worth noting that according to statistics, 85.74% of the world’s population
uses a smartphone.[1] Therefore, I see mobile phones as the right platform to
target.

I decided to focus on checklists of items and the cooperative aspect. People
need a personal list of items, and they also need to cooperate. Hence, they
have to be able to share a part of those lists with other group members.
Moreover, it would be valuable to implement a feature that enables users to
gain inspiration. It could be either from each other, or the application itself
could help by providing some ideas. Finally, it might be notably time-saving
to have the ability to reuse past events in some way.

There are already some applications available that focus on this area. However,
they do not completely address this specific use case – group checklists
management. It should be a clean and easy-to-use application with a clearly
defined purpose. Yet, it should provide users with features to support this.
Therefore, I tried to stay focused primarily on the area of group checklists,
but I also integrated it with multiple supportive features when designing a
solution.

1

1. Introduction
The goal of this work is to design and implement an application where users
can create checklists for a group event that will provide them with all essential
features. The most important one is managing multiple types of checklists,
but there are more, like splitting group expenses or automated suggestions
on what they should add to their checklists. Users’ experience during events
organization should be smooth. It should be a complete application to reduce
the need to use multiple applications for these purposes, leading to fewer
mistakes and contributing to the overall seamless organization of events.

2

Chapter 2

Related Work

There are already several solutions for planning and preparation of trips and
various group events. Despite this, there is still room for improvement and
new ideas to make things easier for users.

2.1 Google Keep

One of the most popular applications for managing checklists is Google
Keep[4]. It provides basic features like creating a new checklist, adding new
items with up to two levels of hierarchy, and sharing with other users. The
biggest advantage of this tool is simplicity. It is straightforward to start using
it without any previous experience. There is only one screen with a list of
notes, and all one has to do is open this note and start adding items, as can
be seen in Figure 2.1.

Although, there are many limitations. The most significant one is that there
is only one checklist for all users, and another one could be that there is
no functionality over this data, such as splitting costs or assigning items to
members etc. To summarize, this app is mainly for quick and simple notes
and checklists without any advanced functionality.

I would like to take inspiration from this app’s clean design. Namely, it uses
material design. It follows the best practices for mobile app development and
is a kind of standard for most mobile applications.

3

2. Related Work.....................................

Figure 2.1: Google Keep

2.2 TripIt

Another solution could be TripIt: Travel Planner[5]. It is a basic app for
planning a trip. Users can create an itinerary from predefined types like
activities, meetings, restaurants, flights, etc. This can be seen in Figure 2.2.
It allows users to add other trip members and, for example, assign them to
an activity. This application focuses primarily on a map. Everything revolves
around adding activities to the map. In other words, it is an excellent tool
for itinerary planning. For instance, it can automatically import trip details
from a linked email account. Although it is presented as a good feature, many
users are wary of giving access to their email accounts to be scanned by this
app for travel details as it could easily raise privacy concerns.[6]

The main problem is that there is no way to manage checklists. It is only
possible to add text notes, which is not a satisfactory solution. There are
also many limitations to a free version. Users have to pay to use all features.

4

......................................2.3. Wanderlog

Figure 2.2: TripIt

This tool has good features for building an itinerary but completely misses
other functionalities for planning a trip or event. Some examples include
checklist management, task assignments, money calculations, and more. I
see potential in how this application works with trip members’ management.
Each has a role (viewer or traveler) and permissions based on this role. I
want to implement it similarly in my application.

2.3 Wanderlog

Wanderlog[7] is also an option for organizing events. The biggest problem
here is the overwhelming complexity. The UI is full of different controls, and
it could be more straightforward to do what the user wants. It also works
with checklists in a too-simplified way. It does not allow users to create their
private lists or shared ones. There is always just one global. It can be seen in
Figure 2.3 where a simple global checklist and expense split screen are shown.

5

2. Related Work.....................................

Figure 2.3: Wanderlog

This application is a suitable candidate to take inspiration from, but it needs
to be done differently to make it easier for users. One problem is that it
does not follow material design recommended practices. It is bad for users
because they are used to it, and they expect mobile applications to behave
in a similar way. For example, the home page mixes different information. I
expect it to contain my trips, but there are many banners with propagation
of the PRO version and other elements. The bottom navigation bar should
be there most of the time. But it is used only at top-level screens, and most
of the time, it is hidden using the app. Another problem is incompleteness.
There are functionalities that redirect users to the web page because the app
itself does not provide this functionality directly. Such application behavior
is not user-friendly and expected.

If done properly, this app could be a good choice for trip and event planning.
I would like to take some inspiration from it, especially in terms of budgeting
and managing the events themselves – for example, assigning different rights
to different members or calculating who owes whom with a minimum number
of transactions.

6

...................................... 2.4. Summary

2.4 Summary

Each of those apps offers unique features and insights that can inspire the
development of a new app. Google Keep’s simplicity and user-friendly design,
TripIt’s efficient trip member management and itinerary planning, and Wan-
derlog’s potential in budgeting and event management are all aspects that
can be incorporated into a new application.

On the other hand, all reviewed applications lack support for more cooperative
checklists and functionalities over that data that could help users. They only
offer simple global general lists of items where everyone can see and edit
everything he wants. This is not sufficient, as it can easily turn into chaos.
The aim is to create an app that addresses the limitations of these existing
tools while enhancing user experience and functionality in trip and event
planning.

7

8

Chapter 3

Proposed Solution

Based on the assignment, the analysis of existing applications, and my
personal needs, the solution should provide a simple and straightforward way
to manage group checklists with additional supportive features and functions
over the data.

First of all, it will be a mobile application as that is exactly the suitable
platform for this use case. One of the reasons for that is the fact that based
on the statistics from Bankmycell [1], there are 6.92 Billion smartphone users
in the world – that is 85.74% of the world’s population. From Figure 3.1,
there can also be seen a growing trend in smartphone ownership, which again
supports this decision to make it a mobile app. It can be said that almost
everyone has a sufficient phone for this kind of application.

Nevertheless, I decided to provide it as a single-page web application as well.
The reason is that there can be situations where it is more comfortable to
use the app on a computer. For example, when I work on my laptop, I do
not want to take a phone in my hand. It might also be better when it comes
to multitasking or copying items.

Cross-platform compatibility can be achieved thanks to Flutter, which I
decided to use for the client side. In fact, it supports all the most used
platforms, including Android, iOS, Windows, Linux, Mac OS, and Web. The
only limitation I have encountered is that if I use a package, it has to have
support for the platforms I want to use. Unfortunately, Auth0 SDK does not
have full support for some of those platforms yet. I do not see it as a big
problem as it runs perfectly in the browser, but if it is needed in the future,
it is possible to use another service for authentication to avoid using Auth0
SDK.

9

3. Proposed Solution

Figure 3.1: How many smartphones are in the world? [1]

The great thing is that it runs the same code completely, thanks to the
cross-platform compatibility. This way, it can be accessible from any device
equipped with a modern web browser and remains perfectly simple and
maintainable.

In terms of functionality, I consider several use cases that I would like to
cover and I will describe them in more detail in further paragraphs.

There should be multiple types of checklists as there are more use cases, and
it would be nice to integrate them and allow users to use all of those as they
need. Namely, there must be a simple personal checklist. This way, a user
can use the app without any other members for personal purposes. Although
this is not the main focus of this app, there can still be a reason for that.
For instance, he can decide later that he wants to invite someone to start
participating, and he can easily do it without the need to move all data to
another application designed for groups. This leads to the idea that users on
that trip should see the checklists of each other as inspiration. Looking at
the friend’s list and figuring out what I forgot can be extremely time-saving.
At the same time, hiding some data from other members should be possible.
I can imagine that someone might have some medicine on his list, and he
does not want other members to be able to see it. When there are multiple
members, it makes sense to have a group-shared list. It will be possible to
add items directly to this shared list, but those items will also be visible in
the owner’s personal list so he can check for all his items, including those that
are shared. This way, he has all his stuff in one place, but there is also a place

10

................................... 3. Proposed Solution

where everyone can see what is shared. It can also be used the other way
around – it aggregates all shared items from all members’ personal checklists.

It should also be easily recognizable which type of checklist a user currently
sees and what items there are. There will be a mechanism to show who is
responsible for taking the concrete items, and it will be possible to check the
preparation progress.

Considering that it will be possible to add prices to the items, it would be
a shame not to use this data for some calculations and to make users’ lives
easier. Thus, the application will have the functionality to split costs between
members. To be concrete, it will also be possible to choose which members
are supposed to be involved in the payment. For example, there can be a
situation where some part of the group will pay for the rent of a cottage,
and the rest of the group will sleep in their tents, so they do not want to
pay for the rent. It should also be possible to make changes after some
transactions have been done. For instance, someone could add an item later,
and the application must recalculate the expenses considering the previous
transactions.

The application will also be able to suggest ideas for checklists automatically.
It will be possible to generate suggestions based on the current context, such
as event name, category, already added items, and eventually more. Adding
these generated items to the right category will be very easy with just one
click. It will also set the right flags if it is shared or not.

When the user has everything done, he will be able to copy the whole event to
reuse it even with a different group. During this duplication, all the personal
items will be copied, as well as all shared items from all group members. It is
better to copy more items and remove some of them later with just a click
instead of manually creating them if they were not copied.

11

12

Chapter 4

System Requirements

As the system requirements will serve as a basis for the design of the entire
system, I divided them into functional and non-functional to make it more
clear.

4.1 Functional Requirements

First of all, users must sign in to use the app. After a discussion with the
supervisor, there should be multiple ways of authentication. As it is common
to have a Google account nowadays, the app should allow users to log in
using third-party identity providers – namely, Google OpenID. If they sign in
for the first time, they must fill in the profile information.

Once they log in, they can create a new trip and begin adding items to their
checklist. They can also add members to the trip or remove them. Finally,
they can show the trip settings where they can edit the trip name and date
and delete the whole trip.

There are three types of checklists. Every member has a personal checklist.
He has full editing rights to this list. To add each item, he can specify several
attributes, namely name, category, price, and flags if the item is private or
shared. And that leads to the second type of list – shared list. This serves as
a list of all shared items from all members displayed in one place. This is the
only place where it is possible to edit or check other members’ items. It can
be useful when, for example, a family is preparing together, and one member
wants to check that he or she already packed an item for the second member.

13

4. System Requirements
However, it is not possible to edit or check other members’ personal items to
avoid unwanted modifications. It could, for example, happen that one user
would mark another user’s item as packed even if it is not, and he or she
will forget to pack it later. It will also be possible to see a specific member’s
entire checklist as an inspiration for what I could also pack, and that would
be the third list type. The limitation is that it will only be possible to see
items not marked as private because it is understandable that users might
want other members not to be able to see some items like medicines, amount
of money, etc.

The app should also work with item categories. It should be as flexible as
possible but also user-friendly. To satisfy these two requirements, the user can
manually specify a category name for each item if there is no such category.
Alternatively, he can choose from categories that already exist in the trip.

Another feature to make adding items as easy as possible is automatic
suggestion and generation of items for a given category. Users can generate
suggestions of what to pack for a concrete category. It should consider
the trip’s name, category name, and already packed items. Based on this
information, the application should be able to provide other item suggestions
that might be relevant to pack up as well. This will speed up the whole
process of adding items significantly as users will not always have to write
the name of the item and they just click on the suggestion, and it will be
automatically added to the correct category. It should be, however, possible
to edit item details later – for example, shared or private flags, etc.

There can be a price set for items. It will be possible to split these item
expenses among any number of members. Those members will then be able
to pay these costs directly from the app, which will open their mobile banking
app with all payment information filled in. Speaking primarily about the web
version, generating a payment QR code for users to scan using their phones
makes sense. When the transaction is done, they can mark it as completed,
and it will move to the transaction history section.

FR-1 User Authentication

FR-1.1 Users must be able to sign up and sign in either by email and
password or by their Google account.

FR-1.2 Users must be signed-in to use the app.
FR-1.3 Users must be able to sign-out.

FR-2 Trip Management

FR-2.1 Users must be able to create a new trip by filling in information
like name and date.

14

............................... 4.1. Functional Requirements

FR-2.2 Users must be able to view a trip detail.
FR-2.3 Users must be able to edit trip information if they are in the admin

role.
FR-2.4 Users must be able to delete a trip if they are in the admin role.

FR-3 Member Management

FR-3.1 Users must be able to add a new, not yet existing member to the
trip by searching by the user’s first or last name.

FR-3.2 Users must be able to delete a member from the trip if they are in
the admin role.

FR-3.3 Users must be able to leave the trip if they are not in the admin
role.

FR-4 Personal Checklist

FR-4.1 Users must be able to view their checklist.
FR-4.2 Users must be able to add new items to their checklist by specifying

a name, category, private flag, shared flag, and optionally amount
and price.

FR-4.3 Users must be able to edit the items in their checklist.
FR-4.4 Users must be able to delete their items from their checklist.

FR-5 Shared Checklist

FR-5.1 Users must be able to view all items from all trip members marked
with a shared flag and not marked with a private flag in a shared
checklist.

FR-5.2 Users must be able to add new items to the shared checklist by
specifying a name, category, private flag as false, shared flag as true,
and optionally, amount and price.

FR-5.3 Users must be able to edit all items in the shared checklist.
FR-5.4 Users must be able to delete all items from the shared checklist.

FR-6 Personal Checklists of Other Members

FR-6.1 Users must be able to view all non-private items in other members’
checklists.

FR-7 Categories

FR-7.1 Users must be able to see items grouped in categories.
FR-7.2 Users must be able to choose from the list of already existing

categories in a current trip when creating or editing an item.
FR-7.3 Users must be able to add a new category by typing a specific

category name when creating or editing an item.

15

4. System Requirements
FR-7.4 Users must be able to remove a category from a trip by removing a

given category from all items in the trip.
FR-7.5 Users must be able to add an item directly to a given category.

FR-8 Automatic Suggestions

FR-8.1 Users must be able to generate item suggestions for a concrete trip
name, category name, and already added items.

FR-8.2 Users must be able to edit these items later.

FR-9 Expenses Calculation

FR-9.1 Users must be able to add price to the item.
FR-9.2 Users must be able to assign multiple members to participate in

the payment for the item.
FR-9.3 Users must be able to see completed and future transactions of all

members.
FR-9.4 Users must be able to generate a payment QR code.
FR-9.5 Users must be able to open a mobile banking application with preset

payment details like bank account number, money amount, and
payment description.

4.2 Non-functional Requirements

The estimation is that the app will be used by a small to medium group of
people interested in organizing trips. The expected type of users are people
of different ages with a positive attitude towards technology and people who
like to keep things in order. Based on this assumption, the following can be
defined.

The app must be easy to use. It should follow the recommended Material
design guidelines, which most people are used to, so it would feel familiar to
them. It should also target the fewest steps necessary for a given operation
and make it as straightforward as possible so there should be only as much
information as is actually needed in each screen. It should also respect the
user’s settings and preferences. For example, it should respect the theme set
in the operating system – dark mode or light mode.

The next thing is performance. The goal is to handle hundreds of simultane-
ously active users. Each of them should be able to work with hundreds of
trips and items. Considering that one of the primary purposes is to cooperate
on the trip in a group, the server should be stable and reliable because the

16

............................. 4.2. Non-functional Requirements

app will depend heavily on it as the data will have to be synced. However, no
computationally intensive operations are expected to be done on the server.

It is critical to have data consistent across the whole system. Whenever a user
makes a write operation, it must be persisted in a database immediately to
prevent data loss. At the same time, every user should always see up-to-date
data. So it is necessary to implement some refresh mechanism at the client.

Another just as important point is security. Users must log in to use the
app. And then, no one can modify their data without permission. A server
must check every API request to see if it is authorized and if it accesses the
resources the user can access. On top of that, the system must handle user
management securely. In particular, passwords must be stored appropriately
to avoid leaks. Namely, they should be hashed and salted in the database.
Finally, the app should also protect users against themselves, especially when
it comes to unintended actions like delete operations. Those should always
be protected by a confirmation dialog.

Maintainability is definitely part of the must-have non-functional requirements
as well. Implementing and deploying new versions of the client app and back-
end code must be possible easily and efficiently without data loss. It is not
only to add new features but also to fix bugs and to apply security patches if
there are any new vulnerabilities in the libraries used.

It must also be possible to run the application on more platforms with a
single code base. Namely, it should run as an Android app and also as a
Web application. The biggest advantage of it running as a web app is the
fact that it can be run by any user on almost any device, like a phone, tablet,
PC, etc. On top of that, it should be possible to easily add support for more
platforms in the future, namely for Apple iOS devices.

NR-1 Ease of use

NR-1.1 Application must be self-explanatory even without documentation.
NR-1.2 Application design must follow Material design best practices.
NR-1.3 Application must target the fewest number of steps necessary for a

given operation.

NR-2 Performance

NR-2.1 Application must be able to handle hundreds of trips for a given
user and hundreds of items in each trip.

NR-2.2 System must be able to handle hundreds of simultaneously active
users.

17

4. System Requirements
NR-3 Data Consistency

NR-3.1 Data must be consistent across users.
NR-3.2 Data must be written to the database after the change action on the

client, and the current data must be updated on the other clients
after the reload.

NR-4 Security

NR-4.1 Only a properly logged-in user can interact with the system.
NR-4.2 The system must check that the user has rights to the requested

resources.
NR-4.3 User management must be handled in a secure manner so that, for

example, passwords cannot be leaked.

NR-5 Maintainability

NR-5.1 The whole system must be efficiently maintainable.
NR-5.2 New version deployment must be automated.
NR-5.3 Database update must be automated and without data loss.

NR-6 Multi-platform

NR-6.1 It must be possible to run the application on Android OS.
NR-6.2 It must be possible to run the application as a web application.

NR-7 Compatibility

NR-7.1 Application must be compatible with the last two major versions of
Android OS.

NR-7.2 Web application must be compatible with the last two major versions
of Google Chrome browser.

NR-8 Unintended Actions Protection

NR-8.1 Application must protect the user against unintended actions, es-
pecially when deleting items, for example, with a confirmation
dialog.

18

Chapter 5

Technology Stack

There were some technologies like Jakarta EE 8 and PostgreSQL given in the
assignment. When I was selecting the remaining technologies, I chose them
to be as fit for purpose as possible. Another very important factor was how
well-documented the technologies were.

5.1 Application Server

After discussing with the supervisor, I chose the Payara server[8] as an
application server. It is a stable, well-tested solution for production-ready
systems and offers a free trier.

One of the reasons was also the fact that it has excellent support for Auth0
integration. It is possible to set up the complete integration using only
annotations and a configuration file. An official docker image is also available
for the free tier.

The interesting thing was the migration from Jakarta EE 8 to Jakarta EE 10.
Based on the assignment, I started with version 8 which was sufficient at that
moment but during the development, there was a need to migrate data types
for IDs in the database to UUIDs and it was not possible in that version to
make them auto-generated. After a discussion with a supervisor, we decided
to upgrade the Jakarta EE version. This is also related to the Payara version
which was also upgraded from version 5.2022.5-jdk11 to 6.2023.11-jdk17. It
can be noticed that the Java version was upgraded from version 11 to version
17 as well. This was exactly the point where the usage of Docker helped a

19

5. Technology Stack...................................
lot. The upgrade of the Payara server was as easy as changing a line with a
version in the Dockerfile because all server configuration is done using CLI
so there is no need to make anything manually. As for the migration of the
Jakarta version, I used the following script which took care of the whole
process.

1 mvn package fish. payara . transformer :fish. payara . transformer .
maven :0.2.11: run -DselectedSource =src -DselectedTarget =src10

Listing 5.1: Jakarta EE 8 to Jakarta EE 10 upgrade script

5.2 PostgreSQL

I was supposed to use a PostgreSQL database. It is open-source, well-tested,
and stable, which is crucial for a database. “PostgreSQL has been fully
ACID-compliant since 2001 and implements multiversion concurrency control
to ensure that data remains consistent.” [9] It may be worth describing the
ACID in a bit more detail. Those letters stand for Atomicity (all operation
must be completed successfully or everything is rollbacked), Consistency (a
database must be in a consistent state both before and after a transaction),
Isolation (result of a transaction is visible to other transactions after it
has been committed) and Durability (a result of a committed transaction
must be saved permanently) and those properties are achieved thanks to the
transactions which is a tool to ensure them as Martin Fowler describes in his
book. [10]

5.3 Flutter

The fundamental decision was about the technology for implementing the
client application. When I was reading various texts [11], I found that Flutter
is considered a very good framework according to feedback. Namely, it
is supposed to be a very well-designed, robust framework for developing
multi-platform applications with a reasonably close-to-native performance.
According to the official documentation, “Flutter is an open source framework
by Google for building beautiful, natively compiled, multi-platform applications
from a single codebase.” [12]

Currently, I am targeting Android devices and it can even run in a browser
as a web application. But it is possible to make it run as a native application

20

....................................... 5.3. Flutter

even on iOS devices, Windows, Mac OS, and Linux in the future with minimal
modifications. Although Flutter supports all these platforms, it is worth
noting that the limiting factor might be the packages used. It is important
to check that the packages also support those platforms. I have come across
that the Auth0 package only supports Android, iOS, and the web. It is not
a limiting factor for me as the web support currently meets my needs, as it
allows me to reach the vast majority of potential users. However, there could
be challenges if there is a specific demand for example for a native Linux
application, which is not currently supported. If it were desired to target
these platforms as well, it would be necessary to use packages that allow this.

Another great thing about Flutter is that it uses a reactive programming
paradigm. That helps in the separation of concerns and hence cleanliness and
maintainability of the code. It also makes such a project very easy to scale.

In terms of performance, it is very close to the real platform native code. It
is because the rendering is not done using the translation of the components
to the native components but they are rendered directly on the canvas as
Eric Windmill mentions in his book. “Flutter compiles directly to native
code and uses Skia, the same graphics engine that Chrome relies on, for
rendering. This eliminates the need for translating Dart code at runtime,
ensuring that applications maintain optimal performance and efficiency on a
user’s device.” [13]

I considered also other options.

If only performance is a factor, pure native would be a better choice. But
in this case, the benefits of cross-platform development are more likely to
prevail. It should also be added that if some part of the application needs to
be written in native, for example, to access sensors, it is possible to integrate
this native part into the Flutter application.

Another candidate that I considered was React Native. This is also a great
choice for the development of cross-platform mobile applications. One of
the helpful facts is that there are really many packages for this technology
and it is very well established. Despite these advantages, I decided to give
Flutter a chance. Although it is still a new framework and not so widespread
yet, it offers very impressive statistics in terms of both performance and
multi-platform support. Some studies show that Flutter can outperform
React Native by tens of percent in terms of both CPU and memory usage.
[14] Another reason was the fact that I find it more comfortable to write code
in Dart rather than in JavaScript or TypeScript.

21

5. Technology Stack...................................
5.4 Auth0

I decided to use Auth0 for authentication and authorization. It is a popular
solution that handles user management very well, is flexible, and allows
multiple login methods. The basic one is using a username and password.
Logging in using various third-party providers such as Google, Facebook, and
so on is also possible.

It is possible to solve all this from scratch. Still, this solution is preferable,
especially because, as with libraries and frameworks, it is usually better to
use existing tested solutions rather than writing a custom framework.

There are indeed other solutions. One of the highly used is Keycloak which is
an open-source identity and access management solution. [15] I choose Auth0
over Keycloak mainly because Auth0 has way better integration support for
Flutter. At the moment, it is also better for me to use the free tier on Auth0
than to pay for custom resources to run a custom Keycloak instance. Another
candidate could have been Google’s Firebase Authentication [16] which has
excellent support for Flutter. Despite the slightly more complex setup, I
decided to go with Auth0 because of its greater flexibility and customization
options. For instance, I used Auth0 Actions to add user roles directly into
the ID token. This approach is efficiently handled on my server side, where
Payara offers excellent support. It allows for resource restrictions based on
the roles specified in the ID token, enabling a more refined and secure user
management system.

22

Chapter 6

Design and Architecture

This chapter revolves around the design of the whole system and its individual
parts. It is also about putting those technologies defined in Chapter 5 together
even with other services like reverse proxy, etc. During the design of the
whole solution, the previously defined functional and especially non-functional
requirements were taken into account as they directly influence some decisions,
such as the choice of the technologies used.

6.1 System Architecture

I chose client-server[17] as the basis for the whole architecture. The simplified
deployment diagram can be seen in Figure 6.1. This decision is based mainly
on the NR-2.2 requirement that the system must handle a load of several
hundred users. It also has a clear separation of concerns between client appli-
cations and backend logic, which contributes to the overall maintainability.

The server environment is orchestrated using Docker Compose, which allows
for easier deployment and re-usability of the containers. In terms of those
containers, there is a Nginx server in the role of a reverse proxy. This server
proxies requests to the Payara server running my application. According to
the assignment and the NR-3.1 requirement that clients must have consistent
data with each other, I used a PostgreSQL database that meets the ACID
properties for this purpose. To manage database schema changes during the
development, I utilized Liquibase which enables version-controlled changes –
so-called migrations.

23

6. Design and Architecture

Figure 6.1: Deployment diagram – overview

On the client side, there can be either a Flutter native application or a web
application running in the browser. This way, the system can be accessed
from almost any user device.

As for the external services, there is Auth0 for the authentication and au-
thorization process. It is communicating with both the client and server.
Moreover, OpenAI gpt-3.5-turbo service is utilized. It is used by the server
for automatic item suggestions. It must not be called directly from the client
application because it would be insecure to store API keys directly on the
client as it could be decompiled and those keys could be stolen.

There are also other services in this system. I do not show them here yet, but
I will show them in the deployment section to keep this architecture overview
simple.

24

................................... 6.2. Database Design

6.2 Database Design

A database schema is a very important aspect of the system and can often
influence how the architecture should look like. That is why I decided to
describe it right in the second section of this chapter. Its schema can be seen
in Figure 6.2.

The central point is the Member entity. Essentially, it is a combination of a
concrete user profile and a concrete trip. It also has a role that specifies what
actions the user can take on the current trip – for instance, delete the trip
and so on. There is also a flag accepted. It specifies if the user has already
accepted the invitation and can therefore access the trip or if it is still an
invitation and the user can not see the content of the trip yet. Each member
can also have multiple items, completed transactions, and future transactions.
The usage of an Item entity is obvious. The completed Transaction entity is
used to save who has already paid how much to whom. As for the Future
Transaction entity, it stores the information about which members should
participate in paying for the concrete items – because, according to the FR-9.2,
the application should allow users to specify only a subset of members to pay
for the item. Finally, there is a Category entity that allows effective work
with item categories and their reusability.

6.3 Dockerized Backend

I decided to use Docker for the backend part of the system as it brings a lot
of advantages, such as isolation of individual services, independence from the
system where the service runs, and more. In simple words, it is sufficient
to have Docker and Docker Compose installed on the computer, and then
running the whole backend infrastructure is as easy as running a simple
command. The following containers are currently running.

6.3.1 Server

The central unit is the server. Originally, I chose the Jakarta EE 8 server as
required by the assignment, but during the development, I had to upgrade
the version to Jakarta EE 10 – it was, of course, after the discussion with
the supervisor. As a concrete application server implementation, I choose the
Payara server as described in Chapter 5 in more detail. It is a very important
part as it communicates with a majority of other services.

25

6. Design and Architecture

Figure 6.2: Database schema

6.3.2 Database

According to the assignment, I chose the PostgreSQL database for data
storage. It also exactly fits the data consistency and security requirements as
per the requirements of NR-3 and NR-4.

As for the interaction with the database, it is not directly exposed to the
internet. It only communicates with a server and a Liquibase service within the
local network. This is the best practice to minimize potential vulnerabilities
and provide additional security.

26

................................. 6.3. Dockerized Backend

6.3.3 Liquibase

As Martin Fowler describes in his book Refactoring: Improving the Design
of Existing Code [18], the database structure needs to be maintained as the
project evolves. It is definitely a challenging task, especially in a production
environment where any data loss would cause a huge problem. The issue is so
important that Fowler describes it even in more detail on concrete scenarios
in his article Evolutionary Database Design.[19], which is why I incorporated
Liquibase into my system as well.

Liquibase is a service that manages so-called database migrations. Those are
incremental changes to both the database schema and content that are applied
to keep the database schema updated and compatible with the current code.
Thanks to this, the entire system, including the database, can be further
modified without the need to manually make the necessary changes to the
database. This brings the way better maintainability and work efficiency. It
also allows us to make changes in the database without data loss when used
properly. Finally, all this is fully automated and works perfectly as a part of
the continuous integration & continuous deployment process, which will be
described later in more detail.

In the context of the Docker Compose, this service is different from other
services as it does not run all the time. It is only ever started once, for
example, when a new version is deployed, and its purpose is to bring the
database state up to the required state through the migrations, whether it is
modifying the database schema itself or manipulating data.

6.3.4 Nginx

When dealing with any data that might be perceived as private, it is necessary
to use encrypted communication. In my system, I work with many types
of private data like authentication tokens, user items, and more. That is
why I used TLS for communication. According to NIST, TLS is “a security
protocol providing privacy and data integrity between two communicating
applications.” [20]

Setting TLS communication directly on the Payara server would be possible,
but I decided to go differently. I utilized Nginx as a reverse proxy server,
which has a TLS certificate and provides secure connections to clients. It
proxies all requests matching the specified pattern to the Payara server. The
important thing is that the communication between Nginx and Payara does
not have to be secured anymore because it is running in the same virtual

27

6. Design and Architecture
environment, and the requests do not travel over the public internet. There
is also a redirect from HTTP to HTTPS protocol, so users are forced to use
the secured connection.

Another purpose of this reverse proxy server is to add CORS headers to the
responses of external services called from the clients. Namely, there was a
problem that a web browser running the web version of the application blocked
a load of images from external websites in some cases because those websites
returned the wrong CORS headers in a response. Therefore, I decided to
fetch all images from external services through the Nginx reverse proxy.

Last but not least, this brings another advantage, and it is caching. Namely, I
set caching for all requests for images as those are seldom changed, improving
response times and the whole system’s performance. Those resources are
cached for 1 hour or until they take up over 1 GB.

Finally, this server can also work as a load balancer in the future if more
performance is needed. However, it is worth noting that this would bring even
more complexity as it would bring a need for data synchronization across
various servers after write operations.

6.3.5 Certbot

In the previous subsection 6.3.4, I mentioned that the Nginx server has a TLS
certificate so it can provide secured communication. The problem here is the
fact that the certificate from the Let’s Encrypt certification authority is valid
only for 90 days. It is, therefore, necessary to renew it before its expiration.
For sure, it would be possible to do it manually, but it would not be very
wise or effective.

That is why I employed the Certbot. According to official documentation,
“Certbot is a free, open-source software tool for automatically using Let’s En-
crypt certificates on manually-administrated websites to enable HTTPS.” [21]
In other words, it automatically renews the certificate every 60 days.

6.4 External Services

In addition to the actual services running in the docker, the system also
interacts with external services that already exist for the purpose. The

28

................................... 6.4. External Services

majority of them are called from the backend, but for example, Auth0 is
called even from the client.

6.4.1 Auth0

As the NR-4 security requirement implies, user login and related API security
need to be addressed accordingly. For these purposes, I decided to integrate
the Auth0 solution, which addresses this area, into the system. According
to the official documentation, “Auth0 is a flexible, drop-in solution to add
authentication and authorization services to your applications.” [22]

I used this product because it provides a robust and secure user authentication
and authorization solution. It is also possible to use many third-party identity
providers with Auth0 – for example, Google, which I used. Another great
feature is the so-called Actions. They allow for custom JavaScript code to
be run in various situations like user login workflow and many more. As a
result, it is possible to call custom triggers, modify the response token, etc.
In terms of my usage, I utilized this to add user roles and claims required by
the Payara server. The custom Actions code can be seen in the Listing 6.1.

1 exports . onExecutePostLogin = async (event , api) => {
2 const roles = [’user ’];
3

4 if (roles) {
5 api. idToken . setCustomClaim (’https :// payara .fish/mp -jwt/

groups ’, roles);
6 api. idToken . setCustomClaim (’https :// payara .fish/mp -jwt/jti ’,

require (’uuid ’).v4());
7 }
8 };

Listing 6.1: Auth0 Actions script

On the server side, each request from the client app must contain a token
signed by Auth0. This is used to authenticate the user and based on the roles
specified in it, the user can be then either authorized to do a given action
or not. However, the token signature must be verified. A configuration file
can be seen in the Listing 6.2. It is used by the Payara server to verify the
signature of the token. If it is valid, it means that the user provided the
correct credentials to Auth0 and obtained this valid token from it. In this
case, the token is used for user authentication and authorization.

29

6. Design and Architecture
1 mp.jwt. verify . publickey . location =https:// trippidy .eu.auth0.com /.

well -known/jwks.json
2 mp.jwt. verify . issuer =https:// trippidy .eu.auth0.com/

Listing 6.2: Auth0 server configuration for token signature verification

6.4.2 OpenAI GPT API

There has been a huge demand for AI features recently due to its revolutionary
capabilities in natural language processing, decision-making, and much more.
That is one of the reasons why I decided to integrate OpenAI’s GPT-3.5-turbo
into my application.

I choose specifically the GPT-3.5-turbo model for its cutting-edge performance
in reading and generating texts in natural language combined with reasonable
pricing and speed. There are other even more performant models like GPT-4,
but they are slower and more expensive. In addition, I do not need its even
bigger context size and other capabilities. For my use-case of generating item
suggestions based on the context, it is sufficient to use a bit less advanced
GPT-3.5-turbo as it, on the other hand, offers more reasonable pricing and
faster response times, which is very important from the user experience
perspective. Users usually do not want to wait tens of seconds to get a
response if it is just a list of items.

As shown in Figure 6.1, the GTP-3.5-turbo is called from the server and not
directly from the client applications. It has several reasons. One of them has
already been mentioned, and it is security because if it were called from the
client app, the API key would have to be stored directly on the client, and
it could be stolen. But there are other reasons. For instance, daily limits
can be set for each user to prevent overuse. In a production scenario, this
feature would have to be limited so that the application is not in the red
financially. Speaking about financial sustainability, the solution could be that
users would get some free points to use this feature for each advertisement
watched.

Another reason to call it from the server is logging. It is always a good idea to
log at least the errors and exceptions so the problems that were not discovered
during testing can be identified and fixed. Additionally, this way of using the
API through the custom server can prevent various kinds of misuse. There
could be users trying to generate inappropriate content, and if it were called
directly from the client, there would be no way to filter this.

30

...................................... 6.5. Frontend

6.4.3 Let’s Encrypt

When it comes to encrypted communication, there is a need for a certificate
from the Certification authority to verify that the client communicates with
the correct server and not with the potential attacker. I choose Let’s Encrypt
CA for this purpose. According to the official site, “Let’s Encrypt is a free,
automated, and open certificate authority (CA), run for the public’s benefit.
It is a service provided by the Internet Security Research Group (ISRG).”

To sum up, it offers a fully automatic process of both obtaining new certificates
and renewals, and all of this is provided for free.

6.5 Frontend

Based on the reasons mentioned in Chapter 5, I used Flutter for the client
applications. In addition to Flutter itself, I also used several packages
mentioned below.

6.5.1 Flutter Riverpod 2.0

According to the official documentation, “Riverpod is a reactive caching
and data-binding framework that was born as an evolution of the Provider
package.” [23] I use it for state management in the whole application, and
it brings many benefits. The most important one is that it perfectly works
with reactive programming, forcing the programmer to write clean and
maintainable code.

6.5.2 Auth0 SDK

It would be possible to use Auth0 just using HTTP requests, but it would
be unnecessarily complicated. Instead, I decided to use Auth0 SDK for
Flutter, which provides all necessary functionalities – most importantly,
WebAuthentication. One of the significant advantages of using such an SDK
is that it handles key exchange and other cryptography issues. It can be seen
in Figure 6.3 how the whole process works. The important thing here is that
no secret key needs to be kept on the client because it is not safe to store it

31

6. Design and Architecture

Figure 6.3: Authorization Code Flow with Proof Key for Code Exchange (PKCE)
– retrieved from the official documentation [2]

on the client’s device – for example, there is a possible risk of decompiling
the application and misusing it.

6.6 Mobile Application Design

I first created a low-fidelity prototype of the screens shown in Figure 6.4 to
determine how the mobile app works. Of course, the final application looks a
bit different, but it is expected. This low-fidelity prototype’s purpose is to
sketch, very generally, how the application will work, how the screens and
components on them will be roughly arranged, and how the features defined
in Chapter 4 will be implemented.

32

...............................6.6. Mobile Application Design

Figure 6.4: Low fidelity prototype screens

33

6. Design and Architecture
6.7 Integration and Deployment

I also set up so-called continuous integration & continuous delivery. Rossel
nicely describes this concept in his book simply as an automation.

“If Continuous Integration, Delivery, and Deployment could be summarized with
one word, it would be Automation. All three practices are about automating
the process of testing and deploying, minimizing (or completely eliminating)
the need for human intervention, minimizing the risk of errors, and making
building and deploying software easier up to the point where every developer
in the team can do it (so you can still release your software when that one
developer is on vacation or crashes into a tree). Automation, automation,
automation, automation...” [24]

6.7.1 Jenkins

This tool was often recommended during the lectures in software engineering-
related courses, and it has its reasons. It is a very robust and powerful build
server that can be even expanded using various plugins. Namely, I used a
plugin for GitHub integration, allowing me to seamlessly trigger a build based
on the GitHub notifications.

Specifically, using the Jenkins server, it is possible to automatically build a
new version and then deploy it to a test environment, making the development
very efficient. It is unnecessary to run this whole process manually as it is
started automatically whenever a new version is pushed to the master branch
in git. When it happens, GitHub automatically notifies the Jenkins build
server and it pulls the new changes from the remote repository, builds the
whole solution, and deploys it to the testing environment.

The problem that I encountered was the situation that I wanted to run
Jenkins in Docker as well as the rest of the system. The issue here is that
Jenkins needs to call Docker commands on the host machine to deploy a new
version of the Docker containers, but Jenkins itself is running as an isolated
Docker container. Hence, it does not have access to the host machine.

In general, there are two main solutions to this problem. One of them is
to run Docker-in-Docker. However, this might cause unexpected problems.
Therefore, I decided to go another way. It means setting up an SSH server
on the host and then connecting to it from within the Jenkins running as a
Docker container. I found this method in the article by Abhishek Attri. [25]

34

.............................. 6.8. Complete System Overview

Figure 6.5: Jenkins build using GitHub Webhooks - sequential diagram

This SSH server and communication could also be depicted in the deployment
diagram of the whole architecture shown in Figure 6.6, but I did not want to
over-complicate this diagram for readability reasons, so I omitted this fact in
that diagram.

6.7.2 GitHub

It is also worth mentioning that I utilized GitHub Webhooks to automatically
notify the Jenkins build server whenever a new version is pushed to the master
branch so it can immediately start the deployment process. This is faster
and way more effective than if Jenkins would have to ask GitHub whether
there is anything new periodically. The process can be seen in a sequential
diagram in Figure 6.5.

6.8 Complete System Overview

For completeness, I show the extended deployment diagram in this section –
Figure 6.6. Compared to the simplified one, Figure 6.1, shown in the first
section of this Chapter, this extended one also contains the services responsible
for this CI/CD and even services like Certbot, etc., described in previous
sections. This complete diagram can serve as a whole system overview as it
contains all important services and how they are connected.

35

6. Design and Architecture

Figure 6.6: Deployment diagram

36

Chapter 7

Implementation

There are a couple of components of the whole system that deserve to be de-
scribed in a bit more detail. Those are frontend and backend implementations
and also the final application.

7.1 Mobile Application Implementation

The common problem with frontend frameworks is that there are usually
no strict project structure guidelines, which may lead to so-called spaghetti
code. Of course, there are many different recommendations, but ultimately,
it is up to the developer to choose the appropriate way. So I decided in the
end, after analyzing different ways, to stick to the project structure shown in
Figure 7.1. The sample is very simplified for demonstration purposes only. It
is based on the “package by layer” [26] approach, which is usually appropriate
for medium size projects.

In terms of a model layer, I decided to use the same model as is used by the
server DTO model. It greatly improves the process of integration with the
backend. When the application starts, it downloads all necessary data, and
then this data model is changed only by partial updates to avoid unnecessarily
wasting internet resources. This also makes further requests faster, greatly
improving user experience. In some cases, additional requests are not even
needed.

Everything is a widget (a building block of the UI) in Flutter, and these
widgets are combined into more complex ones, resulting in a widget tree. As

37

7. Implementation....................................

Figure 7.1: Client project structure (simplified for demonstration purposes)

Flutter uses the reactive programming paradigm, fields in those widgets are
reactively updated based on the underlying state objects. This separation of
concerns makes the whole application more maintainable and scalable.

As already mentioned in Chapter 6, I decided to use Riverpod for state
management. In terms of usage of this package, I simply create a provider
class for each important entity in the application – a good practice is one
provider per screen. This provider holds the state of a given type. It can be,
for example, a list of trips. In addition, this provider also contains code to
work with this data.

To give an example, there is a login process in the app. Once the user
successfully logs in, the trips provider gets notified and loads the trips for the
current user from the server. While those trips are loaded, a progress circle is
shown, and once they are loaded, a screen (view) is notified and rebuilds itself.
To sum up, there is no code to load data from the server in the view. Instead,
it watches for changes in the provider and rebuilds on any data change.

As for the integration with my backend, I use REST API. I utilized the
Retrofit package for this purpose. It supports endpoint definition using
annotations, which greatly simplifies code. Moreover, I use an interceptor
both to add a bearer token to all requests and to handle error responses. This
error handling is useful, especially when it comes to expired tokens. In this
situation, I try to automatically refresh them using Auth0 SDK and when it
succeeds, the new request is resent again. Only when the automatic refresh

38

............................... 7.2. Backend Implementation

is impossible is a user redirected to the login screen. This way, the user is
not required to login so often, as it is mostly possible to refresh the token
automatically.

7.2 Backend Implementation

According to the assignment, I chose Jakarta EE 8 for the server side (I
upgraded to version 10 as already mentioned in Chapter 5). It is a stable,
well-tested, and production-ready platform for enterprise applications and
information systems.[27]

Similar to the client application, I used a “package by layer” [26] approach
to structuring the project. This proven method is suitable for smaller to
medium-sized applications, which exactly fits the requirements. This way,
the project contains a REST layer for exposing APIs, a service layer for logic
and work with a database, and an essential model layer.

In terms of a model layer, I decided to use both JPA entities for the database
and DTOs for the communication with client applications. This more robust
approach contributes to cleaner code, higher security, and more flexible
integration with clients. When it comes to mapping fields between those two
models, I used the mapper from the Mapstruct package, which simplifies the
whole mapping process significantly.

As I already mentioned, I used JPA in my implementation. According to
Jakarta EE Cookbook, “Jakarta Persistence (formerly JPA) is a specification
that describes an interface for managing relational databases using Jakarta
EE.” [28] In simple words, it enables object-relational mapping (ORM). Hence,
it is possible to work with SQL database tables as if they were objects.

When it comes to database transactions, there is a great way to work with them
in the Jakarta EE environment, as Moraes describes in his book Jakarta EE
Cookbook.[28]. At first, I had to add the following line to the persistence.xml
configuration file as shown in Listing 7.1.

1 <persistence -unit name=" trippidy " transaction -type="JTA">

Listing 7.1: Transactions configuration

After that, all transactions are made automatically in EJB annotated classes.
Therefore, I annotated my services as @Stateless, and every method of this

39

7. Implementation....................................
service is executed as a single transaction. It means that all database changes
that were done inside that method are either flushed to the database after
return or roll-backed if there was any exception thrown.

For communication with a client, I created a REST API. I drew information
from an official Jakarta EE tutorial.[29] Various annotations that are used to
build this API are explained there.

7.3 Final Application

In this section, I show the screenshots of the final application. They were
taken on a physical Android phone running the Flutter native application.
As for the web version, it looks exactly the same, so I decided not to include
it here. I also skipped many screens that were not the most important, like
the edit profile screen, trip invitations screen, and more.

In the first pair of images (Figure 7.2), there is a list of trips where each tile
directly shows a list of members and how many items that are related to the
current user are already checked. This contributes to the possibility of seeing
the progress of preparation. In addition, there are notifications in the top
right corner. At the moment, those are trip invitations but there could be
multiple types of them in the future. It could, for example, notify users about
updates on their items and more.

In Figure 7.3, there is a personal list of items. The important thing here is
that there are all items of the current user – even shared ones. It can be
noticed that those shared items are also present in the shared list in Figure
7.4. This is a nice feature that allows a concrete user to check all of his items
including those that are meant to be shared and also there is a possibility to
see all shared items aggregated from all members in the shared list.

Individual tiles are organized into collapsible categories. Moreover, users can
choose between two views. Either a full view with all categories in one screen
or a tab view where they can select the desired category in a tab bar. This
second one is supposed to be useful for bigger lists that would be too long for
only one screen.

In addition, when using the tab view, a suggestions generator button appears
in the top right corner. This generates suggestions for a category based on the
trip name, category name, and already added items using the GPT-3.5-turbo
model. Generated ideas can be added simply by clicking on them.

40

................................... 7.3. Final Application

Figure 7.2: Final application – trip list and detail

In terms of items, apart from checked flags, they also show important data.
In the personal list, if there is no icon, it means that it is a regular item. A
group icon is for a shared one and the crossed eye represents a private item
that cannot be seen by anyone else.

When tapped on an item tile, an edit screen, shown in Figure 7.5, is displayed.
It is important here that it cannot be shared and private at the same time
because it does not make sense to have shared items that nobody can see. In
the bottom part, there is a price and a list of members who are supposed to
participate in the payment.

This edit screen looks the same way for the Add Item button. The only
differences are the prefilled values and different labels. This contributes to the
overall consistency across the application. It also applies to different types of
lists. There are some changes between them but they are more about limiting
or adding features and the overall user interface stays similar. Thanks to this,
switching between those lists feels very smooth.

Driven by my personal needs and those of my friends, I decided to include
expense-splitting functionality. It can be seen in Figures 7.5 and 7.6. It also
considers completed transactions. This ensures it works correctly even if the
price of an item being split changes or if new items are added or removed.

41

7. Implementation....................................

Figure 7.3: Final application – personal list with AI suggestions

The QR code payment feature is also worth mentioning. It uses a bank account
number of the user profile to calculate the IBAN and generate payment details
in the Short Payment Descriptor (SPAYD) format defined at QR Platba.[30]
This string is then encoded into the QR code and is rendered. There are two
ways to use it. Either it can be scanned by a phone camera when displayed on
another device like a laptop or it can be used simply by tapping it. This tap
allows one to open a mobile banking application and automatically prefills
the required fields.

As the last screen, I included an Auth0 login page which is also consistent
across all supported platforms. It is worth noting that all of those elements
can be customized which might be beneficial in some cases.

42

................................... 7.3. Final Application

Figure 7.4: Final application – shared list and member’s list

Figure 7.5: Final application – item edit screen and payments

43

7. Implementation....................................

Figure 7.6: Final application – payment detail and login screen

44

Chapter 8

Testing and Evaluation

During and after the development process, I also dedicated a lot of effort
to testing. We established a routine of weekly meetings with my supervisor
where I always showed progress which I did. The important thing is that these
consultations also served as mini-testing phases. Thanks to the evaluation
of the progress in those smaller increments, it was possible to identify and
address potential issues early. This approach convinced me that iterative
development and continuous feedback are crucial in software engineering.

Apart from the continuous manual testing, I also implemented various types
of automated tests. They mostly serve as so-called regression tests. According
to Axelrod, “Regression tests are tests that verify that a functionality, which
previously worked as expected, is still working as expected.” [31]

8.1 Unit Testing

Firstly, I implemented unit tests. Namely, it seemed most important to me
to test if the expenses splitting calculator works correctly. Hence, I added
those tests to the client project. A nice thing about Flutter is the fact that
it has a testing framework already prepared to use. All I had to do was to
include a flutter_test dependency.

As for the tests itself, I created a dummy Trip object will all necessary data.
This served as a template for objects used in individual tests. In each test, I
created a deep copy of that template object using a copyWith method. This
allows cloning the object with the possibility to change some of its fields.

45

8. Testing and Evaluation

Figure 8.1: Unit tests results

This approach helped me a lot because I needed slightly different objects for
every test, and this way I did not have to always create it from scratch.

All tests are also absolutely independent of each other and on the rest of
the application. They always test only the things they are supposed to. For
illustration, I included a screenshot of the test results in Figure 8.1

8.2 Integration Testing

Another type of test that I implemented were the integration tests. In my
particular use case, they test the REST API. And since REST is the only
method I use to communicate with the backend, those tests essentially test
the backend.

These tests are very important for several reasons. The first thing is that
they also serve mainly as regression tests, the same as the unit tests. But the
critical thing is that they can help to identify where the problem might be
when some bug appears during development. To be more specific, imagine
a situation where there is a new feature added or updated. It was needed
to edit both backend and client code and now the app does not work, and
it is unclear if the problem is on the server side or in the client application.
Thanks to the integration tests, it can be spotted if the backend part is the
problem or probably not.

I decided to create another Maven project for this. It is because I do not want
those tests to be run during the same Maven life cycle as the main project
because it is not as easy to run the whole system. There are many services
that have to run like database, Liquibase, etc. Therefore, I prefer to have a
separate project that I can run whenever I want, and it is perfectly isolated.

In terms of implementation, I utilized the JUnit 5 framework. As stated on
the official website, “JUnit 5 is the current generation of the JUnit testing
framework, which provides a modern foundation for developer-side testing on

46

.................................. 8.2. Integration Testing

the JVM. This includes focusing on Java 8 and above, as well as enabling
many different styles of testing.” [32] In addition, I used REST Assured for
much simpler and readable writing of tests and Hamcrest for more advanced
matchers. This combination allowed me to write tests in a more clean and
maintainable way. An example of a test can be seen in Listing 8.1. The
precondition of this test is that there is such a user present in the database.
The test then calls the appropriate API endpoint with the correct token of
the logged-in user, and it should receive a response with status code 200 OK
and a JSON body containing the correct ID and email. If there was anything
different, the test would fail.

As all endpoints are secured and available only for logged users, I had to get
a token somehow. I originally generated and changed the token manually,
but it was not too efficient, so I decided to use the Auth0 package for Java,
which allows me to get a token for a concrete user using his credentials. It
also offers an API for manipulation with JWT tokens, which I used.

1 @DisplayName ("Get existing UserProfile should return it")
2 @Test
3 void getExistingUserProfileShouldReturnUserProfileTest () {
4 RestAssured .given ()
5 .auth ()
6 . oauth2 (idToken1)
7 .when ()
8 .get("/my/ userProfile ")
9 .then ()

10 . statusCode (200)
11 .body("id", equalTo (userId1))
12 .body("email", equalTo (userEmail1));
13 }

Listing 8.1: Integration test using REST Assured

In contrast to the unit tests, these ones are not completely independent as
some of them create new data, which is then required by others. Nevertheless,
all of those tests can be run repeatedly as the IDs are uniquely generated. It
is also worth mentioning that even if it was required to run the tests against a
clean database, it is possible to simply remove the volume from the database
docker container, and it can start with a fresh state. Similarly to the unit
tests, I included an illustrative image of the test results in Figure 8.2.

47

8. Testing and Evaluation

Figure 8.2: Integration tests results

8.3 Performance Testing

It is crucial to know what load the system can hold. As Molyneaux (2015)
points out, “Non-performant (i.e., badly performing) applications generally
don’t deliver their intended benefit to an organization; they create a net cost
of time and money, and a loss of kudos from the application users, and
therefore can’t be considered reliable assets. If a software application is not
delivering its intended service in a performant and highly available manner,
regardless of causation, this reflects badly on the architects, designers, coders,
and testers” [33]

Since this is an application that is supposed to enable collaboration in
organizing a trip for multiple users at the same time, it is inherently very
server-dependent. For this reason, speaking about the overall performance of
the system, the biggest issues might be on the server side during the peak
workload. Therefore, I focused on performance testing of the REST API.

During the process, I paid special attention to the number of simultaneously
connected users, the number of requests they generated, and the response
time in that situation. It was also important to test how the server behaves

48

................................. 8.3. Performance Testing

Figure 8.3: Number of Users

when it is overloaded. It must not crash even in that case. Rather it should
reject the connection if it is not able to accept more requests.

I decided to use Locust as the testing tool for this purpose. It was mainly
because it is a highly scalable tool with an official docker image, is well-
documented, and uses Python for test scripts, which makes it easy to use. It
also provides nice visualizations and statistics of the tests that were performed.

In terms of concrete setup, I used different machines for server hosting
and Locust. Those machines were on the same network so the test results
were not affected by my internet connection speed – in production use, it
would run on a cloud or VPS platform, which provides a high-speed internet
connection. Both server and Locust ran in Docker containers. As for the
Locust configuration, there was 1 master node and 10 worker nodes used to
generate requests seamlessly. The server container fully utilized 5 assigned
CPU cores and 5 GB of RAM. Based on my experiments, it was not able to
use more CPU cores so if more performance is needed, there would have to
be created more server copies, and the workload would need to be distributed
among them. Based on the NR-2 (that the system must be able to handle
hundreds of simultaneously active users), I tested with 3000 users – it can be
seen in Figure 8.3. Those users were generating approximately 1500 requests
per second (RPS), as can be seen in Figure 8.4. The requests consisted of
both read and write operations at a ratio of 3:1.

The results show that the system can handle such a workload without any
problem. As can be seen in Figure 8.5, only the response time increases as the
number of requests grows. Nevertheless, even during the peak workload of
3000 simultaneously connected users, the response time is about 2 seconds in
the worst case. The important thing is that there was no single failure during
the testing. All requests were handled successfully. As for the comparison of
read and write operations, the response times for them were essentially the
same – it is shown in Table 8.1 and Table 8.2. This is good because users

49

8. Testing and Evaluation

Figure 8.4: Total Requests per Second

Figure 8.5: Response Times (ms)

will occasionally perform write operations, like adding new items, and those
should also be executed fast.

To be sure how the system will behave during extreme workload, I also tried
to test it with the number of users it is not capable of handling anymore.
Concretely, I tried to generate requests from 20.000 simultaneously connected
users. In that case, the server handled as many requests as it could, and it
simply rejected the rest of them by ConnectionRefusedError(111, ’Connection
refused’). This is the expected and correct behavior for me. It would be
bad if the server crashed or if there were any data loss due to overload. The
plotted results can be seen in Figure 8.6.

Would it be necessary in the future, it is eventually possible to add more
server instances and balance the load using the Nginx reverse proxy server – it
would also serve as a so-called load balancer in this case. However, this would
bring new challenges to be solved. Namely, it would probably be needed
to synchronize data like JPA caches between servers. After adding more
Payara instances, it is likely that the database server will become the new
bottleneck. It might be necessary to add more database servers and again
synchronize data, which could be a much more complex problem. Finally,

50

.....................................8.4. User Testing

Method Name Requests Fails Avg Min Max Size RPS
PUT /api/v1/my/item 53213 0 1659 18 2064 268 399.4
GET /api/v1/my/trip 53204 0 1661 28 2068 61857 399.4
GET /api/v1/my/trip/ebf9... 53165 0 1658 28 2063 46951 399.1
GET /api/v1/my/userProfile 53343 0 1655 21 2067 8181 400.4
Aggregated 212925 0 1658 18 2068 29295 1598.3

Table 8.1: Request Statistics

Method Name 50% (ms) 90% (ms) 99% (ms) 100% (ms)
PUT /api/v1/my/item 1800 1900 2000 2100
GET /api/v1/my/trip 1800 1900 2000 2100
GET /api/v1/my/trip/ebf9... 1800 1900 2000 2100
GET /api/v1/my/userProfile 1800 1900 2000 2100
Aggregated 1800 1900 2000 2100

Table 8.2: Response Time Statistics

even the load balancer can, of course, become a bottleneck. There are some
techniques for this situation, too. It would probably lead to a Round-robin
DNS load-balancing technique. It means that there would be multiple IP
addresses set for a single domain, and each of those IPs would go to a different
load balancer. It can be seen in a diagram shown in Figure 8.7 from an
AWS article.[3] This approach has more benefits. For example, it may solve
the single point of failure problem – if only one loadbalancer was used and
it crashed, then the whole system was unavailable. However, if DNS load
balancing is utilized, other load balancers are probably still running. Another
benefit could be balancing based on the location. For instance, the requests
would go to the Europe servers for European users and to US servers for US
users. The good thing is that the communication would be faster this way.
On the other hand, consistency probably could no longer be optimal due to
the CAP theorem.

“The CAP theorem states that in any massive distributed data management
system, only two of the three properties consistency, availability, and partition
tolerance can be ensured.” [34]

To sum up, it is definitely possible to scale the system up in the future by
adding more server instances or utilizing DNS load balancing. However, based
on the CAP theorem, this would worsen consistency, which is an important
requirement in my application, as stated in NR-3 in Chapter 4.

8.4 User Testing

The most detailed testing I did was user testing. It involved creating test
scenarios simulating the expected real usage behavior. As it was more complex
to organize, I arranged it only once in a later phase of development.

51

8. Testing and Evaluation

Figure 8.6: The performance test for too many users

Nevertheless, I personally conducted smoke tests that were similar to the
given scenarios during the development process. Even though it required
additional time to develop new features, it proved to be more beneficial in
the long run, as fixing it at a later stage would have been more difficult and
could have potentially impacted other parts of the application.

8.4.1 Testing Scenarios

In the following, I want to revisit and elaborate in greater detail on the
testing scenarios previously mentioned. When designing the scenarios, the
goal was to cover the requirements specified in Chapter 4 and to check if a
user can figure out how to do a certain action by himself without too detailed
instructions. I also instructed testers to feel free to share their thoughts and
ideas about the app’s functionalities.

First Login

As a new user, open a freshly installed app and register using email and
password. Try to enter an invalid email and a weak password. After that,
try to enter valid values based on the validator. Once successfully registered,
fill in the additional required user information to start using the app. Log

52

.....................................8.4. User Testing

Figure 8.7: DNS Load Balancing – taken from AWS article Resolve DNS names
of Network Load Balancer nodes to limit cross-Zone traffic.[3]

53

8. Testing and Evaluation
out from this account and create another one. Try to use the Google account
now. Fill user information again, but this time use different values. Once
redirected to the homepage, create a first trip.

Expected outcome:

.A user is not able to create a profile using too weak password..A user is able to switch accounts..A user can create new events.

Add Various Types of Items

Add some items to the personal list and the shared one as well. Try to add
an item to the shared list in two different ways, respectively, from different
places. There should be at least two item categories used. Try to add some
items directly to the already existing category. Mark a few already existing
items as private so future members cannot see them.

Expected outcome:

.A user is able to add new items of various types..A user is able to utilize multiple ways to add items.

Invite More Members

Now, add a user created at the beginning of the trip. Log out and log in
as the first user. Accept the invitation and take a look at the trip details.
Confirm that it is not allowed to delete the trip by a current user, and it is
only possible to leave the trip.

Expected outcome:

.A user is able to add existing members by their firstname or lastname..A user is not able to delete a trip if he is not an owner.

54

.....................................8.4. User Testing

Check the Correct Visibility of Items

Verify that there are already added items in both the shared list and another
member’s personal list. Verify that this user does not see any private items
of the second user.

Expected outcome:

.A user is able to see all shared items from all members in the shared list.A user is not able to see the private items of other members.

Generate Some Suggestions

Try to generate some item suggestions and add a few of them to the list.

Expected outcome:

.A user finds out that he has to switch a view type to be able to generate
suggestions..A user is able to add generated items to the correct category.

Set Prices to Some Items

Mark some items as shared, set a price for them, and choose who is participat-
ing in paying for them. Try to set a different amount of payment participants
for at least two items.

Expected outcome:

.A user is able to set prices for items..A user is able to select multiple members to participate in the payment.

55

8. Testing and Evaluation
Check the Calculated Costs Split

Find a section where the calculated expenses spit is shown. Verify that the
future transactions are correctly calculated.

Expected outcome:

.A user manages to find a place where the future transactions are listed.

Pay the Dept and Check the Costs Split

For completeness, fill in the bank account number of the payee user profile
so it is possible to generate a payment QR code. Log in as the second user
and try to use the QR code to open the banking application and verify that
the filled payment information is correct. Settle the debt by marking the
transaction as completed. Finally, check the list of future transactions again
and confirm that the transaction is moved to the completed ones.

Expected outcome:

.A user is able to add a bank account number to his user profile..A user is able to use the QR code to realize the payment..The transaction is successfully moved to the completed state.

Copy the Trip

Copy the current trip and open its details. Check all the types of checklists
and verify that there are only items that were owned by the current user,
plus shared items from all members. There must not be the private items of
other members. Finally, only the current user should be listed as a member.

Expected outcome:

.A user is able to copy a trip..Only current user’s items and shared items of all members are copied..The current user is the only member in the copied trip.

56

.....................................8.4. User Testing

8.4.2 Participants

The initial question that I encountered was about how many testers would be
required. I read that in most cases, 5 is the optimal amount. This number of
testers usually finds most of the problems, and it is not cost-effective to use
more people. Of course, it depends on the project being tested. If it is an
online banking system, it should definitely be tested more. I drew from the
article Why You Only Need to Test with 5 Users.[35]

As for the concrete people, the testing group consisted of my family and
friends. Their experience with mobile apps varied a lot. While on the one
hand, one of the testers knows almost nothing about mobile apps, on the
other hand, there are a few of them that have a lot of experience with it.
This diversity was good because it led to varied test results thanks to it.

8.4.3 Results Evaluation

The user testing brought multiple insights into how the application performs
regarding usability. Testers also shared their preferences on how they would
like to use the application, which inspired me to reconsider it from a different
perspective and slightly adjust the app’s behavior.

For some participants, it was surprisingly not as straightforward to switch
accounts. All of them managed to register a new profile, but one of them had
problems finding a logout button which is in the navigation drawer, and he
tried to log out by closing and reopening the app, but the currently logged
user is automatically logged in this case. In my opinion, this might be caused
by a lack of experience as the user does not use mobile applications so much.
Nevertheless, it might be worth considering adding a simple tutorial.

A second user is stuck on Google login. There was a problem with multi-
factor authentication (MFA) as she could not obtain a code from the Google
Authenticator app. However, this is not a problem of a tested application
and also that is the reason why I wanted to support classic username and
password access as well. To be able to finish the rest of the scenarios, she
created another user account the same way she created the first one.

Other features were more challenging to find for less experienced users.
Namely, it is an automatic items suggestions generator and setting the bank
account number in the user profile. As for the first one, it was sufficient to
give advice to switch a view type from a list to a tab view. Then, all users

57

8. Testing and Evaluation
Scenario User 1 User 2 User 3 User 4 User 5
First Login On own With help With help On own On own
Add Various Types of Items On own On own On own On own On own
Invite More Members On own With help On own On own On own
Check the Correct Visibility of Items On own Suggestion On own On own Bug
Generate Some Suggestions With help With help On own On own On own
Set Prices to Some Items On own On own On own On own On own
Check the Calculated Costs Split On own On own On own On own On own
Pay the Dept and Check the Costs Split On own With help On own On own On own
Copy the Trip On own On own On own On own On own

Table 8.3: User testing results

were able to find a button and use it. Speaking about the user profile update,
it is related to the navigation drawer again. However, when he found this, he
managed to complete the rest easily.

Apart from usability problems, there was also a suggestion that editing shared
items of other members should be possible. I disabled it because I thought it
was a correct behavior, but based on the feedback, there are some use cases
where it makes sense to allow it. For example, there can be a family group,
and a parent wants to mark the children’s item as checked. After this, I
reconsidered my opinion and allowed all members to edit all shared items.

Finally, there was one bug discovered. It was about a pull-to-refresh feature
that did not load new data. The problem was found because the tester tested
simultaneously both Android and web applications. It allowed him to see the
difference between those two running instances, which would not be possible
on a single instance and switching accounts. After this, I fixed the problem
and verified that it worked correctly by following the same scenario as the
tester did.

58

Chapter 9

Conclusion

The outcome of this thesis is a functional mobile and web application for an
easy organization of events with a focus on checklists management and the
cooperative aspect. The resulting solution was tailored to the given use case
rather than trying to make a checklist app for a general purpose. It uses a
custom backend with multiple services integrated.

As part of the cooperative aspect, I have dealt with the issue of item sharing
and their visibility. In the end, the app contains three types of lists. The most
important one is a personal checklist where users can add items. Furthermore,
there is a shared list where users can see the aggregated shared things from
all members. And finally, users can see the public entities of every member
for inspiration.

The application also provides useful time-saving features like expense splitting
with support to open a banking application with all payment details directly
from the app. Furthermore, it can generate item suggestions based on the
context using the GPT-3.5-turbo model. Past trips can also be reused as
a template for a new one. And finally, it is possible to see the progress of
preparation.

The whole system shown in Figure 6.6 on the page 36 is deployed on a
test server and is working. The primary component is the Flutter mobile
application, which also runs as a web application. As for the Android
application, it is deployed on Google Play in the internal testing phase. It
means it is already digitally signed and ready to be installed on testers’
devices.

59

9. Conclusion......................................
During the development, I utilized and integrated many different technologies
like Flutter for a multi-platform client, Jakarta EE 10 running on the Payara
server, PostgreSQL in combination with JPA for data persistence, Liquibase
for managing the database schema, Nginx as a reverse proxy, Certbot for
automatic certificate renewals. In addition, all this is orchestrated using
Docker Compose. Finally, the whole deployment process is automated using
the Jenkins build server, making it perfectly maintainable and expandable.

There are also several external services integrated. One of them is OpenAI
GPT API for automatic suggestions, and another one is Auth0 for authenti-
cation and authorization. On top of that, there is a communication channel
with Let’s Encrypt CA to keep the certificates updated, and finally, GitHub
communicates with a build server to make the deployment fully automatic.

In terms of testing, I combined multiple types of tests. The first one is
Unit tests. They focus on the computational part, which is expense splitting.
Secondly, integration tests check the REST API and serve mainly as regression
tests. Moreover, I conducted performance tests to verify how many users
the system is capable of handling and how it will behave when this limit is
exceeded. On top of that, I organized user testing with five users with various
levels of experience. They were given the test scenarios. I observed them
and subsequently made an evaluation based on their performance and the
problems found.

Finally, there are still ideas for future work. Speaking about the functionalities,
it would be good to implement some polls for voting. It could even be used for
brainstorming ideas for activities on a trip. When it comes to non-functional
requirements, more performance may be needed if the app becomes popular.
In this case, it will have to be scaled up, and the data synchronization will
have to be addressed as discussed in Chapter 8.3.

60

Bibliography

[1] How many smartphones are in the world? https://www.bankmycell.
com/blog/how-many-phones-are-in-the-world. Accessed: 2023-11-20.

[2] Authorization code flow with proof key for code exchange (pkce).
https://auth0.com/docs/get-started/authentication-and-authorization-
flow/authorization-code-flow-with-proof-key-for-code-exchange-pkce.
Accessed: 2023-04-05.

[3] Resolve dns names of network load balancer nodes to limit cross-zone
traffic. https://aws.amazon.com/blogs/networking-and-content-delivery/
resolve-dns-names-of-network-load-balancer-nodes-to-limit-cross-zone-
traffic/. Accessed: 2023-11-20.

[4] Google keep. https://play.google.com/store/apps/details?id=com.google.
android.keep. Accessed: 2023-05-10.

[5] Tripit: Travel planner. https://play.google.com/store/apps/details?id=
com.tripit. Accessed: 2023-05-11.

[6] How much privacy does one give up by using tripit? https://www.quora.
com/How-much-privacy-does-one-give-up-by-using-TripIt-1. Accessed:
2023-10-29.

[7] Wanderlog – trip planner app. https://play.google.com/store/apps/
details?id=com.wanderlog.android. Accessed: 2023-05-11.

[8] Payara server. https://docs.payara.fish/community/docs/Overview.html.
Accessed: 2023-03-01.

[9] Sqlite vs mysql vs postgresql: A comparison of relational database man-
agement systems. https://www.digitalocean.com/community/tutorials/
sqlite-vs-mysql-vs-postgresql-a- comparison-of- relational-database-
management-systems. Accessed: 2023-02-27.

61

https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
https://auth0.com/docs/get-started/authentication-and-authorization-flow/authorization-code-flow-with-proof-key-for-code-exchange-pkce
https://auth0.com/docs/get-started/authentication-and-authorization-flow/authorization-code-flow-with-proof-key-for-code-exchange-pkce
https://aws.amazon.com/blogs/networking-and-content-delivery/resolve-dns-names-of-network-load-balancer-nodes-to-limit-cross-zone-traffic/
https://aws.amazon.com/blogs/networking-and-content-delivery/resolve-dns-names-of-network-load-balancer-nodes-to-limit-cross-zone-traffic/
https://aws.amazon.com/blogs/networking-and-content-delivery/resolve-dns-names-of-network-load-balancer-nodes-to-limit-cross-zone-traffic/
https://play.google.com/store/apps/details?id=com.google.android.keep
https://play.google.com/store/apps/details?id=com.google.android.keep
https://play.google.com/store/apps/details?id=com.tripit
https://play.google.com/store/apps/details?id=com.tripit
https://www.quora.com/How-much-privacy-does-one-give-up-by-using-TripIt-1
https://www.quora.com/How-much-privacy-does-one-give-up-by-using-TripIt-1
https://play.google.com/store/apps/details?id=com.wanderlog.android
https://play.google.com/store/apps/details?id=com.wanderlog.android
https://docs.payara.fish/community/docs/Overview.html
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems

9. Conclusion......................................
[10] Martin Fowler and David Rice. Patterns of enterprise application archi-

tecture. Addison-Wesley, Boston, 2003.

[11] Flutter vs. react native vs. native: A comprehensive comparison for mo-
bile app development. https://medium.com/@samra.sajjad0001/flutter-
vs-react-native-vs-native-a-comprehensive-comparison-for-mobile-app-
development-601b09e2fa56. Accessed: 2023-09-10.

[12] Flutter. https://docs.flutter.dev/. Accessed: 2023-05-10.

[13] Eric Windmill and Ray Rischpater. No JavaScript bridge. Manning
Publications Co, 2020.

[14] React native vs. flutter: A performance comparison between cross-
platform mobile application development frameworks. https://www.diva-
portal.org/smash/get/diva2:1768521/FULLTEXT01.pdf. Accessed:
2023-09-10.

[15] Keycloak. https://www.keycloak.org/documentation. Accessed: 2023-
09-11.

[16] Firebase auth. https://firebase.google.com/docs/auth. Accessed: 2023-
05-29.

[17] Haroon Shakirat Oluwatosin. Client-server model. https://www.
researchgate.net/profile/Shakirat-Sulyman/publication/271295146_
Client-Server_Model/links/5864e11308ae8fce490c1b01/Client-Server-
Model.pdf. Accessed: 2023-05-20.

[18] Martin Clay Fowler and Kent Beck. Databases, page 73–74. Addison-
Wesley, 2019.

[19] Evolutionary database design. https://martinfowler.com/articles/evodb.
html. Accessed: 2023-10-20.

[20] Transport layer security (tls). https://csrc.nist.gov/glossary/term/
Transport_Layer_Security. Accessed: 2023-10-10.

[21] What’s certbot? https://certbot.eff.org/pages/about. Accessed: 2023-
10-14.

[22] Auth0. https://auth0.com/docs/get-started/auth0-overview. Accessed:
2023-05-23.

[23] Flutter riverpod 2.0: The ultimate guide. https://codewithandrea.com/
articles/flutter-state-management-riverpod/. Accessed: 2023-05-28.

[24] Sander Rossel. Continuous Integration, Delivery, and Deployment. Packt
Publishing, 2017.

62

https://medium.com/@samra.sajjad0001/flutter-vs-react-native-vs-native-a-comprehensive-comparison-for-mobile-app-development-601b09e2fa56
https://medium.com/@samra.sajjad0001/flutter-vs-react-native-vs-native-a-comprehensive-comparison-for-mobile-app-development-601b09e2fa56
https://medium.com/@samra.sajjad0001/flutter-vs-react-native-vs-native-a-comprehensive-comparison-for-mobile-app-development-601b09e2fa56
https://docs.flutter.dev/
https://www.diva-portal.org/smash/get/diva2:1768521/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1768521/FULLTEXT01.pdf
https://www.keycloak.org/documentation
https://firebase.google.com/docs/auth
https://www.researchgate.net/profile/Shakirat-Sulyman/publication/271295146_Client-Server_Model/links/5864e11308ae8fce490c1b01/Client-Server-Model.pdf
https://www.researchgate.net/profile/Shakirat-Sulyman/publication/271295146_Client-Server_Model/links/5864e11308ae8fce490c1b01/Client-Server-Model.pdf
https://www.researchgate.net/profile/Shakirat-Sulyman/publication/271295146_Client-Server_Model/links/5864e11308ae8fce490c1b01/Client-Server-Model.pdf
https://www.researchgate.net/profile/Shakirat-Sulyman/publication/271295146_Client-Server_Model/links/5864e11308ae8fce490c1b01/Client-Server-Model.pdf
https://martinfowler.com/articles/evodb.html
https://martinfowler.com/articles/evodb.html
https://csrc.nist.gov/glossary/term/Transport_Layer_Security
https://csrc.nist.gov/glossary/term/Transport_Layer_Security
https://certbot.eff.org/pages/about
https://auth0.com/docs/get-started/auth0-overview
https://codewithandrea.com/articles/flutter-state-management-riverpod/
https://codewithandrea.com/articles/flutter-state-management-riverpod/

...................................... 9. Conclusion

[25] Configuring ssh connection to a remote host in jenkins (ssh-plugin). https:
//medium.com/cloudera-devops-beyond/configuring-ssh-connection-
to-remote-host-in-jenkins-ssh-plugin-e2e9a00559f1. Accessed: 2023-10-
16.

[26] Package by type, -by layer, -by feature vs “package by layered feature”.
https://proandroiddev.com/package-by-type-by-layer-by-feature-vs-
package-by-layered-feature-e59921a4dffa. Accessed: 2023-03-02.

[27] Antonio Goncalves. Java EE 7 at a Glance, pages 1–22. Apress, Berkeley,
CA, 2013.

[28] Elder Moraes. Jakarta EE Cookbook Practical Recipes for Enterprise
Java developers to deliver large scale applications with Jakarta EE. Packt,
2020.

[29] The jakarta® ee tutorial. https://eclipse-ee4j.github.io/jakartaee-
tutorial/. Accessed: 2023-08-10.

[30] Popis formátu qr platba. https://qr-platba.cz/pro-vyvojare/specifikace-
formatu/. Accessed: 2023-10-20.

[31] Arnon Axelrod and ProQuest Ebook Central (online služba). Complete
guide to test automation: techniques, practices, and patterns for building
and maintaining effective software projects. Apress, New York, 1 edition,
2018.

[32] Junit 5. https://junit.org/junit5/docs/current/user-guide/. Accessed:
2023-10-25.

[33] Ian Molyneaux. Why Performance Test? O’Reilly, 2015.

[34] Andreas Meier. SQL & NoSQL Databases: Models, Languages, Consis-
tency Options and Architectures for Big Data Management. Springer
Nature, Wiesbaden, 1st edition, 2019.

[35] Why you only need to test with 5 users. https://www.nngroup.com/
articles/why-you-only-need-to-test-with-5-users/. Accessed: 2023-10-28.

63

https://medium.com/cloudera-devops-beyond/configuring-ssh-connection-to-remote-host-in-jenkins-ssh-plugin-e2e9a00559f1
https://medium.com/cloudera-devops-beyond/configuring-ssh-connection-to-remote-host-in-jenkins-ssh-plugin-e2e9a00559f1
https://medium.com/cloudera-devops-beyond/configuring-ssh-connection-to-remote-host-in-jenkins-ssh-plugin-e2e9a00559f1
https://proandroiddev.com/package-by-type-by-layer-by-feature-vs-package-by-layered-feature-e59921a4dffa
https://proandroiddev.com/package-by-type-by-layer-by-feature-vs-package-by-layered-feature-e59921a4dffa
https://eclipse-ee4j.github.io/jakartaee-tutorial/
https://eclipse-ee4j.github.io/jakartaee-tutorial/
https://qr-platba.cz/pro-vyvojare/specifikace-formatu/
https://qr-platba.cz/pro-vyvojare/specifikace-formatu/
https://junit.org/junit5/docs/current/user-guide/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/

64

Appendix A

Installation

Installation is a bit more complex due to the certificates, domains, required
SDKs, etc. Please follow the instructions in the Readme files located in the
git repositories for more detailed installation steps. Further steps in this
document are rather for illustration purposes.

Backend

$ git clone https://github.com/koty10/trippidy-server.git
$ mvn clean package
$ docker-compose up

Flutter application

$ git clone https://github.com/koty10/trippidy.git
$ flutter pub get
$ dart run build_runner build --delete-conflicting-outputs
$ flutter build lib/main.dart
install an .apk file from build/app/outputs/flutter-apk

Tests

$ git clone https://github.com/koty10/trippidy-server-test.git
Integration tests can be run using IDE
Performance tests can be run using docker-compose up

65

66

Appendix B

List of Abbreviations

The following list describes the abbreviations used in the paper.

API Application Programming Interface

BE Backend – system layer that mediates communication between clients
and other layers, such as the database

CI/CD Continuous Integration & Continuous Delivery

DNS Domain Name System

DTO Data Transfer Object

FE Frontend – the presentation layer of the system, in this case the mobile
and web applications

FR Functional requirement

JPA Java Persistence API (Jakarta Persistence)

JWT JSON Web Token

NFR Non-functional requirement – quality requirement

ORM Object–relational mapping – a technique for working with tables in a
relational database as if they were objects

REST Representational State Transfer

TLS Transport Layer Security

VPS Virtual Private Server

67

	Introduction
	Related Work
	Google Keep
	TripIt
	Wanderlog
	Summary

	Proposed Solution
	System Requirements
	Functional Requirements
	Non-functional Requirements

	Technology Stack
	Application Server
	PostgreSQL
	Flutter
	Auth0

	Design and Architecture
	System Architecture
	Database Design
	Dockerized Backend
	Server
	Database
	Liquibase
	Nginx
	Certbot

	External Services
	Auth0
	OpenAI GPT API
	Let's Encrypt

	Frontend
	Flutter Riverpod 2.0
	Auth0 SDK

	Mobile Application Design
	Integration and Deployment
	Jenkins
	GitHub

	Complete System Overview

	Implementation
	Mobile Application Implementation
	Backend Implementation
	Final Application

	Testing and Evaluation
	Unit Testing
	Integration Testing
	Performance Testing
	User Testing
	Testing Scenarios
	Participants
	Results Evaluation

	Conclusion
	Bibliography
	Installation
	List of Abbreviations

