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Abstract

In this thesis, the Model Predictive Path Integral control methodology is used to con-
trol a drone. The Model Predictive Path Integral method allows the use of a nonlinear
model of the drone dynamics and a more general cost function at the cost of a high
computational demand. To run the controller in real-time, the sampling-based opti-
mization is performed in parallel on a graphics processing unit. An important part of
the optimization is a correct initialization of the optimization variables — the control
input sequence. A database containing short time-optimal trajectories is proposed to
initialize the variables and guide the controller in real-time. The proposed methods
are tested in two different drone dynamics simulators. These experiments demon-
strate the ability of the controller to fly the drone along a specified sequence of 3D
waypoints, even in an environment with obstacles.

Keywords Unmanned Aerial Vehicles, Automatic Control, Predictive Control,
Model Predictive Path Integral
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Abstrakt

Tato práce použ́ıvá metodu Model Predictive Path Integral pro ř́ızeńı dronu.
Zmı́něná metoda umožňuje použit́ı nelineárńıho modelu dynamiky dronu a obecněǰśı
účelové funkce za cenu vysoké výpočetńı náročnosti. Aby mohl ř́ıd́ıćı algo-
ritmus běžet v reálném čase, optimalizace je prováděna paralelně na grafické
kartě. Důležitou součást́ı optimalizace je správná inicializace optimalizačńıch
proměnných — sekvence ř́ıdićıch vstup̊u. Pro inicializaci proměnných a naváděńı
regulátoru v reálném čase je navržena databáze obsahuj́ı krátké časově optimálńı
trajektorie. Navržené metody jsou otestovány ve dvou r̊uzných simulátorech dy-
namiky dronu. Provedené experimenty demonstruj́ı schopnost regulátoru ř́ıdit dron
při letu podél sekvence bod̊u ve 3D, a to i v prostřed́ı obsahuj́ıćı překážky.

Kĺıčová slova Bezpilotńı Prostředky, Automatické Ř́ızeńı, Prediktivńı Ř́ızeńı,
Model Predictive Path Integral
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Chapter 1

Introduction

Over the past few decades, Unmanned Aerial Vehicles (UAVs), commonly referred to as
drones, have witnessed a large rise in popularity. This can be attributed to the advances in
integrated circuit production, making the hardware smaller, thereby decreasing the space and
weight the UAV needs to provide and carry. Better availability and reduced costs allowed their
massive adoption in several industries, such as surveillance, agriculture, and art [10], [14].

Despite the possible agility and maneuverability, the current applications are unable to use
the full potential of the drones. The dynamic abilities are showcased during drone racing,
where human pilots exhibit a great ability to control the drones while flying through complex
tracks [7]. The challenges of controlling a drone during a fast and agile flight include modeling
obstacles and handling constraints. Traditionally, the flight is planned on a high level as
a path given to lower-level trackers that solve time allocation, and the trajectory is then
tracked by low-level controllers such as Proportional-Integral-Derivative controller (PID). This
hierarchical division allows safe and robust control of the drone. However, it falls short of fully
exploiting the platform capabilities since satisfying the actual physical constraints (e.g., motor
speed limits) is not integrated into the planning itself.

To introduce the constraints directly into the control task, advanced techniques such as Model
Predictive Control (MPC) are used [8]. Researchers have shown that MPC can perform well
but it also has multiple limitations. Namely, the traditional MPC requires a linear system of
the model and imposes restrictions on the form of the cost function and the constraints.

Nonlinear Model Predictive Control (NMPC) is used to alleviate the linear model restric-
tions [4]. It allows the use of a more precise, nonlinear model of the drone dynamics. However,
the other restrictions still hold — an example of this is universal avoidance of non-analytic1,
non-convex obstacles, which is almost impossible to introduce into the MPC framework.

In this thesis, we will explore the capabilities of another predictive control method, namely
Model Predictive Path Integral (MPPI) [15], [19], and apply it to the task of flying through
a sequence of 3D waypoints in a time-efficient and agile manner. Using sampling-based meth-
ods such as MPPI removes the restrictions on the cost function, model dynamics, and state
constraints at the expense of a high computation demand. This demand is satisfied using the
Compute Unified Device Architecture (CUDA) platform, allowing the parallelization of the
calculations on a Graphics Processing Unit (GPU). We will cover multiple possibilities the
framework offers, starting with the ability to track a constant velocity 3D trajectory reference
while satisfying multiple constraints imposed on the controls and states. Furthermore, we will
show the ability to add an arbitrary collision detection module into the control cost function.

1not described by well-known mathematical expressions, such as polynominals and trigonometric functions

CTU in Prague Department of Cybernetics
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As a predictive controller, MPPI takes advantage of having a good estimate of the future tra-
jectory to track and a good initialization of the control inputs. Most current state-of-the-art
approaches to time-optimal multi-waypoint flight split the task into two problems — offline
planning task where a global, time-optimal trajectory is computed [7] and online tracking of
the computed trajectory. However, computing the full time-optimal trajectory (which consid-
ers the full quadrotor model compared to a simpler model such as point mass) requires solving
a complex time allocation problem through numerical optimization and is currently very com-
putationally demanding (requiring minutes or even hours on full-scale computers [9]). This
means that while tracking the preplanned trajectory, unexpected changes to the environment
(e.g., obstacles not included in the planning) can have a detrimental effect on the controller’s
performance since the tracked reference cannot be updated online. In this thesis, we will try
to analyze the possibility of employing the MPPI controller to iteratively select and track
short trajectories (motion primitives) while adapting to the current scenarios in real-time.

This thesis should primarily serve as a proof of concept, showing the ability of the MPPI
controller to control a drone under limited hardware capabilities. We cover reference tracking
and obstacle avoidance, showcasing the advantages and discussing the disadvantages of using
MPPI. Moreover, we propose a novel method of providing the controller with precomputed
time-optimal trajectories as real-time guides to increase the controller’s performance.

1.1 Thesis structure

Chapter 1 presents the motivation and the goals of our work. It serves as an introduction to
the areas of concern and outlines the structure of this thesis.

The fundamentals of optimal and predictive control are covered in Chapter 2. We define the
control problem and introduce methods used to tackle this problem. Most importantly, we
present a sampling-based control framework (MPPI) which serves as a foundation of this
thesis. Finally, we introduce the mathematical model of the controlled system (a drone).

In Chapter 3, we present work already published by other authors in the main areas related
to this thesis. The chapter covers the works on reference trajectory generation and MPPI
improvement, along with a discussion of our contributions and differences to the current
state-of-the-art.

In Chapter 4, we cover generating a set of short time-optimal trajectories (motion primitives),
storing them in a database that allows time-efficient querying, and using them to guide the
MPPI controller. All implementation details are provided in this chapter.

The proposed methods are experimentally verified in Chapter 5. In this chapter, we show that
the controller with all proposed modifications exhibits the expected behavior and works in
multiple environments, even in environments with obstacles. Moreover, we reimplement our
controller in third-party simulation software to ensure and further confirm its correct function.

Achieved results and possible improvements are further discussed in Chapter 6, which also
serves as an overall summary of this thesis.

CTU in Prague Department of Cybernetics
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Chapter 2

Preliminaries

This chapter serves as the foundation of this master thesis, laying the groundwork for the
following chapters. In Section 2.1, we define the problem of optimal and predictive control and
introduce the main algorithm used in this thesis to tackle the problem. Section 2.2 introduces
a mathematical model of the system dynamics used to simulate the system evolution.

2.1 Optimal and Predictive Control

The goal of optimal control is to formulate a control problem as a mathematical optimization
problem and find the optimal values of the optimization variables that minimize a given cost
function while satisfying given constraints. The cost function can range from stabilizing a
system at a given state, tracking a given reference, or minimizing the time needed to transition
from one state to another. The optimization can be formulated in either continuous or discrete
time. In continuous time, the control signals are functions, and the optimization can be carried
out using methods from functional analysis (such as calculus of variations). In discrete time,
the signals are vectors (sequences of real numbers), which is easier to tackle since more tools
are available [3].

One popular methodology is predictive control, which uses the knowledge about the system
being controlled. Among the advantages of predictive control, contrary to controllers such as
PID, is the possibility of leveraging information about future reference and acting accordingly.

In this thesis, we will consider a time-invariant dynamical system with dynamics

xj+1 = f(xj ,uj) j = 0, . . . , N − 1, (2.1)

where x = (x0, . . . ,xN ) is a sequence of the system states xj ∈ Rnx and u = (u0, . . . ,uN−1)
are the system inputs uj ∈ Rnu . Then, a discrete-time, finite horizon optimal control problem
can be formulated as

optimize u∗ = argmin
u

N−1∑
j=0

L(xj ,uj) + E(xN )

subject to

xj+1 = f(xj ,uj) j = 0, . . . , N − 1

h(xj ,uj) ≤ 0 j = 0, . . . , N − 1

x0 = xinit

,

(2.2)

CTU in Prague Department of Cybernetics



4/39 2.1. OPTIMAL AND PREDICTIVE CONTROL

where h are the input and state constraints, xinit is the initial state of our system, L(xj ,uj)
is the running cost function, and E(xN ) is the terminal state cost function. This type of
formulation is called a sequential approach with a fixed initial state, since we fix the initial
state to xinit and express the states (x1, . . . ,xN ) by forward simulation of the dynamics f
from the initial state x0 = xinit, applying the inputs uj . An alternative formulation is the
simultaneous approach, where we use both the states xj and the inputs uj as optimization
variables of the Nonlinear Program (NLP). Simultaneous approaches include direct multiple
shooting and direct collocation [3].

A widely used approach to finding a solution to the problems mentioned above are Newton-type
optimization methods, which apply a variant of the Newton’s method to solve the nonlinear
Karush-Kuhn-Tucker (KKT) conditions. However, describing these methods is out of the scope
of this thesis, and we will rely on optimization software such as CasADi [13] or Acados [11]
to solve the formulated problems.

In the rest of this chapter, we will concern ourselves with the sequential formulation. One of the
simultaneous approaches, namely the multiple shooting method, will appear in Section 4.1,
where the authors of [7] use this approach to formulate and solve a time-optimal control
problem.

2.1.1 Model Predictive Control

Model Predictive Control (MPC) aims to control the system by solving an open-loop opti-
mization problem over N discrete time steps into the future (prediction horizon). The first
control input is then applied to the system, and the optimization is repeated at the next time
step — either starting from scratch or reusing the results of the prior optimization as an
initialization. This results in a closed-loop feedback controller [12].

MPC is widely used for regulation and reference tracking. A linear MPC regulation problem
with constrained state and input values can be formulated as

optimize u∗ = argmin
u

xT
NSxN +

N−1∑
j=0

[
xT
j Qxj + uT

j Ruj

]
subject to

system dynamics

{
x0 = xinit

xj+1 = Axj +Buj j = 0, . . . , N − 1

input and state

constraints

{
xmin ≤ xj ≤ xmax j = 0, . . . , N

umin ≤ uj ≤ umax j = 0, . . . , N − 1

(2.3)

where xj and uj are the system state and input at the discrete time step j, A and B are
the matrices of the state-space system description, S, Q and R are positive semidefinite cost
matrices, N is the prediction horizon, and xmin/max and umin/max are the state and input
limits.

Even though MPC has shown itself to be a very powerful tool and is used in numerous ap-

CTU in Prague Department of Cybernetics
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plications, it comes with multiple disadvantages that researchers are trying to tackle. Most
of the traditional MPC variants require a convex approximation of the cost function and a
low-order (first or second) approximation of the system dynamics [19]. This requirement of
a convex cost function (or at least a smooth function with a few local minima) comes from
the use of the gradient-based optimization methods, and can make the task formulation a
time-consuming problem. It can also hinder the possibility of creating high-level, easily inter-
pretable cost function representations, which can be desired in complex system control, where
explainability is required. For example, including obstacle avoidance in the MPC framework
is challenging without relying on convex and analytical representations of the obstacle re-
gions. With the above-mentioned disadvantages of MPC and possible remedies in mind, we
will present a Monte Carlo sampling approach to solving the optimization task, which allows
for more general settings for the price of increased computation complexity.

2.1.2 Model Predictive Path Integral Control

Model Predictive Path Integral (MPPI) is a predictive control algorithm designed to control
nonlinear systems [15], [19]. The core idea is similar to MPC, however, instead of employing
an optimization algorithm, a Monte Carlo sampling approach is used. This shift to sampling-
based optimization allows for general, non-convex cost criteria [17], [19]. Moreover, since no
gradient-based optimization is used to find and improve the solution, we can utilize simple
encodings of task descriptions with sparse (or nonexistent) gradients.

As MPPI is a predictive algorithm, we need to set a parameterN , which controls the number of
discrete time samples to be evaluated into the future (prediction horizon). Another parameter
is the number of rollouts that will be computed at each iteration, which will be denoted
K. Let us denote the current state estimate as x̂ and the nominal control sequence unom

(sequence of N control actions obtained by initialization or previous optimization iterations).
K disturbance sequences of length N are sampled from a normal distribution with a zero
mean and a covariance matrix Σ. We will use lower index j to denote the discrete time index
and upper index k to denote the rollout index

xk = (xk
0, . . . ,x

k
j , . . . ,x

k
N−1,x

k
N )

uk = (uk
0, . . . ,u

k
j , . . . ,u

k
N−1)

δk = (δuk
0, . . . , δu

k
j , . . . , δu

k
N−1)

 k = 1, . . . ,K. (2.4)

From the initial state x̂, K rollouts are computed by forward simulation of the system dy-
namics, applying the disturbed nominal control

δuk
j ∈ N (0,Σ)

uk
j = unom

j + δuk
j

xk
j+1 = xk

j +∆t · fRK4(x
k
j ,u

k
j )


k = 1, . . . ,K

j = 0, . . . , N − 1.
(2.5)

After the rollouts are computed, each rollout is evaluated by a task-specific cost function (the
lower the cost, the better the trajectory is considering the problem specification)

Sk = ComputeCost(xk,uk), (2.6)

CTU in Prague Department of Cybernetics
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and the costs are transformed into weights (ω1, ω2, . . . , ωK)

ωk =
1

η
exp

(
− 1

λ
(Sk − ρ)

)
, η =

K∑
k=1

exp

(
− 1

λ
(Sk − ρ)

)
, ρ = min{S1, . . . , SK}.

(2.7)
This procedure is essentially the softmax transform used heavily in neural networks to nor-
malize a vector of K values into a probability distribution. Since softmax is invariant to shift
in inputs, we can improve the numerical stability by subtracting ρ = min(Sk) in softmax from
all the costs without changing the resulting weights ωk

ωk(Sk − ρ) =
e−

1
λ
(Sk−ρ)∑K

j=1 e
− 1

λ
(Sj−ρ)

=
e−

Sk
λ e

ρ
λ∑K

j=1 e
−

Sj
λ e

ρ
λ

=
e−

Sk
λ∑K

j=1 e
−

Sj
λ

= ωk(Sk). (2.8)

The weight computation is summarized in Alg. 1, and the whole rollout evaluation is visualized
in Figure 2.1. After computing the weights, the nominal control actions are updated by a
weighted average of the disturbances

unom
j := unom

j +
K∑
k=1

ωk · δuk
j . (2.9)

The parameter λ scales the contribution of the trajectory rollouts to the result based on their
evaluated cost, ranging from taking only the best rollout to averaging all disturbances. When
λ is low, the control disturbances resulting in the best rollout have a significant impact on
the updated control (as λ approaches zero, the weight vector approaches (0, . . . , 0, 1, 0, . . . , 0)
with one at the place of the best rollouts). Conversely, when λ is high, the weight vector
approaches ( 1

K , . . . , 1
K ). The whole algorithm is presented in Alg. 2. To start the algorithm,

we need to initialize the control over the control horizon N . In our case, we will set the input
to zero desired body rates and a constant collective thrust, resulting in a hover state.

x1

w1

w2

δ1

δ2

δ3
xnom
N+1

x1
N+1

x2
N+1

x3
N+1

Figure 2.1: Illustration of MPPI rollout evaluation. The MPPI controller keeps nominal control (N
consecutive control inputs) from the previous optimization iterations. When applied from the current
state x1, the nominal rollout is computed (purple). The nominal control is then perturbed (δ1, δ2,
δ3), and by applying the perturbed actions we receive the perturbed rollouts (other colored curves).
These rollouts are evaluated based on the cost function for the desired task. Here, the task is to fly
through the waypoints w1 and w2 (in order). The rollouts are color-coded by their cost (green - best,
red - worst).

CTU in Prague Department of Cybernetics



2. PRELIMINARIES 7/39

Algorithm 1: Weight Calculation

Input: Rollout costs (S1, S2, . . . , SK)
Params: Parameter λ
Output: Weights (ω1, ω2, . . . , ωK)

1 ρ = min{S1, . . . , SK}
2 η =

∑K
k=1 exp

(
− 1

λ (Sk − ρ)
)

3 for k = 1, ..., K do
4 ωk = 1

η exp
(
− 1

λ (Sk − ρ)
)

5 return (ω1, ω2, . . . , ωK)

Algorithm 2: Model Predictive Path Integral Control

Input: Input initialization uinit, Problem specific cost ComputeCost(xk, uk), System
dynamics fRK4(x

k
j ,u

k
j )

Params: Number of rollouts K and time steps N , noise covariance Σ, time step ∆t

1 for j = 0, . . . , N -1 do // Initialize the control
2 unom

j = uinit

3 while task not completed do
4 x̂ = CurrentStateEstimate()
5 for k = 1, . . . , K do // Simulate K rollouts
6 xk

0 = x̂

7 δk = (δuk
0 , . . . , δu

k
N−1), δu

k
j ∈ N (0,Σ)

8 for j = 0, . . . , N -1 do // N steps into the future
9 uk

t = unom
j + δuk

j

10 xk
j+1 = xk

j +∆t · fRK4(x
k
j ,u

k
j )

11 Sk = ComputeCost(xk, uk) // and evaluate their cost

12 (ω1, ω2, . . . , ωK) = ComputeWeights(S1, S2, . . . , SK) // Alg. 1
13 for j = 0, . . . , N − 1 do // Apply weighted average of

14 unom
j = unom

j +
∑K

k=1 ωk · δuk
j // control disturbances

15 for j = 0, . . . , N − 2 do // Shift nominal control
16 unom

j = unom
j+1 // one step forward

17 unom
N−1 = Initialize(unom

N−1)

We will use the MPPI controller to fly a drone along a specified sequence of 3D waypoints.
The mathematical model of the platform used to simulate the system evolution (line 10 in
Alg. 2) is presented in the following section. The specific implementation of the other required
functions, such as ComputeCost (line 11 in Alg. 2) and Initialize (line 17 in Alg. 2), will be
covered in Chapter 4.
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2.2 Mathematical Model

In this thesis, we want to apply the Model Predictive Path Integral control approach presented
in Section 2.1.2 to fly a drone along a predefined sequence of 3D waypoints. To describe the
state of the drone, we use position p ∈ R3, unit quaternion rotation on the rotation group
q ∈ SO(3) with ∥q∥ = 1, velocity v ∈ R3 and body rates ω ∈ R3, resulting in the complete
state x = [p, q,v,ω] with the following dynamics

ṗ = v q̇ =
1

2
q ⊙

[
0
ω

]

v̇ =
1

m
R(q)

 0
0
Ft

+ g ω̇ = J−1 (τ − ω × Jω) ,

(2.10)

whereR(q) is the matrix representation of the quaternion q, ⊙ represents quaternion multipli-
cation, m is the drone’s mass, and J is the drone’s inertia matrix. At first, we tried to control
the drone on the level of single rotor thrusts T = [T1, T2, T3, T4], which can be converted to
the collective thrust and body torques as[

Ft

τ

]
= ΓT , (2.11)

where Γ is the allocation matrix

Γ =


1 1 1 1

−l/
√
2 l/

√
2 l/

√
2 −l/

√
2

−l/
√
2 l/

√
2 −l/

√
2 l/

√
2

−ctf −ctf ctf ctf

 (2.12)

with l being the drone’s arm length and ctf being the rotor’s torque constant.

However, this resulted in a highly non-smooth motion of the drone since a disturbance to one
of the single rotor thrusts changes all body rates simultaneously. Therefore, we have decided
to control the body rates instead, leaving the motor speed control to the lower-level PIDs.
This allows for a slower update rate (100Hz for body rate control). However, controlling the
body rates does come with some disadvantages. In addition to limiting the body rates and
collective thrust, we also need to ensure that the commanded change in body rates is feasible
(due to motor dynamics, we cannot expect the body rate to change precisely and arbitrarily
as we command). Instead, we introduce desired body rates and collective thrust

u =


Ft

ωxd

ωyd

ωzd

 =

[
Ft

ωd

]
, (2.13)

from which we compute the needed change in body rates over the time step ∆t

ω̇d =
1

∆t
(ωd − ω) , (2.14)

CTU in Prague Department of Cybernetics



2. PRELIMINARIES 9/39

compute the desired body torques

τd = Jω̇d + ω × Jω, (2.15)

and the desired single rotor thrusts generating the body torques τd and collective thrust Ft

Td = Γ−1

[
Ft

τd

]
. (2.16)

We can clip these single rotor thrusts based on the real parameters of the drone motors

Tclip = clip(Tmin,Td, Tmax), (2.17)

and from the clipped rotor thrusts compute the clipped body torques, body rates, and collec-
tive thrust

ω̇clip = J−1 (τclip − ω × Jω) . (2.18)

Finally, we reconstruct the feasible inputs as

ωclip = ω + ω̇clip ·∆t and Ft =

4∑
i=1

Tclip, i . (2.19)
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Chapter 3

Related Work

In this chapter, we will concern ourselves with work in three main areas related to the topic
of this thesis. Section 3.1 addresses flying through a given sequence of waypoints with a drone
in minimal time. More importantly, it discusses possible methods of reference trajectory gen-
erations suitable for this problem. Section 3.2 summarizes the works regarding the use of
MPPI in real-world scenarios where disturbances are expected and need to be handled. We
also discuss some of the advantages of MPPI, mainly the ability to use highly non-convex cost
functions with multiple non-differentiable components. Finally, Section 3.3 contains a possi-
ble approach to advanced initialization of the MPPI controller, using the Rapidly-exploring
Random Tree (RRT) algorithm to find initial estimates of the control input.

3.1 Model Predictive Contouring Control

In [9], the authors tackle the problem of flying through multiple waypoints with a drone in
minimal time. A common approach is to solve the trajectory planning (path planning and
time allocation) and control (tracking the trajectory) separately. Here, the authors utilize
another approach, based on [23], which requires only a continuously differentiable 3D path as
a reference (or a dense sequence of 3D waypoints from which the path is constructed). After
the path is obtained, the Model Predictive Contouring Control (MPCC) controller minimizes
a cost function reflecting the trade-off between tracking the 3D path and maximizing the
progress in time along the path.

When a classical MPC approach is used for reference tracking, we need to specify the time allo-
cation beforehand (i.e., know the desired state at each discrete time step of the optimization).
In Contouring Control, the task is to minimize the 3D Euclidean distance to the reference
path while minimizing the time needed to get to the path’s end (or, equivalently, maximize the
speed along the path). A progress variable θ is introduced, which is used to parametrize the
desired path pd : R → R3. The controller then minimizes the distance between the position
at the current time step pj to the path while maximizing the progress variable θ.

Further, the approaches to adding the waypoint passing to the optimization task are discussed.
Adding the waypoints as hard constraints (i.e., enforcing that the minimal distance achieved
to each waypoint is less than a given tolerance as a constraint on the optimization variables)
quickly yields the problem infeasible. On the other hand, adding the waypoints as soft con-
straints introduces the need for slack variables with additional constraints and costs to tune.
Instead, the authors opt to dynamically change the costs of the optimization task, focusing
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on minimizing the tracking error when near the waypoint and focusing on maximizing the
progress otherwise. This approach is illustrated in Figure 3.1.

ei ej

vi

vj

pi

pj

pd(θi)

pd(θj) pd(θ)

Figure 3.1: Illustration of the dynamic cost adjustment when following the continuously differentiable
path pd : R → R3 as introduced in [23]. In between the waypoints (drone at pi), maximizing the velocity
vi is favored over tracking the reference precisely. When approaching the waypoint (blue circle), the
controller gives higher priority to the path error ej .

The authors further introduce three different methods to generate the nominal reference paths.
The first method computes Multi-Waypoint Minimum Snap1 trajectories [21]. Fourth-order
polynomial trajectories are convenient to use with quadrotors since the continuous differen-
tiability combined with the differential flatness property of quadrotors can be used to derive
full state information at each point. A disadvantage of polynomial trajectories is that due to
their inherent smoothness, they reach their maximal value at a single point and, therefore,
cannot exploit the agility and aggressiveness of the drone to its potential. The authors use this
approach to generate a continuously differentiable 3D path passing through the waypoints in
a receding horizon fashion. This trajectory is then tracked by the MPCC controller (with the
time allocation performed online).

Another approach is the Time-Optimal Full Model. This method makes use of the full non-
linear model of the quadrotor and formulates the time-optimal control problem as a non-linear
optimization task. Compared to the polynomial trajectories, this approach allows to utilize
the full rotor potential throughout the trajectory. This method is used in this thesis and is
therefore discussed in detail in Section 4.1. The authors argue that the high generation time
(up to hours of computation time per trajectory) is not worth spending since only a 3D path
is sufficient (compared to full input and state information).

The last approach computes a time-optimal trajectory for a simpler, point-mass model with
constrained acceleration and velocity. It can be shown that the time-optimal point-to-point
control policy for fixed start and end position and velocity exhibits a bang-singular-bang
behavior with a closed-form solution for the switching times [28]. To find the required multi-
waypoint trajectory, a given number of velocities is sampled at each waypoint, the minimal-
time policy is computed per each pair of velocities at successive waypoints, and the shortest
path is found on the generated graph (e.g., using the Dijkstra’s algorithm). Similarly to the
minimum snap trajectory approach, the path is planned in a receding horizon fashion (planned
only for a given number of future waypoints).

1snap — fourth time derivative of position
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3.2 MPPI Extensions

In most standard settings, the iterative predictive control algorithms (MPC and MPPI) make
use of a warm start - initialization of the solution based on previous optimization. This works
around the implicit assumption that the actual next state of the system is close to the predicted
(nominal) next state. However, in real-world settings with the presence of disturbances, this
assumption may fail, as shown in Figure 3.2. In [16] (based on a nonlinear variant of the Tube-
MPC algorithm [24]), authors try to remove this assumption and improve the robustness of the
controller by running two instances of an MPPI controller (named nominal) in parallel. One
instance uses the actual system state as the initial state, the other uses the nominal (predicted)
state. If the nominal controller obtains a better solution using the actual state compared to
the nominal state, the better solution is used and the nominal state is set to the actual system
state. The nominal states are then sent to a controller designed for disturbance rejection (in
the paper, the authors use an iterative Linear Quadratic Gaussian (iLQG) controller).

(a) (b) (c)

Figure 3.2: In Fig. 3.2a, the MPPI controller computes the nominal input and applies the first input
to the system. However, due to a disturbace (Fig. 3.2b), the system evolution is vastly different to the
predicted evolution (purple curve). If the nominal input is used to initialize the next iteration of MPPI
(Fig. 3.2c), the system may become unable to find a good solution to reject the disturbance and fail.

The authors continue to demonstrate their approach on multiple problem instances. One is
the problem of simulated helicopter landing, where the authors are able to land a helicopter
by designing a highly non-convex cost function with multiple non-differentiable components
(such as the maximum of a set), showing the abilities of MPPI to use such cost functions.

Methods in [2] and [5] further deal with systems where the state evolution is stochastic (due
to modeled disturbances and model inaccuracies) compared to the deterministic model set-
ting. Namely, they deal with a linear, time-variant stochastic system whose dynamics can be
modelled as

xj+1 = Ajxj +Bjuj +wj , (3.1)

where the disturbance wj is assumed to be zero-mean Gaussian (i.e., drawn from
wj ∼ N (0,Σj)) and E[wiwj ]

T = 0 for all i ̸= j. The proposed method consists of three
modules: MPPI controller, half-space generator, and Constrained Covariance Steering mod-
ule. The MPPI controller provides a reference trajectory. Then, constraining half-spaces of
admissible state values are computed, avoiding the obstacle regions. Finally, the CCS mod-
ule is used to find a control policy minimizing the error from the reference trajectory while
satisfying the safety constraints.
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3.3 Guided MPPI methods

An important part of the controller’s performance is a proper initialization of the nominal
control unom (lines 2 and 17 in Alg. 2). Having a reasonable estimate of the control that results
in a low-cost nominal trajectory is vital to the proper function of the controller. Conversely,
when no initialization method is present (such as initializing unom

N to zero at each iteration),
the controller may have problems finding a good value by only sampling disturbances from
the nominal control. Researchers proposed multiple methods to address this issue. In [1], the
researchers run Rapidly-exploring Random Tree (RRT) algorithm [25] to find the path. RRT is
a sampling-based motion planning algorithm that builds a tree rooted at a given start state by
expanding toward samples taken from the configuration space. The algorithm utilizes a local
planner to connect the configurations in the free space and explores the configuration space
until a specified subset of the free configuration space is reached. The solution found by the
RRT algorithm is then used as a mean of the MPPI controller. However, due to computation
complexity, the authors run the RRT algorithm offline prior to the control task, which makes
it impossible to use onboard in an unknown environment.

3.4 Summary

The methods addressing the Contouring Control problem, such as MPCC, introduce an in-
teresting idea of jointly optimizing the distance from a reference path and progress along it.
This may prove advantageous in the setting of minimum-time flight with the use of precom-
puted paths. However, as we have discussed in Section 3.1, using non-linear solvers to solve
the formulated problem requires an approximation of the distance to the reference path, since
finding the nearest point on the path is itself an optimization task. This approximation could
be alleviated by using MPPI, since the closest point on a given path could be computed with
arbitrary precision (or even exactly if the path is given as a sequence of discrete points). Even
though not used in this thesis, this idea which will be addressed in our future research.

The presented work on MPPI mainly discusses disturbance rejection methods. In this thesis,
we will refrain from using stochastic systems and will use deterministic system dynamics
(Section 2.2 covers the exact model used). Other works deal with better initialization methods,
but they often rely on knowing the environment in advance, allowing environment-dependent
time-heavy computations to be carried out off-line before deploying the robot (as discussed
in Section 3.3).

Most of the presented approaches do not reasonably discuss the available computation power
or work with systems where the weight of the full-scale GPUs and their power demand is
not a problem. However, in our scenario, where the maximal weight is limited and using a
high-end, full-scale gaming GPU is not possible, we need to keep those constraints in mind.
This will be discussed in Section 5.4.
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Chapter 4

Methodology

In this chapter, we will introduce our method of controlling a drone using the MPPI control
methodology. In Section 4.1, we will cover the specification of the optimal control problem
for our case, using approaches already presented by other authors. Solving the problem will
give us a set of short time-optimal trajectories (motion primitives). Section 4.2 addresses the
design of a database that stores the motion primitives and allows their retrieval in real-time.
Finally, in Section 4.3, we describe the implementation of the MPPI controller, along with a
discussion of the cost function and the tunable parameters.

4.1 Time-optimal Trajectory Computation

We use a method presented in [7] to compute the time-optimal trajectories. In the paper,
single rotor thrusts are used as the control input u = [T1, T2, T3, T4]. This allows to exploit
the full potential of the platform (saturating the single rotor thrusts) instead of limiting the
body rates. The problem of finding the time-optimal trajectory passing through a predefined
sequence of M waypoints W = (w1, . . . ,wM ) with tolerance dtol is formulated as a non-linear
discrete optimization problem. Progress variables λ ∈ RM×N are introduced to measure the
progress along a track, where λm

j defines the progress at time tj towards completing the m-th
waypoint. At the start of the track, all progress variables start at 1 (λ0 = 1) and have to reach
0 at the end (λN = 0). Each sequence λm has to be non-increasing, decreasing at time step
j only if the states xj are near the m-th waypoint wm. A progress change µ and tolerance
slack ν are introduced to measure and encode the proximity to the waypoints — the meaning
of the optimization variables is visualized in Figure 4.1 and the full problem formulation is
stated in Eq. 4.1.

µm
0 = 0

λm
0 = 1

µm
3 = 1

λm
3 = 0

µm
4 = 0

λm
4 = 0

x0
x1

x2

x3 x4

wm dtol∥p1 − pwm
∥2 > dtol

∥p3 − pwm
∥2 < dtol

Figure 4.1: Illustration of time-optimal trajectory computation from [7]. The progress variable λm

changes by a non-zero change µm only when the drone is in the neighborhood of waypoint wm.
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optimize (x∗,u∗,λ∗,µ∗,ν∗) = argmin
(x,u,λ,µ,ν)

∆t

subject to

system dynamics

{
x0 = xinit

xj+1 − xj −∆t · fRK4(xj ,uj) = 0 0 ≤ j ≤ N

input constraints

{
umin − uj ≤ 0 0 ≤ j ≤ N

uj − umax ≤ 0 0 ≤ j ≤ N

progress evolution,

boundary,

and sequence

constraints


λj+1 − λj + µj = 0 0 ≤ j ≤ N − 1

λ0 − 1 = 0

λN = 0

µj ≥ 0 λm
j − λm+1

j ≤ 0 0 ≤ j ≤ N , 1 ≤ m ≤ M

progress constraint

with tolerance


µm
j · (∥pj − pwj∥22 − νmj ) = 0 0 ≤ j ≤ N , 1 ≤ m ≤ M

−νmj ≤ 0 0 ≤ j ≤ N , 1 ≤ m ≤ M

νmj − d2tol ≤ 0 0 ≤ j ≤ N , 1 ≤ m ≤ M

(4.1)

Even in this formulation, some approximations needed to be introduced. The trajectory is
discretized and divided into a fixed number of nodes between each pair of waypoints. Another
approximation can come from the model mismatch (even more precise methods exist, such as
blade element momentum theory for modeling the aerodynamics of the propellers [18]).

The problem is then solved using a numeric optimization framework, such as CasADi [13].
After the optimization is performed, the solution contains the inputs (single rotor thrusts)
and full dynamic states (position, velocity, rotation, and angular velocity) of the time-optimal
trajectory at each time step.

In order for our method to be usable during a real flight where many different situations
can be encountered, we need to generate various training scenarios for which the motion
primitives will be computed. We do so by randomly generating tracks consisting of a start
and goal configuration and three waypoints to be flown through. From the start configuration,
we generate a random 3D waypoint in a spherical shell centered at the start configuration with
radii rmin and rmax. To ensure a uniform distribution of directions, we generate a 3D vector
consisting of independent samples from three standard normal distributions and normalize
it, which results in a uniform distribution of points on a unit sphere. This vector is then
multiplied by a length sampled uniformly between rmin and rmax (visualized in Figure 4.2).
This procedure is repeated until a specified number of waypoints is generated, with the spheres
centered at the last generated point.

After the tracks are created, we compute the time-optimal trajectories for them using the
method presented above. Three of the tracks and computed time-optimal trajectories are
visualized in Figure 4.3.
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rmin
rmax

r · n⃗

Figure 4.2: Visualization of the training tracks generation. From the current waypoint (grey), the next
waypoint (green) is created in a random direction n⃗ generated uniformly on a unit sphere at a random
uniform distance between rmin and rmax.

(a) (b) (c)

Figure 4.3: Time-optimal trajectories for three tracks. The drone has to fly through the three blue
waypoints (light to dark blue, in order) and end at the final (red) waypoint. The formulation of the
optimization task admits a tolerance and does not require flying exactly through the waypoints.

Algorithm 3: Time-optimal trajectory computation

Input: Number of scenarios to generate N
Params: Waypoint distance limits rmin and rmax

Output: N time-optimal motion primitives (π1,π2, . . . ,πN )

1 for i = 1, ..., N do
2 (w1,w2,w3) = GenerateWaypoints() // Figure 4.2
3 π = ComputeOptimalTrajectory(w1,w2,w3) // Solution to Eq. 4.1
4 j = ClosestState(π, w1) // Index of state closest to w1

5 πi = MoveToOrigin(π[j : end]) // Ensure π starts at (x, y, z) = (0, 0, 0)

6 return (π1,π2, . . . ,πN )

It is important to note that we do not expect that the waypoints used for querying during
the realtime flight will be distributed by the same laws as the waypoint used to generate the
motion primitives. The querying system is designed in such a way that a motion primitive
passing through the query waypoints is returned regardless of the waypoints that generated
the motion primitive. This is covered in detail in the following section.
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4.2 Database of Motion Primitives

In this section, we propose a database-based method for storing and online retrieval of a
precomputed motion primitives. A motion primitive is a short trajectory computed by the
time-optimal planner described in Section 4.1. Since the initital state of the drone is at zero
velocity, we save the trajectory from the first waypoint onwards.

4.2.1 Trajectory storing

Since we have all the data available prior to the flight and can determine the range of the
data, we can use binning metric space-partitioning methods, that is, splitting the space into
bins and saving each data element to a corresponding bin. This approach allows for retrieval
of the relevant bins in a constant time, compared to a logarithmic time complexity of data
structures such as k-d trees or R-trees. Moreover, balancing the trees is needed to ensure the
logarithmic complexity of the search, which brings an additional overhead [26].

To design the database, we first need to analyze the symmetries of the system. First, we
assume translation invariancy of the gravitational field1 and can, therefore, freely translate
the trajectories through R3. Second, we assume rotation invariancy around the world z-axis
(i.e., if a sequence of inputs is applied to a drone rotated around the world z-axis, the trajectory
will be the same as if we applied the input to a drone that was not rotated and rotated the
resulting trajectory by the same amount instead). This results in bins being hollow cylinders
with a given width αxy and height αz. To build the database index, we move all trajectories
so that they start at the origin of the global coordinate frame (done in Alg. 3) and bin the
trajectory states accordingly. The bins and binned trajectories are visualized in Figure 4.4,
and the algorithm for creating the index is outlined in Alg. 4.

x y

z

αxy

αz

Figure 4.4: Visualization of the database structure. Each bin is a hollow cylinder with height αz and
width αxy. States of trajectory inserted into the database (purple curves) are assigned to respective
bins by their 3D coordinates. Parts of trajectories assigned to the highlighted bin are shown in red.

1While not entirely true, the variance of the gravitational acceleration is small enough to be omitted.
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Algorithm 4: DB - Build Index

Input: N time-optimal motion primitives (π1,π2, . . . ,πN )

Params: Partitioning resolutions αxy and αz

Output: Database index D

1 minz,maxz,maxxy = ComputeDataRange(π1,π2, . . . ,πN ) // minxy is 0

2 binsxy = ⌈maxxy

αxy
⌉

3 binsz = ⌈maxz−minz

αz
⌉

4 D = Init((π1, . . . ,πN ) , binsxy, binsz)

5 for i = 1, ..., N do // For each trajectory

6 for j = 1, ..., |πi| do // and each state

7 (x, y, z) = πi[j]

8 dxy =
√
x2 + y2

9 binxy = ⌊ dxy

αxy
⌋ // bin by distance from origin

10 binz = ⌊ z−minz

αz
⌋ // and height

11 AddToBin(D, binxy, binz, (i, j, dxy, z))

12 return D

4.2.2 Resampling the generated trajectories

The time step of the time-optimal trajectory (Section 4.1) cannot be defined prior to the op-
timization and can vary between resulting trajectories. Therefore, we use linear interpolation
to resample all trajectories to the same time step when inserting them into the database2.
The interpolated states are shown in Figure 4.5.
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Figure 4.5: The time-optimal trajectory is linearly interpolated (dashed lines) and the resampled points
are generated on the interpolation with a new time step (points, here ∆t = 0.02 s).

2Even though linear interpolation is not precisely correct for quaternions, we assume that the time-optimal
trajectory is dense enough that the changes between two consecutive states are small. Otherwise spherical
interpolation (slerp) should be used.
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4.2.3 Trajectory retrieval

The next three waypoints (w1,w2,w3) will be used to query the database D for a relevant
motion primitive π. We motivate this decision as follows — we expect that the controller
already has a plan to reach the first waypoint w1 obtained by the previous optimization runs.
Therefore, our main goal is to find a trajectory connecting the first waypoint w1 with the
second waypoint w2. However, selecting an arbitrary trajectory between the waypoints w1

and w2 regardless of the position of the future waypoint w3 could result in highly non-smooth
and aggressive maneuvers. By including the third waypoint w3 in the query, we can leverage
the power of predictive control and prepare to steer the drone towards the waypointw3 earlier,
making the flight smoother and faster. More than three waypoints could be considered indeed.
However, that would make the database sparser (we would need to generate a lot more motion
primitives to be able to handle most of the possible combinations) and may not result in
substantial performance improvements. An example of this can be found in [9].

To find a suitable motion primitive π, we compute the position of the second waypoint w2

relative to the first waypoint w1. Then, we compute the bin in database D to which the
transformed point w2t belongs and retrieve the motion primitives that the bin contains. Since
the bin can contain multiple states belonging to the same motion primitive, we select the state
which is closest to the transformed w2t. This procedure is outlined in Alg. 5.

For each retrieved motion primitive, we find a rotation around the z-axis which aligns the
motion primitive with the second waypoint w2t. From the rotated motion primitives, we select
the one closest to the third waypoint w3

3. The querying process is visualized in Figure 4.6
and the algorithm is outlined in Alg. 6.

x

y

w2t

w1
3t

dxy

ϕw
ϕ∆

ϕπ

π1

d1

(a) Top view

xy

z

dz

w2t

(b) Side view

Figure 4.6: For a query (w1,w2,w3) (blue spheres), three trajectories are found in the database (colored
curves). Each curve passes through a bin containing w2, characterized by the norm of the xy-plane
projection dxy and height dz. The transformed waypoints are rotated by the angle ϕ∆, aligning the
transformed waypoint w2t onto the trajectory π1. Then, we compute the distance of the transformed
waypoint w3t to the primitive π1 (d1). The trajectory resulting in the smallest distance is returned.

3In the implementation, we transform the third waypoint instead of the whole motion primitive for efficiency.
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Algorithm 5: Get Unique Trajectories

Input: Database index D, Bins binxy, binz, Waypoint w

Params: Partitioning resolutions αxy and αz

Output: List of motion primitives and states [(π1, s1), . . . ]

1 dxy = ∥w2t∥
2 z = w2t,z

3 result = [ ]

4 for (i, j, d′xy, z
′) ∈ GetBin(D, binxy, binz) do // State πi[j] with distances d′xy and z′

5 πi = GetTrajectory(D, i)

6 if trajectory i in result and πi[j] is better then

7 Update(result, (πi, j))

8 else

9 Add(result, (πi, j))

10 return result

Algorithm 6: DB - Query

Input: Database index D, Waypoint triplet (w1,w2,w3)

Params: Partitioning resolutions αxy and αz

Output: Motion primitive π

1 w2t = w2 −w1 // Transform everything relative to w1

2 dxy = ∥w2t∥
3 binxy = ⌊ dxy

αxy
⌋

4 binz = ⌊w2t,z−zmin

αz
⌋

5 U = GetUniqueTrajectories(D, binxy, binz,w2t) // Alg. 5

6 ϕw = atan2(w2t,y, w2t,x)

7 d∗ = ∞
8 for (πi, j2) ∈ U do // s = πi[j2] is a state on πi from bin

9 s = πi[j2] // (binxy, binz) closest in R3 to w2t

10 ϕπ = atan2(sy, sx)

11 ϕ∆ = ϕπ − ϕw

12 w3t = Rϕ∆
(w3 −w1)

13 (j3, di) = ClosestState(πi, w3t) // Index and distance of the closest state

14 if j3 ≤ j2 then // Discard trajectories where the third waypoint

15 continue // is reached before the second waypoint

16 if di < d∗ then // No valid trajectory found

17 d∗ = di

18 ϕ∗
∆ = ϕ∆

19 π∗ = πi

20 if d∗ = ∞ then

21 return LinearInterpolation(w1,w2,w3)

22 return Transform(π∗, Rϕ∗
∆
,w1) // Rotate π∗ by ϕ∗

∆ and move to w1
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4.3 Model Predictive Path Integral Control

As described in Section 2.2, the MPPI controller will control the drone on the level of collective
thrust and body rates u = (Ft,ωd). We expect the existence of a higher-level mission planner,
which supplies our controller with the next waypoints W (and optionally with a representa-
tion of the obstacle region O, which will be addressed in Section 5.2.4). The controller then
computes the desired control and sends it to lower-level controllers, which try to track this
control. After applying the control and processing the available measurements ymeas, a state
estimator will provide our controller with an estimate of the current state x̂. This process is
visualized in Figure 4.7.

Mission
Planner

State
Estimator

MPPI
(Figure 4.8)

Drone

O
W

x̂

u = (Ft,ωd)

ymeas

Figure 4.7: Illustration of the main control loop. A high-level mission planner specifies the waypoints
W to fly through and (optionally) the obstacle region O to avoid. The MPPI controller takes those
commands along with an estimate of the current state x̂ and computes the next action input u =
(Ft,ωd) to be applied by the system. The state x̂ is estimated by a state estimator from measurements
ymeas.

Designing and implementing the state estimators and a realistic simulator of a drone is out
of the scope of this thesis. Therefore, for initial testing, we will assume that the real state
is known and the drone is able to apply the commands precisely, resulting in an ideal sim-
ulation that makes the system evolution identical to the mathematical model described in
Section 2.2. Section 5.2 covers the verification of our proposed method under these ideal con-
ditions. However, if applied on a real platform, the controller will not have an exact knowledge
of the dynamical state and the system will not evolve precisely according to the mathematical
model. To test our method under more realistic conditions, we will implement the proposed
methods in yet another, more advanced simulator — this is covered in Section 5.3.

At each iteration, the controller samples disturbances from the nominal control sequence
and computes the predicted trajectory by a forward simulation of the system dynamics (as
described in Section 2.2). After the costs of the rollouts are evaluated (Eq. 2.6) and transformed
into weights (Eq. 2.7), the nominal control is updated, and the first control of the control
sequence is applied to the system. A single iteration is illustrated in Figure 4.8.

The dynamics integration and rollout evaluation are independent over the rollouts, which
allows a parallel approach (Figure 4.9). By implementing the algorithms using CUDA archi-
tecture, we are able to leverage a GPU to achieve the required computation speeds.
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Rollout & Cost
Computation
(Figure 4.9)

Cost
Transform
(Eq. 2.7)

Weighted
Average
(Eq. 2.9)

O

W

x̂

S ω

δ = (δ1, . . . , δK)

N (0,Σ)

u∗

unom

u = (Ft,ωd)

Figure 4.8: Illustration of one MPPI iteration. As input, the controller receives the waypoint sequence
W , the current state estimate x̂, and (optionally) the obstacles O. These inputs, together with the
nominal control sequence unom and the control noise δ are sent to the GPU, where the rollouts and
costs S = (S1, . . . , SK) are computed. The costs are then transformed to weights ω = (ω1, . . . , ωK)
and used to update the control (u∗). The first control of the control sequence is applied to the system,
and the whole control sequence is used to initialize the next iteration.

Drone
Parameters

Rollout
Computation
(Eq. 2.5)

Cost Function
Parameters

Cost
Computation
(Eq. 2.6)

x̂

unom

δ1

δK
K

x1

xK

S1

SK

(S1, . . . , SK)

Figure 4.9: Illustration of MPPI rollout and cost computation on GPU. From the initial state x̂, nominal
control unom = (unom

0 , . . . ,unom
N−1) disturbed by δk = (δk0 , . . . , δ

k
N−1) is applied (green) in parallel over

K CUDA cores (yellow). Resulting rollouts (x1, . . . ,xK) are evaluated by the cost function (blue), and
costs (S1, . . . , SK) are returned from the GPU.

To design the cost function which assigns a real value to each rollout xk with inputs uk, we
start with the standard weighing of input and input change

Sk =
N∑
j=0

∥uk
j ∥2R +

N−1∑
j=0

∥∆uk
j ∥2R∆

, (4.2)

where R and R∆ are positive semidefinite cost matrices, ∆uk
j = uk

j+1−uk
j denotes the change

of input, and ∥ · ∥2P denotes the weighted Euclidean inner product ∥u∥2P = uTPu. The states
xk
j are not used for weighing, since we only expect to penalize high angular velocities, which

can be done by weighing the desired body rates in uk
j .
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To enforce tracking the reference, we introduce a term in the form

N∑
j=0

ρref(x
k
j ,x

ref
j ), (4.3)

where ρref is a metric (or at least an approximation thereof) on R3 × SO(3)× R3 × R3

ρref(x
k
j ,x

ref
j ) = ∥pk

j − pref
j ∥2crefp

+ crefq · dq(qkj , qrefj )2 + ∥vk
j − vref

j ∥2crefv
+ ∥ωk

j − ωref
j ∥2crefω

, (4.4)

with the weighted Euclidean metric used for R3 and weighing coefficients crefp , crefq , crefv and

crefω ∈ R. The Euclidean norm is not a proper metric on SO(3) (quaternion q representing the
rotation) — this can be most prominently seen for quaternions q and −q, which represent
the same rotation in R3, but the Euclidean metric will yield a non-zero result. Therefore,
we need to address this inconvenience when adding the reference tracking part to be able to
handle distances between quaternions correctly. There exist two commonly used options for
the function dq : SO(3)×SO(3) → R. The first one is computing the angle of rotation required
to get from one orientation to the other, which is given by

θ = cos−1(2⟨q1, q2⟩2 − 1), (4.5)

where ⟨·, ·⟩ : SO(3)× SO(3) → R denotes the quaternion inner product

⟨q1, q2⟩ = w1w2 + x1x2 + y1y2 + z1z2. (4.6)

However, the evaluation of this function is computationally demanding, and we will use a
common alternative, which roughly corresponds the exact angle (upto a multiplicative con-
stant)

dq(q1, q2) = 1− ⟨q1, q2⟩2. (4.7)

The advantage of both the exact angle and its approximation over the Euclidean metric is
that it better respects the behavior of quaternions, mainly dq(q, q) = dq(q,−q) = 0. The
comparison can be seen in Figure 4.10.
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Figure 4.10: Comparison of three quaternion distance methods — Euclidean, exact angle (Eq. 4.5),
and approximation thereof (Eq. 4.7). An object makes a full 360-degree rotation around a single axis,
and we compute the distance to a unit quaternion (1, 0, 0, 0). We see that the Euclidean metric yields
a value of 2 when the object rotates fully (and returns to its initial position). In comparison, the angle
and its approximation reach maximum (π and 1, respectively) at 180◦ and report a zero distance after
the full rotation is completed.
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Furthermore, we can make the controller favor trajectories passing in the neighborhood of the
waypoints by adding

−cw ·1xk ∈Ndw (wi), (4.8)

whereNdw(wi) is a neighborhood aroundwi with radius dw and cw is the waypoint completion
coefficient. Since we want to reward the drone for flying through the neighborhood, the value
is subtracted from the total cost. Because flying through the neighborhood is not a hard
constraint, the drone can miss a waypoint if it results in a lower cost (e.g., during an aggressive
turn, where passing through the waypoint would result in an inability to track the reference).
This behavior, along with the effects of the parameter dw, are illustrated in Figure 4.11.

To make the control from the database usable, we also need to push the drone towards a
dynamic state that matches the starting state xπ

0 of the motion primitive π. This can be
achieved by adding another term to the cost function, which penalizes the distance between
the required state and the nearest state (in 3D) on the rollout trajectory

d(xk,xπ
0 ) = ρπ(x

k
j∗ ,x

π
0 ), j∗ = argmin

0≤j≤N
∥pk

j − pπ
0 ∥. (4.9)

For ρπ, we will use a function identical to Eq. 4.4 but will allow different weighing coefficients
for more versatility.

Another tunable parameter is the control noise, defining the covariance matrix Σ (Eq. 2.5).
By tuning the covariance, we are choosing between exploration (high noise allows to explore
a larger part of the input space) and exploitation (lower noise allows faster convergence to a
local minima). The effects of changing the noise variance are shown in Figure 4.12.

2m

0.25m

(a) dw = 0.25m

2m

0.50m

(b) dw = 0.50m

2m

1.00m

(c) dw = 1.00m

Figure 4.11: Illustration of the parameter’s dw effect. The task is to track a reference generated as a
linear interpolation between the waypoints moving at 8m s−1. When passing through the neighborhood
requires an aggressive maneuver penalized heavily by the cost function, the controller may decide to
miss it to better track the reference (Fig. 4.11a). This behavior can be suppressed by increasing the
neighborhood radius (Fig. 4.11b and 4.11c), however, the upper limit depends on the task.
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(a) Σ = diag(1.0, 0.5, 0.5, 0.3) (b) Σ = diag(4.0, 3.0, 3.0, 1.5) (c) Σ = diag(6.0, 8.0, 8.0, 6.0)

Figure 4.12: With increasing variance of the control noise, we need to find a balance between exploita-
tion (low noise, Fig. 4.12a) and exploration (high noise, Fig. 4.12c). The drone should pass through
the waypoints (light and dark blue spheres, in order). When the noise is too low (left), the controller
is unable to change the direction of movement. By increasing the noise, rollouts get more variable.

4.4 Summary

In this chapter, we introduced our proposed method for controlling a drone using the MPPI
controller and split the task into three subproblems. First, we compute multiple short time-
optimal trajectories (motion primitives) for our target drone by specifying the task as a
non-linear program and solving it using an available NLP solver. The NLP formulation was
presented in Section 4.1, along with the track generation algorithm and examples of the
motion primitives. The motion primitives are saved into a database that bins the trajectory
states based on their distance relative to the origin in the z-axis and xy-plane. Building this
database and resolving the queries was covered in Section 4.2. An MPPI controller is then
used to control the body rates and collective thrust of the drone, using the precomputed
trajectories to guide the controller. Section 4.3 discussed the implementation of the MPPI
controller and introduced all parts of the cost function used by the predictive controller.
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Chapter 5

Results

In this chapter, we will verify the proposed methods and present results of the performed
experiments. All tests were run on a computer equipped with an Intel i7-1165G7 CPU and a
GeForce MX450 GPU, running Ubuntu 20.04.

5.1 Database Creation

To fill the database, 1000 motion primitives were generated (as described in Alg. 3). The
waypoints were generated with parameters rmin = 3m and rmax = 6m in a map with a
bounding box of 20x20x20m. Since computing one trajectory can take up to 10 minutes, the
trajectories were computed on MetaCentrum1, which allows computing the trajectories in
parallel. The computed motion primitives are shown in Figure 5.1.

10m

Figure 5.1: Visualization of the 1000 motion primitives computed. A disc with a radius of 10m is added
for scale.

1Computational resources were provided by the e-INFRA CZ project (ID:90254), supported by the Ministry
of Education, Youth and Sports of the Czech Republic.

CTU in Prague Department of Cybernetics



5. RESULTS 27/39

5.2 Proposed Method Verification

At first, all the proposed algorithms are tested in a simple environment where we know
the state precisely and the evolution of the system is given by the same forward dynamics
simulation as the prediction of MPPI, making the prediction perfect. We will generate multiple
tracks (sequences of 3D waypoints) using the same method as in Section 4.1 (Figure 4.2) and
use the proposed methods to fly along them. The values of the parameters used during the
simulations are presented in Table 5.1. Two additional parameters ωxy,max and ωz,max are
introduced that limit the desired control applied to the system2.

Parameter Value Unit

m 0.85 kg
l 0.15 m
ctf 0.05 m
J diag(0.001, 0.001, 0.0017) kgm2

Tmin 0.0 N
Tmax 6.88 N
ωxy,max 15.0 rad s−1

ωz,max 0.3 rad s−1

Table 5.1: Drone parameters (Section 2.2).

5.2.1 Speed of computation

An important value is the time needed for one iteration of the control loop. For us, the upper
limit is 10ms per iteration, corresponding to the update rate of controllers in the MRS UAV
system (discussed in Section 5.3) working on the collective thrust and body rates level (100Hz).
Even though it is possible to use slower update rates in the simulations, we want to satisfy
this limit since our ultimate goal is to test the controller on a real drone. Figure 5.2 shows
how the number of rollouts K and number of prediction steps N affect the iteration time.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

5

10

N

t
[m

s]

K = 64
K = 128
K = 256
K = 512

Figure 5.2: Average time of one iteration of our MPPI control algorithm depending on the number of
rollouts K and number of prediction steps N . To run the controller at 100Hz, we need to keep the
iteration time below 10ms (black dashed line).

2Approach commonly used in other framework that implement MPPI, such as the ROS navigation stack
Nav2, publicly available at https://github.com/ros-planning/navigation2/tree/main/nav2 mppi controller.
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5.2.2 Control input limits

Another important requirement imposed on the controller is to respect the limits on desired
collective thrust, body rates, and single rotor thrusts. In Figure 5.3 and Figure 5.4, we show
that the limits are satisfied and often reached, showing the ability of the MPPI controller to
saturate the inputs and, therefore, use the full agile capabilities of the platform.
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Figure 5.3: An example of the desired single rotor thrusts. The limits are shown as black dashed lines
with values Ti ∈ [0, 6.88] i = 1, . . . , 4.
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Figure 5.4: An example of the controller’s output. The limits are shown as black dashed lines with
values Tcol ∈ [0.0, 27.52], ωx and ωy ∈ [−15.0, 15.0], and ωz ∈ [−0.3, 0.3].
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5.2.3 Flying through the tracks

In the following section, we will present results obtained by flying 100 times through four of the
tracks. Since our task was neither flying as fast as possible nor flawlessly passing all waypoints,
the results serve mainly informational purposes, and the behavior could be changed by tuning
the cost function parameters differently (e.g., not passing a waypoint could be penalized
more to push the controller towards a higher waypoint completion). The references (motion
primitives) are retrieved from the database during the flight and are used to guide the MPPI
controller. An example of the reference trajectories is shown in Figure 5.5. We see that the
results from the database guide the controller reasonably in most of the cases. However, in
the case of the last three waypoints in Track 3, we can also see an example of retrieving an
unsuitable database result, where the drone is forced to change its velocity in an unnecessary
way (but even then is the controller able to track the reference and reach the last waypoint).
The parameter values were tuned by hand to obtain reasonable results — the values used in
the tests are presented in Table 5.2.

(a) Track 3 (b) Track 4

Figure 5.5: Reference trajectories retrieved from the database online during the flight.

Parameter Value Parameter Value

K 512 cw 10000.0

N 20 dw 0.5

λ 10−5 Σ diag(4.0, 3.5, 3.5, 1.5)

RT 0.01 R∆T 0.01

Rωxy 0.2 R∆ωxy 0.2

Rωz 0.2 R∆ωz 0.2

R diag(RT , Rωxy , Rωz) R∆ diag(R∆T , R∆ωxy , R∆ωz)

crefp 100.0 cπp 800.0

crefv 0.1 cπv 5.0

crefq 0.01 cπq 5.0

crefω 0.01 cπω 5.0

Table 5.2: Parameters of the MPPI controller used in our simulation environment
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In Table 5.3, we list the percentage of runs where the drone passed through all waypoints
in the given tolerance, the distance traveled, the time of the flight, and information about
the velocity. The controller is able to pass most of the tracks consistently, as can be seen in
Figure 5.6. The only exception is Track 1, where the controller misses the last waypoint in
approximately one out of five runs (shown in Figure 5.7).

(a) Track 1 (b) Track 2

(c) Track 3 (d) Track 4

Figure 5.6: Visualization of 100 runs on each of the four testing tracks. The trajectories flown by the
drone are shown as purple curves and the task is to fly through neighborhoods of the waypoints (blue
spheres, from light to dark blue). For Track 1, only trajectories that went through all waypoints are
shown in Fig. 5.6a, the unsuccessful runs are shown in Figure 5.7.

Figure 5.7: On Track 1 (Fig. 5.6a), the drone missed the last waypoint in 21 out of 100 tries (all 21
trajectories are visualized here). This can be attributed to an aggressive maneuver needed to change
the direction of flight and could be resolved by tuning the parameters (as discussed in Figure 4.11).
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To test the influence of having a full dynamic state as the reference, we repeated the test with
zero weight on velocity, rotation and angular velocity (cπv , c

π
q and cπω), pushing the controller

only to track the position information of the motion primitive. The results are presented in
Table 5.4. Finally, we test the parameters in Table 5.2, but change the initialization method
(line 17 in Alg. 2) to duplicate the last input instead of using the control input retrieved along
with the motion primitive from the database. The results are presented in Table 5.5.

Track Successful
runs [%]

Distance [m]
(avg ± std)

Time [s]
(avg ± std)

Velocity [m s−1]
(avg ± std)

Max velocity
[m s−1]

1 72 43.75± 5.74 7.06± 1.09 6.43± 2.11 11.28
2 100 35.77± 1.61 6.69± 0.33 5.31± 1.86 9.91
3 100 38.69± 1.34 7.02± 0.19 5.47± 2.33 12.09
4 100 33.37± 0.45 5.26± 0.05 6.40± 2.38 9.80

Table 5.3: Statistical results of 100 runs on each of the four testing tracks - all reference states
used.

Track Successful
runs [%]

Distance [m]
(avg ± std)

Time [s]
(avg ± std)

Velocity [m s−1]
(avg ± std)

Max velocity
[m s−1]

1 79 41.73± 5.67 6.49± 1.20 6.60± 2.07 10.96
2 99 35.57± 1.58 6.51± 0.27 5.39± 1.81 9.56
3 99 38.93± 1.67 6.94± 0.32 5.83± 2.49 12.14
4 100 33.25± 0.44 5.20± 0.07 6.26± 2.37 9.55

Table 5.4: Statistical results of 100 runs on each of the four testing tracks - reference position
used only.

Track Successful
runs [%]

Distance [m]
(avg ± std)

Time [s]
(avg ± std)

Velocity [m s−1]
(avg ± std)

Max velocity
[m s−1]

1 56 44.04± 7.08 7.29± 1.32 6.03± 2.33 11.32
2 79 37.28± 4.11 7.45± 0.91 5.33± 1.94 10.05
3 100 39.14± 1.65 7.15± 0.21 5.56± 2.39 11.10
4 97 33.00± 1.93 5.39± 0.60 6.60± 2.17 9.62

Table 5.5: Statistical results of 100 runs on each of the four testing tracks - all reference states,
without using input from the database.

There seems to be no significant difference between tracking the full dynamic state along the
motion primitive and tracking the position only. This could have been expected even from
the original parameter values used, where the coefficients cπv , c

π
q and cπω had to be set small

compared to the position coefficient cπp to obtain good performance. Increasing the values had
a detrimental effect on the results and resulted in an unstable flight.

On the other hand, using the input from the database shows a great improvement in the
performance over a different input initialization method (such as duplicating the last input).
This serves as a confirmation of the assumption that the input initialization has a large impact
on the controller’s performance.
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5.2.4 Obstacles

One of the key advantages of the MPPI method is the ability to include obstacles in the cost
function and force the controller to avoid them. This can be achieved by adding a term to the
cost function that heavily penalizes states where the drone collides with the environment

S
′
k = Sk +

N∑
j=0

cobs ·1xk
j ∈Cobs (5.1)

where Sk is the original cost of the rollout, cobs is the cost coefficient for the collision term,
and 1xk

j ∈Cobs is an indicator function, which is 1 if the drone at state xk
j is in collision with

the environment. Collision detection can be then performed in multiple ways (e.g., using mesh
collision detection such as Rapid [27] or discrete grid-based methods, such as OctoMap [20]),
and the exact implementation depends on the platform capabilities (e.g., Light Detection and
Ranging (LiDAR)). For our tests, we have used value of cobs = 10000. By adding collision
detection into the simulation environment, we can show that the MPPI controller is able to
handle and successfully avoid obstacles, as visualized in Figure 5.8 and Figure 5.9.

6m

0.8m 1.3m

Figure 5.8: The drone should follow a reference moving at a constant speed of 6m s−1 from left to
right and pass through the neighborhoods of the waypoints (translucent blue spheres). However, due
to the obstacles (grey cylinders), the drone cannot fly directly straight. Trajectories from 100 runs are
shown as purple curves — we can see that sometimes the drone does not pass through the waypoint
neighborhood. That is caused by the cost function not enforcing passing through the neighborhood,
and it can happen that missing a waypoint results in a better cost (e.g., due to aggressive maneuvers).

6m

0.5m

Figure 5.9: The objective of the drone is to track a straight line moving in the y-direction at a constant
speed of 6m s−1 (cyan) and to fly through the waypoints (blue spheres). However, the reference passes
through an obstacle (gray cylinder), which the drone needs to avoid. The rollouts that result in a
collision are heavily penalized (red curves) in comparison to the non-colliding rollouts (green).

CTU in Prague Department of Cybernetics



5. RESULTS 33/39

5.3 MRS UAV system

In the previous section, we have shown that the algorithms work under ideal conditions. How-
ever, this is far from the real world, where we can only estimate the system state and the
evolution of the system is more complex (with effects such as drag and disturbances). To
simulate some of the mentioned deviations and to get closer to the real world, we reimple-
mented and integrated the control algorithm into the multirotor Unmanned Aerial Vehicle
(UAV) control and estimation system developed by the Multi-robot Systems Group (MRS)
at the Czech Technical University (CTU) [6]. Visualizations from the system are shown in
Figure 5.10.

Figure 5.10: Visualization of the MPPI controller controlling a drone in the MRS UAV system. The
images show the waypoint neighborhoods (blue spheres), reference to track (cyan line), the drone, and
its predicted nominal trajectory.

Since the system is slower than the one used in Section 5.2 (with parameters listed in Ta-
ble 5.6), we wanted to increase the prediction horizon while satisfying the controller update
rate fixed at 100Hz. However, it is not as straightforward as increasing the number of predicted
time steps (parameter N). The prediction horizon would be increased indeed, but it would
negatively impact the computational complexity. Firstly, it directly increases the number of
iterations of the dynamics simulation needed. Secondly, it increases the number of optimiza-
tion parameters (N control inputs u), which means we would need to do more rollouts to
determine which input change decreases the value of the cost function.

Another option is to compute the rollouts only every n-th iteration of the controller and in-
crease the controller time step to n ·∆t, applying a constant control in the other iterations.
However, that would mean no state feedback would be used during the other iterations, hin-
dering the controller’s performance in real-world scenarios. To make use of the state feedback,

Parameter Value Unit Parameter Value Unit

m 2.0 kg Tmin 0.371 N
l 0.25 m Tmax 16.48 N
ctf 0.07 m ωxy,max 3.0 rad s−1

J diag(0.033, 0.033, 0.063) kgm2 ωz,max 0.1 rad s−1

Table 5.6: Drone parameters used in the MRS UAV system (Section 2.2).
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we employ an interpolation scheme, and instead of shifting the nominal control by one each
time (lines 16 in Alg. 2), we interpolate between them and run the optimization task every
iteration. In our case, we will use n = 10, resulting in MPPI having the prediction time step
0.1 s but still being able to update at 100Hz.

Since the drone used by the UAV system has different parameters than those used in Sec-
tion 5.2, we would need to recompute the motion primitives imported to the database. Oth-
erwise, the trajectories may not be feasible, and the control inputs would result in different
time evolutions of the system. Due to time constraints and implementation complexity, we
have decided to test the MPPI controller without the database. We used a linear interpola-
tion of the waypoints instead of the motion primitive as the reference (using parameter crefp

to penalize the 3D position distance to the desired position) and penalized the minimal 3D
distance to the next waypoint for each rollout (introducing parameter cwp ).

Values of the parameters used are shown in Table 5.7. The parameters were again tuned by
hand to obtain reasonable results. One notable change is the need to increase the λ value
(from 10−5 used in our simulator to 10−3), which improved the stability of the drone in the
MRS UAV simulator. This means more averaging of the control noise is done, compared to
using only the input that yields the best rollout cost (as discussed at the end of Section 2.1.2).

In Table 5.8, we present the results from flying along a sequence of 11 waypoints (a track similar
to those used in Section 5.2). To generate the reference trajectory, we use linear interpolation
between each consecutive pair of waypoints, with nsteps steps per pair. We measured the
distance to the reference dref and the velocity ∥v∥ during the flight. We show that the controller
is able to track the reference and visit the waypoints reliably until approximately 5m s−1,
where the drone is no longer able to both keep up with the reference and reach the waypoint
neighborhoods.

Parameter Value Parameter Value

K 512 cw 10000.0

N 15 dw 1.0

λ 10−3 Σ diag(1.7, 0.4, 0.4, 0.2)

RT 0.01 R∆T 0.05

Rωxy 0.05 R∆ωxy 0.1

Rωz 0.1 R∆ωz 0.3

R diag(RT , Rωxy , Rωz) R∆ diag(R∆T , R∆ωxy , R∆ωz)

crefp 100.0 cwp 100.0

Table 5.7: Parameters of the MPPI controller used in the MRS UAV system
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nsteps Completed
waypoints

dref [m]
(avg ± std)

dref [m]
(max)

∥v∥ [m s−1]
(avg ± std)

∥v∥ [m s−1]
(max)

200 11/11 0.11± 0.06 0.42 2.20± 0.67 3.91
170 11/11 0.14± 0.08 0.51 2.49± 0.70 4.41
140 11/11 0.15± 0.10 0.73 2.95± 0.70 4.89
110 11/11 0.22± 0.13 0.96 3.53± 0.94 6.14
80 10/11 0.31± 0.16 1.03 4.47± 1.27 7.78
50 5/11 0.53± 0.40 2.00 5.21± 1.61 8.45

Table 5.8: Results of flying through a track in the MRS UAV system with increasing speed of
the reference.

5.4 Discussion

All tests were run on a laptop with a dedicated graphics card (GeForce MX450 GPU with
896 cores operating at frequency 720MHz), which brings up the question whether a sufficient
computational power could be made available on a real drone. Thanks to the recent demand
for AI application in robotics and to the advances in mobile graphical computing, it is possible
to meet the requirements by using energy-efficient graphical modules. One such example are
the Jetson Orin Nano Series modules developed by NVIDIA, offering 512 cores running at
frequency 625MHz in the lowest configuration3. In our experiments, we have used upto 512
rollouts, therefore, the number of cores is sufficient to run the tests. Moreover, even though
the frequency is lower by approximately 15%, we believe that it is possible to safely meet the
required 100Hz update rate by further code optimization4. We plan to test the algorithms on
a real drone in the near future.

Multiple other tricks and ideas from the realm of predictive control could be used to improve
the performance of our algorithms. An example would be the so called Delay compensation
by prediction [3]. The time of the computation of each iteration can be expected to be very
consistent thanks to a fixed number of computations performed per iterations, in contrast to
iterative optimization algorithms, that run until convergence (or the time limit). Therefore,
instead of addressing the problem starting at the current state, we can forward-simulate the
system and start the optimization at a state at which the system will be when we will have
computed the optimization iteration. We did not implement this idea in order to first test and
validate our original method. However, for the real-world deployment, implementing such a
trick is planned to increase the performance of the algorithms.

3https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/ , accessed at Nov.
20, 2023

4A lot of data was being saved solely for the purpose of later visualization, which would not be needed in
real deployment.
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Chapter 6

Conclusion

This thesis dealt with the task of flying a drone along a given sequence of 3D waypoints
using a sampling-based model predictive methodology to contol the drone at the level of
body rates and collective thrust. In Chapter 2, we introduced the problem of optimal control
and presented the main control algorithm — Model Predictive Path Integral (MPPI). We
presented the mathematical model of a drone controlled by collective thrust and body rates
and discussed a way to include low-level constraints (single rotor thrusts) into the task, thereby
increasing the ability of the controller to fully exploit the platform potential.

A vital part of the controller’s function is a good initialization of the nominal control, which
is then adjusted by a weighted average of the sampled disturbances based on the task-specific
cost function. In Chapter 4, we covered a method of computing short time-optimal trajectories
(motion primitives) and designed a database able to store them and allow efficient retrieval
in real-time. We discussed the design of the cost function and used the motion primitives to
guide the controller while flying through generated tracks.

In Chapter 5, we verified the correct behavior of the proposed method. We showed the per-
formance of the controller in multiple setups and demonstrated the importance of correct
control input initialization. Moreover, we confirmed the ability of the controller to easily in-
clude obstacle avoidance in the planning, which is one of the most prominent features of the
sampling-based methodologies. Finally, we implemented the MPPI algorithm into a third-
party simulator and shown that the controller is able to work under more realistic conditions
(namely, when lower-level dynamics and constraints are considered).

A part of Section 5.4 discussed the computational resources needed to run the proposed
algorithms in real-time and compared the resources used to ones available on a real drone. We
expect that our implementation of MPPI will be able to run on an actual drone in real-time
after a few minor modifications, and we intend to conduct such experiments for a planned
journal publication. In this thesis, we showed that the MPPI methodology may become a viable
addition to other predictive control methods used for agile drone control, such as Nonlinear
Model Predictive Control (NMPC) — mostly thanks to the ability to add almost arbitrary
objective terms and constraints without a large increase in the computational complexity.
A lot of research is yet to be concluded, however, we believe this thesis may serve as the
groundwork for further work on MPPI in the Multi-robot Systems Group (MRS) at CTU
Prague. Moreover, the implementation of the algorithms presented in this thesis required us
to design and combine Compute Unified Device Architecture (CUDA) code with other systems
that are already in use by other researchers in the group (e.g., Eigen [22]) in a memory-efficient
manner. This contribution could serve as a foundation for other GPU powered applications,
since this is the first controller implementation in the group using the GPU directly.
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Appendix

Attachments

The attached file multimedia.zip contains videos of the flights described in Section 5.2 and
Section 5.3.
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