
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Laboratory IS for Measuring Field
Biochemical Data of Athletes

Bc. Lukáš Šimon

Supervisor: Ing. Ivo Malý, Ph.D.
Field of study: Open Informatics
Subfield: Software Engineering
January 2024

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

483810 Personal ID number: Šimon Lukáš Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Open Informatics Study program:

Software Engineering Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

Laboratory IS for measuring biochemical data of athletes in the field

Master’s thesis title in Czech:

Laboratorní IS pro měření terénních biochemických dat sportovců

Guidelines:

Analyze the measurements of biochemical and physiological data outside the laboratory conditions. Focus on the sample
collection, sample analysis and transfer of results to athletes and coaches.
Based on the analysis, design a desktop application for direct data collection from measuring devices, an application for
visualization and management of the data from measuring devices used by the laboratory technicians, and an application
for data visualization by the athletes and coaches.
Implement the proposed applications using appropriate multi-platform development tools.
Test the resulting applications on real-life data from the laboratory.

Bibliography / sources:

Axelson, Jan. Serial Port Complete: The Developer's Guide. Lakeview Research LLC, 2007.
Goodman, Elizabeth, and Mike Kuniavsky. Observing the user experience: A practitioner's guide to user research. Elsevier,
2012.
Flutter Documentation, https://flutter.dev/.

Name and workplace of master’s thesis supervisor:

Ing. Ivo Malý, Ph.D. Department of Computer Graphics and Interaction FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 09.01.2024 Date of master’s thesis assignment: 14.08.2023

Assignment valid until: 16.02.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Ivo Malý, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

iv

Acknowledgements
I would like to hereby thank Ing. Ivo
Malý, Ph.D. for his professional super-
vision and guidance throughout work on
this thesis. I would also like to express my
gratitude towards my family, friends and
my beloved girlfriend for their unending
support.

Declaration
I declare that I have prepared the submit-
ted thesis independently and that I have
listed all the information sources used
in accordance with the Methodological
Guidelines on the observance of ethical
principles in the preparation of university
final theses.

In Prague, 7. January 2024

v

Abstract
In the world of competitive sportsman-

ship, athletes are required to perform at
the edge of what their body is capable of.
Monitoring and assessing specific biomark-
ers can give insights into the appropriate-
ness of the training load and possibly aid
the adjustment of the preparation. To
automate and streamline the currently
manual process, an information system
consisting of a mobile and desktop ap-
plication is introduced. The situation is
thoroughly analyzed to find flaws that
may be fixed and sections of the process
that could be optimized. The whole sys-
tem is designed and implemented using
state-of-the-art technologies such as Flut-
ter for performance and multiplatform in-
terfaces and Supabase for real-time data
storage. Finally, after iterative develop-
ment, the solution is adequately tested.
The interface was designed with minimal-
ism in mind and to be as intuitive as pos-
sible.

Keywords: Flutter, Mobile applications,
Desktop applications, Supabase, Dart

Supervisor: Ing. Ivo Malý, Ph.D.
Praha 2,
Karlovo náměstí 13,
E-418

Abstrakt
Ve světě kompetetivního sportu jsou

atleti nuceni k výkonu na hranici jejich
fyzických schopností. Monitorování a hod-
nocení specifických biomarkerů může po-
skytnout vhled do vhodnosti tréninkové
zátěže a případné pomoci při úpravě jejich
přípravy. Pro automatizaci a zefektivnění
aktuálně manuálního procesu je zaveden
informační systém skládající se z mobilní
a desktopové aplikace. Situace je důkladně
zanalyzována k nalezení nedostatků, které
by mohli být opraveny, a částí procesu,
které by mohly být optimalizovány. Celý
systém je navržen a implementován s po-
užitím moderních technologií jako je Flut-
ter pro jeho výkon a multiplatformní mož-
nosti a Supabase pro ukládání dat v reál-
ném čase. Nakonec, po iterativním vývoji,
je řešení adekvátně otestováno. Rozhraní
bylo navrženo aby bylo co nejvíce jedno-
duché a minimalistické.

Klíčová slova: Flutter, Mobilní
aplikace, Desktopová aplikace, Supabase,
Dart

Překlad názvu: Laboratorní IS pro
Měření Terénních Biochemických Dat
Sportovců

vi

Contents
1 Introduction 1
2 Analysis 5
2.1 Current situation 5
2.2 Devices . 6

2.2.1 Super GL2 7
2.2.2 Spotchem Arkray 7
2.2.3 Afias-1 . 8
2.2.4 Opti CCA TS2 8

2.3 User roles . 10
2.4 Requirements 10

2.4.1 Desktop application 11
2.4.2 Mobile application 11
2.4.3 Server . 12

2.5 System communication 12
3 System design 15
3.1 System Architecture 16
3.2 User Interface Design 18

3.2.1 Desktop application 18
3.2.2 Mobile Application 26

3.3 System’s user management 29
4 Implementation 31
4.1 Flutter . 32
4.2 Libraries . 33

4.2.1 Riverpod 33
4.2.2 Hive . 34
4.2.3 Lottie . 34
4.2.4 Serial port 35
4.2.5 Go Router 35
4.2.6 Bitsdojo window 35

4.3 Application architecture 36
4.3.1 Service 36
4.3.2 Controller 36
4.3.3 Repository 37
4.3.4 User Interface 37

4.4 Supabase . 38
5 Testing 43
5.1 Software Testing 43

5.1.1 Test coverage 44
5.1.2 Found problems 44

5.2 Expert review 45
5.2.1 Selected Users 45
5.2.2 Testing scenarios 46

5.3 Testing results 49
5.3.1 Critical errors 49
5.3.2 Low impact errors 50

6 Conclusion 53
7 Future work 55
Bibliography 57
A Installation process 61

vii

Figures
2.1 Current situation diagram 6
2.2 Devices . 9
2.3 Communication schema 12

3.1 System’s Architecture 16
3.2 Proposed situation diagram 17
3.3 Dashboard navigation 19
3.4 Event card 19
3.5 Device card 20
3.6 Administrator card 21
3.7 Subject card 22
3.8 Table actions 23
3.9 Data view actions and Devices . 23
3.10 Dashboard screen 24
3.11 Device control screen 24
3.12 Subject control screen 25
3.13 Administrator screen 25
3.14 Data control screen 26
3.15 Login screen and trainee screen 27
3.16 Home screen personal 28
3.17 Detail screen 28
3.18 Social login diagram [8] 29

4.1 Application’s Architecture 40
4.2 Supabase parse method 40
4.3 Supabase data hierarchy 41

Tables
2.1 User roles . 10

5.1 Errors found by unit testing 44
5.2 Critical errors 50

viii

Chapter 1
Introduction

Professional athletes and soldiers are often tested to ensure their training is
appropriate and their values, such as cortisol level, blood sugar, and others,
are in a reasonable range. To provide those measurements and to deliver
valuable feedback, Casri, a scientific and service company for physical educa-
tion and sport, is working with elite sportsmen and the army to take blood
samples, analyze them, and give back reports with information that may lead
to adjustments in training load, their dietary regime, and other parts of their
preparation that may be affected.

Currently, the collection process and the data delivery are barely automated
and, if executed inaccurately, can easily introduce many errors. After taking
the samples and measuring them in respective devices, the results of the
measurements are written into an Excel sheet value by value by hand from
either the display of the machine or from a piece of paper printed by the
device. After analysis of the data by a professional technician, the feedback is
sent, depending on specifications, to the sportsmen, their trainers, or both to
allow them to act on it accordingly and in time. The results are transferred
via an E-mail with the Excel sheet attached to it and protected only with
a password, which can lead to information leaks and can be tedious. It is
also worth mentioning that the Excel sheet, while being sort of an indus-
try standard in some fields, may not be as easy to comprehend for some people.

Overall, this approach can lead to problems in several areas. Firstly, one
can easily make typos by writing values manually into the Excel sheet or
simply by misreading the values from the devices. Secondly, it makes the
whole process unnecessarily slow and cumbersome and burdens medical pro-
fessionals with repetitive tasks. Moreover, all the measuring devices expose an
interface for transferring data to, for example, a laptop, thus creating a great
opportunity for improvement and dramatic speedup in process execution.
The interface allows for automated data retrieval and visualization, removing
the need to read the values from a tiny display or paper and for manual
writing, hence minimizing the chance for human errors.

1

1. Introduction
The proposed system aims to use the automation opportunity and, there-

fore, reduce repetitive tasks and streamline the whole procedure through
software. A desktop application should be developed to autonomously read
the measured data from medical devices, display them to technicians for
evaluation, and potentially export them into various formats to make further
analysis possible in other tools made for such purposes. A mobile application
for the sportsmen or soldiers and their trainers would then provide in-time
insights on the results of the measuring, allowing them to cut the waiting
time and potentially avoid inappropriate intensity of training.

The use of state-of-the-art technologies such as Flutter, a software develop-
ment toolkit created for rapid development of multi-platform applications,
and supabase, a backend as a service tool providing scalable data storage
with the possibility of real-time data reads and writes, an edge functions so-
lution and analytics console, makes the development time significantly smaller.

User interface design and user experience engineering are also two important
aspects of any application development cycle; this thesis and the proposed
applications are no exception, and in both, the pressure was put on making
them appealing and, more importantly, highly functional while also main-
taining familiarity through usage of components traditional for their platforms.

Together with the existing infrastructure, these applications can signif-
icantly improve the current situation. By lowering the time needed for
collection, analysis, and delivery of measurements and their resulting feed-
back, as well as providing a system that is less error-prone and more secure,
the solution brings a more seamless experience for all parties involved and
strives to mitigate the problems.

For the solution to be considered successful, it is vital not to introduce
new issues and to avoid complicating the procedure by being overly complex,
difficult to understand, or unnecessarily technical. A large amount of the
functionality should be effectively hidden from all the users and happen
automatically to make sure there is no need for extensive training for both
current and future employees, thus making the transition from the old system
to the new one quicker.

This thesis covers a comprehensive analysis of the current situation and
how the procedure is executed, as well as studying what devices are used,
for what purpose, and what biomarkers they measure. It also goes through
the roles of users to better understand their needs. This is followed by a
design cycle that proposes changes that should simplify the current execution
and hide some portions of it by automation. System architecture design is
introduced in this part, and interface design finishes the chapter. The solution
is developed based on the two previous chapters. Implementation is done
using only tools that meet standards for portability, speed, and functionality.

2

......................................1. Introduction

The system is extensively tested throughout the development cycle, ensuring
stability. Lastly, the work is summarized in a brief and concise conclusion.

3

4

Chapter 2
Analysis

In order to achieve professional levels of performance, athletes must engage
in strict training routines that can potentially result in injuries or illnesses.
Additionally, their sleeping patterns and dietary habits play a crucial role in
their preparation. It is crucial to regularly assess and validate all these fac-
tors, as adjustments may be necessary to ensure optimal physical functionality.

The article Monitoring Training Load to Understand Fatigue in Athletes [3]
states that to minimize the risk of injury, illness, and other problems related
to inappropriate training load, it is vital to monitor specific biomarkers.
Those may show how well an athlete is adapting to the training program and
can signalize a need for a change in intensity. It also emphasizes that even
though said monitoring is essential, the system for monitoring needs to be
intuitive, and the reported feedback should be simple yet valid. Improving
performance can be difficult for elite sportsmen. Adjustments in the frequency
and duration of the training sessions are likely to occur, and they can be
adjusted often, mentions another part of the article.

As described in the article Blood-Based Biomarkers for Managing Workload
in Athletes [6], there are many biomarkers that are potentially useful for
monitoring the training load, and recent developments show a shift from
single biomarker measurement to multiple markers. Established biomarkers
like creatine kinase or lactate can prove to be helpful and can be measured
quickly. However, their usefulness is not as high as if practitioners capture
them along with other markers to assess the situation more thoroughly.

2.1 Current situation

After taking the samples, biomarkers are measured by four types of devices
described in section 2.2. Those devices are made by different manufac-
turers for different purposes and provide unique data in different formats.
This makes it harder to automate the process as there is no uniformity in
the data output or the data transfer. Ideally, all of that should be hidden
from users of the system and form a uniform interface for more effortless work.

5

2. Analysis
After receiving the data, it is written in Excel by hand and it is processed

there. This can quickly lead to human errors. The analysis is also conducted
using an Excel sheet and does not pose any threat from a technical standpoint;
however, the data collection does. It could and should be automated in the
system to remove the potential for mistakes in the manual reading and writing
of the data and to speed up the whole process by a large margin. The current
situation is depicted in figure 2.1.

Figure 2.1: Current situation diagram

2.2 Devices

This section is dedicated to going through all four devices that are being used
and brief description of them. It will also review the biomarkers that can
be measured from the samples and evaluated. Some of those markers are
measured, but some are calculated. This thesis does not try to explain those
markers in detail as it is out of the scope. The goal is only to illustrate what
values are used. The devices are also connected to the laptop differently using
various cables. For this purpose, it is necessary to have a hub to connect all
of them to the laptop.

6

....................................... 2.2. Devices

2.2.1 Super GL2

Is a device that allows to measure glucose, lactate, and hemoglobin simulta-
neously from one sample. The device is displayed in the image 2.2d.

Cable used for connection: Six pin RJ

Values being measured:

.Glucose (mmol/L). Lactate (mmol/L)

2.2.2 Spotchem Arkray

Is an automated biochemical analyzer using a dry chemistry system depicted
in an image 2.2c.

Cable used for connection: Six pin RJ

Values being measured:

. Urea (mmol/l). Biliruben (µmol/l).AST (µkat/l).ALT (µkat/l). LDH (µkat/l). CK (µkat/l).Albumin (g/l).T-Pro (g/l). Creatine (µmol/l).Alkaline phosphatase (µkat/l). Hdl cholesterol (mmol/l).Total cholesterol (mmol/l).Glucose (mmol/l)

7

2. Analysis
2.2.3 Afias-1

Is a compact immunoassay analyzer demonstrated in the picture 2.2a.

Cable used for connection: Mini usb

Values being measured:

. Cortisol (nmol/l).TSH (uIU/ml). CRP (mg/m). IL6 (pg/ml)

2.2.4 Opti CCA TS2

Is Blood Gas and Electrolyte Analyzer and could be seen in a picture 2.2b.

Cable used for connection: Usb b

Values being measured:

. pH. pCO2 (kPa). PO2 (kPa). BE (mmol/l). HCO3 (mmol/l). BEecf (mmol/l). stHCO3 (mmol/l). SO2 (%). Na+ (mmol/l).K+ (mmol/l). Ca++ (mmol/l)

8

....................................... 2.2. Devices

(a) : Afias 1 [7] (b) : Opti CCA-TS2 [27]

(c) : SPOTCHEM EZ SP-4430 [30] (d) : SUPER GL Compact [33]

Figure 2.2: Devices

9

2. Analysis
2.3 User roles

The software solution developed will be used by users belonging to different
roles. Each role is defined with its privileges related to system access as well
as what part of the system it has access to. Those roles are listed below,
along with their respective privileges and system usage.

Role Part of the system used Usage
Technician Desktop application Device, data, subject management, data

collection, and its delivery to trainers and
trainees

Trainer Mobile application Results and feedback viewing for events
his trainees participated in.

Trainee Mobile application Results and feedback viewing for events he
participated in.

Table 2.1: User roles

2.4 Requirements

Based on an analysis of the current situation and technical possibilities to
automate the processes, the following requirements were raised for a possible
automation system. This analysis considered the specific challenges and
needs faced in the current workflow. The requirements have been formulated
to ensure that the proposed system not only streamlines and optimizes the
current processes but also introduces scalability and flexibility to adapt to
future demands. Particular emphasis was also placed on the intuitiveness of
the whole system. Worth noting is also pressure on the security of the solution.

Based on the analysis, there was found a need for more than one application
since the users and their roles require different functionality as introduced
in the table 2.1. A desktop application is meant for the data collection and
management of the whole process and its parts; this portion of the solution
would be used by the technicians. A mobile application is also required as
having a desktop application for trainers and trainees would introduce new
problems mainly related to vastly different portability for a laptop compared
to a mobile phone.

For communication between the applications, a backend was needed. How-
ever, since all the logic is situated inside the application, there is no need to
develop a custom-made API. For this communication, a backend as a service
would be used. Data is written into it by the desktop application and is read
by both mobile and desktop applications for synchronization. It is desirable
to stream data changes to mobile devices automatically.

10

.................................... 2.4. Requirements

2.4.1 Desktop application.The proposed system has to read and show the results of the measure-
ments automatically..The proposed system has to uniform the interfaces for each device to
show the same or similar visualization based only on the data read rather
than the device output..The proposed system has to allow for device management..Add a device.. Edit a device.. Remove a device..The proposed system has to allow easy and intuitive subject creation
and alteration of information about the measurement..The proposed system has to allow for a quick setup of a scenario (Event).. Create a group of sportsmen that will be measured in a scenario..Add devices to the scenario.. Synchronize a scenario.. Connect to the assigned devices.. Download a copy of a scenario..The proposed system has to be intuitive and familiar..The proposed system has to assign the data automatically to the correct
test subject or create a new subject if there is none to assign the data to..The proposed system has to allow for automated data transfer to the
clients without any intervention of the technicians..The proposed system has to allow for the possibility of deciding to whom
to send the data..The proposed system has to allow for simple work with the roles of the
clients (Trainer, Athlete).

2.4.2 Mobile application.The proposed system has to provide a pleasant, simple, and easy-to-read
visualization of the results to the clients..The proposed system has to allow the users to connect via social sign-ins..The proposed system has to make a clear visual distinction between
results for the logged user and for his trainees..The proposed system has to distinguish between different trainees of a
trainer and clearly separate their results.

11

2. Analysis
2.4.3 Server

.The proposed system has to allow for communication between the mobile
and desktop applications.

.The proposed system has to synchronize data changes in the mobile
application automatically.

2.5 System communication

There will have to be extensive communication between parts of the system
to keep data up to date and to deliver measurement insights on time. For
this purpose, a communication schema depicted in figure 2.3 is developed
that illustrates how the data would be flowing in the system.

Figure 2.3: Communication schema

12

................................ 2.5. System communication

The flow begins when a desktop application sends its data to a server,
where it is stored; this happens upon the technician’s decision that the data
is ready to be transmitted to the athletes. The next phase begins when a
user opens the mobile application and clicks on login via a social provider;
he is redirected to the provider link, where he finishes the login procedure
and is redirected back to the application. The application receives user
information from the provider, including the email address associated with
the account. This email address is then used to match the user on the server.
User information present in the database is sent after a match is found. The
flow finishes when the mobile application asks for data relevant to the user
and obtains it.

13

14

Chapter 3
System design

The proposed solution consists of a desktop application for the laboratory
technicians to collect and visualize data, a mobile application for the sports-
men and their trainers, and a remote data source. The desktop application
provides an interface that abstracts the laboratory machine’s interfaces and
unifies them to hide the underlying complexity from users. This component
facilitates data processing and aids the evaluation of the sportsmen’s perfor-
mance metrics. It also allows for selecting results ready to be transferred to
the users and choosing which users should see which data.

The mobile application’s primary goal is to enable viewing of the metrics,
deliver them on time to the athletes, and track the changes over time. It is
also supposed to show data for both the person logged in and data meant for
athletes with this person as a trainer.

Last but not least, the remote data source serves as a central repository for
the measurements. The mobile application can only read data from this data
source and is not allowed to write anything. The desktop application can
both read and write to ensure data is synchronized between multiple devices
if more than one laptop is being used.

The components combined deliver a more intuitive and pleasant experi-
ence while automating many parts of the process. This is described more
elaborately in the section on system architecture 3.1.

Firebase authentication service will be used for authorization as it provides
a robust and user-friendly implementation of social sign-in, making it easier
for end users to log in as they do not need to create a new account. This
makes for an easier transition from the old system as it expects less effort
from the end users to use the new solution. It will also be used for managing
the roles of the users as well as their personal information such as e-mail
address, name, or avatar image. Lastly, by using Firebase, the overall security
will be improved, increasing trust in the system.

In terms of the design, the focus is on a clean, simple, and minimal user

15

3. System design
interface, striving to achieve an aesthetic and uncluttered experience. The
goal is to create a system that even people with limited experience with
similar systems or problems handling digital solutions can use smoothly.

The desktop application will be physically connected to the medical devices
to receive the data and send the results to the remote database wirelessly.
The mobile application will not have any peripherals connected physically
and will be accessing the measurements wirelessly from the remote database.

3.1 System Architecture

The system can be divided into two parts: existing infrastructure and newly
developed infrastructure. Medical devices for measuring the samples, a remote
database currently existing for data archiving, and Firebase together form the
existing infrastructure as they will not be implemented, enhanced, or altered
in any way. The desktop application serving medical technicians and the
mobile application made for sportsmen are newly developed infrastructure
as they will be built from the ground up. There will also be a data source
mimicking the existing one used for testing to prevent production data cor-
ruption.

Figure 3.1: System’s Architecture

16

................................. 3.1. System Architecture

Application of the architecture to the current process

The changes to the procedure are the following: it begins by measuring
respective values by third-party medical devices as before. The information
those machines provide is then delivered to the first part of the developed
system: the desktop application through a serial line. This software parses
the data from various formats into application classes. It displays the readings
to the laboratory technicians in a table-like interface where the data can
be altered, exported, and used in other applications. The system allows
simultaneous connection of multiple devices that can be preconfigured at any
point in the device control part of the application. The devices are expected
not to change frequently and thus be set during the installation once and
stay the same or change slightly during usage.

After data analysis, the results can be sent to sportsmen, their trainers,
or both, depending on the settings in the table. The onboarding process in-
cludes downloading a mobile application, another portion of the system being
developed, and registering through social sign-in. This mobile application is
then used to view the results of the measurements.

Data that have been analyzed are securely stored in a remote data source
that is part of an existing infrastructure. The data is retrieved from this
database to be shown to the athletes.

Figure 3.2: Proposed situation diagram

Comparing the developed system diagram 3.2 and the old system dia-
gram 2.1 one can quickly see an enormous difference in workload since the
technician now only needs to select data that is ready and send it to respective
parties in contrast to the previous multi-step process that included reading

17

3. System design
and writing the data manually, creating an excel sheet and encrypting it with
a password and sending everything. For the athletes and their trainers, it
is also simplified as they don’t have to download an Excel sheet, find the
password, and decrypt it, but can now open an application and immediately
see the results.

3.2 User Interface Design

The design for the application was done in the Figma design tool. The focus
when designing both of the newly developed applications was mainly on
making the interface minimal, familiar, and easy to navigate for users with
diverse technical proficiencies.

3.2.1 Desktop application

The desktop application is divided into a dashboard screen serving as a
home page, a device control screen for managing devices, a subject control
screen for managing sportsmen and their trainers, an administrator screen for
controlling the application and viewing logs, and finally, a data view meant
for scenario handling such as assigning devices to the current measuring,
automatic data loading into the application and result validation. Those
screens are being described below.

Dashboard screen

The dashboard screen in figure 3.10 is an entry point of the desktop applica-
tion, and it offers quick navigation into the device control, subject control, and
admin panel, see figure 3.3. The dashboard also offers a download function to
synchronize events with the remote data store and, hence, with other devices.

Finally, it displays events in cards as the main content. An event or sce-
nario is an entity representing measurements of a specific group at a specific
location and time. Those are ordered in terms of time for quicker access.

An event card is meant to display the most basic information about an
event at first glance, this includes the name of the event, dates representing
when the event will take place, the amount of subjects and the amount of
devices. There is also a bin button to delete the event. After clicking on the
card user is routed to the data view and hovering on the button is signalized
by changing the color of the card as depicted in the image 3.4.

18

................................. 3.2. User Interface Design

Figure 3.3: Dashboard navigation

Figure 3.4: Event card

Device control screen

The device control screen in figure 3.11 is where all the devices are to be
handled. Users can create a new device, delete an existing one, name a device,
assign a note, and connect it to a COM port. Devices that are set up here are
then available to be assigned to an event and are automatically connected.

Devices of a specific type can be added by clicking on a button in respective
column. This creates a new entry with an empty card. This card visualizes
information about a device: name of the device, its port and possibly a note.
There is also an edit button as well as a delete button, see figure 3.5.

19

3. System design

Figure 3.5: Device card

Administrator screen

The administrator part of the system is designed for control over more
advanced functionalities such as database deletion, viewing logs for data
measurements, or going through all the available users in the data store,
depicted in figure 3.13.

An example of a card in the administrator view is database card, containing
information about numbers of records in the database. There is also a
possibility to clear concrete types of records such as clearing only events via
a bin icon next to the type that should be deleted. It is possible to delete the
whole database and all its records through a delete DB button at the bottom
of the card, see figure 3.6.

20

................................. 3.2. User Interface Design

Figure 3.6: Administrator card

Subject control screen

The subject control is for managing sportsmen and their respective trainers
and can be seen in figure 3.12. Subjects can be downloaded for synchroniza-
tion. Technicians can create a new person entity, edit or delete an existing
one, and assign trainers for those with sportsman roles. After creation or
edition, the entities are automatically synchronized.

Creation of a new person is done via a card with a switch for a person’s
role and his respective information such as name, e-mail and id. After saving
a new entry is created that can be edited via an edit button or deleted by
clicking on a bin icon, see figure 3.7.

21

3. System design

Figure 3.7: Subject card

Data view screen

Last but not least, the data view presents all the information for a single
event. It is divided into three main parts: the control panel at the top of
the screen, a side panel for device assignment on the right side, and finally,
a table view of measurements in the center of the screen with table actions
above that. The control panel allows for event title and date modification.
It also serves for measurement upload and download, showing and hiding
the device panel, visible in figure 3.9, and exporting the event into other
formats. The side panel adds and removes devices used in the current event
and turns on serial line initialization. The table view is meant for creating
lines representing a single measurement of a single person, and the data is
automatically set to it. The table actions offer group changes of various fields
to enhance the experience further and speed up the workflow.

22

................................. 3.2. User Interface Design

For operations over the table a table actions panel was created, displayed
in the image 3.8. Those actions contain: creation of a new blank subject
in the table, opening a selection column to conduct multi-row operations,
duplication of selected rows while keeping the same values such as date
of collection or subject name. Creation of a sequence of IDs is useful for
generating multiple ones simultaneously, either from the maximum in the
table or from a selected value. Last but not least, a group change of a value
can also be done from the panel.

Figure 3.8: Table actions

Figure 3.9: Data view actions and Devices

23

3. System design

Figure 3.10: Dashboard screen

Figure 3.11: Device control screen

24

................................. 3.2. User Interface Design

Figure 3.12: Subject control screen

Figure 3.13: Administrator screen

25

3. System design

Figure 3.14: Data control screen

3.2.2 Mobile Application

The mobile application was developed to serve mainly as a data consumer
and to show feedback to the users. Therefore, it is relatively straightforward
with a login screen, a home page with personal and trainee tabs with their
respective views, and a drawer with additional settings. Lastly, it has a de-
tail screen displaying measurements with an evaluation, all grouped by events.

Since the mobile application is going to be used by people outside of the
organization, it was implemented in both light and dark themes. It makes it
more visually appealing and readable in direct sunlight when used with light
mode and puts less pressure on the eyes and the phone’s battery with dark
mode.

Login Screen

The login screen, depicted in image 3.17a is an entry point for the application,
exposing social sign-ins and letting users access their data. This screen is the
most minimal as it only redirects to the sign-in provider’s sites and receives
the user information it has permission to get.

26

................................. 3.2. User Interface Design

Home screen personal

The Home screen within the personal tab, visible in figure 3.16 lists all the
events where the logged-in person was measured as cards. The cards provide
information about the event’s name and date, and they lead to a detail screen.

Home screen trainees

The Home screen within the trainee tab goes through all the events where
logged-in person trainees were measured, see figure 3.15b. Again, They are
displayed as cards and grouped by a trainee’s name.

Detail screen

The feedback provided by the medical professionals, along with measured
results for individual values, are shown in the detail screen, presented in
figure 3.17. Many measurements may be conducted during an event, and
that is modeled as dropdown-style opening cards, one for each measurement.
Feedback is at the top of every card as it provides personalized information.
The values are then listed below, marked with a color corresponding to the
ranges they are supposed to fit in.

(a) : Login screen (b) : Trainee screen

Figure 3.15: Login screen and trainee screen

27

3. System design

(a) : Dark mode (b) : Light mode

Figure 3.16: Home screen personal

(a) : Dark mode (b) : Light mode

Figure 3.17: Detail screen

28

.............................. 3.3. System’s user management

3.3 System’s user management

To handle user management without the need to create a new account with
new credentials, social sign-in will be used and mapped to an E-mail address
and person ID, both of which are already in usage. The usage of social sign-ins
also provides additional data such as profile image without the need to bother
the user and ensures that the E-mail address is valid and verified. This is
supported by an article, The Rise of Social Login: Bridging the Gap Between
Convenience and Security [34], which covers forms and benefits. The concept
is further described in Auth0 documentation [8], and the flow is depicted in
the image 3.18.

Figure 3.18: Social login diagram [8]

29

30

Chapter 4
Implementation

For development, an iterative approach was chosen. After analysis and the
first phase of design, a portion of the application was built and tested to
gain feedback rapidly and save development time. After every iteration, new
requirements arose. Based on those requirements, both the design and the
implementation were altered to match the desired behavior.

The whole system is developed in Dart programming language, using Flut-
ter as a framework of choice for its speed, intuitiveness, and robustness. The
desktop application is designed for Windows, and the mobile application
is developed for Android and iOS operating systems. It is worth noting
that by using Dart and Flutter, a significant portion of the code can and is
being reused throughout the parts of the system thanks to the multi-platform
options provided by Flutter. The applications perform native-like because of
the Flutter’s architecture mentioned more in detail in section 4.1.

The system connects to the medical devices via a serial line, which delivers
data in different formats for each device, making it more challenging to
uniform. This data is parsed into dart classes using device-specific parsers
and stored locally in a database on the laptop. Every device has a COM
port [13] assigned to it in the application, as well as a name and possibly a
note, making it easier to set up the whole system in the place of measuring
as the device is recognized by the application due to the same COM port [13]
and by the technician through the name. The system, therefore, does not
need any pairing wizard to connect all the devices every time it is used. A
dart library that internally uses FFI [16] is used to work with a serial line.
More specifically, it allows initialization of a port, reading of the data via a
stream, and manipulation with the port.

To store all the data that has been read, Supabase is used. It uses Post-
greSQL for data storage, which is used in the current production database,
hence ensuring the data can be migrated easily. Supabase also comes with
real-time access, making the data transfer from a desktop application to a
mobile one a simple and quick task.

31

4. Implementation....................................
For authentication, the mobile application uses Firebase authentication

because of its excellent support for social sign-ins. This ensures that users
can use their existing login information and do not have to create yet another
account. Firebase also provides great tooling, further speeding up the devel-
opment. Lastly, it is pretty simple to connect Firebase authentication with a
Flutter application described with examples in Flutter and Dart Cookbook
by Richard Rose [5].

4.1 Flutter

Flutter is a multi-platform toolkit developed and backed by Google while
also being actively contributed to by the ever-growing community. It allows
for writing code that runs on multiple platforms: Windows, Linux, macOS,
Android, iOS, Fuchsia, web, and wearables. It achieves this by borrowing a
canvas from the underlining platform and then drawing pixels on this canvas.
This allows for absolute control over the user interface, and thanks to the
great performance of the Skia rendering engine, it renders extremely fast;
this speed is also expected to be rapidly increased by the newly implemented
Impeller rendering engine, which surpasses Skia and will be used instead in
the future. This makes applications written in Flutter perform equally to
their native counterparts. Flutter’s layered architecture [17] allows for an
easy and seamless transition from one rendering engine to another without
breaking all the applications and toolchains already present.

It is worth noting that Flutter comes with a significant number of prebuilt
widgets and raw building components for the user interface that immensely
speed up the development time. These widgets can be easily customized and
later reused across platforms, saving a great amount of resources. Working
with the underlying platform and its libraries and APIs is possible and can
be done via platform channel or dart FFI [16].

Flutter integrates well even as a part of a native application, where it can
be used for certain screens only. It also offers the possibility to do the opposite
and use a native screen inside of a Flutter application. This interoperability
delivers large flexibility.

As said in the thesis Mobile Flutter application for solving education tasks
using EduARd system [4], the code written using this toolkit is generally
translated into machine code, which makes for the mentioned excellent per-
formance. In terms of web applications or websites, it uses JavaScript with
web assembly likely to be used in the near future.

32

.......................................4.2. Libraries

4.2 Libraries

As in any other software project, common problems are already solved ade-
quately by experts in the specific field and exposed by respective libraries.
For a smoother experience and to not reinvent the wheel, libraries are also
used in the proposed system, and some notable ones are listed below.

A significant benefit of Dart and Flutter is the extensiveness of high-quality
libraries. Those libraries are also frequently reviewed by Google experts, and
the most complete and beneficial ones receive a marker, making it easier to
differentiate between sketchy libraries and mature ones.

4.2.1 Riverpod

Riverpod [29], a provider successor, is a library managing the application’s
state. State management in Flutter is dealt with by many libraries, and their
approach differs a lot. The main differentiator is often the completeness of the
solution, verbosity of the code necessary to be written, ease of understanding
the solution, and correct usage. Among the various solutions, Riverpod [29],
Provider [28], Bloc [12], GetX [20], and GetIt [19] are the most used by the
community and described, for example, in State Management in Flutter: A
Comprehensive Guide [31] and Demystifying State Management in Flutter:
An In-Depth Exploration [15].

GetX [20] is discredited by using antipatterns and being used for too many
things simultaneously, making it too robust to work with, error-prone, and
unsuitable for complex applications. It also forces users to depend on a library
that solves many more problems than they might need.

Meanwhile, GetIt [19] is simple, readable, and easy to use and understand.
It does not provide enough tools to deal with state management in large and
complex codebases by itself. Therefore, it is often used with other libraries
that fix the problem, but they introduce a dependency on more libraries to
solve one problem.

Flutter bloc [12], one of the most used, is excellent for clean architecture
and testability but brings a significant amount of boilerplate code that essen-
tially slows the development speed.

Finally, Provider [28] and Riverpod [29] are packages developed and tai-
lored specifically for Flutter, making them the most declarative solutions
that are the most familiar to those used to Flutter concepts. Since Riverpod
is a successor to Provider and fixes many problems that the architecture of
Provider simply has not allowed, it is superior.

33

4. Implementation....................................
Riverpod offers the most flexibility and solves state management completely.

It also uses code generation, hence decreasing the amount of boilerplate code
needed to be written. It forces the developer to handle errors gracefully and
correctly. Another perk that it has is its seamless integration with Flutter
itself, thus lowering the amount of new concepts required to be learned for
proper usage. Lastly, Riverpod comes with many developer tools for even
easier and quicker setup.

To hold the state, there are multiple classes used for different purposes.
ChangeNotifier and StateProvider are no longer the suggested tools and
remain only for backward compatibility. Therefore, they will not be described.
For simple operations such as dependency injection, getting a resource from
a remote source, or streaming data, Provider and its asynchronous counter-
parts FutureProvider and StreamProvider are used. Where it is necessary to
work with the data in a more complex manner, such as reading data from a
remote data source and modifying them throughout the application lifecycle,
Notifier and AsyncNotifier are used. Those more complex offerings require
developers to write more code; however, they provide a more robust structure
and encapsulation of the logic. Moreover, they offer a simple mechanism for
data initialization, for example, from a local data store, before it is read from
the remote one.

4.2.2 Hive

As a solution for local data storage, Hive [23] was chosen for its simplicity
and a pleasant interface that works nicely with Flutter. It is also written
purely in Dart, making it less dependent on other toolchains. Widgets offered
for more convenient usage are also a great benefit. As Hive is written in Dart,
it naturally works on all platforms Flutter supports; thus, it is chosen to be
used in both mobile and desktop applications.

Hive is blazingly fast and offers strong encryption. It is a NoSQL data
store, and apart from saving primitives like integers or strings, it also allows
developers to implement type adapters that make saving custom classes or
even enums possible. Benchmarks comparing Hive with other storage solu-
tions can be found at the documentation site [22].

4.2.3 Lottie

Lottie [25] is used for advanced, high-fidelity animations where animation
primitives provided by Flutter cannot solve the problem. Lottie is an industry-
leading standard for motion design with an extensive library of designs
available. Its usage is straightforward, showcased in an article Lottie — an
open-source animation rendering tool [25], and allows for solid control over

34

.......................................4.2. Libraries

the animation’s motion.

Compared to GIFs, Lottie files are much smaller, making the app bundle
size smaller and load times lower. Lottie files can also be tweaked using
various tools available to match the design exactly.

4.2.4 Serial port

For work with serial line, multiple libraries were necessary to be used. FFI [16]
and win32 [38] are used to initialize the serial port on Windows with the
correct settings [2], such as start and stop bits, baud rate, or parity. Flutter
lib serial port [18] is used for communication with the port and reading the
data from it as it is streamed by the devices.

The second was chosen for being the most mature among serial port libraries.
It generally works as a wrapper around the dart lib serial port [14] that itself
works by exposing the API of libserialport C library [24]. This solution seemed
to give granular enough control over the port and communication with it;
however, during development, it was found that the library was flawed, and
it did not set the settings correctly. This fact motivated the usage of above
mentioned win32 library that works on a lower level and allows for proper
settings changes.

4.2.5 Go Router

Routing in Flutter has shifted from Navigator 1 API to Navigator 2 API [26].
However, because of its complexity and boilerplate code, it is often used
with third-party libraries to make the code more readable and maintainable.
Navigator 2 marks a shift from imperative navigation to a declarative one.

There are many libraries solving this issue. The most mature include
Beamer [9] and Go router [21]. While Beamer was considered the more
mature and complete due to considerable community support, Go router
exceeded it and is the recommended approach.

Go router requires the declaration of possible routes and providing this as
a configuration for the root of the application. This configuration allows the
application to determine what pages should be on the stack. It also makes it
simpler to send data between the routes.

4.2.6 Bitsdojo window

To work with the application windows received from the platform and change
its looks and functionality, a package called Bitsdojo window [11] is used. It

35

4. Implementation....................................
works on all desktop platforms: macOS, Windows, and Linux.

Since Flutter can only draw pixels on the canvas it gets, it cannot alter
the application window itself. However, desktop applications often need to
change the looks of the window. The interoperability with the platform allows
for the setup of this window at the platform level and control over it from
the dart code. Bitsdojo window encapsulates this for the above-mentioned
platforms and offers a uniform interface hiding the complexity in abstraction.

4.3 Application architecture

The application’s architecture is divided into four main layers. Each layer
has its duties. The user interface layer delegates user events to the controller
layer and listens to the repository layer for changes. The controller layer
handles user-generated events like clicks and keyboard events and updates
repositories. The repositories hold the application’s state, and finally, the
service layer encapsulates domain-specific functionality. The application’s
architecture is visualized in a diagram 4.1.

4.3.1 Service

The Service layer’s responsibility is to group domain-specific functions such
as serial port functionality and supabase communication or work with Excel
together in one place. Rather than scattering it among multiple controllers
attached to the User interface, every domain has its service that handles
functions regarding its topic. This allows for better code readability and
easier extendability. The service layer can only be accessed via the controller
layer to avoid cross-dependencies, and it is not allowed to interact with any
other layer itself.

Since the services do not keep any state that might be mutable, a simple
provider is used for their injection into the application, which allows for
easier use in other Riverpod classes. Occasionally, the service might need
some data to execute its operation. An example might be a supabase service
retrieving data specific for a user or a serial port service setting up a port for
a particular device. However, these data requirements do not force the usage
of a Notifier since it is passed to a function and is not needed for rendering
or a class constructor. A simple provider can grant access to the service, and
the data is given to the function just as it is without Riverpods’ involvement.

4.3.2 Controller

The controller layer is implemented to glue other layers of the application
together. It handles users’ events, delegates work to the service layer, and

36

................................ 4.3. Application architecture

triggers application state changes, thus forcing the user interface to rerender.
The controllers are also responsible for getting data from supabase and writing
into it.

The controller’s functions are triggered in the user interface, and outside
of that can only be called inside their layer. They are exposed in the same
way as services, through simple providers or via Notifiers. If a functionality
falls into a service domain, the work is delegated to it. Otherwise, it is
handled inside the controller’s layer. Controllers also have to keep updating
the repository layer during their work to visualize the progress to the user.

4.3.3 Repository

A repository layer is introduced for storing and editing the application’s state.
It is built from raw components provided by the Riverpod library. Providers
and Notifiers are mainly used as they provide the best value and are also the
preferred way in the documentation.

Simple Providers are used when the interface only needs to read a value,
be it from a remote database or a local one; however, that value may not
be changed. Notifiers are used where more complex operations are required,
where data needs to be edited or deleted, or any other additional requirement
is posed. All components from the Riverpod library can be used together
and combined in any way to achieve the desired behavior.

The state is generally immutable in those components and has to be reas-
signed to ensure the change takes effect. This makes for a cleaner API that
triggers notification of state changes automatically precisely when it should.

Where asynchronous operations are performed, a handy wrapper class
AsyncValue is used. It offers methods to handle data, loading, and error
states [37] at the interface layer, making sure the application does not enter an
invalid state that it does not know how to react to, hence rendering correctly.

The repository layer cannot call methods in other layers and is called
only from the controller layer and listened to from the interface layer. It is
generally just a passive layer exposing the data and holding the state that is
changed from controllers.

4.3.4 User Interface

The visual part of the application is in the user interface layer, which is
divided into pages and widgets. The elements that form the page are in
the components folder attached to every page. A widget is the smallest
building block used. Depending on the developer’s design, it can be a simple

37

4. Implementation....................................
text or a big portion of a screen. However, a well-designed widget makes it
easier to compose all the components together easily. A page is not a Flutter
component and can be simplified as a widget that one can navigate to from
another page.

Stateless widgets are used for simple interfaces without the data changes
necessary and, therefore immutable state. Where data is mutated, stateful
widgets are used. This may be, for example, user input widgets like text
fields. Flutter offers only those two widgets, but Riverpod introduces another
two, consumer stateless and consumer stateful widgets. Their behavior is
very similar to their non-consumer counterparts, but they grant access to the
Riverpod components mentioned above.

This layer cannot be called from any other layer, and it mostly does not
directly communicate with other layers either; it only fires events that are
triggered by the user and passes them to the controller layer to be handled.
It is also subscribed to the repository layer and updates accordingly to the
state changes.

4.4 Supabase

Supabase [32] provides a backend as a service that can be locally hosted in
multiple ways. The most common way, however, is using docker and docker-
compose to run supabase containers. It also offers user authentication with
many social sign-in providers out of the box. Other functionality includes
storage for files of any type, such as images, videos, and others. Another
component of the supabase service worth mentioning is edge functions that
allow developers to deploy custom code without the need to create, maintain
and scale their own servers. Last but not least, there is also a database that
uses PostgreSQL and provides real-time access. The database can easily
be extended as well through a large family of extensions built already since
PostgreSQL has been widely used for a long time.

Another crucial component of Supabase is its admin console called Supabase
Studio, which again can be self-hosted. It is an excellent way of controlling
everything from schemas for the database to deploying edge functions. One
can also use the studio to execute SQL queries, view logs, create rules for
reads and writes into the database, or be on top of analytics.

Supabase has a well-maintained Flutter library that makes it quick to
connect with the applications. This library offers the possibility to query and
filter the data in a traditional way, but more notably, it also comes with an
API that uses the real-time aspect of the database and streams the data to
the user without explicit querying, making it more reactive.

38

...................................... 4.4. Supabase

Supabase database

Supabase’s database is the most crucial functionality for the system devel-
oped in this thesis as it is used to store all the data and stream them to
mobile devices. Multiple tables, depicted in figure 4.3, were created within
this database: one for people, keeping information about athletes, trainers,
and their connections; one for events, storing data such as the date of the
event, its name, and subjects. Finally, a table for subjects is used for all the
measurements along with the IDs used for correct data assignment, measured
values, the ID of a person the data belongs to, and dates of collection and
measurement.

Since the database runs PostgreSQL, the tables were created using SQL
scripts. Those scripts can be used to ease a potential data migration to
another backend. Most of the fields were defined as non-null with default
values to avoid null pointer errors and also to mimic data classes in the
applications that strictly follow no null value policy that is then enforced by
Dart’s sound null safety.

To work with the data from supabase in Flutter applications multiple
components were necessary to be built. All the classes that were stored in
the Supabase database had to implement serialization methods toSupabase()
and fromSupabase(), visualized in figure 4.2; those methods used new Dart
syntax, allowing for more straightforward and readable parsing. The other
component was a Supabase service that built all the queries that accessed
the data.

Important supabase library methods used for building the queries:. Supabase.from("tableName") - Creates a query builder for the selected
table name. table.stream(primaryKey: [’id’]) - Creates a stream of data from the
selected table and uses the ’id’ to ensure proper real-time streaming
when data is updated or deleted. dataStream.eq(’propertyName’, value) - Filters streamed data with the
property name and respective value. dataStream.inFilter(’propertyName’, values) - Filters streamed data with
multiple possible values. dataStream.contains(’propertyName’, values) - Filters stream data where
a column contains a list of elements and validates if a values list is
contained within that column. table.select<List<Map<String, dynamic»>() - Instead of returning a
stream, returns a future with a snapshot of current data

39

4. Implementation....................................

Figure 4.1: Application’s Architecture

Figure 4.2: Supabase parse method

40

...................................... 4.4. Supabase

Figure 4.3: Supabase data hierarchy

41

42

Chapter 5
Testing

Testing is vital for any system and is also very important for application devel-
opment. It serves as a quality assurance for both the developers trying to make
the best possible product as well as for customers wanting software that is
reliable and solves the problem at hand. It is also meant to secure the system,
as software without bugs is more challenging to exploit. Testing not only helps
find errors in the code but can also work as prevention before regression errors.

Testing can be done on multiple layers with various levels of granularity.
This ranges from simple unit tests covering small encapsulated units of code
to complete interface tests going through complex portions of the application.
It can also be divided into software and user testing. Tests conducted by
appropriately chosen testers can quickly prove to be valuable as they mimic
the real usage of the system.

For the system developed as this thesis, testing was divided into automated
unit tests covering the logic of the code and ensuring no regression appears
in the future and complex testing of the whole interface done with experts
from the field to have a solution that is robust enough to handle current and
future workload and one that tackles the problem in and easy to use way.

5.1 Software Testing

For unit testing in Flutter, a package called Flutter test is used as it provides
all the necessary primitives, as shown in the article Unit Testing in Flutter [35].
Tests can thus be grouped, and chunks of code can be run before and after
test execution for data initialization and resource creation before each test or
before a group of tests and also to clean up after the tests finish.

The main focus was given to testing data parsers as they have the most
logic in them, and the whole system relies on their correct implementation.
The core functionality of the data parsers is in their parse methods; therefore,
they were subjected to thorough limit tests.

43

5. Testing
The most essential testing primitives that were used for unit testing are

the following:. group - Grouping multiple smaller tests into a larger unit testing a bigger
portion of the system.. test - The smallest testable unit, testing one functionality with typically
one case.. expect - Primitive used for ensuring the correct value was indeed present.. setUp - Used for preparing necessary resources before tests are run.. tearDown - Used for cleaning up everything after tests finish running.

5.1.1 Test coverage

Testing criteria for the system under test needed to be defined to properly
measure how well is the system covered in terms of tests and whether testing
met its goal. The need for proper definition is highlighted in Software Unit
Test Coverage and Adequacy article [1]. Since the user interface was under
constant expert review, which is explained in section 5.2, software testing
of the application’s interface was omitted, and the main focus was targeted
to testing the logic. As previously mentioned, a large portion of the system
logic and the most critical part lies in parsers and the implementation of
their parse method. This functionality has, therefore, a hundred percent test
coverage. It was also important to test formatting functionality as it caused
some problems with date parsing during development. The service layer is
mainly calling API from third party libraries that are tested internally, thus
making testing of this functionality redundant.

5.1.2 Found problems

Automated unit testing found multiple issues in the code in data parsing and
date formatting, which are depicted in the table 5.1.

Problem Solution
Date parsing for samples created by
automatic subject creation when no
matching row in the data table was
found thrown exception for incorrect
format

Incorrect string serialization of the
DateTime class was used, resulting in
improper formatting, changed to a cor-
rect one

Index out of bounds when parsing data
from Afias 1 device

Corrupted data that does not con-
tain all necessary fields is skipped and
logged

An incorrect format error was raised
in parsing data for the Supergl device

White space bytes signalizing the be-
ginning and the end of a measurement
was cut before being parsed

Table 5.1: Errors found by unit testing

44

.................................... 5.2. Expert review

5.2 Expert review

To test if the process automation works as expected, comprehensive interface
testing was done with future users of the application. Multiple sessions were
conducted, with each of them yielding valuable feedback that led to many
changes in the functionality and user interface layout and design. It also
ensured that there was a need for a solution.

Validating that there is a problem to be fixed and that the developed
system is solving a real issue is essential to avoid product disasters. User
testing can significantly aid in this manner, as described in The Importance
of User Testing [36].

The testing was mostly done in a similar manner, forming a type of sce-
nario described below. The main goal was to ensure both the development
team and future users had the same understanding of what the result would
be. It was also vital in exposing errors in the system as well as keeping
the complexity of the interface low and the whole system understandable.
Finally, some portions of the system could not be thoroughly tested without
using real devices for measurement collection. This was primarily for the
serial connection and the communication protocols and settings used by the
machines.

Data collected before implementation was used for testing throughout the
iterations and served as a template for parser development as well as a base for
the data table. Once the skeleton of the desktop application was finished, the
testing transitioned to the use of data provided by physical devices in real time.

During testing with the devices, problems with data transmission were
found, namely data not being sent after collection or the usage of multiple
formats by a single device. Documentation did not provide any solution or
explanation of such behavior, thus requiring contact with customer support.
Finally, the issues were fixed by changing the configuration of the device.
For multiple format problem, the corresponding parser had to be altered to
switch based on what data he reads and adjust to it.

5.2.1 Selected Users

Generally, in user testing, it is critical to select the correct people, ideally
those who would afterward use the product. There should also be a reasonably
large amount of those testers to ensure high-quality feedback. However, given
that the system is tailored to a very specific scenario, it was decided that it
would be tested within the company for which it was being developed. Due
to the iterative nature of the development process, this testing was conducted
many times throughout the implementation. This was crucial for maintaining

45

5. Testing
a clear path to the final solution and a scalable application supported by the
article Best practices for building scalable Flutter applications [10].

5.2.2 Testing scenarios

User testing was done without specific step-by-step scenarios, precisely leading
people through the application. However, all functionalities needed to be
used to expose any vulnerabilities or bugs that could be present in the
system. Similar patterns emerged during the early stages of testing that
were afterward loosely followed. Those patterns could be formalized into the
following scenarios.

First scenario - Management of subjects

Part of system: Desktop application
Area of testing: Subject management
Description: Validation of correct user creation with all the fields. The user
should be created after clicking on the save button, and the state of the form
should be reset. The user can be created as a Trainer or a Trainee; those
roles should be visually distinct. A Trainer user should be assignable to a
Trainee.
Value thresholds: ID - digit followed by a character m,z followed by 6
digits, E-mail - valid email..1. Go to the subject control screen..2. Fill in the fields and create a subject with a role Trainer..3. Fill in the fields again and create a subject with a role Trainee..4. Start edit mode of a subject with a Trainee role..5. Choose a trainer and assign him..6. Save the Subject

Expected outcome: There are two newly created users, one with a trainee
role and one with a trainer role. The trainer is assigned to a trainee.

Second scenario - Management of devices

Part of system: Desktop application
Area of testing: Device management
Description: Validation of proper logic when creating a device. A new
device should appear after clicking the add button in the respective column...1. Go to the device control screen

46

.................................... 5.2. Expert review..2. Create a new device for all four types..3. Fill in the name of each new device..4. Fill in the port for all new devices..5. Save all newly created devices

Expected outcome: There are four new devices in the application, one of
each type.

Third scenario - Data viewing and creation of events

Part of system: Desktop application
Area of testing: Data view and event creation
Description: Event creation works, and users can assign devices and create
subjects. The name and date of the event can be changed, and subjects can
be altered as well.
Prerequisites: Opti and Supergl devices created in the application...1. Create a new event..2. Open the device panel and add a SuperGl device and an Opti device..3. Create a new subject and change it’s properties..4. Edit the name of the event and change it to a unique value..5. Save the event’s name

Expected outcome: There is a new event with a unique name; it has two
devices assigned to it and a subject.

Fourth scenario - Automatic collection of data

Part of system: Desktop application and physical devices
Area of testing: Automatic data collection
Description: Devices should signal their status through their connection
color. Data should be automatically assigned when a subject has a valid ID,
and a device is connected. A new one should be created automatically if no
subject matches the data.
Prerequisites: Opti and supergl devices created in the application and
assigned to an event. The event has at least one subject...1. Open an event with devices assigned and at least one subject present..2. Assign the sample ID from the physical opti device to the subject

47

5. Testing ...3. Assign a supergl ID based on the current sequence from the physical
supergl device..4. Connect the physical devices to the laptop..5. Ensure there is a supergl and an opti device assigned and turn them on..6. Start the data measuring on the physical devices and input the same
sample ID into the opti device..7. Start another data measuring on the physical devices and input an
incorrect sample ID into the opti device

Expected outcome: The First measurement should appear in the first
subject, correctly assigning the values to the table. The second measure-
ment should be on a newly created line with data from the measurement
automatically assigned.

Fifth scenario - Viewing events in mobile application

Part of system: Mobile application
Area of testing: Login and event viewing
Description: A user should be able to sign in to the mobile application with
his Google account credentials. He should also be able to see events that he
is part of in case of a trainee role and events that his trainees are part of in
case of a trainer role.
Prerequisites: There needs to be a user created in the desktop application
with an E-mail address corresponding to the one used in the sign-in...1. Open the Casri mobile application and log in with your Google account..2. Select the personal view and validate that all events where you were

measured are present..3. Select the trainee view and validate that all events where your trainees
were measured are present

Expected outcome: User should be able to sign in with his existing account
and see all events that he has access to.

Sixth scenario - Viewing details of events in mobile application

Part of system: Mobile application
Area of testing: Event detail
Description: User should be able to open the event that he participated in
and view the results.
Prerequisites: There needs to be a user created in the desktop application
with an E-mail address corresponding to the one used in the sign-in. There
needs to be an event that the user is part of.

48

.................................... 5.3. Testing results..1. Open an event from the home page..2. Validate that there are all the measurements you went through during
the opened event..3. Go through the measurements and validate that they have the correct
values

Expected outcome: All the measurements for an event should be present
in the detail screen. They should be collapsible and contain correct values.

Seventh scenario - Synchronization of data

Part of system: Mobile application, Desktop application, Database
Area of testing: Data synchronization
Description: Data should be synchronizable across the applications and be
automatically pulled without user interaction needed.
Prerequisites: There needs to be an event with some measurements in it...1. Login to the mobile application and open the home page..2. Open the data view screen in the desktop application..3. Assign a user to a measurement (Use the same user used in the mobile

application)..4. Synchronize the event

Expected outcome: There should automatically appear a new event in the
mobile application in case no other measurement was previously assigned.
In case there was already another measurement for the user in the selected
event a new measurement entry should occur.

5.3 Testing results

As previously mentioned, testing was done during the whole development
process, and it helped expose problems early. There were significant issues
found; the most impactful was one with serial line communication and its
library. The most critical problems found will be listed below, along with
their respective solutions.

5.3.1 Critical errors

Multiple critical errors that threatened the basic functionality of the system
were found. Those errors are listed in the table 5.2 and then described more
elaborately.

49

5. Testing
Problem Solution
The serial line package was not work-
ing properly with a baud rate other
than 9600, making the data sent from
a device unreadable

A different package was used to initial-
ize the serial port with other settings

Google sign-in was not working cor-
rectly on iOS, rendering the applica-
tion inoperable

Platform files for iOS devices were re-
configured

Data was not being parsed correctly A view for logs was implemented and
extra white characters were found that
confused the parsers

Table 5.2: Critical errors

In the early stages, problems with serial port were found. The data received
was not readable, and after extensive testing and debugging, it was found that
the serial ports were misconfigured and the library used was flawed. Multiple
solutions were considered, and another library using Windows primitives in
the Dart language was chosen. This library first sets the correct settings for
the port, and then the data is read as before.

The data read from the device seemed correct at first glance, but the
parsers were throwing exceptions. Even extensive investigation did not show
any progress. This motivated the implementation of more advanced logging
that could be viewed inside the application. After going through those logs,
multiple unexpected white space characters were found, and the parsers were
altered to take that into account.

After testing the mobile application on Android devices, testing on iPhones
was conducted. It was quickly found that Google sign-in was not working on
iOS as on Android. After a long search, a solution was found, mentioning
the necessary configuration that the documentation does not mention. The
platform files were reconfigured, and the sign-in started working.

5.3.2 Low impact errors

Multiple low to medium-impact errors were also found throughout the system
and were quickly fixed. Those include improper data assignment to measure-
ments after data parsing, caused by data being overwritten multiple times
and deleting the correct data. A simple merging mechanism was introduced
to join partial results rather than rewrite them. Another example is a mobile
app showing more data than it was supposed to, potentially causing confusion.
This problem was fixed by strictly defining values meant for customers. The
last example would be an incorrect generation of sample IDs, where immensely
large IDs were generated. This issue was caused by storing the currently
highest ID and incrementing it every time it was accessed. The problem

50

.................................... 5.3. Testing results

meant that when all the IDs were regenerated from a value, for example, value
one, the stored ID stayed the same during the whole lifetime of the event.
Another causality was when the event was changed on a different machine, the
locally stored ID was not present, causing ID generation from the initial value.
This was fixed by not keeping any IDs in a database but instead consistently
generating them based on the context, ergo from currently present values in
the table.

51

52

Chapter 6
Conclusion

The work done during this thesis was divided into phases very loosely follow-
ing waterfall project development. The first phase consisted of understanding
the problem at hand, going through the process, and figuring out its weak
and strong parts. A thorough analysis of what devices are used, how they
function, and what they measure was conducted, giving a rough estimate of
what system might aid in automating the procedure. Multiple consultations
also occurred during this phase, further advancing the understanding of the
domain. Finally, research on available technologies, their limitations, and
their benefits took place. Multiple problems in the current execution of the
process arose, most of them being related to human-made errors or natural
differences in efectivity between a human technician and a machine reading
the data. Those issues motivated the need for multiple applications forming
a software system; one application meant for the company’s employees and
running on a laptop, reading the data and automatically assigning them to
the correct athletes; the other application, a mobile one, targeted for the
sportsmen. Those applications need to communicate together, serving the
results of the measurements; thus, a remote database is required. Flutter was
chosen for the applications and supabase as the remote data store, both of
them because of their cutting-edge performance, ease of use, and excellent fit
for the situation.

The second phase was mainly concerned with designing the whole system.
The first part of the phase further narrowed the technology stack, deciding
what portions of the problems would be a good fit for the usage of a library;
examples include a local database, advanced animations, or state management,
and what portions would be solved internally, for example, data buffering
and data manipulation. In this phase, it was also decided that social sign-in
via Firebase would be used. After the technical design, a user interface was
designed; the central theme of that design was minimalism and a clutter-free
interface that would be highly functional.

The last phase was dedicated to implementation and testing. This phase
was internally iterative, consisting of sprints that were mostly one to two
weeks long and contained both development and testing. This iterative

53

6. Conclusion......................................
process started by creating a skeleton of the desktop application and build-
ing on top of that by adding more and more functionality. Once a base
of the desktop application was finished, a supabase instance was created
and configured, and a mobile application base was implemented. The sys-
tem was then extended sprint after sprint until the requirements were fulfilled.

The whole solution developed in this thesis automates a large portion of the
process and streamlines the workflow of the technicians; it also implements
the requirements defined during the analysis and builds on top of them.

54

Chapter 7
Future work

The system developed in this thesis is a complete solution for all the iden-
tified problems, aiding in making the whole process of data measurement,
its collection, visualization, and analysis streamlined, as well as speeding up
the delivery of valuable feedback to the athletes and their trainers, while
subsequently making the data delivery more secure and the results more
readable. All the proposed requirements are fulfilled by this solution, and
many of them are also extended, adding more functionality. However, just as
with any other solution, there can be more improvements and there can be
additional functionality built on top of the current one. Those facts motivate
this chapter by highlighting possible future enhancements for both developed
applications. Firstly, the mobile application is currently automatically receiv-
ing all relevant data without the need for user input, but this only happens
when the application is running in the foreground, thus inspiring notifications
that could be implemented to inform the user about new data he might
want to read through. This could be done via the Firebase cloud messaging
platform since Firebase is already connected to the applications and is used
in user management. The mobile application could be further extended
with more graphical representations of the measurements, supplementing
the textual form currently present. Multiple enhancements are proposed: a
graph showing values for a selected biomarker and its development over time
within an event; another chart could serve as a showcase of trends among all
measured data from all events, quickly pointing out the long-time develop-
ment of selected markers. For the desktop application, a data table could
be improved by adding more operations across rows and columns, making
some operations even faster. Those actions would have to be consulted with
experts from Casri to ensure their usefulness and avoid cluttering the interface.

During late phases of testing a few enhancements were deemed necessary
and should be considered high priority in future development. Namely, for
some values that were under or over certain threshold, the devices are sending
extra characters. The parsers are not expecting those characters and assume
those are invalid. This can be solved by finding the extra characters in, for
example, logs in the application and altering the parser behavior. Secondly,
it was found that values that are whitelisted to be shown in the mobile

55

7. Future work
application have to be altered and some of them must be blacklisted as they
are not to be visible for the consumers. This could be also extended to allow
users of the mobile application to pick and choose which values should be
visible from those that the application allows.

56

Bibliography

[1] Hong Zhu, Patrick AV Hall, and John HR May. “Software unit test
coverage and adequacy”. In: Acm computing surveys (csur) 29.4 (1997),
pp. 366–427.

[2] Jan Axelson. Serial Port Complete: The Developer’s Guide. Lakeview
Research LLC, 2007.

[3] Shona L Halson. “Monitoring training load to understand fatigue in
athletes”. In: Sports medicine 44.Suppl 2 (2014), pp. 139–147.

[4] Lukáš Šimon. “Mobilní Flutter aplikace pro řešení výukových úloh v
systému EduARd”. Bakalářská práce. České vysoké učení technické v
Praze, Fakulta elektrotechnická, katedra počítačů, 2021.

[5] Richard Rose. Flutter and Dart Cookbook. O’Reilly Media, Inc., 2022.
isbn: 9781098119515.

[6] Nils Haller et al. “Blood-Based Biomarkers for Managing Workload
in Athletes: Perspectives for Research on Emerging Biomarkers”. In:
Sports Medicine (2023), pp. 1–15.

[7] AFIAS-1. url: https://www.boditech.co.kr/en/product/instruments/
id/1 (visited on 12/01/2023).

[8] Auth0 social login. url: https://auth0.com/learn/social-login
(visited on 12/01/2023).

[9] Beamer documentation. url: https://pub.dev/packages/beamer
(visited on 12/01/2023).

[10] Best practices for building scalable Flutter applications. url: https:
//verygood.ventures/blog/scalable-best-practices (visited on
12/01/2023).

[11] Bitsdojo Window documentation. url: https://pub.dev/packages/
bitsdojo_window (visited on 12/01/2023).

[12] Bloc documentation. url: https://bloclibrary.dev/#/ (visited on
12/01/2023).

[13] Configuration of COM Ports. url: https://learn.microsoft.com/
en-us/windows-hardware/drivers/serports/configuration-of-
com-ports (visited on 12/01/2023).

57

https://www.boditech.co.kr/en/product/instruments/id/1
https://www.boditech.co.kr/en/product/instruments/id/1
https://auth0.com/learn/social-login
https://pub.dev/packages/beamer
https://verygood.ventures/blog/scalable-best-practices
https://verygood.ventures/blog/scalable-best-practices
https://pub.dev/packages/bitsdojo_window
https://pub.dev/packages/bitsdojo_window
https://bloclibrary.dev/#/
https://learn.microsoft.com/en-us/windows-hardware/drivers/serports/configuration-of-com-ports
https://learn.microsoft.com/en-us/windows-hardware/drivers/serports/configuration-of-com-ports
https://learn.microsoft.com/en-us/windows-hardware/drivers/serports/configuration-of-com-ports

7. Future work
[14] Dart Libserialport documentation. url: https://pub.dev/packages/

libserialport (visited on 12/01/2023).
[15] Demystifying State Management in Flutter: An In-Depth Exploration.

url: https://medium.com/@ubermenschdeveloper/demystifying-
state-management-in-flutter-an-in-depth-exploration-a9724af89e7d
(visited on 12/01/2023).

[16] FFI documentation. url: https://pub.dev/packages/ffi (visited on
12/01/2023).

[17] Flutter architecture. url: https://docs.flutter.dev/resources/
architectural-overview (visited on 12/01/2023).

[18] Flutter Libserialport documentation. url: https://pub.dev/packages/
flutter_libserialport (visited on 12/01/2023).

[19] GetIt documentation. url: https : / / pub . dev / packages / get _ it
(visited on 12/01/2023).

[20] GetX documentation. url: https://pub.dev/packages/get (visited
on 12/01/2023).

[21] Go Router documentation. url: https://docs.page/csells/go_
router/navigation (visited on 12/01/2023).

[22] Hive documentation. url: https://docs.hivedb.dev/#/ (visited on
12/01/2023).

[23] HiveDB documentation. url: https://docs.hivedb.dev/#/ (visited
on 12/01/2023).

[24] Lib serial port. url: https://sigrok.org/wiki/Libserialport
(visited on 12/01/2023).

[25] Lottie — an open-source animation rendering tool. url: https://
medium . com / @MarianaN . /lottie - an - open - source - animation -
rendering-tool-743e02fc369e (visited on 12/01/2023).

[26] Navigation and routing. url: https : / / docs . flutter . dev / ui /
navigation?gclid=CjwKCAiAvdCrBhBREiwAX6-6UkXcm_7CKrHEZq85FaOIXax-
5PzaZjemNiCTo- XtpQe1OaOjxiO5zhoCM5EQAvD_BwE&gclsrc=aw.ds
(visited on 12/01/2023).

[27] Opti CCA-TS2. url: https://www.optimedical.com/en/products-
and- services/analyzers/opti- cca- ts2- analyzer/ (visited on
12/01/2023).

[28] Provider documentation. url: https://pub.dev/packages/provider
(visited on 12/01/2023).

[29] Riverpod documentation. url: https://riverpod.dev/ (visited on
12/01/2023).

[30] SPOTCHEM EZ SP-4430. url: https://www.arkray.eu/english/
products/biochemistry_testing/dry_chemistryclinical_chemistry/
sp-4430.html (visited on 12/01/2023).

58

https://pub.dev/packages/libserialport
https://pub.dev/packages/libserialport
https://medium.com/@ubermenschdeveloper/demystifying-state-management-in-flutter-an-in-depth-exploration-a9724af89e7d
https://medium.com/@ubermenschdeveloper/demystifying-state-management-in-flutter-an-in-depth-exploration-a9724af89e7d
https://pub.dev/packages/ffi
https://docs.flutter.dev/resources/architectural-overview
https://docs.flutter.dev/resources/architectural-overview
https://pub.dev/packages/flutter_libserialport
https://pub.dev/packages/flutter_libserialport
https://pub.dev/packages/get_it
https://pub.dev/packages/get
https://docs.page/csells/go_router/navigation
https://docs.page/csells/go_router/navigation
https://docs.hivedb.dev/#/
https://docs.hivedb.dev/#/
https://sigrok.org/wiki/Libserialport
https://medium.com/@MarianaN./lottie-an-open-source-animation-rendering-tool-743e02fc369e
https://medium.com/@MarianaN./lottie-an-open-source-animation-rendering-tool-743e02fc369e
https://medium.com/@MarianaN./lottie-an-open-source-animation-rendering-tool-743e02fc369e
https://docs.flutter.dev/ui/navigation?gclid=CjwKCAiAvdCrBhBREiwAX6-6UkXcm_7CKrHEZq85FaOIXax-5PzaZjemNiCTo-XtpQe1OaOjxiO5zhoCM5EQAvD_BwE&gclsrc=aw.ds
https://docs.flutter.dev/ui/navigation?gclid=CjwKCAiAvdCrBhBREiwAX6-6UkXcm_7CKrHEZq85FaOIXax-5PzaZjemNiCTo-XtpQe1OaOjxiO5zhoCM5EQAvD_BwE&gclsrc=aw.ds
https://docs.flutter.dev/ui/navigation?gclid=CjwKCAiAvdCrBhBREiwAX6-6UkXcm_7CKrHEZq85FaOIXax-5PzaZjemNiCTo-XtpQe1OaOjxiO5zhoCM5EQAvD_BwE&gclsrc=aw.ds
https://www.optimedical.com/en/products-and-services/analyzers/opti-cca-ts2-analyzer/
https://www.optimedical.com/en/products-and-services/analyzers/opti-cca-ts2-analyzer/
https://pub.dev/packages/provider
https://riverpod.dev/
https://www.arkray.eu/english/products/biochemistry_testing/dry_chemistryclinical_chemistry/sp-4430.html
https://www.arkray.eu/english/products/biochemistry_testing/dry_chemistryclinical_chemistry/sp-4430.html
https://www.arkray.eu/english/products/biochemistry_testing/dry_chemistryclinical_chemistry/sp-4430.html

...................................... 7. Future work

[31] State Management in Flutter: A Comprehensive Guide. url: https:
//medium.com/@enitinmehra/state-management-in-flutter-a-
comprehensive-guide-7212772f026d (visited on 12/01/2023).

[32] Supabase documentation. url: https://supabase.com/docs (visited
on 12/01/2023).

[33] SUPER GL Compact. url: https://dr-mueller-geraetebau.de/
en/products/super-gl-compact/ (visited on 12/01/2023).

[34] The rise of social login. url: https://medium.com/@thepulsewallet/
the-rise-of-social-login-bridging-the-gap-between-convenience-
and-security-a3497abc902e (visited on 12/01/2023).

[35] Unit testing in flutter. url: https://medium.com/@Ikay_codes/unit-
testing-in-flutter-19dea7214c7b (visited on 12/01/2023).

[36] User testing. url: https://www.toptal.com/designers/prototyping/
user-testing-prototypes (visited on 12/01/2023).

[37] Why we need asyncvalue of riverpod. url: https://chooyan.hashnode.
dev/why-we-need-asyncvalue-of-riverpod (visited on 12/01/2023).

[38] Win32 documentation. url: https : / / pub . dev / packages / win32
(visited on 12/01/2023).

59

https://medium.com/@enitinmehra/state-management-in-flutter-a-comprehensive-guide-7212772f026d
https://medium.com/@enitinmehra/state-management-in-flutter-a-comprehensive-guide-7212772f026d
https://medium.com/@enitinmehra/state-management-in-flutter-a-comprehensive-guide-7212772f026d
https://supabase.com/docs
https://dr-mueller-geraetebau.de/en/products/super-gl-compact/
https://dr-mueller-geraetebau.de/en/products/super-gl-compact/
https://medium.com/@thepulsewallet/the-rise-of-social-login-bridging-the-gap-between-convenience-and-security-a3497abc902e
https://medium.com/@thepulsewallet/the-rise-of-social-login-bridging-the-gap-between-convenience-and-security-a3497abc902e
https://medium.com/@thepulsewallet/the-rise-of-social-login-bridging-the-gap-between-convenience-and-security-a3497abc902e
https://medium.com/@Ikay_codes/unit-testing-in-flutter-19dea7214c7b
https://medium.com/@Ikay_codes/unit-testing-in-flutter-19dea7214c7b
https://www.toptal.com/designers/prototyping/user-testing-prototypes
https://www.toptal.com/designers/prototyping/user-testing-prototypes
https://chooyan.hashnode.dev/why-we-need-asyncvalue-of-riverpod
https://chooyan.hashnode.dev/why-we-need-asyncvalue-of-riverpod
https://pub.dev/packages/win32

60

Appendix A
Installation process

To run and possibly deploy the applications it is necessary to follow the
following instructions:..1. Download the codebase and unpack it...2. Create an instance of Supabase either local or a remote one in the

cloud. Specific instructions may change and can be found in the official
documentation 1...3. Create tables from the schemas located in resources folder...4. Add Firebase to the mobile application. For specific instructions, please
follow the official documentation 2...5. Configure social sign-in for the mobile application. For specific instruc-
tions, please follow the official documentation 3...6. Configure both applications for supabase integration. Specific instruc-
tions are in the official documentation 4...7. Get dependencies with the get command 5...8. Generate files in both the mobile application and desktop application
with the build command 6...9. To deploy the applications, please follow the instruction from the official
documentation 7.

1https://supabase.com/docs/guides/getting-started
2https://firebase.google.com/docs/flutter/setup?platform=android
3https://firebase.flutter.dev/docs/auth/social/
4https://supabase.com/docs/guides/getting-started/quickstarts/flutter
5flutter pub get
6dart run build_runner build –delete-conflicting-outputs
7https://docs.flutter.dev/deployment

61

A. Installation process
Requirements

To be able to run the applications locally, the following requirements need to
be met:. Docker installed. Can be done from official page 8.

(Developed with version 4.25.2). Flutter installed. Can be done from official documenatation 9.
(Developed with version 3.16). Dart installed. Comes bundled with Flutter.
(Developed with version 3.2)

8https://www.docker.com/
9https://docs.flutter.dev/get-started/install

62

	Introduction
	Analysis
	Current situation
	Devices
	Super GL2
	Spotchem Arkray
	Afias-1
	Opti CCA TS2

	User roles
	Requirements
	Desktop application
	Mobile application
	Server

	System communication

	System design
	System Architecture
	User Interface Design
	Desktop application
	Mobile Application

	System's user management

	Implementation
	Flutter
	Libraries
	Riverpod
	Hive
	Lottie
	Serial port
	Go Router
	Bitsdojo window

	Application architecture
	Service
	Controller
	Repository
	User Interface

	Supabase

	Testing
	Software Testing
	Test coverage
	Found problems

	Expert review
	Selected Users
	Testing scenarios

	Testing results
	Critical errors
	Low impact errors

	Conclusion
	Future work
	Bibliography
	Installation process

