
Scheduling of Safety-Critical Time-Constrained
Traffic with F-shaped Messages

Antonin Novak
DCE FEE and CIIRC

Czech Technical University in Prague
Prague, Czech Republic

Email: antonin.novak@cvut.cz

Zdenek Hanzalek
DCE FEE and CIIRC

Czech Technical University in Prague
Prague, Czech Republic

Premysl Sucha
DCE FEE

Czech Technical University in Prague
Prague, Czech Republic

Abstract—The rapid improvement of surrounding systems such
as automotive vehicles brings new challenges for system designers
and manufacturers. New functionalities such as advanced driver
assistants leverage a part of responsibilities from the driver to
an autonomous system. Being able to provide such functionalities
requires a safety certification the system, namely the reliability
of the communication backbone. In complex systems, the safety
certification is becoming a hard problem, especially in the Event-
Triggered environments. On the other hand, Time-Triggered
communications are well-known for their determinism, reliability,
and ease of certification but lack the flexibility that is required
e.g. for message retransmissions.

To support safety-critical applications, we improve the reli-
ability of Time-Triggered communications even more. We build
schedules that account for retransmissions of lost messages. They
are robust static schedules that encapsulate all the possible
alternative execution scenarios arising from the uncertainty of
transmission outcomes. However, being too robust can be very
costly. Therefore, our schedules compensate retransmissions by a
possibility of rejecting the transmission of less critical messages
to achieve a trade-off between the safety and efficient usage of
resources. To solve this complex problem, we present a novel
two-stage decomposition algorithm for the synthesis of static
schedules accounting for alternative execution scenarios with non-
preemptive messages that are constrained by release times and
deadlines. We show that our method attains solutions within 6–
7% from a lower bound even for large problem instances.

I. INTRODUCTION

The communication backbone in modern vehicles is re-
sponsible for carrying safety-critical traffic. ECUs (Electronic
Control Units) are implementing a broad range of function-
alities including advanced driver assistants and safety-critical
applications like drive-by-wire. Teslas Autopilot continuously
streams high-frame rate, high-resolution video to the central
vision processing unit to support lane-keeping assistants and
autonomous driving. Moreover, the current trend in the au-
tomotive industry shows that requirements on the throughput
and determinism of the communication channel will grow.

Nowadays, in addition to existing Event-Triggered commu-
nication protocols such as CAN (Controller Area Network)
or CAN FD (Flexible Data Rate) car manufacturers start to
embed high-throughput buses like Time-Triggered extensions
of Ethernet [9] to handle data-intensive applications. The rapid
improvement in computer vision algorithms in recent time has
enabled the self-driving functionalities. However, the underly-

ing hardware platform needs to catch-up in its dependability.
It needs to provide an affordable safety certification critical
systems (e.g. SIL – System Integrity Levels classification [3]).
Moreover, it needs to deal with problems arising from the
co-existence of activities of different criticalities — granting
resources to a low critical activity should not prevent more
critical ones from being successfully completed.

Time-Triggered communication protocols have a significant
advantage. The certification, usually done by means of the
response time analysis, is easy for them. In Time-Triggered
environments, the network nodes have synchronized clocks
and messages are transmitted at the moments defined by the
static schedule. Before the construction of the schedule, a
designer imposes a set of constraints (such as message release
time and deadline) on the communication that are met in
every feasible solution to the scheduling problem. Therefore,
the certification is achieved by showing the feasibility of the
produced communication schedule.

One of the disadvantages of Time-Triggered protocols is
their low flexibility. To account for message retransmission in
a static schedule, one has to either allocate more resource time
for unforeseen retransmissions or, construct a schedule with
alternative execution paths. The first option is not desired since
in an average runtime case the communication resource is idle
for a significant amount of time. The biggest obstacle for the
second option is that all the alternative execution paths need
to be precomputed in advance, leading to complex schedules
that are difficult to synthesize.

In this paper, we keep the advantages of Time-Triggered
protocols while introducing more flexibility to the static
schedules by modeling messages and their retransmissions
with an abstraction called F-shapes [11]. It allows us to
construct schedules that are compact, efficient and that account
for retransmissions to a certain degree. We compensate the
retransmission by a possibility of rejecting a low critical
message. However, the Time-Triggered segment is typically
accompanied with the Event-Triggered segment that is used
for non-critical communication (e.g. Time-Triggered Ethernet,
FlexRay). Thus, one minimizes the length of Time-Triggered
schedule.

For this problem, we propose an efficient scheduling al-
gorithm that synthesizes communication schedule for mes-

sages while ensuring their successful transmission with the
assurance given by the corresponding function criticality. To
accommodate modeling of real-life problems, the algorithm
works with message release times and deadlines to represent
communications with complex precedence relations and strict
deadlines.

II. RELATED WORK

The study of systems with activities of different safety
requirements sharing common resources is traditionally clus-
tered around the research on mixed-criticality [4]. This re-
search is typically concentrated around event-triggered ap-
proach to scheduling. It aims towards the construction of
scheduling policies that help mixed-criticality systems to
achieve a certification and that make efficient use of the
shared resources. In a seminal paper [14] Vestal proposed
a method that assumes different WCETs (the worst-case
execution time) obtained for discrete levels of assurance. Apart
from this proposition, the paper presents modified preemptive
fixed priority schedulability analysis algorithms. The F-shape
abstraction follows naturally the proposition of increasing
execution times with increasing system criticality. A simpli-
faction of Vestal’s model was done by Burns [4]. However,
it is known to be strictly less expressive while preserving
the same the worst case computational complexity [2]. Theis
et al. [13] argued that mixed-criticality shall be pursued in
Time-Triggered systems. Baruah and Fohler’s [1] approach
in the Time-Triggered environment assumed preemptive tasks
with up to two criticality levels. However, the application
concerning message retransmission requires a non-preemptive
model. Hanzalek et al. [15] presented the problem of time-
triggered non-preemptive mixed-critical scheduling. However,
their work did not address how to obtain schedules for large
problem instances, i.e. no efficient algorithm is given there.

A large amount of work is done on message scheduling
in the Time-Triggered domain. There, a static schedule is
computed offline and then it is fully deterministic. [7] solved
the scheduling on Profinet IO IRT as the Resource Constrained
Project Scheduling with temporal constraints. Scheduling in
Time-Sensitive Networks TSN IEEE 802.1Qbv was done
by [5]. They focused on creating schedules for the timed-
gates of scheduled queues by a Time-Triggered schedule.
However, their approach does not account statically in advance
for message retransmissions. Dvorak et al. [6] developed
an efficient algorithm for scheduling periodical messages in
the static segment of FlexRay bus. However, they do not
consider retransmissions, and they assume only release times
and deadlines given as a multiple of a basic period. Novak et
al. [11] studied a related problem of message retransmissions
in dyadic periodical schedules. However, their aim is not
to generate compact schedules, but rather optimize for low
jitter. Furthermore, they do not consider general deadlines for
messages.

To the best of our knowledge, this is the first work
that addresses the challenge of combining strict timing con-
straints and message retransmission in Time-Triggered mixed-

critical environments while introducing an efficient scheduling
method. The resulting static schedules are robust, easily cer-
tifiable but yet still efficient.

A. Contribution and Outline

In this work, we present a novel scheduling algorithm to
solve the problem of message retransmission in the Time-
Triggered segment of communications, where messages are
of different criticalities and are constrained by release times
and deadlines. We aim to obtain the shortest Time-Triggered
feasible schedule, to maximize space for non-critical Event-
Triggered traffic. In such a problem, the key difficulty lies
in obtaining a compact schedule of so-called F-shapes to
achieve a good utilization of resources. To ease the problem,
we propose a two-stage decomposition that allows us to
address opposite goals separately — ensuring the feasibility
and obtaining a compact schedule. Moreover, we proposed a
method how to express safety requirement of a message as an
F-shape.

The rest of the paper is structured as follows. In Section III
we introduce a model of F-shaped tasks that models message
retransmission taking safety requirements into account, and
we describe the runtime execution of static schedules with
alternatives. In Section IV we state the scheduling of non-
preemptive F-shaped tasks in a Time-Triggered environment
as a single resource scheduling problem with release times
and deadlines. We give a Mixed-Integer Linear Programming
formulation of the corresponding optimization problem. In
Section V we describe a novel two-stage decomposition al-
gorithm for the synthesis of static schedules with retransmis-
sions. A comprehensive evaluation of computational results
in Section VI shows that our method achieves near-optimal
solutions. Finally, a conclusion is given in Section VII.

III. MESSAGE CRITICALITY MODEL

A. Static Schedules with F-shaped Messages

In the considered model of communication, we assume that
each message carries out a functionality of a given safety
requirements. For example, IEC 61508 standard [3] defines
so-called Safety Integrity Levels (SIL). This classification
distinguishes four levels of functionality (SIL-1 to SIL-4)
with respect to their tolerable dangerous failures. In particular,
SIL-1 is associated with a probability of dangerous failure
10−5 while SIL-4 requires this probability to be at most 10−9.

We assume that messages are transferred through the net-
work at moments defined by a static schedule. However, the
communication is often not reliable; therefore, to meet the
requirements of a given SIL, it may be necessary to build
schedules that account for message retransmission to improve
the reliability. The basic unit of static schedules that account
for message retransmission are non-preemptive mixed-critical
messages called F-shapes [15]:

Definition 1: The F-shaped task Ti is 4-tuple (ri, d̃i,Xi,Pi)
where ri ∈ N0 is the release time, d̃i ∈ N0 is the deadline,
Xi ∈ N is the criticality and Pi =

(
p

(1)
i , p

(2)
i , . . . , p

(Xi)
i

)
∈

processing time t
0 5 10 15 20 25 30 35 40 45 50

P
r[
T

i
=

t]

0

0.2

0.4

0.6

0.8

1

(a) PDF of message retransmission.

tt

cr
it

ic
al

it
y

le
ve

l
cr

it
ic

al
it
y

le
ve

l

(b) The non-preemptive mixed-critical message Ti with Xi = 3
depicted as an F-shape.

Fig. 1: Stochastic characteristic of a message and its representation as an F-shape.

NXi is a vector of distinct transmission times such that 0 <
p

(1)
i < p

(2)
i < . . . < p

(Xi)
i .

Now we describe how to model the messages of different
SILs using F-shapes. Each F-shaped message has a release
time, deadline, a set of alternative transmission times and
a criticality assigned. Release time and deadlines are set
e.g. according to transmission precedences in the system or
according to the frequency of a control loop. The criticality
is the number of allowed retransmissions. This number is set
such that the requirements of a given SIL are met. Consider
an illustrative example of the transmission a message with
probability distribution function (PDF) in Figure 1a. There
we see that one transmission takes ten time units while being
the most probable scenario. A less probable scenario that the
transmission takes twenty time units corresponds to that the
second transmission attempt was successful. More attempts
have an increasingly smaller probability of happening.

If the message Ti carries a functionality of SIL-λ that
corresponds to the tolerable probability of dangerous failure
at most fλ, then the criticality of Ti is given as

Xi = min

{
`

∣∣∣∣∣ ∑̀
k=1

Pr [Ti succeeds at k-th attempt] ≥ 1− fλ

}
In Figure 1b there is an F-shape corresponding to PDF
in Figure 1a with tolerable probability failure fλ = 0.05.
The transmission times Pi are (10, 20, 30). Furthermore, we
say that p(`)

i as the `-th element of Pi is the transmission
time of Ti at criticality level `. In this example it is set
to the multiple of the basic transmission length; however,
Definition 1 admits an arbitrary increasing vector Pi; thus the
communication overhead between the consecutive transmis-
sions can be included. Since F-shapes are non-preemptive and
contain different transmission times that are increasing with
respect to criticality levels, we display them as F-like shapes
in the Gantt chart as shown in Figure 1b.

Offline scheduling of communication consists of building
a static schedule with F-shapes. We distinguish between the
static schedule of F-shapes (see Figure 2a) and a realized
schedule (see Figure 2b). A static schedule is an assignment
of F-shapes to start times. The message retransmissions are
realized during the runtime as needed. That is, during the
runtime execution, if a message is not transmitted successfully
at the first attempt, then we allow retransmissions up to its

criticality. However, retransmissions may lead to conflicts in
resource usage. To avoid conflicts, instead of shifting start
times of following messages, we compensate prolongations
by skipping some. This gives us an advantage in the analysis
of the schedule – it remains static, and hence, the analysis is
carried out just by inspecting the schedule.

In the next section, we describe how the static schedules
are executed with respect to uncertain transmission outcomes
that are observed only during the runtime execution.

B. Runtime Execution

The runtime evaluation of the schedule can be described in
terms of the execution level of the schedule that defines the
performed alternative. An alternative is being picked online
based on the observed events, i.e. failed transmissions.

The execution level of the schedule is a function et defined
for each time instance t. The execution starts at t = 0 at zeroth
execution level et, i.e. e0 = 0. Message Ti is transmitted at
time t = si if and only if esi = 0, i.e. the resource is available.
By the assumption, if the message is transmitted at si, then it is
delivered no later than si+p

(Xi)
i (i.e. the Xi-th level represents

its the worst case execution time). The execution level et of
the schedule is raised, if the transmitted message Ti is not
delivered at si + p

(et)
i . After upon a message is delivered at

one of its levels, the execution level is set back to 0 and stays
there until the start time of the next message.

Therefore, if the execution level et is raised above 1 during
the execution of Ti (i.e. Ti is prolonged), then messages that
are covered by Ti at the level et are not executed. We say
that the message Tj is covered by Ti at level et if and only if
si + p

(1)
i ≤ sj < si + p

(et)
i .

An example of the schedule with F-shaped messages is
illustrated in Figure 2a. It represents a static schedule with
six F-shapes. The realized runtime execution scenario for this
schedule is depicted by the black line. In this scenario, the T1

was prolonged, therefore the execution level et was raised. The
execution policy states that messages, covered by a retransmit-
ted message, are skipped, i.e. T2 and consecutively T4 in this
case. After a message is transmitted, the execution matches up
with the schedule at the lowest criticality. Therefore, in this
example, after T3 finishes, T5 is up next. Naturally, there might
be a different runtime scenario. In fact, there is an exponential
number of other runtime execution scenarios.

T5T5 T6T6

T4T4

T3T3

T2T2

T1T1

r2r2

tt
d̃1̃d1

etet

cr
it

ic
a
li
ty

le
ve

l
cr

it
ic

a
li
ty

le
ve

l CmaxCmax

(a) A feasible schedule of F-shapes and a runtime execution
scenario et.

T1T1 T3T3 T5T5 T6T6

tt
r2r2 d̃1̃d1

(b) Realized schedule at runtime execution scenario et.

T1 = sT1 = s T2T2 T3T3 T4T4
T5T5 T6 = tT6 = t

(c) The execution graph of all alternative scenarios.

Fig. 2: A static schedule with F-shapes and one of the possible realized scenarios.

The execution policy gives rise to the intuitive notion of the
execution graph. Given the schedule with F-shaped messages,
it is a directed acyclic graph that guides the schedule execution
(see Figure 2c). It captures the topology of possible match-
ups that follow from coverages of messages in the static
schedule. All possible execution alternatives arising from the
static schedule from Figure 2a are given by all s−t paths in the
execution graph in Figure 2c. It encodes exponentially many
alternative realized schedules, yet it just takes a polynomial-
sized space. Thus, the schedules with F-shaped messages are
compact despite their large flexibility.

In the next section, we define the problem of time-
constrained message retransmission as a scheduling problem
with F-shaped messages, show its computational complexity
and describe it with a Mixed-Integer Linear Program (MILP).

IV. SCHEDULING PROBLEM STATEMENT

A. Problem Definition

The problem of time-constrained message retransmission
can be stated as the scheduling problem denoted in the three-
field Graham-Blazewicz notation as 1|ri, d̃i,mc = L|Cmax.
The first field denotes the scheduling on a single resource,
ri and d̃i denote the presence of release times and dead-
lines, mc = L stands for the mixed-criticality aspect of
messages with maximal criticality L and Cmax stands for the
minimization of the maximum completion time. We say that
messages are mixed-critical since their criticalities may vary
(as described in Section III).

The input to the problem is a set of F-shapes corresponding
to the message set to be scheduled. We aim to construct a
feasible static schedule of F-shaped messages that is defined
as follows:

Definition 2 (Feasible Schedule): A schedule for a set
of F-shapes IMC = {T1, T2, . . . , Tn} is an assignment of
start times (s1, s2, . . . , sn) ∈ N0

n. We say that the schedule
(s1, s2, . . . , sn) for IMC is feasible if and only if

1) ∀i ∈ {1, . . . , n} : ri ≤ si ≤ si + p
(Xi)
i ≤ d̃i

2) ∀i, j ∈ {1, . . . , n}, i 6= j :(
si + p

(min{Xi,Xj})
i ≤ sj

)
∨
(
sj + p

(min{Xi,Xj})
j ≤ si

)
The problem accepts a set IMC of non-preemptive mixed-
critical messages with unrestricted criticalities that are subject
to release times and deadlines. The messages are scheduled
on a single resource while the criterion is to minimize the
maximal completion time. The completion time of the message
Ti is given as Ci = si + p

(Xi)
i , i.e. its start time plus the

processing time at the highest criticality level. Hence, the
maximal completion time Cmax is given as maxi Ci. The
solution is a schedule with F-shapes that can be depicted in a
single Gantt chart, as shown in Figure 2a.

Conditions in Definition 2 enforce that any feasible schedule
guarantees that all the messages’ deadlines and release times
are met while accounting for retransmissions. The retransmis-
sions have the feature that in any case, the retransmission
of less critical message cannot consume resource allocated
for a more critical one; however, the converse is true. The
optimization criterion favors shorter schedules, i.e. minimizing
the length of the Time-Triggered segment.

This problem is known to be NP-hard in the strong sense
when relaxing on mixed-criticality (i.e. 1|ri, d̃i|Cmax) [10] or
when relaxing on release times and deadlines while keeping
just mc = 2 two criticality levels (i.e. 1|mc = 2|Cmax) [15].

B. Relative-Order MILP Formulation

The search space of feasible schedules can be searched
through using the following Mixed-Integer Linear Program
(MILP). It can be described by O(n) continuous and O(n2)
binary variables together with O(n2) constraints:

minCmax (1)
subject to

ri ≤ si ≤ si + p
(Xi)
i ≤ d̃i ∀i ∈ IMC (2)

si + p
(Xi)
i ≤ Cmax ∀i ∈ IMC (3)

si + p
(min{Xi,Xj})
i ≤ sj +Mxij

∀i, j ∈ IMC : i > j (4)

sj + p
(min{Xi,Xj})
j ≤ si +M(1− xij)

∀i, j ∈ IMC : i > j (5)
where

Cmax ≥ 0 (6)
si ≥ 0 ∀i ∈ IMC (7)
xij ∈ {0, 1} ∀i, j ∈ IMC : i > j (8)

Constraint (2) ensures that messages are scheduled within
release times and deadlines while (3) expresses the makespan
of the schedule. The most important constraints are (4) –
(5) which ensure that transmissions are not overlapping on
any criticality level and that messages are scheduled without
preemption. Those constraints implement necessary condition
for schedule feasibility. Binary variable xij is used to decide
on the relative order of each pair of messages. The M is a
positive constant as large as the sum of all the worst case
transmission times of all messages.

The purpose of the MILP formulation is two-fold — the
first is that one can take the formulation and use a standard
MILP solver to solve the problem without implementing an
algorithm. The second one is a rigorous definition of the
problem constraints and the criterion. However, the stated
model can deal with small problem instances only, being
far from the practical usage. Therefore, in the next section,
we introduce a heuristic algorithm capable of solving large
problem instances.

Even tough MILP solvers cannot solve large problems they
proved themselves as a powerful and mature technology for
smaller-scale problems; thus, we employ the model described
above as a part of our heuristic algorithm. The trick is that
it is being used just for a quick optimization over a small
neighborhood defined by the mathematical structure of the
problem, as will be shown in the next section.

V. TWO-STAGE DECOMPOSITION ALGORITHM

The key idea of the algorithm is to split the solution
of the problem into two steps. The purpose of the stage
separation is that the determination of the schedulability of
1|ri, d̃i,mc = L|Cmax problem is NP-hard in the strong
sense. The MILP from Section IV-B is not powerful enough
to find any feasible solution even for medium-sized instances.
Therefore, we leverage the finding an initial solution to a
heuristic.

In the first stage of the algorithm, an initial feasible solution
is obtained. The first stage is inspired by NEH heuristics [8]
extended by our local search for reducing infeasibility. In
the second stage, the solution is iteratively reoptimized using
Large Neighborhood Search technique [12]. It is a local search
method that iteratively explores the local neighborhood by the
mathematical program (1) – (8). The best solution over each
neighborhood is taken and adopted as a starting solution for
another iteration. The choice of the neighborhood is problem-
dependent and utilizing the structure of the problem is crucial.

The description of neighborhoods and their rationale will be
described in Section V-B.

The both stages that are described in the following pages
optimize the schedule over the space of permutations of
messages. A feasible schedule is defined in terms of the
start times of messages (according to Definition 2); however,
an equivalent way to represent it is by a permutation that
defines the order of messages. It can be shown that for the
1|ri, d̃i,mc = L|Cmax problem the left-shifted schedule is
dominant. Given the permutation π of messages, the Cmax is
minimized by shifting all messages to the left as possible.
Hence, we denote Cmax(π) as the makespan of the left-
shifted schedule of permutation π. For example, the sched-
ule in Figure 2a can be represented with the permutation
π = (T1, T2, T3, T4, T5, T6).

A. Initial Stage

The aim of the first step of the algorithm is to obtain a
feasible starting solution. Since determining schedulability of
1|ri, d̃i,mc = L|Cmax is NP-hard in the strong sense, we use
a heuristic algorithm to solve it. The algorithm is a construc-
tive heuristics with a destructive operator. The constructive
heuristics guide the search and destructive operator helps to
escape from infeasible parts of the search space.

The algorithm of the initial stage is described in Al-
gorithm 1. It iteratively creates a left-shifted schedule by
scheduling messages one by one in a priority order. Each
message is scheduled at the position in the permutation π
where it increases the makespan of the currently scheduled
messages by the smallest possible amount (lines 6–11).

The message is inserted in such a way, that its release time
and deadline are always satisfied. However, the next message
that is inserted (at position j in line 9), might shift start times
of previously scheduled messages such that for some of the
already scheduled messages the deadline would not be longer
satisfied. Therefore, the resulting schedule might be infeasible.
If it is the case, then the destructive operator is applied (lines
12–23), i.e. all messages whose deadline is not met (nogood
set) are removed from the schedule (line 22). All the removed
messages are sorted again in a priority order and sequentially
scheduled into the positions where they increase the makespan
by the smallest possible amount. This rescheduling can give
us a different schedule, where some of the reinserted messages
will now satisfy the deadline. However, other messages might
be shifted again, and their deadline might be violated now;
those are taken out again, and by the same procedure, the
algorithm attempts to fit them back.

During the iterations of removing and inserting back, it can
happen that either all messages’ deadlines will be met or a
subset of them that needs to be rescheduled is the same as the
one previously obtained at some point in the past (line 14).
If it is detected, then the algorithm looks at all unsatisfied
sets observed in the past (unsat set), pick the smallest one
(denoted as ∆̂), and set the violatedi flag for all messages in
∆̂. Then the constructive step is restarted from the schedule
corresponding to this set (line 17).

Algorithm 1 Initial Stage
1: priority ← PRIORITY-SORT(IMC)
2: s← (−∞,−∞, . . . ,−∞)
3: unsat← ∅, unsched← ∅, π ← ()
4: violatei ← TRUE ∀i ∈ IMC
5: while the stopping condition is not met do
6: while ∃Ti such that si = −∞ or iter ≤ n do
7: Ti ← arg maxj∈IMC : sj=−∞ priorityj
8: j ← arg minj Cmax subject to violate
9: π ← (π(1), . . . , π(j − 1), Ti, π(j + 1), . . .)

10: s← LEFT-SHIFTED(π)
11: end while
12: if s is not feasible then
13: nogood←

{
Ti | si + p

(Xi)
i > d̃i in s

}
14: if nogood ∈ unsat then
15: ∆̂← arg min∆∈unsat |∆|
16: violatei ← FALSE ∀i ∈ ∆̂
17: s← unsched∆̂

18: unsat← ∅, unsched← ∅
19: else
20: unsat← unsat ∪ nogood
21: unschednogood ← s
22: si ← −∞ ∀i ∈ nogood
23: end if
24: else
25: return feasible s
26: end if
27: end while
28: return infeasible

If a set of messages is flagged with violatedi flag, then it
means, that those cannot never be shifted by other messages
such that their deadline would be violated (line 8). Therefore, it
prevents the algorithm from infinite looping and implements
a sort of branching. The process continues until we find a
feasible schedule or until the stopping condition is not met.

As a priority rule in the algorithm, we have used MCF
(the most critical first) with ties broken by EDF (the earliest
deadline first). The stopping condition of the algorithm is
defined in terms of the number of top-level loop iterations.

B. Large Neighborhood Search

In the second stage, the algorithm improves the initial
solution by applying local improvements to the permutation.
It is a two-step process — a neighborhood is chosen first,
and then the permutation is optimized over the neighborhood
by a MILP solver. The neighborhood specifies the set of all
variables determining the relative order in the permutation.
Assume that L ⊆ IMC is the selected subset of messages.
Then the neighborhood with respect to the set L is given as

NL = {xij | ∀i, j ∈ IMC : i > j, i ∈ L ∨ j ∈ L} .

NL is a set of all relative-order variables for messages
in L. The algorithm iteratively optimizes the MILP from
Section IV-B over the NL. The binary variables outside of

neighborhood NL are fixed according to the previous solution.
The pseudocode of this procedure can be seen in Algorithm 2.
The choice of the neighborhood is left to be defined. Below,

Algorithm 2 Large Neighborhood Search
1: while the stopping condition is not met do
2: L← NEIGHBORHOOD(π)
3: π∗ ← arg minCmax over NL
4: if Cmax(π∗) ≤ Cmax(π) then
5: π ← π∗

6: end if
7: end while
8: return LEFT-SHIFTED(π)

we propose two neighborhood selection strategies. The first
one is based on the concept of the critical path. Informally
said, in given the schedule it is the set of messages that
causes the achieved makespan. By rescheduling those, the
makespan can be reduced. The other neighborhood is the
sequence neighborhood. It takes the given permutation and
randomly selects a continuous sequence of k messages in it.

C. Critical Path Neighborhood

The critical path neighborhood aims to rearrange messages
that prevent makespan from being decreased. A critical path
in the schedule is defined as follows:

Definition 3 (Critical Path): For any given feasible schedule,
the critical path CP ⊆ IMC × {1, . . . ,L} is a maximal
set of messages with associated criticality levels such that
∀(i, `) ∈ CP holds that if the processing time p(`)

i is increased
by arbitrarily small ε > 0, then the makespan of the augmented
schedule is also increased by ε.

We illustrate the critical path on the example from Figure 2a.
In this schedule, the critical path consists of messages T2, T3,
T4, T5 and T6. The critical path neighborhood is then defined
as

CP -NEIGHBORHOOD(π, k) ={choose randomly k messages at
the critical path of the
left-shifted schedule of π}

In general, the critical path might not be unique. In that case,
an arbitrary critical path is chosen. If the critical path contains
less than k messages, then every message at the critical
path is taken. The feature of CP-NEIGHBORHOOD is that it
prevents from an unnecessary optimization over messages that
cannot improve the current solution. Indeed, rearranging only
messages that are out of a critical path cannot improve the
solution as they can enter a critical path, hence increasing the
objective.

D. Sequence Neighborhood

Another neighborhood we use is the sequence neighbor-
hood. It aims to reoptimize local segments of the permutation
of messages. That is, given the permutation π, we randomly

select continuous segment of k messages from π. More
specifically, the sequence neighborhood is defined as follows:

SEQ-NEIGHBORHOOD(π, k) ={π(i), π(i+ 1), . . . , π(i+ k)

for some random i ≤ |π| − k}

The SEQ-NEIGHBORHOOD allows to reschedule messages
that are not part of a critical path in order to free up space
for other messages that are currently on it. Such situations can
arise for example due to the presence of release times.

E. Implementation Details

In each iteration of Large Neighborhood Search, the choice
of the neighborhood is uniformly random. The size of the
neighborhood k was chosen to k ∈ {13, 20} in separate
runs. The value of this parameter is set according to the time
required by the MILP solver to find an improving solution
the size of the neighborhood. As a stopping condition for the
second stage of the algorithm, we have used that either one
of the followings holds:

- the number of iterations of the Large Neighborhood
Search reached 25

- the solution has not improved in last 6 iterations
- the gap from a lower bound is less than 2%.
The number of the top-level loop in the first stage was set

to 15n, where n is the number of messages in the instance.
The algorithm is implemented in Python 2.7 and executed with
PyPy 5.6 interpreter supporting Just-in-Time (JIT) compilation
to obtain near-native performance. The code was executed on
two Intel Xeon E5-2620 v2 @ 2.10 GHz processors. As a
MILP solver, the Gurobi Optimizer 7.0 was used.

VI. EXPERIMENTAL RESULTS

We have tested our algorithm on instances with up to
the 300 messages. We generated 20 instances for each n ∈
{50, 100, . . . , 300}. In each test instance, the criticalities of
messages are distributed ∼ POISSON(3) distribution. The
prolongation of the processing time at criticality level ` is
randomly sampled from the uniform distribution U(`, ` + 6).
Release times are distributed ∼ Γ(2, 4), where Γ(a, b) is the
Gamma distribution and the deadline for each message is given
as d̃i ∼ ri+p(Xi)

i +dβe, where β ∼ U(D/2, D) ·10n, n is the
number of messages and D is a random variable distributed
D ∼ U(0, 5). This set of parameters represents a message set,
where the release times are distributed around the beginning
of the schedule and deadlines are distributed equally along the
second half of the schedule. In this way, the order of messages
is not fully determined by the deadlines, but they are not
loose enough to ignore them completely. In our experience,
the combination of the given criticalities and transmissions
times yields to a challenging message set to schedule.

To show the trade-off between running time and solution
quality, we run the algorithm with limits l ∈ {5, 15, 25} s for
the MILP solver at each iteration of the Large Neighborhood
Search. The results for each instance is averaged over 5
independent runs of the algorithm.

From 120 instances, the algorithm was able to schedule
81.6% of instances without violating a deadline. In the Table I,
the results are displayed. The first column denotes the number
of messages in each instance within the set. The column avg
time denotes the mean and the standard deviation of the total
running time. The column avg gap denotes the mean the
standard deviation of the optimality gap. The gap is computed
as gap = 100 · ub−lbub where the ub is the objective value of
the best solution found, and the lb is a lower bound on the
objective. It denotes the relative distance from the provably
optimal results, i.e. the shortest possible schedule. In our case,
we have computed the lower bound by relaxing the problem
1|ri, d̃i,mc = L|Cmax into the L independent problems of
1|ri|Cmax. The `-th problem instance contains messages with
processing times pi = p

(`)
i for all messages with Xi ≥ ` in the

original problem instance. Each of these problems is solved
up to the optimality. The maximum of objective values for all
L problems is a lower bound on the objective of the original
problem. The column avg time denotes the mean solving time
combined from both stages.

5 10 15 20 25
l [s]

39

24

18

13

5

k
[-]

6.0

6.2

6.4

6.6

6.8

7.0

m
ea

n
ga

p
[%

]

Fig. 3: The sensitivity to k and l parameters values. The
depicted mean gap is for instances with n = 100 messages.

As it can be seen from Table I, increasing neighborhood size
k without increasing time limit l might be harmful (see results
for k = 13 versus k = 20), since too large neighborhoods
often cannot be searched in the given time limit. Therefore,
less improving solutions are found and the stopping condition
of the second stage is reached faster (see avg time column).
However, the gap is consistently smaller with increasing time
limit l. Although the standard deviations of the gap may seem
to be quite large, one has to realize that these gaps are averaged
over the whole set of instances with the same n. Therefore, the
deviations will be always non-zero even though the algorithm
performs consistently.

The analysis of the sensitivity to neighborhood size k and
the time l to search it through can be seen in Figure 3.
Moreover, demonstrate that the trade-off between the solution

TABLE I: Mean optimality gaps and running times of the algorithm for different time limits l.

l = 5 s l = 15 s l = 25 s
n messages avg gap [%] avg time [s] avg gap [%] avg time [s] avg gap [%] avg time [s]

50 6.29 (±3.29) 66.4 (±25.4) 6.17 (±3.11) 181.7 (±70.8) 6.17 (±3.11) 285.7 (±107.4)
100 6.40 (±1.87) 86.3 (±37.9) 5.97 (±1.75) 269.4 (±98.2) 5.93 (±1.74) 429.0 (±156.6)
150 7.37 (±1.91) 87.5 (±42.0) 6.75 (±2.02) 304.4 (±105.4) 6.51 (±1.98) 509.1 (±164.3)

k = 13 200 6.13 (±1.80) 89.4 (±46.5) 6.00 (±1.75) 217.2 (±107.6) 5.60 (±1.48) 434.7 (±195.8)
250 6.81 (±1.30) 94.6 (±27.3) 6.65 (±1.21) 229.3 (±109.9) 6.46 (±1.14) 416.6 (±205.6)
300 8.08 (±1.16) 121.8 (±30.4) 7.82 (±1.08) 288.3 (±135.9) 7.68 (±1.03) 458.5 (±212.5)

50 6.35 (±3.19) 72.9 (±27.8) 6.27 (±3.19) 189.1 (±72.2) 6.21 (±3.15) 294.8 (±109.4)
100 6.88 (±1.84) 58.7 (±26.9) 6.46 (±1.77) 209.1 (±93.3) 6.23 (±1.84) 385.0 (±164.2)
150 7.84 (±1.94) 60.5 (±20.0) 7.52 (±2.02) 191.2 (±86.1) 7.20 (±1.99) 367.9 (±178.1)

k = 20 200 6.36 (±2.02) 64.0 (±6.1) 6.16 (±1.82) 173.3 (±79.6) 6.04 (±1.67) 276.4 (±130.9)
250 6.85 (±1.30) 82.4 (±7.8) 6.81 (±1.28) 165.8 (±38.9) 6.77 (±1.25) 272.0 (±111.3)
300 8.09 (±1.17) 109.5 (±10.8) 8.08 (±1.17) 186.2 (±35.0) 8.00 (±1.15) 289.6 (±113.7)

quality and running time can be controlled by l parameter
very well. We can see that having too large neighborhood with
small time limit yields worse solutions since the neighborhood
is not searched completely. Having the size of neighborhood
k ≈ 13 with time limit l ≈ 25 s performs on average the
best. Furthermore, by the analysis of the computed schedules
we found out, that the schedules with F-shapes are on av-
erage 67% shorter than schedules without them ensuring the
same level of commitment to retransmissions. Therefore, the
significant part of the bandwidth is saved.

VII. CONCLUSION

In this paper, we have presented a scheduling model with
F-shapes that improves the reliability of Time-Triggered com-
munications by message retransmissions while preserving the
efficient use of resources. It enables us to construct static
schedules, which encapsulate all possible alternative execution
scenarios that are being observed during the runtime execution.

We defined a procedure how to construct F-shapes from
messages of a given SIL to met their safety requirements.
Those messages are scheduled in a static schedule to facilitate
the safety certification. The communication schedules are
synthesized by a novel two-stage decomposition algorithm
such that release times and deadlines of messages are always
satisfied.

We have demonstrated the ability of our algorithm to
solve large problem instances within a few percents from the
optimality. The results on a comprehensive set of synthetic
benchmark instances suggest that the proposed method allows
smooth control between the quality of schedules and the
computation time.

REFERENCES

[1] Sanjoy Baruah and Gerhard Fohler. Certification-cognizant time-
triggered scheduling of mixed-criticality systems. In Real-Time Systems
Symposium (RTSS), 2011 IEEE 32nd, pages 3–12. IEEE, 2011.

[2] Sanjoy Baruah and Zhishan Guo. Mixed-criticality job models: a
comparison. In Proc. WMC, RTSS, pages 5–9, 2015.

[3] Ron Bell. Introduction to IEC 61508. In Proceedings of the 10th
Australian workshop on Safety critical systems and software-Volume 55,
pages 3–12. Australian Computer Society, Inc., 2006.

[4] Alan Burns and Rob Davis. Mixed criticality systems-a review. Depart-
ment of Computer Science, University of York, Tech. Rep, 2013.

[5] Silviu S. Craciunas, Ramon Serna Oliver, Martin Chmelı́k, and Wilfried
Steiner. Scheduling real-time communication in IEEE 802.1Qbv time
sensitive networks. In Proceedings of the 24th International Conference
on Real-Time Networks and Systems, RTNS ’16, pages 183–192, New
York, NY, USA, 2016. ACM.

[6] J. Dvorak and Z. Hanzalek. FlexRay static segment scheduling on two
independent channels with gateway. In 2015 IEEE World Conference
on Factory Communication Systems (WFCS), pages 1–4, May 2015.

[7] Z. Hanzalek, P. Burget, and P. Sucha. Profinet IO IRT message
scheduling with temporal constraints. IEEE Transactions on Industrial
Informatics, 6(3):369–380, Aug 2010.

[8] Pawel Jan Kalczynski and Jerzy Kamburowski. On the NEH heuristic for
minimizing the makespan in permutation flow shops. Omega, 35(1):53
– 60, 2007.

[9] Hermann Kopetz, Astrit Ademaj, Petr Grillinger, and Klaus Steinham-
mer. The time-triggered Ethernet (TTE) design. In Object-Oriented
Real-Time Distributed Computing, 2005. ISORC 2005. Eighth IEEE
International Symposium on, pages 22–33. IEEE, 2005.

[10] J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker. Complexity of
machine scheduling problems. In Studies in Integer Programming,
volume 1 of Annals of Discrete Mathematics, pages 343 – 362. Elsevier,
1977.

[11] Antonin Novak, Premysl Sucha, and Zdenek Hanzalek. Efficient algo-
rithm for jitter minimization in time-triggered periodic mixed-criticality
message scheduling problem. In Proceedings of the 24th International
Conference on Real-Time Networks and Systems, RTNS ’16, pages 23–
31, New York, NY, USA, 2016. ACM.

[12] David Pisinger and Stefan Ropke. Large neighborhood search. In
Handbook of metaheuristics, pages 399–419. Springer, 2010.

[13] Jens Theis, Gerhard Fohler, and Sanjoy Baruah. Schedule table gener-
ation for time-triggered mixed criticality systems. Proc. WMC, RTSS,
pages 79–84, 2013.

[14] Steve Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In Real-Time Systems
Symposium, 2007. RTSS 2007. 28th IEEE International, pages 239–243.
IEEE, 2007.

[15] Hanzalek Z., Tunys T., and Sucha P. An analysis of the non-preemptive
mixed-criticality match-up scheduling problem. Journal of Scheduling,
doi: 10.1007/s10951-016-0468-y, 2016.

