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Abstract

Many scheduling problems that can be identified inside safety-critical applications, such

as in autonomous cars, tend to be mixed-critical. Such scheduling problems consider tasks to

have different criticalities depending on the safety levels (activation of brakes vs. activation

of air-conditioning). The biggest challenge in those scheduling problems arises from the

uncertainty of processing times as it disturbs the predictability of the system and thus makes

the certification of the system difficult. To overcome this uncertainty, we model the tasks

to have multiple processing times concerning their criticality. This approach converts these

scheduling problems into a deterministic scheduling with alternative processing times.

Here, we study an NP-hard single machine scheduling problem with makespan mini-

mization, where the non-preemptive tasks can have multiple processing times. To solve the

problem, we propose an approximation algorithm, a novel mixed-integer linear programming

block formulation, and an efficient exact branch-and-price decomposition for two criticality

levels. Furthermore, we demonstrate that the optimal schedules are represented as trees,

which enables to formulate an exact algorithm for the problem with three criticality lev-

els. The efficiency of the proposed method is demonstrated for difficult problem instances

with up to 1000 tasks. The experimental evaluation demonstrates that our algorithms have

improved the results of the best-known method by nearly two orders of magnitude.

Keywords— Scheduling, Mixed-Criticality, Uncertain Processing Time, Branch-and-Price

1 Introduction

This paper addresses scheduling in mixed-criticality systems where tasks have different degrees

of importance (criticalities) and share a common resource. The key requirement of these systems

is to isolate tasks such that a lower-criticality task does not influence any higher-criticality task.

When the processing time of tasks is uncertain, the unexpected prolongation of a task may affect

∗Corresponding author: antonin.novak@cvut.cz

1



the execution of another task with higher criticality, which is extremely dangerous for safety-

critical systems. A naive solution assuming the worst-case processing times leads to inefficient

utilization of the resource. This is problematic, especially for embedded systems having limited

computational and hardware resources.

To overcome the processing time uncertainty, we utilize the so-called F-shaped tasks, where

each task has an integer criticality and a set of alternative processing times. The schedules

with F-shaped tasks are proactive and contain exponentially many alternative schedules, with

the alternative being selected based on the realized processing time of a task that occurs during

the runtime execution of the schedule. The structure of the schedule guarantees that in any

of these alternatives, all highly critical tasks are performed, rejecting low-criticality tasks only

if a more critical one is prolonged. At the same time, the resource is efficiently utilized since

when critical tasks are not prolonged, low-criticality tasks may use the resource. Therefore,

the proactive schedules with F-shaped tasks achieve a trade-off between the required safety

margins and an efficient resource usage. An important advantage of this approach is that

despite such flexibility, the schedules only take polynomial-sized space. In addition, even though

the corresponding optimization problem is NP-hard, our exact algorithms are computationally

efficient in practice.

In the following text, we formally define a single resource scheduling problem with non-

preemptive F-shaped tasks to minimize the maximum completion time. The relation between

real-world applications and this scheduling problem is provided in Section 2.

1.1 Problem statement

We assume a set of F-shaped tasks IMC = {T1, . . . , Tn} to be scheduled on a single resource.

We define an F-shaped task (or F-shape for short) and its criticality as follows:

Definition 1 (F-shaped task). The F-shaped task Ti is a pair (Xi,P i) where Xi ∈ {1, . . . ,L}
is the task criticality and P i ∈ NXi, P i =

(
p
(1)
i , p

(2)
i , . . . , p

(Xi)
i

)
is a vector of processing times

such that p(1)i < p
(2)
i < . . . < p

(Xi)
i .

Furthermore, we refer to p(`)i as the processing time of Ti at level `. Let us denote L as the

highest criticality in IMC , i.e., L = maxTk∈IMC Xk. Having a set IMC of F-shaped tasks, we

define a feasible schedule of IMC as follows:

Definition 2 (Feasible Schedule). By the schedule for a set of F-shaped tasks IMC = {T1, T2, . . . , Tn},
we refer to the assignment of start times s = (s1, s2, . . . , sn) ∈ Nn0 . We say that schedule

(s1, s2, . . . , sn) for IMC is feasible if and only if ∀i, j ∈ {1, . . . , n}, i 6= j :(
si + p

(min{Xi,Xj})
i ≤ sj

)
∨
(
sj + p

(min{Xi,Xj})
j ≤ si

)
. (1)

The sufficient and necessary conditions for the feasibility of a schedule with F-shaped tasks

state that tasks are non-preemptive and do not overlap on any criticality level. For example, in

Figure 1a where T5 follows T4, F-shaped task T5 cannot start earlier than that at s4 +p
(2)
4 , since

min{X4,X5} = 2, which is the highest common criticality level of T4 and T5.
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Given the schedule s, we say that the completion time of a task is given by its start time in

s plus the processing time at the highest criticality level:

Definition 3 (Makespan of a Schedule). Given a feasible schedule s = (s1, s2, . . . , sn), the

completion time of task Tj is given as Cj = sj + p
(Xj)
j . The maximal makespan of the schedule

s is the latest completion time, i.e., Cmax = maxj Cj = maxj

{
sj + p

(Xj)
j

}
.

Further in the text, we will use the term makespan instead of the maximal makespan for

simplicity. The problem we deal with in this paper is to find a feasible schedule for the given

set of F-shaped tasks with criticality at most L, which has the minimal makespan:

Definition 4 (MC–L Problem Statement). Given the set IMC of F-shaped tasks with maximum

criticality L, find a feasible schedule minimizing the makespan, i.e.,

min
s
Cmax

subject to

feasibility conditions (1)

s ∈ Nn0 .

In the three-field Graham-Blazewicz scheduling notation [18], the problem is denoted as

1|mc = L|Cmax, where 1 denotes the scheduling on a single resource, mc = L stands for the

mixed-criticality aspect of tasks of maximal criticality L, and Cmax stands for the minimization

of the maximum completion time. This problem is known to beNP-hard in the strong sense even

for the special case mc = 2 (two criticality levels), as shown by the reduction from 3-Partition

problem in [20].

1.2 Related work

The study of mixed-criticality systems originates from real-time scheduling community due to

its practical applications. In the seminal paper [37], Vestal proposed a model of mixed-criticality

that understands each task as a set of different processing times for discrete levels of assurance.

This understanding of mixed-criticality was later adopted by many others in the following works,

e.g., Baruah [3, 4], Burns [8, 9] and Davis [10]. This line of research mostly deals with response

time analysis of different scheduling policies considering preemptive tasks in so-called event-

triggered systems [22].

Often cited disadvantage of complex event-triggered systems is their inability to be certified

for safety-critical applications [21, 1]. Therefore, researches have turned their attention toward

static scheduling in mixed-criticality systems [22, 36, 6] that solves the problem with certification

and predictability. The problem with preemptive tasks with two criticality levels was studied in

[6]. They proposed a heuristic algorithm that constructs a static schedule for multiple resources

while considering precedence constraints. Hanzalek et al. [20] were the first to state the mixed-

criticality as a static non-preemptive scheduling problem, for which they proposed the relative-

order MIP model to solve the problem with release times ri and deadlines d̃i, i.e., 1|ri, d̃i,mc =
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L|Cmax and they proved that minimizing the makespan is strongly NP-hard for two criticality

levels.

The follow-up works aimed to study different problems arising from the scheduling of F-shaped

tasks. The idea of approximating cumulative distribution functions with F-shapes has appeared

in [28]. Dürr et al. [13] studied the case, where each task is given by a single number pi ∈ N
defining pi criticality levels with unit processing time prolongation; hence they appear as equi-

lateral triangles in Gantt charts. They refer to this special case of the scheduling with F-shaped

tasks as the triangle scheduling problem. Their main results are the proof that the makespan

minimization with triangular tasks is at least weakly NP-hard and a quasipolynomial-time

approximation scheme for the problem. Seddik [32] noted that makespan minimization with

F-shaped tasks decreases the probability of tasks execution. Hence, instead of making compact

schedules, they proposed a non-regular criterion that maximizes the execution probability of the

tasks — spreading them as much as possible under deadline constraints. They presented the

proof that finding optimal start times remains NP-hard under the fixed permutation and they

proposed (i) dynamic programming for the case of two criticality levels and (ii) MIP model for

the general problem.

Makespan minimization with tasks up to two criticality levels (i.e., MC-2) is closely related

to classical parallel machine scheduling problems [29] such as uniformly related machines with

makespan minimization (i.e., Q||Cmax [23]). The machines represent critical tasks while the

speeds of the machines are set proportionally to the difference of processing times p(2)i − p
(1)
i

at their both levels. However, the makespan minimization in parallel uniform machines en-

vironments leads to suboptimal solutions for MC-2 since makespan minimization disregards

makespans on machines with smaller load than Cmax.

A closer problem is the scheduling on identical parallel machines with the total tardiness

criterion, i.e., P ||∑Tj [34]. The total tardiness criterion minimizes the total sum of processing

processing times of jobs that exceed their due date, which relates to makespan minimization

criterion in MC-2. This relation is further discussed at the end of Section 3.2. However, for the

general problem MC-2, the transformation cannot be used.

Moreover, the problem with positive time lags 1|lij > 0|Cmax with chain precedence [27] can

be used to solve MC-2. Even thought it is possible to reduce to more complex problems to

obtain a solution, in practice, it is computationally inefficient method, as the structure of the

original problem that can be exploited is not exposed to the algorithm.

Another related problem is the bin packing [16], which considers an unlimited number of

bins (optionally of different sizes) and a set of items to pack. The goal is to pack the items

using the minimum number of bins while their capacity is not exceeded. Further connections

can be seen also with 1D cutting stock problem [11], where one cuts items of different size from

material rolls of the given length such that the residual waste is minimized. The main difference

from those two problems is that the size of the bin (material roll) cannot be exceeded (contrary

to MC-2).

Solving problems with more criticality levels brings yet another level of complexity, yielding

looser relation to the above mentioned problems. The makespan scheduling with more criticality
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levels can be then related to more general packing problems, such as polyominoes [17].

Taking a broader perspective, the problem in this study is related to stochastic optimiza-

tion [31] due to the uncertainty of processing times [19]. Moreover, it contains aspects of task

disruption [30] and rejection [33] due to flexible execution of schedules, and robust scheduling [7]

due to the robustness with respect to processing time prolongation. To the best of our knowl-

edge, none of these approaches alone can be applied to our problem, as we need a combination of

uncertainty, robustness and task rejection at once. The problem of static non-preemptive mixed-

criticality scheduling has been addressed by [20, 28] only; however they lack computationally

efficient exact solution method, which is presented in this paper.

1.3 Contribution and paper outline

This paper focuses on the fundamental properties of F-shaped tasks that arise from scheduling

problems in mixed-critical environments. We study the problem of the makespan minimization

with F-shaped tasks (i.e., 1|mc = 2|Cmax and 1|mc = 3|Cmax) and develop fast exact algorithms

for solving the problems. The main contributions of this paper are as follows:

– an approximation algorithm for the problem with two criticality levels (see Section 3.1),

– an exact efficient block MIP model that optimizes over non-isomorphic permutations (see

Section 3.2),

– a branch-and-price algorithm with a pseudopolynomially solvable pricing problem (see

Section 3.3),

– a structural result on optimal permutations and a generalization of the branch-and-price

for more criticality levels (see Section 4.1 and Section 4.2), and

– the experimental evaluation of the proposed algorithms (see Section 5).

The rest of this paper is organized as follows. In Section 2, we describe our model for

processing time uncertainty, explain the online execution of the schedule, and show real-life

applications of the model. In Section 3, we derive a factor-two approximation algorithm for the

problem with two criticality levels, unveil the structure of optimal schedules, and propose an

efficient MIP formulation that optimizes over non-isomorphic permutations. In Section 4, we

generalize the method for more criticality levels. The numerical experiments are described in

Section 5, where we demonstrate the efficiency of our algorithms and bounds distinguishing easy

instances from the difficult ones. The conclusions are drawn in Section 6.

2 Uncertainty and Execution Model

In this section, we explain how uncertain processing time of a task, given by a probability

distribution, can be modeled by an F-shaped task. Next, we will show how F-shapes form static

schedules, that encapsulate different alternative runtime scenarios. Finally, we describe some

real-life applications suitable for the proposed model.
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(a) Schedule with F-shaped tasks and the execution scenario et.
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Figure 1: Schedule with F-shaped tasks and the executed alternative.

2.1 Approximation of a distribution function

The processing time uncertainty may be expressed by a probability density function (PDF).

Figure 2a shows a real-life PDF of computational times of an algorithm used in autonomous

driving. This algorithm, described in [26] consists of matrix multiplications, fast Fourier trans-

form, inverse transform, and a binary search.

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
processing time pi

0.0

0.1

0.2

0.3

Pr
[P

i=
p i

]

(a) PDF of computational times. (b) F-shape as an approximation of CDF.

Figure 2: Approximation of computational times represented as an F-shaped task.

Real-life distributions of computational times often have a long tail, i.e., the actual com-

putational times can be significantly larger than the expected value, but with a decreasing

probability. Therefore, it is convenient to display cumulative distribution functions (CDFs)

with a logarithmic scale on the y-axis (see Figure 2b). Each task has criticality prescribed by

the application requirements (e.g., the pedestrian tracking has higher criticality than adaptive

light shaping). Processing time p
(`)
i at each criticality level ` is given by the CDF and the

corresponding probability threshold.

The choice of probability thresholds is dependent on the target application and its safety

requirements. For example, often the automotive safety integrity levels (ASIL) standard [21]

states that the system must guarantee that all high-criticality activities will be successfully

completed with the probability of at least 0.999, medium-criticality with at least 0.99, and low-

criticality with 0.9. Then, it can be analytically computed by examining the worst-case coverage,
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that the choice of thresholds 0.999 for the high level,
√

0.99 ≈ 0.995 for the medium level and√
0.9√
0.99
≈ 0.952 for the low critical level guarantees that in any feasible schedule, all tasks will

be successfully completed at least with the required probability. See Figure 2b for the resulting

F-shape.

2.2 Runtime execution scenarios

A schedule with F-shaped tasks is the same as any other static schedule, i.e., it is a static

assignment of tasks to start times. However, it can be executed under different scenarios that

emerge from the processing time uncertainty. Hence, we distinguish two concepts — a schedule

and an execution scenario. The schedule is a static assignment of F-shapes to start times,

and is computed from the given set of F-shaped tasks; thus, it is known before the runtime

execution. On the other hand, the execution scenario is a function of the schedule and the

observed processing time prolongations; therefore, it is not known in advance. The criticality

of an F-shaped task plays a role in the runtime execution — a more critical task is allowed to

consume the resource time of a less critical task to compensate for its prolongation if needed.

This can happen in cases where a more critical F-shape covers a less critical one (e.g., T5 covers

T6 in Figure 1a).

An example of a static schedule of F-shaped tasks can be seen in Figure 1a. Since the

exact processing time of tasks is not known in advance, the schedule needs to account for the

observed processing time prolongations, i.e., provide an alternative for each possible scenario.

The realized scenario is described in terms of the execution level et of the static schedule at

each time instance t. Denoting L as the maximum criticality among all tasks, the execution

level et : t → {0, 1, . . . ,L} is a piecewise constant function. In Figure 1a, one of the possible

execution scenarios is depicted by the black line. Its value corresponds to the current system

criticality level with value 0 used in cases where the resource is idle.

Example We will describe the execution policy through a specific example depicted in Fig-

ure 1a. In this case, the execution has begun at time t = 0 at the first level, i.e., e0 = 1. The

task T1 is executed until time t = 5. Here, it is observed that T1 is not finished by that time.

Therefore, its processing time is prolonged; i.e., the realized processing time is greater than 5.

The execution level is raised to the second level, i.e., e5 = 2, and the execution of T1 continues.

At time t = 9, T1 is completed. However, tasks T2 and T3 are rejected during this scenario

since the more critical task T1 is prolonged and the execution of T2 and T3 would collide with it.

Hence, if a prolongation occurs, it is compensated by rejecting some of the low-criticality tasks.

When a task is completed, the execution matches-up [5] with the base level (i.e., et = 0). In

our example, e9 = 0 denotes that the resource was available at time t = 9 during the considered

scenario. The next task executed is T4, since at its start time s4 = 11, the resource was available;

i.e., e11 = 0 and its execution starts at the first level. This sequence of observed events and

reactions of the execution policy results in the executed alternative depicted in Figure 1b.
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2.3 Real-world applications

As it was described in the previous subsection, static schedules with F-shaped tasks contain

exponentially many alternatives, and it might be the case that for a schedule, there are scenarios

that reject some or even all low-criticality tasks in the schedule. Nevertheless, it is still reasonable

to schedule all tasks and not to exclude them from scheduling in advance because this behavior

has support in the applications.

First, most of real-life embedded systems perform a periodic workload [8, 36, 37], i.e., the

same tasks (given in advance) are repeated over time (e.g., periodical measurement of oil tem-

perature). In these cases, the rejected task might be executed again in few milliseconds in

the next period (see, e.g., [13] for application to retransmission of communication messages in

safety-critical embedded systems). In non-periodic environments, such as production scheduling

or scheduling of surgeries in an operating theater [32], the low-criticality tasks rejected in the

current scheduling horizon are transferred to the following one where they will be scheduled

again. Secondly, the rejection of a task occurs rarely, and it is reasonable to assume that in

practical applications, we talk about exceptions.

Furthermore, many of today’s real-time applications, such as advanced driver assistance

systems, demand both high computing power and safety guarantees. A real-life example of such

systems is NVIDIA DRIVE
TM

PX2, which contains a powerful graphics processing unit that

runs deep neural networks for computer vision that secure autonomous driving capabilities. A

common property of such algorithms is that their computational time is not deterministic since

it frequently depends on the content of the input image. For example, the computational load in

the problem of visual object tracking increases with the number of objects in the camera image.

Furthermore, the additional uncertainty comes from low-level mechanisms such as the shared

access to the main memory, the processor caches and interconnects.

3 Problem with Two Criticality Levels

In this section, we deal with the problem restricted to two criticality levels, i.e., MC-2. This

problem models an environment that distinguishes between critical and non-critical activities.

The critical activities are those that cannot be rejected under any circumstance, whereas non-

critical are the ones that can be if a critical one is prolonged. Concerning practical applications,

the number of criticality levels L might be relatively low, i.e., usually L � n, where n is the

number of tasks in IMC . Indeed, without loss of generality, we can assume that L is bounded

above by n, as proposed by Lemma 1:

Lemma 1. For any instance IMC of the problem MC-L, there exists an instance I ′MC of the

problem MC-L′, L′ ≤ L, such that L′ ≤ n and that any feasible schedule for I ′MC is a feasible

schedule of IMC with the same makespan.

Proof. Suppose we have a feasible schedule s for IMC . If there is no task Ti ∈ IMC with criticality

` = Xi, then there is no Tj such that ` = min{Xj ,Xi}. Therefore, removing level ` from all tasks
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Ti ∈ IMC , Xi > ` while keeping the start times s fixed will not violate the feasibility conditions

in Definition 2. Moreover, the makespan Cmax = maxk

{
sk + p

(Xk)
k

}
is preserved since Xk 6= `.

By removing the level `, we effectively reduce the maximum criticality in the instance IMC ,

since ` ≤ maxk Xk = L. Therefore, we obtain an instance I ′MC of the problem MC-L′ such that

L′ < L. This transformation can be chained until there is such unused level `. Furthermore,

since L′ ≤ |{Xi | ∀Ti ∈ I ′MC}| = |{Xi | ∀Ti ∈ IMC}| ≤ n, the claim follows.

The corollary of Lemma 1 is that if IMC is an instance of the problem MC-L, then without

loss of generality, ∀` ∈ {1, . . . ,L} ∃Ti ∈ IMC : Xi = `, i.e., we can assume that for each

criticality level ` ∈ {1, . . . ,L}, a task with the same criticality exists. The schedules are defined

in terms of start times of tasks. However, it is easy to see that the search for schedules can be

reduced to an optimization problem over a set of permutations of tasks:

Definition 5 (Left-shifted Schedule). Let π = (π(1), π(2), . . . , π(n)) be a permutation of a set

of tasks IMC. Then, the left-shifted schedule of permutation π is a schedule s, where the task

π(1) starts at time 0 and all other tasks start at their earliest start times such that they do not

overlap on any level with any preceding task in the order given by π, i.e.,

sπ(1) = 0

sπ(i) = max
j<i

{
sπ(j) + p

(min{Xπ(i),Xπ(j)})
π(j)

}
∀i ∈ {2, . . . , n}

We say that a schedule s of a permutation π is dominant for π, if it has the minimum

makespan among the set of all possible schedules of the permutation π.

Lemma 2. For any instance of MC-L, the left-shifted schedule is dominant for any permutation

π.

Proof. By contradiction. Suppose we have a left-shifted schedule s of a permutation π and a

feasible schedule s′ of the same permutation π that is not left-shifted, such that Cmax (s′) <

Cmax (s). Since s′ is not left-shifted, then either s′π(1) > 0 or s′π(i) > maxj<i

{
s′π(j) + p

(min{Xπ(i),Xπ(j)})
π(j)

}
for some i ∈ {2, . . . , n}. Therefore, it holds that s′j > sj for some task Tj ∈ IMC . However, since

Cmax (s) = maxk

{
sk + p

(Xk)
k

}
is a non-decreasing function of start times, then it follows that

Cmax (s′) ≥ Cmax (s), which leads to the contradiction.

That is, given the permutation of tasks, the optimal makespan is achieved by shifting all

tasks to the left while maintaining feasibility, i.e., overlapping conditions from Definition 2.

Moreover, it can be shown that for the case of ` criticality levels, the makespan of such schedule

will always be at most `-times larger than the optimal one.

Proposition 1. Any algorithm for the problem MC-L producing the left-shifted schedule is

L-approximation algorithm.

Proof. Let us denote the makespan of an optimal solution of IMC instance as OPT(IMC) and

the makespan of any left-shifted solution as LS(IMC). Since max`≤L

{∑
Tj∈IMC :Xj≤` p

(`)
j

}
is a
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lower bound on OPT(IMC), we can write

max
`≤L

 ∑
Tj∈IMC :Xj≤`

p
(`)
j

 ≤ OPT(IMC) ≤ LS(IMC) ≤
L∑
`=1

∑
Tj∈IMC :Xj=`

p
(`)
j ≤

≤ L ·max
`≤L

 ∑
Tj∈IMC :Xj≤`

p
(`)
j

 ≤ L ·OPT(IMC),

where the third inequality follows from the fact that the longest possible left-shifted schedule

has tasks sorted in a non-decreasing order of criticalities.

In the next section, we will propose an approximation algorithm for problem MC-2, that

achieve on average better results than its the worst-case guarantees.

3.1 Approximation algorithm

We propose the following approximation algorithm. The main concept of the algorithm is to

build the schedule using basic units, which we call blocks. Let us partition the input instance

IMC into two disjoint subsets L and H, IMC = L ∪ H, L ∩H = ∅. Let L be the set of tasks

with low criticality L = {Tj | ∀Tj ∈ IMC : Xj = 1}, |L| = nL and H be the set of tasks with high

criticality H = {Ti | ∀Ti ∈ IMC : Xi = 2}, |H| = nH . Note that by Lemma 1, we can assume

that L,H 6= ∅. The algorithm constructively partitions tasks into the so-called coverage sets.

Definition 6 (Coverage set). Let Ti ∈ IMC be an F-shaped task. Then,

cov(Ti) ⊆ {Tj | ∀Tj ∈ IMC : Xj = Xi − 1}

is a subset of tasks with criticality Xi − 1.

The coverage set cov(Ti) can be viewed as a set of less critical tasks, which immediately

follows Ti in a schedule. If Tj ∈ cov(Ti), then Tj is covered by Ti. The tasks {Ti} ∪ cov(Ti)

form a block (see Figure 3a with three different blocks). The algorithm constructs blocks that

are used later to derive the whole schedule. In each iteration, the algorithm takes an unassigned

task Tj ∈ L with the longest processing time p(1)j and a task Ti ∈ H, which currently has the

largest available gap, defined as Wi = p
(2)
i − p

(1)
i −

∑
Tk∈cov(Ti) p

(1)
k . Note that the gap Wi can

be even negative if the sum of processing times of tasks in cov(Ti) is larger than p
(2)
i . After

Tj ∈ L and Ti ∈ H are selected, Tj is assigned to the coverage set of Ti, i.e., Tj ∈ cov(Ti). When

the task Tj is assigned, the gap Wi is decreased by the processing time p(1)j . This procedure is

repeated until all tasks in L are assigned. In fact, the algorithm works similarly as the LPT

(longest processing time first) rule for Q||Cmax problem [23].

The output of the algorithm is a permutation π of all tasks in IMC . The permutation is

formed by all tasks in H sorted in a non-decreasing order of Wi, each of them interleaved by

assigned tasks Tj ∈ cov(Ti). The resulting schedule is given by the left-shifted schedule of the

permutation π. Table 1 shows an illustrative example of how the algorithm proceeds. The

pseudocode can be seen in the (APX-MC-2) algorithm.
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Table 1: Illustrative example of (APX-MC-2) algorithm.

(a) Input instance

task Xi P i

T1 2 (3, 9)

T2 2 (4, 8)

T3 2 (2, 9)

T4 1 (8,−)

T5 1 (4,−)

T6 1 (3,−)

T7 1 (3,−)

(b) Iterations of the algorithm and the solution

iteration

#1 cov(T3)← {T4}, W3 ← 7− 8 = −1

#2 cov(T1)← {T5}, W1 ← 6− 4 = 2

#3 cov(T2)← {T6}, W2 ← 4− 3 = 1

#4 cov(T1)← {T5, T7}, W1 ← 2− 3 = −1

permutation π = (T1, T5, T7, T2, T6, T3, T4)

schedule s = (0, 10, 18, 20, 3, 14, 7)

Algorithm (APX-MC-2) 2-Approximation algorithm for MC-2.

1: let p(1)1 ≥ p
(1)
2 ≥ . . . ≥ p

(1)
j ≥ . . . ≥ p

(1)
nL

2: Wi ← p
(2)
i − p

(1)
i ∀Ti ∈ H

3: for j = 1 to nL do

4: k ← arg maxiWi

5: Wk ←Wk − p(1)j
6: cov(Tk)← cov(Tk) ∪ {Tj}
7: end for

8: π ← ()

9: for i = 1 to nH do

10: π ← (π, Ti)

11: for all Tj ∈ cov(Ti) do

12: π ← (π, Tj)

13: end for

14: end for

15: return Left-Shifted(π)

The algorithm runs in O(nL(log nH + log nL) + nH). The dominant operations are sorting

(line 1) and preservation of the max-heap of Wi’s (line 5). The (APX-MC-2) algorithm ensures

that the makespan of any produced schedule is at most twice worse than the optimal one,

which can be seen directly from Proposition 1. The difficulty of improving the upper bound

on the approximation factor is introduced by the presence of ”long” tasks in L together with

uneven length of differences p(2)i − p
(1)
i of tasks in Ti ∈ H. However, for some specific classes

of instances we can obtain tighter factor: (i) when all tasks in H have the same constant

difference ∆ > 0 between the second and the first level, i.e., ∀Ti ∈ H : p
(2)
i − p

(1)
i = ∆,

then the method of [15] gives us a PTAS (polynomial-time approximation scheme), (ii) when

maxTj∈L p
(1)
j ≤ minTi∈H p

(2)
i −p

(1)
i , then (APX-MC-2) has factor at most 3/2 (see Appendix A).

We note that the case (ii) is the most practical one, since such instances arise from problems

where the original processing time distributions have long tails.
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Note that (APX-MC-2) works well in practice even for the general problem, hence we use

it as the initial heuristic for branch-and-price algorithm proposed in Section 3.3. In the next

section, we derive the block MIP formulation that utilizes the structure of optimal permutations.

3.2 Block MIP formulation

The proposed MIP model is based on a similar concept as the approximation algorithm de-

scribed in the previous subsection. The model exploits three symmetries in the problem. The

first symmetry comes from the fact that tasks in L with the same processing time are indistin-

guishable. Therefore, the constraint to schedule all tasks can be given by the requirement to

schedule a given number of tasks with a specific processing time, instead of scheduling unique

tasks’ occurrences. The second symmetry occurs in the ordering of tasks in cov(Ti). The last

symmetry comes from the ordering of sets of tasks that are covered since the Cmax criterion is

invariant with respect to the ordering of blocks. This property becomes apparent from Figure 3,

and is proven below.

Let P =
{
p
(1)
j

∣∣∣ ∀Tj ∈ L} be the set of unique processing times of tasks in L (i.e., it is not a

superset) and let np =
∣∣∣{Tj | ∀Tj ∈ L : p

(1)
j = p

}∣∣∣, i.e., the number of tasks in L with processing

time equal to p ∈ P .

The decision variable xi,p states the number of tasks in L with processing time equal to

p ∈ P that are covered by Ti ∈ H, i.e., xi,p = |{Tj | ∀Tj ∈ cov(Ti) : p
(1)
j = p}|. The continuous

variable Bi corresponds to the length of {Ti}∪ cov(Ti) block, e.g., see B3 in Figure 3a. The first

symmetry is broken by constraint (4), while the second symmetry is broken by constraint (3).

Finally, the third symmetry is broken by the objective function.

tt

T1T1 T2T2

s1s1 s2s2 s3s3

cov(T1)cov(T1) cov(T3)cov(T3)

T3T3

B3B3

T4T4 T6T6 T5T5 T7T7

(a) Left-shifted schedule of the canonical per-

mutation.

tt

T2T2T1T1 T3T3

s1s1 s3s3 s2s2

T4T4 T6T6 T7T7 T5T5

B3B3

(b) Equivalent schedule with the same coverage

sets represented by a non-canonical permuta-

tion.

Figure 3: Schedule with two criticality levels.

min
∑
Ti∈H

Bi (MIP-MC-2)

subject to

Bi ≥ p(2)i ∀Ti ∈ H (2)

Bi ≥ p(1)i +
∑
p∈P

p · xi,p ∀Ti ∈ H (3)

∑
Ti∈H

xi,p = np ∀p ∈ P (4)
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where

Bi ≥ 0 ∀Ti ∈ H (5)

xi,p ∈ Z+
0 ∀(Ti, p) ∈ H × P (6)

The model contains Θ(nH |P |) ⊆ O(nHnL) integer variables xi,p, which define for each

Ti ∈ H, how many tasks in L with the given processing time follow immediately after Ti in

a permutation. The final schedule s is given by the left-shifted permutation of tasks Ti ∈ H
interleaved by Tj ∈ cov(Ti). In fact, for each solution of MIP formulation (MIP-MC-2), there

are nH ! different but equivalent solutions. Figure 3b shows one particular solution equivalent

to the one in Figure 3a. Hence, to obtain a representative solution for this equivalence class,

we define canonical permutation, which we use to reconstruct the schedule s from a solution of

(MIP-MC-2).

The permutation π is the canonical permutation if ∀Ti, Tj ∈ H : i < j =⇒ π(i) < π(j) and

∀Ti ∈ H,∀Tk, Tl ∈ cov(Ti) : k < l =⇒ π(i) < π(k) < π(l). Therefore, in a canonical left-shifted

schedule, T1 ∈ H is scheduled at time s1 = 0. The start time of task Tq ∈ H, q > 1 is given by

the following recurrent formula:

sq = sq−1 + max

p(2)q−1, p(1)q−1 +
∑

Tk∈cov(Tq−1)

p
(1)
k

 ∀q : 1 < q ≤ nH . (7)

The start times of the tasks Tk ∈ cov(Tq), ∀Tq ∈ H are given as

sk = sq + p(1)q +
∑

Tk′∈cov(Tq):k′<k

p
(1)
k′ ∀Tk ∈ cov(Tq). (8)

The makespan Cmax of the schedule s = (s1, s2, . . . , sn) is then

Cmax = snH + max

p(2)nH , p(1)nH +
∑

Tk∈cov(TnH )

p
(1)
k

 . (9)

Now, we show that MIP formulation (MIP-MC-2) is correct.

Proposition 2. Given the optimal solution of (MIP-MC-2), the schedule s is feasible and

optimal.

Proof. First, we will show that such schedule s is feasible, and later, that it is optimal. To ensure

feasibility, for all tasks in IMC , the conditions specified in Definition 2 need to be satisfied. For

all Ti, Tj ∈ H, i < j, the start times are set such that

sj ≥ . . . ≥ si+1 = si + max

p(2)i , p
(1)
i +

∑
Tk∈cov(Ti)

p
(1)
k

 ≥ si + p
(2)
i ,

where the equality follows from (7). Since Xi = Xj = 2, the maximal common criticality level of

Ti and Tj is 2; thus, sj ≥ si + p
(min{Xi,Xj})
i follows. For all Ti, Tj ∈ L, it holds that Ti ∈ cov(Tk),

Tj ∈ cov(Tq) for some Tk, Tq ∈ H. If Tk 6= Tq, then without loss of generality, let us assume

that k < q, and thus, sk ≤ sq. Therefore in this case, it follows from the definition of the

13



schedule s that sk + p
(1)
k ≤ si + p

(1)
i ≤ sq ≤ sj . If Tk = Tq and i < j, then si + p

(1)
i ≤ sj by

(8). For all Ti ∈ H, Tj ∈ L, there are essentially two cases. If Tj ∈ cov(Ti), then immediately

sj ≥ si + p
(1)
i . If Tj 6∈ cov(Ti), then there exists some Tk such that Tj ∈ cov(Tk). For k > i, we

have si + p
(2)
i ≤ sk ≤ sj , and for k < i, we have sk ≤ sj + p

(1)
j ≤ si.

Now, we show that s has the optimal makespan. Applying recursively (7) to makespan (9)

leads to

Cmax =

nH∑
q=1

max

p(2)q , p(1)q +
∑

Tk∈cov(Tq)

p
(1)
k

 .

Since the objective of (MIP-MC-2) is a sum of Bis and each Bi is by constraints (2) and (3)

equal to the maximum of terms in the above expression, (MIP-MC-2) minimizes Cmax.

The formulation (MIP-MC-2) provides additional insights into MC-2 problem. Its struc-

ture is related to the scheduling problem of parallel machines with the total tardiness criterion

P ||∑Tj [34]. It is possible to polynomially reduce a special case of MC-2 when all tasks in

Ti ∈ H have the same constant difference p
(2)
i − p

(1)
i = ∆ between the second and the first

level to problem P |dj = ∆|∑Tj . The transformation generates nH machines and nL tasks

with a common due date ∆. Then, it can be shown that for every optimal solution of such

instance of P |dj = ∆|∑Tj holds that (i) the completion time of the last task on each machine

is greater than or equal to ∆ or (ii) all start times are smaller than ∆. Under the considered

transformation, in case (i) the solution produced by P |dj = ∆|∑Tj is optimal for MC-2 since

its Cmax matches a lower bound
∑

Tk∈IMC p
(1)
k . In case (ii), the total tardiness of this instance

of P |dj = ∆|∑Tj is equal to the sum of processing times that exceed the common due date

∆, since at most nH tasks have non-zero tardiness in an optimal solution. We note that the

reduction of the general case of MC-2 to Q||∑Tj , where the speeds of machines are set propor-

tionally to the differences p(2)i − p
(1)
i in order to capture the fact that tasks in H are unequal is

not exact since in case (ii) the contribution of each machine to the total tardiness is skewed by

the machine speed.

3.3 Branch-and-price decomposition

In this section, we propose a branch-and-price decomposition algorithm [2] to solve the problem.

In general, the problem is decomposed into several pricing problems and a single master problem

that couples them. We view tasks in H as individual subproblems that resolve the question

which tasks in L should be covered by which task Ti ∈ H. These subproblems are coupled by

the criterion that minimizes the sum of amounts by which the second levels p(2)i of tasks in H

are exceeded. See, for example, the schedule in Figure 3b. Here, the second level of task T3

is exceeded by the amount of p(1)5 . This is an equivalent way of expressing Cmax criterion. To

find out how to improve the current solution, we solve a pricing problem, which suggests new

coverage sets cov(Ti) that can improve the objective with the current solution of the master

problem.

The master problem contains cover constraints requiring that all tasks in L are scheduled.

Individual pricing problems communicate with the master problem through shadow prices of
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cover constraints. Shadow prices express the need to schedule the particular tasks in L. The

problem (BNP-MC-2) represents the master problem, which is a linear programming (LP) prob-

lem with an exponential number of variables (i.e., all possible coverage sets). Such problems

can be solved efficiently through column generation (CG) [12], which utilizes the fact that only

a polynomial-sized subset of variables has a non-zero value in an optimal solution of the prob-

lem. Each variable is associated with a column of coefficients in the constraint matrix and the

objective coefficient. CG starts with a few columns and progressively puts new variables into

the model. New columns are generated by a dedicated algorithm that takes the current dual

LP solution of (BNP-MC-2) and produces a new column that can improve the objective value,

or the algorithm proves that the current solution of LP is optimal. Using CG, we can prove the

optimality of the full model (with an exponential number of variables) even without enumerating

all variables. Therefore, by solving the model, only a small subset of all variables is typically

generated.

3.3.1 Master problem

The master problem resolves the question, how to split a set of tasks L into coverage sets such

that L =
⋃
Ti∈H cov(Ti) while the makespan is minimal. It uses an indicator variable x

(s)
i ,

stating whether the particular configuration s ∈ Si is covered by Ti ∈ H. A configuration s ∈ Si
encodes the number of tasks with the given processing time occurring in cov(Ti) into the vector

a
(s)
i . Hence, the entry a

(s)
i,p denotes the number of tasks in L with processing time equal to p,

which is covered by Ti in configuration s. Si is the set of all configurations available for task

Ti. See an example in Figure 3a. Here, T4, T5, T6, and T7 have different processing times.

Hence, the schedule displays the following three configurations: a(s1)1 = (1, 0, 1, 0)>, s1 ∈ S1

a
(s2)
2 = (0, 0, 0, 0)>, s2 ∈ S2, and a(s3)3 = (0, 1, 0, 1)>, s3 ∈ S3.

The master problem can be stated with the following LP:

min
x

∑
Ti∈H

∑
s∈Si

O
(s)
i x

(s)
i (BNP-MC-2)

subject to ∑
Ti∈H

∑
s∈Si

a
(s)
i,px

(s)
i ≥ np ∀p ∈ P (10)

∑
s∈Si

x
(s)
i ≤ 1 ∀Ti ∈ H (11)

where

x
(s)
i ≥ 0 ∀s ∈ Si, ∀Ti ∈ H (12)

The objective coefficient is given as O(s)
i = max

{
p
(1)
i +

∑
p∈P p · a

(s)
i,p − p

(2)
i , 0

}
, ∀Ti ∈ H,∀s ∈

Si, where a(s)i ∈ Z|P |0 . The constraint (10) ensures that each task in L is scheduled, while the

constraint (11) states that each task Ti ∈ H covers at most one configuration s ∈ Si. In the

beginning, the master problem is solved with restricted configuration sets Si containing only

the minimal number of configurations, ensuring the feasibility of the model (BNP-MC-2) and

with an empty configuration s0 ∈ Si,∀Ti ∈ H. The empty configuration s0 denotes the empty
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covering set, i.e., cov(Ti) = ∅. During the solution of (BNP-MC-2), more configurations are

being added. To efficiently determinate which configuration to add at each step, we need to

consider the dual form of the LP problem, which is stated as follows:

max
y,γ

∑
p∈P

npyp +
∑
Ti∈H

γi (BNP-DMC2)

subject to∑
p∈P

a
(s)
i,pyp + γi ≤ O(s)

i ∀Ti ∈ H,∀s ∈ Si (13)

where

yp ≥ 0 ∀p ∈ P (14)

γi ≤ 0 ∀Ti ∈ H (15)

The values of dual variables y and γ are used to decide which configuration to generate to

improve the current solution of (BNP-MC-2). This is achieved using the pricing problem, which

generates a constraint of type (13) that is violated by the current values of y and γ. In the next

section, we will derive the pricing problem.

3.3.2 Pricing problem

The pricing problem determines whether there exists a constraint that violates the current

dual solution or whether the primary solution is optimal and no such constraint can be found.

Due to LP duality, each constraint (13) corresponds to the x(s)i variable in the primary model

(BNP-MC-2), and hence, to the whole column. To determine which column can enter the basis,

one needs to find a violated constraint in the dual form (BNP-DMC2). Therefore, at each

iteration of the branch-and-price algorithm, we ask whether there exists a configuration s ∈ Si
(a column a(s)i and objective coefficient O(s)

i ) that violates one of the constraints (13) with the

current dual solution ŷ, γ̂ of the master problem. This involves deciding whether the following

expression

0 > max{p(1)i +
∑
p∈P

p · a(s)i,p − p
(2)
i , 0} − γ̂i −

∑
p∈P

a
(s)
i,p ŷp = µi (16)

holds for the given fixed values of γ̂i and ŷ. If one is interested in a column with the lowest

reduced cost µi, it is equivalent to the problem

min
a

max{p(1)i +
∑
p∈P

p · a(s)i,p − p
(2)
i , 0} −

∑
p∈P

a
(s)
i,p ŷp (BNP-MC-2-PP)

a
(s)
i,p ∈ Z+

0 ∀p ∈ P (17)

Writing it down as an MIP leads to

max
a,z

∑
p∈P

a
(s)
i,p ŷp − z (18)

subject to
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j 1 2 3 4 5

p
(1)
j 2 10 3 7 5

ŷj 6.0 0.5 5.5 1.0 4.5

Table 2: Example instance of the pricing

problem for Ti ∈ H, P i = (4, 13).

T1T1 T3T3 T5T5

zz

p
(2)
i � p

(1)
i = 9p

(2)
i � p

(1)
i = 9

TiTi

Figure 4: Optimal solution to the pricing prob-

lem instance from Table 2.

∑
p∈P

p · a(s)i,p ≤ p
(2)
i − p

(1)
i + z (19)

where

z ≥ 0 (20)

a
(s)
i,p ∈ Z0 ∀p ∈ P (21)

which can be seen as a variant of Knapsack Problem [25] with items whose values are given

by the current shadow prices of assignment constraints (10) and weights are given by processing

times of tasks that need to be fitted into the knapsack of size given by the size of the gap of

p
(2)
i −p

(1)
i . However, the difference is that there is a possibility to enlarge the size of the knapsack

by some amount while incurring the identical loss in the objective function. The structure of

the pricing problem shows a connection to 1D cutting stock problem [11], where the pricing

problem is the classical Knapsack Problem, since the length of any material roll in the cutting

stock cannot be exceeded.

An example of the pricing problem with nL = 5 tasks for the particular Ti ∈ H is displayed

in Table 2 and the corresponding optimal solution in Figure 4. In this solution, T1, T3, and T5

are selected to form configuration s ∈ Si with a(s)i = (1, 0, 1, 0, 1)> and O
(s)
i = 1.

Therefore, for z = 0, the pricing problem is an ordinary Knapsack Problem. Since the

processing times are integers, the variable z will also be always an integer in an optimal solution.

Having a pseudopolynomial upper bound on z, we can solve different knapsack problems for all

possible values of z separately. However, the pricing problem can be solved even faster. Next,

we will show that the pricing problem is solvable in a pseudopolynomial time, and propose a

dynamic programming algorithm to solve it.

The constraints (10) in a master problem enforce the required number of tasks in L with

the given processing time to be scheduled. For convenience, let us work in the pricing problem

with the specific occurrences of tasks in L instead. Hence, for each specific task size p ∈ P , we

choose to work with np number of tasks with values ŷj = ŷp. In this way, the pricing problem

respects the available number of tasks in L with the given processing time.

Proposition 3. The pricing problem can be solved in a pseudopolynomial time in the maximal

length of a task.

Proof. For any fixed z ∈ N0, the pricing problem corresponding to task Ti ∈ H with W =

p
(2)
i − p

(1)
i becomes the knapsack problem with maximum capacity W + z, which can be solved
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in O(nL(W + z)) by dynamic programming. Since in any solution of the pricing problem, we

pack items with total size of at most K =
∑

Tj∈L p
(1)
j , we can set an upper bound on z as

K ≤ nL maxTj∈L p
(1)
j . Therefore, the pricing problem can be solved as K independent knapsack

problems while picking the best solution among them in total O(nLK(W +K)) time.

However, we can do better. The pricing problem can be solved by the following dynamic

programming recurrence relation. Let U(k, j) be an optimal solution to the pricing problem

with capacity k and tasks {T1, . . . , Tj} ⊆ L. Let W = p
(2)
i − p

(1)
i . For any k, j ≤ 0, we set

U(k, j) = 0. Then, the recurrent relation is given for k ≤W as follows:

U(k, j)←

max{U(k, j − 1), ŷj + U(k − p(1)j , j − 1)} if p(1)j ≤ k
U(k, j − 1) otherwise

(22)

and for k > W , as

U(k, j)←

max{U(k, j − 1), ŷj + U(k − p(1)j , j − 1)− (k −W )} if k − p(1)j ≤W
max{U(k, j − 1), ŷj + U(k − p(1)j , j − 1)− p(1)j } if k − p(1)j > W

(23)

The optimal solution of the pricing problem is then given as k̂ = arg maxk∈[W+K] U(k, nL)

with the objective value U(k̂, nL). If −U(k̂, nL) − γi < 0, then the set of tasks in the solution

corresponds to the new column that can enter the basis (i.e., it has the so-called negative reduced

cost). The new column a(s)i has the objective coefficient O(s)
i = max{k̂ −W, 0} and its entries

are given by the number of tasks with the given size contained in the solution of U(k̂, nL).

The worst-case total running time of the algorithm is O(nL(W + K)). However, in some

cases, the pricing problem can be further simplified by fixing the set of tasks that are necessarily

included in an optimal solution.

Lemma 3. Every task Tj ∈ L with ŷj/p
(1)
j ≥ 1 is included in an optimal solution of the pricing

problem.

Lemma 3 is due to the influence of z ∈ R+
0 variable in MIP (18) to its criterion. If for

a task, Tj ∈ L holds ŷj ≥ p
(1)
j , then taking it into the solution cannot hurt the objective,

since an improvement ŷj − p(1)j ≥ 0 is achieved by enlarging z by the amount of p(1)j . In the

example in Table 2, this rule suggests us to include tasks T1 and T3. Lemma 3 is used in

the algorithm for solving the pricing problem in the following way. The set Q ⊆ L of tasks

satisfying ∀Tj ∈ Q : ŷj/p
(1)
j ≥ 1 is taken out of the pricing problem instance and the capacity W

is decreased by
∑

Tj∈Q p
(1)
j . Then, the pricing problem is solved only for the remaining tasks.

3.3.3 Initial solution and branching

The branch-and-price algorithm starts with an initial set of columns that leads to a feasible so-

lution of the model (BNP-MC-2). In our case, the initial solution comes from the (APX-MC-2)

approximation algorithm, where set cov(Ti) forms the corresponding column a(s)i . After the

master problem (BNP-MC-2) is solved with the given set of columns, a subproblem correspond-

ing to some task Ti ∈ H is selected. In our case, we solve the subproblems in the non-increasing

order of γ̂i until there are no more columns with a negative reduced cost.
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The optimal solution to the master problem (BNP-MC-2) can be fractional in general. There-

fore, to ensure an integer solution, a branching is employed inside the branch-and-price algo-

rithm. Hence, every master problem acts as a node in the branch-and-bound tree. The tree

is searched in the depth-first fashion. We introduce a branching strategy on the original vari-

ables, i.e., based on xi,p variables from (MIP-MC-2). It branches on the decision of how many

tasks in L with processing time p are present in cov(Ti). Therefore, given a fractional value

of the corresponding original variable x∗i,p obtained from the solution of the master problem,

two branches with constraints bx∗i,pc ≤ xi,p and dx∗i,pe ≥ xi,p are created. In the first case, the

constraint is reflected in the pricing problem by reducing the capacity W by p · bx∗i,pc and taking

those tasks into the solution. In the latter case, the constraint is enforced by setting shadow

prices ŷj to −∞ for tasks Tj ∈ L′ ⊆
{
Tj

∣∣∣ ∀Tj ∈ L : p
(1)
j = p

}
, |L′| = np − dx∗i,pe. Note that

in the dx∗i,pe ≥ xi,p branch, Lemma 3 may suggest to take some tasks that are forbidden in

this branch. In this case, Lemma 3 does not apply. The choice of the variable to branch on is

performed by selecting the corresponding original variable with the most fractional value, i.e.,

the one maximizing
∣∣∣bx∗i,p + 0.5c − x∗i,p

∣∣∣ function.

4 Problem with Three Criticality Levels

In this section, we generalize the results developed in Section 3 for working with more criticality

levels. We show that optimal schedules for problems with an arbitrary number of criticality

levels can be represented by trees. Based on this finding, we give a computationally efficient

scheduling algorithm for the problem with three criticality levels.

4.1 Tree schedule structure

For simplicity, let us assume the problem with three criticality levels and its solution depicted

in Figure 5a. Note that the makespan of the solution is given by the sum of lengths of blocks

D1 and D2 formed by tasks with criticality level of three. This is due to the analogous reason

as in the case with two criticality levels described in Section 3.2 since any permutation of blocks

achieves the same makespan.

The length of the block D1 is given by the maximum between p(3)1 and the sum of lengths of

blocks B1, B3, and B4 formed by tasks with the criticality of two. Applying the above reasoning

recursively, an arbitrary order of blocks B1, B3, and B4 achieves the same total length. To define

the block B1, let us introduce the so-called restricted task :

Definition 7. Let Ti ∈ IMC, Xi > 1 be an F-shaped task. Then, T ′i is called the restriction of

Ti and is given as

X ′i = Xi − 1, P ′i =
(
p
(1)
i , . . . , p

(Xi−1)
i

)
,

i.e., it is an F-shape that remains after removing the highest criticality level Xi from Ti.

In Figure 5a, the permutation defining the order of tasks in this complete solution is given

by a nested system of sets {cov(T1), cov(T2)}, cov(T1) = {T ′1, T3, T4}, cov(T ′1) = {T6} and

cov(T2) = {T ′2, T5}, cov(T3) = {T7, T8}, cov(T4) = {T9}, cov(T ′2) = ∅, cov(T5) = {T10}.
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D1D1 D2D2
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(a) Example of a schedule with three criticality levels.
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(b) Tree representation.
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(c) Critical subtree.

Figure 5: Schedule with three criticality levels and representation of its permutation as a tree.

Such a system of sets can be conveniently represented by a tree describing coverage relations.

Therefore, we establish the relation between the schedules and trees:

Lemma 4. An optimal schedule of the problem MC-L is representable by a tree.

For the problem with L criticality levels, the solution is given by a rooted tree with L + 1

layers, where the root (0-th level) is a dummy vertex and vertices in `-th layer, ` ≥ 1, are given

by all tasks Ti ∈ IMC with criticality Xi = L − ` + 1. Furthermore, the immediate successors

of a vertex Ti are tasks in cov(Ti) (including its restriction T ′i ). Examples of a tree and the

corresponding solution are depicted in Figure 5b and Figure 5a, respectively. Note that swapping

subtrees rooted at T3 and T4 in Figure 5b leads to an isomorphic graph. This transformation

can be viewed as permuting B3 and B4 blocks inside the schedule in Figure 5a, which leads to

different but an equivalent schedule. Therefore, isomorphic trees represent equivalent schedules;

hence, we optimize over non-isomorphic ones to mitigate symmetries.

The actual schedule corresponding to a tree is obtained by traversing the tree in the preorder

fashion; every time a vertex of the tree corresponding to a non-restricted task is visited, the

corresponding task is scheduled at the earliest possible start time. The makespan of the schedule

is given by the so-called critical subtree, which is a subgraph of the tree of the solution.

Definition 8 (Critical Subtree). Given a tree of solution K, a critical subtree C ⊆ K is a

minimal subgraph of K that achieves the same makespan as K.

Figure 5c shows an example that highlights a critical subtree of the schedule in Figure 5a.

Basically, this is the minimal set of tasks that causes the achieved makespan of the solution.

Furthermore, we show that optimal trees consist of optimal subtrees, as stated by the following

proposition:
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Proposition 4. There is an optimal tree of the solution of the problem MC-L, such that every

subtree rooted at a vertex corresponding to task Ti ∈ IMC, Xi > 1 is an optimal tree of all its

child vertices with respect to the problem MC-(Xi − 1).

Proof. By contradiction. Let us denote the subtree rooted under Ti as tree(Ti). Suppose a

unique optimal solution represented by a tree K that contains a subtree tree(Ti) that is not an

optimal tree. For such a solution, there are two cases. Either for every critical subtree C ⊆ K,

there exists a task Tj ∈ tree(Ti) ∩ C or not. If yes, then by rearranging tree(Ti) into an optimal

one would decrease the makespan of tree K, which is by the assumption optimal. In the other

case, by rearranging tree(Ti) into the optimal one would not increase its makespan, and thus,

no task contained in tree(Ti) would enter a critical subtree C. Therefore, the makespan of C,

and thus, K would not increase.

Proposition 4 states that for any problem instance, there is an optimal solution with this

property. However, in general, the optimal solution tree cannot be constructed in the bottom-up

fashion, i.e., constructing optimal subtrees of tasks (and their restrictions) with criticality one

and two and those joining with tasks of criticality three and so on. In fact, it can be shown

that this procedure would yield suboptimal solutions. Hence, one has to first reason about

which tasks fall into which subtree, and given that such subtree is an optimal tree. However,

Proposition 4 still provides a useful insight into the structure of optimal solutions. We employ

it in the branch-and-price decomposition algorithm for the problem with three criticality levels

in the following section. The concept of the decomposition is similar to the one proposed in

Section 3.3 – to form blocks of tasks of the highest criticality by exploring possible options of

how to cover the remaining tasks by them. As a consequence of Proposition 4, given the set of

tasks to be covered by another task, we know that they need to be scheduled there optimally

according to the Cmax criterion of the problem with one criticality level less. The master problem

is used to efficiently explore the options of which task should be covered by which tasks, while

the pricing problem, given the coverages, schedules them optimally.

4.2 Branch-and-price decomposition for MC-3

4.2.1 Master problem

For clarity, let us denote the set of all tasks with criticality three as D = {Tk | ∀Tk ∈ IMC : Xk =

3}, while the meaning of sets H, L, and P remains the same as in Section 3.2. The general idea

here is similar to that in Section 3.3 for two criticality levels. Therefore, the master problem

assigns tasks in H ∪L to coverage sets associated with tasks in D. This can be stated as follows:

min
x

∑
Tk∈D

∑
s∈Sk

O
(s)
k x

(s)
k (BNP-MC-3)

subject to ∑
Tk∈D

∑
s∈Sk

a
(s)
k,px

(s)
k ≥ np ∀p ∈ P (24)

∑
Tk∈D

∑
s∈Sk

b
(s)
k,ix

(s)
k ≥ 1 ∀Ti ∈ H (25)
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∑
s∈Sk

x
(s)
k ≤ 1 ∀Tk ∈ D (26)

where

x
(s)
k ≥ 0 ∀s ∈ Sk,∀Tk ∈ D (27)

The column coefficient is given as O(s)
k = max

{∑
Ti∈cov(Tk)Bi − p

(3)
k , 0

}
, where the term cov(Tk)

is a function of configuration s. The constant Bi denotes the length of the block given by

Ti ∈ cov(Tk), defined in the same way as in (MIP-MC-2). The variable x(s)k states whether

Tk ∈ D covers the set of trees s ∈ Sk, where s is given by two vectors a(s)k and b(s)k . The

coefficient a(s)k,p states how many tasks in L with processing time equal to p are rooted under the

subtree of Tk ∈ D. The vector b(s)k is the characteristic vector (i.e., a vector with binary entries

denoting the presence of an element) of tasks in H rooted under the subtree of Tk ∈ D.

The constraints (24) and (25) ensure that all tasks in H∪L are scheduled, while the constraint

(26) states that at most one configuration is selected per task Tk ∈ D. The problem of how to

generate a new configuration s that can improve the current solution and the computation of

the column coefficient is solved by the pricing problem.

4.2.2 Pricing problem

Since now the pricing problem embeds the MC-2 problem, which is strongly NP-hard, there is

no pseudopolynomial algorithm solving the problem unless P = NP. Hence, we formulate it as

an MIP model. The complete description of the pricing problem corresponding to a task Tk ∈ D
can be stated as follows:

max
∑
Ti∈H

ŷixi +
∑
p∈P

ŷp
∑

Ti∈H∪{T ′k}

qi,p − z (BNP-MC-3-PP)

subject to ∑
Ti∈H∪{T ′k}

Bi − p(2)i (1− xi) ≤ p(3)k + z (28)

Bi ≥ p(2)i ∀Ti ∈ H ∪ {T ′k} (29)

Bi ≥ p(1)i +
∑
p∈P

p · qi,p ∀Ti ∈ H ∪ {T ′k} (30)

∑
Ti∈H∪{T ′k}

qi,p ≤ np ∀p ∈ P (31)

∑
p∈P

qi,p ≤ nLxi ∀Ti ∈ H ∪ {T ′k} (32)

xk = 1 (33)

where

z ≥ 0 (34)

Bi ≥ 0 Ti ∈ H ∪ {T ′k} (35)

xi ∈ {0, 1} ∀Ti ∈ H ∪ {T ′k} (36)

qi,p ∈ Z+
0 ∀Ti ∈ H ∪ {T ′k},∀p ∈ P (37)
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The coefficients ŷp are shadow prices for constraints (24) and coefficients ŷi correspond to shadow

prices for constraints (25). The model assigns the given number of tasks in L with processing

time equal to p using qi,p variable to the selected tasks fromH that are selected using xi variables.

Moreover, for the given subproblem corresponding to the task Tk ∈ D, we work inside the model

with its restriction T ′k, which is always included in every solution by constraint (33). Finally,

if the optimal objective value is greater than −γ̂k, which is the shadow price for the constraint

(26) associated with the current subproblem Tk, then a column that can improve the current

solution of the master problem exists. The column coefficient O(s)
k is then given as the value of

z variable in an optimal solution.

The advantage of (BNP-MC-3-PP) MIP model is that it does not contain a big-M constant.

Furthermore, the sufficient condition for selecting a task in L into an optimal solution suggested

by Lemma 3 also applies here. Moreover, a similar statement about tasks in H is also valid; if

ŷi/p
(2)
i ≥ 1 for any Ti ∈ H, then Ti can be taken into an optimal solution too.

4.2.3 Initial solution and branching

As an initial solution, we use a greedy algorithm that works in two steps. First, a new instance

I ′MC of the MC-2 problem is created by taking I ′MC = L ∪H ∪D′, where D′ = {T ′k | ∀Tk ∈ D},
i.e., the set of restrictions of tasks in D. A solution to this problem instance defines coverages

corresponding to two bottom layers of the solution tree (Figure 5b). The coverages in the

top level of the tree are determined by the solution of yet another MC-2 problem instance

following from the solution of I ′MC , consisting of tasks Tk? , Xk? = 2 with processing times

p
(1)
k? = max

{
p
(2)
k , p

(1)
k +

∑
Tj∈cov(T ′k)

p
(1)
j

}
and p

(2)
k? = max

{
p
(3)
k , p

(1)
k?

}
for all Tk ∈ D. Tasks with

criticality one are given by the original tasks in H, with their coverage sets obtained from the

solution of I ′MC ; e.g., T3 and cov(T3) from Figure 5a are treated as a single task with processing

time p(1)3 = B3.

The branching is realized for each Tk ∈ D both on the number of assigned tasks in L with the

given p ∈ P in the same way as in Section 3.3.3. For tasks in H, 0/1 branching is performed. We

use the most fractional value strategy for selecting the variable to branch on. The conditions

imposed by the branching are taken into the account by putting equivalent conditions into

pricing problem (BNP-MC-3-PP).

5 Computational Experiments

In this section, we provide experimental results obtained using the above-described methods.

The testing environment consists of a computer with Intel Xeon E5-2620 v2 @ 2.10 GHz equipped

with 64 GB RAM running Gentoo Linux. The algorithms are implemented in Python 3.5 and

Java 8. As external solvers, Gurobi Optimizer 7.0.2 and IBM CPLEX 12.7.1 are used.

5.1 Results of the approximation algorithm

First, we estimate the phase transition [35] of the problem MC-2. This is a set of threshold

values on numerical parameters of instances of the problem that separates easy instances from
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the hard ones. From our computational experience, we have determined two main parameters

that influence the difficulty of an instance the most. The first parameter is the ratio between the

number of tasks of different criticalities, written as nH/nL. The second parameter is the ratio

between the mean value of the gap Wi = p
(2)
i − p

(1)
i of tasks in Ti ∈ H and that of processing

time p(1)j of tasks in Tj ∈ L. We denote this ratio of processing times as E[W ]/E[p], where E
states for the expected value. The choice of these parameters naturally arises from the way the

makespan of a solution is given.

0.5 1.0 1.5 2.0 2.5
E[W]/E[p]

0.5

1.0

1.5

2.0

2.5

n H
/n

L

0.2

0.4

0.6

0.8

1.0

objective = lb

objective > lb

(a) Fraction of solutions not matching a lower

bound.

0.5 1.0 1.5 2.0 2.5
E[W]/E[p]

0.5

1.0

1.5

2.0

2.5

n H
/n

L

0.2

0.4

0.6

0.8

1.0

optimal

suboptimal

(b) Fraction of suboptimal solutions.

Figure 6: Results of (APX-MC-2) approximation algorithm in the instance space of MC-2.

We say that an instance is easy if the objective of the solution provided by the (APX-MC-2)

approximation algorithm equals to a lower bound. Recall that a lower bound on the makespan

in problem MC-2 is given as

lb = max

∑
Ti∈H

p
(2)
i ,

∑
Tk∈IMC

p
(1)
k

 .

Having an instance with relatively low (or high) ratios nH/nL and E[W ]/E[p] makes (APX-MC-2)

approximation algorithm likely to result into a solution whose makespan matches the lower

bound lb, and thus, solving the instance optimally. Therefore, to assess where the hard instances

are located in the space of instances, we evaluate the solutions produced by the (APX-MC-2)

approximation algorithm using the grid search on a large set of parameter values. Data in Fig-

ure 6 are obtained for the problem with n = 50 tasks, with each data point averaged over 75

independent samples. Figure 6a shows the fraction of instances where the makespan of solutions

does not match the lower bound lb. Therefore, blank areas are filled with instances for which

the (APX-MC-2) approximation algorithm produces solutions with the objective matching the

lower bound lb.

In general, even when the solution objective value is not equal to a lower bound, the solu-

tion still might be optimal. Therefore, we compare the results obtained by the (APX-MC-2)

approximation algorithm with those obtained by the optimal ones. In Figure 6b, the ratio of
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sub-optimally solved instances by (APX-MC-2) is shown. Here, even though solutions of in-

stances with E[W ]/E[p] ≤ 1 do not match a lower bound, they are mostly solved optimally.

Furthermore, it empirically shows all instances where nH ≥ nL are solved optimally by the

(APX-MC-2) approximation algorithm.

We observe that the position of points in Figure 6 is invariant to the different values of n.

The cluster of points in Figure 6b displays where the difficult instances of the MC-2 problem

are located in the instance space.

5.2 Computational time for MC-2 problem

In this section, we evaluate algorithms proposed in Section 3.2 and 3.3. We have used three

different sets of instances; each set consists of multiple batches that differ in the total number

of tasks n. Each of these batches contains 40 instances. Table 3 summarizes the results for

instances that are generated from the distribution corresponding to the cluster of points depicted

in Figure 6b, which correspond to difficult instances. We denote this dataset as MC-2-LOP.

Table 4 shows the results for instances that are located at the same position in the instance

plane but have more than three times larger standard deviation of processing times of tasks in

L, thus resulting in a larger set P . We denote this dataset as MC-2-HIP. In practical problems

related to message scheduling [13], tasks usually have length given as a power of two [14]. This

follows from the implementation aspects of real-life computer systems (i.e., lengths of packets).

Thus, we also generate a set of instances where processing times of tasks and their prolongations

are given as a 2k, k ∈ N0, denoted as MC-2-2K. We perform experiments with range k ∈ [0, 7],

and display the results in Table 5.

In all tables, the column gap is the mean optimality gap proven by the solver within the time

limit tmax = 300 s, and is given as 100 · ub−lbub , where ub is the objective value of the best solution

found, while lb is the best proven lower bound. The column root lb denotes the lower bound

obtained by a solver in the root node, while the column t denotes the mean computational time

required to prove the optimality of an integer solution (measured in seconds) for the instances

computed within the time limit. Columns gap and t report two values separated by the slash

symbol according to whether multithreading with 12 CPU cores for a single run (MT) is allowed

or just a single thread (ST) is used. In case of (BNP-MC-2) algorithm, only the ST performance

is reported, owing to its implementation. For all methods, the lower bound computed in the

root node is reported as a single value as it does not depend on the computing power available.

The dash symbol denotes that for no instance in the batch, the optimality of an integer solu-

tion is proven within the time limit (although a feasible solution is found for each instance in any

experiment). Finally, the column denoted as gen states the mean number of columns generated

during the whole run of (BNP-MC-2) algorithm (measured in kilocolumns, i.e., thousands of

columns) across all visited nodes. We compare our methods with the currently best-known ex-

act method [20]. The results of their MIP model are given in the column entitled Relative-Order

MIP.

We can see that the smaller the size of P is, the faster the instances are solved. This pattern

is also spotted in results for both MC-2-LOP and MC-2-2K datasets, where the instances of the
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Table 3: Computational results for MC-2 problem on MC-2-LOP dataset.

(MIP-MC-2) (BNP-MC-2) Relative-Order MIP [20]

n tasks gap [%] MT/ST root lb [–] t [s] MT/ST gap [%] ST root lb [–] gen [kcols] t [s] ST gap [%] MT/ST root lb [–] t [s] MT/ST

10 0.00 (±0.00) / 0.00 (±0.00) 113.0 (±9.5) < 0.1 / < 0.1 0.00 (±0.00) 113.3 (±9.4) < 0.1 0.2 (±0.0) 0.00 (±0.00) / 0.00 (±0.00) 26.7 (±3.1) < 0.1 / 0.2 (±0.2)

15 0.00 (±0.00) / 0.00 (±0.00) 160.4 (±10.7) < 0.1 / < 0.1 0.00 (±0.00) 160.5 (±10.6) < 0.1 0.2 (±0.0) 0.00 (±0.00) / 0.00 (±0.00) 28.6 (±2.4) 0.9 (±1.7) / 7.5 (±28.7)

20 0.00 (±0.00) / 0.00 (±0.00) 209.8 (±11.1) < 0.1 / < 0.1 0.00 (±0.00) 210.3 (±10.9) < 0.1 0.2 (±0.1) 14.46 (±8.61) / 20.83 (±11.51) 29.6 (±2.4) 38.6 (±43.0) / 198.1 (±63.0)

40 0.00 (±0.00) / 0.00 (±0.00) 412.3 (±20.4) < 0.1 / 0.1 (±0.1) 0.00 (±0.00) 412.4 (±20.3) 0.1 (±0.0) 0.6 (±0.5) 69.66 (±5.34) / 73.87 (±3.36) 30.4 (±2.5) —

50 0.00 (±0.00) / 0.00 (±0.00) 506.1 (±17.0) 0.1 (±0.4) / 0.1 (±0.5) 0.00 (±0.00) 506.1 (±17.0) 0.1 (±0.0) 0.6 (±0.4) 79.54 (±3.09) / 80.29 (±1.80) 31.5 (±2.4) —

100 0.00 (±0.00) / 0.00 (±0.00) 988.0 (±31.2) 0.1 (±0.1) / 0.2 (±0.1) 0.00 (±0.00) 988.0 (±31.2) 0.2 (±0.0) 1.8 (±0.7) 93.09 (±0.75) / 93.59 (±0.93) 31.5 (±1.8) —

200 0.21 (±0.00) / 0.21 (±0.00) 1974.8 (±39.2) 0.3 (±0.2) / 0.5 (±0.5) 0.00 (±0.00) 1974.9 (±39.2) 0.4 (±0.1) 13.0 (±5.0) 97.79 (±0.32) / 98.13 (±0.12) 32.8 (±1.7) —

400 0.00 (±0.00) / 0.00 (±0.00) 3949.5 (±44.3) 0.5 (±0.2) / 0.8 (±0.3) 0.00 (±0.00) 3949.5 (±44.3) 0.8 (±0.1) 167.4 (±64.3) 99.10 (±0.04) / 99.10 (±0.04) 33.8 (±1.3) —

800 0.00 (±0.00) / 0.00 (±0.00) 7884.8 (±74.5) 1.7 (±1.2) / 2.6 (±0.8) 2.90 (±0.60) 7884.8 (±74.5) 1.1 (±0.0) — 99.54 (±0.02) / 99.54 (±0.02) 34.9 (±1.5) —

1000 0.00 (±0.00) / 0.00 (±0.00) 9864.4 (±69.8) 1.9 (±0.9) / 4.7 (±6.5) 2.68 (±0.55) 9864.4 (±69.8) 1.2 (±0.0) — 99.63 (±0.01) / 99.63 (±0.01) 35.5 (±1.9) —

Table 4: Computational results for MC-2 problem on MC-2-HIP dataset.

(MIP-MC-2) (BNP-MC-2) Relative-Order MIP [20]

n tasks gap [%] MT/ST root lb [–] t [s] MT/ST gap [%] ST root lb [–] gen [kcols] t [s] ST gap [%] MT/ST root lb [–] t [s] MT/ST

10 0.00 (±0.00) / 0.00 (±0.00) 153.6 (±29.8) < 0.1 / < 0.1 0.00 (±0.00) 157.3 (±28.6) < 0.1 0.2 (±0.0) 0.00 (±0.00) / 0.00 (±0.00) 49.9 (±9.1) 0.1 (±0.1) / 0.4 (±0.4)

15 0.00 (±0.00) / 0.00 (±0.00) 219.4 (±31.8) < 0.1 / 0.1 (±0.2) 0.00 (±0.00) 221.5 (±31.2) < 0.1 0.2 (±0.0) 23.38 (±7.49) / 28.44 (±10.31) 50.4 (±8.0) 16.5 (±41.4) / 18.6 (±47.6)

20 0.00 (±0.00) / 0.00 (±0.00) 279.9 (±36.8) < 0.1 / 0.1 (±0.1) 0.00 (±0.00) 280.9 (±36.1) < 0.1 0.2 (±0.0) 29.84 (±17.31) / 26.45 (±20.64) 56.0 (±7.7) 46.4 (±23.0) / 220.1 (±42.6)

40 0.00 (±0.00) / 0.00 (±0.00) 547.4 (±40.6) 0.3 (±0.9) / 0.5 (±1.2) 0.00 (±0.00) 550.5 (±40.2) 0.1 (±0.0) 0.3 (±0.1) 65.08 (±7.83) / 68.92 (±5.14) 57.8 (±6.2) —

50 0.00 (±0.00) / 0.00 (±0.00) 684.5 (±49.9) 0.6 (±1.1) / 1.3 (±2.2) 0.00 (±0.00) 686.0 (±49.0) 0.1 (±0.2) 0.8 (±1.0) 74.89 (±4.58) / 76.27 (±3.81) 58.9 (±8.4) —

100 0.08 (±0.00) / 0.08 (±0.00) 1317.2 (±69.7) 2.0 (±3.9) / 6.4 (±12.5) 0.00 (±0.00) 1318.1 (±69.4) 0.5 (±0.9) 24.4 (±84.4) 90.75 (±1.51) / 91.39 (±1.31) 62.0 (±6.3) —

200 0.04 (±0.01) / 0.04 (±0.01) 2624.4 (±124.3) 15.2 (±41.2) / 16.2 (±34.7) 0.26 (±0.36) 2625.6 (±123.3) 0.8 (±0.8) 51.4 (±70.5) 96.60 (±0.77) / 97.24 (±0.21) 67.2 (±6.6) —

400 0.04 (±0.05) / 0.02 (±0.01) 5225.5 (±172.6) 13.4 (±20.1) / 11.8 (±14.6) 2.10 (±0.98) 5226.8 (±174.0) 1.0 (±0.3) 139.5 (±95.9) 98.79 (±0.11) / 98.79 (±0.11) 69.9 (±5.1) —

800 0.01 (±0.01) / 0.01 (±0.01) 10256.8 (±225.0) 30.7 (±43.0) / 31.3 (±35.4) 2.05 (±0.96) 10256.8 (±225.0) 1.0 (±0.1) 116.5 (±26.1) 99.37 (±0.04) / 99.37 (±0.04) 74.0 (±6.4) —

1000 0.05 (±0.07) / 0.03 (±0.03) 12883.5 (±285.2) 35.8 (±41.2) / 49.2 (±59.1) 1.90 (±0.96) 12883.5 (±285.2) 1.1 (±0.0) — 99.49 (±0.04) / 99.49 (±0.04) 74.2 (±5.7) —

same size n are solved by (MIP-MC-2) about 10 times faster in comparison to the results for

the MC-2-HIP dataset. Interestingly, e.g., for n = 400 tasks, even though the total number of

instances unsolved to the optimality is larger in the ST mode than in the MT mode, the average

gap for the former is smaller.

The relative-order MIP proposed in [20] particularly struggles with the MC-2-2K dataset,

solving all instances only with n = 10 tasks, despite having a relatively small P . In comparison to

[20], relative-order MIP can solve the instances with up to n ≈ 15 tasks, whereas our proposed

methods scale up to n = 1000 tasks. Moreover, Relative-Order MIP [20] does not gain any

significant advantage for instances where |P | < nL. Furthermore, lower bounds in the root node

obtained by the relative-order method of [20] are weaker than those in cases of (MIP-MC-2) and

(BNP-MC-2).

The median of the total number of columns generated by (BNP-MC-2) needed to prove the

optimality of an integer solution for an instance is depicted in Figure 7. The figure shows that

the number of generated columns needed to prove optimality is roughly linear in the number

of tasks. The smallest number of columns generated is required in MC-2-2K dataset. The

second smallest number of generated columns is observed in MC-2-LOP dataset, producing, on

average, approximately twice as many columns. The most difficult dataset to solve is found

to be MC-2-HIP in terms of both the number of columns generated and computational time.

One can notice a spike in Figure 7 for the batch n = 100, where one instance took more than

7 kilocolumns to solve. We see that the cardinality of P influences the mean and variance of

the number of columns generated.

For a better assessment, where the hotspots of our implementation of (BNP-MC-2) are, we

measure the time spent in solving the master problem and pricing problem separately. We find

out that over 95% of the total computational time is spent on the pricing problem. Hence, the

algorithm can be accelerated if an efficient vectorized implementation of the algorithm for the
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Table 5: Computational results for MC-2 problem on MC-2-2K dataset.

(MIP-MC-2) (BNP-MC-2) Relative-Order MIP [20]

n tasks gap [%] MT/ST root lb [–] t [s] MT/ST gap [%] ST root lb [–] gen [kcols] t [s] ST gap [%] MT/ST root lb [–] t [s] MT/ST

10 0.00 (±0.00) / 0.00 (±0.00) 214.3 (±85.0) < 0.1 / < 0.1 0.00 (±0.00) 217.8 (±84.2) < 0.1 0.2 (±0.0) 0.00 (±0.00) / 0.00 (±0.00) 99.5 (±36.0) 0.3 (±0.4) / 1.0 (±1.4)

15 0.00 (±0.00) / 0.00 (±0.00) 329.2 (±89.7) < 0.1 / < 0.1 0.00 (±0.00) 333.3 (±87.7) < 0.1 0.2 (±0.0) 12.44 (±5.88) / 12.20 (±6.83) 126.0 (±19.6) 22.7 (±56.1) / 15.5 (±28.3)

20 0.00 (±0.00) / 0.00 (±0.00) 451.4 (±125.5) < 0.1 / < 0.1 0.00 (±0.00) 454.0 (±124.3) < 0.1 0.2 (±0.1) 23.06 (±8.44) / 22.49 (±11.01) 130.8 (±9.8) 65.1 (±58.1) / 199.2 (±66.5)

40 0.00 (±0.00) / 0.00 (±0.00) 858.7 (±168.5) < 0.1 / < 0.1 0.00 (±0.00) 866.5 (±167.0) < 0.1 0.3 (±0.1) 46.40 (±11.87) / 48.95 (±10.70) 132.1 (±10.9) —

50 0.00 (±0.00) / 0.00 (±0.00) 1000.4 (±154.2) < 0.1 / < 0.1 0.00 (±0.00) 1003.1 (±152.9) 0.1 (±0.0) 0.4 (±0.1) 56.00 (±7.38) / 59.24 (±7.27) 134.1 (±2.5) —

100 0.00 (±0.00) / 0.00 (±0.00) 2020.8 (±277.0) < 0.1 / < 0.1 0.00 (±0.00) 2022.5 (±275.8) 0.1 (±0.0) 0.7 (±0.2) 83.23 (±3.15) / 84.23 (±3.02) 135.2 (±1.7) —

200 0.00 (±0.00) / 0.00 (±0.00) 3970.7 (±399.3) 0.1 (±0.0) / 0.1 (±0.1) 0.00 (±0.00) 3970.7 (±399.3) 0.2 (±0.0) 2.2 (±0.6) 93.77 (±0.54) / 95.93 (±0.56) 135.8 (±0.9) —

400 0.00 (±0.00) / 0.00 (±0.00) 7964.0 (±630.9) 0.2 (±0.1) / 0.3 (±0.2) 0.00 (±0.00) 7964.0 (±630.9) 0.4 (±0.0) 12.4 (±2.1) 98.01 (±0.13) / 98.01 (±0.13) 136.0 (±0.0) —

800 0.00 (±0.00) / 0.00 (±0.00) 16290.2 (±850.3) 0.7 (±0.3) / 0.9 (±1.0) 0.00 (±0.00) 16290.2 (±850.3) 0.7 (±0.0) 107.2 (±14.8) 99.02 (±0.05) / 99.02 (±0.05) 136.0 (±0.0) —

1000 0.00 (±0.00) / 0.00 (±0.00) 19705.5 (±771.3) 0.9 (±0.8) / 1.3 (±1.0) 0.00 (±0.00) 19705.5 (±771.3) 0.9 (±0.0) 204.2 (±31.4) 99.20 (±0.02) / 99.20 (±0.02) 136.0 (±0.0) —

pricing problem is used.
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Figure 7: Median of the total number of columns generated for instances of MC-2.

5.3 Computational time for the MC-3 problem

We work with two datasets for MC-3 problem, denoted as MC-3-HIP and MC-3-2K. Each of

them contains batches of instances with a different number of tasks n. For each size n, the

batch has 40 instances. In both datasets, the ratio between the number of tasks with different

criticalities is nD/nH = nH/nL ≈ 0.75 for each instance. The datasets differ in the distribution

of processing times. For MC-3-HIP dataset, the processing times are given such that for every

two consecutive criticality levels, the ratios of the means of their prolongation is approximately

1.5 (i.e., the region of hardness displayed in Figure 6b). In dataset MC-3-2K, the processing

times and their prolongations on each level are given as 2k, k ∈ [0, 7] to mimic the problems of

practical interests inspired by packet scheduling, similarly to MC-2-2K.

In dataset MC-3-HIP, the algorithm (BNP-MC-3) can optimally solve nearly all instances

up to the size n = 100 within the time limit. It runs out of time only in a single case for

sizes n = 50 and n = 100. However, for the instances where the optimality is not proven, the

optimality gap, on average, is only 0.42%. Furthermore, the number of generated columns is

about the same as that observed in the dataset MC-2-HIP, showing that the scalability is also

preserved for problems with more criticality levels. Tables 6 and 7 show that scaling capabilities

of [20] approach are the same regardless of the number of criticality levels, thus being able to

solve instances about n ≈ 15− 20 tasks. Similar to that in Section 5.2, (BNP-MC-3) can solve

instances with almost twice the number of tasks than those in [20].
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Table 6: Computational results for MC-3 problem on MC-3-HIP dataset.

(BNP-MC-3) Relative-Order MIP [20]

n tasks gap [%] MT root lb [–] gen [kcols] t [s] MT gap [%] MT root lb [–] t [s] MT

10 0.00 (±0.00) 191.8 (±22.4) < 0.1 0.2 (±0.0) 0.00 (±0.00) 71.5 (±9.2) < 0.1

15 0.00 (±0.00) 312.5 (±27.8) < 0.1 0.3 (±0.1) 0.00 (±0.00) 72.4 (±8.9) 0.6 (±0.2)

20 0.00 (±0.00) 379.1 (±30.2) < 0.1 0.3 (±0.2) 0.00 (±0.00) 73.3 (±7.1) 8.1 (±22.7)

40 0.00 (±0.00) 720.6 (±46.4) 0.1 (±0.0) 1.8 (±1.4) 44.40 (±8.98) 81.5 (±7.8) —

50 0.06 (±0.00) 876.9 (±45.0) 0.2 (±0.7) 3.4 (±2.7) 61.11 (±9.22) 85.1 (±6.3) —

100 0.02 (±0.00) 1692.0 (±72.1) 0.2 (±0.3) 18.9 (±15.3) 88.39 (±1.20) 88.5 (±5.3) —

200 0.17 (±0.22) 3364.7 (±100.3) 0.3 (±0.3) 110.4 (±77.6) 96.20 (±0.66) 92.8 (±6.3) —

400 0.63 (±0.53) 6712.4 (±146.4) 0.8 (±0.7) 273.0 (±185.2) 98.72 (±0.07) 96.0 (±4.8) —

800 0.81 (±0.55) 13139.7 (±206.2) 1.0 (±0.1) — 99.34 (±0.03) 98.6 (±3.8) —

1000 0.82 (±0.52) 16515.2 (±250.9) 1.1 (±0.1) — 99.47 (±0.02) 100.0 (±4.8) —

Table 7: Computational results for MC-3 problem on MC-3-2K dataset.

(BNP-MC-3) Relative-Order MIP [20]

n tasks gap [%] MT root lb [–] gen [kcols] t [s] MT gap [%] MT root lb [–] t [s] MT

10 0.00 (±0.00) 229.2 (±80.9) < 0.1 0.2 (±0.1) 0.00 (±0.00) 118.0 (±30.7) 0.4 (±1.3)

15 0.00 (±0.00) 289.6 (±90.4) < 0.1 0.6 (±1.0) 8.44 (±0.00) 119.2 (±28.4) 9.7 (±21.8)

20 0.50 (±0.00) 408.9 (±86.1) 0.1 (±0.8) 0.5 (±1.0) 19.89 (±9.26) 130.9 (±13.6) 50.1 (±70.1)

40 5.20 (±5.12) 728.6 (±156.8) 0.2 (±0.6) 3.3 (±8.9) 38.99 (±11.16) 138.0 (±4.8) —

50 9.36 (±0.00) 867.3 (±164.3) 0.4 (±2.2) 4.6 (±16.1) 50.87 (±9.95) 137.3 (±3.2) —

100 0.00 (±0.00) 1786.8 (±237.6) < 0.1 0.3 (±0.1) 81.79 (±2.92) 139.3 (±2.6) —

200 0.00 (±0.00) 3372.7 (±287.2) 0.1 (±0.0) 0.9 (±0.5) 92.68 (±0.71) 141.8 (±2.7) —

400 0.00 (±0.00) 6769.8 (±467.8) 0.1 (±0.0) 4.3 (±1.7) 98.11 (±0.12) 142.9 (±2.0) —

800 3.33 (±0.75) 13199.3 (±661.7) 0.3 (±0.4) 29.1 (±21.6) 99.03 (±0.05) 143.9 (±0.6) —

1000 3.60 (±0.52) 16517.5 (±941.5) 0.6 (±0.5) 81.4 (±12.5) 99.23 (±0.04) 143.9 (±0.6) —

5.4 Discussion

For problem MC-2, both methods (MIP-MC-2) and (BNP-MC-2) proposed in this paper out-

perform Relative-Order MIP [20]. Under the used testing settings, the (MIP-MC-2) average

computation time is faster than (BNP-MC-2) computation time, except for a few cases in batch

n = 100 of the MC-2-HIP dataset and n = 200 in the MC-2-LOP dataset, where (BNP-MC-2)

has closed all instances. It would be possible to further improve the performance of (BNP-MC-2),

e.g., by solving pricing problems in parallel since they are independent. However, this is beyond

the scope of this paper.

For some use-cases, using model (MIP-MC-2) might pose two disadvantages. One of them

is that its performance depends on a commercial solver, which is not an affordable option for

some applications. On the other hand, (BNP-MC-2) needs only an LP solver for solving the

master problem, which is the task where non-commercial solvers perform better than those in

MIP. Moreover, only a small part of the computational time is spent on the master problem.

Most of the time is spent on the pricing problem, which is solved by a dynamic programming

algorithm without any third-party software package.
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Moreover, (BNP-MC-2) gains advantages in some special cases of the problem due to its

pseudopolynomially solvable pricing problem. For example, if the values of processing times are

restricted, then the pricing problem becomes solvable in polynomial time. Another disadvantage

of (MIP-MC-2) is its memory complexity. It uses O(nLnH) variables, and therefore, Ω(n2LnH)

memory space (i.e., the size of the constraint matrix), whereas (BNP-MC-2) is observed in

Figure 7 to use O(nL) variables, which can be further reduced (e.g., by removing old columns

from the simplex tableau). Finally, (BNP-MC-2) is further generalized for more criticality levels.

For MC-3 problem, (BNP-MC-3) outperforms Relative-Order MIP [20]. The dataset MC-

3-2K turns out to be easier than MC-3-HIP, in terms of the number of columns generated,

computational time, and the number of instances solved. However, (BNP-MC-3) struggles to

prove the optimality for a single instance in a batch with n = 50, causing a noticeable spike

in the number of columns generated. On the other hand, it solves all instances in batches n ∈
{100, 200, 400}. Note that (BNP-MC-3) achieves smaller computational times than (BNP-MC-2)

for the solved instances in batch n = 1000 on average. This is because while pricing problems

in the case of (BNP-MC-3) are being solved as an MIP, (BNP-MC-2) implementation uses a

dynamical programming algorithm that has pseudopolynomial time complexity in the total sum

of all processing times of tasks. Hence, even though the pricing problem in (BNP-MC-2) is

in some sense easier to solve (solvable in pseudopolynomial time) than the pricing problem in

(BNP-MC-3) (strongly NP-hard), the average case computational time for the former tends to

be lower with the tested lengths of processing of tasks.

It would be possible to improve (BNP-MC-2) and (BNP-MC-3) algorithms with other tech-

niques, such as generating more columns at once, Lagrangian relaxation, primal heuristics,

stabilization, and suppression of the tailing-off effect [24]. Hence, they still provide room for a

performance improvement, but these are beyond the scope of this paper.

6 Conclusion

In this paper, we have studied the problem of scheduling F-shaped tasks to minimize the

makespan of the schedule. This problem has applications such as those in real-life mixed-

criticality systems, where high-criticality activities coexist with less-criticality ones on a shared

resource. The processing time for such activities is uncertain. To overcome the uncertainty,

an F-shape modeling the activity contains a set of alternative processing times. The schedules

contain exponentially many alternative schedules, where the performed alternative is selected

based on the observed execution scenario. The schedule remains static and its behavior is pre-

dictable. However, the synthesis of such flexible schedules is computationally expensive; hence,

we proposed efficient exact algorithms to solve the problem.

We showed that optimal schedules are equivalent to trees consisting of optimal subtrees, and

established the relation between problems with ` and ` + 1 criticality levels. We suggested an

approximation algorithm, a block MIP model, and a branch-and-price decomposition algorithm

with a pseudopolynomially solvable pricing problem for a problem with two criticality levels,

for which we proposed a dynamic programming algorithm. Furthermore, we generalized the

29



proposed decomposition to obtain the exact algorithm for a problem with three criticality levels.

The experimental results showed an excellent scaling ability of our approach on hard problem

instances. We found that it takes only a few hundreds of generated columns, on average, in our

decomposition algorithms to solve instances with up to 1000 tasks to the optimality.

A possible extension of the proposed model and algorithms might consider including a penalty

for each covered task in the schedule or optimization of a bi-criteria objective function that would

find a trade-off between the schedule length and the number of covered tasks in such a schedule.

Both extensions can be developed as a generalization of the proposed methods, as they decide

which tasks shall be covered by others during the solution.

Appendix A

Factor 3/2 for a special case of MC-2

For the problem with two criticality levels, i.e., MC-2, where it holds that the longest task in L

is not longer than the difference between the second and the first level of any task in H, i.e.,

max
Tj∈L

p
(1)
j ≤ min

Ti∈H

(
p
(2)
i − p

(1)
i

)
, (SLT)

we can obtain factor 3/2 for (APX-MC-2) algorithm. Such instances arise from the practical

problems where the original distribution functions describing processing time uncertainty have

long tails, which is the realistic case. Note that such condition does not rule out solutions where

a task in L overlaps the second criticality level of some task in H.

Proposition 5. (APX-MC-2) is a 3/2-approximation algorithm for the problem MC-2 satisfying

condition (SLT).

Proof. Let lb =
∑

Tri∈H p
(1)
i + max

{∑
Ti∈H

(
p
(2)
i − p

(1)
i

)
,
∑

Tj∈L p
(1)
j

}
be a lower bound on

the optimal makespan. Furthermore, let us denote the makespan of the schedule produced by

(APX-MC-2) for instance IMC as APX(IMC). Without loss of generality, we may assume that

nL > nH ; otherwise, the algorithm returns an optimal schedule due to assumption (SLT). We

say that a task Tj ∈ L is assigned if inserting it into coverage set cov(Ti) of the chosen Ti ∈ H
does not decrease the available gap below zero (i.e., Wi < 0). Otherwise, we say Tj overlaps. We

denote by L the set of all tasks that overlap and the processing time of the longest overlapping

task by p = maxTj∈L p
(1)
j .

First, we note that (APX-MC-2) assigns at least nH largest tasks in L. Indeed, let Tj ∈ L
be the first task of L that overlaps at the k-th step of the algorithm. Suppose that k ≤ nH .

Since Tj overlaps a task with the largest available gap Ti? = arg maxTi∈HWi, then Tj overlaps

any other task Ti ∈ H during k-th iteration. However, since k ≤ nH , then there is either (i) a

task Ti′ ∈ H with the currently available gap Wi′ = p
(2)
i′ − p

(1)
i′ , i.e., with no assigned tasks so

far or (ii) every task Ti ∈ H has exactly one task in its coverage set. In the case (i), by the

assumption (SLT) we have that Wi′ ≥ p(1)j , which contradicts the choice of Ti? . In the case (ii),

Ti? violates assumption (SLT) since p
(2)
i? − p

(1)
i? < p

(1)
j . Therefore, k > nH . We proceed by

splitting the proof into two cases.
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Case 1:
∑

Ti∈H

(
p
(2)
i − p

(1)
i

)
≤ ∑Tj∈L p

(1)
j . We start by bounding the cardinality of L. To

do so, suppose that |L| ≥ nH . Since all tasks in L have the property that their assignment into

any task Ti ∈ H would lead to Wi < 0, we could put at least one task in L to the coverage

set of every task in H. Hence, it would hold that ∀Ti ∈ H : Wi < 0, which implies an optimal

solution. Therefore, suppose that |L| ≤ nH − 1, i.e., we have at most nH − 1 overlapping tasks.

Then we can write

APX(IMC)

OPT(IMC)
≤
∑

Ti∈H p
(2)
i +

∑
Tj∈L p

(1)
j

lb
=

∑
Ti∈H p

(2)
i +

∑
Tj∈L p

(1)
j∑

Ti∈H p
(1)
i +

∑
Tj∈L p

(1)
j

≤ 1 +

∑
Tj∈L p

(1)
j∑

Tj∈L p
(1)
j

≤

≤ 1 +

∑
Tj∈L p

(1)
j

nH · p+
∑

Tj∈L p
(1)
j

≤ 1 +

∑
Tj∈L p

(1)
j

2 ·∑Tj∈L p
(1)
j

≤ 3

2
,

where the first inequality follows from the fact that the expression in the numerator is an upper

bound on the APX(IMC), the equality from the definition of lb, the second inequality follows

from Case 1 assumption, the third from the fact that at least nH tasks in L of length at least p

are assigned and the fourth inequality from the fact that nH · p ≥ (nH − 1) · p ≥∑Tj∈L p
(1)
j .

Case 2:
∑

Ti∈H

(
p
(2)
i − p

(1)
i

)
>
∑

Tj∈L p
(1)
j . Similarly, as in Case 1, we may assume that at

most nH − 1 tasks from L are overlapping, i.e., |L| ≤ nH − 1. If this would not be the case, we

would have at least nH tasks from L with the property that assigning any of them to arbitrary

Ti ∈ H would lead to Wi < 0, which contradicts Case 2 assumption. Then, similarly as in Case

APX(IMC)

OPT(IMC)
≤
∑

Ti∈H p
(2)
i +

∑
Tj∈L p

(1)
j∑

Ti∈H p
(2)
i

≤ 1 +

∑
Tj∈L p

(1)
j∑

Ti∈H p
(2)
i

≤ 1 +

∑
Tj∈L p

(1)
j∑

Tj∈L p
(1)
j

≤ 3

2
.

where the third inequality follows from Case 2 assumption and the fourth inequality from the

same arguments as in Case 1.
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