
https://doi.org/10.14311/AP.2023.63.0430
Acta Polytechnica 63(6):430–438, 2023 © 2023 The Author(s). Licensed under a CC-BY 4.0 licence

Published by the Czech Technical University in Prague

PREDICTION OF TEMPERATURE FIELD DISTRIBUTION IN A
GAS TURBINE USING A HIGHER ORDER NEURAL NETWORK

Jan Pařez∗, Patrik Kovář, Adam Tater

Czech Technical University in Prague, Faculty of Mechanical Engineering, Center of Aviation and Space
Research, Technická 4, Prague 6, Czech Republic

∗ corresponding author: jan.parez@fs.cvut.cz

Abstract. This paper presents the prediction of temperature field distribution in a single annular
section using an artificial neural network (ANN). This temperature distribution is non-uniform on the
outer tube due to continuous natural convection and radiation caused by the homogeneous steady-state
heating of the inner tube, which represents the hot gas flow path through the turbine. The outer tube
represents the case of a gas turbine. This temperature is important for the electronic components
attached to the engine or the overall engine deformation. The presented approach allows for a quick
estimation of the temperature distribution without the need to perform time consuming computational
fluid dynamics (CFD) simulations. This can greatly accelerate the design and development of gas
turbines. A machine learning approach is applied to an extensive set of CFD simulations under different
operating conditions and geometry setups.
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1. Introduction
The cooling process and temperature distribution of
solid parts in gas turbines is critical to their reliable
operation and maximum performance. High tempera-
tures in the combustion chambers and hot section of
the engine can adversely affect the lifespan of parts and
accessories, trend/health monitoring, and electronic
control system components. Therefore, it is impor-
tant to design and implement cooling systems that
ensure optimal temperature conditions and protect
key components attached to the engine case. These
components have maximum temperature limits, and
exceeding these limits can cause damage and affect
engine operation.

Nakayama [1] introduced the issue of maximum
temperature for electronic devices attached to gas
turbines. A significant problem is the temperature
sensitivity of the gas turbine rotor, which affects the
dynamic behaviour of the engine, or in the worst
case, rotor thermal lock. Uneven cooling can cause
shaft deflection known as rotor thermal bow. Many
papers have addressed the problem of rotor thermal
deformation. Chatterton [2] presented the results of a
diagnostic method of multiple linear regression models
for temperature field prediction and analysis that can
be very useful for maintenance prediction.

Uneven temperature distribution during post shut-
down cooling on the engine casing has been studied
by Yu et al. [3], resulting in deformation of the ro-
tor system. Different geometry and environmental
settings on the temperature field distribution were ex-
perimentally verified. The temperatures cause struc-
tural deformation and cause mass non-uniformities,
resulting in vibrations. Peng [4] presented extensive
experimental measurements with heat distribution on

the rotor during cooling and thermal deflection pre-
diction. A computationally intensive simulation was
performed by Padilla [5] using the large eddy simula-
tion (LES) for the transient and turbulent flow region.
Improvement of the numerical prediction of RANS
using the natural convection heat transfer method in
gas turbines was also presented by Pilkington [6] who
also performed measurements on a large gas turbine
test rig. In his work, he compared several models
and proposed a modification of the GGDH model,
which he called GGDH+, that takes into account the
buoyancy effects on the turbulent heat flux and is
comparable to the LES results.

There are several heat management methods of cool-
ing gas turbines. These include internal cooling, where
a coolant (typically air or liquid) is directly supplied
to cavities within the turbine’s internal structure [7],
and external cooling, which utilises the flow of coolant
around the surface of turbine components [8].

Another technique is film cooling, where a thin layer
of coolant is applied to the surface of the components
to reduce their temperature [9]. These methods are
combined and optimised to achieve the best cooling
effect and minimise thermal stress on turbine compo-
nents. In addition, there are areas within the engine
where spontaneous natural convection occurs. This
has a significant effect on the temperature distribution
on the engine case.

Earlier research by Pařez et al. [10–12] was also
focused on a numerical study of the effect of heat
transfer in a double annulus. Methods to improve the
uniformity of the temperature field were proposed and
the numerical model was experimentally verified on
several geometries at different temperature settings.
Proper temperature distribution and effective cooling
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are crucial for achieving long life and reliability of gas
turbines. Therefore, a considerable attention is given
to the design and optimisation of cooling systems to
minimise the risk of overheating and ensure optimum
operating temperatures. This increases the perfor-
mance and lifespan of turbines and ensures reliability
in various industrial applications.

However, the problem of predicting non-uniform
temperature fields arises from their computational
complexity. Therefore, it is necessary to find an effi-
cient tool for fast and accurate prediction of temper-
ature distribution in different engine modes, which
is the scope of this paper. An extensive set of CFD
simulations under different operating conditions and
geometrical setups was performed in order to obtain
a training data set for the machine learning approach.
A higher order neural network (HONN) was chosen as
the approximator for the task. Its advantage is that
it has fewer degrees of freedom and therefore fewer
parameters to optimise during the learning process.
Other advantages include faster convergence and more
accurate results due to its non-linear nature as it was
presented in [13–15].

2. Task
The case presented is considered to be the temperature
field distribution at steady-state engine operation.
The temperature field distribution depends only on the
temperature in the current flow path due to operating
conditions. A uniform temperature distribution in
the flow path is considered, thus giving a boundary
condition of constant temperature at the inner edge
of the inner tube. The geometry of this case is then
simplified to a single annulus between the inner and
outer tube as it can be seen in Figure 1. Due to the
constant temperature at the edge of the inner tube,
a steady-state temperature distribution is sought on
the outer tube.

Figure 1. Natural convection in aircraft engine.

2.1. Geometry
The computational geometry is based on a 2D cross-
section of a turboprop engine. It consists of an inner
tube representing the flow path boundary of the run-
ning engine, labelled Tube 1 in Figure 2, and an outer
engine case, labelled Tube 2 in Figure 2. The outer
diameter D2 is constant for all the calculated cases.
The inner diameter D1 is varied according to the val-
ues in Table 1. The thickness of the outer tube t2 is

chosen in the range given in Table 1. The thickness of
the inner tube is assumed to be constant t1 = 1 mm.

Figure 2. Scheme of the physical domain with its
parameters.

Dimension Value Unit

D2 400 [mm]
t2 {1, 2, 3} [mm]
D1/D2 {0.5, 0.6, 0.7, 0.8, 0.9} [1]
TD1 {773.15, 873.15, 973.15} [K]

Table 1. Operating parameters.

2.2. Operational conditions
The operating conditions and engine modes define the
temperature field for the worst case, namely the tur-
bine section. The temperatures are based on steady-
state operating conditions in the three engine modes
generalised and rounded to the nearest hundred Cel-
sius degrees. The first mode is the idle mode, the
next is the cruise mode and the last is the maximum
take-off mode. The steady-state uniform temperature
values for the flow path are marked as TD1 in Table 1
and remain constant throughout the calculation.

The temperature response of the temperature dis-
tribution on the outer case of the engine is marked
as TD2 . Referring to previous considerations, the de-
sired function represented by neural network N (•) is
assumed in the form

N (•) ≈ TD2 = f(D1/D2, t2, TD1 , φ). (1)

2.3. Computational methods and domain
description

In this section, we focus on computational techniques,
the specific domain under consideration, meshing, and
the associated spatial discretisation error. All calcula-
tions were carried out using the Ansys® Fluent soft-
ware, using fully structured meshes generated through
the blockMesh utility available in the OpenFOAM®
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package. The computational mesh is shown in Fig-
ure 3.

Figure 3. Computational mesh with detail on the
refinement near walls.

In order to effectively model turbulent flow in practi-
cal engineering scenarios, the Navier-Stokes equations
necessitate the implementation of Reynolds and Favres
averaging. This procedure results in the formula-
tion of the unsteady Reynolds-averaged Navier-Stokes
(URANS) equations, as elucidated by Wilcox [16].
These URANS equations encompass the Reynolds
stress tensor, necessitating a supplementary closure.
Consequently, we adopt the two-equation Generalised
K − ω (GEKO) turbulence model [17]. These equa-
tions can be written as

∂ρ

∂t
+ ∇ · (ρ #–u) = 0,

∂(ρ #–u)
∂t

+ ∇ · (ρ #–u ⊗ #–u) + ∇p − ∇ · #–
#–τ = ρ #–g ,

∂(ρE)
∂t

+ ∇ · ((ρE + p) #–u − #–
#–τ · #–u) = −∇ · #–q ,

(2)

where the heat flux #–q is composed of the conduction
part #–q c and the radiation part #–q r. To address the ra-
diation part, we introduce an extra radiative transfer
equation into the simulation. Given that the system
pertains to surfaces that are gray and diffuse, the heat
exchange between these surfaces depends on factors
such as their dimensions, separation distance, and
orientation. Moreover, we consider processes like ab-
sorption, emission, and scattering of radiation. In this
context, we implement the discrete ordinates (DO)
radiation model [18].

This results in a system of seven partial differential
equations. Four of these equations come from system
(2), another two equations modelling the transport of
turbulent kinetic energy and the specific dissipation
of turbulent kinetic energy come from the turbulence
model and the last equation models the radiation.

To finally close the governing equations modelling
the natural convection as discussed earlier, we can use
a selection of equations of state. One such approach is
the Boussinesq approximation [19], which postulates
that density is contingent upon temperature in the
following manner

ρ ≈ ρ0 + ∂ρ

∂T

∣∣∣∣
T0

(T − T0). (3)

In certain cases, this method loses its validity, par-
ticularly when dealing with substantial temperature
differentials where linearisation becomes inadequate.
In such instances, a more precise approach is employed
to ascertain the relationship between the density and
the temperature. An appropriate closure formula for
describing natural convection with significant temper-
ature gradients, as outlined in the work by Mayeli [20],
involves the utilisation of the weakly compressible gas
equation of state, which is defined as follows

ρ = pref

RT
, (4)

where pref = 101 325 Pa is the reference pres-
sure, which stays constant throughout the simulation.
Therefore, density ρ is only a function of temperature.
This equation of state was used in all simulations.

For the solution of the equations governing natural
convection including turbulence and radiation as de-
scribed earlier, we opted for the finite volume method.
Within this Ansys® Fluent framework, we have cho-
sen the pressure-based approach using the Rhi-Chow
numerical flux [21], over the density-based approach
which uses numerical fluxes from AUSM [22], HLL
[23] or rotated-hybrid [24] Riemann solver families.
Next, a “coupled”. scheme was applied to handle the
pressure-velocity coupling. Gradients were calculated
using the cell-based least squares approach. Through-
out the simulations, all spatial discretisation schemes
were configured to achieve second-order accuracy. Fur-
thermore, we employed a second-order implicit pseudo
transient time formulation. All simulations were per-
formed until steady states were reached.

The schematically pictured computational task can
be seen in Figure 4. This representation is misleading
in terms of dimensions. In reality, the side of the
square is approximately 12 times greater than the
large diameter of the outer tube. Tubes’ thicknesses
are also enlarged in Figure 4.

Figure 4. Schematic computational domains with
marked boundary conditions.
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The whole computational task is composed of four
subdomains. Two of them, coloured blue, model air as
a fluid. The other two, coloured in grey, model steel
tubes as a solid. These subdomains are connected
with coupled walls and the heat conduction through
the tubes is fully modelled. The square-shaped subdo-
main represents the atmosphere with inlet and outlet
boundary conditions. The variables prescribed at the
inlet were the total pressure, temperature, and angle
of the velocity vector, 101 325 Pa, 293.15 K, and per-
pendicular to the boundary, respectively. The variable
prescribed at the outlet was the static pressure with
a value of 101 325 Pa. Constant temperature TD1 was
prescribed at the inner edge of the inner tube. Zero
velocity magnitude was also specified on all walls.

The distribution of the temperature and velocity
magnitude field calculated using CFD in the single
annulus due to natural convection and radiation is
shown in Figure 5 and Figure 6.

Figure 5. Temperature field distribution for case
D1/D2 = 0.5, t2 = 1 mm, TD1 = 973.15 K.

Figure 6. Velocity magnitude field distribution for
case D1/D2 = 0.5, t2 = 1 mm, TD1 = 973.15 K.

2.3.1. Grid convergence study
Analysing mesh convergence in a simulation is a
straightforward approach to gauge the level of dis-

cretisation error within a numerical simulation. This
method entails conducting the simulation on progres-
sively finer meshes. As the mesh becomes more refined,
spatial discretisation errors should gradually diminish,
asymptotically approaching zero, except for negligible
computer rounding errors.

For the scope of this study, it is necessary to des-
ignate a specific scalar quantity. In this instance,
we have selected the volume average of temperature
on the outer tube, denoted as T , to serve this pur-
pose. We generated three progressively finer meshes,
maintaining a refinement ratio of r = 2. This means
that the finer mesh contains twice as many cells as
the coarser mesh in both spatial directions. Table 2
provides a comprehensive listing of all three meshes,
along with their respective cell counts.

Mesh label “1” “2” “3”
Normalised mesh
spacing 4 2 1

Number of cells 53 504 214 016 856 064

Table 2. Parameters of meshes generated and used
in convergence study.

Given that the parameter r remains constant, we
can determine the order of convergence O shown in
Equation (5) using Roache’s method, as described
in [25], by directly utilising three solutions in the
following manner

O =
ln

(
T1−T2
T2−T3

)
ln(r) . (5)

Once the convergence order has been assessed, we
can proceed to apply Richardson extrapolation, as
elucidated by Zlatev et al. [26], to the two most
refined meshes. This method leverages these meshes
to derive an estimate for the “exact” solution at zero
mesh spacing, represented as Equation (6)

Text = T3 + T3 − T2

rO − 1 . (6)

As per Roache’s guidance mentioned in [25], the
Grid Convergence Index (GCI) stands out as a
favoured means of approximating discretisation er-
rors. It quantifies the percentage by which the com-
puted value deviates from the asymptotic numerical
value, essentially delineating an error margin for the
solution’s proximity to the asymptotic value. Addi-
tionally, it provides insight into how the solution might
alter with further grid refinement. A diminutive GCI
value suggests that the computation resides within
the asymptotic range. The computation of GCI can
be performed using Equation (7)

GCI = FS|ϵ|
rO − 1 · 100, ϵ = Tfiner − Tcoarser

Tfiner
. (7)
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In accordance with Wilcox’s recommendation [16],
a safety factor denoted as FS is advised to be set at
FS = 1.25 when employing three or more grids. From
the utilisation of three meshes, we can derive two Grid
Convergence Indexes, denoted as GCI12 and GCI23.
The results of the mesh convergence study are listed
in Table 3. These results were obtained for the case
D1/D2 = 0.5, TD1 = 973.15 K and t1 = 1 mm.

T1 T2 T3
687.569 685.805 685.274

O GCI12 GCI23
1.73 1.4 % 0.4 %

Table 3. Results of the mesh convergence study.

Based on these results, the mesh labeled as “1” was
chosen for further computations as the discretisation
error is sufficiently low. Thus, the error band is ap-
proximately ± 9.6 K around the T1 value.

2.4. Temperature fields
In order to obtain the training data set for neural
network and replace experimental measurement, vari-
ous numerical simulations with different geometrical
setups and boundary conditions on the inner tube
were performed as listed in Table 1.

Trends of the temperature field distributions around
the outer tube were observed on both inner and
outer surfaces. The setup with ratio D1/D2 = 0.8,
t2 = 1 mm and TD1 = 873.15 K is shown in Figure 7.
Temperature distribution is a function of the angle φ
where 0 indicates the highest point of the investigated
geometry (see Figure 2).

Figure 7. Results of the CFD: temperature field dis-
tribution observed at the surfaces of the inner tube.

To simplify the task, some assumptions were ac-
cepted. Firstly, the temperature is assumed to be

symmetrical along the vertical axis, thus the data
with corresponding angular coordinate are averaged.
And secondly, due to small temperature differences
on the inner and outer edge of the outer tube and
due to error band arising from the CFD discretisation
error (see Table 3), it is assumed that the influence
of the inner tube thickness can be neglected, so that
temperatures on these edges are also averaged.

Part of the training data set, representing one batch
of D1/D2 ratios and boundary conditions TD1 pre-
scribed on the inner tube permutations with constant
thickness t2, is shown in Figure 8. The directions of
individual parameter value growth are indicated by ar-
rows, while the resulting part of the training data set
is visualised against the number of the sample. Each
cluster of data represents a single CFD simulation.
As one can see, the behaviour is non-linear, which is
a suitable task for the neural network learning.

Figure 8. Part of the training data set with accepted
simplifications.

2.5. CFD experimental validation
The accuracy of the proposed numerical CFD model
was verified and validated experimentally using an
experimental setup. The time dependence of the tem-
perature fields was observed and compared with the
computational model. The results of this experiment
and validation were presented by authors in [10, 12].

The same CFD model was used in the current cal-
culation. A good agreement between the experiment
and the numerical model was achieved with an error
of the order of a few percent.

3. Neural network approach
From a mathematical point of view, processing the
information within neuron consists of two separate
mathematical operations [27]. The first, synaptic
operation, contains weights of the synapse, which
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represents storage of knowledge and thus the memory
from previous knowledge.

The second is somatic operation, which provides
various mathematical operations, such as thresholding,
non-linear activation, aggregation, etc. The neural
output of the unit ỹ is then scalar as it is indicated
in Figure 9 and expressed by following Equation (8)

ỹ = σ(s). (8)

Let us assume N -th order neural unit, then the
product of a synaptic operation can be written as
Equation (9).

s = w0x0 +
n∑

i=1
wixi +

n∑
i=1

n∑
j=i

wijxixj + . . .

+
n∑

i1=1
· · ·

n∑
iN =iN−1

wi1i2...in
xi1xi2 . . . xin

,

(9)

where x0 = 1 denotes the threshold and n stands for
the length of the input feature vector.

Neural unit




x1

...
xi

...
xn




Inputs



w1

...
wi

...
wn




Synapse

∑
σ(s)

Soma

w0

Threshold

Learning algorithm

s ỹ ∈ R

Figure 9. Neural network: single neural unit.

Since the desired outputs are predetermined, the
process of machine learning is termed as supervised
learning. This involves learning a function that con-
nects input to output using a cost function #–e .

As we can see, the neural output is strongly depen-
dent on the neural memories represented by vector of
the weights #  –

W . So, to help the neural unit learn, the
information processing needs to be structured appro-
priately. Batch Levenberg-Marquardt algorithm for
updating weights [27] is utilised in present work

#  –

W = #  –

W + ∆ #  –

W , (10)

where

∆ #  –

W T = −
(

#–
#–

J T
#–
#–

J + 1
µ

#–
#–

I

)−1
#–
#–

J T #–e . (11)

Coefficient µ is the learning rate,
#–
#–

I is nw × nw

identity matrix, nw the number of weights and
#–
#–

J
represents n × nw Jacobian matrix.

Usually, the training data set is divided into three
subsets. The first, training set, which serves for learn-
ing and updating weights. The second is the validating
set. After each epoch of the learning algorithm, error
estimation is performed on this subset in order to
avoid neural unit overfitting. The training continues
until the validating error increases. The third part is
called the testing set, which measures the error after
learning is terminated.

According to previous considerations, the desired
function is assumed in a form of Equation (1). The
neural network was assembled by five neurons with
third order synaptic operation and bipolar sigmoid
activation in the first layer and single second order
neuron with linear activation in the output layer as it
can be seen in Figure 10. Error propagation through
the network is performed by Gupta et al. [28] using
multilayer backpropagation algorithm.




(D1/D2, t2, TD1 , φ)1
...

(D1/D2, t2, TD1 , φ)i
...

(D1/D2, t2, TD1 , φ)n




Inputs

NU 1
1

......

NU 5
1

1st layer

NU 1
2

2nd layer




(TD2)1
...

(TD2)i
...

(TD2)n




Outputs

Figure 10. Neural network: shallow neural network.

4. Results
All samples in the obtained data set (5 805 in total)
were normalised using the minmax method within a
range of ⟨0; 1⟩ Learning rate was set to a constant
value µ = 0.2 and the total number of epochs was
set to 1 000. In Figure 11, it can be seen that the
validation error reached its minimum at 48-th epoch
with a test error of 2.1338e-5 in the norm space.

Figure 11. Results: progress of the learning.
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Figure 12. Results: comparison of neural outputs
against training data set in the sample space.

Figure 13. Results: comparison of neural outputs
against testing data set obtained using LHS.

Weights set in this learning epoch were evaluated as
the best approximation of the task before any possible
overfitting. There is a graphical comparison of the
neural output against the training data set shown in
Figure 12. It can be seen that the neural outputs
are in good agreement with the training data set.
The mean squared error (MSE) reached 1.548 in the
sample space, i.e. not norm space.

Latin hypercube sampling (LHS) was used to gener-
ate the data set. The strategy chosen was 16 samples
with a maximum sum of distances in the sample space
[29]. A comparison of the neural outputs against the
testing data obtained using LHS is shown in Figure 13.

Figure 14. Results: comparison of neural outputs
against testing data set - the best match.

Figure 15. Results: detailed comparison of neural
outputs against testing data set - the worst match.

The MSE for the testing data was 2.41.
In Figure 14, there is a graphical comparison of the

obtained prediction using neural network. It can be
seen that the trend of the temperature field copies the
trend of the temperature distribution obtained using
a standard CFD approach. The maximum difference
between the prediction and the true distribution is
2.1 K, which is in a sufficient error band, according to
[30] and performed convergence grid study.

The worst case in terms of matching the testing
data set is shown in Figure 15. It is the case when
the ratio D1/D2 = 0.826 and the temperature at the
inner tube was set to TD2 = 868.39 K.
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The maximum difference can be observed at the top
of the inner tube, i.e. at φ = 0◦, where the difference
between the prediction and the data obtained through
CFD reached 4.3 K, which is up to the measurement
error limits described in [30] but still within the error
band established by GCI.

The oscilation in the area φ = ⟨30; 60⟩° is not cor-
rectly captured bu the prediction differs from the
CFD data by less than 2.0 K which is also within the
sufficient error band.

5. Conclusion
In order to eliminate time-consuming CFD simulations
and accelerate the design of aircraft engines, this paper
presents an approach to modelling the temperature
field distribution on the outer tube in a single annulus,
representing an aircraft engine section, using a higher
order neural network. Based on a gas turbine section,
various geometrical setups were prepared for the CFD
simulations to obtain a training data set. Moreover,
three engine steady-state modes, standing for idle,
cruise and maximal take-off, were considered. A grid
convergence study was performed on a chosen case in
order to detect error band arising from the CFD. A
large data set was obtained after comprehensive set
of CFD simulations. Some simplifications, based on
the results of the convergence study, were accepted as
described in Section 2.4.

A higher order artificial neural network architecture
was also described. The learning was successful with
a training error, measured by MSE, of 1.548 in the
sample space, which is a sufficiently low error given the
error band given by the CFD simulations. The results
of the learning were also tested on the testing data
set, which consisted of sixteen cases generated using
Latin hypercube sampling. The MSE performed on
the testing data set reached 2.41, which is also within
the error band and is also covered by the measurement
uncertainty of the thermocouple as described in [30].

Further work should aim at more complex geometry,
more accurate CFD simulations and transient flow
cases. The next step is to use finite element methods
for deformation analysis and to develop a coupled
solver that will allow faster analysis, and thus faster
design of the device.

List of symbols

φ Angle [◦]
D1 Inner tube diameter [mm]
TD1 Inner tube temperature [K]
t1 Inner tube thickness [mm]
D2 Outer tube diameter [mm]
TD2 Outer tube temperature [K]
t2 Outer tube thickness [mm]
t Time [s]
T Volume average of temperature [K]
ρ Density [kg m−3]
O Order of convergence [1]

p Static pressure [kg m−1s−2]
pref Reference static pressure [kg m−1s−2]
E Specific total energy [m2 s−2]
R Specific gas constant [m2 s−2]
r Refinement ratio [1]
#–u Velocity [m s−1]
#–q Heat flux [m s−1]
#–q r Radiation heat flux [m s−1]
#–q c Conduction heat flux [m s−1]
#–g Gravitational acceleration [m s−2]
#–e Cost function [1]
#–#–
I Identity matrix [1]
#–#–
J Jacobian matrix [1]
n Length of input feature vector [1]
nw Number of weights [1]
x0 Neural threshold [1]
ỹ Neural output [1]
#  –
W Vector of the weights [1]
σ(·) Activation function [1]
µ Learning rate [1]
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Experimental and numerical study of natural convection
in 3D double horizontal annulus. In European Physical
Journal Web of Conferences, vol. 264. 2022. 01027.
https://doi.org/10.1051/epjconf/202226401027

[13] P. Kovář, J. Fürst. Comparison of multilayer
perceptron and higher order neural network’s ability to
solve initial value problem. In 24th International
Scientific Conference Applied Mechanics 2023 Book of
Abstracts, pp. 55–58. Strojnícka fakulta STU v Bratislave,
Bratislava, SK, 2023. ISBN 978-80-227-5294-7.

[14] P. Kovář, J. Fürst. Scalable activation function
employment in higher order neural networks in tasks of
supervised learning. In Book of Abstracts 18th Youth
Symposium on Experimental Solid Mechanics, p. 37.
Institute of Theoretical and Applied Mechanics, AS CR,
Prague, CZ, 2023. ISBN 978-80-86246-66-6.

[15] P. Kovář, A. Tater, J. Pařez, J. Fürst. About the
appropriate neural network size for the engineering
applications. In Proceedings of Computational
Mechanics 2023, pp. 91–94. University of West Bohemia,
Pilsen, CZ, 2023. ISBN 978-80-261-1177-1.

[16] D. C. Wilcox, et al. Turbulence modeling for CFD,
vol. 2. DCW industries La Canada, CA, 1998.
https://doi.org/10.1017/S0022112095211388

[17] F. Menter, R. Lechner, A. Matyushenko. Best
practice: generalized k-ω two-equation turbulence model
in Ansys CFD (GEKO). ANSYS Germany GmbH 2019.

[18] S. Chandrasekhar. Radiative transfer. Dover
Publications, 2013. ISBN 978-0-486-60590-6.

[19] J. Boussinesq. Théorie analytique de la chaleur mise
en harmonie avec la thermodynamique et avec la théorie
mécanique de la lumière. Tome II : Refroidissement et
échauffement par rayonnement; conductibilité des tiges,
lames et masses cristallines, courants de convection,
théorie mécanique de la lumière. 1903. xxxii, 625, vol. 2.
Gauthier-Villars, 1903.

[20] P. Mayeli, G. J. Sheard. Buoyancy-driven flows
beyond the Boussinesq approximation: A brief review.
International Communications in Heat and Mass
Transfer 125:105316, 2021. https://doi.org/10.1016/
j.icheatmasstransfer.2021.105316

[21] C. M. Rhie, W.-L. Chow. Numerical study of the
turbulent flow past an airfoil with trailing edge
separation. AIAA journal 21(11):1525–1532, 1983.
https://doi.org/10.2514/3.8284

[22] M.-S. Liou, C. J. Steffen Jr. A new flux splitting
scheme. Journal of Computational physics 107(1):23–39,
1993. https://doi.org/10.1006/jcph.1993.1122

[23] A. Harten, P. D. Lax, B. van Leer. On upstream
differencing and Godunov-type schemes for hyperbolic
conservation laws. SIAM Review 25(1):35–61, 1983.
https://doi.org/10.1137/1025002

[24] J. Holman, J. Fürst. Rotated-hybrid Riemann solver
for all-speed flows. Journal of Computational and
Applied Mathematics 427:115129, 2023.
https://doi.org/10.1016/j.cam.2023.115129

[25] P. J. Roache. Verification and validation in
computational science and engineering. Hermosa
Albuquerque, NM, Albuquerque, NM, USA, 1998.
ISBN: 978-0913478080.

[26] Z. Zlatev, I. Dimov, I. Faragó, Á. Havasi. Richardson
extrapolation. In Richardson Extrapolation, vol. 2. De
Gruyter, 2017.
https://doi.org/10.1515/9783110533002

[27] M. Gupta, I. Bukovsky, N. Homma, et al.
Fundamentals of higher order neural networks for
modeling and simulation. In Artificial Higher Order
Neural Networks for Modeling and Simulation, pp.
103–133. IGI Global, 2013. https:
//doi.org/10.4018/978-1-4666-2175-6.ch006

[28] M. Gupta, L. Jin, N. Homma. Static and dynamic
neural networks: from fundamentals to advanced theory.
John Wiley & Sons, 2004. ISBN 0-471-21948-7.

[29] M. Stein. Large sample properties of simulations using
Latin hypercube sampling. Technometrics 29(2):143–
151, 1987. https://doi.org/10.2307/1269769

[30] Labfacility Ltd, Angmering, West Sussex, UK. The
New Labfacility Temperature Handbook, v2.1 edn., 2006.
TH0906.

438

https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.074
https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.074
https://doi.org/10.14311/AP.2023.63.0065
https://doi.org/10.29008/ETC2021-523
https://doi.org/10.1111/j.1749-6632.2001.tb05864.x
https://doi.org/10.1111/j.1749-6632.2001.tb05864.x
https://doi.org/10.1177/14680874231167206
https://doi.org/10.1088/1757-899X/1190/1/012002
https://doi.org/10.1051/epjconf/202226401027
https://doi.org/10.1017/S0022112095211388
https://doi.org/10.1016/j.icheatmasstransfer.2021.105316
https://doi.org/10.1016/j.icheatmasstransfer.2021.105316
https://doi.org/10.2514/3.8284
https://doi.org/10.1006/jcph.1993.1122
https://doi.org/10.1137/1025002
https://doi.org/10.1016/j.cam.2023.115129
https://doi.org/10.1515/9783110533002
https://doi.org/10.4018/978-1-4666-2175-6.ch006
https://doi.org/10.4018/978-1-4666-2175-6.ch006
https://doi.org/10.2307/1269769

	Acta Polytechnica 63(6):430–438, 2023
	1 Introduction
	2 Task
	2.1 Geometry
	2.2 Operational conditions
	2.3 Computational methods and domain description
	2.3.1 Grid convergence study

	2.4 Temperature fields
	2.5 CFD experimental validation

	3 Neural network approach
	4 Results
	5 Conclusion
	List of symbols
	Acknowledgements
	References

