
Distributionally robust scheduling algorithms for total flow
time minimization on parallel machines using norm

regularizations

Antonin Novaka,c,∗, Andrzej Gnatowskib, Premysl Suchaa

aCzech Institute of Informatics, Robotics and Cybernetics,
Czech Technical University in Prague, CZ

bDepartment of Control Systems and Mechatronics,
Wroc law University of Science and Technology, PL

cFaculty of Electrical Engineering,
Czech Technical University in Prague, CZ

Abstract

In this paper, we study a distributionally robust parallel machines scheduling
problem, minimizing the total flow time criterion. The distribution of uncertain
processing times is subject to ambiguity belonging to a set of distributions with
constrained mean and covariance. We show that the problem can be cast as a de-
terministic optimization problem, with the objective function composed of an expec-
tation and a regularization term given as an `p norm. The main question we ask
and answer is whether the particular choice of the used `p norm affects the com-
putational complexity of the problem and the robustness of its solution. We prove
that if durations of the jobs are independent, the solution in terms of any `p norm
can be solved in a pseudopolynomial time, by the reduction to a non-linear bipar-
tite matching problem. We also show an efficient, polynomial-time algorithm for `1
case. Furthermore, for instances with dependent durations of the jobs, we propose
computationally efficient formulation and an algorithm that uses `1 norm. Moreover,
we identify a class of covariance matrices admitting a faster, polynomial-time algo-
rithm. The computational experiments show that the proposed algorithms provide
solutions with a similar quality to the existing algorithms while having significantly
better computational complexities.

Keywords: scheduling, distributionally robust optimization, uncertain processing
time, total flow time, computational complexity

1. Introduction

Real-life processes often involve uncertainty, i.e., values of some parameters of
the system are not known beforehand. Provided a sufficient quantity of empirical
data, it is usually possible to build models describing how the uncertain parameters
relate to each other and what values they can attain. Then, the description of the
uncertainty can be utilized during the optimization, following various paradigms,
for instance, Robust Optimization (RO, optimizing for the worst-case realization),

∗Corresponding author
Email address: antonin.novak@cvut.cz (Antonin Novak)

Preprint submitted to European Journal of Operational Research January 20, 2024

Stochastic Optimization (SO, optimizing the expected value), or DRO (distribution-
ally robust optimization, optimizing for the worst-case expectation) that we address
in this paper.

An example of such a process is unit testing, a crucial part of modern software
development [33]. Each time the unit tests are executed, they cover slightly different
parts of the source code, resulting in random pass/failure ratios and the run times.
Since the test batches are performed repeatedly, one can build empirical distributions
of the aforementioned parameters. Moreover, the tests are usually not independent—
a failure of one test might lead to an automatic failure of an entire batch. Thus, it is
beneficial to model the uncertainty, e.g., with multivariate distributions. When the
number of tests is large, they are scheduled and performed in parallel, using a cluster
of servers. When the computing nodes are identical, the problem can be modeled
as parallel identical machines scheduling with uncertain job durations. The total
flow time is usually chosen as the objective function [20], as minimizing average user
waiting time ensures the tests can be executed frequently.

1.1. Problem statement

In this work, we focus on a distributionally robust scheduling introduced in [8].
The problem considers n jobs J = {1, 2, . . . , n} that need to be scheduled on m
identical machines M = {1, 2, . . . ,m}. Each job is available at time 0 and can be
processed on any machine, while preemption is not allowed. Job j ∈ J is character-
ized by uncertain processing time p̃j ∈ R+. The processing times can be expressed
as random vector p̃ ∈ Rn+ subject to an ambiguous probability distribution P ∈ D,
D ⊆ P0(Rn+), where P0(Rn+) is the set of all probability distributions on Rn+. Finally,
the objective is to minimize the worst-case expected total flow time f , i.e., a sum of
completion times of jobs (

∑
Cj or TFT).

A solution to this problem is a schedule that assigns the jobs to the machines
and sequences the assigned jobs on each of them. In [8], it was shown that the
representation of the solution can completely disregard the assignment of a job to a
specific machine. This property leads to a concise representation of the solution by
vector π = (π1, . . . , πn) ∈ Zn+ of n positive integers. In this representation, πj = l
if and only if job j is scheduled as the l-th job from the end of the schedule (e.g.,
l = 1 means the last position) on some machine. The number of available machines is
reflected by the property that any feasible assignment π contains at most m elements
of the same value. In addition, any optimal solution is of a specific structure. That
is, having an instance with n jobs and m machines, an optimal solution π? to the
studied problem has exactly m elements with the value of 1, exactly m elements with
the value of 2, and so on up to bn/mc. Finally, when n is not divisible by m, we
have additional n−bn/mc ·m positions, with the value of bn/mc+ 1. Actually, since
the assignment of a job to the specific machine is disregarded by π, then whenever
m > 1, a single π defines more solutions identical up to the permutations of machines
with the identical objective values (see Example 1 bellow). Nevertheless, since the
solutions are identical from the objective function point of view, we treat π as a
single solution.

Considering the structure of solutions explained above, we have that the set of
(potentially) optimal assignments π is given as

Π =

{
π ∈ {1, . . . , bn/mc+ 1}n

∣∣∣∣∣ cπ(bn/mc+ 1) = n− bn/mc ·m,
∀l ∈ {1, . . . , bn/mc} : cπ(l) = m

}
, (1.1)

where cπ(l) = |{j ∈ J : πj = l}| is the number of jobs assigned to l-th position
from the end. The positions of jobs are indexed in the reversed order, as it leads

2

to a simplified representation of the objective function. Subsequently, the objective
function f of the problem can be written as

f ≡ f(π, p̃) = πᵀp̃. (1.2)

When the probability distribution P of the processing times p̃ ∼ P is known
exactly, then one can utilize Stochastic Programming (SP) solution, which minimizes
the expectation of the objective function:

SP-PTFT ≡ min
π∈Π

EP
[
πᵀp̃

]
= min
π∈Π

πᵀEP
[
p̃
]
. (1.3)

Example 1. Let us have a problem instance with m = 2 machines and n = 5 jobs
with uncertain processing times p̃ = (p̃1, . . . , p̃5). Suppose that we have a feasible
solution π = (1, 1, 2, 3, 2) to the problem (1.3). The solution π represents 23 = 8
different job orders. One of these orders is illustrated in Figure 1 (a), where job 4
is scheduled as the first job on the first machine, followed by job 3 and job 1 on the
same machine. The remaining jobs are allocated to the second machine, where job
5 is followed by job 2. Using the linearity of the expected value, the objective for
order (a) can be rewritten as

EP
[
πᵀp̃

]
= 3 · EP

[
p̃4
]

+ 2 · EP
[
p̃3
]

+ 1 · EP
[
p̃1
]

+ 2 · EP
[
p̃5
]

+ 1 · EP
[
p̃2
]
.

Note that the order in Figure 1 (b) leads to the same result, as the multipliers of p̃
are identical.

4 3 1

5 2

(a)

machine 1:

machine 2:

4 5 2

3 1

(b)

machine 1:

machine 2:

Figure 1: Two (out of eight) different job orders on two machines represented by π = (1, 1, 2, 3, 2).

1.2. Distributionally robust solution

Although tt can be seen that the SP solution is optimal in the sense of expected
(or long term) performance, it does not hedge against variances in solution quality,
thus, it may not be suitable for the risk-averse decision maker. Moreover, the prob-
ability distribution P is often not precisely known, therefore, it is advantageous to
protect ourselves from sudden disturbances in solution quality caused by the changes
in the distribution parameters. This is the reason why it is often useful to assume
a broader concept, i.e., a set of probability distributions called an ambiguity set
D. Such a set can be in practice build with historical data, model assumptions, or
problem constraints, using specific rules. Therefore, the problem is seen as distri-
butionally robust optimization (DRO), which aims to find a solution that yields the
best expected value of the objective function f for the worst-case distribution in D.
Thus, the probability distribution acts as a decision variable and the goal is to find
solution π that minimizes its expected objective value with respect to the worst-case
realization of the probability distribution.

Using the introduced notation, the distributionally robust problem (denoted as
DR-PTFT) becomes

DR-PTFT ≡ min
π∈Π

max
P∈D

EP
[
πᵀp̃

]
. (1.4)

3

There are numerous ways to define an ambiguity set. The ambiguity set used in
paper [8], as well as in this paper, constrains the first two moments of the distribution,
and it is defined as

D =

P
∣∣∣∣∣∣∣∣
PP
[
p̃ ∈ Rn+

]
= 1(

EP [p̃]− µ̂
)ᵀ

Σ̂−1
(
EP [p̃]− µ̂

)
≤ γ21

EP
[
(p̃− µ̂)(p̃− µ̂)ᵀ

]
� γ22Σ̂

 , (1.5)

where µ̂ ≥ 0 is an estimate of the mean vector, and Σ̂ � 0 is an estimate of the
covariance matrix. The parameters γ1 and γ2 (γ1 ≥ 0, γ2 ≥ 1) define confidence in the
estimates. The set can be interpreted such that the mean vector EP [p̃] is restricted in
an ellipsoid of size γ1; centered at its estimate µ̂. The covariance of the distribution P ,
in turn, lies in a positive semidefinite cone defined by µ̂ and Σ̂. The reason why it is
convenient to model the ambiguity set with the two first central moments follows from
the difficulty of estimating higher-order moments in case of a lack of data. Indeed,
the statistical estimators of covariance matrices (e.g., sample covariance) have higher
variance than the estimators of the expected value (e.g., sample mean). Thus, the
higher moment one wants to estimate, the more data for its reliable estimation is
needed. Furthermore, in the case of multivariate distributions (joint distributions),
there are several different methods how to measure and interpret skewness (i.e., the
standardized third moment), even for distribution from skewed-normal family [2].
Thus, different measures might be suitable for different applications, which makes the
estimation of higher-order moments rather complicated for multivariate distributions.

Using the above notation, the problem studied in this paper can be denoted with
three-field notation as P|P[p̃] ∈ PDY |∑Cj , where PDY stands for Delange and Ye’s
ambiguity set [8, 27]. To keep the notation short, we refer to the studied problem
as to DR-PTFT. Note that one of the advantageous properties of ambiguity set D is
that when γ1 = 0, then the worst-case expectation problem of the DRO formulation
reduces exactly to the ordinary expectation of the objective function which matches
SP formulation (1.3). Thus, the DRO formulation (1.4) contains an SP solution (1.3)
as a special case.

1.3. Contributions and paper organization

In this paper, we revisit DR-PTFT problem from the perspective of the design
and analysis of the algorithms. We demonstrate that its solution for large problem
instances is computationally intractable in practice, especially with dependent jobs.
Thus, we aim to design algorithms with a (pseudo) polynomial complexity, and simul-
taneously, to provide solutions with the same or almost the same desired properties
as the optimal solutions to formulation (1.4). We achieve this aim by expressing
the variance of a solution with a robust term, and by considering its different forms.
Namely, the main contributions of this paper are:

1. we reformulate DR-PTFT as a minimization of a linear function plus a robust
term in the sense of `2 norm (see Section 3.2);

2. we investigate the effect of the form of the robust term on the computational
complexity and, as a special case of our theorem, we improve the best-known
upper bound of [8] on the complexity for the problem with independent jobs
(see Section 3.3);

3. we extend our methods to the case when processing times of jobs are dependent
and we show that the source of the hardness of the problem arises from the

4

presence of large negative correlations, not from the simple fact that jobs are
dependent (see Section 3.4 and Section 3.5);

4. we show that the robust term in the sense of `1 norm allows to solve the problem
in polynomial time, and we provide the explicit definition of the corresponding
ambiguity set (see Section 3.5);

5. we relate the proposed methods to multi-objective optimization setting in terms
of expected quality and the solution variance; we significantly improve a method
for uniform sampling of the solution Pareto set (see Section 4);

6. the experimental results show that our polynomial approximations have nearly
identical performance to the formerly known second-order cone integer pro-
gramming formulation from [8] while being much faster (see Section 5).

The rest of the paper is organized as follows. In Section 2, we survey the related
work. In Section 3, we study the computational complexity of the problem in terms
of `p norm with independent jobs. Then, we focus on a particular case of `1 norm,
for which we propose a polynomial-time algorithm with the extension for the case
of dependent jobs. In Section 4, we point out the relation between the form of the
objective function of the problem and the multi-objective optimization in terms of
solution quality and its robustness and discuss some practical concerns for solving
the problem. Finally, in Section 5, we perform numerical experiments with our
algorithms, and we provide a comparison to the state-of-the-art methods. Section 6
concludes the work.

Notation. Generally we use calligraphic letters (A) to denote sets, for vectors and
matrices we use bold (a, A), tilde (ã) for random variables, and for the estimates the
hat (â). By 0 and 1 we denote, respectively, vectors of zeros and ones of appropriate
sizes. The diagonal matrix with vector λ on its diagonal is denoted as diag(λ).
The set of all probability distributions on Rn is written as P0(Rn). Element-wise
comparison of vectors a and b is defined as a ◦ b ⇐⇒ ∀i : ai ◦ bi, where ◦ ∈
{>,≥, <,≤,=}. We define `p norm of a vector x ∈ Rn as ‖x‖p = (

∑n
i=1 |xi|p)

1/p
.

Furthermore, we denote the set of all symmetric real positive semidefinite matrices of
size n×n as Sn+, the set of non-negative reals as R+, the set of non-negative integers
as Z+, and positive integers as N.

2. Related work

Distributionally robust optimization (DRO) was introduced by Scarf [28] back in
1958. The aim of DRO is to minimize the worst-case expectation with respect to the
uncertainty of the underlying distribution of the parameters, i.e., the so-called ambi-
guity set. The new wave of interest in DRO was sparked namely by recent advance-
ments of mathematical programming solvers and tractable formulations of ambiguity
sets [6]. A DRO problem is typically reformulated to a deterministic mathematical
programming problem, whose complexity depends on the used formulation of the
ambiguity set. Often, such reformulation is more computationally attractive than
stochastic and robust optimization counterparts.

2.1. DRO in the scheduling literature

The majority of the existing works dealing with scheduling problems and DRO
have applied ambiguity sets defined by estimates of the first two moments. Wang et

5

al. [36] solve the assignment of surgery blocks to operating rooms, which leads to the
objective function containing a non-linear term

∑
i max{0,dᵀi x−T} (di is a random

vector of surgery durations, x are decision variables, and constant T is the regular
operating room opening hours). Processing times of surgeries di are subject to a
probability distribution contained in the ambiguity set defining bounds on mean val-
ues and mean absolute deviations. The proposed reformulation of the DRO problem
formulation leads to a mixed-integer linear program (MILP) of exponential size in
the number of operating rooms. The approach is able to solve problems with about
15 surgery blocks within an hour.

A DRO variant of a single machine total tardiness problem with uncertain pro-
cessing times was addressed in [26]. The authors used an ambiguity set enforcing
equality of the first two moments. The exact reformulation has high complexity,
with the inner problem being an exponential-sized SDP (semidefinite programming)
problem. Therefore, they solved a surrogate SOCP (second-order cone programming)
problem instead by a custom branch-and-bound algorithm. They have been able to
solve instances with 30 jobs within 40 seconds. Shang et al. [29] use the generalized
moment functions with a piece-wise linear form, given by so-called truncation points,
to define the ambiguity set. They can be used to constrain the first-order deviation
projected along the selected direction. The authors also show a problem reformula-
tion leading to a MILP. Furthermore, they propose a data-driven procedure based on
principal component analysis to construct an ambiguity set from the historical data,
and they apply the framework to a process scheduling problem.

A problem with bimodal distributions was studied in [32] in the context of outpa-
tient colonoscopy scheduling. Colonoscopy duration is uncertain, and it is conditioned
by the bowel preparation quality, which is uncertain as well. Moreover, uncertainty
in the time when the patient will show up for the procedure is considered as well.
The goal is to sequence patients such that the worst-case expectation of the weighted
sum of patient and provider waiting with the overtimes is minimized. The authors
use an ambiguity set that enforces support (i.e., lower and upper bounds) and the
mean value for all uncertain parameters. The problem is translated into a MILP and
solved by CPLEX solver.

In this paper, we build on the work of [8]. They have proposed a distributionally
robust variant of the parallel identical machine scheduling problem with the mini-
mization of the worst-case expected total flow time. The processing times of jobs are
subject to uncertainty belonging to the ambiguity set constraining the first two mo-
ments. The problem is reduced to an integer SOCP, and the case with independent
jobs is solved by an exact algorithm that explores all solutions satisfying necessary
optimality conditions. The proposed approach for independent jobs was able to solve
instances with 100 jobs and 5 machines within several seconds whereas the integer
SOCP formulation does not scale well. In our work, we address this problem from
the perspective of surrogate problems and their complexity. That is, we classify re-
lated problems with respect to their complexity and we show when it is possible to
obtain identical quality and robustness of solutions at a much lower computational
cost. What is more, we extend the proposed methodology for the case of dependent
jobs which displays excellent scaling capabilities.

2.2. Ambiguity set expressivity and robustness evaluation

A known shortcoming of the moment-based ambiguity sets is that the worst-
case distribution might have an unrealistic form [37]. For example, it is known
that under mild assumptions on the objective function, its worst-case expectation is
attained at the distribution having support in at most m + 1 points, if m moments

6

are constrained [31, 4]. If such distribution leads to overly conservative solutions
for the target application, then it is better to use, e.g., likelihood or phi-divergence
ambiguity sets [3].

The above points raise a question of whether it is appropriate to solve problems
with certain ambiguity sets optimally when neither the protection against the (un-
realistic) worst-case distribution is not required nor is in the interest of the decision
maker. Indeed, the majority of DRO applications in scheduling do not evaluate so-
lutions with respect to the worst-case distribution which was chosen by their DRO
algorithm. Instead, the authors assume various selected distributions or they choose
different evaluation protocols that are suited to the target application [36, 29, 10].
Nevertheless, the way a DRO algorithm is tested may result in a situation where,
sometimes, even a heuristic solution can achieve a better performance than the ex-
act approach under some sensible evaluation protocol, e.g., as in [36]. Therefore,
this paper tries to answer a question, that is, given an evaluation protocol of out-of-
sample performance, is it necessary to solve the original problem optimally, or can
a comparable performance be achieved by solving a related problem, perhaps at a
much-reduced computation cost?

2.3. Total flow time scheduling and other problems

From the perspective of the scheduling problem solved in this work, several works
on total flow time scheduling are closely related. For example, in [19], the authors
study a deterministic parallel identical machines scheduling problem with weighted
completion time. With their enhanced arc-flow MILP formulation, they have been
able to solve instances having up to 400 jobs, whereas former approaches were limited
to around 100 jobs. A robust approach for parallel machines total flow time problem
is studied in [1]. The authors treat the problem with normally distributed processing
times as a β-robust optimization problem, where the objective is to maximize the
probability that the total flow time does not exceed the given level. They developed
a branch-and-bound algorithm that was able to solve instances of up to 45 jobs and
5 machines. Another total flow time scheduling problem with sequence-dependent
setups is addressed by [21]. The uncertain processing times and setups are repre-
sented by interval data. The goal is to minimize the worst-case absolute deviation of
the total flow time from the optimal scenario. They have formulated the problem as
a resource-constrained shortest path and devised a simulated annealing algorithm to
solve it. They were able to solve instances with 200 jobs in about 20 seconds.

From the perspective of the used approaches, our methods share similarities with
linear optimization problems containing absolute values of variables. Problems such
as absolute value equations (AVE) [23] or linear complementarity problem (LCP) [11]
are known to be NP-hard even over real variables. We further consider problems
related to `p norm minimization [15, 38], which are typically studied in the context of
robust estimation and fitting. However, the current results are not directly applicable
to our problem as we optimize over a set of constraints having a form of a totally
unimodular matrix rather than an unconstrained case.

3. Solving methods for `p norm formulations

In Section 3.1, we outline the second-order cone program (SOCP) formulation of
problem (1.4) from [8]. In Section 3.2, we express the objective function as a sum of a
linear term and a robust term in the sense of some `p norm. Section 3.3 investigates
the properties and complexity of the formulation with respect to the used norm for
independent jobs. Finally, Section 3.4 focuses on the reformulation with dependent

7

jobs, while Section 3.5 on `1 norm specifically. Our analysis shows that the problem
with dependent jobs is hard only when the large negative correlations are present.
Furthermore, we give a polynomial algorithm for a tractable subclass of the problem,
and we investigate its robustness, given by the corresponding ambiguity set.

3.1. Deterministic reformulation of the stochastic problem

In [8], it was shown that when parameters γ1 ≥ 0 and γ2 ≥ 1, defining the
ambiguity set (1.5), satisfy γ2 ≥ γ1, then the stochastic problem in the form of (1.4)
is equivalent to the following deterministic integer second-order cone program

min
π∈Π

πᵀµ̂+ γ1 ·
√
πᵀΣ̂π. (3.1)

Interestingly, the resulting formulation does not depend on the particular value of
γ2, as long as γ2 ≥ γ1. For more details, we refer the reader to [8]. Furthermore,
note that when γ1 = 0, then (3.1) matches SP solution (1.3).

In [8], authors have dealt with the special case of the problem with indepen-
dent random variables, i.e., Σ̂ = diag(σ̂2

1 , σ̂
2
2 , . . . , σ̂

2
n) where σ̂j , j ∈ J is a standard

deviation of p̃j . We note that when Σ̂ = 0 (i.e., when the processing times are deter-
ministic), then the formulation (3.1) reduces to the classical, deterministic parallel
identical machines total flow time problem (P ||∑Cj), with processing times given
by µ̂. The deterministic problem is solvable in O(n log n) time by sorting the jobs
according to µ̂ values in non-increasing order. The optimal π is obtained by setting
πj = 1 to the first m sorted jobs, πj = 2 to the next m jobs until all the elements in
π are assigned (see, e.g., [7, p. 133–134] for a similar algorithm applicable to a more
general Q||∑Cj problem).

Finally, note that since µ̂ (i.e., sample mean) is unbiased estimator of E
[
p̃
]
,

we can build a direct connection between the Stochastic Programming formulation
SP-PTFT and the considered DRO formulation. That is, the solution of (3.1) with
γ1 = 0 is equivalent to SP-PTFT formulation.

3.2. Robustness as a norm of solution variance

In this section, we express formulation (3.1) using a vector norm of the solution
variance, which provides new insights to the problem. Let us assume that the estimate
of covariance matrix Σ̂ is a positive semidefinite (PSD) matrix. Indeed, this is
without a loss of generality as the covariance matrix of any distribution is a PSD
matrix (if it exists). From the practical standpoint, the covariance matrix is typically
estimated from data using the sample covariance, which provably always results in
a PSD matrix. Thus, Σ̂ admits factorization into Σ̂ = V DV −1, where V is an
orthogonal matrix and D is a diagonal matrix with eigenvalues λj ≥ 0 of Σ̂. Let us

define a square root of Σ̂ as

Σ̂1/2 ≡ V D1/2V −1, (3.2)

where D1/2 is a diagonal matrix computed as element-wise square root of D.

Lemma 1. Problem (3.1) can be equivalently expressed as

DR-PTFT(`2) ≡ min
π∈Π

πᵀµ̂+ γ1 ·
∥∥Σ̂1/2π

∥∥
2
, (3.3)

where ‖ · ‖2 is `2 (euclidean) norm.

8

Proof. Observe that ‖x‖2 =
√
xᵀx and Σ̂1/2 is a PSD matrix and is symmetric.

Then, since V −1 = V ᵀ, it follows that∥∥Σ̂1/2π
∥∥
2

=
√(

Σ̂1/2π
)ᵀ

Σ̂1/2π =
√
πᵀV D1/2V −1V D1/2V −1π =

√
πᵀΣ̂π.

(3.4)

By substituting (3.4) into (3.3), we obtain (3.1).

While the reformulation (3.3) itself does not bring anything novel, it provides an
interesting insight into the connections of (1.4) with the related problems. Namely,
we see certain similarities with robust regression methods used in machine learning
(ML). There, typically one does not have a precise knowledge of the underlying
distribution of the data. Instead, one has access to a finite sample set that can
be used to estimate the ambiguity. The training of a prediction model is treated
as an optimization problem, minimizing a function defined as a mean error on input
samples plus a complexity measure of the model, which typically refers to the number
of degrees of freedom used in the learned model. The end goal is to find a model
that achieves a small error on unseen data. The resulting model (by analogy, here—a
solution to the scheduling problem) is chosen such that it does not overfit the training
data (sampled processing times) by having some level of generalization to unseen data
(robustness with respect to the processing times uncertainty). Viewing the researched
problem from the perspective of ML analogy, µ̂ and Σ̂1/2 are derived from the training
set, π represents the model, µ̂ᵀπ is its error on input samples (performance), while
an estimate of model complexity (variance) is expressed as ‖Σ̂1/2π‖2 and acts as a
regularization term. The level of protection against overfitting is typically controlled
by a weight term for the regularization term, in our case, corresponding to γ1. There
are several common methods in ML how to penalize the model complexity, e.g.,:
ridge regression, support vector machines (SVM) (squared `2 norm), lasso regression
(`1 norm), or smoothing regularization (‖Dπ‖p for some suitably chosen matrix D)
[25]. Frequently, an `p norm of the model parameters is used. Different choices of
penalty terms lead to different models and training (optimization) algorithms [14].
Similar connections between DRO and regularization approaches were observed by
other authors as well, see, e.g., [27].

Therefore, the above reformulation stimulates several interesting questions. Namely,
we ask whether the `2 norm used in DR-PTFT(`2) formulation (3.3) is essential to
preserving the quality of solutions, or maybe rather, can it be replaced with a dif-
ferent penalty (e.g., `1 norm)? What are then the performance guarantees of such
a model and how does the change of regularization affects the complexity of the
problem? In the following sections, we provide answers to these questions.

3.3. Complexity of `p formulation with independent jobs

In the paper [8], the computational complexity problem of (3.1) was not studied.
Regarding the complexity of their algorithm for independent jobs (called npsa) was
shown that terminates within the finite number of iterations, but no specific time
bound was given. In this section, we provide a complexity characterization for the
problem formulation with independent jobs in sense of any `p norm:

DR-PTFT(`p) ≡ min
π∈Π

µ̂ᵀπ + γ1 ·
∥∥Σ̂1/2π

∥∥
p
. (3.5)

We show that the particular case p = 2 of the following proposition reduces to
problem (3.1) with independent jobs which, in turn, establish a new complexity

9

result and provides a new algorithm for problem (3.1) with independent jobs studied
in [8].

In this subsection, we study the case when the processing times of jobs are in-
dependent, i.e., Σ̂ = diag(σ̂2

1 , σ̂
2
2 , . . . , σ̂

2
n). Provided that the processing times are

non-negative, without a loss of generality we assume that all elements of µ̂ and Σ̂
are non-negative integers. Finally, the following proposition provides a characteriza-
tion of the computational complexity and the solution algorithm for DR-PTFT(`p)
with independent jobs.

Proposition 1. For any fixed integer p ≥ 1 and a diagonal covariance matrix Σ̂ =
diag(σ̂2

1 , . . . , σ̂
2
n), problem DR-PTFT(`p) admits a pseudopolynomial algorithm in

maxj∈J {µ̂j · λ, (σ̂j · λ)p}, where λ = min
{
µ̂ᵀ1,1ᵀΣ̂1

}
.

Proof. We prove the statement by reducing DR-PTFT(`p) problem to a non-linear
perfect matching problem in a bipartite graph [5] with a suitably defined non-linear
objective function. Such problem is given as the maximization of d-dimensional
convex function q(z1, . . . , zd) : Rd+ 7→ R over a set of all perfect matchings g ∈ {0, 1}n2

in complete bipartite graph Kn,n. The arguments of the function q are given as
mere linear combinations of the characteristic vector g of the matching and weights
zi = wᵀ

i g, wi ∈ Zn2

+ where i ∈ {1, . . . , d}. In other words, each matching g is
scored by d different non-negative integer weights, which are aggregated into a single
convex scoring function to be maximized. When the number of arguments d of the
function to be maximized is fixed to a constant, then such problem can be solved in a
pseudopolynomial time in the maximal weight, as shown in [5]. The reduction given
below preserves the pseudopolynomial time complexity with respect to the sum of
means and variances, and, thus, the algorithm scheme of [5] is applicable to solve the
problem.

Let us define complete bipartite graph Kn,n = (J ,L, E), where J is a set of all
jobs and L is a multiset of all eligible positions (i.e., including their multiplicity, see
the definition of Π in (1.1)) for any job given as

L = { 1, . . . , 1︸ ︷︷ ︸
m elements

, 2, . . . , 2︸ ︷︷ ︸
m elements

, . . . , bn/mc, . . . , bn/mc︸ ︷︷ ︸
m elements

, bn/mc+ 1, . . . , bn/mc+ 1︸ ︷︷ ︸
(n−bn/mc·m) elements

}.

The first part of the graph represents jobs, and the other part represents all possible
job positions, including their multiplicity given by the number of machines. We
associate each edge (j, l) ∈ E , j ∈ J , l ∈ L with two weights (µ̂j · l, |σ̂j |p · lp) and we

collect all first and second weights into vectors a, b ∈ Zn2

+ .
Next, let us denote a perfect matching in Kn,n as M ⊆ E . Such matching M can

be represented by the characteristic vector g ∈ {0, 1}n2

with i-th entry being one if
and only if the corresponding edge is contained in M , and zero otherwise. Finally,
let us define function q : R2

+ 7→ R given as

q(z1, z2) = −z1 − γ1 · z21/p.

Note that, as γ1 ≥ 0, we have that q is convex on R2
+ for any p ∈ N. Then, for any

perfect matching g, we have that

q(aᵀg, bᵀg) = −aᵀg − γ1 · (bᵀg)1/p = −πᵀµ̂− γ1 ·

 n∑
j=1

|σ̂j |p · πpj

1/p

(3.6)

= −πᵀµ̂− γ1 ·
∥∥Σ̂1/2π

∥∥
p
,

10

where πj = l if and only if edge (j, l) ∈ M . The first equality follows from the
definition of q while the second one follows from the definition of a and b and the
fact that g is a perfect matching in a bipartite graph. Thus, for each j ∈ J , exactly
one edge to some l ∈ L is selected. Finally, any perfect matching g? maximizing
q(aᵀg?, bᵀg?) corresponds to minimizing (3.3) which solves DR-PTFT(`p) problem.

1

1

2

1

3

2

4

2

5

3

J

L

µ̂1 · 1, σ̂2
1 · 12 µ̂2 ·1, σ̂2

2 ·12 µ̂3 · 2, σ̂2
3 · 22

µ̂4 · 3, σ̂2
4 · 32

µ̂5 · 2, σ̂2
5 · 22

Figure 2: Graph Kn,n for instance with n = 5, m = 2, and optimal solution π? = (1, 1, 2, 3, 2).

Example 2 (cont.). We continue with the example introduced in Section 1.1. Let
µ̂ = (5, 3, 3, 1, 2) be a vector of estimated means and let Σ̂ = diag(1, 2, 1, 4, 3) be a
diagonal covariance matrix (i.e., the jobs processing times are independent). Finally,
let γ1 = 1 and p = 2. The graph Kn,n for this problem instance is depicted in
Figure 2. The edges in bold correspond to the optimal solution π?.

The remaining question is, how to find such g? in the required time. We see that
our function q and weights a and b satisfy assumptions of Theorem 1.2 of [5] for the
case with d = 2. Their algorithm runs in a polynomial time in n and maxi{ai, bi}
provided that q is polynomially computable. In our setting, function q can be evalu-
ated in a polynomial time in n and the constants involved can be upper bounded as
maxi

{
ai, bi} ≤ maxj{µ̂j · n, (σ̂j · n)p

}
with n ≤ min

{
µ̂ᵀ1,1ᵀΣ̂1

}
since the param-

eters are non-negative integers. Thus, applying the algorithm described in [5] with
the above-mentioned setting concludes the proof.

Remark 1. We note that when the robust term is p-th power of an `p norm (e.g.,
`2 norm squared), then the problem (3.5) with independent jobs becomes an ordinary
min-cost perfect bipartite matching problem with a linear objective function. It can
be seen from the equation (3.6), when the term bᵀg is raised to the p-th power,
then the function q becomes separable. Therefore, only a single coefficient cj,l =
µ̂j · l+ γ1 · |σ̂j |p · lp for an edge (j, l) suffices to resemble the problem with p-th power
of an `p norm. Such problem can be solved as the ordinary min-cost perfect bipartite
matching problem in polynomial time by, e.g., hungarian algorithm in O(n3) [17].

The difficulty of extending the above proposition to the case of dependent jobs
lies in the necessity of having the number of arguments of function q fixed to some
constant d. The reason is that an underlying step of the algorithm from [5], which
solves the non-linear bipartite matching problem constructs a d-dimensional integer
lattice to examine, thus having an exponential complexity in d. When Σ̂ is a full
covariance matrix, then we would need to have d = 1 + n to exploit the same ap-
proach as described above. A possible way to go around it would be to compress the
information contained in Σ̂ to a smaller matrix while preserving norms of vectors
transformed by the corresponding linear mappings, which is the idea we will explore
in the following section.

11

3.4. Approximate solution for `p norm with dependent jobs

The purpose of this section is to analyze to which extent the ideas developed
in the previous section can be applied to the problem with dependent jobs. In the
context of `1 norm, we show that the difficulty of the problem with dependent jobs
lies in the presence of large negative correlations between jobs, not just in the plain
fact that jobs are dependent.

To overcome the exponential grow of complexity in n, the trick is to compress

the information about the norm of Σ̂1/2π vector using a different vector Σ̂
1/2
k π of

a fixed length k independent from n. However, the same algorithm as in the case
with independent jobs cannot be applied. The difficulty is that for dependent jobs,
the objective function used in non-linear bipartite perfect matching now loses its
convexity. Thus, we will employ a weaker version of the algorithm for non-linear
bipartite perfect matching which maximizes an arbitrary function q : Rk+1 7→ R over
a set of perfect matchings in the complete bipartite graph. In [5], such algorithm
is given which runs also in a pseudopolynomial time with the caveat that it is a
randomized algorithm — i.e., an algorithm with access to the random bit generator
which for any input returns an optimal solution with the probability of at least 1/2.

The rationale behind the approach with a compressed covariance matrix is that
performing computations over a matrix that is similar in some sense to the origi-
nal one should yield similar results as performing the computation over the original
matrix, but with a significantly reduced computational cost. Indeed, this scheme
is frequently exploited in numerical linear algebra, e.g., to approximate solutions to
problems such as multiplication of large matrices, matrix decompositions, approxi-
mate regression problems, and finds many other applications [34].

The general idea of the reduction is similar to the one used in Proposition 1 except
for some minor differences, which we describe below. Then, we formulate the task
of finding an approximation (compression) of the original matrix and present some
solutions to this problem.

The underlying bipartite graph has the same structure as in Proposition 1. We
associate each edge (j, l) with k + 1 values:

(µ̂j · l, s1,j · l + v, . . . , sk,j · l + v) ,

where si,j is (i, j)-th element of Σ̂
1/2
k matrix and v = n ·maxi,j |si,j |. We collect all

k + 1 weights along all edges into vectors w0, . . . ,wk ∈ Rn2

. Next, we denote the
characteristic vector of matching M ⊆ E in Kn,n = (J ,L, E) as g ∈ {0, 1}n2

with
i-th entry being one if and only if the corresponding edge is contained in matching
M . Next, we define function q : Rk+1 7→ R,

q(z0, z1, . . . , zk) = −z0 − γ1 · ‖(z1 − nv, . . . , zk − nv)‖p (3.7)

to be maximized over a set of all perfect matchings g with zi = wᵀ
i g.

In contrast to the case when Σ̂1/2 was a diagonal matrix, some entries of Σ̂
1/2
k

might be negative, but the underlying algorithm for non-linear bipartite matching [5]
requires weights which are non-negative integers. This is why we add a positive con-
stant v to the last k values of each edge and subtract them back in (3.7). Furthermore,
if some si,j is not an integer, then we need to multiply all weights by a sufficiently
large constant. Then, we can use randomized version of the algorithm for non-linear
bipartite perfect matching, which performs maximization of an arbitrary function
q(wᵀ

0g, . . . ,w
ᵀ
kg) given by a polynomial-time comparison oracle. Such a method fol-

lows from Theorem 1.3 of [5] with d = k + 1 running in a pseudopolynomial time,
hence, avoiding an exponential complexity in n.

12

The question that remains is how to find a suitable approximation of Σ̂1/2. Given

parameter k ∈ N, the goal is to find matrix Σ̂
1/2
k ∈ Rk×n which does not yield to a

large error for vectors π ∈ Π in the sense of some `p norm. That is, one wishes to
find

min
Σ̂

1/2
k ∈Rk×n

max
π∈Π

∣∣∣‖Σ̂1/2π‖p − ‖Σ̂1/2
k π‖p

∣∣∣ . (3.8)

We call Σ̂
1/2
k ∈ Rk×n matrix as rank -k approximation of Σ̂1/2 and its distortion is

defined as the maximum absolute difference of the norms of the two vectors over Π
in the sense of `p.

An obvious question to ask is how to look for good approximations of Σ̂1/2 with
small ranks and how large distortions are incurred. The answer depends on the
used norm. This problem is, in fact, very closely related to the subspace embedding
problem [35], which has many applications, namely in numerical linear algebra. Since
the solution of (3.8) in its generality goes well beyond the scope of this paper, we
rather briefly describe some particular results related to our application. We provide
below some examples of good approximations for some matrices under `1 norm. The
following lemma addresses the case when jobs are positively correlated.

Lemma 2. For any Σ̂1/2 ∈ Rn×n+ , there exists a rank-1 approximation Σ̂
1/2
1 with

zero distortion in sense of `1 norm.

Proof. Set Σ̂
1/2
1 = 1ᵀΣ̂1/2, i.e., a matrix with column sums. Then, for k = 1, we

have

‖Σ̂1/2
k π‖1 = ‖1ᵀΣ̂1/2π‖1 =

∣∣∣∣∣∣
n∑
i=1

n∑
j=1

Σ̂
1/2
ij πj

∣∣∣∣∣∣ =

n∑
i=1

∣∣∣∣∣∣
n∑
j=1

Σ̂
1/2
ij πj

∣∣∣∣∣∣ = ‖Σ̂1/2π‖1,

where the third equality follows from the fact that Σ̂1/2 ∈ Rn×n+ .

The above lemma also suggests how to obtain good approximations for covariance
matrices with a small number of negative entries:

Corollary. For any Σ̂1/2 with at most k rows with a negative entry, there exists

rank-(k + 1) approximation Σ̂
1/2
k+1 with zero distortion in sense of `1 norm.

The construction is straightforward — keep all k rows with a negative element
and, for the rest, apply Lemma 2, yielding a rank-(k + 1) approximation. The above
approximations suggest that the complexity of the problem with correlated jobs in
the sense of `1 norm is closely connected to the presence of negative correlations
in the covariance matrix. In fact, based on the above construction it can shown
that the distortion for a rank-1 approximation is proportional to n, nne(Σ̂1/2) and

maxj Σ̂
1/2
jj , where nne(Σ̂1/2) is the number of negative elements of Σ̂1/2. Obviously,

one can again trade-off the rank of the approximation for its precision by keeping
some of the rows intact, yielding distortion dependant on nne(·) of the remaining
matrix. For other related results on `1 subspace embedding, we refer the reader to,
e.g., [16, 9, 34].

In the following section, we turn our attention to the formulation utilizing `1
norm from the perspective of robustness and its computational complexity.

13

3.5. `1 norm formulation for dependent jobs

In this section, we will focus specifically on the problem with `1 norm and depen-
dent jobs. As we show below, this particular case leads to favorable computational
complexity as well as both theoretical guarantees of the robustness and its empirical
performance. These favorable properties make this case the most practical one.

Let us consider the following problem

DR-PTFT(`1) ≡ min
π∈Π

µ̂ᵀπ + γ1 ·
∥∥Σ̂1/2π

∥∥
1
, (3.9)

where the robust term is expressed in the sense of `1 norm. As it will be shown
below, the benefit of such formulation is that problem (3.9) can be solved in strongly
polynomial time when Σ̂ fulfills so-called copositivy condition, which is related to
the relative magnitude of negative elements in Σ̂1/2 matrix. At the same time, as it
is shown later in Section 5.3, the quality of solutions to problem (3.9) is comparable
to the solutions of a more complex `2 formulation.

Speaking about general PSD covariance matrices, the complexity of problem (3.9)
arises from the presence of the absolute value inside `1 norm. It is known that equa-
tions with absolute values are hard to solve even over the domain of real numbers [24],
suggesting that solving (3.9) in its generality might be hard as well. Therefore, we
will focus on the cases where each element of the vector Σ̂1/2π is non-negative, which
is more general than simply requiring Σ̂1/2 ∈ Rn×n+ . We show that such cases of the
problem can be solved in polynomial time. For that, we introduce a subclass of
matrices which acts as a generalization of strictly positive covariances:

Definition (Copositivity with respect to Π). Let us define a set of matrices

CΠ
+ =

{
A ∈ Sn+

∣∣∀π ∈ Π ⊂ Zn+ : Aπ ≥ 0
}
,

which is the set of PSD matrices that maps Π into Rn+.

Intuitively, the set of matrices CΠ
+ relates to the notion of diagonally-dominant

matrices. Obviously, it follows that any covariance matrix of independent jobs (or
strictly positively correlated) is contained in CΠ

+ . Next, when Σ̂1/2 matrix has di-
agonal elements that are about a factor O((n/m)2) larger than the absolute value
of the largest negative off-diagonal element, then it is likely to be contained in CΠ

+ .
Such covariance matrices appear, e.g., in distributions of so-called weakly correlated
random variables [22]. As an example, we list some particular matrices below.

Example 3. Consider the following example covariance matrices:

A1 =

3 1 0 2
1 3 0 1
0 0 2 1
2 1 1 4

, A2 =

3 −1 0 2
−1 3 1 1
0 1 2 −1
2 1 −1 4

, A3 =

4 −2 0 2
−2 3 0 1
0 0 2 1
2 1 1 4

.
All matrices are PSD. Next, it can be verified, e.g., by enumeration of all π ∈ Π, that
A1,A2 ∈ CΠ

+ but A3 6∈ CΠ
+ for Π corresponding to set of assignments for a single

machine. As it was discussed in Section 3.4, Lemma 2 would suggest approximating
A1 with a rank-1 matrix, A2 with a rank-4, and A3 with a rank-3 matrix. Thus, the
notions of rank-k approximation and CΠ

+ are generally incomparable. Finally, note

that when Π′ corresponds to the set of assignments for two machines, thenA3 ∈ CΠ′

+ .

14

Another useful property of CΠ
+ is that it forms a convex cone, meaning that

whether A,B ∈ CΠ
+ , then αA + βB ∈ CΠ

+ for any α, β ≥ 0. This property will
be utilized later. First, we ask the question of whether it is possible to test the
membership in CΠ

+ for a matrix A efficiently. Since Π is a finite set for any n and m
(although a large one), one could enumerate all its elements and test the inequality
for each element of Π. However, a more efficient way exists. The test whether a
given matrix A ∈ Sn+ is contained in CΠ

+ can be performed in O(n2 log n) time. The
idea is the following. If the copositivity condition holds, there must not exist a pair
of π ∈ Π and i ∈ J , such that eᵀiAπ < 0, where ei = (0, . . . , 0, 1, 0, . . . , 0) is an
i-th basis vector. Essentially, it selects i-th row of matrix A and multiplies it with
a π, which as to be a non-negative number. If one wants to know if this holds for
the given i for any π ∈ Π, then it is enough to examine the worst-case π vector.
That is, the test checks for each i ∈ J , whether minπ∈Π e

ᵀ
iAπ ≥ 0. The minimum

can be evaluated by sorting eᵀiA and π; — assigning the lowest values of eᵀiA with
the highest of π. This step takes O(n log n) time, and thus the overall complexity is
O(n2 log n).

In the rest of this section, we will analyze the properties of problem DR-PTFT(`1)
with copositive covariance matrices. We will show that solutions of the problem (3.9)
have similar robust properties as in `2 case. When Σ̂1/2 ∈ CΠ

+ , the solution of (3.9)
corresponds exactly to a distributionally robust solution over a specific ambiguity
set.

Proposition 2. Assuming Σ̂1/2 ∈ CΠ
+ , the problem DR-PTFT(`1) is a distribution-

ally robust formulation for P ||∑Cj with an ambiguity set given by

D`1 =

{
P ∈ P0(Rn)

∣∣∣∣∣ PP [p̃ ≥ 0] = 1

EP [p̃] ≤ µ̂+ γ1 · Σ̂1/21

}
.

Proof. We will start with a high-level sketch of the proof. We substitute the defi-
nition of an ambiguity set D`1 into the stochastic formulation of the DRO problem
considered (1.4). We focus on the inner expectation problem of finding the worst-case
probability distribution. First, we reformulate the inner problem using the definition
of the expected value. Then, we derive the dual problem and observe that strong
duality holds (both problems have the same optimal solutions). Finally, we transform
the dual problem and substitute it back into the outer problem (finding optimal π),
obtaining the DR-PTFT(`1) problem.

Starting with the definition of the problem in (1.4)

min
π∈Π

max
P∈D

EP
[
f(π, p̃)

]
= min
π∈Π

max
P∈D

πᵀEP
[
p̃
]
. (3.10)

Let us focus on the inner maximum, i.e., finding the worst-case probability distri-
bution P from the ambiguity set D. By letting D ≡ D`1 , the maximum can be
calculated from the definition of the expected value

max
P∈D`1

∫
Rn

+

fP (p)πᵀp dp (3.11)

s.t.

∫
Rn

+

fP (p) dp = 1 (3.12)∫
Rn

+

fP (p)p dp ≤ µ̂+ γ1 · Σ̂1/21 = h, (3.13)

15

where fP is a probability density function of probability distribution P and p is a
value in the support (i.e., the set of possible realizations) of p̃, i.e., Rn+. Now, we
will derive a dual problem for (3.11)–(3.13). Essentially, we put constraints into
the objective multiplied with newly introduced multipliers. The Lagrangian of the
problem is given by the equation

L(P, α,β) =

∫
Rn

+

fP (p)
(
πᵀp− α− βᵀp

)
dp+ α+ βᵀh, (3.14)

where α ∈ R and β ∈ Rn+ are the introduced Lagrange multipliers. The dual La-
grangian function is obtained with taking maximum over the original variables. Thus,
the dual for the Lagrangian above is

g(α,β) = max
P∈D`1

L(P, α,β) (3.15)

= max
P∈D`1

(∫
Rn

+

fP (p)
(
πᵀp− α− βᵀp

)
dp+ α+ βᵀh

)
(3.16)

= α+ βᵀh+ max
P∈D`1

∫
Rn

+

fP (p)
(
πᵀp− α− βᵀp

)
dp. (3.17)

If there exists p ∈ Rn+, such that πᵀp− α− βᵀp ≥ 0, then g is unbounded:

g(α,β) =

{
α+ βᵀh if πᵀp− α− βᵀp ≤ 0,

+∞ otherwise.
(3.18)

Finally, disregarding the unbounded case, the dual problem for (3.11) is

min
α,β

α+ βᵀh (3.19)

s.t. β ≥ 0 (3.20)

α+ βᵀp ≥ πᵀp ∀p ∈ Rn+. (3.21)

The problem satisfies conic duality [30], thus strong duality holds. Therefore, an
optimal solution to the dual is also optimal w.r.t. (3.11). By transforming the problem
further, we obtain

min
α,β

α+ βᵀh (3.22)

s.t. β ≥ 0 (3.23)

(πᵀ − βᵀ)p ≤ α ∀p ∈ Rn+. (3.24)

Next, the value of the left hand side expression in (3.24) must be investigated. With
respect to variable α, there are two possible cases to consider:

1. ∃j ∈ J : βj < πj . Then, because for pj → +∞, left hand side of (3.24) goes
to infinity, and also α → +∞. Therefore, in this case, (3.22)–(3.24) becomes
infeasible.

2. π ≤ β. Then α = 0 and then (3.22)–(3.24) can be written as

min
β
βᵀh (3.25)

s.t. β ≥ 0 (3.26)

π ≤ β, (3.27)

and thus β = π.
16

This investigation shows that the optimal value for the multipliers are: α = 0 and
β = π, and the solution to the dual problem is 0 + πᵀh = πᵀ(µ̂ + γ1 · Σ̂1/21).
Substituting the result into the outer minimization problem from (3.10), we have

min
π∈Π

πᵀ(µ̂+ γ1 · Σ̂1/21) = πᵀµ̂+ γ1 · 1ᵀΣ̂1/2π = πᵀµ̂+ γ1 ·
∥∥Σ̂1/2π

∥∥
1
, (3.28)

where the last equality follows from the fact that Σ̂1/2 ∈ CΠ
+ .

Ambiguity set D`1 from Proposition 2 is relatively simple as it imposes the upper
limit on the first moment of the random variables only. Utilizing ambiguity sets
based only on the first moment is not uncommon, see for example, [32]. The main
reason why they are being used is to improve the computational tractability of the
resulting problem. On the other hand, our ambiguity set does not disregard the
second moment. As it was explained in Section 3.2, the second moment is reflected in
the same way as ML algorithms treat model complexity via regularization. This was
shown in Proposition 2, which explains the link between DR-PTFT(`1) and ambiguity
set D`1 where parameter γ1 is used to control the robustness of the solution. The
principal advantage of ambiguity set D`1 is its favorable computational properties,
as reflected by the following complexity characterization:

Proposition 3. Problem DR-PTFT(`1) is solvable in O(n log n) time when Σ̂1/2 is
a diagonal matrix; and in O(n2) when Σ̂1/2 ∈ CΠ

+ .

Proof. Using the fact that diag(µ̂) ∈ CΠ
+ , Σ̂1/2 ∈ CΠ

+ , γ1 ≥ 0 and CΠ
+ is a convex

cone, problem DR-PTFT(`1) can be reformulated as

min
π∈Π

µ̂ᵀπ + γ1 · ‖Σ̂1/2π‖1 = min
π∈Π

∥∥∥(diag(µ̂) + γ1 · Σ̂1/2
)
π
∥∥∥
1

= min
π∈Π

1ᵀ
(

diag(µ̂) + γ1 · Σ̂1/2
)
π. (3.29)

Next, let us denote h = 1ᵀ
(

diag(µ̂) + γ1 · Σ̂1/2
)
∈ Rn. We can see that the prob-

lem (3.29) is tantamount to deterministic P ||∑Cj with job durations given by h.
There are known, efficient polynomial exact algorithms for the problem, based on
sorting (for more details, refer to, e.g., [7, p. 133–134]). For the convenience of the
reader, we present the full procedure in Algorithm 1. Vector h can be computed in
O(n2) (line 1), and as a result, the overall complexity is O(n2 + n log n) = O(n2).
When Σ̂1/2 is diagonal, the complexity is just O(n log n). Note that when Σ̂1/2 is
not part of the input, then it needs to be computed from covariance matrix Σ̂ first,
which can be done in O(n3) time.

The algorithm given by Proposition 3 is formulated in Algorithm 1. At line 2,
the jobs are sorted in non-increasing order, by the weight defined in h, which takes
O(n log n) time. Then, in the loop at lines 3–5, they are sequentially inserted into
the solution. Each time a job is assigned to a machine with the least jobs assigned
so far. In π representation, we only store the number of jobs preceding the job J
on the machine, so the exact machine number is not computed. Each operation
in the loop takes O(1) time, thus the entire loop takes O(n) time. In conclusion,
line 1 determines the overall time complexity, depending on the form and values of

17

the covariance matrix. We refer to this algorithm as Sort Optimizer with Ravishing
Technique (i.e., sort(`1)).

Algorithm 1: Sort Optimizer with Ravishing Technique (sort(`1))

input : Estimates of the parameters: µ̂, Σ̂1/2, trade-off parameter γ1.
output: Optimal solution π.

1 h← 1ᵀ
(

diag(µ̂) + γ1 · Σ̂1/2
)

2 jobs ← sort jobs in non-increasing order, job j ∈ J has weight hj
3 for j = 1, 2, . . . , n do
4 J← jobs(j) // Take the next job.

5 πJ ← d jme
6 return π

Obviously, when Σ̂1/2 6∈ CΠ
+ , then Proposition 3 does not apply, and it is an open

question whether a polynomial algorithm for this case exists as well. In any case,
DR-PTFT(`1) can be still expressed as a mixed-integer linear program (3.29) and
solved by a general-purpose solver. As it will be shown in experiments in Section 5,
even this method is very efficient, while allowing to tackle any covariance matrix.

4. Multi-objective optimization perspective

The purpose of this section is to point out a relation between the form of the
objective function of the problem and the multi-objective optimization. In contrast
to the previous sections, the aim here is to discuss some practical concerns related
to the solution of the problem (3.5). One of them the obvious questions that the
decision maker faces is, how to set the value of γ1 parameter. Although there are
some methods of how to set γ1, e.g., to which extent we want to cover the target
distribution [12], these will not provide the price to be paid for such a solution
beforehand. Thus, we will argue that obtaining a single solution for some γ1 is not
likely to be very useful in practice. Instead, we will provide a method for uniform
sampling of solutions in the Pareto front, which exhibits different optimal trade-offs
between the mean and variance.

Finally, we reveal that the objective function of problem (3.3) directly optimizes
the metrics used to assess its out-of-sample performance. We identify this as a
striking difference from many other scheduling problems and their evaluation in DRO
scheduling literature, where this correspondence is often not present.

4.1. Relation to multi-objective optimization

First, let us introduce the two solution quality metrics of a robust solution used
in [8] — robust price (RP) and robust benefit (RB). They are defined with respect to
some testing probability distribution P ∈ P0(Rn) of processing times p̃ ∼ P :

RP
(
πR
)

=
(
EP
[
f(πR, p̃)

]
− EP

[
f(πD, p̃)

])
/EP

[
f(πR, p̃)

]
, (4.1)

RB
(
πR
)

=
(

VarP
[
f(πD, p̃)

]1/2 −VarP
[
f(πR, p̃)

]1/2)
/VarP

[
f(πR, p̃)

]1/2
. (4.2)

The solution of the robust formulation (3.5) is denoted as πR, while πD is an op-
timal solution of the problem with deterministic processing times, i.e., (3.5) with
γ1 = 0, with the processing times set as their true (or estimated) means. Thus,
RP(πR) measures the relative difference between the expected quality of the robust

18

and deterministic solutions πR and πD, respectively. Similarly, RB(πR) is the rel-
ative difference of standard deviations of solutions under the distribution P . Note
that the testing distribution P may or may not be known; nevertheless, we assume
that one has access to a finite sample set from P .

Example 4. Assume that for an instance with 4 jobs and a single machine, the pa-
rameters of the jobs are estimated as µ̂ = (1.96, 1.39, 1.39, 1.39) and Σ̂ = diag (0, 0, 0.072, 0.209).
For this instance, consider two solutions: the deterministic (or SP, they are equiv-
alent) one πD = (1, 2, 3, 4) and the robust one πR = (4, 3, 2, 1) (not necessarily
optimal). As an example to demonstrate the above-defined quantities, let us pick a
testing distribution P = N (µ̂, Σ̂) to display the empirical densities of the objective
values of the aforementioned solutions (shown in Figure 3). Under this test distri-
bution, πD is an optimal solution for SP formulation. However, we see that for a
price measured in terms of RP(πR), robust solution πR achieves a smaller variance
and also a smaller worst-case objective value, thus being a more stable solution for
a risk-aware decision maker.

10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

1

EP

[
f(πR, p̃)

]

VarP
[
f(πR, p̃)

]1/20.7EP

[
f(πD, p̃)

]

VarP
[
f(πD, p̃)

]1/2 2

f(π◦, p̃)

D
e
n
si
ty

[-
]

robust πR

deterministic πD

Figure 3: Illustration of robust price and robust benefit for different solutions π◦, ◦ ∈ {R,D}.

Obviously, one would like to have RP the smallest possible and RB the largest.
Different robust solutions πR can perform differently under these two, generally
conflicting criteria. Thus, such a problem can be formulated from the perspective of
the multi-objective optimization with the two criteria g(π) ∈ R2:

πR = arg min
π∈Π

g(π) = arg min
π∈Π

(
RP(π),−RB(π)

)
. (4.3)

What will be shown next is that formulation (3.3), in fact, solves this multi-objective
optimization problem with the scalarization approach [13]. To show that, let us
analyze the two criteria separately. For the RP, we have that

π?RP = arg min
πR∈Π

RP(πR) = arg min
πR∈Π

{
1− EP

[
f(πD, p̃)

]
EP
[
f(πR, p̃)

]} = arg min
πR∈Π

EP
[
f(πR, p̃)

]
= arg min

πR∈Π
µᵀπR ≈ arg min

πR∈Π
µ̂ᵀπR,

where µ is (potentially unknown) mean value of p̃ and µ̂ is the sample mean obtained
from P . The second equality follows from the fact that EP [f(πD, p̃)] is a constant
as long as P is fixed. Analogously for RB, we obtain

π?RB = arg max
πR∈Π

RB(πR) = arg max
πR∈Π

{
VarP [f(πD, p̃)]1/2

VarP [f(πR, p̃)]1/2
− 1

}
= arg min

πR∈Π
VarP [f(πR, p̃)]1/2

= arg min
πR∈Π

‖Σ1/2πR‖2 ≈ arg min
πR∈Π

‖Σ̂1/2πR‖2,
19

where Σ is (potentially unknown) covariance and Σ̂ is the sample covariance of p̃.
Similarly, term VarP [f(πD, p̃)]1/2 acts as a constant. Thus, it can be seen that π?RP ∈
Π minimizing µ̂ᵀπ also minimizes RP(·). Similarly, π?RB ∈ Π minimizing ‖Σ̂1/2π‖2
minimizes −RB(·). Thus, it implies that (3.3) can be viewed as a scalarization
method for the multi-objective optimization applied to (4.3). What else can be
concluded is that formulation (4.3) suggests that a solution in the sense of `1 norm
obtained from (3.9) is also likely to work well as a solution for multi-objective problem
since ‖x‖1 ≥ ‖x‖2 for any x ∈ Rn. Thus, its robust term acts as an upper bound

on VarP [f(p̃,π)]
1/2

, which in turn leads to optimization of RB as well. Note that
when one measures the out-of-sample performance in terms of RB and RP, then
the optimization criterion matches the performance metric. This is not necessarily
always the case with DRO scheduling problems described in the literature since
they often just draw several samples from a mix of distribution (whose does not
necessarily correspond to the worst-case distribution). After that, some quantities of
the objective function are reported, such as the expected value, maximum value or
different quantiles. This leads us again back to the discussion in Section 2.2, where
we have outlined some challenges when evaluating a DRO solution. Thus, we believe
that this aspect of our problem worths pointing out.

In the following section, we describe an improved RP/RB trade-off parametriza-
tion, which provides a more uniform sampling of the Pareto front.

4.2. Pareto front sampling

As it was shown in the above section, parameter γ1 in (3.1) can be used by the
decision maker to control the trade-off between RP and RB of the resulting solution.
However, an obvious disadvantage of such parametrization is that the actual value of
γ1 needed to achieve certain RB depends on the numerical scale of sample covariance
matrix Σ̂. Concerning the practical use of such parametrization, it is difficult to guess
desired values for γ1. For a decision maker, an ideal parametrization would allow
to choose any point on the RP/RB trade-off curve and obtain the desired balance
between robustness and average performance of the system without having to re-run
the solving procedure multiple times.

Unfortunately, a computationally efficient exact approach to this task might be
hard to find. Instead, we propose a simple—yet useful—heuristic. The idea is to
normalize the effect of parameter γ1 ≥ 0 with respect to the sample mean µ̂ and
covariance Σ̂. We introduce a single parameter r ∈ [0, 1], that controls the emphasis
between RP and RB. The problem with r becomes

DR-PTFT(`p, r) ≡ min
π∈Π

1− r
0.5n · µ̂ᵀ1

· µ̂ᵀπ +
r∥∥0.5n · Σ̂1/21

∥∥a
p

·
∥∥Σ̂1/2π

∥∥a
p
, (4.4)

where a ∈ N is used when the `p norm is raised to the a-th power (e.g., `2 norm
squared, see Remark 1). The denominators play the role of normalization constants,
by the values the both terms might likely attain. Technically, these values also depend
on the number of machines m; however, we have observed that for small values of m
it does not affect it heavily. Equation (4.4) is designed such that for π = n

2 · 1 (note
that such π is infeasible, yet it may represent an “averaged” solution for a small m),
both terms are normalized and the overall value is invariant in respect to r ∈ [0, 1],
i.e.,

1− r
0.5n · µ̂ᵀ1

· µ̂ᵀ · 0.5n · 1 +
r∥∥0.5n · Σ̂1/21

∥∥a
p

·
∥∥Σ̂1/2 · 0.5n · 1

∥∥a
p

= 1 ∀r ∈ [0, 1] .

20

0 0.02 0.04 0.06 0.08

0

0.1

0.2

Robust Price (RP)

R
o
b

u
st

B
en

efi
t

(R
B

)
γ1 ∈ {0, 1, 2, . . . , 9}

`1 norm

`2 norm

0 0.02 0.04 0.06 0.08

0

0.1

0.2

Robust Price (RP)

r ∈
{
0, 1

9
, 2
9
, . . . , 1

}

`1 norm

`2 norm

Figure 4: Distribution of solutions on RP/RB trade-off curves for different parametrizations.

Note that DR-PTFT(`p, r = 0) is equivalent to DR-PTFT(`p, γ1 = 0), thus the
solution of (4.4) with r = 0 resembles a Stochastic Programming solution as well.

To assess the benefits of the new parametrization, we have performed the fol-
lowing experiment. We generated 100 random instances, for each combination of
n ∈ {10, 15, 20, 30, 50, 100, 150} and m ∈ {3, 4, 5}. Each instance was solved both
with `1 and `2 norms and with parametrizations using γ1 and r. For each solution,
RP and RB were calculated according to (4.1)–(4.2) and averaged over all instances.
See the results in Figure 4. On the left-hand side, we can see RP/RB trade-off
curves with the default parametrization using 10 values of γ1 ∈ {0, 1, 2, . . . , 9}, ap-
plied to both problems with `1 and `2 norm. We can see that in the case of `1
and `2 norm, the points on the Pareto front tend to get dense with the increasing
value of γ1 (i.e., the greater γ1, the greater RB). On the right-hand side, we see the
results for parametrization using r ∈ { 09 , 19 , 29 , . . . , 99} (i.e., also 10 different values).
We can observe that for `1 norm, this parametrization leads to solutions distributed
evenly along the Pareto front. Similarly, for `2 norm, the parametrization using r
also leads to a more even distribution of the solutions, than in the case of γ1. Hence,
in subsequent experiments, the parametrization with r will be utilized instead of γ1.

5. Numerical experiments

In this section, we perform the experimental evaluation of the proposed meth-
ods. Specifically, for problem DR-PTFT(`1) we benchmark the sort-based method
from Proposition 3 (denoted as sort(`1)), and the MILP model given by Equa-
tion (3.28) (i.e., milp(`1)). For problem DR-PTFT(`2), we evaluate the SOCP given
by Equation (3.1) (i.e., socp(`2)), and the NOC-points Search Algorithm (denoted as
npsa(`2) introduced by Chang et al. [8]. Algorithm npsa(`2) inspects a finite number
of so-called NOC-points (necessary optimality condition points) that are suspected
of being extreme. For more details, we refer the reader to [8].

In the case of problem DR-PTFT(`22), we assume the min-cost bipartite per-
fect matching with Hungarian algorithm [17] mentioned in Remark 1 (i.e., hungar-
ian(`22)). We study the quality, robustness of the solutions, and computation times
of the algorithms, for problems with respect to different norms, both for independent
and dependent jobs.

21

5.1. Experimental setup

For experimental evaluation, we have used a workstation equipped with AMD
Ryzen Threadripper 3990X @2.90GHz (during computations boosted to about 4.00
GHz), 64 GB RAM, running Windows 10 Pro. Due to the operating system short-
comings (limited support for more than 64 cores per CPU), Simultaneous Multi-
Threading (SMT) was disabled. All algorithms have been implemented in Python
3. As a solver, we have used Gurobi 9.0 with default parameter configuration. The
source codes and test instances can be found at [omitted for the review pro-
cess]. When measuring time, a single run of an algorithm utilizes a single CPU
core. Otherwise, all 64 physical cores are available for Gurobi solver (in case of solv-
ing milp(`1) and socp(`2)); however, it rarely utilizes more than 12 and never more
than 32.

5.2. Evaluation protocol

To test the robustness and quality of solutions, we adopted the evaluation protocol
proposed in [8]. The protocol focuses on independent jobs and compares robust
and deterministic solutions from the perspective of average quality and stability. It
proceeds as follows:

1. Generate 1,000 random µ and σ, representing the true moments of distribu-
tions. The mean duration for each job µj is generated as µj ∼ U(10, 60) and
its standard deviation is distributed σj ∼ U(0.1µj , 0.9µj).

2. For each µ and σ, the protocol generates 10,000 random samples (i.e., one
sample is a single realization of p̃) from the mix of distributions: Gamma,
uniform, normal and Laplace, with the given fixed mean and variance. From
each distribution, 2,500 samples are taken. Then, the samples are shuffled
randomly to simplify the next step.

3. From each set of 10,000 random samples, the protocol creates several sets of
subsamples by selecting the given samples. When n ≤ 20 it creates 100 subsam-
ple sets and when n > 20 it is only 20 of them. The size of the subsample set is
determined by a sample rate (referred to as S-rate in [8]). If it is not specified
otherwise, we assume 10 subsamples in each subsample set. Each subsample
set is used to define the ambiguity set by estimates µ̂ and σ̂ of the given true
moments µ and σ. Solution of (3.5) and its deterministic counterpart result in
πR and πD respectively.

4. For each π◦, ◦ ∈ {R,D}, their expectations EP [f(π◦, p̃)] and standard devi-
ations VarP [f(π◦, p̃)]1/2 are estimated from 500, 000 samples from the mix of
distributions with the given fixed true moments µ and σ. The samples are
generated in the same way as in the third step.

5. Estimate RP and RB for each distribution given by its true moments µ and σ
via sample mean along the subsamples.

Note that since [8] dealt with independent jobs only, it did not provide a protocol
for dependent jobs’ durations. Hence, in this paper, we propose the following mod-
ification for dependent jobs. True expected values of job durations were taken from
the uniform distribution U(10, 50), but we replace the generation of the true σ, with
a full true covariance matrix Σ. In order to cover a wide range of distributions, we
consider covariance matrices to be samples from the Wishart distribution. Wishart
distribution is a distribution over symmetric positive definite matrices, possibly with

22

some negative off-diagonal elements. It appears as a distribution over sample covari-
ance matrices produced by samples from a multivariate normal distribution. In our
experiments, the distribution of covariances is given as Σ̂ ∼ Wn(ν, λ · I) + diagd
where d ∼ N (µ′, 1). Hence, they are samples from Wishart distribution Wn(· , ·)
with ν degrees of freedom and a scale matrix given as λ · I of n× n real symmetric
PSD matrices. Furthermore, we add a normally distributed vector d to the diagonal
to control the likelihood that Σ̂ is copositive with respect to Π. We have chosen
µ′ = 5 · 1, λ = 1 and ν = n+ 40. After a true covariance matrix Σ is generated, an
algorithm has then access to a limited number of samples from a mix of multivariate
normal and multivariate uniform distributions with covariance Σ. The reason behind
using just these two, and not all four types as in the independent case, is that for
many distributions, there is no single, well-established multivariate extension. It fol-
lows from the fact, that the covariance has a good meaning as a measure of variability
for symmetric, elliptically contoured distributions. That is, it is not straightforward
to define a natural extension of these distributions, and—as a result—multiple pos-
sible generalizations exist, often emerge from different applications (see, e.g., [18]).
Therefore, in our experiments addressing dependent jobs’ durations, we have lim-
ited ourselves to multivariate uniform and multivariate Gaussian distributions. The
details regarding generating covariance matrices are covered in Sections 5.4 and 5.5.

In the following sections, we utilize RP and RB obtained via the above evaluation
protocol as the primary performance metrics based on the out-of-sample evaluation.

5.3. Independent jobs: quality, stability and performance

In this section, we compare the quality of solutions obtained by assuming different
objective functions, for the case of independent jobs. In addition, we present com-
putational times of different algorithms. All the variants of the problem are solved
exactly with respect to their objective functions, i.e., `1 norm is solved with our
sort(`1) method, `2 norm with socp(`2) and `22 norm with hungarian(`22). In the
evaluation of the computational times, we also present the state-of-the-art method
npsa(`2) proposed in [8].

Effect of the used `p norm. The first experiment studies the trade-off between RP
and RB when different norms are used. The instances are generated and evaluated
according to the protocol described in Section 5.2. The results for instances with
n ∈ {10, 15, 20, 30, 50, 100, 150} and m ∈ {3, 4, 5} are displayed in Figure 5 altogether,
as we have observed that the general shape of trade-off curves do not depend heavily
on the particular values of m and n. A more detailed comparison of the differences
between the individual curves with particular values of m and n for `1 norm is
displayed in Figure 6.

The coordinates of each point on the curve in Figure 5 correspond to RP and RB
of the solution averaged over 100×7×3 = 2100 instances. Each point is obtained with
a different value of r parameter, i.e., the position of a point on the curve is completely
parameterized by r. We have taken 100 values of r distributed uniformly on [0, 1] for
each method. In Figure 5, it can be seen that all the methods achieve comparable
trade-off curves in terms of `1, `2 and `22 (although technically speaking `22 is not a
norm), yet each norm gets more advantage in different parts of the curve. Thus, they
are incomparable but essentially identical. What is particularly interesting, is that
all methods allow obtaining solutions with a positive RB while having a negative
RP. Thus, in this setting, a free lunch is possible and one can get a more stable
and cheaper solution than the deterministic one. It is likely due to the fact that
the deterministic solution completely lacks the information about variances, which

23

0 0.02 0.04 0.06 0.08

0

0.05

0.1

0.15

0.2

0.25

Stochastic
Programming
solution

Robust Price (RP)

R
o
b

u
st

B
en

efi
t

(R
B

)

`1 norm

`2 norm [8]

`22 norm

0 0.02 0.04 0.06 0.08

0

0.05

0.1

0.15

0.2

0.25

Stochastic
Programming
solution

Robust Price (RP)

R
o
b

u
st

B
en

efi
t

(R
B

)

`1 norm

`2 norm [8]

`22 norm

0 0.02 0.04 0.06 0.08

0

0.05

0.1

0.15

0.2

0.25

Stochastic
Programming
solution

Robust Price (RP)

R
o
b

u
st

B
en

efi
t

(R
B

)

`1 norm

`2 norm [8]

`22 norm

0 0.02 0.04 0.06 0.08

0

0.05

0.1

0.15

0.2

0.25

Stochastic
Programming
solution

Robust Price (RP)

R
o
b

u
st

B
en

efi
t

(R
B

)

`1 norm

`2 norm [8]

`22 norm

Figure 5: Trade off between RP and RB for `1, `2 and `22 formulations with independent jobs.

robust solutions can take advantage of. An interesting question to ask is, how the
choice of the particular norm affects the decision maker. As we have seen in Figure 5,
`1 norm achieves similar trade-offs between RP and RB as `2 norm. On one hand, the
advantage of `2 norm may be seen by the fact that it exactly resembles the standard
deviation of the solution objective, thus the weight of the norm term can be directly
interpreted. On the other hand, `1 norm does not offer this, but its advantage for the
decision maker lies in its practical computational tractability. In other words, with
`1 norm it is affordable to compute the whole RP/RB curve and pick any solution
that suits the requirements of the decision maker.

Computational times. In this experiment, we provide a measuring of time needed
to solve the problem depending on the used norm and algorithm. In Figure 7 and
Table 1, we display comparison of computational times socp(`2), sort(`1), milp(`1),
and npsa(`2). The x axis in Figure 7 represents instances with different values of
n and m. Axis y depicts the computational time in seconds. Note the logarithmic
scale of the y axis. Each data point is given by an average of over 100 instances. One
can see that socp(`2) is computationally the most expensive, while milp(`1) and
sort(`1) are far less demanding. Indeed, milp(`1) is 10 times faster than socp(`2)
while sort(`1) is even more than three orders of magnitude faster than socp(`2)
for the largest instances. In addition, all the methods solving DR-PTFT(`1) have
consistent running times — the error bars (±1 sigma) are virtually non-existent.
While it is not surprising for sort(`1), in the case of milp(`1) this phenomenon is
explained by the observation that the solver has solved every problem instance in the
root node, yielding to consistent times. For more detailed results see Table 1. There,
we can see that for a larger number of machines m, the problem becomes simpler.
For the largest instances with n = 150 jobs, socp(`2) has lower average number of
visited nodes than for n = 100. This is due to occasional timeouts that have occurred
on the largest instances, especially for larger values of r which put more emphasis
on the robust term. Nevertheless, the average optimality gaps reported by the solver
were in these cases very small.

Next, we have compared our algorithms to the state-of-the-art method npsa(`2)

24

0 0.025 0.05 0.075 0.1

0

0.1

0.2

0.3

0.4

Robust Price (RP)

R
o
b

u
st

B
en

efi
t

(R
B

)

m = 3

0 0.025 0.05 0.075 0.1

0

0.1

0.2

0.3

0.4

Robust Price (RP)

m = 4

0 0.025 0.05 0.075 0.1

0

0.1

0.2

0.3

0.4

Robust Price (RP)

R
o
b

u
st

B
en

efi
t

(R
B

)

m = 5

num. jobs n

10

15

20

30

50

100

150

Figure 6: Relation between RP/RB curve and instance parameters for `1 formulation.

proposed in [8]. It is an exact algorithm solving the same problem as socp(`2),
but with independent jobs only. For the sake of comparison, we have scaled their
runtimes by the relative single-core performance of their and our CPU (approximately
1.5 times). It can be observed that even though npsa(`2) outperforms socp(`2), it
is still much slower than sort(`1). The error bars are not displayed, as they were
not reported in their paper.

To summarize, the results show that (i) one can obtain comparable RP/RB trade-
offs for the problem with `1 norm as for `2 norm, and (ii) the computational time for
the problem with `1 is much shorter than with `2 norm. Moreover, `1 formulation
enjoys polynomial-time exact algorithm, while for `2 there is no such guarantee on the
time required for calculations. The likely non-existence of this polynomial time bound
is reflected in a higher spread of computation times observed for socp(`2), with some
instances taking over 1000 times longer to be solved than the average. Although it
may not be that dramatic for instances benchmarked in Figure 7, this difference even
increases with the size of the instance, turning the solution to instances with more
than hundreds of jobs nearly intractable with socp(`2). Such large instances occur,
e.g., when scheduling unit test batches (as described in the introduction), with tens
of thousands of jobs possible.

5.4. Dependent jobs: quality, stability and performance

In this section, we study the computational properties of the problem with depen-
dent jobs. Specifically, we investigate: (i) what are the benefits of using information

25

1
0
×

3

1
0
×

4

1
0
×

5

1
5
×

3

1
5
×

4

1
5
×

5

2
0
×

3

2
0
×

4

2
0
×

5

3
0
×

3

3
0
×

4

3
0
×

5

5
0
×

3

5
0
×

4

5
0
×

5

1
0
0
×

3

1
0
0
×

4

1
0
0
×

5

1
5
0
×

3

1
5
0
×

4

1
5
0
×

5

10−3

10−1

101

Instance size (n×m)

C
o
m

p
u

ta
ti

o
n

ti
m

e
[s

] sort(`1) milp(`1)

socp(`2) [8] npsa(`2) [8]

Figure 7: Comparison of averaged computational times for different methods and instance sizes for
problem with independent jobs and γ1 = 4.

about the correlations between jobs to quality/stability of the schedule, and (ii) what
amount of data is needed to reliably estimate covariance matrix such that it brings
a meaningful benefit over just a diagonal covariance. Furthermore, we report com-
putational times needed to solve such a problem, depending on the properties of the
covariance matrix and the used norm.

Effect of the used `p norm. In the first experiment, we compare RP/RB trade-off
curves obtainable with `1 and `2 norms. The experiment assumes perfect information
about the covariance, i.e., algorithms have access to the true covariance matrix. Since
the solution of a single instance with n = 10 jobs with full covariance takes more than
one hour to compute with socp(`2) model, we have limited ourselves to instances
only with n = 10 and m = 3 in this experiment. As the solution of `1 formulation
is much faster, we took 100 values of r uniformly distributed on [0, 1] while for `2
formulation, we have used 25 values of r. The results can be seen in the left part of
Figure 8.

0 0.05 0.1 0.15

0

0.05

0.1

0.15

Robust Price (RP)

R
o
b

u
st

B
en

efi
t

(R
B

)

Full covariance, `1 vs. `2 norms

`1 norm

`2 norm [8]

0 0.05 0.1 0.15

0

0.05

0.1

0.15

Robust Price (RP)

Perfect knowledge full vs. diagonal Σ

`1 perfect Σ

`1 perfect diagΣ

Figure 8: Trade-off between RP and RB with `1 and `2 formulations for dependent jobs with perfect
covariance knowledge and its diagonal part.

Similarly, as for the independent case, the trade-off curves are very similar to each
other, but here the solution with `2 achieves slightly better RB values. We believe

26

Table 1: Detailed comparison of performance indicators for independent jobs.

sort(`1) npsa(`2) [8] milp(`1) socp(`2) [8]

n m time [s] time [s] time [s] nodes [−] time [s] nodes [−] gap [%]

10 3 0.0003 0.0036 0.010 0.0 0.03 2.76 0.001
4 0.0003 0.0027 0.010 0.0 0.04 2.36 0.000
5 0.0003 0.0018 0.010 0.0 0.03 1.94 0.000

15 3 0.0004 0.0072 0.021 0.0 0.07 5.64 0.001
4 0.0004 0.0060 0.021 0.0 0.05 5.93 0.001
5 0.0004 0.0052 0.021 0.0 0.04 4.97 0.001

20 3 0.0007 0.0156 0.036 0.0 0.13 21.62 0.002
4 0.0007 0.0121 0.036 0.0 0.12 11.34 0.002
5 0.0007 0.0105 0.036 0.0 0.08 9.88 0.001

30 3 0.0014 0.0426 0.079 0.0 0.31 399.74 0.003
4 0.0014 0.0383 0.079 0.0 0.29 139.16 0.003
5 0.0014 0.0307 0.079 0.0 0.27 47.28 0.002

50 3 0.0036 0.2477 0.212 0.0 2.50 2377.50 0.003
4 0.0035 0.2006 0.210 0.0 3.91 1885.92 0.007
5 0.0035 0.1784 0.210 0.0 2.16 449.87 0.004

100 3 0.0190 3.0238 0.892 0.0 3.86 36029.88 0.015
4 0.0189 2.7509 0.888 0.0 2.48 24225.20 0.010
5 0.0189 2.4252 0.885 0.0 5.21 20566.85 0.012

150 3 0.0226 13.6820 1.964 0.0 16.07 12858.49 0.033
4 0.0227 10.3278 1.953 0.0 10.84 13555.14 0.020
5 0.0226 9.4144 1.942 0.0 25.95 15514.36 0.024

that the reason for it is related to the fact that PSD matrices are closely connected
to `2 norm, which also takes a unique role among the different `p norms. That is,
`2 is the only norm among `p norms which is induced by a scalar product, and by
Riesz representation theorem, its dual norm is also `2. Actually, every scalar product
on Rn corresponds to exactly one positive-definite n × n matrix. We believe the `2
norm is, therefore, more intuitive to work with when working with PSD matrices,
and hence, leads to slightly better results. These differences did not play a significant
influence for the case of independent jobs, but it seems to have a bigger impact for the
dependent case. However, what will be shown in a subsequent experiment, when one
does not have the perfect knowledge of covariance (i.e., it has to be estimated from
a finite sample set), then the differences between `1 and `2 norms become negligible
again. Thus, even with dependent jobs, both norms allow obtaining solutions of
comparable quality/stability, especially considering the fact that the solution with `1
norm is much faster. Again, we see this as a benefit for the decision maker which can
afford to compute the whole RP/RB trade-off curve and choose the desired balance
between these two.

Full and diagonal covariances with perfect information. The second experiment as-
sesses the effect of using the full covariance matrix, assuming the perfect knowledge
of it. Hence, in this setting, the algorithm has access to the true covariance matrix
and we measure which values of RP/RB are achievable compared to the case when
one uses just its diagonal part. The results are displayed in the right part of Figure 8.
There, we have generated 100 instances with n = 10 jobs and m = 3 machines. Each
curve is obtained with 100 values of r parameter controlling the trade-off between

27

0 0.05 0.1 0.15

0

0.05

0.1

0.15

Robust Price (RP)

R
o
b

u
st

B
en

efi
t

(R
B

)

Diagonal covariance with `1 norm

0 0.05 0.1 0.15

0

0.05

0.1

0.15

Robust Price (RP)

Full covariance with `1 norm

0 0.05 0.1 0.15

0

0.05

0.1

0.15

Robust Price (RP)

R
o
b

u
st

B
en

efi
t

(R
B

)

Diagonal covariance with `2 norm [8]

Samples: 10 20 50 100 1000 ∞

0 0.05 0.1 0.15

0

0.05

0.1

0.15

Robust Price (RP)

Full covariance with `2 norm [8]

Figure 9: Effect of S-rate to RP/RB curve with dependent jobs.

RP and RB. The solid curve is obtained using full covariance with the perfect in-
formation; hence, it represents an upper bound on the RP/RB curve. The dashed
curve represents the performance of a solution when just the diagonal part of the
covariance matrix is used, i.e., when (potential) dependency between jobs is ignored
(but being tested against distributions with non-diagonal covariance). It can be seen
that using the information from the full covariance matrix allows obtaining about
two times larger RB for the same RP than using just its diagonal part.

Full covariance with imperfect information. In practice, one might not have access to
the true covariance, but rather the covariance needs to be estimated from empirical
data. Hence, in the following experiment, we study how many data samples are
needed to obtain an estimate of the covariance matrix, which actually produces an
additional benefit over the ignorance of mutual correlations.

The setup is the following. We generate 100 instances with n = 10 and m = 3.
Then, we follow the evaluation protocol described in Section 5.2, with the exception
that S-rate is now a parameter whose effect is investigated. The tested values of
S-rate are 0.001, 0.002, 0.005, 0.01 and 0.1, which corresponds to 10, 20, 50, 100 and
1000 samples used for the estimation of mean µ̂ and covariance Σ̂.

The results are shown in Figure 9, where the results on the left side ignore the
mutual correlations and the results on the right assume the full covariance. Curves
for `1 norm were obtained using 100 values of r parameter wheres the curves for `2

28

Table 2: Computational times of different solving methods and instance sizes for dependent jobs.

Instance milp-diag(`1) milp(`1) socp(`2) [8]

n×m time [s] std [s] time [s] std [s] time [s] std [s]

8× 3 6.44× 10−3 1.7× 10−5 7.29× 10−3 1.8× 10−4 0.14 0.08
9× 3 7.83× 10−3 1.1× 10−5 8.66× 10−3 8.1× 10−5 0.30 0.22

10× 3 9.41× 10−3 5.6× 10−5 1.04× 10−2 1.1× 10−4 3.09 3.88
11× 3 1.10× 10−2 2.4× 10−5 1.22× 10−2 1.3× 10−4 100.13 787.20
12× 3 1.29× 10−2 3.9× 10−5 1.46× 10−2 9.9× 10−4 488.95 1087.30

0 0.1 0.2

0

0.2

0.4

0.6

Robust Price (RP)

R
o
b
u
st

B
e
n
e
fi
t

(R
B

)

S-rate = 0.01

Jobs: 5 10 20 50 100

0 0.1 0.2

0

0.2

0.4

0.6

Robust Price (RP)

S-rate = 0.1

Figure 10: Effect of the number of dependent jobs n to RP/RB curve under `1 norm with variable
S-rate.

with 25 values (since its solution is much more computationally demanding). The
top curve, denoted as ∞ samples, corresponds to results when the algorithm has
the perfect knowledge of the covariance. When the number of samples is decreasing,
the achievable RB for a fixed RP is decreasing as well. However, it can be seen
that when the number of samples drops below a certain level, then we may obtain a
solution that performs even worse than the solution ignoring mutual correlations, i.e.,
assuming independence. This effect can be observed in Figure 9 for the full covariance
estimated with just 10 samples, where for some RP values the solution has worse RB
than when just the diagonal is estimated. Again, the trade-off curves are comparable
for both `1 and `2 norms. Moreover, the computational results displayed in Table 2
show that both the solution in terms of `1 norm with full covariance (i.e., milp(`1))
and just its diagonal part (denoted as milp-diag(`1)) are much faster than socp(`2).
As a result, the above experiment suggests that when enough data is available, then
it is advantageous for the decision maker to solve the problem with full covariance
rather than assuming the independence between jobs as it provides more protection
against solution variance.

Scaling with respect to the sample quantity. Evidently, the amount of data that is
needed to achieve the required RB depends on the size of the problem instance, i.e.,
the number of jobs n. Therefore, we have performed an experiment, where we fixed
S-rate to 0.01 and 0.1, and we change the number of jobs n ∈ {5, 10, 20, 50, 100} while
we keep the number of machines m = 3. The results are displayed in Figure 10, where

29

Table 3: Computational times of different solving methods and instance sizes for dependent jobs
with copositive covariance matrices.

Instance sort(`1) milp(`1) socp(`2) [8]

n×m time [s] std [s] time [s] std [s] time [s] std [s]

8× 3 2.21× 10−4 1.03× 10−6 6.0× 10−3 7.02× 10−5 0.13 0.08
9× 3 2.45× 10−4 1.04× 10−6 7.3× 10−3 3.18× 10−5 0.29 0.40

10× 3 2.72× 10−4 1.54× 10−6 9.0× 10−3 5.44× 10−5 1.29 1.78
11× 3 3.07× 10−4 1.97× 10−6 1.1× 10−2 2.53× 10−5 7.07 13.79
12× 3 3.39× 10−4 1.97× 10−6 1.2× 10−2 3.44× 10−5 25.88 59.59

the RP/RB curves are obtained by milp(`1) with a varying number of jobs n, but
with a fixed S-rate (0.01 on the left side, 0.1 on the right side). For each n, two
curves are reported — the dashed curve is the one with perfect information, whereas
the solid curve corresponds to the case when the limited number of samples (given
by S-rate) is available. Therefore, the absolute values of RB are not that important
(as it changes with the number of jobs n), but the difference between the two curves
matters. We can see that, e.g., for n = 50 jobs, the S-rate equal to 0.1 (i.e., 1000
samples) is essentially enough to obtain a theoretically optimal trade-off curve (see
the right plot in Figure 10). On the other hand, with S-rate equal to 0.01 (i.e., 100
samples), a similar level of discrepancy between the two curves is achieved for just
n = 10 jobs (see the left plot in Figure 10). These values for S-rate correspond to
the number of free parameters of a PSD matrix that need to be estimated, which is
roughly quadratic in n.

5.5. Copositive covariance matrices

In this section, we focus on copositive covariance matrices, which is a special
class of covariance matrices allowing us to solve the problem in polynomial time, as
shown in Section 3.5. There are several natural questions connected with this class
of covariance matrices. For example, do they bring any additional benefits in terms
of RP/RB curve in comparison to using just their diagonal part? How often these
matrices appear among the ones generated by the evaluation protocol, and is the
solution of the problem in terms of `1 norm still comparable to `2 norm?

The setup is similar to the experiments in Section 5.4. Due to the limited per-
formance of socp(`2) with dependent jobs, we have restricted the comparison to the
instances with m = 3 machines and the maximum of n = 12 jobs. The true co-
variances are drawn from a distribution over PSD matrices described in Section 5.4,
with the same parameters, i.e., ν = n + 40, λ = 1 and µ′ = 5 · 1. With the given
parameters, we have observed that the sampled matrices are copositive with respect
to the used values of m and n in about 30% of cases and these were used in the
following experiments.

Effect of the used `p norm. First, we discuss achievable trade-off curves. The results
are displayed in Figure 11. There, we can see several essential differences from the
results for general covariance matrices presented in Figure 9. First, we see that
differences between `1 and `2 are much smaller for copositive covariance matrices
in comparison to general ones (displayed in the left plot of Figure 8). Next, it can
be seen that the achievable RB for a fixed RP is about 0.02 (for n = 10 jobs)
smaller than in the case of general covariance matrices. Both these observations
are explained by the fact that the copositive matrices tend to be more diagonally

30

0 0.05 0.1 0.15

0

0.05

0.1

0.15
R

o
b
u
st

B
e
n
e
fi
t

(R
B

)
Diagonal covariance with `1 norm

0 0.05 0.1 0.15

0

0.05

0.1

0.15
Full covariance with `1 norm

0 0.05 0.1 0.15

0

0.05

0.1

0.15

Robust Price (RP)

R
o
b
u
st

B
e
n
e
fi
t

(R
B

)

Diagonal covariance with `2 norm

Samples: 10 20 50 100 1000 ∞

0 0.05 0.1 0.15

0

0.05

0.1

0.15

Robust Price (RP)

Full covariance with `2 norm

Figure 11: Effect of S-rate to RP/RB curve with copositive covariance matrices for instances with
n = 10 and m = 3.

dominant, which is in line with the results observed in experiments with independent
jobs. Furthermore, the results also show that using a full covariance matrix brings
significantly more robustness than using just a diagonal part of the matrix. Thus,
dealing with copositive covariance matrices is indeed meaningful.

Computational times. The last experiment measures the computational times of dif-
ferent methods. Interestingly, when we compare computational times of socp(`2)
method for general covariance matrices in Table 2 and the computational times for
copositive covariance matrices in Table 3, we see that the runtimes are significantly
smaller for the later ones. This again points to a relation between copositive and
diagonally dominant matrices, for which socp(`2) scales better than in the general
case. On the other hand, for milp(`1) method, the computational times are com-
parable regardless of the type of covariance matrix. Finally, it can be seen that
sort(`1) method is superior, being about 100 times faster than milp(`1), which in-
dicates a good scaling to even larger instances (given by polynomial computational
complexity).

6. Conclusion

In this paper, we study a distributionally robust scheduling problem with the
total flow time criterion. The distribution of uncertain processing times is subject

31

to ambiguity belonging to a set of distributions with constrained first two central
moments. A prior work [8] has established that such a problem can be translated into
a second-order conic programming problem. We have noticed that this optimization
problem can be viewed as a minimization of a linear function plus a regularization
term expressed in terms of `2 norm. A natural question immediately arises — is the
use of a particular norm essential, or can it be replaced with some other `p norm,
perhaps with more favorable computational properties while providing a similar level
of robustness?

We answer this question affirmatively. We have provided a characterization of
complexity for the problem with independent jobs in the sense of any `p norm. As
a special case of our theorem, we have improved the upper bound on the complexity
for the case of `2 formulation proposed in [8]. For the `1 norm, we obtained even
stronger results, leading to a polynomial-time algorithm. For the case of dependent
jobs, we identified a class of covariance matrices admitting an efficient, polynomial-
time solution algorithm, when `1 regularization term is used. Interestingly, carefully
conducted experiments have shown that solutions with `1 regularization term provide
almost identical trade-offs between the quality and robustness to the more complex
`2 regularization. This result comes as a surprise, considering that the best-known
solution for dependent jobs in the sense of `2 regularization is able to solve only
problems with 10 jobs and 3 machines within an hour, wheres our algorithm for `1
can successfully solve instances with hundreds of jobs, and for a class of generalized
positive covariance matrices, is of polynomial time complexity.

The results also demonstrate the importance of utilizing the information about
potential correlations between jobs, even when one does not have the perfect knowl-
edge of covariance. This realistic case also shows that it is not crucial to use the
formulation with `2 norm, but it can be replaced with `1 norm with essentially iden-
tical quality and stability — at a much reduced computational cost. This stimulates
to study further the relation between tractable solutions for (conservative) ambiguity
sets and approximate solutions for more expressive (but intractable) DRO formula-
tions in environments with limited data availability. It is subject to a further study
to which extent are the ideas developed in this paper applicable for more complex
objective functions such as, e.g., total tardiness. Furthermore, the complexity of
`1 formulation for general covariance matrices remains as an open question as well
structural differences between the solutions obtained with different regularization
norms.

Acknowledgement

We would like to thank our colleague Matej Novotny for numerous illuminating
discussions. This work was supported by the European Regional Development Fund
under the project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15 003/0000466).

References

[1] S. Alimoradi, M. Hematian, G. Moslehi, Robust scheduling of parallel machines considering
total flow time, Computers & Industrial Engineering 93 (2016) 152–161, ISSN 0360-8352.

[2] N. Balakrishnan, B. Scarpa, Multivariate measures of skewness for the skew-normal dis-
tribution, Journal of Multivariate Analysis 104 (1) (2012) 73–87, ISSN 0047-259X, URL
https://www.sciencedirect.com/science/article/pii/S0047259X11001400.

[3] G. Bayraksan, D. K. Love, Data-driven stochastic programming using phi-divergences, in: The
Operations Research Revolution, INFORMS, 1–19, 2015.

[4] A. Ben-Tal, E. Hochman, More bounds on the expectation of a convex function of a random
variable, Journal of Applied Probability 9 (4) (1972) 803–812.

32

https://www.sciencedirect.com/science/article/pii/S0047259X11001400

[5] Y. Berstein, S. Onn, Nonlinear bipartite matching, Discrete Optimization 5 (1) (2008) 53–65,
ISSN 1572-5286.

[6] D. Bertsimas, V. Gupta, N. Kallus, Data-driven robust optimization, Mathematical Program-
ming 167 (2) (2018) 235–292.

[7] P. Brucker, Scheduling Algorithms, Springer Berlin Heidelberg, ISBN 978-3-540-69516-5, 2007.
[8] Z. Chang, J.-Y. Ding, S. Song, Distributionally robust scheduling on parallel machines under

moment uncertainty, European Journal of Operational Research 272 (3) (2019) 832–846, ISSN
03772217.

[9] M. Charikar, A. Sahai, Dimension reduction in the `1 norm, in: The 43rd Annual IEEE
Symposium on Foundations of Computer Science, 2002. Proc., IEEE, 551–560, 2002.

[10] J. Cheng, E. Delage, A. Lisser, Distributionally robust stochastic knapsack problem, SIAM
Journal on Optimization 24 (3) (2014) 1485–1506.

[11] S.-J. Chung, NP-completeness of the linear complementarity problem, Journal of optimization
theory and applications 60 (3) (1989) 393–399.

[12] E. H. Delage, Distributionally robust optimization in context of data-driven problems, 2009.
[13] M. T. Emmerich, A. H. Deutz, A tutorial on multiobjective optimization: fundamentals and

evolutionary methods, Natural computing 17 (3) (2018) 585–609.
[14] C. Gambella, B. Ghaddar, J. Naoum-Sawaya, Optimization Problems for Machine Learning:

A Survey, European Journal of Operational Research ISSN 0377-2217.
[15] D. Ge, X. Jiang, Y. Ye, A note on the complexity of `p minimization, Mathematical program-

ming 129 (2) (2011) 285–299.
[16] P. Indyk, Stable distributions, pseudorandom generators, embeddings and data stream compu-

tation, in: Proceedings 41st Annual Symposium on Foundations of Computer Science, IEEE,
189–197, 2000.

[17] R. Jonker, A. Volgenant, A shortest augmenting path algorithm for dense and sparse linear
assignment problems, Computing 38 (4) (1987) 325–340.

[18] S. Kotz, T. J. Kozubowski, K. Podgórski, Asymmetric multivariate Laplace distribution, in:
The Laplace distribution and generalizations, Springer, 239–272, 2001.

[19] A. Kramer, M. Dell’Amico, M. Iori, Enhanced arc-flow formulations to minimize weighted
completion time on identical parallel machines, European Journal of Operational Research
275 (1) (2019) 67–79, ISSN 0377-2217.

[20] S. Leonardi, D. Raz, Approximating total flow time on parallel machines, Journal of Computer
and System Sciences 73 (6) (2007) 875–891, ISSN 0022-0000.

[21] C.-C. Lu, S.-W. Lin, K.-C. Ying, Robust scheduling on a single machine to minimize total flow
time, Computers & Operations Research 39 (7) (2012) 1682–1691, ISSN 0305-0548.

[22] S. N. Majumdar, A. Pal, Extreme value statistics of correlated random variables, 2014.
[23] O. Mangasarian, R. Meyer, Absolute value equations, Linear Algebra and Its Applications

419 (2-3) (2006) 359–367.
[24] O. Mangasarian, R. Meyer, Absolute value equations, Linear Algebra and its Applications

419 (2) (2006) 359–367, ISSN 0024-3795.
[25] K. P. Murphy, Machine learning: a probabilistic perspective, MIT press, 2012.
[26] S. Niu, S. Song, J.-Y. Ding, Y. Zhang, R. Chiong, Distributionally robust single machine

scheduling with the total tardiness criterion, Computers & Operations Research 101 (2019)
13–28, ISSN 0305-0548.

[27] H. Rahimian, S. Mehrotra, Distributionally robust optimization: A review, arXiv preprint
arXiv:1908.05659 .

[28] H. Scarf, A min-max solution of an inventory problem, Studies in the mathematical theory of
inventory and production .

[29] C. Shang, F. You, Distributionally robust optimization for planning and scheduling under
uncertainty, Computers & Chemical Engineering 110 (2018) 53–68, ISSN 0098-1354.

[30] A. Shapiro, On Duality Theory of Conic Linear Problems, Springer US, Boston, MA, ISBN
978-1-4757-3403-4, 135–165, 2001.

[31] A. Shapiro, A. Nemirovski, On complexity of stochastic programming problems, in: Continuous
optimization, Springer, 111–146, 2005.

[32] K. S. Shehadeh, A. E. Cohn, R. Jiang, A distributionally robust optimization approach for
outpatient colonoscopy scheduling, European Journal of Operational Research 283 (2) (2020)
549–561, ISSN 0377-2217.

[33] K. Sneha, G. M. Malle, Research on software testing techniques and software automation
testing tools, in: 2017 International Conference on Energy, Communication, Data Analytics
and Soft Computing (ICECDS), 77–81, 2017.

[34] C. Sohler, D. P. Woodruff, Subspace embeddings for the l1-norm with applications, in: Pro-
ceedings of the forty-third annual ACM symposium on Theory of computing, 755–764, 2011.

[35] R. Wang, D. P. Woodruff, Tight Bounds for `p Oblivious Subspace Embeddings, 2018.
[36] Y. Wang, Y. Zhang, J. Tang, A distributionally robust optimization approach for surgery block

33

allocation, European Journal of Operational Research 273 (2) (2019) 740–753.
[37] Z. Wang, P. W. Glynn, Y. Ye, Likelihood robust optimization for data-driven problems, Com-

putational Management Science 13 (2) (2016) 241–261.
[38] G. Xue, Y. Ye, An Efficient Algorithm for Minimizing a Sum of p-Norms, SIAM Journal on

Optimization 10 (2) (2000) 551–579.

34

	Introduction
	Problem statement
	Distributionally robust solution
	Contributions and paper organization

	Related work
	DRO in the scheduling literature
	Ambiguity set expressivity and robustness evaluation
	Total flow time scheduling and other problems

	Solving methods for p norm formulations
	Deterministic reformulation of the stochastic problem
	Robustness as a norm of solution variance
	Complexity of p formulation with independent jobs
	Approximate solution for p norm with dependent jobs
	1 norm formulation for dependent jobs

	Multi-objective optimization perspective
	Relation to multi-objective optimization
	Pareto front sampling

	Numerical experiments
	Experimental setup
	Evaluation protocol
	Independent jobs: quality, stability and performance
	Dependent jobs: quality, stability and performance
	Copositive covariance matrices

	Conclusion

