
Deep learning-driven scheduling algorithm for a single machine problem
minimizing the total tardiness

Michal Bouškaa,b, Přemysl Šůchaa,∗, Antonín Nováka,b, Zdeněk Hanzáleka

aCzech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague,
Jugoslávských partyzánů 1580/3, Prague, Czech republic

bCzech Technical University in Prague, Faculty of Electrical Engineering, Department of Control Engineering, Karlovo náměstí 13,
Prague, Czech republic

Abstract

In this paper, we investigate the use of the deep learning method for solving a well-known NP-hard single

machine scheduling problem with the objective of minimizing the total tardiness. We propose a deep neu-

ral network that acts as a polynomial-time estimator of the criterion value used in a single-pass scheduling

algorithm based on Lawler's decomposition and symmetric decomposition proposed by Della Croce et al.

Essentially, the neural network guides the algorithm by estimating the best splitting of the problem into sub-

problems. The paper also describes a new method for generating the training data set, which speeds up the

training dataset generation and reduces the average optimality gap of solutions. The experimental results show

that our machine learning-driven approach can efficiently generalize information from the training phase to

significantly larger instances. Even though the instances used in the training phase have from 75 to 100 jobs,

the average optimality gap on instances with up to 800 jobs is 0.26%, which is almost five times less than the

gap of the state-of-the-art heuristic.

Keywords: Scheduling, Machine Learning, Single Machine, Total Tardiness, Deep Neural Networks.

∗Corresponding author
Email addresses: bouskmi2@cvut.cz (Michal Bouška), suchap@cvut.cz (Přemysl Šůcha), antonin.novak@cvut.cz (Antonín

Novák), zdenek.hanzalek@cvut.cz (Zdeněk Hanzálek)

Preprint submitted to European Journal of Operational Research November 16, 2022

1. Introduction

The classical approaches for solving combinatorial problems have several undesirable properties. First of

all, there is a lack of systematic methods that improve the performance of algorithms on unseen instances by

gathering the experience from the instances solved in the past. Therefore, all the information obtained during

the past runs of an algorithm is neglected when a new instance is encountered. A good example is the branch-

and-bound-and-remember method [34, 40], where the algorithm remembers the information derived during an

instance solving, but the information is forgotten as soon as the instance is solved. Second, the development

of efficient heuristic rules requires a substantial amount of time devoted to its design and testing. This process

is tedious and requires a skilled human professional to fine-tune the heuristic’s parameters. A typical example

of this feature is genetic algorithms having many parameters for selection, cross-over, mutation, and other

operators.

The apparent response to the above challenges is utilizing the existing data. However, the main obstacle

to the successful application of machine learning to enhance algorithms for combinatorial problems remains.

It can be formulated as the following fundamental question—is it possible to extract any useful information

from the solved instances and use it efficiently to accelerate solving of an unseen instance?

This paper addresses a classical NP-hard single machine total tardiness scheduling problem (1||∑Tj), i.e.,

the problem given by a set of jobs that need to be scheduled on a single machine such that total violation of

due-dates is minimized. Specifically, we investigate the use of deep learning [27], to guide the solution space

exploration of 1||∑Tj instances. The presented approach extracts specific information from already solved

instances, i.e., parameters of the instance and the optimal value of the objective function. This information is

used as a training data set. Furthermore, the paper describes a deep neural network that is trained using the

training data set. Then the network can predict the optimal value of the objective function for other 1||∑Tj

instances. Unlike some existing works addressing the use of machine learning (ML) to solve combinatorial

problems (for example, [49]), our approach does not rely solely on machine learning, but we combine it with

the approaches known from operations research (OR) domain. The described scheduling algorithm shows the

way the deep neural network can be combined with classical decomposition schemes [30, 14] to achieve a fast

and efficient solution space exploration. The experiments show that our heuristic algorithm outperforms the

existing approaches on the standard benchmark data set. Apart from that, we address the question of how to

generate the training data set for the deep neural network. A straightforward approach would require solving

hundreds of thousands of NP-hard problems which could take many days. We show that for problem 1||∑Tj,

there is a much more elegant way that requires only a fraction of that time.

The contributions of this paper can be summarized as follows. We (i) propose an innovative heuristic

algorithm integrating the ML and OR approaches; (ii) improve the process of generating the training data,

which leads to faster training and smaller error of our method; (iii) provide an analysis of deep neural network

hyperparameters’ impact on the solution’s quality, and; (iv) show that the proposed approach outperforms the

state-of-the-art algorithms on the standard benchmark instances.

The rest of the paper is structured as follows. In Section 2, we present a review of the literature covering

1||∑Tj and the use of ML for solving combinatorial problems. The studied problem is formally introduced

2

in the subsequent section. Section 4 describes our approach integrating the ML into a decomposition-based

approach and analyzes its time complexity. We present results for standard benchmark instances in Section 5.

The conclusion is drawn in Section 6, and lists of notations and abbreviations are provided in the Appendix.

2. Related Work

The first part of the related work focuses on the current approaches to solve 1||∑Tj. This part extends the

survey by Koulamas [26]. In the second part, we concentrate on existing works exploiting ML for solving

combinatorial problems.

2.1. Single Machine Total Tardiness Problems

In 1977 it was shown by Lawler [30] that the weighted single machine total tardiness problem is NP-hard.

However, it took more than a decade to prove that the unweighted variant of this problem is weakly NP-

hard [17]. Lawler [30] proposed a pseudo-polynomial (in the sum of processing times) algorithm for solving

1||∑Tj. The algorithm is based on a decomposition of the problem into subproblems. The decomposition

firstly sorts the jobs in earliest due date (EDD) order. Subsequently, it selects the job with the maximum

processing time and tries to assign it to the current position and to all the following positions in the EDD

sequence. For each position, two subproblems are generated. The first subproblem contains all the jobs

preceding the job with the maximum processing time. The second subproblem contains all the jobs following

the job with the maximum processing time. Besides that, Lawler introduced rules for filtering the candidate

positions of the job with the maximum processing time. This algorithm can solve instances with up to one

hundred jobs. Della Croce et al. [14] proposed the shortest processing time (SPT) decomposition that selects

the job with the minimal due date and tries to assign it to every position preceding its original position in the

SPT order. Similarly to Lawler’s decomposition, two subproblems are generated where the first subproblem

contains all the jobs preceding the job with the minimal due date, and the second subproblem contains all

the jobs following the job with the minimal due date. Della Croce et al. combined both EDD and SPT

decompositions together. Their algorithm is able to solve instances with up to 150 jobs. Szwarc et al. [43]

integrated the double decomposition from [14] and a Split rule [45]. Their algorithm solved instances with up

to 300 jobs. The same authors further improved the algorithm using paradoxes associated with the problem

[44]. This algorithm was the state-of-the-art method for a long time, with the ability to solve instances with up

to 500 jobs.

Recent papers by Shang et al. [39] and Garraffa et al. [18] proposed a branch-and-merge algorithm that

avoids the solution of equivalent sub-instances in the branching tree. The algorithm uses so-called memoriza-

tion, i.e., a technique that memorizes the solution of solved sub-problems so that when that sub-problem is

reencountered, its solution is retrieved directly from memory instead of solving it again. The authors shown

that the algorithm run time converges to O∗(2n), i.e., the run time is limited by 2n while polynomial factors are

omitted. The same authors have shown that memorization during the solution space exploration is also effi-

cient for other problems, e.g., 1|r j|∑C j and 1|d̃ j|∑w jC j [40]. Nowadays, the algorithm published by Shang,

3

T’Kindt and Della Croce [40] is the fastest known exact algorithm for 1||∑Tj, able to solve instances with up

to 1200 jobs. In this paper, we denote this algorithm as Total Tardiness Branch-and-Merge Algorithm (TTBM).

Exact algorithms, such as the ones mentioned above, have very large computation times, while the optimal

solution is rarely needed in practice [50]. Hence, heuristic algorithms are often more practical. The existing

heuristics algorithms can be categorized into the following three major groups.

The first group of heuristics consists of list scheduling algorithms that create a job order and schedule the

jobs according to this order. There are various methods for creating a job order. The easiest one is to sort jobs

by the Earliest Due Date rule (EDD). A more efficient algorithm, called NBR, was proposed in paper [21].

It is a local search constructive heuristic that starts with job set J sorted by EDD and constructs the schedule

from the end by swapping two jobs by a hand-designed rule. Panwalkar et al. [36] proposed an alternative

constructive local search heuristic called PSK. Russel and Holsenback [38] compared PSK and NBR heuristics

and concluded that neither heuristic is inferior to another one. However, NBR finds a better solution in more

cases.

Heuristics in the second group are based on Lawler’s decomposition rule [30]. In this case, the heuristic

evaluates each node of the search tree, and the most promising node is expanded. This heuristic approach is

evaluated in [37] with an EDD heuristic as a guide for the search.

The third group of heuristics contains metaheuristics. Papers [37, 3, 6] present the simulated annealing

algorithm for 1||∑Tj. The same problem is solved in [16, 41] by a genetic algorithm while the authors of

[5, 11] assumed ant colony optimization. All the reported results in the previous studies are for instances

with up to 100 jobs. However, these instances are solvable by the current state-of-the-art exact algorithm in a

fraction of a second.

2.2. Use of Machine Learning in Algorithms for Combinatorial Optimization Problem

The integration of ML into algorithms for solving combinatorial optimization problems has several diffi-

culties. First, the instances of scheduling problems naturally appear in different sizes, e.g., with a variable

number of jobs. In opposite to this, the majority of ML models are often designed with a fixed size of the

input feature vector and the output vector. This issue can be addressed by recurrent networks and, more re-

cently, by encoder-decoder type of architectures. Vinyals [49] applied an architecture called Pointer Network

that, given a set of graph nodes, outputs a solution as a permutation of these nodes. The authors applied the

Pointer Network to Traveling Salesman Problem (TSP) with up to 20 nodes; however, this approach for TSP

is still not competitive with the best classical solvers such as Concorde [4] that can find optimal solutions to

instances with 80,000 nodes. Moreover, the Pointer Network output needs to be corrected by the beam-search

procedure, which underlines the weaknesses of this end-to-end approach. Pointer Network has achieved an

optimality gap of around 1% for instances with 20 nodes after performing the beam search.

The second difficulty with using ML models for solving combinatorial problems lies in the acquisition

of training data. Obtaining a single label for a training instance usually requires solving a problem of the

same complexity as the original problem itself, while ML usually requires millions of training samples. This

issue can be addressed by the reinforcement learning paradigm. Deudon et al. [15] used encoder-decoder

4

architecture trained with REINFORCE algorithm to solve 2D Euclidean TSP with up to 100 nodes. It is

shown that (i) repetitive sampling from the network is needed, (ii) applying a well-known 2-opt heuristic on

the results still improves the solution of the network, and (iii) both the quality and run times are worse than

classical exact solvers. A similar approach, used to solve TSP, is described in [25] which, if it is treated as a

greedy heuristic, beats simple heuristics such as Christofides algorithm on small instances. To be competitive

with a relevant baseline algorithm such as Lin-Kernighan heuristics [31], they perform repeated sampling from

the model and output the best solution. Moreover, they do not directly compare their approach with state-of-

the-art classical algorithms while admitting that general-purpose Integer Programming solver Gurobi solves

their largest instances optimally within 1.5 s.

Reinforcement learning was also used to solve other combinatorial problems. For example, Khalil et al.

[24] presented an approach for learning greedy algorithms over graph structures. The authors show that their

S2V-DQN model can obtain competitive results on MAX-CUT and Minimum Vertex Cover problems. For

TSP, S2V-DQN performs about the same as 2-opt heuristics. Unfortunately, the authors do not compare run-

ning times with Concorde solver. Interesting results for graph coloring were introduced by Huang et al. [22].

Huang et al. proposed a reinforcement learning (RL) heuristic with a neural network able to outperform the

state-of-the-art heuristic by 1-2%, when trained on the same type of graph as the one used during the evalu-

ation. Abe et al. [1] presented an RL approach for Minimum Vertex Cover and MAX-CUT. For Minimum

Vertex Cover problem, they have up to 10% better solutions than the 2-approximation algorithm. For MAX-

CUT problem, they are not able to outperform the heuristic of Laguna [28]. More details can be found in the

survey by Mazyavkina et al. [33] addressing the use of RL approaches for solving combinatorial problems.

Integration of ML with scheduling problems has received little attention so far. Earlier attempts of integrat-

ing neural networks with job-shop scheduling were published in [53] and [23]. However, their computational

results are inferior to the traditional algorithms, or it is not possible to assess their quality. Alternative use of

ML in the scheduling domain is focused on the evaluation of criterion functions. For example, the authors

in [48] addressed a nurse rostering problem and proposed a classifier, implemented as a neural network, able

to determine whether a particular change in a solution leads to a better solution or not. This classifier is then

used in a local search algorithm to filter out solutions having a low chance of improving the criterion function.

Nevertheless, the approach is sensitive to changes in the problem size, i.e., the length of the planning horizon.

If the size of the problem is changed, a new neural network must be trained. Another method, which does

not directly predict a solution to the given instance, is proposed in [47]. In this case, an online ML technique

is integrated into an exact algorithm where it acts as a heuristic. Specifically, the authors use regression for

predicting the upper bound of a pricing problem in a Branch-and-Price algorithm. Correct prediction leads

to faster computation of the pricing problem, while incorrect prediction does not affect the optimality of the

algorithm. This method is not sensitive to the change of the problem size; however, it is designed specifically

for the Branch-and-Price approach and cannot be generalized to other approaches. The authors of paper

[29] use the neural network as hyper-heuristic switching between several known heuristics for the job-shop

scheduling problem. Nevertheless, it is hard to assess the benefit of the method since a comparison with ex-

isting approaches is not provided. Recently, Zhang et al. [52] solved the same scheduling problem using

5

end-to-end deep reinforcement learning. The authors trained Graph Neural Network to generate a priority

dispatching rule. The results show that their approach provides better results compared to simple priority rules

like Shortest Processing Time, Most Work Remaining, etc. Shu Luo [32] proposed a Deep Q-Network (DQN)

trained by reinforcement learning for the online dynamic flexible job shop scheduling problem. The neural

network is trained to select one out of six dispatching rules. The selected rule is then applied in each iteration

of their algorithm. A similar work of [2] applies reinforcement learning to an additive manufacturing machine

scheduling problem. The authors describe a reinforcement learning iterated local search meta-heuristic that

switches different operators of the local search.

In the field of Constraint Satisfaction Problem (CSP) solving, Xu et al. [51] presented a neural network

estimating the satisfiability of the CSP. The authors assume that the neural network can be integrated into

an algorithm for solving CSP. However, Xu et al. tested their approach only on instances with up to 128

binary variables. Cappart et al. [10] trained neural network able to estimate values of variables during of CSP

solving. The estimation of the value of a variable with a neural network leads to an earlier finding of the part

of the state space with an optimal solution and thus to faster convergence. The approach is able to solve the

instances of Travelling Salesman Problem with Time Windows with up to 100 nodes. Although the proposed

method shows an interesting idea, it should be noted that in the literature, there are classical approaches that

solve instances with up to 200 nodes.

Nair et al. [35] introduced an approach to speed up a Mixed Integer Linear Programming solver with a

neural network. They present two methods to speed up the solution — Neural Diving and Neural Branching.

Neural Diving focuses on the improvement of the incumbent bound. It generates a partial solution of the

instance (i.e., predicts a value only for a subset of variables), which is then fixed. The values of the remaining

variables are solved by the solver. Neural Branching is used to select a branching variable in the branch-and-

bound method. It aims to approximate a computationally expensive branching strategy with just a fraction

of the computation time. By the combination of these two methods, Nair et al. achieves 1.5 times smaller

optimality gap on MIPLIB benchmark set. Another different way to speedup MILP solvers is introduced by

Tang et al. [46]. Tang et al. trained the RL agent, which learns to generate cutting planes and is shown to

outperform the human-designed heuristic used in Gurobi MILP solver. Their approach achieves 2 to 3 times

faster convergence on large instances for packing, production planning, and MAX-CUT problems.

The contemporary operations research literature has started to focus on machine learning approaches more

intensively. A recent survey by Bengio et al. [7] identifies four main problems of the use of ML in combina-

torial optimization, i.e., modeling, feasibility, scaling, and data generation. (i) Bengio et al. argue that unlike,

e.g., computer vision, there are no neural network models in the literature that would be suitable for combina-

torial problems. (ii) Apart from that, neural networks can be used only as a heuristic. Therefore, their current

use is limited for exact approaches as well as for problems where it is difficult to find a feasible solution. (iii,

iv) The last two problems correlate with the first two paragraphs in this section. The authors conclude that

the existing approaches are at an early stage of development, but they open new opportunities for research

addressing combinatorial optimization algorithms.

This paper is founded on the idea that the frequent limitation of the existing techniques applying ML to

6

combinatorial problems is the use of end-to-end approaches. Their weakness is that they disregard fundamental

properties of the combinatorial problems that have been studied in the literature for decades. The view studied

in this paper is different, and the proposed solution efficiently combines both the ML and properties of the

problem.

3. Problem Statement

In this paper, we study a single machine scheduling problem defined by a set of jobs J = {1, . . . ,n}. The

machine can process at most one job at a time, and all the jobs are available for processing at time zero. The

execution of the jobs cannot be interrupted. Each job j ∈ J is characterized by processing time p j ∈ Z>0

and due date d j ∈ Z≥0. A solution to this problem is a schedule given by a one-to-one correspondence

π : {1, . . . ,n} 7→ {1, . . . ,n} mapping a position in the schedule to a job, i.e., πk ∈ J is the job at position k in

schedule π. For a scheduled job, the problem defines its tardiness as an indicator measuring how much the job

violates the due date. Tardiness of job πk in schedule π is defined as Tπk(J) = max
(
0,∑k′∈J:k′≤k pπk′ −dπk

)
.

Then, the total tardiness of schedule π is defined as T(J,π) = ∑
n
k=1 Tπk(J). The goal of the scheduling

problem is to find an optimal schedule π∗ which minimizes the total tardiness T ∗ (J) = minπ∈Π T(J,π) where

Π is the set of all jobs’ permutations. To ease the readability of the paper, the list of notation and symbols used

is provided in Appendix.

This combinatorial problem is proven to be weakly NP-hard [17]. Graham’s notation [19] denotes it

as 1||∑Tj where 1 indicates that it is a single machine scheduling problem and ∑Tj refers to the objective

function, i.e., minπ∈Π T(J,π).

4. Proposed Decomposition Heuristic Algorithm

In this section, we introduce Heuristic Optimizer using Regression-based Decomposition Algorithm (HORDA)

for 1||∑Tj. The algorithm’s name comes from the fact that it uses decomposition controlled by a regressor.

The regressor is realized using a deep neural network (neural network for short in the rest of the paper) ap-

proximating the relation between features of instance and T ∗ (J).

The description of the algorithm is structured as follows. First of all, we summarize the problem decom-

positions used in the HORDA algorithm. Second, we describe HORDA and show how it effectively combines

the well-known properties of 1||∑Tj and an ML model. Next, we proceed by discussing the architecture of the

regressor and its integration into 1||∑Tj decompositions, and we describe training data acquisition, including

the training of the neural network. Finally, we analyze the time complexity of HORDA algorithm.

In the rest of the paper, we use two definitions to describe the ordering of the job set J:

1. EDD: if 1≤ j < j′ ≤ n then either (i) d j < d j′ or (ii) d j = d j′ ∧ p j ≤ p j′ ,

2. SPT: if 1≤ j < j′ ≤ n then either (i) p j < p j′ or (ii) p j = p j′ ∧ d j ≤ d j′ .

EDD (Earliest Due Date) is a sequence of jobs, sorted in non-decreasing order of due dates and SPT (Shortest

Processing Time) is a sequence of jobs sorted in non-decreasing time of processing times.

7

4.1. Problem Decompositions

Before we describe HORDA, it is necessary to outline two decomposition approaches for 1||∑Tj that are

used in our algorithm. The first decomposition is Lawler’s decomposition [30] which utilizes EDD order of

jobs; therefore, the related notation is denoted by superscript EDD. The other decomposition, proposed by

Della Croce et al. [14], is analogous but based on SPT order of jobs; thus, the related notation is denoted as

SPT.

Both decompositions exploit the fact that any optimal schedule of 1||∑Tj can be represented by a permu-

tation of jobs π since the machine is never idle in an optimal schedule. Each decomposition ◦ ∈ {EDD,SPT}

defines the splitting job l◦(J) ∈ J, i.e., lEDD(J) for Lawler’s decomposition and lSPT (J) for the decomposition

proposed by Della Croce et al. For a position k of job l◦(J) in the schedule, the decomposition splits J into

two subsets. The first subset P◦(J,k) represents jobs preceding l◦(J) in the schedule, and the second subset

F◦(J,k) represents jobs following job l◦(J) in the schedule under decomposition ◦. The precise definition of

the P◦(J,k) and F◦(J,k) is linked with a particular decomposition, as it is explained below.

The first decomposition, further denoted as EDD decomposition, is based on a theorem proposed by Lawler

[30].

Theorem 4.1. (Lawler, 1977) Suppose jobs J are ordered in EDD order and the splitting job is lEDD(J) =

argmaxi∈J pi. Then, there is some integer k, lEDD(J)≤ k ≤ n, such that there exists an optimal sequence π∗ in

which the splitting job lEDD(J) is preceded by all jobs j such that j ≤ k, and followed by all jobs j such that

j > k.

Lawler’s decomposition splits jobs into two subsets PEDD(J,k) and FEDD(J,k), which for job set J and

position k contains jobs {1, . . . ,k}\{lEDD(J)} and {k+1, . . . ,n}, respectively. Thus, for each eligible position

k ∈ {lEDD(J), . . . ,n}, the problem is decomposed into two subproblems defined by PEDD(J,k) and FEDD(J,k)

such that job lEDD(J) is neither in PEDD nor in FEDD. When we denote the set of positions {lEDD(J), . . . ,n}

as KEDD(J), then the optimal total tardiness T ∗ (J) of instance J can be computed as

T ∗ (J) = min
k∈KEDD(J)

Q(J,k), (1)

where

Q(J,k) = T ∗
(
PEDD(J,k)

)
+max

0, ∑
j∈PEDD(J,k)

p j + pk−dk

+T ∗
(
FEDD(J,k)

)
. (2)

The optimal solution to the instance is found by recursively selecting position k with the minimal criterion

Q(J,k).

The second decomposition, denoted as SPT decomposition, was proposed by Della Croce et al. [14] and

is described by the following theorem.

Theorem 4.2. (Della Croce, 1998) Suppose jobs J are in SPT order and job lSPT (J) = argmini∈J di. Then

there exists an integer k, 1 ≤ k ≤ lSPT (J), such that there exists and optimal sequence π∗ in which the jobs

preceding lSPT (J) are uniquely determined as follows: take jobs {1, . . . , lSPT (J)− 1} in SPT order and sort

these jobs by the EDD order and select the first k−1 jobs. All other jobs follow the lSPT (J) job.

8

Theorem 4.2 describes a similar decomposition to EDD decomposition but uses different position set

KSPT (J) = {1, . . . , lSPT (J)}. Furthermore, the set of preceding jobs is denoted as PSPT (J,k), while the set

of following jobs is FSPT (J,k). Nevertheless, the basic idea of the decomposition is the same as the one

formulated in Equation (1) for the EDD decomposition.

The efficiency of both decomposition approaches is significantly influenced by the number of the relevant

positions for the splitting job l◦(J), ◦ ∈ {EDD,SPT}, i.e., cardinalities of KEDD(J) and KSPT (J). The size of

the position set K◦(J) for ◦ ∈ {EDD,SPT} can be reduced by filtering rules described in [30, 45, 43]. These

rules can exclude some positions that provably cannot lead to an optimal solution. The efficiency of the

decompositions can be improved by the following rules: (i) remove the position from K◦(J) if the completion

time of job l◦(J) at position k is larger than the due date of the following job [43], (ii) remove the position from

K◦(J) if the completion time of job l◦(J) at position k is smaller than the due date plus the processing time of

the previous job [43]. The other rules are based on a similar idea. A detailed explanation, including the proof,

can be found in [43]. In the rest of the paper, we denote the filtered set of positions by KEDD(J) ⊆ KEDD(J),

KSPT (J)⊆ KSPT (J), i.e., K◦(J)⊆ K◦(J) for ◦ ∈ {EDD,SPT}.

4.2. Scheduling Algorithm

Even though algorithms, e.g., [18], that use decompositions described in the previous section, are very

efficient, their time complexity grows very quickly with the number of jobs. Therefore, we propose a heuris-

tic algorithm, denoted as HORDA, which approximates the search of the solution space by a priori trained

regressor.

HORDA is a greedy heuristic that combines the efficiency of EDD and SPT decompositions and ML.

HORDA recursively applies one of the decompositions while the position k of the splitting job l◦(J) is de-

termined using the regressor. It aims to select the best position k∗ of the splitting job l◦(J) in KEDD(J)

or KSPT (J) without solving the subproblems. Therefore, the regressor estimates values of T ∗(P◦(J,k)) and

T ∗(F◦(J,k)) in Equation (2) for every relevant position k ∈ K◦(J). With that, the algorithm selects position k∗

that minimizes the estimate of the objective function.

The algorithm is outlined in Algorithm 1. It recursively applies one of the decompositions described in the

previous section while splitting input jobs set J to its subsets P◦(J,k∗) and F◦(J,k∗). In the first step (lines

2 and 5), the algorithm handles job sets with five or fewer jobs. It turned out to be more efficient to run an

exact algorithm instead of performing the inference from the regressor on a small set of jobs. Subsequently, the

algorithm determines the splitting job and set of positions k for both decompositions, i.e., lEDD(J), KEDD(J)

and lSPT (J), KSPT (J) for EDD and SPT decomposition, respectively (lines 6 and 7). To reduce the run time,

HORDA uses either EDD or SPT decomposition depending on the cardinalities of their position sets (lines 8–

13). The position set with smaller cardinality is selected and the selected position set and the related splitting

job are stored to K◦(J) and l◦(J), respectively. After the selection of the positions set, the algorithm greedily

selects position k∗ (line 14) having the minimal estimation of the optimal objective function, i. e., the total

tardiness. Thus the position is determined as k∗ = argmink∈K◦(J) Q̂(J,k), where Q̂(J,k) is the estimate of the

9

Algorithm 1: Heuristic Optimizer using Regression-based Decomposition Algorithm (HORDA)
Input: a set of jobs J

Output: schedule π

1 Function HORDA (J):

/* Small instances are solved using an exact approach. */

2 if |J| ≤ 5 then

3 π ← TTBM (J)

4 return π

5 end

/* Determines the splitting job and the position set (for both

decompositions). */

6 lEDD(J), KEDD(J)← genEDDPos(J)

7 lSPT (J), KSPT (J)← genSPTPos(J)

/* Selection of position set with smaller cardinality. */

8 if |KEDD(J)| ≤ |KSPT (J)| then

9 K◦(J)← KEDD(J); l◦(J)← lEDD(J)

10 end

11 else

12 K◦(J)← KSPT (J); l◦(J)← lSPT (J)

13 end

/* Determine the position of the splitting job using the regressor. */

14 k∗ ← argmink∈K◦(J) (T̂(P
◦(J,k))+max(0, pk−dk +∑ j∈P◦(J,k) p j)+ T̂(F◦(J,k)))

/* Recursively call of HORDA for both subproblems. */

15 πP ← HORDA (P◦(J,k∗))

16 πF ← HORDA (F◦(J,k∗))

/* join sequences into one */

17 π ← (πP, l◦(J), πF)

18 return π

objective function for position k computed as

Q̂(J,k) = T̂(P◦(J,k))+max

{
0, ∑

j∈P◦(J,k)
p j + pk−dk

}
+ T̂(F◦(J,k)) . (3)

Estimates T̂(P◦(J,k)) and T̂(F◦(J,k)) are computed by the regressor described in the following section. Sub-

sequently, the algorithm recursively solves job sets P◦(J,k∗) and F◦(J,k∗). Resulting partial sequences are

stored as vectors πP and πF , respectively (lines 15 and 16). Finally, the algorithm merges (πP, l◦(J),πF) into

one sequence π, which is returned as the resulting schedule (line 18).

Please notice that if the estimates T̂(P◦(J,k)) and T̂(F◦(J,k)) in Equation (3) would be perfect (i.e.,

T̂(P◦(J,k)) = T ∗ (P◦(J,k)) and T̂(F◦(J,k)) = T ∗ (F◦(J,k)) for every k ∈ K◦(J)), then HORDA would turn

10

into an exact method. This claim directly follows from theorems 4.1 and 4.2. Since Algorithm 1 enumerates

all positions k that may lead to an optimal solution, then accurate estimates T̂(P◦(J,k)) and T̂(F◦(J,k)) guar-

antee finding k leading to π∗ according to theorems 4.1 and 4.2. The first iteration of Algorithm 1 with perfect

estimates finds the optimal value of the objective function, while its recursive application finds π∗. Neverthe-

less, assuming that P ̸=NP, it is impossible to guarantee that estimates are always correct. On the other hand,

the better the precision of the regressor, the more likely that HORDA will find the optimal solution.

We also experimented with other improvements, known in the scheduling domain, like the Split rule pro-

posed in [45]. The rule extends the filtering rules and allows to determine the optimal block sequence w.r.t.

position k. However, the tests have shown that in our setting, it slows down HORDA and does not improve the

quality of the solutions. Thus we do not use it in Algorithm 1.

4.3. Regressor

HORDA algorithm utilizes the regressor to estimate T̂ (J′) where J′ is either P◦(J,k) ⊂ J or F◦(J,k) ⊂ J.

It comes as no surprise that the quality of the estimation significantly affects the ability of HORDA to find

an optimal or near-optimal solution. The key advantage of HORDA is that it is not sensitive to the absolute

error of the estimation since the algorithm compares multiple solutions obtained by the same regressor for

different k ∈ K◦(J). Therefore, the proposed regressor uses a neural network since those have been shown to

be successful for problems being sensitive to relative error [48].

neural network

J′ ≈
{
(p j,d j)

}
j∈J′ Norm

recurrent

layer

dense

layer
Norm−1 T̂ (J′) ∈ R≥0XXX

=

Norm({(p j ,d j)} j∈J′)

y

Figure 1: Regressor architecture.

The architecture of our regressor is illustrated in Figure 1. Its input is job set J′ characterized by processing

times and due dates of jobs. Before the input is passed to the neural network, it is normalized to a matrix of

features XXX by the block denoted Norm. The dimension of XXX is 2×|J′| where the first dimension corresponds

to the two parameters of jobs (p j,d j) entering the regressor. The output of the neural network, y, is normalized

as well; thus, it needs to be denormalized by Norm−1 in order to get estimate T̂ (J′).

The detailed description of the regressor is split into two subsections. First, in Section 4.3.1 we describe

the normalization and denormalization of data, while the neural network is introduced in Section 4.3.2.

4.3.1. Normalization of the Input Data

The normalization of the input data is a preprocessing step that improves the accuracy of the neural net-

work, improves its numerical stability, and reduces training time. In our case, the normalization takes the job

set J′ and normalizes it to a form suitable to the neural network. This preprocessing consists of (i) supplying

the input to the network in a canonical form, (ii) normalization of the input features to [0,1], and (iii) the

normalization of the criterion.

11

The normalization used in the regressor sorts the jobs in a defined order and scales the processing times, due

dates, and the value of the objective function by suitable constants. It is important to note that the normalization

of inputs for the neural network occurs in two different ways. The first one concerns network training, when we

need XXX and y, i.e., normalized input and output. The other way occurs during the exploitation of the regressor,

i.e., inference from the neural network. Then the input is normalized to XXX but the output of the network y needs

to be converted back to T̂ (J′) by block Norm−1. The text below describes two normalization procedures that

improved the precision of the regressor the most.

Both normalizations sort J′ in EDD order. The first normalization, denoted SUMPROC, scales down all

p j,d j : ∀ j∈ J′ as well as the objective function T̂ (J′) by factor max
{

∑ j∈J′ p j,max j∈J′ d j
}

. This normalizes the

processing times and due dates to the interval [0,1]; nevertheless, the value of the objective function obtained

for the rescaled parameters can be greater than 1. Despite its simplicity, we have observed a noticeable impact

of this normalization on the accuracy of the regressor.

The second normalization, denoted as GAPEDDINV, redefines the output of the neural network. The neural

network is not trained to predict the target criterion value but rather the difference between the optimal ob-

jective value and the objective value achieved by EDD job ordering. This is the key innovation, as the neural

network has an easier job modeling residue between the optimal and EDD solutions rather than modeling the

objective function from scratch. Except for a different quantity to predict, GAPEDDINV uses the same normal-

ization constant for the processing times and due dates as SUMPROC; however, it redefines how the predicted

value T̂ (J′) is computed.

During the training phase of the network, the GAPEDDINV normalization constructs the EDD sequence

of jobs. Then it takes the optimal solution π∗ and computes the optimality gap of the EDD sequence πEDD

as gapEDD =
T(J′,πEDD)−T ∗(J′)

T(J′,πEDD)
. Subsequently, to have the output of the neural network distributed in interval

[0,1], the normalized criterion is computed as y = 1
1+gapEDD

. The inverse transformation, needed for the

inference from the neural network during the HORDA run, proceeds the other way around. First, it computes

gapEDD = 1
y − 1 from the normalized output y. Then it computes the total tardiness of the πEDD sequence,

which can be constructed in polynomial time. Finally, it uses the definition of the EDD optimality gap to

derive T̂ (J′).

4.3.2. Neural Network

The main reasons why we have used a deep neural network architecture in this paper are the following.

One of the main limitations of the application of classical machine learning models (including standard neural

network) is that they expect a fixed-sized input, meaning that the dimension of the input data is always the

same number, which needs to be chosen before the training and cannot be changed afterward. However, the

scheduling problem which we solve assumes an arbitrary number of jobs J, and it is not apparent how to

compress the input instance into a fixed-sized input. Note that this is radically different from, e.g., computer

vision problems, where the input image can be naturally scaled down to match the target dimensions.

Another reason is that deep neural network architectures have sufficient capability to discover their own

features of the input data. For classical ML models, it is needed to design custom descriptors of the data (i.e.,

12

features). In the case of our scheduling problem with total tardiness minimization, such features might be

statistical indicators of processing times and dues (e.g., means and variances). However, since we face an NP-

hard problem (i.e., even the prediction of the optimal objective is a hard problem), it is very unlikely that such

simple descriptors would work well. More complex interactions between the individual job parameters need to

be considered for precise predictions. Indeed, when we tested in our experiments simpler networks, we could

see that the prediction accuracy is affected by the capacity (i.e., model complexity) of the prediction models.

For example, in Section 5.3 we evaluate the effect of the complexity of the network on the quality of solutions.

There, we can see that reducing the size of the hidden state of the neural network has already a negative impact

on the performance of HORDA. However, even the features developed by the network with a limited complexity

are still much more complex than the handcrafted features like the statistical ones mentioned above. Thus, we

let the network discover its own features from raw data.

The solution to both these challenges is offered by recurrent neural networks [42]. A recurrent neural

network is a type of network that can use previous outputs as inputs in successive iterations. It maintains a

hidden state which is updated by the current input and the past value of the hidden state. The whole input to

the recurrent neural network is represented by a sequence that is processed in an iterative fashion. The final

output of the network is a function of the last hidden state. In our case, the input sequence is the instance of the

scheduling problem presented in a predefined canonical order. In each step of the computation, the features

(i.e., processing time and due date) of a single job are fed to the network to update its hidden state. Finally,

when the sequence is processed, the hidden state of the network reflects the whole problem instance which can

be used to make predictions, e.g., about its optimal objective value.

The advantage of this model is the possibility of processing the input of any length (i.e., a variable number

of jobs) and that the historical information is used during the whole computation over the sequence. This

scheme has been shown to be effective for processing sequences with variable lengths, e.g., in natural language

processing (NLP).

The neural network used inside the regressor consists of two layers (see the red box in Figure 1). The first

layer is a recurrent neural network, which receives normalized job set XXX as the input. This layer is realized

using the Long Short-Term Memory (LSTM) architecture [20]. The output of the recurrent layer, the hidden

state, is passed into a dense layer without an activation function, and it produces estimation y. The main

parameters of the recurrent layer are the size of the hidden state, also denoted as capacity in the literature. The

recurrent layer’s capacity affects the amount of information which is the recurrent layer able to approximate.

In our experiments, we compare two different types of recurrent layers, LSTM and Gated Recurrent Unit

(GRU) [12]. In general, GRU is better suited for smaller training data sets. LSTM is more general and has a

more complex structure compared to GRU. For example, GRU has only one reset gate, which substitutes the

function of update and the forget gate in LSTM. The experimental results documented in Section 5 show that

LSTM provides better results in our case.

Training of the neural network is complicated by its integration into the decompositions. It means that the

training and validation errors (used in the training phase of the neural network) are not computed in the same

way as the testing error (measured during benchmarking of the entire HORDA). The training and validation

13

errors of the neural network are measured in terms of the mean square error of predicted objective values

on the training and validation samples. On the other hand, the testing error is measured as the optimality

gap of HORDA, which exploits the neural network. Computation of training and validation errors reflecting

the optimality gap obtained by the whole HORDA would be highly time demanding for the training phase.

Therefore, our approach relies on the relation between the prediction of objective values and their use in

Equation (2) controlling decisions of HORDA. Thus the training is faster, and HORDA still provides accurate

solutions.

4.4. Training Data Set Generation

The training data set for a neural network usually consists of thousands of millions of training samples.

However, producing a training data set with this size can be extremely time demanding in case of NP-hard

problems. Thus, it is extremely important to devise efficient methods that can produce it in a reasonable time.

An equally important property of the training data set is its composition, i.e., how well it covers different parts

of the parameter space. Essentially, the aim is to ensure that the distribution of training samples corresponds

to the distribution of the test samples that arise from the decomposition during the run of HORDA. As it will be

shown in the next section, the composition of samples in the training data set is indeed critical to the quality

of solutions produced by HORDA. In this section, we propose two approaches to the generation of the training

data set, and we describe their properties.

To generate 1||∑Tj instances, we utilize the standard benchmark generator described by Potts et al. [37].

They generate processing times from a uniform distribution [1, pmax] where pmax is the maximum processing

time. The distribution of due dates is given by two parameters rdd (range of due dates) and tf (tardiness factor),

describing the relations between the sum of processing times and the due dates of jobs. Specifically, each

due date is drawn from a uniform distribution on interval [(1− tf − rdd/2)∑ j∈J p j,(1− tf + rdd/2)∑ j∈J p j].

This procedure is used in the literature to generate a benchmark set for measuring the quality of algorithms

for 1||∑Tj and various related problems. However, we need to design an efficient procedure that creates

the training data set with the following properties: (i) the training data set needs to contain training labels

(i.e., optimal objective values) for all the samples, (ii) the distribution of training instances should reflect

what will be encountered during the inference, and (iii) the procedure should be able to produce millions of

training samples in a reasonable time. In the following lines, we describe two choices of such training data set

generators with their properties.

The most straightforward method is Generate & Solve. It produces the training data set as follows. First,

it generates a random instance by the generator described by Potts et al. [37], and then it is solved by TTBM

algorithm, which acquires the training label (optimal objective value) for that instance. The pair consisting of

the instance and its solution is then treated as a single training sample. The entire training data set is obtained

by generating random instances having a uniform distribution of n, rdd, and tf .

A different method to generate the training data set is named Subproblem generator. Its idea is to ex-

ploit all subproblems that are being solved by a decomposition-based algorithm (see Section 4.1) during the

solution of a single problem instance. For the given input instance J and eligible position k of the splitting

14

Table 1: Time consumed for generation of a data set with 1.5 ·106 training samples.

(a) Generate & Solve

n time [s]

5-100 16470

5-125 17743

5-150 20006

5-175 23766

5-200 29757

(b) Subproblem generator

n time [s]

75-100 594

100-125 803

125-150 832

150-175 1040

175-200 1020

job l◦(J) both EDD, SPT decompositions generate two subproblems, i.e. P◦(J,k) and F◦(J,k). Since the

decomposition is applied recursively, these subproblems generate other subproblems. Thus, from a single run

of a decomposition-based algorithm, multiple training instances together with their optimal objective values

emerge.

Subproblem generator proceeds as follows. First, it generates a problem instance by the generator de-

scribed above. The instances are generated with constant rdd and tf (specifically rdd = 0.2 and tf = 0.6).

The reason for this setting is that the instances with those parameters are the most computationally demanding

compared to other (rdd, tf) [39]. The second reason why it is possible to assume only a single (rdd, tf) pair is

that the decompositions generate problems P◦(J,k) and F◦(J,k) with a different (rdd, tf) than the ones of J.

Therefore, the generated data set covers different (rdd, tf) pairs as well.

After an instance is generated, it is solved by a combination of EDD and SPT decomposition where the

algorithm always selects the decomposition having the smallest K◦(J), ◦ ∈ {EDD,SPT}. In each step, the in-

stance is recursively decomposed into a set of subproblems P◦(J,k) and F◦(J,k) for different eligible positions

k of the splitting job. Subsequently, all subproblems are solved by the recursive application of the decompo-

sition. In the end, the optimal solutions of all the subproblems are known; thus, all pairs of subproblems and

their solutions are put into the training data set. Therefore, one can get multiple training samples from a single

problem instance solved to the optimality. In addition, newly generated subproblems differ in the number of

jobs and their characteristics in terms of rdd and tf parameters, which enriches the composition of the training

data set.

Now, let us discuss the properties of the above generators. The Generate & Solve method has two main

disadvantages. The first one is the time complexity of the generation. Every problem instance results in only a

single sample of the training data set. On the other hand, the Subproblem generator naturally generates many

training samples from a single input instance, which significantly reduces the time needed for the training

data set synthesis. Table 1 shows the times needed for generating data sets with 1.5 ·106 training samples for

different intervals of instance sizes. Comparing the two methods, it can be seen that Subproblem generator

can generate the training data set more than twenty times faster.

The second disadvantage of Generate & Solve method is the spectrum of generated instances. While Gen-

erate & Solve method produces a uniform distribution of instances with respect to n, rdd, and tf , Subproblem

15

generator generates a spectrum of instances focused on the needs of HORDA. Indeed, the distribution of in-

stances in the training data set produced by Subproblem generator is similar to the distribution of subproblems

whose objective value needs to be estimated during the run of HORDA (which is far from being uniform in

terms of n, rdd, and tf).

0 20 40 60 80 100 120 140 160 180 200

0

50,000

100,000

n

#
tr

ai
ni

ng
sa

m
pl

es
[-

]

Subproblem generator 75–100
Subproblem generator 125–150
Subproblem generator 175–200
Generate & Solve 5–200

Figure 2: Distribution of training sample size for Subproblem generator method with different range of instances and Generate & Solve.

The composition of instances in the training data set needs to be analyzed from two perspectives. This first

one is the number of instances with a particular n value. The distribution of the training samples’ sizes is shown

in Figure 2 on a data set with 1.5 ·106 training samples. The figure compares Generate & Solve for n∈ [5,200]

and Subproblem generator for three different ranges on n, i.e., [75,100], [125,150] and [175,200]. It shows

that while the number of instances for different n is constant for Generate & Solve, Subproblem generator

generates significantly more instances with lower n. It indicates that decompositions inside HORDA need more

examples with lower n; thus, these instances are more important for the training of the neural network.

The second aspect that needs to be studied is the distribution of rdd and tf parameters of instances generated

by both methods. In this case, the situation is similar to the case with n. While instances with defined

(rdd, tf) parameters are uniformly distributed in the training data set produced by Generate & Solve method,

the distribution of (rdd, tf) is much more uneven in the case of Subproblem generator which is demonstrated

in Figure 3. It illustrates the frequency of samples with a particular value of (rdd, tf) arising from subproblems

generated from 20 instances having 150 jobs with rdd = 0.2 and tf = 0.6. The samples are divided into

particular categories according to the number of jobs n.

For n = 100, one can see that the instances are close to the initial setting of rdd = 0.2 and tf = 0.6. With

the decreasing value of n (which corresponds to smaller subproblems), the distribution of rdd and tf shifts

significantly. The mass of the samples for the whole data set drifts towards rdd = 0.4 and tf = 0.5 and the

covariance of (rdd, tf) increases as well. These observations underline that the composition of instances that

occur during a single run of HORDA is significantly different from a uniform distribution produced by Generate

& Solve. At the same time, it shows clear advantages of data sets produced by Subproblem generator since

their distribution is closer to what HORDA encounters. For more details, see the comparison of these two

approaches in Table 2, Figure 4, and Figure 5 in Section 5.2.

16

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10.0

20.0
30.0

40.0
50.060.0

rdd

tf

(a) n = 100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2.000

4.000

6.
00

0

8.000

10.000

12
.0

00

12.000

14
.0

00

14
.0

00

rdd

tf

(b) n = 60

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.500

3.
00

0

4.
50

0

6.000

7.500

9.
00

0

rdd

tf

(c) n = 40

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.500

3.000

4.
50

0

6.000

7.500

rdd

tf

(d) Aggregated over n ∈ {5,150}

Figure 3: Distribution of rdd and tf over n in the data set generated by Subproblem generator.

4.5. Time Complexity of the Scheduling Algorithm

In this section, we present an analysis of the worst-case run time of HORDA. The most time-consuming

part of HORDA is the estimation of the optimal position for the splitting job k∗. To do so, the algorithm tests at

most n positions. For each position the algorithm uses the regressor to compute estimates P◦(J,k) and F◦(J,k)

having O(n) time complexity. Thus, the estimation of the optimal position takes O(n2). In the worst case,

when the decomposition removes only one job from J in every recursion, HORDA makes O(n) selections of

position k∗. Therefore, the worst-case time complexity of HORDA is O(n3). Nevertheless, as the experiments

in Section 5.2 show, the algorithm is very fast. The average CPU time on instances with 800 jobs is below 15

s.

5. Experimental Results

In this section, we present the experimental results related to HORDA focused on its relation to the neural

network used in the regressor. The section is organized as follows. First, we describe the hardware and software

used for the evaluation and the method of generating testing instances. Next, we present the comparison of our

17

approach with the state-of-the-art heuristic, the state-of-the-art exact algorithm, and results from our previous

work [9]. The following sections describe a detailed benchmarking of the algorithm. Section 4.4 presents the

experiments with the generation of the training data set. The influence of neural network hyperparameters on

HORDA is investigated in Section 5.3, and Section 5.4 describes sensitivity of HORDA to its parameters.

5.1. Experimental setup

Experiments were run on a single CPU core of the Xeon Gold 6140 processor with a memory limit set

to 8 GB of RAM. HORDA and NBR algorithms were implemented in Python 3.7, and the neural network is

implemented using TensorFlow 2 trained on a GPU Nvidia GTX 1080 Ti. Source code of HORDA is available

at GitHub repository (https://github.com/CTU-IIG/horda); Source code of TTBM algorithm was provided by

authors of [18] and is implemented in C++.

Instances used in this paper were generated in the manner suggested by Potts and Van Wassenhove [37].

They generate processing times of jobs uniformly on the interval from 1 to 100. Since we want to study

the impact of processing time on the quality of our algorithm, we define maximal processing time pmax and

generate the processing time of jobs uniformly on the interval from 1 to the pmax. The analysis presented

in [39] implies that the hardest instances occur for rdd = 0.2 and tf = 0.6; therefore, our experiments focus on

them. We use two data sets: the first with pmax = 100, and the second, with pmax = 5000, to mimic the duration

of jobs in seconds used, e.g., nowadays in Advanced Planning and Scheduling systems. In all experiments, we

have used separate data sets for training and evaluation; thus, all the methods are tested on instances that were

not seen during the training.

For all graphs presented in this section, the points in the figure represent the mean over all instances of the

same size. The colored surface represents the standard deviation of the measurement, and the line represents

the running mean of the last five values. The evaluation data sets consist of 20 randomly generated instances for

each n divisible by 5. The results are represented in a form of the optimality gap defined as T(J,π)−T ∗(J)
T(J,π) ·100,

where π is a heuristic solution and T ∗ (J) is the optimal objective value. Next, note that the training of

neural networks is a random process (e.g., data set shuffling, initial weights, numerical instability), and the

results vary over different runs. Thus, for each settings of neural network hyperparameters, we trained all

neural networks five times with the same parameters and used the best one to carry out the experiments.

5.2. Comparison with state-of-the-art approaches

In this section, we present a comparison of our results with state-of-the-art approaches in terms of the

optimality gap and run time. Our results are compared with NBR [21] state-of-the-art heuristic, its combina-

tion inside the decomposition HORDA (NBR) [13], TTBM [18] as the state-of-the-art exact algorithm, and our

previous ML based approach denoted as HORDA (NN2020) [9].

For a fair comparison of all methods, we limited the run time of TTBM to 10 s, and 15 s. Time limit 15 s

corresponds to the maximum time needed by HORDA to solve the largest instances. Notice that this gives an

advantage to TTBM on small instances, but it makes the comparison simpler. Thus the comparison is made in

favor of TTBM. We report these as TTBM(10 s), and TTBM(15 s) respectively.

18

https://github.com/CTU-IIG/horda

Results of the presented approach are also compared with our previous approach HORDA (NN2020), pre-

sented in [9]. It utilizes HORDA heuristic with the LSTM based neural network (with capacity 256 and

SUMPROC criterion normalization) trained on a data set generated by Generate & Solve (see Section 4.4).

HORDA (BEST) method, proposed in this paper, uses the regressor, as it is presented in Figure 1. The

recurrent layer is LSTM with a capacity of 256. The neural network uses GAPEDDINV normalization, and it is

trained on a data set generated with Subproblem generator. The data set was generated from input instances

having n ∈ [75,100] while for each n there were 20 instances used by Subproblem generator to generate the

training data set. In total, the data set consists of 1.6 ·106 instances.

First, let us discuss the time needed to train the neural network used in HORDA (BEST). The generation

of the training data set takes about 600 s, and it is discussed in detail in Section 4.4. The training time of the

neural network is about 3 hours. It comes as no surprise that the neural network training time is large compared

to the time needed to solve a single instance by TTBM. The approach presented here assumes that the time

needed for the neural network training is a part of the algorithm development, but the online execution of the

algorithm must be fast. Indeed, the training time is spent just once, whereas the inference from the neural

network after the training is much faster.

Table 2 compares the run times and optimality gaps of TTBM, TTBM(10 s), TTBM(15 s), NBR, HORDA (MDD),

HORDA (NBR), HORDA (NN2020), and HORDA (BEST) on instances generated with pmax = 5000. The bold

numbers in the table represent the best result on the interval of n in terms of the optimality gap. The time re-

quired for computing the optimal solution by TTBM is shown in the second column of the table. For the largest

instances with pmax = 5000, the computation takes up to 15 ·103 s. Due to a software issue, we were not able to

solve larger instances by TTBM. TTBM with limited time (TTBM(10 s), TTBM(15 s), i.e., third and fourth col-

umn, respectively) has small gaps on small instances, but from n = 250 it perform worse than HORDA (BEST).

The average gap on the biggest instance is 3.92% for TTBM(10 s), and 3.75% for TTBM(15 s). NBR heuristic

has the optimality gap almost independent of the size of instances achieving an average gap 2.14% over all

instances (see the fifth column in the table). Nevertheless, this result is significantly worst compared to the gap

obtained by HORDA (BEST). On the other hand, the average run time of NBR heuristic for the biggest instances

is around 0.85 s compared to HORDA (BEST) achieving 13.95 s.

As noted by Della Croce et al. [13], constructive heuristics such as MDD [8] and NBR can be embedded

into the decomposition utilized by HORDA as well. Thus, HORDA (MDD) and HORDA (NBR) columns present

the integration of the respective constructive heuristic into HORDA, where it acts as a regressor replacing the

neural network. The embedded MDD heuristic has an average gap 1.89% (over all instances), and the quality

is slightly better than NBR. The integration of NBR into HORDA (NBR) improves the gap from 2.14% to 1.25%

(over all instances). Nevertheless, HORDA (BEST) has a significantly lower run time and almost five times

lower gap. The table illustrates that within the 15 seconds time limit for instances having more than 250 jobs,

the best results were achieved by HORDA (BEST).

Table 3 compares the results of TTBM, HORDA (BEST) and a genetic algorithm presented by Suer et al.

[41]. The Suer et al. defines its own evaluation protocol to generate test instances. Therefore, we evaluate

TTBM and HORDA (BEST) on instances generated in the same manner as suggested in [41] and show the results

19

Table 2: Comparison with state-of-the-art approaches on instances with pmax = 5000.

n
TTBM

(∞ S)

TTBM

(10 S)

TTBM

(15 S)
NBR

HORDA

(MDD)

HORDA

(NBR)

HORDA

(NN2020)

HORDA

(BEST)

time [s] gap [%] gap [%] gap [%] gap [%] gap [%] time [s] gap [%] gap [%] time [s]

5−45
0.02 0.00 0.00 0.95 0.38 0.09 0.01 0.56 0.22 0.03
±0.00 ±0.00 ±0.00 ±2.92 ±0.87 ±0.28 ±0.01 ±0.86 ±0.51 ±0.10

50−95
0.03 0.00 0.00 1.22 0.97 0.36 0.09 0.64 0.22 0.18
±0.03 ±0.00 ±0.00 ±0.91 ±1.38 ±0.48 ±0.05 ±0.42 ±0.29 ±0.08

100−145
0.34 0.00 0.00 1.59 1.11 0.71 0.31 0.46 0.39 0.46
±0.55 ±0.00 ±0.00 ±0.70 ±1.04 ±0.48 ±0.13 ±0.31 ±0.40 ±0.16

150−195
2.30 0.01 0.00 1.86 1.39 0.92 0.66 0.47 0.50 0.93
±2.34 ±0.07 ±0.03 ±0.64 ±1.20 ±0.45 ±0.22 ±0.33 ±0.45 ±0.22

200−245
11.09 0.17 0.07 1.99 1.54 1.05 1.25 0.59 0.45 1.56
±10.69 ±0.30 ±0.18 ±0.65 ±1.12 ±0.48 ±0.41 ±0.29 ±0.29 ±0.31

250−295
38.37 0.82 0.56 2.08 1.60 1.19 2.07 0.55 0.37 2.30
±27.57 ±0.68 ±0.57 ±0.52 ±1.13 ±0.44 ±0.66 ±0.27 ±0.24 ±0.39

300−345
93.19 1.32 1.02 2.29 1.75 1.33 2.96 0.57 0.31 3.07
±59.73 ±0.80 ±0.72 ±0.54 ±1.19 ±0.45 ±0.88 ±0.35 ±0.17 ±0.43

350−395
209.70 1.99 1.68 2.35 2.06 1.42 4.41 1.16 0.27 4.03
±113.55 ±0.87 ±0.81 ±0.48 ±1.34 ±0.45 ±1.25 ±0.60 ±0.16 ±0.51

400−445
464.90 2.62 2.33 2.36 2.31 1.51 6.00 1.72 0.24 5.01
±246.80 ±0.87 ±0.83 ±0.45 ±1.34 ±0.41 ±1.75 ±0.62 ±0.15 ±0.63

450−495
814.21 2.83 2.55 2.43 2.33 1.56 7.70 1.32 0.22 6.10
±398.34 ±0.83 ±0.78 ±0.45 ±1.15 ±0.41 ±2.15 ±0.60 ±0.13 ±0.79

500−545
1528.93 3.23 2.98 2.43 2.34 1.54 10.28 1.28 0.20 7.19
±620.02 ±0.80 ±0.80 ±0.43 ±1.24 ±0.38 ±2.88 ±0.51 ±0.14 ±0.80

550−595
2578.16 3.49 3.27 2.52 2.34 1.66 12.73 1.20 0.18 8.50
±1128.52 ±0.71 ±0.70 ±0.41 ±1.12 ±0.44 ±3.00 ±0.48 ±0.12 ±0.89

600−645
4436.89 3.70 3.46 2.54 2.37 1.62 16.13 1.20 0.16 9.82
±2341.48 ±0.70 ±0.70 ±0.37 ±1.15 ±0.33 ±3.90 ±0.41 ±0.08 ±0.97

650−695
7311.81 3.86 3.65 2.54 2.53 1.66 19.94 1.05 0.15 11.18
±3689.10 ±0.79 ±0.78 ±0.40 ±1.23 ±0.37 ±4.92 ±0.50 ±0.09 ±1.08

700−745
11390.34 3.90 3.71 2.56 2.57 1.74 22.96 1.01 0.16 12.71
±4360.18 ±0.75 ±0.73 ±0.41 ±1.09 ±0.38 ±6.18 ±0.37 ±0.09 ±1.20

750−795
14135.70 3.92 3.75 2.59 2.64 1.65 28.79 0.89 0.11 13.95
±4814.88 ±0.64 ±0.64 ±0.31 ±0.91 ±0.37 ±6.96 ±0.41 ±0.08 ±1.29

avg
2688.50 1.99 1.81 2.14 1.89 1.25 8.52 0.92 0.26 5.44
±1113.36 ±0.55 ±0.52 ±0.66 ±1.16 ±0.41 ±2.21 ±0.46 ±0.21 ±0.61

20

Table 3: Comparison with a Genetic Algorithm [41].

TTBM GA [41] HORDA (BEST)

n time [s] gap [%] time [s] gap [%] time [s]

10
0.011 0 2 0 0
±0.001 ±0 ±0

20
0.012 0 51 0 0.06
±0.002 ±0 ±0.004

30
0.012 0 354 0.101 0.013
±0.002 ±0.101 ±0.005

50
0.013 2.12 536 0.006 0.018
±0.002 ±0.006 ±0.007

100
0.013 6.32 1083 0.002 0.044
±0.002 ±0.002 ±0.014

in the separate table. The run time of the genetic algorithm is scaled by the power ratio between the processor

used by Suer et al. and us, i.e., 0.81. The run time of TTBM is 0.013 s for instances with 100 jobs, while the

genetic algorithm has about 1083 s (see column GA in the table). Our method obtains the solutions with an

average gap 0.002% within the 0.044 s for instances with 100 jobs, which is superior to the results reported by

Suer et al.

0 100 200 300 400 500 600 700 800

0

1

2

3

4

n

ga
p

[%
]

HORDA (BEST) HORDA (NN2020) NBR

TTBM(10 s) TTBM(15 s)

Figure 4: Optimality gap for instances with pmax = 100.

The dependency of the optimality gap on the number of jobs for pmax = 100 and pmax = 5000 is shown in

Figure 4 and Figure 5, respectively. The figures show the optimality gap of NBR, TTBM(10 s), TTBM(15 s),

HORDA (NN2020), and HORDA (BEST) on n depending on n from 5 to 800. By comparing these two graphs,

one can see that results of TTBM are the best on the smaller instances. On the other hand, the TTBM run time is

heavily dependent on pmax; while other methods do not depend on pmax, which provides an advantage to them.

21

0 100 200 300 400 500 600 700 800

0

1

2

3

4

n

ga
p

[%
]

HORDA (BEST) HORDA (NN2020) NBR

TTBM(10 s) TTBM(15 s)

Figure 5: Optimality gap for instances with pmax = 5000.

Our previous method HORDA (NN2020) has very good results for instances with no more than 350 jobs, and

its gap is less than 1%. The method presented in this paper, i.e., HORDA (BEST) has the optimality gap for all

sizes of instances under 0.5%, i.e., it is superior to all other methods for instances with about more than 450

jobs for pmax = 100, and 250 jobs for pmax = 5000. Neither the run time nor the gap of HORDA (BEST) depends

on the pmax. Indeed, thanks to the normalization of the input data and the generalization capabilities of the

neural network, it is possible to train it on the data set with pmax = 100 and apply it on instances generated

with pmax = 5000. Thus, even thought HORDA (BEST) is trained on instances generated for pmax = 100, the

results in terms of optimality gap are almost the same for the pmax = 5000 as for pmax = 100. This provides

us some confidence that HORDA (BEST) is able to generalize for instances with different pmax. Moreover, an

advantage of our approach is that the training data set can be generated for pmax = 100, which is much faster

than the generation of the training data set with pmax = 5000.

5.3. Neural network hyperparameters

In this section, we analyze the impact of the neural network on the performance of HORDA and on the

quality of its solutions. Specifically, we study the impact of the LSTM capacity, GRU as an alternative to

LSTM, the number of instances in the training data set, and the size of instances (i.e., n) used for training. The

experiments listed below assume HORDA (BEST) as the baseline scenario. This means that every experiment

varies one hyperparameter of the neural network while the others are set as in HORDA (BEST).

At first, we present the results of LSTM with different capacities. The size of the LSTM layer impacts the

run time of HORDA and the ability of the neural network to fit on the training data and their generalization.

The optimality gaps of HORDA with the neural networks having LSTM capacity 32, 64, 128, 256 are shown

in Figure 6. For those capacities, the number of trainable parameters inside the neural network is equal to

22

0 100 200 300 400 500 600 700 800

0

1

2

3

4

5

6

n

ga
p

[%
]

HORDA (BEST) HORDA (LSTM 128) HORDA (LSTM 64)
HORDA (LSTM 32)

Figure 6: Optimality gap of HORDA with different capacity of LSTM as a regressor.

0 100 200 300 400 500 600 700 800

0

0.5

1

1.5

2

n

ga
p

[%
]

HORDA (BEST) HORDA (GRU)

Figure 7: Optimality gap of HORDA with different neural networks.

4500, 1.7 ·104, 6.7 ·104, 2.6 ·105, respectively. Let us recall that the best model has a capacity equal to 256,

and results show that it performs the best. The average ability to fit the training data is decreasing with the

decreasing capacity of the LSTM layer, and thus the optimality gap of HORDA grows. On the other hand, larger

capacities than 256 would require enormous training data set due to a huge number of training parameters.

An alternative to the LSTM layer used in the neural network is the GRU layer. GRU is a more restricted

architecture (than LSTM), which can lead to a weaker ability of generalization, whereas the LSTM architecture

can profit from a large number of training samples. The comparison of the best model and neural network with

23

0 100 200 300 400 500 600 700 800

0

1

2

3

4

5

n

ga
p

[%
]

HORDA (BEST) HORDA (50-75 n) HORDA (100-125 n)

Figure 8: Optimality gap of HORDA with a different number of jobs in training instances.

0 100 200 300 400 500 600 700 800

0

0.5

1

1.5

2

2.5

n

ga
p

[%
]

HORDA (BEST) HORDA (EDD DATA SET) HORDA (SPT DATA SET)

Figure 9: Optimality gap of HORDA with different decomposition used to generating training data set.

the GRU layer is shown in Figure 7. HORDA (GRU), i.e., the algorithm with the neural network containing

the GRU layer, provides solutions with similar quality in terms of the optimality gap for instances with up to

450 jobs. For the instances with more than 450 jobs, the optimality gap grows up to 1%. Therefore, for our

purposes is better to use LSTM, since it is computationally inexpensive to generate large training data sets

with the Subproblem generator method.

The following experiment, illustrated in Figure 8, evaluates the impact of the number of jobs n of instances

used to generate the training data set. The experiment assumes Subproblem generator, where the training used

input instances with 50 - 75, 75 - 100, and 100 - 125 jobs. For each size of input instances, we generate 20

24

0 100 200 300 400 500 600 700 800

0

1

2

3

4

5

6

n

ga
p

[%
]

HORDA (BEST) HORDA (10 SAMPLES) HORDA (100 SAMPLES)

Figure 10: Optimality gap of HORDA with a different number of training instances for different n.

instances and generate the training samples that include subproblems as it is described in Section 4.4. The

best model is trained with input instances of size 75 - 100, i.e., HORDA (BEST). HORDA with a neural network

trained on the data set generated from instances with 100 - 125 jobs has a slowly growing optimality gap. For

the training on the data set with smaller input instances 50 - 75, we observe the peak on the optimality gap

at 150. A similar peak on the gap curve was observed even in other experiments; however, it is interesting

how the change of the training instances’ size affects the position of the peak and its width. Nevertheless,

HORDA (BEST) is superior to either HORDA (50-75 n), and HORDA (100-125 n).

The training data set can be created by Subproblem generator using EDD decomposition, SPT decompo-

sition, or their combination denoted shorter where the algorithm always selects the decomposition having the

smallest K◦(J). Those three possibilities are denoted as HORDA (EDD DATA SET), HORDA (SPT DATA SET),

and HORDA (BEST), respectively. The optimality gap of HORDA using neural networks trained on data set

generated with different decompositions is shown in Figure 9. HORDA (BEST) has the smallest optimality gap,

as it utilizes the same decomposition for the generation of the training data set and the evaluation. This un-

derlines the importance of training a neural network on the data with the same distribution as in the evaluation

phase achieved by Subproblem generator generator.

A common practice of improving the performance of the neural network is enlarging the training data set;

therefore, the following experiment is focused on the effect of its size. The neural network was trained on

sub-instances generated by Subproblem generator where for each n ∈ [75,100] we generated 10, 20, 100 input

instances. In other words, the data sets consist 7.5 ·105, 1.6 ·106, and 7.7 ·106 training samples, respectively.

The corresponding experiments shown in Figure 10 are denoted as HORDA (10 SAMPLES), HORDA (BEST),

and HORDA (100 SAMPLES). HORDA (10 SAMPLES) has the optimality gap under 1%. By increasing the

training data set’s size, we get HORDA (BEST) and the worst gap decreases under 0.5%. HORDA (100 SAM-

PLES) has the smallest optimality gap for the instances with up to 125 jobs. However, for larger instances, the

25

optimality gap grows rapidly. It is important to observe that HORDA (100 SAMPLES) has the optimality gap

smaller than HORDA (BEST) on the range of instances from the training data set, i.e., instances with 75−100

jobs. Thus, even though it seems counter-intuitive at first, increasing the training data set the size above a

certain critical level can lead to overfitting, resulting in worse prediction performance of the model on the

instances that do not lay in a range of the training instances.

5.4. Parameters of the Scheduling Algorithm

0 200 400 600 800

0

5

10

15

n

tim
e

[s
]

HORDA (BEST) HORDA (LSTM 32)

(a) Run time of HORDA with different sizes of LSTM as the regressor.

0 200 400 600 800

0

100

200

300

n
#

re
gr

es
so

re
va

lu
at

io
n

[-
]

HORDA (BEST) HORDA (LSTM 32)

(b) The number of regressor evaluations in HORDA with different sizes of

LSTM as a regressor.

Figure 11: Impact of the LSTM capacity on the run time and number of regressor calls in HORDA.

0 200 400 600 800

0

2

4

n

ga
p

[%
]

HORDA (BEST)
HORDA (EDD DECOMPOSITION)
HORDA (SPT DECOMPOSITION)

(a) Optimality gap of HORDA with different (EDD, SPT, shorter) decomposi-

tions used during evaluations.

0 200 400 600 800

0

5

10

15

n

tim
e

[s
]

HORDA (BEST)
HORDA (EDD DECOMPOSITION)
HORDA (SPT DECOMPOSITION)

(b) Run time of HORDA with different (EDD, SPT, shorter) decomposition

used in evaluations.

Figure 12: Impact of the decomposition used in HORDA to the optimality gap and run time.

In this section, we study the impact of the HORDA parameters on its performance. At first, we analyze how

the time of the inference from the neural network affects the run time of HORDA. Then, we compare results

for different decomposition rules used in HORDA.

In the first experiment, we present the impact of the neural network inference time on the run time of

HORDA. For the illustration, we use two neural networks with different inference times. The inference time

of our neural network is primarily affected by the capacity of the LSTM layer. The faster neural network has

a capacity equal to 32. The slower one has a capacity 256, which corresponds to HORDA (BEST) scenario.

The other parameters are set according to HORDA (BEST) scenario. The run times of HORDA assuming ca-

pacity 32 and 256 (denoted HORDA (LSTM 32) and HORDA (BEST), respectively) are shown in Figure 11a.

26

HORDA (LSTM 32) is about three times faster on the instance with 800 jobs than HORDA (BEST), and this

difference increases with the size of the instance. Apart from that, HORDA (LSTM 32) run time slightly drops

for instances around 150 jobs. This is caused by a lower number of neural network evaluations, illustrated

in Figure 11b, where the drop near 150 jobs is obvious even more. The lower number of evaluations is con-

nected with a phenomenon we observed in Figure 6 that compares the optimality gap for different capacities of

LSTM. In that figure, one can see a sudden deterioration of the solution quality for instances around n = 150.

The most probable explanation of the correlation between the quality of results and the number of regressor

evaluations is that HORDA with a poor regressor makes some decisions that lead to subproblems where fil-

tering rules dramatically reduce the candidate set K◦(J). Due to this, we see fewer regressor evaluations in

Figure 11b. However, these choices are suboptimal and lead to particularly degenerative solutions with poorer

quality.

The last experiment presents the impact of the decomposition used in HORDA on the quality of the so-

lutions and run times. Specifically, it compares the cases when position sets K◦(J) are generated either by

EDD, SPT, or shorter decomposition. Figure 12a and Figure 12b show the solution quality and run time

for different decompositions used in HORDA. HORDA (BEST) utilizes shorter decomposition, HORDA (SPT

DECOMPOSITION) utilizes the SPT decomposition, and HORDA (EDD DECOMPOSITION) utilizes the EDD

decomposition. The quality of HORDA (SPT DECOMPOSITION) solutions is inferior to other methods; the re-

sults of HORDA (BEST) and HORDA (EDD DECOMPOSITION) are similar. This is caused by the fact that during

the evaluation of HORDA with the shorter decomposition, the EDD decomposition is selected more frequently

than the SPT decomposition. Since the neural network is trained on the data set generated by shorter decom-

position, the data set contains fewer samples related to SPT decomposition. This property can lead to relatively

small differences in results between the EDD and shorter decomposition and is significantly different from the

SPT decomposition. HORDA (BEST) provides a better solution than HORDA (EDD DECOMPOSITION), mainly

for the instances with less than 300 jobs; for the bigger instances, the difference is negligible.

6. Conclusion

To the best of our knowledge, this is one of the first scheduling algorithms where deep learning is success-

fully used to guide solution-space exploration. Our approach lies in the synergy between the state-of-the-art

operations research method and our neural network. This is opposite to the classical approach in ML, e.g.,

of Vinyals et al. [49] with an end-to-end approach for Traveling Salesman Problem. For the single machine

scheduling problem minimizing total tardiness, we show how a neural network can extend standard decom-

position techniques. Besides, we provide an efficient way to generate the training data set, which is a very

time costly operation for combinatorial problems. The experimental results show that our approach provides

near-optimal solutions very quickly and is also able to generalize the acquired knowledge to larger instances

without significantly affecting the quality of the solutions. Our approach has an average gap 0.26% for in-

stances with up to 800 jobs and outperforms state-of-the-art constructive heuristic NBR with gap 2.14%, as

well as the decomposition-based heuristic having gap 1.25%. Moreover, with limited time to 15 s the state-

of-the-art exact algorithms [18] have an average gap 1.81% and is also dominated by our approach in this

27

scenario.

We believe that the proposed methodology opens new possibilities for the design of efficient heuristics

algorithms where the manual tuning of the heuristic is substituted by automatic ML. Therefore, future research

should address other simple scheduling problems that cannot be efficiently decomposed, like 1||∑Tj. One

possibility may be problem 1||∑w jTj which is still simple and suitable for neural networks. Another research

direction is the generation of the training data set and its efficiency for NP-hard problems. This paper has

shown that there are better ways to generate the training instances; nevertheless, it is tailored to problem

1||∑Tj.

7. Acknowledgements

The authors want to thank Vincent T’Kindt from Université de Tours for providing the source code of

TTBM algorithm.

This work was supported by the European Regional Development Fund under the project AI&Reasoning

(reg. no. CZ.02.1.01/0.0/0.0/15_003/0000466), the Grant Agency of the Czech Republic under the Project

GACR 22-31670S, and the EU and the Ministry of Industry and Trade of the Czech Republic under the Project

OP PIK CZ.01.1.02/0.0/0.0/20_321/0024399.

Appendix

28

Table 4: List of used notations.

J set of jobs (problem instance)

n number of jobs

p j processing time of job j

d j due date of job j

π permutation of jobs J

T ∗ (J) optimal total tardiness of instance J

Tπk(J) tardiness of job πk in permutation π of J

T(J,π) total tardiness of J under permutation π

◦ problem decomposition (EDD or SPT)

l◦(J) splitting job in decomposition ◦

k possible positions of l◦(J) in the schedule

K◦(J) set of positions k of job l◦(J) defined by decomposition ◦

K◦(J) filtered K◦(J)

P◦(J,k) preceding subset of jobs for decomposition ◦, set J and position k

F◦(J,k) following subset of jobs for decomposition ◦, set J and position k

J′ a subproblem (either P◦(J,k)⊂ J or F◦(J,k)⊂ J)

Q(J,k) optimal total tardiness of J with splitting job l◦(J) at position k

T̂ (J) estimated total tardiness of J

Q̂(J,k) estimated total tardiness of J with splitting job l◦(J) at position k

k∗ position of splitting job l◦(J) with minimal Q̂(J,k)

XXX input vector of the neural network

y output of the neural network

πEDD permutation of J in EDD order

gapEDD gap of the EDD schedule w.r.t. to the optimal solution

pmax maximal processing time of a job

29

Table 5: List of used abbreviations.

LSTM Long Short-Term Memory

GRU Gated Recurrent Unit

ML Machine Learning

GA Genetic Algorithm

HORDA Heuristic Optimizer using Regression-based Decomposition Algorithm

TTBM Total Tardiness Branch-and-Merge Algorithm

TSP Traveling Salesman Problem

EDD Earliest Due Date

SPT Shortest Processing Time

OR Operations Research

CSP Constraint Satisfaction Problem

MDD Modified Due Date Rule

30

References

[1] ABE, K., XU, Z., SATO, I., AND SUGIYAMA, M. Solving NP-Hard problems on graphs with extended

AlphaGo Zero. arXiv preprint arXiv:1905.11623 (2019).

[2] ALICASTRO, M., FERONE, D., FESTA, P., FUGARO, S., AND PASTORE, T. A reinforcement learning

iterated local search for makespan minimization in additive manufacturing machine scheduling problems.

Computers & Operations Research (2021), 105272.

[3] ANTONY, S. R., AND KOULAMAS, C. Simulated annealing applied to the total tardiness problem.

Control and Cybernetics 25 (1996), 121–130.

[4] APPLEGATE, D., BIXBY, R., CHVATAL, V., AND COOK, W. Concorde TSP solver, 2006.

[5] BAUER, A., BULLNHEIMER, B., HARTL, R. F., AND STRAUSS, C. An ant colony optimization ap-

proach for the single machine total tardiness problem. In Proceedings of the 1999 Congress on Evolu-

tionary Computation-CEC99 (Cat. No. 99TH8406) (1999), vol. 2, IEEE, pp. 1445–1450.

[6] BEN-DAYA, M., AND AL-FAWZAN, M. A simulated annealing approach for the one-machine mean

tardiness scheduling problem. European Journal of Operational Research 93, 1 (1996), 61–67.

[7] BENGIO, Y., LODI, A., AND PROUVOST, A. Machine learning for combinatorial optimization: A

methodological tour d’horizon. European Journal of Operational Research 290, 2 (2021), 405–421.

[8] BERTRAND, J. A dynamic priority rule for scheduling against due-dates. J. Oper. Management3 (1)

(1982), 37–42.

[9] BOUSKA, M., NOVAK, A., SUCHA, P., MODOS, I., AND HANZALEK., Z. Data-driven algorithm

for scheduling with total tardiness. In Proceedings of the 9th International Conference on Operations

Research and Enterprise Systems (ICORES) (2020), INSTICC, SciTePress, pp. 59–68.

[10] CAPPART, Q., MOISAN, T., ROUSSEAU, L.-M., PREMONT-SCHWARZ, I., AND CIRE, A. Combin-

ing reinforcement learning and constraint programming for combinatorial optimization. arXiv preprint

arXiv:2006.01610 (2020).

[11] CHENG, T. E., LAZAREV, A. A., AND GAFAROV, E. R. A hybrid algorithm for the single-machine

total tardiness problem. Computers & Operations Research 36, 2 (2009), 308–315.

[12] CHO, K., VAN MERRIËNBOER, B., GULCEHRE, C., BAHDANAU, D., BOUGARES, F., SCHWENK, H.,

AND BENGIO, Y. Learning phrase representations using RNN encoder–decoder for statistical machine

translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Process-

ing (EMNLP) (Doha, Qatar, Oct. 2014), Association for Computational Linguistics, pp. 1724–1734.

[13] DELLA CROCE, F., GROSSO, A., AND PASCHOS, V. T. Lower bounds on the approximation ratios

of leading heuristics for the single-machine total tardiness problem. Journal of Scheduling 7, 1 (2004),

85–91.

31

[14] DELLA CROCE, F., TADEI, R., BARACCO, P., AND GROSSO, A. A new decomposition approach for

the single machine total tardiness scheduling problem. Journal of the Operational Research Society 49,

10 (1998), 1101–1106.

[15] DEUDON, M., COURNUT, P., LACOSTE, A., ADULYASAK, Y., AND ROUSSEAU, L.-M. Learning

heuristics for the TSP by policy gradient. In International Conference on the Integration of Constraint

Programming, Artificial Intelligence, and Operations Research (2018), Springer, pp. 170–181.

[16] DIMOPOULOS, C., AND ZALZALA, A. A genetic programming heuristic for the one-machine total

tardiness problem. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No.

99TH8406) (1999), vol. 3, IEEE, pp. 2207–2214.

[17] DU, J., AND LEUNG, J. Y. T. Minimizing total tardiness on one machine is NP-Hard. Mathematics of

Operations Research 15, 3 (Aug. 1990), 483–495.

[18] GARRAFFA, M., SHANG, L., DELLA CROCE, F., AND T’KINDT, V. An exact exponential branch-

and-merge algorithm for the single machine total tardiness problem. Theoretical Computer Science 745

(2018), 133–149.

[19] GRAHAM, R. L., LAWLER, E. L., LENSTRA, J. K., AND KAN, A. R. Optimization and approximation

in deterministic sequencing and scheduling: A survey. Annals of discrete mathematics 5 (1979), 287–

326.

[20] HOCHREITER, S., AND SCHMIDHUBER, J. Long short-term memory. Neural Comput. 9, 8 (Nov. 1997),

1735–1780.

[21] HOLSENBACK, J. E., AND RUSSELL, R. M. A heuristic algorithm for sequencing on one machine to

minimize total tardiness. Journal of the Operational Research Society 43, 1 (1992), 53–62.

[22] HUANG, J., PATWARY, M. M. A., AND DIAMOS, G. F. Coloring big graphs with AlphaGo Zero. CoRR

abs/1902.10162 (2019).

[23] JAIN, A. S., AND MEERAN, S. Job-shop scheduling using neural networks. International Journal of

Production Research 36, 5 (1998), 1249–1272.

[24] KHALIL, E., DAI, H., ZHANG, Y., DILKINA, B., AND SONG, L. Learning combinatorial optimization

algorithms over graphs. In Advances in Neural Information Processing Systems (2017), pp. 6348–6358.

[25] KOOL, W., VAN HOOF, H., AND WELLING, M. Attention, learn to solve routing problems! In Interna-

tional Conference on Learning Representations (New Orleans, USA, 2019).

[26] KOULAMAS, C. The single-machine total tardiness scheduling problem: Review and extensions. Euro-

pean Journal of Operational Research 202, 1 (2010), 1 – 7.

[27] KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. E. Imagenet classification with deep convolu-

tional neural networks. Advances in neural information processing systems 25 (2012).

32

[28] LAGUNA, M., DUARTE, A., AND MARTÍ, R. Hybridizing the cross-entropy method: An application to

the max-cut problem. Computers & Operations Research 36, 2 (2009), 487–498.

[29] LARA-CARDENAS, E., SANCHEZ-DIAZ, X., AMAYA, I., AND ORTIZ-BAYLISS, J. C. Improving

hyper-heuristic performance for job shop scheduling problems using neural networks. In Mexican Inter-

national Conference on Artificial Intelligence (2019), Springer, pp. 150–161.

[30] LAWLER, E. L. A “pseudopolynomial” algorithm for sequencing jobs to minimize total tardiness. In

Studies in Integer Programming, P. Hammer, E. Johnson, B. Korte, and G. Nemhauser, Eds., vol. 1 of

Annals of Discrete Mathematics. Elsevier, 1977, pp. 331–342.

[31] LIN, S., AND KERNIGHAN, B. W. An effective heuristic algorithm for the traveling-salesman problem.

Operations Research 21, 2 (1973), 498–516.

[32] LUO, S. Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learn-

ing. Applied Soft Computing 91 (2020), 106208.

[33] MAZYAVKINA, N., SVIRIDOV, S., IVANOV, S., AND BURNAEV, E. Reinforcement learning for combi-

natorial optimization: A survey. CoRR abs/2003.03600 (2020).

[34] MORRISON, D. R., SEWELL, E. C., AND JACOBSON, S. H. An application of the branch, bound, and

remember algorithm to a new simple assembly line balancing dataset. European Journal of Operational

Research 236, 2 (2014), 403–409.

[35] NAIR, V., BARTUNOV, S., GIMENO, F., VON GLEHN, I., LICHOCKI, P., LOBOV, I., O’DONOGHUE,

B., SONNERAT, N., TJANDRAATMADJA, C., WANG, P., ET AL. Solving mixed integer programs using

neural networks. arXiv preprint arXiv:2012.13349 (2020).

[36] PANWALKAR, S., SMITH, M., AND KOULAMAS, C. A heuristic for the single machine tardiness prob-

lem. European Journal of Operational Research 70, 3 (1993), 304–310.

[37] POTTS, C., AND VAN WASSENHOVE, L. N. Single machine tardiness sequencing heuristics. IIE

Transactions 23, 4 (1991), 346–354.

[38] RUSSELL, R., AND HOLSENBACK, J. Evaluation of greedy, myopic and less-greedy heuristics for

the single machine, total tardiness problem. Journal of the Operational Research Society 48, 6 (1997),

640–646.

[39] SHANG, L., T’KINDT, V., AND DELLA CROCE, F. Exact solution of the single machine total tardiness

problem: The power of memorization. In 7th International Conference on Industrial Engineering and

System Management (IESM 2017) (2017), pp. 268–272.

[40] SHANG, L., T’KINDT, V., AND DELLA CROCE, F. Branch & memorize exact algorithms for sequencing

problems: Efficient embedding of memorization into search trees. Computers & Operations Research

128 (2021), 105171.

33

[41] SÜER, G. A., YANG, X., ALHAWARI, O. I., SANTOS, J., AND VAZQUEZ, R. A genetic algorithm

approach for minimizing total tardiness in single machine scheduling. International Journal of Industrial

Engineering and Management (IJIEM) 3, 3 (2012), 163–171.

[42] SUNDERMEYER, M., SCHLÜTER, R., AND NEY, H. LSTM neural networks for language modeling. In

Thirteenth annual conference of the international speech communication association (2012), pp. 194–

197.

[43] SZWARC, W., DELLA CROCE, F., AND GROSSO, A. Solution of the single machine total tardiness

problem. Journal of Scheduling 2, 2 (1999), 55–71.

[44] SZWARC, W., GROSSO, A., AND CROCE, F. D. Algorithmic paradoxes of the single-machine total

tardiness problem. Journal of Scheduling 4, 2 (2001), 93–104.

[45] SZWARC, W., AND MUKHOPADHYAY, S. K. Decomposition of the single machine total tardiness prob-

lem. Operations Research Letters 19, 5 (1996), 243–250.

[46] TANG, Y., AGRAWAL, S., AND FAENZA, Y. Reinforcement learning for integer programming: Learning

to cut. In International Conference on Machine Learning (2020), PMLR, pp. 9367–9376.

[47] VÁCLAVÍK, R., NOVAK, A., ŠŮCHA, P., AND HANZÁLEK, Z. Accelerating the branch-and-price

algorithm using machine learning. European Journal of Operational Research 271, 3 (2018), 1055–

1069.

[48] VÁCLAVÍK, R., ŠŮCHA, P., AND HANZÁLEK, Z. Roster evaluation based on classifiers for the nurse

rostering problem. Journal of Heuristics 22, 5 (Oct 2016), 667–697.

[49] VINYALS, O., FORTUNATO, M., AND JAITLY, N. Pointer networks. In Advances in Neural Information

Processing Systems (2015), pp. 2692–2700.

[50] WASZNIOWSKI, L., KRÁKORA, J., AND HANZÁLEK, Z. Case study on distributed and fault tolerant

system modeling based on timed automata. Journal of Systems and Software 82, 10 (2009), 1678–1694.

SI: YAU.

[51] XU, H., KOENIG, S., AND KUMAR, T. S. Towards effective deep learning for constraint satisfaction

problems. In International Conference on Principles and Practice of Constraint Programming (2018),

Springer, pp. 588–597.

[52] ZHANG, C., SONG, W., CAO, Z., ZHANG, J., TAN, P. S., AND XU, C. Learning to dispatch for job

shop scheduling via deep reinforcement learning. arXiv preprint arXiv:2010.12367 (2020).

[53] ZHOU, D. N., CHERKASSKY, V., BALDWIN, T. R., AND OLSON, D. E. A neural network approach to

job-shop scheduling. IEEE Transactions on Neural Networks 2, 1 (Jan 1991), 175–179.

34

	Introduction
	Related Work
	Single Machine Total Tardiness Problems
	Use of Machine Learning in Algorithms for Combinatorial Optimization Problem

	Problem Statement
	Proposed Decomposition Heuristic Algorithm
	Problem Decompositions
	Scheduling Algorithm
	Regressor
	Normalization of the Input Data
	Neural Network

	Training Data Set Generation
	Time Complexity of the Scheduling Algorithm

	Experimental Results
	Experimental setup
	Comparison with state-of-the-art approaches
	Neural network hyperparameters
	Parameters of the Scheduling Algorithm

	Conclusion
	Acknowledgements

