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Abstract

Semidefinite programming (SDP) is a large class of linear conic optimization problems,
whose variables are matrices belonging to an affine section of the positive semidefinite
cone. In many applications, the input data of these convex optimization problems change
as a function of time. This thesis explores time-varying semidefinite programs (TV-SDPs),
SDP problems whose data and solutions depend on a time parameter.

We first study the geometry of the trajectory of solutions, defined as the set-valued
map that associates to any value of the time parameter the set of optimal solutions. We
propose an exhaustive description of the geometric behavior of this trajectory. As our
main result, we show that along the solution trajectory only six distinct types of behaviors
can be observed, and we illustrate each type with an example.

Next, we present a path-following algorithm for TV-SDP, based on tracking the solutions
trajectory of a matrix factorization, known as the Burer–Monteiro factorization. The
method is built on solving a sequence of linearized optimality conditions systems, which
requires the introduction of a horizontal space constraint to ensure the local injectivity of
the factorization. The algorithm produces a sequence of approximate solutions for the
original TV-SDP problem, for which we show that they stay close to the optimal solution
path if properly initialized. Numerical experiments for a time-varying Max-Cut SDP
relaxation demonstrate the computational advantages of the method for tracking TV-SDPs
in terms of runtime and accuracy, compared to off-the-shelf interior point algorithms.

Keywords: semidefinite programming; parametric optimization; convex optimization;
linear conic optimization; continuous optimization; matrix optimization
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Abstrakt

Semidefinitní programování (SDP) je rozsáhlá třída konvexních optimalizačních úloh,
jejichž proměnnými jsou matice patřící do afinního podprostoru positivně-semidefinitního
kužele. V mnoha aplikacích se vstupní data těchto konvexních optimalizačních problémů
mění jako funkce času. Tato práce zkoumá v čase proměnné semidefinitní programy
(TV-SDP), jejichž data a řešení závisí na parametru času.

Nejprve studujeme geometrii trajektorie řešení, definovanou jako funkcí s oborem
hodnot na množinách, která k libovolné hodnotě časového parametru přiřazuje množinu
optimálních řešení. Představujeme dobrou charakterizaci geometrického chování této
trajektorie. Jako náš hlavní výsledek ukazujeme, že podél trajektorie řešení lze pozorovat
pouze šest různých typů chování, a každý typ ilustrujeme na příkladu.

Dále představujeme algoritmus pro sledování trajektorie řešení TV-SDP, který je založen
na sledování trajektorie řešení maticové faktorizace, známé jako Burerova–Monteirova
faktorizace. Algoritmus je postaven na řešení posloupnosti linearizovaných systémů
podmínek optimality, což vyžaduje zavedení omezení na tzv. horizontální podprostor,
které zajistí lokální injektivitu faktorizace. Algoritmus vytváří posloupnost přibližných
řešení původního problému TV-SDP, u nichž ukazujeme, že při správné inicializaci zůstá-
vají blízko optimální trajektorie řešení. Numerické experimenty pro v čase proměnnou
relaxaci problému bisekce ukazují, že algoritmus je z hlediska doby běhu a přesnosti
vylepšením oproti standardním algoritmům založeným na tzv. metodě vnitřního bodu.

Klíčová slova: semidefinitní programování; parametrická optimalizace; konvexní opti-
malizace; lineární konická optimalizace; spojitá optimalizace; maticová optimalizace
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Chapter 1

Ouverture

W
ho doesn’t love opera? And who doesn’t love mathematics? After all, they both offer
great and immortal stories. Regrettably, far too many do not appreciate these two
great products of the human intellect. This work is not for them. To be fair, if the
reader enjoys opera but not mathematics, this work is not for them either. On the

other hand, if the reader loves mathematics but not opera, they can surely keep reading. We do
hope that the reader is fond of both and that will enjoy this operatic thesis. Please sit comfortably,
turn off the phone, and let the maths begin...

“Oh che bella introduzione vi sarebbe da cavar!"

Prosdocimo in Il Turco in Italia (Act I, Scene 1)

Semidefinite programming (SDP)1 is a class of convex constrained optimization problems.
More precisely, as we will see in Chapter 2, it is the set of linear conic optimization
problems over the cone of positive semidefinite matrices. To put it into a perhaps more
familiar perspective for the average reader, SDP can be thought of as a generalization of
linear programming (LP). This latter is probably the most well-known and studied class
of problems in the field of mathematical optimization, and it can now be regarded as a
reliable technological tool. Its story is indeed a successful one: its theory is today well
understood, more and more efficient algorithms have been developed, and its applications
are spread around many fields of mathematics, engineering, and computer science.

While the origins of LP date back to the 1940s, SDP is a much younger field, as
it started to gain the attention of the optimization community only in the late 1980s.
Since then, many researchers from very different fields have been attracted to this
class of problems, including experts in convex programming, linear algebra, numerical

1The acronym SDP can also denote a “semidefinite program". Its use will be clear from the context.

1

https://youtu.be/UjdIftw-vC8?t=94


Ouverture

optimization, combinatorial optimization, polynomial optimization, control theory, and
statistics, who were interested in the theoretical, numerical, and application aspects
of these problems. This research activity has greatly increased since the discovery of
important applications in combinatorial optimization [1, 2] and control theory [3, 4], as
well as the development of efficient interior point methods.

In particular, the success of SDP was boosted by the discovery that semidefinite
relaxations are available for fundamental problems such as the Max-Cut problem, for
which the successful Goemans–Williamson approximation algorithm [5] is available, or
coloring problems [6].

Meanwhile, the development of efficient polynomial-time interior point algorithms [7,
8, 9, 10], [11, Chapter 9] for solving SDPs drastically contributed to making SDP an
interesting and powerful tool in conic optimization. These methods solve a convex
optimization problem by generating a sequence of points lying in the interior of the
feasible set and converging to a boundary point that corresponds to an approximate
optimal solution of any desired accuracy. The generation of this sequence is based on
the application of Newton’s method to find a solution to systems of perturbed optimality
conditions. As a perturbation parameter is tuned, the solution of the systems converges to
an optimal solution, following a smooth curve, the so-called central-path. These algorithms
are second-order methods, so that they require to iteratively compute the Hessian of a
function. First-order method, only requiring gradient computations, are also available,
but they are typically slower.

More recently, the importance of SDP was established by the development of Lasserre’s
Moment-Sum-of-Squares hierarchy [12, 13] for solving a polynomial optimization prob-
lem (POP). An approximate solution for the latter is found by solving a sequence of SDP
problems of increasing size, which are convex relaxations of an equivalent formulation
of the original POP as an infinite dimensional linear problem in the space of finite mea-
sures. Many problems in control theory, such as checking Lyapunov stability of dynamical
systems, can be reduced to solving polynomial equations, polynomial inequalities, or
polynomial differential equations, and they can hence be approximately solved by the
Moment-Sum-of-Squares hierarchy [14]. A survey of the state of the art in the areas of
SDP, conic optimization, and polynomial optimization is given in [15].

Other notable and interesting applications of SDP appear in machine learning [16,
3], quantum information [17], conformal fields theory [18], finance [19], as well as in
estimation [20], graph realization [21], and matrix completion [22] problems.

2



Time-varying semidefinite programming (Allegro)

Time-varying semidefinite programming (Allegro)

A semidefinite program is an optimization problem that can be expressed in the form

p⋆ = inf
X∈Sn
〈C , X 〉

s.t. A(X ) = b,

X ⪰ 0,

(P)

which we will refer to as the primal problem. The goal of (P) is to find a symmetric
matrix X minimizing the objective function over a feasible region defined by a set of linear
equations and a positive semidefiniteness constraint, finding the optimal value p⋆ ∈ R.
The objective function is linear and usually defined as the Frobenius inner product

〈C , X 〉 := trace(C T X ) =
n
∑

i, j=1

Ci, jX i, j (1.1)

between amatrix C and thematrix variable X , both belonging to Sn, the space of symmetric
n × n matrices of with real entries. Indeed, Sn equipped with the inner product (1.1)
forms a Euclidean space. The notation A(X ) = b models a number m of linear equations
that X must satisfy, 〈Ai, X 〉= bi for i ∈ [m], where Ai ∈ Sn are given matrices and bi are
given scalars, thus defining a linear operator A : Sn → Rm between Euclidean spaces.
Furthermore, the matrix variable X must belong to the set of positive semidefinte matrices

Sn
+ := {X ∈ Sn | vT X v ≥ 0, ∀v ∈ Rn},

which, as discussed in the first section of the next chapter, forms a proper cone. The
notation X ⪰ 0 is a shortcut for X ∈ Sn

+, and the symbol ⪰ denotes the Loewner partial
order on square matrices:

A⪰ B ⇐⇒ A− B ∈ Sn
+.

The feasible region is hence the intersection of the semidefinite cone with an affine
subspace described by linear equations:

P := {X ∈ Sn |A(X ) = b, X ⪰ 0}.

Such a set, often referred to as a spectrahedron, is convex and basic closed semialgebraic, as
it can be expressed as the intersection of n polynomial inequalities. These can be derived

3



Ouverture

by imposing that the n coefficients of the characteristic polynomial πX (λ) = det(λIn − X )

of a matrix X are such that the solutions of πX (λ) = 0, that is, the eigenvalues of X ,
are all non-negative (see, e.g., Corollary 7.2.4 in [23]). Thus, problem (P) is a convex
optimization problem whose feasible region is a spectrahedron. If P is empty, we say that
the problem (P) is infeasible, and we write p⋆ =∞. Otherwise, we say that the problem
is feasible. Finally, if p⋆ = −∞ we say that the problem is unbounded. We refer to any
X ∈ P as a feasible solution or a feasible point. If, furthermore, 〈C , X 〉= p⋆ we say that X is
an optimal solution or an optimal point. Note that, in principle, the infimum in (P) might
not be attained. However, under standard constraints qualification assumptions that we
review Chapter 2, the infimum is indeed a minimum.

The subject of this thesis is time-varying semidefinite programming (TV-SDP). A
TV-SDP is a parametric SDP problem that can be expressed in the form

p⋆t = inf
X∈Sn
〈Ct , X 〉

s.t. At(X ) = bt ,

X ⪰ 0.

(Pt)

The objects defining (Pt) are the same as those defining (P), with the only difference
being the dependence of the problem data A, b, C on a parameter t, which we think as a
time parameter, varying on a given real interval [0,τ]. In this time-varying setting, the
goal is to find a curve t 7→ X t in Sn such that X = X t is an optimal solution for (Pt) at
each time point t ∈ [0,τ]. Numerically, this translates in finding a sequence of matrices
{Xk}k∈[κ] such that each Xk is an (approximate) optimal solution to (Ptk

), where {tk}k∈[κ]
is a partition of size κ ∈ N of the parametrization interval [0,τ]. We adopt the former
point of view in Chapter 3, where we study the geometric properties of the trajectory
of solutions, while in Chapter 4 we address the problem from the latter perspective,
providing an algorithm that produces a sequence of solutions {Xk}k∈[κ].

Time-dependent problems leading to TV-SDPs occur in various applications, such
as optimal power flow problems in power systems [24], state estimation problems in
quantum systems [17], modeling of energy economic problems [25], job-shop scheduling
problems [26], as well as problems arising in signal processing, queueing theory [27] or
aircraft engineering [28].

In order to illustrate the modeling power of TV-SDP, we briefly describe three notable
examples. The optimal power flow (OPF) is a non-convex and generally hard to solve
problem in power systems, where it is critical for maintaining secure and economic
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Time-varying semidefinite programming (Allegro)

operations. First proposed by Carpentier [29], it has become increasingly important as
electric power system operations grew in complexity. Its objective is usually minimizing
the sum of the costs of power generators under the conditions of operating constraints.
The OPF problem has been extensively studied in the literature and numerous algorithms
have been proposed for solving this non-convex problem. Among these, semidefinite
programming relaxations are very successful. For a highly cited example, see [24], where
a semidefinite program, which is the dual of an equivalent form of the OPF problem, was
proposed. There, a globally optimal solution to the OPF problem can be retrieved from a
solution of this convex dual problem whenever the relaxation gap is zero. In real world
instances of OPF problem, data are clearly time-dependent, as physical and technical
conditions of the network change during the day. Hence TV-SDP appears as a natural way
to address the OPF problem in its time-dependent version (see section II.A in [30]).

In quantum systems, one would like to update the estimate of the state of a quantum
system as it changes under the influence of a noise process. Consider, for example, the
problem where many copies of an unknown n-qubit state ρ are given. A measuring
process is then defined, where at each stage only some copies of ρ are measured using
a known measurement E1. At the next stage, other copies of ρ are measured using
another measurement E2, and so on. At each stage, a current hypothesis ωt about the
state is generated using the outcomes of the previous measurements. Using techniques
from online convex optimization, Aaronson et al. [17] showed that it is possible to
follow this process in a way that guarantees that | trace(Eiωt)− trace(Eiρ)|, the prediction
error for the next measurement, can be bounded both from below and above. Here, the
key observation is that an n-qubit quantum state ρ is an element of the set of positive
semidefinite complex matrices of dimension 2n × 2n and unitary trace. Following this
observation, the problem can be formulated as a TV-SDP.

In computer vision, there are also interesting applications of TV-SDPs. One is in the
background subtraction problem, where the goal is to differentiate between a slow-moving
background of a video sequence and the foreground, which is composed of objects moving
faster than the background. This problem can be expressed as the problem of minimizing
the rank of a matrix whose rows represent a subset of subsequent frames of a given video
sequence [31]. Since the nuclear norm is the convex envelope of the rank function on
the unit matrix ball [32], one can use it as an approximation of the rank. Furthermore,
the nuclear norm is semidefinite-representable [33], so that one can cast the background
subtraction problem into a TV-SDP.
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Background and previous work (Andante)

Semidefinite programming is today a well established field of mathematical optimization,
so that various textbooks and extensive surveys are available on the topic [11, 34, 35, 36,
37]. The fundamental properties of SDP (such as duality, strict feasibility, uniqueness of
the solution, strict complementarity, non-degeneracy) and its prerequisites are widely
understood; see for example [38], where Alizadeh, Haeberly and Overton clarified the
relation between uniqueness of the solution, non-degeneracy, and strict complementarity.
Likewise, the geometry of SDP, that is, spectrahedral geometry, has been studied in depth.
Pataki offers in [11, Chapter 3] an excellent overview, as well as Ramana and Goldman
in [39]. Non-linear SDPs were also considered in the literature, see for example [40].

On the other hand, time-varying optimization has proven to be relevant in many
application (see, e.g., the survey paper [41]). TV-SDPs can be seen as a generalization
of time-varying linear programming (TV-LP) problems. In the context of parametric
optimization, these latter have been extensively studied [42, 43, 44, 45, 46], while
Bellman [47] was the first to study them in relation to so-called bottleneck problems in
multistage linear production economic processes in the context of dynamic programming
[48]. Since then, a large body of literature has been devoted to studying TV-LP with
and without additional assumptions. However, the generalization of this idea to other
classes of optimization problems has only recently been considered, often in the context
of sensitivity analysis [49, 50].

Goldfarb and Scheinberg were the first to consider in [51] parametric SDPs. There,
the objective function depends linearly on a scalar parameter. Studying the properties of
the optimal value as a function of the parameter, they extended the concept of optimal
partition from LP to SDP.

More recently, Ahmadi and El Khadir [52] considered time-varying SDPs. In contrast
to our setting, in their work they require the data to vary polynomially with time, proving
that it is possible to restrict to consider solutions whose entries also vary polynomially
with time without changing the optimal value.

Following the pioneering contribution of Goldfarb and Scheinberg [51], a number of
important papers appeared recently:

• Al-Salih and Bohner [53] studied LP on time scales, which allows for the mixing
of difference and differential operators in a broad class of extensions of LP models
using the notion of time scales.
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• Wang, Zhang, and Yao [54] studied a wide family of parametric optimization
problems, which are known as separated continuous conic programming, and
developed a strong duality theory for these. They proposed a polynomial-time
approximation algorithm that solves such problems to any required accuracy. Their
framework is generalized to SDP in [52].

• Nayakkankuppam and Overton [55] studied the sensitivity of SDPs, analyzing the
effect on the solution of small perturbations on the problem data. They derived an
explicit bound on the change in the solution in a primal-dual framework, quantifying
the size of permissible perturbations.

• Sekiguchi and Waki [4] studied sensitivity of an SDP under perturbations in a more
general framework than in [51], showing that when the coefficient matrices are
perturbed, the optimal values can change discontinuously and illustrate this in
concrete examples. To some extent, we move in parallel to their results, studying
the behavior of optimal solutions of a TV-SDP as function of the time parameter,
while they focus on the optimal value instead.

• Mohammad-Nezhad [56], together with Terlaky [57], Haunstein, and Tang [58],
are the closest to our work in spirit. Their dependence of the problem on the data
is assumed to be linear, which is a more restrictive assumption than the one we
use. In part, we build upon their theoretical results, but instead of employing the
concepts of non-linearity intervals, invariancy intervals, and transition points, we
use a purely set-valued analysis approach.

• Ahmadi and El Khadir [59] and [52] are the closest to our work in name. They
studied the setting where the data vary with known polynomials of the parameter
and showed that under a strict feasibility assumption, restricting the solutions to be
polynomial functions of the parameter does not change the optimal value of the
TV-SDP. They also provided a sequence of SDP problems that give upper bounds
on the optimal value of a TV-SDP converging to the optimal value. In contrast, as
discussed in the next paragraph, we use a different setting, where for the first of our
main results, Theorem 3.3 we only assume continuity of the map from the parameter
to the problem data, while we make a stronger polynomial dependence assumption
for Theorem 3.4. Moreover, we provide a complete geometric characterization of
the solutions trajectory.

7



Ouverture

It is worth at this point to remark that there are mainly two different types of TV-SDPs
considered in the literature. The first type is the one considered by the aforementioned
[59] and [52]. There, the constraints at a given time point are linked to to the solutions at
the previous times via kernel terms. In this case, the solutions are thought as measurable
functions, which are required to satisfy the constraints only on a set of times that is the
complement of a measure-zero set, i.e. almost everywhere. Instead, we consider the easier
case where constraints are independent through time. This approach, considered by [51,
60] and [58], assumes that the coefficients of the SDP simply depend on a parameter,
and looks for solutions of the problem at each value of the parameter.

In our framework, the adjective time-varying hence simply refer to the presence of a
univariate parameter, which in applications often coincides with time.

Contributions (Rondò)

Our primary goal is to investigate the properties of the trajectories of solutions to TV-SDP,
on the one hand to increase the knowledge in an interesting and relatively novel area of
research; on the other hand, to set the theoretical bases to design efficient algorithms for
TV-SDP with guarantees on their performance. Themain contents of the thesis are exposed
in Chapters 3 and 4, and follow closely two papers: Parametric SDP: geometry of the
trajectory of solutions [61] and TV-SDP: path following a Burer–Monteiro factorization [62].

In particular, we want to characterize points of the trajectory of solutions to TV-
SDPs according to the local behavior of the trajectory at the point considered. This
research objective was inspired by the textbook Parametric Optimization: Singularities,
Pathfollowing and Jumps [63], where a classification of solutions to univariate parametric
nonlinear constrained optimization problems is proposed. As a result, we define six
different types of points, according to the local behavior of the trajectory of the solutions
at that point. We then prove a classification theorem, which states, under general and
standard assumptions, that only the types of points that we defined can actually appear.
Furthermore, under the technical assumption of the existence of a generic non-singular
time (see Definition 3.2), we show that only three of the six types of points that we
defined can actually appear. This is the subject of Chapter 3.

The classification of points in different types is based on the geometry of the trajectory
of solutions over a given time parametrization interval. Before a given time, we assume
that the trajectory is regular and follows a continuous curve. Then, at the time of interest,
we distinguish between the following situations:
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• Regular point: the trajectory is single-valued and differentiable;

• Non-differentiable point: the trajectory is single-valued but not differentiable;

• Discontinuous isolated multiple point: a loss of continuity causes a loss of unique-
ness of the solution, implying a multiple-valued solution. After the point, uniqueness
is restored, and hence the loss of uniqueness is isolated;

• Discontinuous non-isolated multiple point: a loss of continuity causes a loss of
uniqueness of the solution, implying a multiple-valued solution. After the point,
uniqueness is not restored hence the loss of uniqueness is not isolated;

• Continuous bifurcation point: the trajectory splits into several distinct branches.
This results in a loss of uniqueness which still preserves continuity;

• Irregular accumulation point: accumulation point of a set made of either bifurca-
tion points or discontinuous isolated multiple points.

We believe that a first contribution of our research is precisely the definition of these
types of points. The main results presented in Chapter 3 are Theorem 3.3 and 3.4, which
we informally state here.

Informal statement of Theorem 3.3 Under assumptions of linear independence con-
straint qualification (LICQ), existence of strictly feasibile point and continuity of
the data with respect to time, the trajectory can only be comprised of points of the
six types described above.

Informal statement of Theorem 3.4 Under the same assumptions of Theorem 3.3, sup-
pose that the problem data are polynomial functions of time and that there exists
a generic non-singular time (see Def. 3.2). Then the trajectory is comprised of
only regular points, non-differentiable points, or isolated multiple points. In other
words, non-isolated discontinuous multiple points, bifurcation points, and irregular
accumulation points cannot appear. Furthermore, the number of non-differentiable
points, or isolated multiple points is finite.

Notice that while we only assume continuity of the data for Theorem 3.3, we need stronger
regularity assumptions to guarantee the validity of Theorem 3.4. The two results are
visually summarized in the next page by Table 1.1.

As mentioned before, other than interesting for a purely theoretical study, these results
were useful for the subsequent development of a path-following algorithm to track the
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Problem assumptions Type of points
TV-SDP with LICQ, polynomial data, strict feasibility, Regular points

and a generic non-singular time Non-differentiable points
Discontinuous isolated multiple points

TV-SDP with LICQ, continuous data, strict feasibility, Regular points
without a generic non-singular time Non-differentiable points

Discontinuous isolated multiple points
Discontinuous non-isolated multiple points
Continuous bifurcation points
Irregular accumulation points

Table 1.1: Assumptions on TV-SDP and associated possible type of points

trajectory of solutions to TV-SDP, similarly to what has been developed in [63, 64]. In
classical predictor-corrector methods, a predictor step for approximating the directional
derivative of the solution with respect to a small change in the time parameter is applied,
together with a correction step that moves from the current approximate solution closer
to the next solution at the new time point. The method that we propose incorporates
these two steps in a single Newton step applied to the first-order optimality conditions.

Indeed, if one wants to apply a path-following strategy, the trajectory of solutions
needs to be defined by a regular (smooth) curve. Thanks to our previous analysis, in
particular to Theorem 3.4, we know that, under the condition of the existence of a generic
non-singular time, the trajectory of solutions is made of regular points, except for a
finite number of loss of differentiability and discontinuous isolated multiple points. This
justifies and motivates the development of a procedure that can track a trajectory when
this is only made of regular points, hence describing a smooth curve. The analysis of the
possible irregular behaviors that the trajectory of solutions can be affected from has the
further advantage of providing algebraic conditions that in principle can be numerically
monitored to check whether the trajectory is approaching a point where regularity is loss.

A limiting factor in solving both stationary and time-dependent SDPs is computational
complexity when n is large. A common solution to this obstacle is the Burer–Monteiro
approach, as presented in the seminal work [65, 66]. In this approach, a low-rank Cholesky
factorization X = Y Y T of the solution is assumed with Y ∈ Rn×r and r potentially much
smaller than n. This leads to the following factorized version of (P)

min
Y∈Rn×r

〈Ct , Y Y T 〉

s.t. At(Y Y T ) = bt ,
(Qt)

which is a quadratically constrained quadratic problem, that is in general non-convex.
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Moreover, theoretically it may happen that local optimization methods converge to a
critical point that is not globally optimal [67], although in practice the method usually
shows very good performance [65, 68, 69]. This approach has been carefully studied
in the optimization literature, e.g. in terms of algorithms [68], quality of the optimal
value [70, 71], and (global) recovery guarantees [72, 73, 74].

In Chapter 4, we show how to combine the Burer–Monteiro factorization with path-
following methods, developing a practical algorithm for approximating the solution
of (Qt), and consequently of (Pt), over time. As a main obstacle to this strategy, to apply
such methods, one needs to address the issue that the solutions of (Qt) are never isolated.
This is due to the non-uniqueness of the Burer–Monteiro factorization, which is caused
by the orthogonal invariance of the solutions to (Qt): if Yt is a solution for a given t, then
so is YtQ for any orthogonal matrix Q, since (YtQ)(YtQ)

T = Yt Y
T

t . To handle this problem,
we apply a well-known technique by restricting the solutions to a so-called horizontal
space at every time step, enforcing the isolation of solutions to (Qt).

Exploiting these ideas, which are described in detail in the first section of Chapter 4, in
the subsequent section we fully develop this path-following method in Algorithm 1, con-
textually showing that the restricted problem satisfies second-order sufficiency conditions
for optimality. This is able to generate a sequence {(Xk, Zk)}k∈[κ] of primal-dual optimal
solutions to (Pt , Dt) as accurate as required. We also provide a result which proves that
the tracking is performed with bounded accuracy. In the last section of the chapter, we
test the method against a time-varying version of the SPD relaxation for the Max-Cut
problem. We illustrate numerical experiments conducted using a Python implementation,
of the algorithm, showing that the path-following procedure that we propose exhibit
promising computational benefits, in terms of both accuracy and runtime.
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Chapter 2

Act I Preliminaries

“Was anders ist, das lerne nun auch!"

The Wonderer/Wotan in Siegfried (Act II, Scene 1)

In this chapter, we expose the theoretical basics and the technical tools necessary for
the discussion in the next chapters of our main results: a classification theorem and a
path-following algorithm. After showing how SDP arises in the context of linear conic
optimization, we review the standard properties of SDP. We then survey continuity
properties of the optimal and feasible sets of TV-SDP, considered as set-valued maps, in
terms of inner and outer semi-continuity and Painlevé–Kuratowski continuity.

Scene 1 Conic optimization and duality

W
here we get to know our heroes, the SDP prince and its twin, the dual prince, and
we discover that they are the rightful heirs of the noble family of Linear Conic
Optimization problems led by none other than Her Majesty the Queen of Cones,
mother of the SDP princes. We are then given a family portrait in which our two

protagonists proudly stand out among their illustrious cousins, the powerful dukes of LP and the
wealthy earls of SOCP...

In this section, we define linear conic optimization and review the rather elegant theory
of conic duality. Let us recall that a Hilbert space H is a complete vector space equipped
with an inner product 〈·, ·〉H : H ×H → R. This induces a norm on H, defined by the
relation ∥x∥2

H = 〈x , x〉H. Finite dimensional Hilbert spaces are called Euclidean spaces,
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Act I Preliminaries

and we denote them by E. The space of real n-dimensional vectors Rn, endowed with the
usual scalar product is probably the most familiar example of a Euclidean space, while in
this dissertation we are mainly interested in the Euclidean space of real n× n matrices Sn

equipped with the Frobenius inner product.

Example 2.1 (Relevant Euclidean spaces with the relative inner products).

1. Rn with 〈x , y〉Rn = x T y =
n
∑

i=1

x i yi,

2. Sn with 〈X , Y 〉Sn = trace(X T Y ) =
n
∑

i, j=1

X i, jYi, j.

In the following chapters, we will omit the space in which the scalar product is defined,
as this will be clear from the context. Among the interesting subsets of Euclidean spaces,
we focus on proper cones.

Definition 2.1 (Cones). Given a Euclidean space E, a cone is a subset K ⊆ E such that
for every x ∈ K and α ≥ 0 we have αx ∈ K. A convex cone is a set K such that for any
x , y ∈ K and α,β ≥ 0, we have αx + β y ∈ K. A set is pointed if it contains no lines:
x ,−x ∈ K =⇒ x = 0. A proper cone is a convex cone which is closed, with non-empty
interior and pointed.

Example 2.2 (Relevant cones).

1. Rn
+ = {x ∈ R

n | x ≥ 0}= {x ∈ Rn | x i ≥ 0, ∀i ∈ [n]},

2. Ln = {(x0, x) ∈ R×Rn−1 | ∥x∥ ≤ x0}

3. Sn
+ = {X ∈ S

n | X ⪰ 0}= {X ∈ Sn | vT X v ≥ 0, ∀v ∈ Rn},

For example, 1. the non-negative orthant of Rn, 2. the second-order (or Lorentz) cone in
Rn, and 3. the set of positive semidefinite matrices of Sn, are all proper cones.

For any proper cone, we define its dual cone.

Definition 2.2 (Dual cones). Given a convex cone K its dual cone is

K∗ = {y ∈ E | 〈x , y〉E ≥ 0 for all x ∈ K}.

It is easy to see that the cones defined in Example 2.2 are all self-dual.
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Example 2.3 (Dual cones of relevant cones).

1. (Rn
+)
∗ = Rn

+, 2. (Ln)∗ = Ln, 3. (Sn
+)
∗ = Sn

+.

A linear conic programming is the class of convex optimization problems where one
wants to optimize a linear objective function over the intersection of a convex cone K

with an affine subspace of an Euclidean space E:

p⋆ = inf
x∈E
〈c, x〉E

s.t. A(x) = b,

x ∈ K.

(Cp)

The goal of (Cp) is to find the infimum of the objective function among feasible vectors
x ∈ E, given the data of a linear operator A : E→ F, a vector b ∈ F, and a vector c ∈ E.

In standard optimization terminology, the above problem is called the primal problem,
and p⋆ denotes its infimum. For a primal conic problem its dual problem is defined as

d⋆ = sup
y∈F, z∈E

〈b, y〉F

s.t. A∗(y) + z = c,

z ∈ K∗,

(Cd)

where A∗ : F→ E is the adjoint operator of A, defined so that 〈A(x), y〉F = 〈x ,A∗(y)〉E
holds for all x ∈ E, y ∈ F, and d⋆ indicates the supremum.

Table 2.1 below shows the primal and dual form of three notable examples of linear
conic programming: Linear Programming (LP) is linear optimization on the non-negative
orthant, the Second Order Cone Programming (SOCP) is linear optimization on the
Lorentz cone, while Semidefinite Programming (SDP) is linear optimization on the cone
of positive semidefinite matrices.

Directly from the definitions of the primal problem (Cp) and its dual (Cd) it follows

Proposition 2.1 (Weak duality).
d⋆ ≤ p⋆ (2.1)

Proof. For optimal, hence feasible x and y we have

〈c, x〉B−〈b, y〉D = 〈c, x〉B−〈A(x), y〉D = 〈c, x〉B−〈x ,A∗(y)〉B = 〈x , c−A∗(y)〉B = 〈x , z〉B ≥ 0.
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Primal Dual Data

1. LP

inf
x∈Rn

cT x

s.t. Ax = b,

x ≥ 0

sup
y∈Rm, z∈Rn

bT y

s.t. AT y + z = c,

z ≥ 0

A∈ Rm×n

b ∈ Rm

c ∈ Rn

2. SOCP

inf
(x0,x)∈R×Rn−1

c0 x0 + cT x

s.t. a0 x0 + Ax = b,

∥x∥ ≤ x0

sup
y∈Rm,

(z0,z)∈R×Rn−1

bT y

s.t. aT
0 y + z0 = c0,

AT y + z = c,

∥z∥ ≤ z0

a0 ∈ Rm

A∈ R(n−1)×m

b ∈ Rm

c0 ∈ R

c ∈ Rn−1

3. SDP

inf
X∈Sn

trace(C T X )

s.t. trace(AT
i X ) = bi, i ∈ [m]

X ⪰ 0

sup
y∈Rm, Z∈Sn

bT y

s.t.
m
∑

i=1

Ai yi + Z = C ,

Z ⪰ 0

Ai ∈ Sn

b ∈ Rm

C ∈ Sn

Table 2.1: Three types of linear conic optimization problems

We refer to the non-negative quantity 〈x , z〉E ≥ 0 as the duality gap. When the duality
gap is zero, so that inequality (2.1) holds as equality and p⋆ = d⋆, we say that the primal
and dual problems are in strong duality. From Proposition 2.1, it also follows that a pair
of primal-dual feasible points (x , z) ∈ E×E realizing zero duality gap is necessarily a pair
of primal-dual optimal solutions for the pair of problems (Cp, Cd).

This observation yields a set of first order optimality conditions, also known as the
Karush-Kuhn-Tucker (KKT) conditions.
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Definition 2.3 (KKT conditions). A primal-dual feasible point (x , z) ∈ E×E satisfies the
Karush-Kuhn-Tucker conditions (KKT) for (Cp, Cd) if

A(x) = b,

A∗(y) + z = c,

(x , z) ∈ K×K∗,

〈x , z〉E = 0,

(KKT)

for some y ∈ F.

If a primal-dual feasible point (x , z) ∈ E×E satisfies (KKT), then it is a primal-dual
optimal solution for (Cp, Cd). In general, for a pair of linear conic optimization problems
only weak duality holds, so that (KKT) are only sufficient conditions for optimality. Under
the condition of strict feasibility they are also necessary.

Definition 2.4 (Strict feasibility). We say that problem (Cp) is strictly feasible if there
exists a point x ∈ E such that A(x) = b and x ∈ relintK. Analogously, we say that problem
(Cd) is strictly feasible if there exists a point z ∈ E such that A∗(y) + z = c for some y ∈ F

and x ∈ relintK∗.

Here, relintK denotes the relative interior of K:

relintK := {x ∈ K | ∃ε > 0 s.t. Bx(ε)∩ affK ⊆ K} ,

where Bx(ε) is a ball of radius ε centered on x and affK is the smallest affine space
containing K.

In the literature, strict feasibility is often refer to as Slater’s condition, and it is regarded
as a constraint qualification, a geometric condition of the feasible set that ensure that
any local minimizer (which is global for convex problems) satisfies the first order KKT
conditions for optimality.

Proposition 2.2 (Strict feasibility yields strong duality). If problem (Cp) is strictly feasible
then strong duality between (Cp) and (Cd) holds. Furthermore, the dual optimum (supre-
mum) is attained. Conversely, if problem (Cd) is strictly feasible then strong duality between
(Cp) and (Cd) holds. Furthermore, the primal optimum (infimum) is attained.

For a proof see for example Section 5.3.2 in [34].
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Scene 2 The fundamentals of SDP

W
here we discover the many virtues of the young SDP twins. Unlike many stories
of this kind, the relationship between the two brothers is normally very peaceful.
Of course, like all siblings they sometimes have quarrels and disagreements, which
weaken their dual brotherhood. Despite that, they usually get along very well,

in particular after a good banquet, when the interiors of the two brothers are satisfactorily
non-empty. In these occasions, their dual brotherhood is indeed strong...

In this section we review the standard properties of SDP. We recall that we write a
semidefinite program in primal form as

p⋆ = inf
X∈Sn
〈C , X 〉

s.t. A(X ) = b,

X ⪰ 0,

(P)

together with its dual, which we write in the form

d⋆ = sup
y∈Rm, Z∈Sn

〈b, y〉

s.t. A∗(y) + Z = C ,

Z ⪰ 0.

(D)

The linear operator A maps a symmetric matrix X ∈ Sn to a vector in Rm defined by
(〈A1, X 〉, . . . , 〈Am, X 〉), where Ai ∈ Sn are given matrices for i ∈ [m] and b ∈ Rm is a vector,
so that the variable matrix X must satisfy 〈Ai, X 〉= bi for every i ∈ [m]. Finally, A∗ is the
linear operator adjoint to A, and it is defined by setting A∗(y) =

∑m
i=1 Ai yi. Usually, one

requires that the condition A(X ) = b does not contain any redundant information.

Definition 2.5 (LICQ). We say that the linear independence constraint qualification (LICQ)
holds if the linear operator A is surjective. In other words, the m matrices {Ai}i∈[m]
defining A are linearly independent in Sn.

Without any loss of generality, we assume that LICQ holds.

Remark 1. Under LICQ, given a matrix Z ∈ Sn satisfying the dual constraintA∗(y)+Z = C

for some y ∈ Rm, y can be uniquely determined by solving the linear system AA∗(y) =

A(C − Z), so that y = (A∗)†(C − Z), where the dagger denotes the pseudo-inverse. We
exploit this fact and when discussing a dual solution (y, Z) we will often omit y and refer
to a dual optimal solution simply as a matrix Z ∈ Sn.
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We call a matrix X satisfying the constraints of (P) a primal feasible solution, a matrix Z

satisfying the constraints of (D) a dual feasible solution, a pair of matrices (X , Z) satisfying
the constraints of (P, D) a primal-dual feasible solution. We call a matrix X ⋆ such that
〈C , X ⋆〉= p⋆ a primal optimal solution. Similarly, Z⋆ denotes a dual optimal solution, and
we indicate with (X ⋆, Z⋆) a primal-dual optimal solution.

Clearly, the dual problem (D) is equivalent to

d⋆ = sup
y∈Rm

〈b, y〉

s.t. C −A∗(y)⪰ 0.
(D′)

A relation of the type C −A∗(y)⪰ 0 is called a Linear Matrix Inequality (LMI), so that an
SDP can be thought as linear optimization with LMI constraints. The introduction of the
matrix Z , often referred to as the slack matrix in the literature, allows to reformulate the
dual problem symmetrically with respect to the primal problem.

The primal and dual problems are related by the Lagrangian function

L(X , y) = 〈C , X 〉+ 〈y, b−A(X )〉

= 〈b, y〉+ 〈X , C −A∗(y)〉,

and can be derived via the standard techniques of Lagrangian duality in convex optimiza-
tion. Observing that

sup
y∈Rm

L(X , y) =











〈C , X 〉 if A(X ) = b

+∞ otherwise
,

and that similarly

inf
X⪰0

L(X , y) =











〈b, y〉 if C −A∗(y)⪰ 0

−∞ otherwise
,

we can write

p⋆ = inf
X⪰0

�

sup
y∈Rm

L(X , y)

�

(P)

and obtain the dual problem by formally exchange inf/ sup:

d⋆ = sup
y∈Rm

�

inf
X⪰0

L(X , y)
�

. (D′)

19



Act I Preliminaries

This observation incidentally give us another proof of weak duality (2.1), which can now
be derived from a direct application of the max-min inequality (e.g., Section 5.4 in [34]):

d⋆ ≤ p⋆.

As discussed in the previous section, first order optimality conditions are available for
any linear conic optimization problem, such that any pair of matrices satisfying these
conditions is necessarily a pair of optimal solutions. These are the KKT conditions.

Definition 2.6 (KKT conditions for SDP). A primal-dual pair of feasible solutions (X , Z) ∈

Sn × Sn satisfies the Karush-Kuhn-Tucker (KKT) conditions for (P, D) if, for some y ∈ Rm,

A(X ) = b

A∗(y) + Z = C

X , Z ⪰ 0

〈X , Z〉= 0.

(KKT)

Under primal-dual strict feasibility, the KKT conditions are also necessary.

Definition 2.7 (Strict feasibility for SDP). We say that strict feasibility holds for (P) (or
that (P) is strictly feasible) if there exists an interior point of the primal feasible region.
That is, there exists a matrix X ≻ 0 satisfying A(X ) = b. Similarly, strict feasibility holds
for (D) (or (D) is strictly feasible) if there exists an interior point of the dual feasible region.
That is, there exist y ∈ Rm and a matrix Z ≻ 0 satisfying A∗(y) + Z = C . If this property
holds for both problems, we say that primal-dual strict feasibility holds.

Proposition 2.3 (Strict feasibility yields strong duality in SDP). If problem (P) is strictly
feasible then strong duality between (P) and (D) holds, so that p⋆ = d⋆. Furthermore, the
dual optimum (supremum) is attained. Conversely, if problem (D) is strictly feasible then
strong duality between (P) and (D) holds and the primal optimum (infimum) is attained.

In other words, under strict feasibility solving (KKT) is equivalent to solving (P, D).
Strong duality, and hence strict feasibility, has the important consequence that any pair
of primal-dual optimal solutions is simultaneously diagonalizable.

Let us recall that for any pair of symmetric matrices (X , Z) with

rank X = r,

rank Z = s,
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can be diagonalized as follows:

X =QX diag(λ1, . . . ,λr , 0, . . . , 0)QT
X ,

Z =QZ diag(0, . . . , 0,σn−s+1, . . . ,σn)Q
T
Z ,

(2.2)

where {λi}i∈[n] are the eigenvalues of X in decreasing order, so that λ1, . . . ,λr are the
non-zero eigenvalues of X , and {σi}i∈[n] are the eigenvalues of Z in increasing order, so
that σn−s+1, . . . ,σn are the non-zero eigenvalues of Z .

It is easy to see that if X and Z are positive semidefinite, 〈X , Z〉= 0 is equivalent to X Z =

0= ZX . In particular, X and Z commute. They are hence simultaneously diagonalizable
(see e.g. Theorem 4.5.15 in [23]). That is, they share a basis of eigenvectors {qi}i∈[n] and
the orthogonal matrix Q := [q1, . . . , qn] is such that

Q =QX =QZ .

From X Z = 0 = ZX , we also deduce that if the primal and dual problems (P, D) are
strictly feasible, any pair of primal-dual optimal solutions (X , Z) is such that the following
inclusions are satisfied:

im X ⊆ ker Z ,

im Z ⊆ ker X .

Both inclusions imply that
rank X + rank Z ≤ n,

which we refer to as the complementarity between the optimal solutions X and Z . Indeed,
complementarity can be expressed by

λiσi = 0 for all i ∈ [n],

in analogy with the complementarity slackness condition arising in LP between an optimal
primal vector x and an optimal slack vector z (see row 1. of Table 2.1):

x izi = 0 for all i ∈ [n].

Definition 2.8 (Strict complementarity). A primal-dual optimal point (X , Z) is said to be
strictly complementary if

im X = ker Z (2.3)

(or, equivalently, im Z = ker X ).
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In other terms,
rank X + rank Z = n,

and for every i ∈ [n] exactly one of the two conditions λi = 0 and σi = 0 holds. We say
that a primal-dual pair of SDPs as (P, D) satisfies strict complementarity if there exists a
strictly complementary primal-dual optimal point (X , Z).

Before proceeding to the definition of non-degeneracy in SDP, we introduce the tangent
space to the manifold of fixed rank matrices. This will be used in the definition of primal
and dual non-degeneracy, as well as in Chapter 4 for the definition of the horizontal space.

Let us first define the set

Mr := {X ∈ Sn | rank X = r} .

This is the manifold of fixed rank-r symmetric matrices. Since the eigenvalues of a matrix
X are continuous functions of X , it is clear that, for r > 0, the boundary of Mr can be
written as the disjoint unions of manifolds:

∂Mr =M0 ∪ · · · ∪Mr−1.

Let now
M+

r := Sn
+ ∩Mr = {X ∈ Sn | X ⪰ 0 and rank(X ) = r}

be the manifold of fixed rank-r positive semidefinite matrices.
The boundary of Sn

+ can be decomposed as the disjoint unions of positive semidefinite
matrices of fixed rank

∂ Sn
+ =M+

0 ∪ · · · ∪M
+
n−1,

so that its interior coincides with M+
n . The tangent space of Mr at a point X is

TX =







QX





U V

V T 0



QT
X

�

�

� U ∈ Sr , V ∈ Rr×(n−r)







,

where QX is given by (2.2) and r = rank X .
We are now ready to introduce the definitions of primal and dual non-degeneracy. All

the definitions and results exposed below until the end of the section are due to [38].
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Definition 2.9 (Non-degeneracy). A primal feasible point X is primal non-degenerate if

kerA+ TX = Sn. (2.4)

Symmetrically, a dual feasible point Z is dual non-degenerate if

imA∗ + TZ = Sn. (2.5)

where

TZ =







QZ





0 V

V T W



QT
Z

�

�

� W ∈ Ss, V ∈ R(n−s)×s







is the tangent space at Z in Ms, where s = rank(Z) and QZ is given by (2.2). We say that
a primal-dual feasible point (X , Z) is non-degenerate if X is primal non-degenerate and Z

is dual non-degenerate.

Our interest in non-degeneracy is motivated by the following result:

Proposition 2.4.

1. If (X ⋆, Z⋆) is a primal-dual non-degenerate optimal point then (X ⋆, Z⋆) is the unique
primal-dual optimal point for (P, D).

2. Under strict complementarity, if (X ⋆, Z⋆) is a primal-dual unique optimal point then
(X ⋆, Z⋆) is a non-degenerate primal-dual optimal point for (P, D).

Remark 2. For a given point (X , Z), there exist linear algebraic conditions to check
whether it is non-degenerate or not (see Theorems 6 and 9 in [38]).

Scene 3 Set-valued analysis for TV-SDP

W
here we see our SDP heroes training hard in order to fullfill their dream and become
a pair of TV-SDPs. They are now enrolled at the Royal Conic Institute of Cartography,
where they put continuous effort in their studies under the experienced guidance
of their french-polish professor, Dr. Painlevé-Kuratowski, a renowned map expert.

After obtaining the Licence for Intrepid Cartographers of the Queen (LICQ) with full degree, they
are ready for new challenges and exciting adventures...
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We are interested in studying the trajectories of solutions to the primal TV-SDP

p⋆t = inf
X∈Sn
〈Ct , X 〉

s.t. At(X ) = bt ,

X ⪰ 0,

(Pt)

with a time parameter t ∈ (0,τ) varying on a real interval.
For any given value of t the dual TV-SDP is

d⋆t = sup
y∈Rm,Z∈Sn

〈bt , y〉

s.t. A∗t (y) + Z = Ct ,

Z ⪰ 0.

(Dt)

Definition 2.10 (Set-valued maps). A set-valued map F from a set T to a set X maps a
point t ∈ T to a non-empty subset of F(t) ⊆ X . In symbols:

F : T ⇒ X

t 7→ F(t) ⊆ X .

We say that F is single-valued at t ∈ T if F(t) is a singleton. We say that F is multi-valued
at t ∈ T whenever F(t) is neither empty nor a singleton.

Given the primal-dual pair of TV-SDPs (Pt , Dt), we define the primal and dual feasible
set-valued maps for t ∈ (0,τ):

P(t) = {X ∈ Sn |At(X ) = bt , X ⪰ 0},

D(t) = {Z ∈ Sn |A∗t (y) + Z = Ct , y ∈ Rm, Z ⪰ 0},

together with the primal and dual optimal set-valued maps:

P⋆(t) = {X ∈ P(t) | 〈Ct , X 〉= p⋆t },

D⋆(t) = {Z ∈ D(t) | 〈bt , y〉= d⋆t , A∗t (y) + Z = Ct , y ∈ Rm}.

Continuity properties of set-valued maps can be defined in terms of outer and inner limits,
leading to the notion of Painlevé–Kuratowski continuity. First, we introduce the notion of
inner and outer limits of a set-valued map.
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Definition 2.11 (Inner and outer limits). Given a set-valued map F : T ⇒ X , its inner
limit at t̂ ∈ T is defined as

lim inf
t→ t̂

F(t) :=
�

x̂
�

� ∀{tk}∞k=1 ⊆ T such that tk→ t̂, ∃{xk}∞k=1 ⊆ X , xk→ x̂ and xk ∈ F(tk)
	

,

while its outer limit at t̂ ∈ T is defined as

lim sup
t→ t̂

F(t) :=
�

x̂
�

� ∃{tk}∞k=1 ⊆ T such that tk→ t̂, ∃{xk}∞k=1 ⊆ X , xk→ x̂ and xk ∈ F(tk)
	

.

Definition 2.12 (Painlevé–Kuratowski continuity). Let F : T ⇒ X be a set-valued map.
We say that F is outer semi-continuous at t̂ ∈ T if

limsup
t→ t̂

F(t) ⊆ F( t̂).

We say that F is inner semi-continuous at t̂ ∈ T if

lim inf
t→ t̂

F(t) ⊇ F( t̂).

Finally, we say that F is Painlevé–Kuratowski continuous at t̂ if it is both outer and inner
semi-continuous at t̂.

Remark 3 (Continuity). Note that a single-valued map F : T → X is continuous in the
usual sense at a point x ∈ X if and only if it is Painlevé–Kuratowski continuous at x

as a multi-valued map F : T ⇒ X . Thus, without ambiguity, we will refer to Painlevé–
Kuratowski continuity simply as continuity.

In the following, we list some continuity results on the feasible and optimal set-valued
maps with T = (0,τ), for some τ > 0. The proof of Theorem 2.2 in the primal version is
an original contribution.

Theorem 2.1 (Example 5.8 in [75]). If data At , bt , Ct are continuous functions of t, then
the feasible set-valued maps P(t) and D(t) are outer semi-continuous at any t ∈ T .

Theorem 2.2 (Theorem 2.12 in [61]). Assume that the primal-dual pair of TV-SDPs (Pt , Dt)
is strictly feasible at any t ∈ T , that the linear operator At satisfies LICQ for every t ∈ T ,
that the norm of At and the norm of its pseudo-inverse A∗t

�

AtA∗t
�−1 are uniformly bounded

in t and that data At , bt , Ct are continuous functions of t. Then the set-valued maps P(t)
and D(t) are inner semi-continuous for every t ∈ T .
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Proof. For the dual case, we refer to Lemma 1 in [58] for a version of this theorem where
only the matrix C depends on the parameter and this dependence is linear. We prove the
primal case in the more general case where the left hand side At is time-dependent and
continuous and the right hand side bt is continuous. The dual case can be proven in an
analogous way. Fix t̂ ∈ T and X̂ ∈ P( t̂). Given a sequence of times {tk}∞k=1 with tk→ t̂, we
will construct a convergent sequence Xk→ X̂ so that Xk ∈ P(tk) for all sufficiently large
values of k. If X̂ ≻ 0 we define

Xk := X̂ +A∗tk

�

Atk
A∗tk

�−1 �
btk
− b t̂

�

.

The definition is well posed because under the assumptions of the theorem the operator
Atk

has full rank, thus Atk
A∗tk

is invertible. Clearly, Atk
(Xk) = btk

. Furthermore, we have
that ∥Xk − X̂∥F = ∥A∗tk

�

Atk
A∗tk

�−1 �
btk
− b t̂

�

∥F ≤ CA∥btk
− b t̂∥ → 0 for some constant CA

(which exists by the hypothesis of uniform boundedness) and by continuity of bt , so that
Xk→ X̂ and Xk ⪰ 0 for sufficiently large k. If X̂ ⪰ 0 and its smallest eigenvalue λmin(X̂ ) is
zero, we define

Xk := (1−αk)X̂ +αkX̄ +A∗tk

�

Atk
A∗tk

�−1 �
btk
− b t̂

�

for a fixed X̄ ∈ P( t̂) such that X̄ ≻ 0, which exists by the strict feasibility assumption,
and for a sequence {αk}∞k=1 ⊆ [0, 1] which we will conveniently define later in the proof.
Clearly, Atk

(Xk) = btk
and hence we only need to prove that Xk ⪰ 0 or, equivalently, that

λmin

�

(1−αk)X̂ +αkX̄ +A∗tk

�

Atk
A∗tk

�−1 �
btk
− b t̂

�

�

≥ 0,

which, thanks to Weyl’s inequality (see e.g Theorem 1 in [76], Section 6.7) holds if

αkλmin(X̄ ) +λmin

�

A∗tk

�

Atk
A∗tk

�−1 �
btk
− b t̂

�

�

≥ 0.

Rearranging:

αk ≥ −
λmin

�

A∗tk

�

Atk
A∗tk

�−1 �
btk
− b t̂

�

�

λmin(X̄ )
.

We then define αk :=max{0,βk}, where

βk := −
λmin

�

A∗tk

�

Atk
A∗tk

�−1 �
btk
− b t̂

�

�

λmin(X̄ )
.

For sufficiently large k, βk ≤ 1, so that {αk}∞k=1 ⊆ [0,1] and thus Xk ∈ P(tk), since βk→ 0,
αk→ 0 and Xk→ X̂ .
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Theorems 2.1 and 2.2 show that the primal and dual feasible set-valued maps P(t) and
D(t) are always continuous, under the assumptions of Theorem 2.2. We now investigate
the inner and outer semi-continuity of the optimal set-valued maps. We have:

Theorem 2.3 (Theorem 8 in [77]). If data At , bt , Ct are continuous functions of t and the
primal and dual feasible set-valued maps are continuous, then the optimal set-valued maps
P⋆(t) and D⋆(t) are outer semi-continuous at any t ∈ T .

However, in general, it is not true that the optimal set-valued maps P⋆(t) and D⋆(t)

are inner semi-continuous. Still, the set of t ∈ T such that P⋆(t) or D⋆(t) fails to be inner
semi-continuous, is of first category, i.e., countable and nowhere dense.

Theorem 2.4 (Theorem 5.55 in [75]). The subset of points t ∈ T at which P⋆(t) or D⋆(t)
fails to be inner semi-continuous (and hence continuous) is the union of countably many sets
that are nowhere dense in T . In particular, it has empty interior.

Furthermore, if the optimal set is single-valued, then it is continuous everywhere.
In order to show this, we first need to introduce a lemma which guarantees the local
uniform boundedness of P⋆ and D⋆.

Lemma 2.1 (Lemma 3.2 in [4]). If strict feasibility holds at any t ∈ T and At , bt , Ct are
continuous functions of t, then P⋆(t) and D⋆(t) are locally uniformly bounded at any t ∈ T .

Proof. Since we assume that primal-dual strict feasibility holds at any t ∈ T , the assump-
tions of both Lemmas 3.1 and 3.2 in [4] are satisfied at any t ∈ T .

Proposition 2.5 (Corollary 8.1 in [77]). Assume that strict feasibility holds at any t ∈ T ,
so that by Lemma 2.1 P⋆(t) and D⋆(t) are locally uniformly bounded at any t ∈ T , and
that At , bt , Ct are continuous functions of t. If P⋆(t) is single-valued at some t̂, then P⋆(t)

is continuous at t̂. The same holds for D⋆(t).
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Chapter 3

Act II A complete classification of TV-SDP
solutions

“Voi sapete quel che fa..."

Leporello in Don Giovanni (Act I, Scene 5)

The main goal of this chapter is to understand the properties of the trajectories of solutions
to TV-SDPs, which would make it possible to design algorithms for TV-SDP with guarantees
on their performance, as we will see in Chapter 4. Specifically, we want to characterize
points of the trajectory of solutions to TV-SDP according to the local behavior of the
trajectory at the point. This characterization was inspired by the textbook Parametric
optimization: singularities, pathfollowing and jumps [63], where a classification of solutions
to univariate parametric nonlinear constrained optimization problems is proposed. This
chapter follows the paper Parametric semidefinite programming: geometry of the trajectory
of solutions [61] resulted from the research pursued in the first part of this PhD project.

After investigating the regularity properties of the trajectory of solutions, we define
six different types of points, according to the local behavior of the trajectory of the
solutions at that point. Under very general and quite standard assumptions, we present
a classification theorem, which states that only the types of points that we defined can
appear. This provide the first complete classification of types of behavior of points making
up the trajectory of solutions to TV-SDP. Furthermore, under some technical assumptions
(the existence of a “non-singular time", see Definition 3.2), we will show that only three
of the six types of points that we define can actually appear. Table 3.1 lists the types
of points that we will define precisely later on. The benefits of this classification result
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Problem assumptions Type of points
TV-SDP with LICQ, continuous data, Regular points

strict feasibility, and a non-singular time Non-differentiable points
Discontinuous isolated multiple points

TV-SDP with LICQ, continuous data, Regular points
strict feasibility, without a non-singular time Non-differentiable points

Discontinuous isolated multiple points
Discontinuous non-isolated multiple points
Continuous bifurcation points
Irregular accumulation points

Table 3.1: Assumptions on TV-SDP and associated possible type of points

are twofold: on the one hand, it increases the knowledge available in an interesting and
relatively novel field of research; on the other hand, it sets the theoretical foundations for
the actual development of algorithms to solve TV-SDP. For example, as we will see in the
next chapter, in the path-following algorithm that we propose there, local information
on the current iterate will be used, and one needs to know whether this information is
reliable or not, i.e., whether the solution is expected to behave regularly or not.

Scene 1 Regularity properties of TV-SDP

W
here our heroes, the SDP prince and its brother the dual prince, start moving their
first steps out of the native kingdom. By now, the two protagonists have turned
into a couple of mature and yet adventurous TV-SDPs, ready to intrepidly explore
the enchanted realm of Parametric Optimization. Thanks to the uniqueness of their

virtues and the strict complementarity of their dual brotherhood, the beginning of our heroes’
journey is indeed a smooth one...

Our purpose is to study the behavior of the trajectory of the solutions to TV-SDPs. Around
points of the trajectory satisfying strict complementarity and uniqueness, by means of
the implicit function theorem, we will show that the trajectory defines a smooth curve
(Theorem 3.1). When this fails to happen, a number of irregular behaviors may arise.
The main result of this chapter (Theorem 3.3) consists of a complete classification of such
points. So far, to the best of our knowledge, a complete classification of types of behavior
of points making up the trajectory of solutions has not been proposed. Here, we suggest
one based on a purely logical construction, whose definitions use set-valued analysis. In
particular, we use the Painlevé–Kuratowski extension of the notion of continuity to the
case of set-valued functions, as exposed in the previous chapter, so as to reason about
continuity properties at values of the parameter when there are multiple solutions.
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A first contribution of this thesis is the definition of six types of points. Our approach
was deeply inspired by [63, Chapter 2] where a classification of solutions to univariate
parametric nonlinear constrained optimization problems is proposed. There, critical
points satisfying KKT conditions are considered. Under precise algebraic conditions,
these points are “non-degenerate” (see Remark 8). The local behavior of such points is
then shown to be regular. If a critical point is instead “degenerate” then, according to
which algebraic condition is satisfied, the point is classified into four different types. Our
approach is the same in spirit, in that we also start by considering algebraic conditions
ensuring a regular behavior. As a main difference, we classify irregular points according
to the behavior of the trajectory of solutions at the point considered rather than according
to different sets of algebraic conditions (see Remark 8).

Let us recall that we are considering a TV-SDP problem in its primal standard form

p⋆t = inf
X∈Sn
〈Ct , X 〉

s.t. At(X ) = bt ,

X ⪰ 0,

(Pt)

along with its dual problem

d⋆t = sup
y∈Rm,Z∈Sn

〈bt , y〉

s.t. A∗t (y) + Z = Ct ,

Z ⪰ 0,

(Dt)

with a time parameter t ∈ (0,τ) varying on a open and bounded real interval. We consider
an open interval so that both left and right limits can be defined when arguing about
continuity and differentiability.

In this section, we are going to show that the existence of a unique pair of strictly
complementary primal and dual optimal solutions at a value of the time parameter
t̂ ∈ (0,τ) implies that there is a neighborhood of t̂ where both the primal and dual optimal
trajectory have a regular behavior. Next, we observe that under fairly weak assumptions,
among which the existence of a generic non-singular point in the parameterization
interval, the number of points where strict complementarity or uniqueness is lost is
finite. Given the primal-dual pair of TV-SDPs (Pt , Dt), we denote a primal-dual feasible
solution by (X , Z , t), which we will often refer to as a point of the trajectory of solution.
If at a fixed value of the parameter t̂ ∈ (0,τ) there exists a primal-dual non-degenerate
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optimal solution (X ⋆, Z⋆), then, by Proposition 2.4 (X ⋆, Z⋆) is a unique primal-dual optimal
solution, and by Proposition 2.5, around t̂ the primal and dual optimal set-valued maps
are continuous single-valued functions. Under strict complementarity, these functions are
analytic. In the following, we provide details of this fact.

We begin by adopting the following standard assumptions:

(A1) Data At , bt , Ct are continuous functions of t.

(A2) The linear operator At satisfies LICQ for any t ∈ (0,τ). Furthermore, At and
its pseudo-inverse (A∗t )

† = A∗t
�

AtA∗t
�−1 have a uniformly bounded norm for any

t ∈ (0,τ).

(A3) Problem (Pt) and its dual (Dt) are strictly feasible for every t ∈ (0,τ).

Assumption A1 is quite general compared to those usually found in the TV-SDP
literature, where the data are often assumed to vary linearly with respect to the time
parameter. This linearity assumption is standard when one studies sensitivity properties,
so that the perturbation can be assumed to be linear. Instead, our purpose is to give a
geometric characterization of the points of the trajectory of solutions, in which case we
can keep a high degree of generality by just assuming continuity of the data, without any
further differentiability requirement.

Assumption A2 allows us to describe the dual solution just in terms of matrix Z (see
Remark 1). The assumption of uniform boundedness is needed to ensure the inner
semi-continuity of the feasible set-valued maps (see Theorem 2.2).

Assumption A3 is standard in the SDP literature [52, 51, 58]. Strict feasibility guaran-
tees that the primal and dual optimal sets P⋆(t) and D⋆(t) are non-empty and bounded
for any t ∈ (0,τ) (see Lemma 3.2 in [78]). Checking strict feasibility of a given SDP can
be done by solving another SDP and checking whether its optimal value is positive or not
(see for example [79], Theorem 3.1 and 3.5).

Summarizing, assumptions A1, A2, and A3 ensure that:

• There is no duality gap: p⋆t = d⋆t for all t ∈ (0,τ).

• In (Pt) and (Dt) the infimum and the supremum are attained.

• The primal and dual optimal faces P⋆(t), D⋆(t) are non-empty and bounded for all
t ∈ (0,τ). In other words, (Pt) and (Dt) are both feasible and bounded.

• The optimal set-valued maps are outer semi-continuous at any t ∈ (0,τ).
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• The subset of (0,τ) where the optimal set-valued map fails to be inner semi-
continuous has empty interior and it is the union of countably many sets that
are nowhere dense in (0,τ).

The last two facts follow immediately from Theorems 2.3 and 2.4.
The optimality conditions (KKT) for (X , Z , t) to be an optimal solution of (Pt , Dt) at a

fixed value of the parameter t ∈ (0,τ) can be equivalently written as

F(X , y, Z , t) :=









At svec(X )− bt ,

AT
t y + svec(Z)− svec(Ct)

1
2 svec (X Z + ZX )









= 0, (3.1)

X , Z ⪰ 0 (3.2)

for some y ∈ Rm, where At :=
�

svec(A1,t), . . . , svec(Am,t)
�T and svec(X ) denotes a linear

map stacking the upper triangular part of X , where the off-diagonal entries are multiplied
by
p

2:

svec(X ) :=
�

X11,
p

2X12, . . . ,
p

2X1n, X22,
p

2X23, . . . ,
p

2X2n, . . . , Xnn

�T

so that 〈X , X 〉= svec(X )T svec(X ).
Theorem 7 in [80] shows that for a generic data tuple (A, b, C) the number of solutions

(X , y, Z) for (3.1) is fixed and finite, depending only on the dimensions of the problem.

Definition 3.1 (Singular solutions). We say that a primal-dual solution (X , y, Z) is singular
at a time t̂ if the Jacobian with respect to (X , y, Z) of F at (X , y, Z , t̂ )

J (X , y, Z , t̂ ) =









A t̂ 0 0

0 AT
t̂ I n(n+1)

2

Z ⊗s In 0 In ⊗s X









(3.3)

is not invertible, where ⊗s denotes the symmetric Kronecker product between two n× n

matrices M1 and M2 and is defined by

(M1 ⊗s M2) svec(S) =
1
2
(M1SM T

2 +M2SM T
1 ) for any S ∈ Sn.

Otherwise, we say that (X , y, Z) is non-singular at t̂.
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Definition 3.2 (Singular times). We say that a time t̂ is singular if there exists a singular
point (X , y, Z) at t̂ such that F(X , y, Z , t̂ ) = 0. Otherwise, we say that t̂ is non-singular.
Furthermore, we say that a non-singular time t̂ is generic if the data tuple (A t̂ , b t̂ , C t̂) is
generic, so that the number of solutions for (3.1) matches the generic number of solutions.

Note that if t̂ is non-singular, every point (X , y, Z) such that F(X , y, Z , t̂ ) = 0 is non-
singular at t̂.

The following lemma gives equivalent conditions for a primal-dual optimal point (X , Z)

to be non-singular at a time t̂. This result turns out to be a fundamental tool to reach our
classification goal.

Lemma 3.1 (Theorem 3.1. in [81] and [82]). A primal-dual optimal point (X , Z) is
non-singular at a time t̂ if and only if (X , Z) is a strictly complementary and non-degenerate
primal-dual optimal solution for (P t̂ , D t̂).

Note that under strict complementarity, part 2 of Proposition 2.4 holds. Therefore,
the Jacobian of F is non-singular at an optimal primal-dual solution (X , Z , t) if and only
if (X , Z) is a unique primal-dual optimal solution satisfying strict complementarity. We
use this result in the following theorem.

Theorem 3.1. Let (Pt , Dt) be a primal-dual pair of TV-SDPs parametrized over the time
interval (0,τ) such that primal-dual strict feasibility holds for any t ∈ (0,τ) and assume
that the data At , bt , Ct are continuously differentiable functions of t. Let t̂ ∈ (0,τ) be a fixed
value of the time parameter and suppose that (X ⋆, Z⋆) is a unique primal-dual optimal and
strictly complementary solution for (P t̂ , D t̂).

Then there exists ϵ > 0 and a unique continuously differentiable mapping (X ⋆(·), Z⋆(·))

defined on ( t̂ − ϵ, t̂ + ϵ) such that (X ⋆(t), Z⋆(t)) is a unique and strictly complementary
primal-dual optimal point to (Pt , Dt) for all t ∈ ( t̂ − ϵ, t̂ + ϵ).

Proof. By primal-dual strict feasibility, for each t ∈ (0,τ) the pair of problems (Pt , Dt)

must have at least a primal-dual feasible and optimal solution, which we denote as
(X ⋆t , y⋆t , Z⋆t ), which necessarily solves the KKT system (3.1)-(3.2). In particular, we have
F(X ⋆t , y⋆t , Z⋆t , t) = 0. By Lemma 3.1, the assumptions of strict complementarity and
uniqueness ensure that at t̂ we can apply the Implicit Function Theorem (see, e.g.,
Theorem 3.3.1 in [83]), so that there exists ϵ′ > 0 and a continuously differentiable
curve (X (·), y(·), Z(·)) on ( t̂ − ϵ′, t̂ + ϵ′) such that (X (t), y(t), Z(t), t) is the unique solu-
tion of F(X (t), y(t), Z(t), t) = 0 for all t ∈ ( t̂ − ϵ′, t̂ + ϵ′). Hence for t ∈ ( t̂ − ϵ′, t̂ + ϵ′),
(X (t), y(t), Z(t), t)must coincide with (X ⋆t , y⋆t , Z⋆t , t), since the latter both solves (3.1) and
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(3.2), and it is therefore a feasible and unique primal-dual optimal solution for (Pt , Dt). For
consistency of notation, we can now write (X (t), y(t), Z(t), t) ≡ (X ⋆(t), y⋆(t), Z⋆(t), t).
It now remains to show the strict complementarity of (X ⋆(t), Z⋆(t)). Due to the as-
sumed strict complementarity of (X ⋆( t̂ ), Z⋆( t̂ )), we have λi(X ⋆( t̂ )) · λi(Z⋆( t̂ )) = 0 and
λi(X ⋆( t̂ ))+λi(Z⋆( t̂ ))> 0, where λi(·) denotes the i-th smallest eigenvalue of a matrix. By
continuity of the eigenvalues, for ϵ small enough, nonzero eigenvalues remains nonzero
for t ∈ ( t̂ − ϵ, t̂ + ϵ), and the perturbed solutions remain strictly complementary.

By adding more assumptions, one can further improve the information given by
Theorem 2.4 on the cardinality of the singular points set and demonstrate that the
number of singular points of (3.1) is finite.

Theorem 3.2 (Proposition 5 in [58]). Let (Pt , Dt) be a primal-dual pair of TV-SDPs
parametrized over a time interval (0,τ) such that data At , bt , Ct are polynomial functions
of t. Furthermore, assume that there exists a generic non-singular time. Then the set of
values of the time parameter t at which the primal-dual optimal point is either not unique
or not strictly complementary is finite.

Proof. Let us elaborate on the proof given by [58] to prove their Proposition 5. We first
define the set

F := {(X , y, Z , t) ∈ C
n(n+1)

2 ×Cm ×C
n(n+1)

2 ×C | F(X , y, Z , t) = 0, det(JF(X , y, Z , t)) = 0},

which is a constructible set (see, e.g., Section 1.1 in [84]). The projection of a constructible
set is a constructible set itself (Theorem 1.32 in [84]), so that the projection of F on the
t coordinate

Fpro j =
¦

t ∈ C | ∃(X , y, Z , t) ∈ F
©

is a constructible set in C. At this point, we exploit the fact that any constructible set
of C is either a finite set or the complement of a finite set (Exercise 1.3 in [84]). By
the hypothesis that there exists a non-singular time t̂ it follows that the complement
of Fpro j contains t̂ and thus, from the implicit function theorem, F(X , y, Z , t) = 0 and
det(JF(X , y, Z , t)) ̸= 0 for all t in an open neighborhood of t̂. By the genericity assumption,
in this neighborhood the number of solutions to (3.1) is constant, so that indeed all the
solution of F(X , y, Z , t) = 0 are non-singular. This neighborhood is contained in the
complement of Fpro j and it is not finite (it is a open interval with non-empty interior).
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Act II A complete classification of TV-SDP solutions

Hence Fpro j is a finite set. Since

{t ∈ (0,τ) | ∃(X , y, Z) ∈ Sn ×Rm × Sn s.t. F(X , y, Z , t) = 0, det(JF(X , y, Z , t)) = 0}

is contained in Fpro j, the set of values of the parameter at which there exists a singular
point for the Jacobian of F is also finite. Application of Lemma 3.1 yields the final
result.

Thus, under the assumption of Theorem 3.2, the values of t at which strict comple-
mentarity or uniqueness of the primal-dual solution is lost is finite. In particular, the
values of t at which P⋆(t) or D⋆(t) fails to be inner semi-continuous (and hence fails to
be continuous) are finite. It also implies that wherever P⋆(t) defines a continuous curve
of unique optima, the values of t at which P⋆(t) fails to be differentiable are finite. The
same holds for D⋆(t).

Scene 2 Six types of points
in the trajectory of solutions

W
here we witness the first misadventure of the TV-SDP princes. After a long but safe
journey, following a rather narrow and plain path, they enter the Singular Wood, a
big enchanted forest in the realm of Parametric Optimization. There, they meet the
Degenerate Witch, disguised as a charming and lovely maiden, who seduces the two

princes. Madly in love, they start a dreadful dispute, contending for the favors of the mysterious
lady. This seriously damages their unity and strict complementarity. When the fight is over, they
realize with dismay that they lost the way...

Equipped with the results of the previous section, we introduce a classification into six
different types of optimal solutions according to the behavior of the optimal set-valued
map at these points. Our purpose is to study irregularities arising after an interval where
the optimal set-valued map has a regular behavior. We hence classify points for which
the optimal set-valued map on a left neighborhood is unique and thus continuous.

Consequently, the focus of our study is put on values t̂ of an open time parametrization
interval (0,τ) at which strict complementarity or uniqueness of the primal-dual optimal
point is lost. Under the assumptions of Theorem 3.2, such points are finite. There, the
trajectory described by the primal and dual optimal sets can exhibit a restricted number
of irregular behaviors, by which we mean any situation that differs from the solution
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following a uniquely well-defined smooth curve. Describing these situations is the goal
of this section. If, instead, Theorem 3.2 does not hold, the number of possible types of
irregular behaviors grows. In our main Theorem 3.3, we provide a complete classification
of these behaviors under both cases. The object of our study is the trajectory of solutions
to the primal TV-SDP (Pt), that is, the primal optimal set-valued map P⋆. Both results
that we present in this chapter, Theorem 3.3 and Theorem 3.4, can be clearly transposed
to the dual case.

We start by giving the definitions of the six types of points in the trajectory of solutions.
Let (Pt , Dt) be a primal-dual pair of TV-SDPs parametrized over a time interval (0,τ).
For a fixed t̂ ∈ (0,τ), we consider a primal optimal point (X ⋆, t̂ ) for (P t̂). Based on the
behavior of the primal optimal set-valued map P⋆(t) at t̂, we distinguish between six
cases. This can be done analogously for the dual case.

Definition 3.3 (Regular point). We say that (X ⋆, t̂ ) is a regular point if P⋆( t̂ ) = {X ⋆} and
there exists ϵ > 0 such that

• P⋆(t) is single-valued and continuous for every t ∈ ( t̂ − ϵ, t̂ + ϵ), for some ϵ > 0,

• P⋆(t) is differentiable at t̂.

Remark 4. Note that a primal optimal point (X ⋆, t̂ ) for (P t̂) for which there exists a dual
optimal point (Z⋆, t̂ ) for (Dt̂) such that (X ⋆, Z⋆, t̂ ) is a non-singular point for (P t̂ , D t̂), is
necessarily a regular point. This follows directly from Theorem 3.1 and Lemma 3.1. The
converse does not hold in general.

Definition 3.4 (Non-differentiable point). We say that (X ⋆, t̂ ) is a non-differentiable point
if P⋆( t̂ ) = {X ⋆} and there exists ϵ > 0 such that

• P⋆(t) is single-valued and continuous for every t ∈ ( t̂ − ϵ, t̂ + ϵ),

• P⋆(t) is not differentiable at t̂.

Definition 3.5 (Discontinuous isolated multiple point). We say that (X ⋆, t̂ ) is a discontin-
uous isolated multiple point if X ⋆ ∈ P⋆( t̂ ) and there exists ϵ > 0 such that

• P⋆(t) is single-valued and continuous for every t ∈ ( t̂ − ϵ, t̂ )∪ ( t̂, t̂ + ϵ),

• P⋆(t) is multi-valued at t̂.
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Definition 3.6 (Discontinuous non-isolated multiple point). We say that (X ⋆, t̂ ) is a
discontinuous non-isolated multiple point if X ⋆ ∈ P⋆( t̂ ) and there exists ϵ > 0 such that

• P⋆(t) is continuous at any t ∈ ( t̂ − ϵ, t̂ )∪ ( t̂, t̂ + ϵ),

• P⋆(t) is single-valued for every t ∈ ( t̂ − ϵ, t̂ ),

• P⋆(t) is multi-valued for every t ∈ [ t̂, t̂ + ϵ).

Remark 5. Let (X ⋆1, t̂1) be a discontinuous isolated multiple point and (X ⋆2, t̂2) a discon-
tinuous non-isolated multiple point. Then by definition the optimal solution is not unique
neither at t̂1 nor at t̂2. Thus, a loss of inner semi-continuity of the optimal set-valued
map P⋆(t) must occur both at t̂1 and at t̂2. However, while for any ϵ > 0 the set of points
t ∈ ( t̂2 − ϵ, t̂2 + ϵ) where the optimal set P⋆(t) is multi-valued has a non-empty interior,
there always exists a ϵ̄ > 0 such that the set of points t ∈ ( t̂1− ϵ̄, t̂1+ ϵ̄) where the optimal
set P⋆(t) is multi-valued has empty interior. This observation suggests the choice of the
terms “isolated" and “non-isolated".

Definition 3.7 (Continuous bifurcation point). We say that (X ⋆, t̂ ) is a continuous bifurca-
tion point if P⋆( t̂ ) = {X ⋆} and there exists ϵ > 0 such that

• P⋆(t) is continuous at any t ∈ ( t̂ − ϵ, t̂ + ϵ),

• P⋆(t) is single-valued for every t ∈ ( t̂ − ϵ, t̂],

• P⋆(t) is multi-valued for every t ∈ ( t̂, t̂ + ϵ).

In particular, there exist at least two distinct continuous curves

X1 : ( t̂, t̂ + ϵ) → Sn

t 7→ X1(t)

X2 : ( t̂, t̂ + ϵ) → Sn

t 7→ X2(t)

such that X1(t) and X2(t) are two distinct points of P⋆(t) for every t ∈ ( t̂, t̂ + ϵ) and
limt→ t̂+ X1(t) = limt→ t̂+ X2(t) = X ⋆. In this sense, a continuous bifurcation point can be
thought as a continuous loss of uniqueness from a single branch into two or more branches.

Definition 3.8 (Irregular accumulation point). We say that (X ⋆, t̂ ) is an irregular accu-
mulation point if X ⋆ ∈ P⋆( t̂ ) and there exists ϵ > 0 such that

• P⋆(t) is single-valued and continuous for every t ∈ ( t̂ − ϵ, t̂ )

and for any δ > 0 at least one of the following is true:
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• there exists a sequence of times {tk}∞k=1 ⊆ ( t̂, t̂ + δ) at which a loss of inner semi-
continuity occurs and limk→∞ tk = t̂. At these times, either a discontinuous isolated
multiple point or a discontinuous non-isolated multiple point appears.

• there exists a sequence of times {tk}∞k=1 ⊆ ( t̂, t̂+δ) at which a continuous bifurcation
occurs and limk→∞ tk = t̂.

When convenient, instead of saying that (X ⋆, t̂ ) is a regular point, we will say that X ⋆

is a regular point at t̂. The same applies to all the other types of points that we defined.

Remark 6. The above definitions consider points whose sufficiently small left time neigh-
borhood consists of all regular points. By a change of sign of the parameter, the definition
clearly extends to points whose sufficiently small right time neighborhood consists of all
regular points.

Remark 7 (Existence of a continuous selection). The optimal set-valued map is con-
tinuous in a neighborhood of a regular, non-differentiable, or a continuous bifurcation
point. Instead, at a discontinuous isolated or non-isolated multiple point (Definitions
3.5 and 3.6), a loss of inner semi-continuity occurs. For such points (X ⋆, t̂ ) it holds
lim inft→ t̂− P⋆(t) ̸= P⋆( t̂ ). However, in both cases, clearly only one of the following is true:

(A) lim
t→ t̂+

P⋆(t) = P⋆( t̂ ),

(B) lim inf
t→ t̂+

P⋆(t) ̸= P⋆( t̂ ).

In case (A), one can select a continuous curve ( t̂ − ϵ, t̂ + ϵ) ∋ t 7→ X (t) ∈ Sn such that
X (t) ∈ P⋆(t) for every t ∈ ( t̂ − ϵ, t̂ + ϵ), while in case (B) such a curve does not exist.
Furthermore, for a discontinuous isolated multiple point under case (A), such a curve
is unique. Also note that in case (A) it might be impossible to select a curve that is
differentiable at t̂.

Remark 8 (Comparison with [63]). The definition of the six different types of points was
inspired by [63, Chapter 2], where a classification of solutions to univariate parametric
non-linear constrained optimization problems was proposed. There, critical primal-dual
points satisfying first-order optimality (or KKT) conditions for a given parametric non-
linear optimization problem are classified. These points are defined as non-degenerate if
strict complementarity holds as well as the invertibility of the Hessian of the Lagrangian
of the considered problem restricted to the tangent space at the point. We remark
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Act II A complete classification of TV-SDP solutions

that this notion of non-degeneracy does not coincide with that of primal and dual non-
degeneracy defined according to Definition 2.9. However, one can still identify an
algebraic resemblance between primal non-degeneracy as we define it here and the
non-singularity of the Hessian of the Lagrangian.

In the terminology that we used, the notion of non-degeneracy adopted by Jongen in
[63] is analogous to non-singularity, as defined in Definition 3.1, as they both guarantee
the applicability of the implicit function theorem, hence ensuring a regular behavior
(Theorem 2.4.2 in [63]). Around these points the optimal set can be parametrized by
means of a single parameter and the parameterization is a differentiable map. If a critical
point is instead degenerate then, according to which algebraic condition is not satisfied by
such points, these are classified in four different types. Instead, we classified irregular
points according to the behavior of the trajectory of solutions at the point considered,
focusing on the possible local topological structure of points

Theorem 3.3 (A complete classification). Let (Pt , Dt) be a primal-dual pair of TV-SDPs
parametrized over a time interval (0,τ) such that assumptions A1, A2, and A3 hold and
consider a time t̂ ∈ (0,τ) and an optimal solution X ⋆ ∈ P⋆( t̂ ). If P⋆(t) is unique for every
t ∈ ( t̂ − ϵ′, t̂ ) for some ϵ′ > 0, then (X ⋆, t̂ ) must be a point of a type defined in Definitions
3.3, 3.4, 3.5, 3.6, 3.7, or 3.8. The same holds for D⋆(t).

Proof. First, let t̂ ∈ (0,τ) and X ⋆ ∈ P⋆( t̂ ). By hypothesis, there exists ϵ′ > 0 such that
P⋆(t) is single-valued and hence, by Proposition 2.5, continuous for every t ∈ ( t̂ − ϵ′, t̂ ).
Let us perform a first binary case partition:

A P⋆( t̂ ) is a single-valued (and thus equal to {X ⋆}).

B P⋆( t̂ ) is multi-valued.

Then, we also define a three-way case partition, independent from the previous one:

1 there exists ϵ′′ > 0 such that P⋆(t) is single-valued for every t ∈ ( t̂, t̂ + ϵ′′).

2 there exists ϵ′′ > 0 P⋆(t) is multi-valued for every t ∈ ( t̂, t̂ + ϵ′′).

3 for every δ > 0 there exists t ′, t ′′ ∈ ( t̂, t̂ + δ) such that P⋆(t ′) is single-valued
and P⋆(t ′′) is multi-valued.

Combining the two partitions, we obtain one consisting of six cases:
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A1 in this case P⋆(t) is a single-valued function defined in ( t̂ − ϵ, t̂ + ϵ), where ϵ :=

min{ϵ′,ϵ′′}, which is hence continuous by Proposition 2.5. According to whether
P⋆(t) is differentiable at t̂ or not, (X ⋆, t̂ ) is a regular point or a non-differentiable point.

A2 if there exists ϵ′′ > 0 such that P⋆(t) is continuous at any t ∈ ( t̂ − ϵ′, t̂ + ϵ′′) then
by definition (X ⋆, t̂ ) is a continuous bifurcation point (Definition 3.7). Otherwise,
for every k ∈ N there must exist a point tk ∈ ( t̂, t̂ + 1

k ) such that a loss of inner
semi-continuity occurs a tk. Hence, (X ⋆, t̂ ) is an irregular accumulation point.

B1 if there exists ϵ′′ > 0 such that P⋆(t) is continuous at any t ∈ ( t̂ − ϵ′, t̂ + ϵ′′) then, as
for any δ > 0 a continuous switch from unique to non-unique solutions must occur,
we can construct a sequence of times {tk}∞k=1 at which a continuous bifurcation
occurs converging to t̂. Otherwise, we can proceed as in case A2 and construct a
sequence of times at which a loss of inner semi-continuity occurs converging to t̂.
Hence, (X ⋆, t̂ ) is an irregular accumulation point.

B2 in this case, simply by definition, (X ⋆, t̂ ) is a discontinuous isolated multiple point.

B3 if there exists ϵ′′ > 0 such that P⋆(t) is continuous at any t ∈ ( t̂ + ϵ′′), by definition
(X ⋆, t̂ ) is a discontinuous non-isolated multiple point (type 3.5). Otherwise, for
every k ∈ N there exists a point tk ∈ ( t̂, t̂+ 1

k ) such that a loss of inner semi-continuity
occurs a tk. Hence, (X ⋆, t̂ ) is an irregular accumulation point.

B4 the same discussion as in A3, (X ⋆, t̂ ) is hence an irregular accumulation point.

Theorem 3.4. Let (Pt , Dt) be a primal-dual pair of TV-SDPs parametrized over a time
interval (0,τ) such that data At , bt , Ct are polynomial functions of t and assumptions A1,
A2, and A3, hold. Suppose that there exists a generic non-singular time.

Then, along the parametrization interval (0,τ) the number of points in times at which
there is a non-differentiable point or a discontinuous isolated multiple point for P⋆(t) or
D⋆(t) is finite. All the other points are regular points for both P⋆(t) and D⋆(t). Furthermore,
the number of regular points where P⋆(t) or D⋆(t) is not continuously differentiable is finite.

Proof. By Theorem 3.2, the hypothesis implies that the number of values of t ∈ (0,τ)

at which there exists an optimal primal-dual singular point for (3.1) is finite. Let S

denote the set of such values. First, let t̂ns ∈ (0,τ) \ S. Then there exists an optimal
primal-dual non-singular point (X ⋆ns, Z⋆ns, t̂ns). By Theorem 3.1, both (X ⋆ns, t̂ns) and (Z⋆ns, t̂ns)
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are regular points (cf. Def. 3.3 and Rem. 4) where both P⋆(t) and D⋆(t) are continuously
differentiable. Now consider t̂s ∈ S. Then there exists an optimal primal-dual singular
point (X ⋆s , Z⋆s , t̂s). If at t̂s a loss of inner semi-continuity for P⋆ occurs then P⋆( t̂s) is multi-
valued, hence (X ⋆s , t̂s) is a discontinuous isolated multiple point (cf. Def. 3.5). The same
holds in the dual version for D⋆ and (Z⋆s , t̂s). If instead at t̂s continuity of P⋆ is preserved,
then P⋆( t̂s) is a singleton. According to whether P⋆ is differentiable at t̂s or not, (X ⋆s , t̂s) is
a regular point or a non-differentiable point (cf. Def. 3.4). At regular points in S that are
differentiable, the derivative of P⋆(t) and D⋆(t) might yet fail to be continuous. Being
in S, such points are in a finite number, hence proving the last sentence of the theorem.
Since P⋆( t̂s) is a singleton, a loss of differentiability only happens when t̂s is in S; that
is, when either D⋆( t̂s) is multi-valued or strict complementarity between X ⋆s and Z⋆s fails
(this follows from Lemma 3.1). The same holds in the dual version for D⋆ and (Z⋆s , t̂s).

Notice that while we only assume continuity of the data for Theorem 3.3, we need
stronger regularity assumptions to guarantee the validity of Theorem 3.4 (as well as
Theorems 3.1 and 3.2).

Other than interesting for a purely theoretical study, these results could be useful for
algorithms design as follows. If one can guarantee that the conditions of Theorem 3.4
are satisfied, algorithms for time-varying optimization need not consider the behaviors
corresponding to Definitions 3.6, 3.7, and 3.8. If, however, one would like to develop
a solver for the case where only assumptions A1, A2, and A3 are satisfied, some rather
pathological behaviors, such as non-isolated discontinuous multiple points or bifurcation
points, need to be to considered. In this respect, we believe that our work has the merit of
clarifying and making explicit the nature of the irregularities of the trajectories to TV-SDP.
The precise algorithmic consequences will clearly be strongly dependent on the type and
the properties of the algorithm in use. In the path-following algorithm that we propose
in the next chapter, we will assume that the trajectory of the solutions is made by regular
points, so that it describes a smooth and well-defined curve. In this chapter we clarified
under which algebraic conditions such a regular behavior is ensured. Such a restrictive
assumption is justified by Theorem 3.4, according to which the parametrization interval
can be partitioned into open time subintervals made by regular point and a finite number
of time singleton where regularity is lost.

To prove that any type of point that we defined can actually appear, in the following
section we exhibit an example of each type.
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Scene 3 Five exhaustive examples

W
here we follow our heroes struggling to get out of the labyrinthine Singular Wood.
Their vicissitudes are endless: after the unfortunate encounter with the Degenerate
Witch, they have to face the spectre of count Cayley, a terrible ghost who has inhab-
ited the forest for centuries. As if that were not enough, the constant bifurcations of

the path make their attempt to find the way out of the wood futile, while misadventures keep
accumulating on our heroes. Right when the two princes begin to lose hope, the exit from the
dark forest suddenly appears bright in front of their eyes...

Example 1: regular, non-differentiable and discontinuous isolated

multiple points

For t ∈ (−3,2), consider the primal TV-SDP

min t x + t y + z

s.t.









1 x y

x 1 z

y z 1









⪰ 0,
(P1

t )

whose feasible region is known as Cayley spectrahedron. We have:

P⋆(t) =
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at t = 0.
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In (−3,−2), the trajectory is constant and all points are hence regular (Definition 3.3).
In both intervals (−2, 0) and (0, 2), the solution to (P1

t ) is unique and the trajectory
describes a parabolic differentiable curve and hence all its points are also regular.

Instead, t = −2 is a non-differentiable point (Definition 3.4). Indeed:

d
d t

P⋆(t)|t=−2− =









0 0 0

0 0 0

0 0 0









̸=









0 −0.5 −0.5

−0.5 0 −2

−0.5 −2 0









=
d
d t

P⋆(t)|t=−2+ .

Moreover, at t = 0 there is a loss of uniqueness, as P⋆(0) is a one-dimensional face
of Cayley spectrahedron. Thus, t = 0 is a discontinuous isolated multiple point (Defini-
tion 3.5), as uniqueness is holding before for t ∈ (−2, 0) and after for t ∈ (0, 3).

Figure 3.1: Trajectory of solutions of (P1
t ). Its feasible set is time-invariant and it is the Cayley

spectrahedron (orange). Its optimal set-valued map coincides with the red dot at (1, 1,1) for
t ∈ (−3,−2], moves along the blue curve (−t/2,−t/2, t2/2− 1) for t ∈ (−2,2) \ {0}, and covers
the whole red top edge {(x , y,−1)|x + y = 0} at t = 0.

Consider now the TV-SDP dual to (P1
t ):

max α+ β + γ

s.t.









−α t/2 t/2

t/2 −β 1/2

t/2 1/2 −γ









⪰ 0.
(D1

t )
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The optimal set-valued map for (D1
t ) is

D⋆(t) =



























































































−t t/2 t/2

t/2 −(t + 1)/2 1/2

t/2 1/2 −(t + 1)/2













for t ∈ (−3,−2),













t2/2 t/2 t/2

t/2 1/2 1/2

t/2 1/2 1/2













for t ∈ [−2,2).

At t = −2, D⋆(t) has a non-differentiable point (Definition 3.4) too. Indeed:

d
d t

D⋆(t)|t=−2− =









−1 0.5 0.5

0.5 −0.5 0

0.5 0 −0.5









̸=









−2 0.5 0.5

0.5 0 0

0.5 0 0









=
d
d t

D⋆(t)|t=−2+ .

For t ∈ (−3,2)\{−2} the primal-dual pair of solutions is strictly complementary. Being
both unique solutions for every t ∈ (−3, 2)\{0}, we conclude by Lemma 3.1 and Theorem
3.1 that for t ∈ (−3,2) \ {−2, 0} the primal-dual trajectory of solutions consists of regular
points.

Notice that −2 and 0 are singular times for the parameterization interval (−3,2).
Indeed, at t = −2 there is a loss of strict complementarity (the rank of both primal and
dual solution is 1), while at t = 0 there is a loss of primal uniqueness, hence a dual
degenerate solution.

Note that this example illustrates Theorem 3.4, as there exists a non-singular time
t̂ ∈ (−3,2) (Definition 3.2). Take for example t̂ = 1: equation (3.1) has a finite set of 8
solutions, which can be described as the intersections in R6 of 3 sets, each of which is the
union of 2 hyperplanes, with 3 hyperplanes. If we set

(X , Z) =

















1 x y

x 1 z

y z 1









,









−α 1/2 1/2

1/2 −β 1/2

1/2 1/2 −γ

















,
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Act II A complete classification of TV-SDP solutions

then equation (3.1) can be rewritten as:































































x = α+ β − γ,

y = α− β + γ,

z = −α+ β + γ,

(1+α− β − γ)(1+ β + γ) = 0,

(1−α+ β − γ)(1+α+ γ) = 0,

(1−α− β + γ)(1+α+ β) = 0.

(3.4)

The solutions of this system are:

(−1
2 ,−1

2 ,−1
2 ,−1

2 ,−1
2 ,−1

2), (1,1, 1,1, 1,1),

(1, 1,−2,1,−1
2 ,−1

2), (−1,−1,1,−1, 0,0),

(1,−2,1,−1
2 , 1,−1

2), (−1, 1,−1,0,−1, 0),

(−2,1, 1,−1
2 ,−1

2 , 1), (1,−1,−1,0, 0,−1).

It is possible to check that each of these eight points makes the Jacobian (3.3) invertible,
hence guaranteeing that t̂ = 1 is a non-singular time, so that the hypothesis of Theorem 3.4
are satisfied. Notice that the first solution above corresponds to the optimal primal-dual
solution at t̂ = 1.

Example 2: a discontinuous non-isolated multiple point

For t ∈ (−2,1), consider the TV-SDP

min t x + t y + z

s.t.















1 x y 0

x 1 z 0

y z 1 0

0 0 0 1+ x + y + z















⪰ 0
(P2

t )
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for which

P⋆(t) =































































































































1 −t/2 −t/2 0

−t/2 1 t2

2 − 1 0

−t/2 t2

2 − 1 1 0

0 0 0 t2

2 − t





















for t ∈ (−2, 0),























































1 a b 0

a 1 −1 0

b −1 1 0

0 0 0 0





















�

�

�

a+ b = 0

a, b ∈ [−1, 1]



































for t ∈ [0, 1).

The optimal set-valued map P⋆(t) is continuous for every t ∈ (−2, 1) \ {0}, it is single-
valued for every t ∈ (−2,0), and it is multi-valued for every t ∈ [0,1), as for every t ∈ [0,1)

the optimal face at t is one-dimensional. A loss of inner semincontinuity occurs at t = 0.
Hence, t = 0 is a discontinuous non-isolated multiple point, according to Definition 3.6.

Figure 3.2: Trajectory of solutions of (P2
t ). Its feasible set is time-invariant and it is the Cayley

spectrahedron (orange) intersected with half space {(x , y, z)|1+ x+ y+z ≥ 0} (green). Its optimal
set-valued map moves along the blue curve (−t/2,−t/2, t2/2− 1) for t ∈ (−1, 0), and covers the
whole red top edge {(x , y, z)|x + y = 0, z = −1} for t ∈ [0, 1).
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Act II A complete classification of TV-SDP solutions

Example 3: continuous bifurcation points

For t ∈ (−1,1), consider the primal TV-SDP

min X11

s.t. X44 − X33 = 0

X22 = 1

2X12 + X33 + X44 = −t

X ⪰ 0

(P3
t )

for which

P⋆(t) =

































































































































































0 0 0 0

0 1 a b

0 a −t/2 c

0 b c −t/2





















�

�

�

�

a2 + b2 + c2 ≤ t2

4 − t

− t
2(a

2 + b2) + c2 − 2abc ≤ t2

4



































for t ∈ (−1,0),





















t2/4 −t/2 0 0

−t/2 1 0 0

0 0 0 0

0 0 0 0





















for t ∈ [0,1).

The optimal set-valued map P⋆(t) is continuous for every t ∈ (−1,1), it is multi-valued
for every t ∈ (−1,0), being there a three-dimensional face, and it is single-valued for every
t ∈ [0, 1) Hence t = 0 is a continuous bifurcation point for (P3

t ) according to Definition 3.7
(with reversed time, see Remark 6).

When there exists a continuous bifurcation point it is necessary that all the times of
the parameterization interval are singular according to Definition 3.2. In other words,
at any time t ∈ (−1,1) there exists a primal-dual point which is either degenerate
or not strictly complementary.
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Indeed, the dual TV-SDP to (P3
t ) is

max y − tz

s.t.















1 −z 0 0

−z −y 0 0

0 0 −x − z 0

0 0 0 x − z















⪰ 0
(D3

t )

which is equivalent to max{y + tz | y + z2 ≤ 0, −z ≤ x ≤ z} and for which

D⋆(t) =































































































































1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0





















for t ∈ (−1,0],























































1 t/2 0 0

t/2 t2/4 0 0

0 0 −a 0

0 0 0 a+ t





















�

�

�

�

a ∈ [−t, 0]



































for t ∈ (0,1).

The dual optimal set-valued map D⋆(t) is continuous for every t ∈ (−1,1), single-
valued for every t ∈ (−1,0], and it is multi-valued for every t ∈ (0,1), being there a
one-dimensional face. Thus, t = 0 is a continuous bifurcation point for (D3

t ), according to
Definition 3.7.

In particular, a pair of primal-dual solutions for (P3
t , D

3
t ) is not unique, hence degenerate,

for every t ∈ (−1, 1) \ {0}. For t = 0, there is a unique pair of primal-dual solutions for
which however strict complementarity does not hold. This implies that all t ∈ (−1, 1) are
singular times.
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Act II A complete classification of TV-SDP solutions

Figure 3.3: Trajectory of solutions of (D3
t ). Its feasible set is time-invariant and it is the set

{(x , y, z)|y + z2 ≤ 0, −z ≤ x ≤ z} (orange). Its optimal set-valued map coincides with the red
dot at (0,0, 0) for t ∈ (−1, 0]. At t = 0, (0,0, 0) is a continuous bifurcation point, as for every
t ∈ (0, 1) the solution is multi-valued and equal to the set {(x , y, z)|x ∈ [−t/2, t/2], y = −t2/4, z =
−t/2}. In the picture, the blue segments illustrate the optimal multiple-valued solution for
t = {0.1, 0.2, . . . , 0.9, 1}

Example 4: a first irregular accumulation point

For t ∈ (−1,1), consider the TV-SDP

min f (t)(x − y) + z

s.t.





















1 x y 0 0

x 1 z 0 0

y z 1 0 0

0 0 0 g(t) x − y

0 0 0 x − y g(t)





















⪰ 0
(P4

t )

where

f (t) :=











t sin πt if t > 0,

0 otherwise,

and

g(t) :=











2t if t > 0,

0 otherwise.
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For t ≤ 0 the feasible region is the intersection between Cayley spectrahedron and
the plane x − y = 0. For t > 0 the feasible region is the intersection between Cayley
spectrahedron and the region x − y ∈ [−2t, 2t].

Expressing the solutions of (P4
t ) in terms of the variables x(t), y(t), z(t), we have:

(x(t), y(t), z(t)) =



































(0,0,−1) for t ∈ (−1,0],

(t,−t,−1) for t ∈
�

1
2k−1 , 1

2k

�

, k = 1,2, . . .

{(α,−α,−1) | α ∈ [−t, t]} for t = 1
k , k = 1,2, . . .

(−t, t,−1) for t ∈
�

1
2k , 1

2k+1

�

, k = 1,2, . . .

For every t ∈ (−1,0], P⋆(t) is continuous and single-valued. The parameter sequence
{tk}∞k=1 ⊆ (0,1] defined by tk := 1

k is such that limk→∞ tk = 0 and at each tk a loss of inner
semi-continuity occurs. Hence, t = 0 is an irregular accumulation point, according to
Definition 3.8

Figure 3.4: Graph of the x coordinate of the optimal set of (P4
t ) as a function of time t. The blue

segments correspond to regular points, the red dot corresponds to an irregular accumulation
point, and the orange vertical segments correspond to discontinuous isolated multiple-points,
where the solution is multiple valued.

In the following, we also provide an example of an accumulation point for a sequence
of continuous bifurcation points.
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Example 5: a second irregular accumulation point

For t ∈ (−1,1), consider the TV-SDP

min z

s.t.





















1 x y 0 0

x 1 z 0 0

y z 1 0 0

0 0 0 2h(t) x − y

0 0 0 x − y 2h(t)





















⪰ 0,
(P5

t )

where

h(t) :=











t sin2 π
t if t > 0,

0 otherwise.

For t ≤ 0 and for t = 1/k, k = 1, 2, . . . the feasible region is the intersection between
Cayley spectrahedron and the plane x − y = 0, while for t ∈ (1/k, 1/(k+ 1)) , k = 1,2, . . .

it is the intersection between Cayley spectrahedron and the region x− y ∈ [−2h(t), 2h(t)].
Writing the solutions of (P5

t ) in terms of the variables x(t), y(t), z(t), we have:

(x(t), y(t), z(t)) =























(0, 0,−1) for t ∈ (−1,0],

{(α,−α,−1) | α ∈ [−h(t), h(t)]} for t ∈
�

1
k , 1

k+1

�

, k = 1,2, . . .

(0, 0,−1) for t = 1
k , k = 1, 2, . . .

Figure 3.5: Graph of the x coordinate of the optimal set of (P5
t ) as a function of time t. The blue

segment consists of regular points, the red dot corresponds to an irregular accumulation point,
and the orange dots correspond to continuous bifurcation points. The gray region corresponds to
times intervals where the optimal solution is multi-valued.
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For every t ∈ (−1, 1), P⋆(t) is continuous. The parameter sequence {tk}∞k=1 ⊆ (0, 1]

defined by tk := 1
k is such that limk→∞ tk = 0 and each tk is a continuous bifurcation point.

Hence, t = 0 is an irregular accumulation point, according to Definition 3.8.
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Chapter 4

Act III A path-following algorithm

“Quando me n’vo soletta per la via..."

Musetta in La Bohéme (Act III)

Let us start by recalling once again that we are considering TV-SDPs of the form

min
X∈Sn

〈Ct , X 〉

s.t. At(X ) = bt ,

X ⪰ 0.

(Pt)

Here t ∈ [0,τ] is a time parameter varying on a bounded and closed real interval.
As usual, At : Sn→ Rm is a linear operator defined by At(X ) = (〈A1,t , X 〉, . . . , 〈Am,t , X 〉) for
some A1,t , . . . , Am,t ∈ Sn, bt ∈ Rm, and Ct ∈ Sn. In this time-varying setting, one looks for a
solution curve t 7→ X t in Sn such that X = X t is an optimal solution for (Pt) at each time
point t ∈ [0,τ].

A naive and immediate approach to solve the time-varying problem (Pt) is to consider,
at a sequence of times {tk}k∈[κ] ⊆ [0,τ], the instances of the problem (Pt k

) for k ∈ [κ]

and solve them one after another. The best solvers for SDPs are interior point methods
[10, 85, 86, 87, 88], which can solve them in a time that is polynomial in the input size.
However, these solvers do not scale particularly well, and thus this brute-force approach
may fail in applications where the volume and velocity of the data are large. Furthermore,
such a straightforward method would not make use of the local information collected by
solving the previous instances of the problem.

55

https://www.youtube.com/watch?v=9S-JwOdw9L8


Act III A path-following algorithm

Unfortunately, IPMs are intrinsically unsuitable for warmstarting, lacking effective re-
optimization strategies. In order to address this issue, various techniques where recently
considered in the context of LP and SOCP [89, 90, 91, 92, 93] with discrete success, but
is not clear whether these approaches can be efficiently extended to SDP.

Instead, in this work, we would like to utilize the idea of so-called path-following
predictor-corrector algorithms as developed in [63, 64]. In classical predictor-corrector
methods, a predictor step for approximating the directional derivative of the solution with
respect to a small change in the time parameter is applied, together with a correction
step that moves from the current approximate solution closer to the next solution at the
new time point. The method that we propose incorporates these two steps in a single
Newton step applied to the first-order optimality KKT conditions.

A limiting factor in solving both stationary and time-dependent SDPs is computational
complexity when n is large. A common solution to this obstacle is the Burer–Monteiro
approach, as presented in the seminal work [65, 66]. In this approach, a low-rank
factorization X = Y Y T of the solution is assumed with Y ∈ Rn×r and r potentially much
smaller than n. In the optimization literature, the Burer–Monteiro method has been very
well studied as a non-convex optimization problem, e.g. in terms of algorithms [68],
quality of the optimal value [70, 71], and (global) recovery guarantees [72, 73, 74].

In a time-varying setting, the Burer–Monteiro factorization leads to

min
Y∈Rn×r

〈Ct , Y Y T 〉

s.t. At(Y Y T ) = bt ,
(Qt)

which for every fixed t is a quadratically constrained quadratic problem. A solution then is
a curve t 7→ Yt in Rn×r , which, depending on r, is a space of much smaller dimension than
Sn. However, this comes at the price that the problem (Qt) is now non-convex. Moreover,
theoretically it may happen that local optimization methods converge to a critical point
that is not globally optimal [67], although in practice the method usually shows very
good performance [65, 68, 69].

As we explain in the next section, to apply such methods, we need to address the
issue that the solutions of (Qt) are never isolated, due to the non-uniqueness of the
Burer–Monteiro factorization caused by orthogonal invariance. We apply a well-known
technique to handle this problem by restricting the solutions to a so-called horizontal
space at every time step. From a geometric perspective, such an approach exploits the fact
that equivalent factorizations can be identified as the same element in the corresponding
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quotient manifold with respect to the orthogonal group action [94].
Naturally, the rigorous formulation of path-following algorithms requires regularity

assumptions on the solution curve. In our context, this will require both assumptions on
the original TV-SDP problem (Pt) as well as on its reformulation (Qt). In particular for
the latter, the correct choice of the dimension r is crucial. In what follows, we present
and discuss these assumptions in detail.

We recall that the dual problem of (Pt) is

max
y∈Rm

〈bt , y〉

s.t. Z(y) := Ct −A∗t (y)⪰ 0
(Dt)

where A∗t : y 7→
∑m

i=1 yiAi,t is the linear operator adjoint to At . For convenience, we often
drop the explicit dependence on y and refer to a solution of (Dt) simply as Z .

In this chapter, for the initial problem (Pt) we make the following assumptions.

(A1) Data At , bt , Ct are continuously differentiable functions of t.

(A2) The linear operator At satisfies LICQ for any t ∈ [0,τ].

(A3) Problem (Pt) and its dual (Dt) are strictly feasible for every t ∈ [0,τ].

(A4) Problem (Pt) has a primal non-degenerate solution X t and
problem (Dt) has a dual non-degenerate solution Zt at any t ∈ [0,τ].

(A5) The solution pair (X t , Zt) is strictly complementary for any t ∈ [0,τ].

Assumptions A1–5 rule out all the pathological behavior of the trajectory of the
solutions to (Pt) exposed in the previous chapter, as well as in [61], so that all the points
in the trajectory are regular. In particular, assumption A4 implies that the solution pair
(X t , Zt) is unique. We recall that by Theorem 3.1 assumptions A1–5 have the following
consequences:

(C1) Problem (Pt) has a unique and smooth solution curve X t for every t ∈ [0,τ].

(C2) The curve t 7→ X t is of constant rank r⋆.

For setting up the factorized version (Qt) of (Pt), it is necessary to choose the dimen-
sion r of the factor matrix Y in (Qt), ideally equal to r⋆ of C2. In what follows, we assume
that we know the constant rank r⋆. Given access to an initial solution X0 at time t = 0, it
is possible to compute r⋆, so this assumption is without further loss of generality.
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It is worth noting that the rank cannot be arbitrary: for any SDP defined by m linearly
independent constraints, there always exists a solution of rank r such that r(r+1)

2 ≤ m.
Since we assume that X t is the unique solution to (Pt) with constant rank r⋆ we conclude
that

r⋆ ≤
�p

1+ 8m− 1
2

�

.

The Barvinok–Pataki bound has been recently slightly improved by [95].
This chapter is structured as follows. In the first section we present the underlying

quotient geometry of positive semidefinite rank-r matrices from a linear algebra perspec-
tive, focusing in particular on the notion of horizontal space and the domain of injectivity
of the map Y 7→ Y Y T . We then present in the subsequent section our path-following
algorithm, which is based on iteratively solving the linearized KKT system for (Qt) over
time. A main result there is the rigorous error analysis for this algorithm. Finally, in
the last section, we showcase numerical results that test our method on a time-varying
variant of the well-known Goemans–Williamson SDP relaxation for the Max-Cut problem
in combinatorial optimization and graph theory.

Scene 1 Quotient geometry of
positive semidefinite rank-r matrices

W
here the two protagonists meet on the edge of the Singular Forest a low-ranking
merchant gone into ruin: apparently, bad orbits messed up his horoscope, and he is
now forced by hunger to beg for a loaf of bread. When the two generous princes offer
him their help, he reveal to be no less than the mighty wizard of Burer–Monteiro, a

land that is well-known to the princes, thanks to their cartography studies. The wizard rewards
them by revealing the hidden location of the formidable Horizontal Spade, a magic weapon. Our
heroes then continue their adventure with their new friend...

We now investigate the factorized formulation (Qt) in more detail. As already mentioned,
in contrast to the original problem (Pt), this is a nonlinear problem (specifically, a quadrat-
ically constrained quadratic problem) which is non-convex. Moreover, the property of
uniqueness of a solution, which is guaranteed by C1 for the original problem (Pt), is lost
in (Qt), because its representation via the map

φ : Rn×r → Sn, φ(Y ) = Y Y T
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is not unique. In fact, this map is invariant under the orthogonal group action

Or ×Rn×r → Rn×r , (Q, Y ) 7→ YQ,

on Rn×r , where
Or := {Q ∈ Rr×r |QQT = Ir},

is the orthogonal group. Hence both the objective function Y 7→ 〈Ct , Y Y T 〉 and the
constraints At(Y Y T ) = bt in (Qt) are invariant under the same action. As a consequence,
the solutions of (Qt) are never isolated [68]. This poses a technical obstacle to the use of
path-following algorithms, as the path needs to be, at least locally, uniquely defined.

On the other hand, by assuming that the correct rank r = r⋆ of a unique solution
X t for (Pt) has been chosen for the factorization, any solution Yt for (Qt) must satisfy
Yt Y

T
t = X t . From this it follows that any solution is of the form YtQ with Q ∈ Or; see,

e.g., [66, Lemma 2.1]. In other words, the action of the orthogonal group is indeed the
only source of non-uniqueness. This corresponds to the well-known fact that the set of
positive definite fixed rank-r symmetric matrices, which we denote by M+

r , is a smooth
manifold that can be identified with the quotient manifold Rn×r

∗ /Or , where Rn×r
∗ is the

open set of n× r matrices with full column rank.
In the following, we describe how the non-uniqueness can be removed by introducing

the so-called horizontal spaces, which is a standard concept in optimization on quotient
manifolds of the form [96]. For positive semidefinite fixed-rank matrices, this has been
worked out in detail in [94]. Additional material, including the complex Hermitian case,
can be found in [97]. However, in order to arrive at practical formulas that are useful
for our path-following algorithm later on, we will not further refer to the concept of a
quotient manifold but directly focus on the injectivity of the map φ on suitable linear
subspaces of Rn×r , which we describe in this section. Such a simplification takes into
account that we are dealing with a quotient manifold Rn×r

∗ /Or with Rn×r
∗ being just an

open subset of Rn×r . Then the horizontal space at a point Y should be a subspace of the
tangent space of Rn×r

∗ at Y , which, however, is just Rn×r .
Given Y ∈ Rn×r

∗ , we denote the corresponding orbit under the orthogonal group as

YOr := {YQ |Q ∈Or} ⊆ Rn×r
∗ .

The orbit YOr is an embedded submanifold of Rn×r
∗ of dimension Tr−1 with two connected

components, according to detQ = ±1. Its tangent space at Y , which we denote by TY ,
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is easily derived by noting that the tangent space to the orthogonal group Or at the
identity matrix equals the space of real skew-symmetric matrices Sr

skew (see, e.g., [96,
Example 3.5.3]). Therefore,

TY = {Y S | S ∈ Sr
skew}.

Since the map φ(Y ) = Y Y T is constant on YOr , its derivative

Y 7→ φ′(Y )[H] = Y HT +HY T

vanishes on TY , that is TY ⊆ kerφ′(Y ).
The horizontal space at Y , denoted by HY , is the orthogonal complement of TY with

respect to the Frobenius inner product. One verifies that

HY := T ⊥Y = {H ∈ R
n×r | Y T H = HT Y },

since 0= 〈H, Y S〉= 〈Y T H, S〉 holds for all skew-symmetric S if and only if Y T H is symmet-
ric. We point out that sometimes any subspace complementary to TY is called a horizontal
space, but we will stick to the above choice, as it is the most common and has certain
theoretical and practical advantages. In particular, since Y ∈HY , the affine space Y +HY

equals HY , so it is just a linear space.
The purpose of the horizontal space is to provide a unique way of representing a

neighborhood of X = Y Y T in M+
r through φ(Y + H) = (Y + H)(Y + H)T with H ∈ HY .

Clearly,
dimHY = nr − dimOr = nr − Tr−1 = dimM+

r .

Moreover, the following holds.

Proposition 4.1. The restriction of φ′(Y ) to HY is injective. In particular, it holds that

∥Y HT +HY T∥F ≥
p

2σr(Y )∥H∥F for all H ∈HY ,

where σr(Y )> 0 is the smallest singular value of Y . This lower bound is sharp if r < n. For
r = n one has the sharp estimate

∥Y HT +HY T∥F ≥ 2σr(Y )∥H∥F for all H ∈HY .

As a consequence, in either case, kerφ′(Y ) = TY .

Proof. For Z ∈ Sn we have trace((Y HT +HY T )Z) = 2 trace(ZY HT ) by standard properties
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of the trace. Taking Z = Y HT +HY T yields

∥Y HT +HY T∥2
F = 2 trace(Y HT Y HT +HY T Y HT ) = 2∥Y T H∥2

F + 2∥Y HT∥2
F .

To derive the second equality we used Y T H = HT Y for H ∈ HY . Clearly, ∥Y HT∥2
F ≥

σr(Y )2∥H∥2
F and if r = n we also have that ∥Y T H∥2

F ≥ σr(Y )2∥H∥2
F . This proves the

asserted lower bounds. To show that they are sharp, let (ur , vr) be a (normalized) singular
vector tuple such that Y vr = σr(Y )ur . If r < n, then for any u such that uT Y = 0 one
verifies that the matrix H = uvT

r is in HY and achieves equality. When r = n, H = ur vT
r

achieves it.

Sinceφ maps Rn×r
∗ toM+

r , which is of the same dimension asHY , the above proposition
implies that φ′(Y ) is a bijection between HY and Tφ(Y )M+

r . This already shows that the
restriction of φ to the linear space Y +HY = HY is a local diffeomorphism between a
neighborhood of Y in HY and a neighborhood of φ(Y ) in M+

r . The subsequent more
quantitative statement matches the Theorem 6.3 in [94] on the injectivity radius of the
quotient manifold Rn×r

∗ /Or . For convenience we will provide a self-contained proof that
is more algebraic and does not require the concept of quotient manifolds.

Proposition 4.2. Let BY := {H ∈HY | ∥H∥F < σr(Y )}. Then the restriction of φ to Y +BY

is injective and maps diffeomorphically to a (relatively) open neighborhood of Y in M+
r .

It is interesting to note that BY is the largest possible ball in HY on which the result
can hold, since the rank-one matrices σiui v

T
i comprised of singular pairs of Y all belong

to HY and Y −σrur vT
r is rank-deficient. Another important observation is that σr(Y ) does

not depend on the particular choice of Y within the orbit YOr .

Proof. Consider H1, H2 ∈ BY . Let Y = UΣV T be a singular value decomposition of Y

with U ∈ Rn×r and V ∈ Rr×r having orthonormal columns. We assume r < n. Then by
U⊥ ∈ Rn×(n−r) we denote a matrix with orthonormal columns and U T U⊥ = 0. In the case
r = n, the terms involving U⊥ in the following calculation are simply not present. We
write

H1 = UA1V T + U⊥B1V T , H2 = UA2V T + U⊥B2V T .

Since H1, H2 ∈HY , we have

ΣA1 = AT
1Σ, ΣA2 = AT

2Σ.
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Then a direct calculation yields

(Y +H1)(Y +H1)
T − Y Y T = U[ΣAT

1 + A1Σ+ A1AT
1]U

T

+ U[Σ+ A1]B
T
1 U T
⊥ + U⊥B1[Σ+ AT

1]U
T + U⊥B1BT

1 U T
⊥ ,

and analogously for (Y +H2)(Y +H2)T − Y Y T . Since the four terms in the above sum are
mutually orthogonal in the Frobenius inner product, the equality (Y + H1)(Y + H1)T =

(Y +H2)(Y +H2)T particularly implies

ΣAT
1 + A1Σ+ A1AT

1 = ΣAT
2 + A2Σ+ A2AT

2 ,

as well as
(Σ+ A1)B

T
1 = (Σ+ A2)B

T
2 . (4.1)

The first of these equations can be written as

Σ(A1 − A2)
T + (A1 − A2)Σ= A2(A2 − A1)

T − (A1 − A2)A
T
1 .

By Proposition 4.1 (with n= r, Y = Σ and H = A1 − A2),

∥Σ(A1 − A2)
T + (A1 − A2)Σ∥F ≥ 2σr(Y )∥A1 − A2∥F ,

whereas
∥A2(A2 − A1)

T − (A1 − A2)A
T
1∥F ≤ (∥H2∥F + ∥H1∥F)∥A1 − A2∥F .

Since ∥H2∥F +∥H1∥F < 2σr(Y ), this shows that we must have A1 = A2, which then by (4.1)
also implies B1 = B2, since Σ+ A1 is invertible.

Hence, we have proven that φ is an injective map from Y + BY to M+
r . To validate

that it is a diffeomorphism onto its image we show that it is locally a diffeomorphism, for
which again it suffices to confirm that φ′(Y +H) is injective on HY for every H ∈ BY (since
HY and M+

r have the same dimension). It follows from Proposition 4.1 (with Y replaced
by Y +H, which has full column rank) that the null space of φ′(Y +H) equals TY+H . We
claim that TY+H ∩HY = {0}, which proves the injectivity of φ′(Y +H) on HY . Indeed, let
K be an element in the intersection, i.e., K = (Y +H)S for some skew-symmetric S and
Y T K −K T Y = 0. Inserting the first relation into the second, and using Y T H = HT Y , yields
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the homogenuous Lyapunov equation

(Y T Y + Y T H)S + S(Y T Y + Y T H) = 0. (4.2)

The symmetric matrix

Y T Y + Y T H =
1
2
(Y +H)T (Y +H) +

1
2
(Y T Y −HT H)

in (4.2) is positive definite, since λ1(HT H) ≤ ∥HT H∥F < σr(Y )2 = λr(Y T Y ). But in this
case (4.2) implies S = 0, that is, K = 0.

Finally, it is also possible to provide a lower bound on the radius of the largest ball
around X = Y Y T such that its intersection with M+

r is in the image φ(Y +BY ), so that an
inverse map φ−1 is defined.

Proposition 4.3. Any X̃ ∈M+
r satisfying ∥X̃ − X∥F <

2λr (X )p
r+4+

p
r
is in the image φ(Y + BY ),

that is, there exists a unique H ∈ BY such that X̃ = (Y +H)(Y +H)T .

Observe that one could take

∥X̃ − X∥F ≤
λr(X )p

r + 4
(4.3)

as a slightly cleaner sufficient condition in the proposition.

Proof. Let X̃ = Z̃ Z̃ T with Z̃ ∈ Rn×r and assume a polar decomposition of Y T Z̃ = PQ̃T ,
where P, Q̃ ∈ Rr×r , P is positive semidefinite and Q̃ is orthogonal. Let Z = Z̃Q̃. Then

H = Z − Y (4.4)

satisfies (Y +H)(Y +H)T = X̃ , and since Y T H = P − Y T Y is symmetric, we have H ∈HY .
We need to show H ∈ BY , that is, ∥H∥F < σr(Y ). Proposition 4.2 then implies that H

is unique in BY . Let Y Y † be the orthogonal projector onto the column span of Y and
Z1 = Y Y †Z . With that, we have the decomposition

∥H∥2
F = ∥Y Y †H∥2

F + ∥(I − Y Y †)H∥2
F = ∥Z1 − Y ∥2

F + ∥(I − Y Y †)Z∥2
F . (4.5)

We estimate both terms separately. Since Y T Z1 = Y T Z = P is symmetric and positive
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semidefinite, the first term satisfies

∥Z1 − Y ∥2
F = ∥Z1∥2

F − 2 trace(Y T Z1) + ∥Y ∥2
F

= ∥(Z1Z T
1 )

1/2∥2
F − 2

r
∑

i=1

σi(Y
T Z1) + ∥(Y Y T )1/2∥2

F . (4.6)

A simple consideration using a singular value decomposition of Y and Z1 reveals that

(Y Y T )1/2(Z1Z T
1 )

1/2 = ŨY T Z1Ṽ T

for some Ũ and Ṽ with orthonormal columns. Consequently, by von Neumann’s trace
inequality (see, e.g., [23, Theorem 7.4.1.1]), we have

trace((Y Y T )1/2(Z1Z T
1 )

1/2)≤
r
∑

i=1

σi(Y
T Z1).

Inserting this in (4.6) yields

∥Z1 − Y ∥2
F ≤ ∥(Z1Z T

1 )
1/2 − (Y Y T )1/2∥2

F .

We remark that we could have concluded this inequality from [97, Theorem 2.7] where
it is also stated. It actually holds for any Z1 for which Y T Z1 is symmetric and positive
semidefinite using the same argument (in particular for Z1 replaced with the initial Z).
Let now Y = UΣV T be a singular value decomposition of Y with σr(Y ) the smallest
positive singular value. Then Z1Z T

1 = US2U T for some positive semidefinite S2 ∈ Rr×r and
it follows from well-known results, cf. [98], that1

∥(Z1Z T
1 )

1/2 − (Y Y T )1/2∥2
F = ∥S −Σ∥

2
F ≤

1
σr(Y )2

∥S2 −Σ2∥2
F =

1
σr(Y )2

∥Z1Z T
1 − Y Y T∥2

F .

Noting that Z1Z T
1 = (Y Y †)X̃ (Y Y †) and Y Y T = (Y Y †)X (Y Y †) we conclude the first part

with
∥Z1 − Y ∥2

F ≤
1

σr(Y )2
∥(Y Y †)(X̃ − X )(Y Y †)∥2

F ≤
1

σr(Y )2
∥X̃ − X∥2

F . (4.7)

1For completeness we provide the proof. The matrix S −Σ is the unique solution to the matrix equation
L(M) = SM +MΣ = S2 −Σ2. Indeed, the linear operator L on Rr×r is symmetric in the Frobenius inner
product and has positive eigenvalues λi, j = λi(S) +Σ j j ≥ σr(Y ) (the eigenvectors are rank-one matrices
wie

T
j with wi the eigenvectors of S). Hence ∥S2 −Σ2∥F = ∥L(S −Σ)∥F ≥ σr(Y )∥S −Σ∥F .
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The second term in (4.5) can be estimated as follows:

∥(I − Y Y †)Z∥2
F = trace((I − Y Y †)X̃ (I − Y Y †))

≤
p

r∥(I − Y Y †)X̃ (I − Y Y †)∥F

=
p

r∥(I − Y Y †)(X̃ − X )(I − Y Y †)∥F ≤
p

r∥X̃ − X∥F , (4.8)

where we used the Cauchy-Schwarz inequality and the fact that (I − Y Y †)X̃ (I − Y Y †) has
rank at most r.

As a result, combining (4.5) with (4.7) and (4.8), we obtain

∥H∥2
F ≤

1
σr(Y )2

∥X̃ − X∥2
F +
p

r∥X̃ − X∥F . (4.9)

The right side is strictly smaller than σr(Y )2 when

∥X̃ − X∥F < −
σr(Y )2

p
r

2
+

√

√σr(Y )4r
4

+σr(Y )4 =
σr(Y )2

2
(
p

r + 4−
p

r) =
2λr(X )p

r + 4+
p

r
,

which proves the assertion.

Remark 9. From definition (4.4) of H, since Q̃ is given by the polar decomposition
Y T Z̃ = PQ̃T , it follows that

∥H∥F = ∥Y − Z̃Q̃∥F = min
Q∈Or

∥Y − Z̃Q∥F ,

see, e.g., [23, section 7.4.5]. In general, given any Y, Z̃ ∈ Rn×r , both of rank r, the
minimizer Z = Z̃Q̃ in this problem is necessarily obtained by choosing Q̃ from the polar
decomposition of Y T Z̃ so that Y T Z is necessarily symmetric, that is, Z and hence Z−Y are
in the horizontal space HY . In fact, the quantity minQ∈Or

∥Y − Z̃Q∥F defines a Riemannian
distance between the orbits YOr and Z̃Or in the corresponding quotient manifold; see [94,
Proposition 5.1].

We now return to the factorized problem formulation (Qt). Let Yt be an optimal
solution of (Qt) at some fixed time point t (so that Yt Y

T
t = X t and rank Yt = r). Based on

the above propositions we are able to state a result on the allowed time interval [t, t+∆t]

for which the factorized problem (Qt) is guaranteed to admit unique solutions on the
horizontal space HYt

corresponding to the original problem (Pt). For this, exploiting the
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smoothness of the curve t 7→ X t , we first define

L := max
t∈[0,τ]

∥Ẋ t∥F , (4.10)

a uniform bounds on the time derivative, as well as

λr(X t)≥ λ∗ > 0 (4.11)

on the smallest eigenvalue of X t , are available for t ∈ [0,τ]. Notice that the existence of
such bounds is without any further loss of generality: the existence of L follows from C1,
which guarantees that X t is a smooth curve, while the existence of λ∗ is guaranteed by C2,
since X t has a constant rank.

Theorem 4.1. Let Yt be a solution of (Qt) as above. Then for ∆t < 2λ∗
L(
p

r+4+
p

r) there is a
unique and smooth solution curve s 7→ Ys for the problem (Qt) restricted to HYt

in the time
interval s ∈ [t, t +∆t].

Proof. It suffices to show that for s in the asserted time interval the solutions X s of (SDPs)
lie in the image φ(Yt +BYt

). By Proposition 4.3, this is the case if ∥X s − X t∥F <
2λr (X t )p
r+4+

p
r
.

Since
∥X s − X t∥F ≤
∫ s

t

∥Ẋτ∥F dτ≤ L(s− t),

and λ∗ ≤ λr , the condition s− t < 2λ∗
L(
p

r+4+
p

r) is sufficient. Then Proposition 4.2 provides
the smooth solution curve Ys = φ−1(X s) for problem (Qt).

Similarly, if one wants to guarantee condition (4.3) it is sufficient to take

∆t <
λ∗

L
p

r + 4
(4.12)

The results of this section motivate the definition of a version of (Qt) restricted to HYt
,

which we provide in the next section.
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Figure 4.1: A visual summary of the results of the previous section: for ∆t small enough, the
solution X t+∆t is contained in the ball BX t

:= {X ∈ Sn | ∥X − X t∥ ≤ λr(X t)/
p

r + 4}, guaranteeing
that there exists a unique matrix Yt+∆t ∈ Rn×r

∗ such that φ(Yt+∆t) = X t+∆t and such that Yt+∆t ∈
Yt +BYt

= {H ∈ Yt +HYt
| ∥H∥F < σr(Yt)}.

Scene 2 Path following the trajectory of solutions

W
here our heroes begin the research of the Horizontal Spade. Unfortunately, in order
to reach it they have to venture again in the Singular Wood. With the providential
help of the wizard of Burer–Monteiro, they quickly find it in a clearing in the middle
of the forest. Having taken possession of the enchanted weapon, they use its magic

powers to make a clear and smooth way out the wood, which they follow step by step. This time
the path errors are decisively bounded...

In this section, we present a path-following procedure for computing a sequence of
approximate solutions {Ŷ0, . . . , Ŷk, . . . , Ŷκ} at different time points that tracks a trajectory
of solutions t 7→ Yt to the Burer–Monteiro reformulation (Qt). From this sequence we are
then able to reconstruct a corresponding sequence of approximate solutions X̂k = Ŷk Ŷ T

k

tracking the trajectory of solutions t 7→ X t for the full space TV-SDP problem (Pt). The
path-following method is based on iteratively solving the linearized KKT system. Given
an iterate Yt on the path, we explained in the previous section how to eliminate the
problem of non-uniqueness of the path in a small time interval [t, t +∆t] by considering
problem (Qt) restricted to the horizontal space HYt

. We now need to ensure that this
also guarantees that the linearized KKT system admits a unique solution. We show in
Theorem 4.2 that this is indeed guaranteed under standard regularity assumptions on
the original problem (Pt). This is a remarkable fact of somewhat independent interest.
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Linearized KKT conditions and second-order sufficiency

Given an optimal solution X t = Yt Y
T

t at time t, we aim to find a solution X t+∆t = Yt+∆t Y
T

t+∆t

at time t +∆t. By the results of the previous section, the next solution can be expressed
in a unique way as

Yt+∆t = Yt +∆Y,

where ∆Y is in the horizontal space HYt
, provided that ∆t is small enough.

We define the following maps:

ft+∆t(Y ) := 〈Ct+∆t , Y Y T 〉,

gt+∆t(Y ) :=At+∆t(Y Y T )− bt+∆t ,

hYt
(Y ) := Y T

t Y − Y T Yt .

(4.13)

By definition, ∆Y ∈ HYt
if and only if hYt

(∆Y ) = 0. For symmetry reasons we use the
equivalent condition hYt

(Yt +∆Y ) = 0 (which reflects the fact that Yt +HYt
is actually a

linear space).
To find the new iterate Yt+∆t we hence consider the problem

min
Y∈Rn×r

ft+∆t(Y )

s.t. gt+∆t(Y ) = 0

hYt
(Y ) = 0.

(QYt ,t+∆t)

This is a quadratically constrained quadratic problem whose Lagrangian is

LYt ,t+∆t(Y,µ,ν) := ft+∆t(Y )− 〈µ, gt+∆t(Y )〉 − 〈ν, hYt
(Y )〉 (4.14)

with multipliers µ ∈ Rm and ν ∈ Sr
skew. The KKT conditions of problem (QYt ,t+∆t) are

∇YLYt ,t+∆t(Y,µ,ν) = 0

gt+∆t(Y ) = 0

hYt
(Y ) = 0.

(4.15)
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Hence, equation (4.15) reads explicitly as

FYt ,t+∆t(Y,µ,ν) :=









2Ct+∆t Y − 2A∗t+∆t(µ)Y − 2Ytν

At+∆t(Y Y T )− bt+∆t

Y T
t Y − Y T Yt









= 0.

The linearization of (4.15) at (Yt ,µt ,νt) leads to a linear system

JYt ,t+∆t(Yt ,µt ,νt)









∆Y

µt +∆µ

νt +∆ν









=









−∇Y ft+∆t(Yt)

gt+∆t(Yt)

0









, (L)

where JYt ,t+∆t(Y,µ,ν) denotes the derivative of FYt ,t+∆t at (Y,µ,ν). Note that it actually
does not depend on ν, but we will keep this notation for consistency. As a linear operator
on Rn×r ×Rm × Sr

skew, JYt ,t+∆t(Y,µ,ν) can be written in block matrix notation as follows:

JYt ,t+∆t(Y,µ,ν) :=









∇2
YLYt ,t+∆t(µ) −g ′t+∆t(Y )

∗ −h∗Yt

−g ′t+∆t(Y ) 0 0

−hYt
0 0









,

where from (4.13) and (4.14) one derives

∇2
YLYt ,t+∆t : H 7→ 2(Ct+∆t −A∗t+∆t(µ))H,

g ′t+∆t(Y ) : H 7→At+∆t(Y HT +HY T ),

hYt
: H 7→ Y T

t H −HT Yt ,

g ′t+∆t(Y )
∗ : µ 7→ 2A∗t+∆t(µ)Y,

h∗Yt
: ν 7→ 2Ytν.

For later reference, observe that as a bilinear form ∇2
YLYt ,t+∆t reads

∇2
YLYt ,t+∆t(µ)[H, H] = 2 trace(HT (Ct+∆t −A∗t+∆t(µ))H).

Solving system (L) to obtain updates (Yt +∆Y,µt +∆µ,νt +∆ν) is equivalent to applying
one step of Newton’s method to the KKT system (4.15) (Lagrange–Newton method).
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Our aim in this subsection is to show that for ∆t small enough the system (L) is
uniquely solvable when (Yt ,µt) is a KKT-pair for the overparametrized problem (Qt).
Since the system is continuous in ∆t, we can do that by showing that it admits a unique
solution for ∆t = 0. This corresponds to proving second-order sufficient conditions for
the optimality of problem (QYt ,t+∆t) for ∆t = 0. Interestingly, it is possible to relate this
to standard regularity hypotheses on the original semidefinite problem (Pt). For this we
first need a uniqueness statement on the Lagrange multiplier µt .

Lemma 4.1. Given an optimal solution X t = Yt Y
T

t to (Pt), suppose that X t is a unique (see
consequence C1), primal non-degenerate (see Definition 2.9 and assumption A4) solution.
Then there is a unique optimal Lagrangian multiplier µt for (Qt) independent from the
choice of Yt in the orbit YtOr . Moreover, Z(µt) = Ct −A∗t (µt) is the unique dual solution
to (Dt).

Proof. We start by recalling that the optimal set for (Qt) coincide with YtOr . Since the
KKT conditions for (Qt) are just

∇Y ft(Y )−∇Y 〈µ, gt(Y )〉= 2(Ct −A∗t (µ))Y = 0

(and gt(Y ) = 0), the set of all the optimal dual multipliers for (Qt) is given by the set

{µ | (Ct −A∗t (µ))YtQ = 0,Q ∈Or}= {µ | (Ct −A∗t (µ))Yt = 0}

To show that this set is a singleton, it then suffices to prove that the homogeneous equation
A∗t (µ)Yt = 0 has only the zero solution. By (2.4), primal non-degeneracy for X t can read
as

imA∗t ∩ T
⊥

X t
= {0},

where T ⊥X t
= {M ∈ Sn | MX t = 0}. Noticing that A∗t (µ)Yt = 0 implies A∗t (µ) ∈ im(A∗t )∩ T

⊥
X t
,

we get that A∗t (µ) = 0 and thus µ= 0 since A∗t is injective by assumption A2. To prove the
second statement, observe that by primal non-degeneracy the dual problem (Dt) has a
unique solution Z(yt) corresponding, by assumption A2, to a unique dual multipliers vector
yt (see Theorem 7 in [38]). Furthermore, Z(yt) satisfies Z(yt)X t =

�

Ct −A∗t (yt)
�

Yt Y
T

t = 0

by (KKT). Since Yt has full column rank if r is chosen equal to r⋆ = rank X t , this implies
that
�

Ct −A∗t (yt)
�

Yt = 0. From the first statement it then follows that yt = µt .

We can now state and prove the main result of this subsection.
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Theorem 4.2. Let (X t = Yt Y
T

t , Zt) be an optimal primal-dual pair of solutions to (Pt , Dt)
which is strictly complementary (see Definition 2.8) and such that X t is primal non-degenerate
(see Definition 2.9). Let µt be the unique corresponding Lagrange multiplier for (Qt) according
to Lemma 4.1. Then the triple (Yt ,µt ,νt = 0) is a KKT triple for (QYt ,t+∆t) at ∆t = 0 (that
is, FYt ,t(Yt ,µt , 0) = 0) and fulfills the SOSC:

∇2
YLYt ,t(µt)[H, H] = trace(HT (Ct −A∗t (µt))H)> 0 (4.16)

for all H ∈ Rn×r \ {0} satisfying At(Yt H
T + HY T

t ) = 0 and Y T
t H − HY T

t = 0. In particular,
JYt ,t(Yt ,µt , 0) is invertible.

Proof. Since (Ct −A∗(µt))Yt = Z(µt)Yt = 0 by the KKT conditions for (Qt) and hYt
(Yt) = 0,

it is obvious that FYt ,t(Yt ,µt , 0) = 0. It is well-known that the linearized KKT system (L)
admits a unique solution if (and only if) the SOSC (4.16) hold; see e.g., [99, Lemma
16.1]. Since (X t , Z(µt)) is an optimal solution for the original primal-dual pair of SDPs,
and it hence satisify the second-order necessary conditions for optimality (that is, Z(µt)⪰

0), (4.16) holds with “≥”. Assume that

trace(HT (Ct −A∗t (µt))H) = trace(HT Z(µt)H) = 0

for some H ∈ Rn×r satisfying At(Yt H
T +HY T

t ) = 0 and Y T
t H −HT Yt = 0. Since Zt = Z(µt)

is positive semidefinite, the columns of H must belong to the kernel of Z(µt). By strict
complementarity (2.3) they hence belong to the column space of X t , which is equal to
the column space of Yt . Therefore H = Yt P for some matrix P ∈ Rr×r . Consider now the
matrix

X̃ = X t + s(Yt H
T +HY T

t ) = Yt[Ir + s(PT + P)]Y T
t ,

depending on a real parameter s. Clearly, At(X̃ ) = bt and, for non-zero |s| small enough,
X̃ is positive semidefinite. Furthermore, for a suitable choice of the sign of s, we have
〈Ct , X̃ 〉 ≤ 〈Ct , X t〉. Since X t is the unique solution of (Pt), this implies X̃ = X t and thus
Yt H

T +HY T
t must be zero. Since H ∈HYt

Proposition 4.1 yields H = 0, and this completes
the proof.

Corollary 4.1. Let the assumptions of Theorem 4.2 be satisfied. Then for ∆t > 0 small
enough (and depending on Yt) system (L), that is, operator JYt ,t+∆t(Yt ,µt , 0) is invertible.

Clearly, this is only a qualitative result. An upper bound for feasible ∆t could be
expressed in terms of the spectral norm of the inverse of JYt ,t(Yt ,µt , 0) using perturbation
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arguments. This would require a lower bound on the absolute value of the eigenvalues
of JYt ,t(Yt ,µt , 0). In this context, we should clarify that the eigenvalues, and hence also
the condition number of JYt ,t+∆t(Yt ,µt , 0) (for sufficiently small ∆t as above), do not
depend on the particular choice of Yt in the orbit YtOr . This is obviously also relevant
from a practical perspective. To see this, note that as a bilinear form on Rn×r ×Rm × Sr

skew

JYt ,t+∆t(Y,µ,ν) reads

JYt ,t+∆t(Y,µ,ν)[(H,∆µ,∆ν), (H,∆µ,∆ν)] (4.17)

= trace(HT (Ct+∆t −A∗t+∆t(µ))H)− 2〈∆µ,At+∆t(Y HT +HY T )〉 − 2〈∆ν, Y T
t H −HT Yt〉.

For any fixed Q ∈Or one therefore has

JYt ,t+∆t(Yt ,µt , 0)[(H,∆µ,∆ν), (H,∆µ,∆ν)]

= JYtQ,t+∆t(YtQ,µt , 0)[TQ(H,∆µ,∆ν),TQ(H,∆µ,∆ν)]

with the unitary linear operator TQ(H,∆µ,∆ν) = (HQ,∆µ,QT∆νQ) on Rn×r ×Rm × Sr
skew.

It follows that JYt ,t+∆t(Yt ,µt , 0) and JYtQ,t+∆t(YtQ,µt , 0) have the same eigenvalues.
However, our proof of Theorem 4.2 is by contradiction and hence does not provide

an obvious lower bound on the radius of invertibility of JYt ,t(Yt ,µt , 0). Here we do not
intend to investigate this in more depth. In the error analysis conducted later we will
essentially assume to have such a bound available (cf. Lemma 4.3).

A path-following algorithm

We now thoroughly describe the path-following algorithm that we propose for tracking
the trajectory of solutions to (Pt). It includes an optional adaptive stepsize tuning step
which is based on measuring the residual of the optimality conditions, defined as

rest(Y,µ) :=













2[Ct −A∗t (µ)]Y

At(Y Y T )− bt













∞

. (RES)

The residual expresses the maximal component-wise violation of the optimality KKT
conditions for the problem (Qt) and is therefore a suitable error measure. Indeed (see,
e.g., [100, Theorems 3.1 and 3.2]), if the second-order sufficiency condition for optimality
holds at (Yt ,µt), then there are constants η, C1, C2 > 0 such that for all (Y,µ) with
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∥(Y,µ)− (Yt ,µt)∥ ≤ η one has

C1∥(Y,µ)− (Yt ,µt)∥ ≤ rest(Y,µ)≤ C2∥(Y,µ)− (Yt ,µt)∥.

Here and in the following, we we use the norm ∥(Y,µ)∥2 = ∥Y ∥2
F + ∥µ∥

2.

Algorithm 1 A primal-dual path-following algorithm for (Pt , Dt) with t ∈ [0,τ]

Inputs: an initial approximate primal-dual solution (X̂0, Z(µ̂0)) for t = 0
initial stepsize ∆t0

boolean variable STEPSIZE_TUNING
stepsize tuning parameters γ1 ∈ (0,1), γ2 > 1
residual tolerance ε > 0

Output: list of approximate primal-dual solutions {(X̂k, Z(µ̂k))}k∈[κ] corresponding to a
partition {tk}k∈[κ] of size κ of the interval [0,τ].

1: k←− 0
2: t0←− 0
3: ∆t ←−∆t0

4: S = {(X̂0, Z(µ̂0))}
5: r = rank(X̂0)
6: find Ŷ0 ∈ Rn×r such that Ŷ0Ŷ T

0 = X̂0
7: while tk < τ do
8: solve linear system (L) with data ∆t, tk, Ŷk, µ̂k and obtain ∆Y,∆µ
9: if STEPSIZE_TUNING and resŶk ,tk+∆t(Ŷk +∆Y, µ̂k +∆µ)> ε then

10: ∆t ←− γ1∆t
11: go back to step 7
12: (tk+1, Ŷk+1, µ̂k+1)←− (tk +∆t, Ŷk +∆Y, µ̂k +∆µ)
13: append (X̂k+1 = Ŷk+1Ŷ T

k+1, Z(µ̂k+1) to S
14: if STEPSIZE_TUNING then
15: ∆t ←−min(τ− tk+1,γ2∆t,∆t0)
16: else
17: ∆t ←−min(τ− tk+1,∆t)
18: k←− k+ 1
19: return S
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The overall procedure is displayed as Algorithm 1 above. Given a TV-SDP of the
form (Pt), parameterized over a time interval [0,τ], the inputs are an approximate
initial primal-dual solution pair (X̂0, Z(µ̂0)) to (P0, D0) and an initial stepsize ∆t0. At each
iteration the current iterate is used to construct the linear system (L), which is then solved,
returning the updates ∆Y and ∆µ. The presented version of the algorithm also includes
a procedure for tuning the stepsize that can be activated through the Boolean variable
STEPSIZE_TUNING and is supposed to ensure that the residual threshold is satisfied at
every time step. Specifically, if for a time step the threshold is violated, the stepsize is
reduced by a factor γ1 ∈ (0, 1) and a more accurate solution is obtained by solving the
linearized KKT system (L) for the reduced time step. On the other hand, for avoiding
unnecessary small steps, the stepsize is increased after every successful step by a factor
γ2 > 1 (but is never made larger than ∆t0). If the stepsize tuning is deactivated, the
algorithm just runs with the constant stepsize ∆t0 instead.

Note that the algorithm tracks both the primal solution X t and the dual solution
Zt = Ct −A∗t (µt).

Error analysis

We investigate the algorithm without stepsize tuning. The main goal of the following
error analysis to show that the computed (X̂k, µ̂k), where X̂k = Ŷk Ŷ T

k , remain close to
the exact solutions (X tk

,µtk
), if properly initialized. The logic of the proof is similar to

standard path following methods based on Newton’s method, e.g. [101]. The specific
form of our problem requires some additional considerations that allow for more precise
quantitative bounds depending on the problem constants.

Throughout this section, (X t = Yt Y
T

t , Zt) is an optimal primal-dual pair of solutions
to (Pt , Dt) satisfying assumptions A1–5, so that it is strictly complementary (see Defini-
tion 2.8) and such that X t is primal non-degenerate. Notice that the choice of factor Yt

can be arbitrary, since it does not affect any of the subsequent statements. In Lemma 4.1
and its proof, we have seen that for every X t the unique Lagrange multiplier µt satisfies
Zt = Ct −A∗t (µt), that is,

µt = (A∗t )
†(Zt − Ct)

with (A∗t )
† being the pseudo-inverse of A∗t . By assumption A1, Ct and A∗t depend smoothly

on t and so does (A∗t )
†, since At is surjective for all t by assumption A2. Also, by

Theorem 3.1, t 7→ Zt is smooth. Therefore the curve t 7→ µt is smooth. Since the
algorithm operates in the (Y,µ) space, our implicit goal is to show that the iterates stay
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close to the set

S := {(Yt ,µt) | (Yt Y
T

t , Z(µt)) is an optimal primal-dual pair to (Pt , Dt), t ∈ [0,τ]}

containing the optimal primal-dual trajectories in the Burer-Monteiro factorization.

Lemma 4.2. The set S is compact.

Proof. As the curve t 7→ µt is continuous, it suffices to prove that the set SY = {Yt |

t ∈ [0,τ]} is compact. Since ∥Yt∥F =
p

trace(X t) and t 7→ X t is smooth, it is bounded.
To see that the set is closed, let (Yn) ⊂ SY be a convergent sequence with limit Y such
that YnY T

n = X tn
for some tn ∈ [0,τ]. By passing to a subsequence, we can assume

tn→ t ∈ [0,τ]. Then obviously X t = Y Y T , which shows that Y is in the set.

We consider the norm on Rn×r×Rm×Sr
skew defined by ∥(Y,µ,ν)∥2 = ∥Y ∥2

F+∥µ∥
2+∥ν∥2

F .
The induced operator norm is denoted ∥ · ∥op.

Lemma 4.3. There exists a constant m> 0 such that

∥JYt ,t(Yt ,µt , 0)−1∥op ≤
1
m

(4.18)

for all (Yt ,µt) ∈ C.

Proof. On its open domain of definition, the map (Y,µ) 7→ ∥J (Y,µ, 0)−1∥op is continuous.
By Theorem 4.2, the compact set C is contained in that domain. Therefore, ∥J (Y,µ, 0)−1∥op

achieves its maximum on C.

Lemma 4.4. For any t ∈ [0,τ] and Ŷ ∈ Rn×r , the mapping (Y,µ,ν) 7→ JŶ ,t(Y,µ,ν) is
Lipschitz continuous in operator norm on Rn×r ×Rm × Sr

skew. Specifically,

∥JŶ ,t(Y1,µ1,ν1)−JŶ ,t(Y2,µ2,ν2)∥op ≤ 12
p

3∥At∥∥(Y1,µ1,ν1)− (Y2,µ2,ν2)∥

for all (Y1,µ1,ν1) and (Y2,µ2,ν2), where ∥At∥ is the operator norm of At .
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Proof. It follows from (4.17) that as a bilinear form one has

(JŶ ,t(Y1,µ1,ν1)−JŶ ,t(Y2,µ2,ν2))[(H,∆µ,∆ν), (H,∆µ,∆ν)]

= trace(HTA∗t (µ2 −µ1)H)− 2(∆µ)TAt((Y1 − Y2)H
T +H(Y1 − Y2)

T )

≤ ∥At∥∥µ1 −µ2∥∥H∥2
F + 4∥At∥∥Y1 − Y2∥F∥H∥F∥∆µ∥

≤ (∥At∥∥µ1 −µ2∥+ 4∥At∥∥Y1 − Y2∥F)(∥H∥F + ∥∆µ∥+ ∥∆ν∥F)
2

≤ 4∥At∥(∥Y1 − Y2∥F + ∥µ1 −µ2∥+ ∥ν1 − ν2∥)(∥H∥F + ∥∆µ∥+ ∥∆ν∥F)
2

≤ 12
p

3∥At∥∥(Y1,µ1,ν1)− (Y2,µ2,ν2)∥∥(H,∆µ,∆ν)∥2.

This proves the claim.

Since t 7→ At is assumed to be continuous, the constant M = maxt∈[0,τ] 12
p

3∥At∥

satisfies the uniform Lipschitz condition

∥JŶ ,t(Y1,µ1,ν1)−JŶ ,t(Y2,µ2,ν2)∥op ≤ M∥(Y1,µ1,ν1)− (Y2,µ2,ν2)∥ (4.19)

for all (Y1,µ1,ν1) and (Y2,µ2,ν2), independent of the choice of Ŷ ∈ Rn×r . In what follows,
we proceed with using (4.19) and (4.18), without further investigating the sharpest
possible bounds.

In addition, let λr(X t) ≥ λ∗ > 0 be a uniform lower bound on the smallest positive
eigenvalue as in (4.11). Furthermore, we now also assume a uniform upper bound

∥Yt∥2 =
Æ

λ1(X t)≤
p

Λ∗.

on the spectral norm of Yt . Finally, let ∥Ẋ t∥F ≤ L as in (4.10) and since the curve t 7→ µt

is smooth, the constant
K := max

t∈[0,τ]
∥µ̇t∥ (4.20)

is also well-defined.
With the necessary constants at hand, we are now in the position to state our main

result on the error analysis. The following theorem shows that we can bound the distance
between the iterates of Algorithm 1 and the set of solutions to (Qt) provided the initial
point is close enough to the set of initial solutions and the stepsize ∆t is small enough.
Here we employ again the natural distance measure minQ∈Or

∥Ŷ − YQ∥F between the
orbits ŶOr and YOr , cf. Remark 9.
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Theorem 4.3. Let δ > 0 and∆t > 0 be small enough such that the following three conditions
are satisfied:

(2
p

Λ∗ +δ)δ+ L∆t <
2λ∗p

r + 4+
p

r
, (4.21)

δ <
2
3

m
M

, (4.22)
�

1
λ∗
((2
p

Λ∗ +δ)δ+ L∆t)2 +
p

r(2
p

Λ∗ +δ)δ+ L∆t
�2

+ (δ+ K∆t)2 ≤
2
3

m
M
δ. (4.23)

Assume for the initial point (Ŷ0, µ̂0) that

min
Q∈Or

∥(Ŷ0, µ̂0)− (Y0Q,µ0)∥ ≤ δ. (4.24)

Then Algorithm 1 is well-defined and for all tk+1 = tk +∆t the iterates satisfy

min
Q∈Or

∥(Ŷk, µ̂k)− (Ytk
Q,µtk

)∥ ≤ δ.

It then holds that
∥X̂k − X tk

∥F ≤ (2
p

Λ∗ +δ)δ

for all tk.

Notice that the left side of (4.23) is O(δ2+∆t2) for δ,∆t → 0, whereas the right side
is only O(δ). Therefore for δ and ∆t small enough, (4.23) will be satisfied. Furthermore,
a sufficient condition for (4.24) to hold is that

∥µ̂0 −µ0∥ ≤
δ
p

2

and

∥X̂0 − X0∥F ≤

q

rλ2
∗ + 2

p
2δλ∗ −
Æ

rλ2
∗

2
,

which easily follows from (4.9).

Proof. We will investigate one step of the algorithm and apply an induction hypothesis
that at time point t = tk there exists (Yt ,µt) ∈ C satisfying

∥(Ŷt , µ̂t)− (Yt ,µt)∥F ≤ δ.

We aim to show that for sufficiently small δ > 0 and ∆t > 0 the next iterate (Ŷt+∆t , µ̂t+∆t)
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in the algorithm is well-defined and satisfies the same estimate

∥(Ŷt+∆t , µ̂t+∆t)− (Yt+∆t ,µt+∆t)∥F ≤ δ

with an exact solution (Yt+∆t ,µt+∆t) ∈ C. The proof of the theorem then follows by
induction over the steps in the algorithm.

We first claim that there exists an exact solution Yt+∆t in the horizontal space of Ŷt ,
that is, X t+∆t = Yt+∆t Y

T
t+∆t and hŶt

(Yt+∆t) = 0. Indeed, using (4.21) we have

∥X̂ t − X t∥F = ∥(Ŷt − Yt)Ŷ
T

t + Yt(Ŷt − Yt)
T∥F

≤ (∥Yt∥2 + ∥Ŷt∥2)δ ≤ (2
p

Λ∗ +δ)δ <
2λ∗p

r + 4+
p

r
− L∆t.

This yields

∥X̂ t − X t+∆t∥F ≤ ∥X̂ t − X t∥F + ∥X t − X t+∆t∥F <
2λ∗p

r + 4+
p

r
.

Thus, Proposition 4.3 states the existence of Yt+∆t as desired. We note for later use that
by (4.9) it satisfies

∥Ŷt − Yt+∆t∥F ≤
1
λ∗
∥X̂ t − X t+∆t∥2

F +
p

r∥X̂ t − X t+∆t∥F

≤
1
λ∗
(∥X̂ t − X t∥F + L∆t)2 +

p
r∥X̂ t − X t∥F + L∆t (4.25)

≤
1
λ∗
((2
p

Λ∗ +δ)δ+ L∆t)2 +
p

r(2
p

Λ∗ +δ)δ+ L∆t.

The matrix Yt+∆t is an exact solution of (QYt ,t+∆t), and by Theorem 4.2 there is a unique
Lagrange multiplier µt+∆t such that FŶt ,t+∆t(Yt+∆t ,µt+∆t , 0) = 0. By construction, the
next iterate (Ŷt+∆t , µ̂t+∆t , ν̂t+∆t) in the algorithm is obtained from one step of the New-
ton method for solving this equation with starting point (Ŷt , µ̂t , 0). In light of (4.18)
and (4.19), standard results (e.g. Theorem 1.2.5 in [102]) on the Newton method yield
that under the condition

∥(Ŷt , µ̂t , 0)− (Yt+∆t ,µt+∆t , 0)∥F ≤ ϵ <
2
3

m
M

one step of the method is well-defined, i.e. JŶt ,t+∆t(Ŷt , µ̂t , 0) is invertible, and satisfies

∥(Ŷt+∆t , µ̂t+∆t , ν̂t+∆t)− (Yt+∆t ,µt+∆t , 0)∥F ≤
3
2

M
m
∥(Ŷt , µ̂t , 0)− (Yt+∆t ,µt+∆t , 0)∥2

F .
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In particular, using ϵ =
�

2
3

m
Mδ
�1/2 would give the desired result

∥(Ŷt+∆t , µ̂t+∆t)− (Yt+∆t ,µt+∆t)∥F ≤
3
2

M
m
ϵ2 = δ.

Therefore, we need to ensure that

∥(Ŷt , µ̂t)− (Yt+∆t ,µt+∆t)∥F ≤
�

2
3

m
M
δ

�1/2

<
2
3

m
M

is satisfied. Here the second inequality is just condition (4.22). We now show that (4.23)
is a sufficient condition for the first inequality. Clearly, using (4.20), we have

∥µ̂t −µt+∆t∥2 ≤ (∥µ̂t −µt∥+ K∆t)2 ≤ (δ+ K∆t)2.

Together with (4.25) this gives

∥Ŷt − Yt+∆t∥2
F + ∥µ̂t −µt+∆t∥2 ≤

≤
�

1
λ∗
((2
p

Λ∗ +δ)δ+ L∆t)2 +
p

r(2
p

Λ∗ +δ)δ+ L∆t
�2

+ (δ+ K∆t)2.

Now (4.23) ensures the desired estimate for the right-hand and the proof is completed.

Scene 3 Numerical experiments
on Max-Cut relaxations

W
here the TV-SDP princes, together with the wizard of Burer–Monteiro, arrive in a
remote village harassed by the raids of the terrible Max-Cut monster, who mercilessly
cuts everything it finds on its way. This infamous creature is indeed one of the
scariest in the whole Optimization world. Without hesitation, our heroes show up

in front of the monster’s lair, holding firmly the Horizontal Spade. At the mere sight of this, the
terrible beast softens. After quickly and accurately locking it in a cage, the three take it to the
kingdom of Conic Optimization, where they are welcomed with a sumptuous banquet.

In this section, we address a time-varying version of the Max-Cut problem, and compare
the tracking of the trajectory of solutions to TV-SDP via Algorithm 1 with interior-point
methods (IPMs) used to track the same trajectory by solving the problem at discrete
time points. In our experiments, we used the implementation of the homogeneous and
self-dual algorithm [87, 88] from the MOSEK Optimization Suite, version 9.3 [103].
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Furthermore, in order to provide a comparison with an alternative warm-start ap-
proach, we performed numerical experiments using the Splitting Conic Solver (SCS),
version 3.2.2 [104]. This package implements the first-order method presented in [105,
106], which uses an operator splitting method, the alternating directions method of
multipliers, to solve the homogeneous self-dual embedding. We show that the algorithm
proposed can perform better, in terms of both accuracy and runtime, than repeated runs
of IPM for time-invariant SDP and than the warm-started SCS.

Given a weighted graph G = (V, E), the Max-Cut problem is a well-known problem in
graph theory. There, we wish to find a binary partition of the vertices in V (also known as
a cut) of maximal weight. The weight of the cut is defined as the sum of the weights of the
edges in E connecting the two subsets of the partition. This problem can be formulated
as the following quadratically-constrained quadratic problem

max
x∈Rn

n
∑

i, j=1

wi, j(1− x i x j)

s.t. x2
i = 1 for all i ∈ {1, . . . , n},

(MC)

where n = |V | is the number of vertices of the graph, wi, j is the weight of the edge
connecting vertices i and j, and variable x i ∈ {1,−1} takes binary values according to the
subset to which vertex i is assigned. This problem can be relaxed to an SDP of the form

min
X∈Sn

〈W, X 〉

s.t. X i,i = 1 for all i ∈ {1, . . . , n}

X ⪰ 0,

(MCR)

where W is the weights matrix whose entry (i, j) is given by wi, j, see [5]. Note that the
number of constraints is equal to the size of the variable matrix. Randomized approx-
imation algorithms for (MC) exploiting the convex relaxation (MCR) deliver solutions
with a performance ratio of 0.87 and are known to be the best poly-time algorithms to
approximately solve (MC).

We adopt a time-varying version of (MCR) as a benchmark, where the data matrix W

depends on a time parameter t ∈ [0, 1] 7→Wt ∈ Sn. (We point out that this differs from
the recently studied variant [107, 108] with edge insertions and deletions, which could
be seen as discontinuous functions of time.)

In our experiment, Wt is obtained as a random linear perturbation of a sparse weight
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matrix with density 50%. Specifically,

Wt =W0 + tW1,

where the entries of W0 are randomly generated with a normal distribution having mean
and standard deviation ν,σ = 10, while the entries in W1 are chosen with a normal
distribution having ν,σ = 1. Both matrices have the same sparsity structure. We refer to
such a problem as the Time-Varying Max-Cut Relaxation (TV-MCR), which can be thought
of as a convex relaxation for a Max-Cut problem where the edges weights of a given graph
change over time.

All the experiments were conducted on a personal computer with a 1,6 GHz Intel
Core i5 dual-core processor with 16GB RAM, using a Python implementation of our path-
following algorithm. The main goal was to illustrate the potential computational benefits
of our algorithm, so we did not attempt to provide the most efficient implementation.
The code2 as well as the data and experimental results3 are available online.

We performed experiments on 110 instances of the TV-MCR problem with n = 100

vertices and tracked the trajectory of solutions for t ∈ [0,1]. Among these samples, we
included 10 instances of TV-MCR for which the rank of the solution is not constant, hence
violating our assumption A5. This was done by sampling the rank (estimated with a
tolerance on zero eigenvalues of 10−7) of the solutions obtained using MOSEK over a
10-steps subdivision of the interval [0,1] and selecting ten cases in which we observed a
change in the rank. Using the same procedure, we checked that for the remaining 100
instances, the rank of the solution is constant along the trajectory.

First, we applied Algorithm 1 without stepsize adjustment, hence setting the parameter
STEPSIZE_TUNING to FALSE, and using stepsizes ∆t = 0.1,0.01, 0.001, so that in each
experiment 10, 100, and 1000 iterations are performed for each choice of the stepsize
(see Figures 4.2 and 4.3). The factor dimension r is chosen equal to the rank of an initial
solution obtained using MOSEK with relative gap termination tolerances set to 10−14. Its
distribution is shown in Table 4.1.

r 4 5 6 7

# occurences 2 39 53 6

Table 4.1: Distribution of the rank over 100 instances of the TV-MCR with n= 100 with constant
rank solution trajectory.

2available at github.com/antoniobellon/burer-monteiro-path-following
3available at zenodo.org/record/7769225
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Figure 4.2: Distribution of the average residuals as a function of the stepsize.

Figure 4.2 depicts the distribution over 100 instances of the average residuals along
the tracking of the solution on the time interval [0, 1], as a function of the used stepsize.
For each whisker plot, the error bars span the interval from the minimum to the maximum,
while the box spans the first quartile to the third quartile, with a horizontal line at the
median.

In the left plot, the light green dots correspond to the average residuals of the 10
rank-changing instances; instead, the right plot excludes these degenerate instances form
the data set. Notice that these points correspond to TV-SDP instances that do not satisfy
our assumption A5. The green plot shows the average residual obtained by tracking the
solution with Algorithm 1, the orange plot shows the average residual when the tracking is
done using SCS with relative and absolute feasibility tolerances set to 10−7, warm-started
with the current solution; finally, the bordeaux color plot shows the average residual
when the tracking is done using MOSEK IPM [103] with the relative gap termination
tolerances set to 10−15.

In analogy to (RES), the residual of an SDP primal-dual solution (X , Z(µ)) is defined as

rest(X ,µ) :=













2[Ct −A∗t (µ)]X

At(X )− bt













∞

.

By choosing a suitable stepsize (in our experiments order 10−2), Algorithm 1 yields
an average residual accuracy that is comparable to the one obtained using standard
IPMs with very small relative gap termination tolerance. For stepsize of order 10−3, our
algorithm exhibits a residual precision that is 100 times more accurate than both IPM
and warm-started SCS. Furthermore, as we see next, this accuracy is reached much faster
with our approach.
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Figure 4.3: Distribution of the runtime as function of the stepsize.

In Figure 4.3 we plot the distributions of the runtimes of Algorithm 1 (green) as
function of the stepsize, as well as the distributions of the runtimes of IPM (bordeaux)
used with relative gap termination tolerances 10−15 and of the warm-started SCS (orange)
to track the solutions trajectory at a constant stepsize resolution.

Remarkably, for each stepsize that we tested, the mean runtime of Algorithm 1 is on
average about ten times smaller then both SCS and MOSEK IPM, indicating competitive
computational performances of our algorithm.

Finally, we apply Algorithm 1 to the same set of TV-MCR problems allowing for a
stepsize adjustment (setting STEPSIZE_TUNING to TRUE). In order to provide a fair
comparison with MOSEK IPM, we fixed five subdivisions of the interval [0, 1] in a grid
of, respectively, 20, 40, 60, 80, and 100 equidistant points. For each grid, at each time
point, we used MOSEK with a relative gap termination tolerance of 10−14 to obtain the
corresponding TV-SDP solution, recording the runtime and the average residual over
the tracking of each instance. For each grid, we then run our algorithm with stepsize
adjustment in order to ensure the same average residual accuracy guaranteed by MOSEK,
additionally enforcing the path-following procedure to hit the grid points. In this way, we
ensure that our procedure has the same accuracy of MOSEK both in terms of the solution
residual and of the tracking resolution.

In the next page, Figure 4.4 shows the distributions of the runtimes as function of the
number of grid points of both Algorithm 1 (green) and IPM with two different relative
gap termination tolerances: 10−9 (Figure 4.4a) and 10−15 (Figure 4.4b).
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(a) Relative gap termination tolerance = 10−9 (b) Relative gap termination tolerance = 10−15

Figure 4.4: Average runtime of MOSEK IPM and Algorithm 1 for tracking the TV-SDP solutions
with the same residual accuracy on a grid, as a function of the number of gridpoints.

Encouragingly, we observe that we can ensure both the same accuracy and tracking
resolution of MOSEK at a smaller average runtime. The constant behavior of the green
plot on the right is due to the fact that, in order to ensure the same residual accuracy of
the IPM, the path-following procedure needs to consider a number of points that is quite
denser then the number of grid points, and hence independent from this latter, while for
the plot on the left it is instead sufficient for Algorithm 1 to follow the grid.
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Chapter 5

Coda
“Dunque è proprio finita?"

Rodolfo in La Bohème (Act III)

A discussion on the theory

Our work draws upon a long history of work in parametric optimization. In particular, the
pioneering work of [63, Chapter 2] outlined a classification of solutions to univariate para-
metric non-linear constrained optimization problems. There, precise algebraic conditions
are shown for points satisfying first-order optimality conditions to be non-degenerate (see
Remark 8). These points exhibit a regular behavior. For degenerate points, four different
types are defined according to which subset of non-degeneracy conditions is violated.
Analogously, our approach also starts by considering algebraic conditions that ensure
a regular behavior, but our classification of irregular points was made according to the
local behavior of the trajectory of solutions at the point considered, rather than according
to different sets of algebraic conditions.

We notice that regular points and discontinuous isolated multiple points, defined as in
Definitions 3.3 and 3.5 respectively, were first identified by [58] (see e.g. Example 1 there)
within the optimal partition approach to parametric analysis for linearly parametrized SDP.
Non-differentiable points (Definition 3.4) can be also easily derived from their results.

Our work can hence be seen as a completion of the effort of [58]. Likewise, in our
analysis, Theorem 3.4 relies on Theorem 3.2 and Theorem 3.1. There, the proof of
Theorem 3.2 uses the technique of [58], while Theorem 3.1 is essentially an application
of the implicit function theorem, implying that this can be applied almost everywhere.
Theorem 3.3 suggests that when, instead, the assumptions for implicit function theorem
do not hold almost everywhere, this allows for a broader range of possible behaviors,
listed in the last row of Table 5.1.
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Problem assumptions Type of points
TV-SDP with LICQ, polynomial data, strict feasibility, Regular points

and a generic non-singular time Non-differentiable points
Discontinuous isolated multiple points

TV-SDP with LICQ, continuous data, strict feasibility, Regular points
without a generic non-singular time Non-differentiable points

Discontinuous isolated multiple points
Discontinuous non-isolated multiple points
Continuous bifurcation points
Irregular accumulation points

Table 5.1: Assumptions on TV-SDP and associated possible type of points

From the point of view of formulating a TV-SDP, the key insight of [58] and ours
is that even seemingly strong and standard assumptions such as the continuity of the
data and primal-dual strict feasibility are not sufficient to prevent pathological behavior.
We presented a complete characterization of such behaviors. Thereby, we showed that
guaranteeing the existence of a generic non-singular point along the trajectory suffices
to prevent highly pathological behaviors. However, this does not prevent from a finite
number of losses of differentiability or isolated losses of uniqueness to occur.

One may also be interested in understanding how the main result of this paper spe-
cializes to restricted classes of TV-SDP, such as time-varying linear programming (TV-LP)
and time-varying second order cone programming (TV-SOCP) (see Table 2.1). In the
first case, if the data are assumed to be continuous functions, one can easily construct an
example of each type of behaviors of the trajectory of solutions described in Definitions
(3.3-3.8). For example, for t ∈ (−1, 1) consider:

1. min{x | x ≥ 1+ t}.

2. min{x | x ≥ |t|}.

3. min{t x | −1≤ x ≤ 1}.

4. min{ f (t)x | −1≤ x ≤ 1}, with f (t) = t if t ≤ 0, otherwise f (t) = 0.

5. min{0 · x | −g(t)≤ x ≤ g(t)}, with g(t) = 0 if t ≤ 0, otherwise g(t) = t.

6. min{0 · x | −h(t)≤ x ≤ h(t)}, with h(t) = 0 if t > 0, otherwise h(t) = t sin2 π
t .

At t̂ = 0, x⋆ = 0 is 1. a regular point, 2. a non-differentiable point, 3. an isolated discon-
tinuous multiple point, 4. a non-isolated discontinuous multiple point, 5 a continuous
bifurcation point, 6 an irregular accumulation point. Hence, restricting to the class of
TV-LP does not exclude any type of point. It follows that also in the case of TV-SOCP, a
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class that generalize TV-LP, all the type of points can possibly appear. From this point of
view, it is surprising that the trajectories of solution to TV-SDP, a class of optimization
problems much wider than TV-LP, does not present, in the general framework that we
adopted, any behavior which does not already show up in TV-LP. However, we believe that
under a set of assumptions more specific than the one that we adopted in Theorem 3.3,
some type of behaviors may be ruled out in TV-LP, but not in TV-SDP. Take as an example
non-differentiable points (see Def. 3.4). If one assumes that the time dependence of the
data is smooth, e.g. polynomial, non differentiable points can still appear in TV-SDP (see
the first example in the last section of Chapter 3). This is due to the facial geometry of
SDP, where positively curved surfaces appear, which must then entirely consist of extreme
points. Instead, in TV-LP, extreme points are always isolated, so that when the solution is
unique, this must coincide with a fixed extreme point. If the time dependence is smooth,
this should imply that the feasible set, hence its extreme points, should also move smoothly,
preventing non-differentiable points to show up. The investigation of such distinctions
between TV-LP and TV-SDP may be an interesting direction for future research.

It is also worth mentioning that TV-SDP can be linked to TV-POP in a straightforward
way through the Moment-Sum-of-Squares hierarchy: indeed one can substitute a TV-
POP with a TV-SDP relaxation of some order, that could possibly change along the
time parameterization. We conducted preliminary research to understand whether
our classification results could yield non-trivial information on the original TV-POP.
Unfortunately, such a line of research has not be fruitful, yet.

We used set-valued analysis to describe and study the trajectory of solutions to TV-SDP.
The analysis we carried out brought us to define six different types of points, according
to the local structure of the solutions trajectory. Our main result consists in proving that
under standard assumptions, there are no other types of points.

One could extend our research by weakening our assumptions: continuity of the data
dependence on the parameter, LICQ, and primal and dual strict feasibility throughout
the parameterization interval. These requirements avoid highly degenerate situations.
In particular, without continuity of the data, one can expect the trajectory to potentially
present a lot of irregularities, e.g., it may fail to be both inner and outer semi-continuous,
while, as Theorem 2.3 shows, under the continuity of the data outer semi-continuity
is ensured. When strict feasibility is lost, two additional forms of degenerate behavior
might occur: the optimal value may not be attained at any feasible point, or there may be
a strictly positive duality gap between the primal and dual optimal values. It is not yet
clear whether there could be other types too.
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A discussion on the algorithm

In this thesis, we also proposed an algorithm for solving time-varying SDPs based on a path-
following scheme for the Burer–Monteiro factorization. The restriction to a horizontal
space ensures that the linearized KKT conditions system is uniquely solvable under
standard regularity assumptions on the TV-SDP problem, thus leading to a well-defined
path-following procedure with rigorous error bounds on the distance from the optimal
trajectory. Preliminary numerical experiments on a time-varying version of the Max-Cut
SDP relaxation suggest that our algorithm is competitive both in terms of runtime and
accuracy when compared to the application of standard interior point methods. Future
work should explore the applicability and relative merits of our approach in further
applications. We would like to highlight two interesting directions for further research.

In Chapter 4, we have assumed that the rank r of the true solution curve is known and
remains constant. While this is certainly appropriate for a rigorous analysis as conducted
in this work, it might be restrictive in practice, as the analysis carried out in Chapter
3suggests. An important extension hence would be to develop rank-adaptive versions of
our path-following approach that are able to detect and adjust the appropriate rank in a
Burer–Monteiro factorization, for example by monitoring the smallest singular values of
the current matrix iterate Yt .

Another important aspect is the initialization of the method, which requires an accurate
SDP solution and is currently not based on Burer–Monteiro factorization, thus undermin-
ing the computational efficiency of the whole approach. The obvious way out is to also
solve the initial time problem using the factorized approach [65]. The meta-algorithm
presented in [68] even does this in a rank-adaptive way. Although this is a non-convex
problem, several works, including also [109, 110, 111], have been dedicated to obtaining
certificates for global optimality under mild conditions, making this a reliable approach
in practice.
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Epilogue

S
adly, our play is almost over. All that remains is to narrate the final fate of the
characters. After an outstanding academic career, the primal prince is awarded an
important professorship at the Royal Conic Institute of Cartography. Years after their
first encounter, the dual prince meets the Degenerate Witch, this time not in disguise.

He falls in love with her even more madly than the first time, decides to marry her, and moves
with her to the Singular Wood. As for the Max-Cut monster, the merciful Queen of Cones decides
to release it on condition that it is willing to lend his services as a court tailor. Accepting the
deal, the monster becomes a renown fashion designer for cones, ending up launching its own
haute-couture brand with great success. And they lived optimally ever after!
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