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Abstract—Simple and precise hysteresis models with a small 

number of parameters allowing fast calculation are required for 

the magnetic analysis, as the field is calculated in a very large 

number of points. This paper presents a new simple method for 

modeling the hysteresis loops of soft magnetic materials using 

combined rational and power functions. Three approaches are 

used to model the hysteresis loops analytically. In the first 

approach, the upper and lower curves of the hysteresis loops are 

estimated and are calculated separately, using combined rational 

and power functions. In the second approach, the hysteresis loops 

are calculated using the DC magnetization curve and combined 

rational and power functions, applying a phase shift in the 

magnetic field strength variations relative to the magnetic flux 

density. The third approach presents a novel method for modeling 

hysteresis loops: first, the model is fitted to the “mean curve”, 

which is in the middle of the measured hysteresis curve, and as a 

second step the phase shift is calculated as in the second approach. 

A solid iron sample with a rectangular cross section is used for the 

measurements and the hysteresis modeling. The proposed method 

is also applied to model the hysteresis loops of a magnetic material 

with high magnetic permeability and grain-oriented steel, to show 

the generality of the proposed methods. 

 
Keywords—Hysteresis loops, modeling, combined rational and 

power functions, analytical  

I. INTRODUCTION 

Analyzing the magnetic characteristics of soft magnetic 

materials is the key to the evaluation and design of 

electromagnetic devices. For example, the hysteresis loop 

effects in the impedance of solid irons and steels for current 

carrying busbars and high-permeability magnetic materials are 

critical for the performance of magnetic sensors, and they 

should be considered and analyzed in the design process [1]-

[3]. Hysteresis loop models are used to analyze electromagnetic 

devices in transient and steady state analysis [4]-[5]. 

Various methods for hysteresis loop modeling of magnetic 

materials have been presented and their appropriateness are 

compared [6]. Preisach method for hysteresis modeling is well 

described in [7].It is based on the phenomenological and 

mathematical modeling method and not a physical based 

method. It can accurately model major and minor hysteresis 

loops with high accuracy. Jiles-Atherton method and energetic 

model are physical based and they depend on micromagnetic 

characteristics of the magnetic materials [8]-[10].For example, 

 
 

a comparison between Preisach and Jiles-Atherton for 

hysteresis modeling was presented in [11], which shows 

extensive measurements requirements for parameters 

identifications using Preisach model with less problems for 

precise fitting with measurements. Jiles-Atherton method has 

opposite properties. However, time-consuming procedures are 

required to calculate the constants and parameters in [6]-[15], 

and they are not easy handling for fast design and analysis 

process and optimization of the magnetic devices. 

Straightforward and uncomplicated analytical equations and 

procedures were implemented in [16]-[18]. However, these 

methods did not show generality of the proposed analytical 

functions for different magnetic materials. Detailed analyses of 

hysteresis loops for high magnetic permeability materials and 

grain-oriented steel laminations were presented in [19]-[21], in 

which multi-form mathematical functions are used to fit 

analytical hysteresis loops for various magnetic field strength 

ranges. 

Combined rational and power functions were used in [22] to 

model magnetization characteristics without hysteresis. In this 

paper, we present three methods for introducing hysteresis into 

such a model. The aim is to keep the approximation very 

simple, so that the model has only minimum parameters and is 

suitable for design and calculation. The measured hysteresis 

loops of construction solid iron sample with a rectangular cross 

section are modeled and shown. The calculated phase shift 

between the magnetic flux density and the magnetic field 

strength is applied to calculate the phase angle of the solid iron 

impedance. The hysteresis loops of a high-permeability 

magnetic material and grain-oriented steel are also modeled in 

this paper to show the generality of the proposed method. 

II. MEASUREMENT OF HYSTERESIS LOOPS 

A compensated permeameter is used to measure DC 

magnetization and the B-H curve and hysteresis loops for a 

rectangular solid iron sample (Fig. 1). A compensated 

permeameter is an instrument for measuring hysteresis loops 

for an open sample at DC and low frequency [23]. A solid iron 

sample with a rectangular cross section (5 mm ∙ 30 mm) is used 

for the measurements and for hysteresis modeling. Four 

hysteresis loop measurements are presented with maximum 

magnetic field strengths of 500 A/m, 1000 A/m, 3000 A/m and 
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6000 A/m, respectively. The measured DC magnetization curve 

for a solid iron sample is shown in Fig. 2. 

III. MATHEMATICAL APPROACH 

The analytical function of the magnetization or magnetic flux 

density B versus the magnetic field strength H curve in (1) can 

be represented as in (2) and (3), using combined rational and 

power functions [22]:  

𝐵 = 𝐽 + 𝜇0. 𝐻 (1) 

 

𝑓(𝑥) = (( ∑ 𝑎𝑖 ⋅ 𝑥𝑏𝑖

𝑖=1,2,…

) (1 + ∑ 𝑐𝑖 ⋅ 𝑥𝑏𝑖

𝑖=1,2,…

)⁄ )

𝑏0

, 

𝐽 = 𝑓(𝑥), 𝑥 = 𝐻 (2) 

 

 

Fig. 1. A DC compensated permeameterand its elements (compensating coil, 

excitation coil, Fluxgate sensor) 

 

Fig. 2. DC magnetization curve for solid iron - Measurements using 

permeameter and analytical curve fit using function in (4) 

 

𝑓(𝑥) = ( ∑ 𝑎𝑖 ⋅ 𝑥𝑏𝑖 (1 + 𝑐𝑖 ⋅ 𝑥𝑏𝑖)⁄

𝑖=1,2,…

)

𝑏0

, 𝐽 = 𝑓(𝑥), 𝑥 = 𝐻 

𝑓(𝑥) = ( ∑ 𝑎𝑖 ⋅ 𝑥𝑏𝑖 (1 + 𝑐𝑖 ⋅ 𝑥)𝑏𝑖⁄

𝑖=1,2,…

)

𝑏0

, 𝐽 = 𝑓(𝑥), 𝑥 = 𝐻 

 (3) 

 

where ai, ci and bi are constants which are calculated using 

curve fitting, and µ0 is the magnetic permeability of the free 

space. Parameter b0is considered to be equal to 1 in this paper. 

Term µ0·H in (1)-(3) is negligible and it is not considered for 

the curve fitting because of the low magnetic fields (< 10000 

A/m) in modeling the hysteresis loops.  

IV. MODELING OF HYSTERESIS LOOPS 

In this paper, first order combined rational and power 

functions for modeling a DC magnetization curve are only used 

as follows in two forms of (4) and (5), which also take into 

account the change in the polarity of the magnetization curve 

for positive and negative values of the magnetic flux density 

and the magnetic field strength.  

 

𝐵 = 𝑎1 ⋅ 𝐻 ⋅ |𝐻|𝑏1−1 (𝑐1 ⋅ |𝐻|𝑏1 + 1)⁄  (4) 

 

 

𝐵 = 𝑎1 ⋅ 𝐻 ⋅ |𝐻|𝑏1−1 (𝑐1 ⋅ |𝐻| + 1)𝑏1⁄  (5) 

 

A. First approach 

In the first approach to the modeling of hysteresis loops, the 

upper and lower curves of the hysteresis loops are calculated 

separately as described in appendix A, using the proposed 

functions in (6) - (9). Four parameters, a1, a´1, b1 and c1, are 

constants, and they are calculated by curve fitting. 

 

 

𝐵𝑎 = 𝑎1 ⋅ 𝐻 ⋅ |𝐻|𝑏1−1 (𝑐1 ⋅ |𝐻|𝑏1 + 1)⁄ − 𝑎1
′ ⋅

(|𝐻𝑚|𝑏1 − |𝐻|𝑏1) (𝑐1 ⋅ |𝐻|𝑏1 + 1)⁄  (6) 

 

𝐵𝑎 = 𝑎1 ⋅ 𝐻 ⋅ |𝐻|𝑏1−1 (𝑐1 ⋅ |𝐻|𝑏1 + 1)⁄ + 𝑎1
′ ⋅

(|𝐻𝑚|𝑏1 − |𝐻|𝑏1) (𝑐1 ⋅ |𝐻|𝑏1 + 1)⁄  (7) 

 

𝐵𝑎 = 𝑎1 ⋅ 𝐻 ⋅ |𝐻|𝑏1−1 (𝑐1 ⋅ |𝐻| + 1)𝑏1⁄ − 𝑎1
′ ⋅

(|𝐻𝑚|𝑏1 − |𝐻|𝑏1) (𝑐1 ⋅ |𝐻| + 1)𝑏1⁄  (8) 

 

𝐵𝑎 = 𝑎1 ⋅ 𝐻 ⋅ |𝐻|𝑏1−1 (𝑐1 ⋅ |𝐻| + 1)𝑏1⁄ + 𝑎1
′ ⋅

(|𝐻𝑚|𝑏1 − |𝐻|𝑏1) (𝑐1 ⋅ |𝐻| + 1)𝑏1⁄  (9) 
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Fig. 3. Hysteresis loop modeling for solid iron (Hm = 6000 A/m) - 
Measurements using permeameter and analytical curve using second approach 

in (6) and (7) 

 

 

Fig. 4. Hysteresis loop modeling for solid iron (Hm = 3000 A/m) 

Measurements using permeameter and analytical curve using first approach in 

(6) and (7) 

 

 

 

 

TABLE I.  HYSTERESIS LOOPS PARAMTERS FOR THE FIRST APPROACH 

USING (6) AND (7) 

Parameter Value 

a1 – Hm = 6000 A/m 

b1 – Hm = 6000 A/m 
c1 – Hm = 6000 A/m 

a´1 – Hm = 6000 A/m 

a1 – Hm = 3000 A/m 
b1 – Hm = 3000 A/m 

c1 – Hm = 3000 A/m 

a´1 – Hm = 3000 A/m 

7.021·10-4 

1.122 
3.531·10-4 

3.013·10-5 

1.999·10-4 
1.319 

1.199·10-4 

1.653·10-5 

 

Fig. 3 and Fig. 4 show a comparison between measurements 

and analytical model using the first approach. The results of the 

first approach for hysteresis loop modeling are as much as 

necessary precise and the results approximately fit with the 

measurements. The constants of the upper and lower curves in 

the first approach, using (6) and (7) could be calculated (Table 

I) using the curve fitting tool and also the iterative method 

described in appendix B. 

B. Second approach 

Parameter x in (2) and (3) can be replaced by function 

Hm·cos(θ-θo) to model hysteresis loops, where Hm is the 

maximum magnetic field strength (Fig. 5), and θo is the phase 

shift. Fig. 5 presents a schematic model of the hysteresis loops 

using the first order function in (2) or (3) for different phase 

shifts θo and parameter bi=1 in (2) or (3). A higher value for 

parameter b1 makes the magnetization curve and the hysteresis 

loops sharper, and a change to phase shift θo makes the 

hysteresis loops wider or narrower. In the second approach, the 

DC magnetization curve is used as the method shown in Fig. 6, 

replacing parameter H with the use of Hm·cos(θ-θo) in (4) and 

(5) to obtain (10) and (11). The phase shift θo is calculated to 

minimize the difference between the analytical model of the 

hysteresis loops and the measurements.  

 

Fig. 5. Schematic models of hysteresis loops for different phase shifts, 

θomodeled by analytical function in (4) 
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Fig. 6. Schematic model of the hysteresis loop and DC magnetization 

curvemodeled by analytical function in (4) 

 

 

𝐵 = 𝑎1 ⋅ 𝐻𝑚 ⋅ cos(𝜃 − 𝜃𝑜)

⋅ |𝐻𝑚 ⋅ cos(𝜃 − 𝜃𝑜)|𝑏1−1 (𝑐1 ⋅ |𝐻𝑚 ⋅ cos(𝜃 − 𝜃𝑜)|𝑏1 + 1)⁄  
−𝜋 ≤ 𝜃 ≤ 𝜋 (10) 

 

𝐵 = 𝑎1 ⋅ 𝐻𝑚 ⋅ cos(𝜃 − 𝜃𝑜) ⋅
|𝐻𝑚 ⋅ cos(𝜃 − 𝜃𝑜)|𝑏1−1 (𝑐1 ⋅ |𝐻𝑚 ⋅ cos(𝜃 − 𝜃𝑜)| + 1)𝑏1⁄  (11) 

 

 

 

Constants a1, b1 and c1 in (4) for the DC magnetization curve 

(analytical), shown in Fig. 2, are calculated as 4.528·10-4, 1.145 

and 2.150·10-4, respectively. The constants in a1, b1 and c1 in 

(5) are calculated to be equal to 9.827·10-5, 1.439 and 9.556·10-

4, respectively. An excellent fit between the measurements and 

the analytical model for the DC magnetization curve is shown 

in Fig. 2, except where the field values are very low. The results 

for hysteresis modeling are shown in Fig. 7 and Fig. 8. The 

phase shift angle θo in the second approach is calculated as 4.0 

Deg. and 7.5 Deg. for the maximum magnetic field strength, 

6000 A/m and 3000 A/m, respectively. The hysteresis loops for 

lower fields have bigger phase shifts between the magnetic flux 

density and the strength of the magnetic field. Both the first 

approach and the second approach have limited precision, 

especially for hysteresis loops at lower magnetic field strengths. 

 

Fig. 7. Hysteresis loop modeling for solid iron (Hm = 6000 A/m) - 

Measurements using permeameter and analytical curve using second approach 

in (10) 

 

Fig. 8. Hysteresis loop modeling for solid iron (Hm = 3000 A/m) - 

Measurements using permeameter and analytical curve using second approach 

in (10) 

C. Third approach 

The third approach to hysteresis loop modeling in this paper 

uses “mean curve f”, which is the average of the rising and 

falling branches of the hysteresis curve Hf (B)  =  (Ha (B)+Hd 

(B))/2, as shown in Fig. 6. As a second step, an analytical 

function in (4) or (5) is fitted to curve f; and finally the phase 

shift is calculated to this curve to model the hysteresis:  

 

 



PREPRINT                              published at  J. Magn. Mag. Mat. 522, 167563, 2021 10.1016/j.jmmm.2020.167563 

5 

 

𝐵𝑓 = 𝐵𝑎 = 𝐵𝑑  

𝐻𝑓 = (𝐻𝑎 + 𝐻𝑑) 2⁄  (12) 

 

 

Fig. 9 - Fig. 12 show a comparison between measurements 

and third approach models for different maximum values of the 

strength of the magnetic field. The third approach provides 

more precise models than the first and second approaches. The 

calculated constants of (10) and the phase shift angles are 

presented in Table II for different maximum values of the 

magnetic field strength, using curve fitting and minimizing the 

difference between the measurements and the models of 

hysteresis loops. The hysteresis loop modeling fits better with 

the measurements at higher maximum magnetic field strengths, 

Hm = 6000 A/m and 3000 A/m (Fig. 9 and Fig. 10). 

The measurements are less symmetric at lower Hm = 1000 

A/m and 500 A/m, which causes the greater visual difference in 

Fig. 9 and Fig. 10. Equation (13) replaces parameter Hm·cos(θ-

θo) in (10) with parameter H=Hm·cos(θ), which is easier to 

handle for the analysis. The upper and lower curves of the 

hysteresis loops can be distinguished: the plus sign (+) in (13) 

corresponds to the upper curve of the hysteresis loop 

(downward magnetization), and the minus sign (-) corresponds 

to the lower curve (upward magnetization). Calculations of 

hysteresis losses can be made using (13), as the upward and 

downward magnetization curves are separated. 

 

 

Fig. 9. Hysteresis loop modeling for solid iron (Hm = 6000 A/m) -
Measurements using permeameter and analytical curve using third approach in 

(10) 

 

 

 

 

 

 

 

𝐻𝑚 ⋅ cos(𝜃 − 𝜃𝑜) = 𝐻𝑚 ⋅ (cos(𝜃) ∙ cos(𝜃𝑜) + sin(𝜃) ∙

sin(𝜃𝑜)) = 𝐻𝑚 ⋅ (cos(𝜃) ∙ cos(𝜃𝑜) ± √1 − (cos(𝜃))2 ∙

sin(𝜃𝑜)) = 𝐻 ⋅ cos(𝜃𝑜) ± √𝐻𝑚
2 − 𝐻2 ∙ sin(𝜃𝑜),  𝐻 = 𝐻𝑚 ⋅

cos(𝜃), −𝐻𝑚 ≤ 𝐻 ≤ +𝐻𝑚 (13) 

 

Appendix B shows simple iterative methods to calculate 

parameters of the hysteresis models for first and third 

approaches.  

 

 

Fig. 10. Hysteresis loop modeling for solid iron (Hm = 3000 A/m) -

Measurements using permeameter and analytical curve using third approach in 

(10) 

 

Fig. 11. Hysteresis loop modeling for solid iron (Hm = 1000 A/m) - 

Measurements using permeameter and analytical curve using third approach in 

(10) 
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Fig. 12. Hysteresis loop modeling for solid iron (Hm = 500 A/m) -
Measurements using permeameter and analytical curve using third approach in 

(10) 

 

Fig. 13. Magnetic flux distribution in one quarter of a rectangular solid 

conductor- without hysteresis (above)and with hysteresis (below) 

The first and third approach for hysteresis modeling show 

better accuracy than the second approach. However, more 

hysteresis loop input data are required for the first and third 

approaches. The first approach can be used when there is no 

access to hysteresis loop data. 

TABLE II.  HYSTERESIS LOOPS PARAMTERS FOR THE THIRD APPROACH 

USING (10) 

Parameter Value 

a1 – Hm = 6000 A/m 

b1 – Hm = 6000 A/m 

c1 – Hm = 6000 A/m 
θo – Hm = 6000 A/m 

a1 – Hm = 3000 A/m 

b1 – Hm = 3000 A/m 
c1 – Hm = 3000 A/m 

θo– Hm = 3000 A/m 

a1 – Hm = 1000 A/m 
b1 – Hm = 1000 A/m 

c1 – Hm = 1000 A/m 

θo– Hm = 1000 A/m 
a1 – Hm = 500 A/m 

b1 – Hm = 500 A/m 

c1 – Hm = 500 A/m 
θo– Hm = 500 A/m 

9.472·10-3 

0.7315 

3.678·10-3 
4.0 Deg. 

1.04·10-2 

0.7211 
4.347·10-3 

7.5 Deg. 

6.104·10-3 
0.855 

5.872·10-3 

20 Deg. 
4.044·10-3 

0.9236 

6.245·10-3 
24.8 

V. IMPEDANCE ANALYSIS OF SOLID IRON BUSBAR  

The effect of hysteresis on the internal impedances of a solid 

iron conductor is considerable and it must be taken into account, 

as shown in [1] and [24]. Impedance angle θz in (14) is 

dependent on the phase shift angle θo between B and H. 

Table III shows a comparison of the impedance angles between 

measurements and simulations. Ho is the strength of the 

magnetic field on the circumference of a rectangular solid iron 

conductor, which is calculated by the applied current I, the 

rectangular conductor cross section thickness t, and the width 

w, in (15).  

The magnetic flux distribution in one quarter of a rectangular 

solid conductor is shown in Fig. 13, with and without taking 

hysteresis into consideration, showing the difference, especially 

in the middle of the conductor. 

𝑍 = 𝑅 + 𝑗𝑋, 𝜃𝑧 = 𝑎𝑟𝑐𝑡𝑎𝑛( 𝑋/𝑅) (14) 

 

𝐻𝑜 = 0.5 𝐼 (𝑡 + 𝑤)⁄  (15) 

TABLE III.  IMPEDANCE PHASE ANGLE  

Parameter Value 

θZ – Ho = 500 A/m (Exp.) 
θZ – Ho = 500 A/m (FEM without hysteresis) 

θZ – Ho = 500 A/m (FEM with hysteresis)  

θZ – Ho = 1000 A/m (Exp.) 
θZ – Ho = 1000 A/m (FEM without hysteresis) 

θZ – Ho = 1000 A/m (FEM with hysteresis) 

31.66 Deg. 
43.58 Deg. 

30.78 Deg. 

31.43 Deg. 
43.49 Deg. 

32.92 Deg. 

 

It is essential to take the hysteresis angle into consideration 

in internal impedance calculations, as presented in Table III. 

The impedance angle θz in (14) decreases by about 12 Deg., 

which causes a lower inductive part or inductance, and a higher 

resistive part or resistance. 

VI. HIGH MAGNETIC PERMEABILITY MATERIAL 

A highly magnetic permeability material, Vitrovac 6025X 

[25], is also considered for hysteresis modeling. The calculated 

constants of (10) and (11) are presented in Table IV and 

Table V. The phase shift angle is calculated as 10.9 Deg. The 

modeled hysteresis loop shows noteworthy accuracy (Fig. 14) 

for high magnetic permeability materials, despite the less-than-

perfect symmetrical measured hysteresis loop. The values of 

parameter b1 in Tables IV and V are higher than for solid iron 

in Table II, due to the higher permeability. The phase shift angle 

is considerably smaller than for solid iron at the same maximum 

magnetic flux density value of about 0.5 T, as high-quality 

magnetic materials have narrow hysteresis loops in order to 

have lower iron and hysteresis losses. 

TABLE IV.  HYSTERESIS LOOP PARAMTERS FOR THE THIRD APPROACH – 

USING (10) 

Parameter Value 

a1 
b1 

c1 

θo 

0.2439 
1.103 

0.4363 

10.9 Deg. 
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Fig. 14. Hysteresis loops modeling for high magnetic permeability material (Hm 

= 30 A/m) - Measurements [25] and analytical curve using third approach in 

(10) 

 

Fig. 15. Hysteresis loops modeling for grain oriented steel(Hm = 131 A/m) - 

Measurements [26] and analytical curve using third approach in (10) 

 

 

 

 

 

 

TABLE V.  HYSTERESIS LOOP PARAMTERS FOR THE THIRD APPROACH – 

USING (11) 

Parameter Value 

a1 

b1 
c1 

θo 

0.2963 

1.212 
0.5783 

10.9 Deg. 

VII. GRAIN ORIENTED STEEL 

Hysteresis loops of grain-oriented steel are modeled using 

the third approach. Table VI presents the calculated parameters 

of hysteresis loops at various values of Hm. Fig. 15- Fig. 18 

show modeled hysteresis loops in comparison with the values 

presented in [26]. Modeled hysteresis loops could be better 

fitted with the use of higher order combined rational and power 

functions, but this would substantially increase the computation 

time.   

TABLE VI.  HYSTERESIS LOOPS PARAMTERS FOR THE THIRD APPROACH 

USING (10) 

Parameter Value 

a1 – Hm = 131 A/m 

b1 – Hm = 131 A/m 
c1 – Hm = 131 A/m 

θo – Hm = 131 A/m 

a1 – Hm = 38 A/m 
b1 – Hm = 38 A/m 

c1 – Hm = 38 A/m 

θo – Hm = 38 A/m 
a1 – Hm = 21 A/m 

b1 – Hm = 21 A/m 

c1 – Hm = 21 A/m 
θo – Hm = 21 A/m 

a1 – Hm = 14 A/m 

b1 – Hm = 14 A/m 
c1 – Hm = 14 A/m 

θo – Hm = 14 A/m 

0.9282 

0.8899 
0.5429 

5.0 Deg. 

0.312 
1.349 

0.2006 

13.9 Deg. 
0.2124 

1.378 

0.1438 
20 Deg. 

0.1519 

1.403 
0.1257 

24.0 

 

The maximum differences are seen for the hysteresis loop 

with Hm = 131 A/m. This is because of the different phase shift 

in the hysteresis loops for low value fields, for medium value 

field ranges and for high value field ranges. The differences 

could be reduced by using a variable phase shift instead of a 

constant phase shift for the hysteresis loop for high fields, 

which is planned for future work. The value of parameter b1 

goes down from low fields to high fields because the 

magnetization curve has sharper changes in the low fields. 
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Fig. 16. Hysteresis loops modeling for grain oriented steel(Hm = 38 A/m) - 

Measurements [26] and analytical curve using third approach in (10) 

 

Fig. 17. Hysteresis loops modeling for grain oriented steel(Hm = 21 A/m) - 

Measurements [26] and analytical curve using third approach in (10) 

VIII. DISCUSSIONS  

Calculated phase shift, θo (Tables II and VI) curve versus 

magnetic field strength, H for solid iron and grain-oriented steel 

are shown in Fig. 19 and Fig. 20. They show the maximum 

phase shift corresponds to the maximum relative magnetic 

permeability, which confirms same conclusion in [24], [27].  

The presented hysteresis modeling using third approach is 

fast and precise, which is crucial for electromagnetic devices 

analysis [28]-[33] with less time-consuming process. 

Micromagnetic models can simulate soft and hard magnetic 

materials [34]-[35] at very small scale and find magnetic 

domains with exact physical basis. 

Hysteresis loop models including micromagnetic and 

physical parameters are ideal for understanding of the 

magnetization processes [36]-[37]. Such models are available, 

but they have complicated curve fitting [38]. The disadvantage 

of these methods is that they are very time consuming and 

therefore less practical for magnetic materials in macroscopic 

range [39]. 

 

 

Fig. 18. Hysteresis loops modeling forgrain oriented steel (Hm = 14 A/m)  - 

Measurements [26] and analytical curve using third approach in (10) 

 

Fig. 19. Relative magnetic permeability, µr curve versus magnetic field 

strength, H and phase shift angle, θo curve versus H– solid iron 
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Fig. 20. Relative magnetic permeability, µr curve versus magnetic field 

strength, H and phase shift angle, θo curve versus H– Grain oriented steel 

Finding relationship between constants and maximum 

magnetic field strength, Hm of hysteresis loop of the proposed 

approach for hysteresis modeling is essential for 

electromagnetic calculations with direct consideration of 

hysteresis loops [40]-[41]. The main reason is that As hysteresis 

loops from measuremets are is not usually available only for 

few values of Hm.  for any maximum magnetic field strength. , 

for example, from measurements.  Functions of constants, a1, 

b1, c1 and θo versus maximum magnetic field strength of 

hysteresis loop for third approach are presented in Appendix C. 

It is shown that relationship between constants, a1, b1, c1 and θo 

could be linear and rational functions. 

IX. CONCLUSIONS 

The proposed analytical methods for hysteresis loop 

modeling utilize a single closed-form equation for the entire B-

H loop, which is simpler to implement than multi-function 

modeling of hysteresis loops. It has been shown that the 

methods presented for hysteresis modeling are a good 

compromise between simplicity and high accuracy. The third 

approach to modeling hysteresis loops is the most precise 

method, and it is very suitable for fast hysteresis modeling. 

Modeling can be made also using known physical parameters 

Hc, Br, Hm and Bm as shown in Appendix B. The generality of 

the proposed method for various magnetically soft materials has 

been demonstrated on construction iron, grain-oriented steel 

and high-permeability amorphous alloy magnetic materials. 

Greater precision could be obtained with higher order combined 

rational and power functions, but this would increase the 

computational time.  

Calculating the phase shift between magnetic flux density B 

and magnetic field strength H is essential for resistance and 

inductance analysis of solid iron busbars in power systems, as 

it has a big influence on the phase angle of the impedance.  

 

Fig. 21. Schematic model of the hysteresis loop used in first approachmodeled 

by analytical function in (6) and (7) 

X. APPENDIX A 

Two auxiliary curves, p and m (Fig. 21) in (16) are extracted 

from curves corresponding to rising (lower) and falling (upper) 

curves, a and d of hysteresis loops [16].  Functions in (17) – 

(20) are assumed for the mathematical modeling of the curves 

p and m. 

 

𝐻𝑝 = 𝐻𝑚 = 𝐻𝑎 = 𝐻𝑑  

𝐵𝑝 = (𝐵𝑑 + 𝐵𝑎) 2⁄  

𝐵𝑚 = (𝐵𝑑 − 𝐵𝑎) 2⁄  
𝐵 = 𝐵𝑝 ± 𝐵𝑚 (16) 

 

𝐵𝑝 = 𝑎1 ⋅ 𝐻 ⋅ |𝐻|𝑏1−1 (𝑐1 ⋅ |𝐻|𝑏1 + 1)⁄  (17) 

 

𝐵𝑚 = 𝑎1
′ ⋅ (|𝐻𝑚|𝑏1 − |𝐻|𝑏1) (𝑐1 ⋅ |𝐻|𝑏1 + 1)⁄  (18) 

 

𝐵𝑝 = 𝑎1 ⋅ 𝐻 ⋅ |𝐻|𝑏1−1 (𝑐1 ⋅ |𝐻| + 1)𝑏1⁄  (19) 

 

𝐵𝑚 = 𝑎1
′ ⋅ (|𝐻𝑚|𝑏1 − |𝐻|𝑏1) (𝑐1 ⋅ |𝐻| + 1)𝑏1⁄  (20) 

 

XI. APPENDIX B 

An alternative method for calculating of the constants of the 

first approach in (6) and (7) is using equations in (21)-(24). 

Equations (21)-(23) correspond to the three points (0, ±Br), 

(±Hc, 0) and (±Bm, ±Hm) in a hysteresis loop, which are obvious 

points in any hysteresis loop. Hc, Br and Bm are coercivity force, 

remanence and the maximum flux density of the hysteresis loop 

corresponding to the maximum magnetic field strength, Hm, 

respectively. Another equation is required to calculate four 
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constants,a1, b1, c1 and a´1, which corresponds to the differential 

permeability, µr-d-A in point A,(HA, Br) of Fig. 21. Point (HA, Br) 

in the curve p corresponds to the remanence magnetic flux 

density, Br. 

A simple numerical procedure is used to calculate constants, 

a1, b1, c1 and a´1. Firstly, initial value 1 is considered for the 

constant, b1. Constant, a´1 is calculated using (21) in second 

step. Equation (22) is used to obtain constant, a1 in third step 

with calculated value, a´1 from second step. Calculated 

constant, a1 from (22) is replaced in (23) to obtain constant, c1 

in fourth step. Constant, b1 is recalculated using (24) and 

calculated constants, a1, c1 and a´1 in previous steps. The final 

and converged values of constants, a1, b1, c1 and a´1 could be 

calculated after 10 to 20 iterations, which takes less than 1 

second time for the calculations. Fig. 22 shows hysteresis loop 

modeling of solid iron using first approach with calculated 

constants, a1, b1, c1 and a´1in Table VII as described in (21)-

(24). 

 

(0, ±𝐵𝑟) → 𝐵𝑟 = 𝑎1
′ ⋅ |𝐻𝑚|𝑏1 , 𝑎1

′ = 𝐵𝑟 |𝐻𝑚|𝑏1⁄  (21) 

 

(±𝐻𝑐 , 0) → 0 = 𝑎1 ⋅ |𝐻𝑐|𝑏1 (𝑐1 ⋅ |𝐻𝑐|𝑏1 + 1)⁄ − 𝑎1
′

⋅ (|𝐻𝑚|𝑏1 − |𝐻𝑐|𝑏1) (𝑐1 ⋅ |𝐻𝑐|𝑏1 + 1)⁄  

𝑎1 = 𝑎1
′ ⋅ (|𝐻𝑚|𝑏1 |𝐻𝑐|𝑏1⁄ − 1) (22) 

 

(±𝐻𝑚 , ±𝐵𝑚) → 𝐵𝑚 = 𝑎1 ⋅ |𝐻𝑚|𝑏1 (𝑐1 ⋅ |𝐻𝑚|𝑏1 + 1)⁄  

𝑐1 = 𝑎1 ⋅ 1 𝐵𝑚⁄ − 1 |𝐻𝑚|𝑏1⁄  (23) 

 

𝐵𝑝 = 𝑎1 ⋅ 𝐻 ⋅ |𝐻|𝑏1−1 (𝑐1 ⋅ |𝐻|𝑏1 + 1)⁄  

𝜇𝑟−𝑑𝜇0 = 𝑑𝐵𝑝 𝑑𝐻⁄ = 𝑎1 ⋅ 𝑏1 ⋅ |𝐻|𝑏1−1 (𝑐1 ⋅ |𝐻|𝑏1 + 1)2⁄  

𝑏1 = 𝜇𝑟−𝑑−𝐴𝜇0 ⋅ (𝑐1 ⋅ |𝐻𝐴|𝑏1 + 1)2 (𝑎1 ⋅ |𝐻𝐴|𝑏1−1)⁄  (24) 

 

 

Fig. 22. Hysteresis loop modeling for solid iron (Hm = 3000 A/m) - 

Measurements using permeameter and analytical curve using first approach in 

(21) -(24) 

 

TABLE VII.  HYSTERESIS LOOPS PARAMTERS FOR THE FIRST APPROACH 

USING (21) AND (24) -FIG. 22 

Parameter Value 

a1 – Hm = 3000 A/m 

b1 – Hm = 3000 A/m 
c1 – Hm = 3000 A/m 

a´1 – Hm = 3000 A/m 

7.0134·10-4 

1.1222 
3.7749·10-4 

7.6792·10-5 

 

Also the alternative approach to the curve fitting method for 

calculating four constants a1, b1, c1 and θoof third approach in 

(10) has similar numerical procedure as first method in (21)-

(24), which are presented in four equations in (25) - (28).In 

order to calculate the phase shift, θo, the phase angle, θc is 

calculated according to (25). The phase shift, θo is obtained with 

condition in (26). The initial values of the parameters a1 and c1 

are calculated from (27) with consideration of initial value 1 for 

b1, which correspond to two points (Hm, Bm) and (HA, Br) in Fig. 

6. Constant, b1 is recalculated using (28) and calculated 

constants, a1and c1in previous steps. The differential 

permeability, µr-d-A corresponds to point A, (HA, Br) of Fig. 6. 

The final and converged values of constants, a1, b1 and c1 could 

be calculated after 10 to 20 iterations. Fig. 23 and Fig. 24 show 

hysteresis loop modeling of solid iron and grain oriented steel 

using third approach with calculated constants, a1, b1, c1 and θo 

in Tables VIII and IX as described in (25)-(28). 

 

𝐻 = 𝐻𝑐 = 𝐻𝑚 ⋅ 𝑐𝑜𝑠(𝜃𝑐) , 𝜃𝑐 = − cos−1(𝐻𝑐 𝐻𝑚⁄ ) , −𝜋 ≤ 𝜃
≤ 0 

𝐻 = −𝐻𝑐 = 𝐻𝑚 ⋅ 𝑐𝑜𝑠(𝜃𝑐) , 𝜃𝑐 = 𝜋 − cos−1(𝐻𝑐 𝐻𝑚⁄ ) , 0 ≤
𝜃 ≤ 𝜋 (25) 

 

𝐵(𝐻 = 𝐻𝑐) = 0 
𝐵 = 𝑎1 ⋅ 𝐻𝑚 ⋅ 𝑐𝑜𝑠(𝜃𝑐 − 𝜃𝑜)

⋅ |𝐻𝑚 ⋅ cos(𝜃𝑎 − 𝜃𝑜)|𝑏1−1 (𝑐1 ⋅ |𝐻𝑚 ⋅ cos(𝜃𝑎 − 𝜃𝑜)|𝑏1 + 1)⁄

= 0 
→ 𝜃𝑐 − 𝜃𝑜 = − 𝜋 2⁄ → 𝜃𝑜 = 𝜋 2⁄ + 𝜃𝑐 = 𝜋 2⁄ −
cos−1(𝐻𝑐 𝐻𝑚⁄ ) (26) 

 

𝐵𝑚 = 𝑎1 ⋅ |𝐻𝑚|𝑏1 (𝑐1 ⋅ |𝐻𝑚|𝑏1 + 1)⁄  

𝐵𝑟 = 𝑎1 ⋅ |𝐻𝐴|𝑏1 (𝑐1 ⋅ |𝐻𝐴|𝑏1 + 1)⁄  

𝑎1 = 𝐵𝑚 ⋅ 𝐵𝑟 (𝐵𝑟 − 𝐵𝑚) ∙⁄ (1 |𝐻𝑚|𝑏1⁄ − 1 |𝐻𝐴|𝑏1⁄ ) 

𝑐1 = 1 (𝐵𝑟 − 𝐵𝑚) ∙⁄ (𝐵𝑚 |𝐻𝑚|𝑏1⁄ − 𝐵𝑟 |𝐻𝐴|𝑏1⁄ ) (27) 

 

𝐵𝑓 = 𝑎1 ⋅ 𝐻 ⋅ |𝐻|𝑏1−1 (𝑐1 ⋅ |𝐻|𝑏1 + 1)⁄  

𝜇𝑟−𝑑𝜇0 = 𝑑𝐵𝑓 𝑑𝐻⁄ = 𝑎1 ⋅ 𝑏1 ⋅ |𝐻|𝑏1−1 (𝑐1 ⋅ |𝐻|𝑏1 + 1)2⁄  

𝑏1 = 𝜇𝑟−𝑑−𝐴 ∙ 𝜇0 ⋅ (𝑐1 ⋅ |𝐻𝐴|𝑏1 + 1)2 (𝑎1 ⋅ |𝐻𝐴|𝑏1−1)⁄  (28) 

 

TABLE VIII.  HYSTERESIS LOOPS PARAMTERS FOR THE THIRD APPROACH 

USING (25)-(28) – FIG. 23 

Parameter Value 

a1 – Hm = 500 A/m 
b1 – Hm = 500 A/m 

c1 – Hm = 500 A/m 

θo– Hm = 500 A/m 

5.728·10-3 
0.8407 

8.017·10-3 

28.8 
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Fig. 23. Hysteresis loop modeling for solid iron (Hm = 500 A/m) - 
Measurements using permeameter and analytical curve using third approach in 

(25) - (28) 

 

Fig. 24. Hysteresis loops modeling for grain oriented steel (Hm = 38 A/m) -

Measurements [26] and analytical curve using third approach in (25) -(28) 

TABLE IX.  HYSTERESIS LOOPS PARAMTERS FOR THE THIRD APPROACH 

USING (10) -FIG. 24 

Parameter Value 

a1 – Hm = 38 A/m 
b1 – Hm = 38 A/m 

c1 – Hm = 38 A/m 

θo – Hm = 38 A/m 

0.3774 
1.2581 

0.2414 

12.0 Deg. 

 

Fig. 25. Constants, a1, b1 and c1 and phase shift, θo versus maximum field 

strength, Hm for grain oriented steel 

XII. APPENDIX C 

Asd an For example, we calculated functions of constants, a1, 

b1, c1 and θo versus maximum magnetic field strength, Hm for 

grain oriented steel. are calculated. The relationship between 

constants, a1, b1, and c1 and Hm could be estimated as linear 

function as shown in Fig. 25. The functions are 

a1=0.0066Hm+0.065, b1=-0.0045Hm+1.483, and c1 = 

0.0036Hm+0.069.  

The hysteresis angle or phase shift angle, θo versus Hm could 

be estimated as a rational function [24], [42]-[43] for Hm larger 

than Hμ-max, which Hμ-max corresponds to the maximum relative 

magnetic permeability (Fig. 19 – Fig. 20). The function is θo 

=42.54/(0.0545Hm+1). 
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