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Chapter 1

Introduction

Quality of a function can be captured by the fact that the function belongs to a
certain function space—a collection of functions sharing some common quality. A
function space also often measures the size of its elements by some means. Mappings
that take a function from a function space (say X) and transform it into another one
are usually called operators. Zooming out from individual functions, an operator
maps functions from an input function space into some output function space (say
Y ).

Depending on the task at hand, various properties of operators are studied.
Two of the most fundamental ones are their boundedness and compactness. Very
loosely speaking, boundedness of an operator ensures that the size of outputs in Y
is controlled by the size of inputs in X. Compactness of operators is a more subtle
property; even more loosely speaking, it ensures that from an arbitrary (infinite)
collection of inputs with bounded size in X, only an “almost finite” number of
transformed outputs in Y is significant.

There are an enormous number of various function spaces. A prominent example
is Sobolev spaces, which were introduced by Sobolev [102] (cf. [103]) as a tool
for studying partial differential equations and their solutions in a systematic way.
Partial differential equations and their applications play an important role not only
in mathematical physics and mathematical modeling but also in other parts of
mathematics, both pure and applied ([14, 43, 97, 76]). So-called Sobolev embeddings
and inequalities, the most classical one established by Sobolev and independently by
Gagliardo in [42] and by Nirenberg in [84], allow us to deduce some new information
about quality of a function from quality of its derivatives. The quality being measured
here is integrability of functions and their derivatives. The input function space
is a Sobolev space, which measures integrability of derivatives of a function, and
the output function space is another function space measuring integrability of the
function itself.

An important question in the theory of Sobolev spaces and its applications is
the compactness of Sobolev embeddings ([13, 39, 76]). Compactness (in general,
not necessarily of Sobolev embeddings) can be studied either from qualitative or
quantitative point of views. Qualitative one is whether something is or is not compact.
Quantitative one is that compactness or its lack is measured by some quantities. An
advantage of the quantitative point of view is that it brings more information that
can be exploited further (e.g., [30, 32, 33, 36]). There are various ways of measuring
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(non)compactness. One is the measure of noncompactness introduced by Kuratowski
in [65], and the closely related entropy numbers ([16, 33, 36]). Another possibility
is to use various so-called s-numbers. An axiomatic approach to s-numbers was
introduced by Pietsch in [91].

Another prominent class of function spaces is that of rearrangement-invari-
ant function spaces. This class encompasses a large number of function spaces
measuring integrability of functions in such a way that the size of functions in these
function spaces is invariant with respect to certain rearrangements ([6, 7, 104]).
Prototypical examples are widely known Lebesgue spaces—although they are named
after H. Lebesgue, they were probably introduced by F. Riesz in [96]—but it became
quickly apparent that more sophisticated function spaces were needed (some history
can be found, e.g., in [7, 90, 95]). Notable examples of such more sophisticated
function spaces are Λ spaces, introduced by Lorentz in [74, 75], or Orlicz spaces.

Thesis outline

This habilitation thesis consists of an introductory text and a collection of six selected
research publications. These publications mainly deal with two topics. The first one
concerns boundedness of operators between function spaces, and it is divided into
two subtopics. The first one concerns boundedness of operators in the class of rear-
rangement-invariant function spaces and optimality. The second subtopic deals with
weighted inequalities. The second topic concerns Sobolev spaces, (non)compactness
of Sobolev embeddings and its quantitative aspects.

The thesis is structured as follows.
In Chapter 2, some terminology, notation, and aspects of the theory of rearrange-

ment-invariant function spaces used in the subsequent chapters are introduced and
recalled.

Chapter 3 summarizes main results from Papers A and B. Paper A comprehen-
sively studies optimal boundedness properties of quite general Hardy-type operators
between rearrangement-invariant function spaces. These operators surprisingly often
serve as certain “reduction operators” in the sense that various complicated questions
in the framework of rearrangement-invariant function spaces can be reduced to bound-
edness of such operators. In Paper B, we found reduction operators (one of them
being of Hardy type) whose boundedness between a pair of rearrangement-invariant
function spaces ensures that every operator satisfying some endpoint estimates,
motivated by Gaussian Sobolev inequalities, is also bounded between them.

Chapter 4 summarizes main results from Papers C and D. These papers charac-
terize optimal constants in certain weighted inequalities for integral operators acting
on functions of one variable. We obtained a complete explicit characterization of the
optimal constant while eliminating some important restrictions from the previous
work.

Chapter 5 summarizes main results from Papers E and F. We established new
quantitative results for the quality of (non)compactness of three Sobolev embeddings,
which are well known to be noncompact—namely for the optimal subcritical Sobolev
embedding in Lebesgue spaces, the optimal subcritical Sobolev-Lorentz embedding,
and for a certain Sobolev embedding on an infinite strip.

Appendix A contains the selected publications attached to the thesis.
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Chapter 2

Preliminaries

In this chapter, we will fix some notations and recall some parts of the theory of
rearrangement-invariant function spaces, which will be frequently used later. More
specific notations and definitions will be introduced where needed.

If not stated otherwise, (R, µ) is a σ-finite non-atomic measure space in this
thesis. We set

M(R, µ) = {f : f is a µ-measurable function on R with values in [−∞,∞]},
M0(R, µ) = {f ∈ M(R, µ) : f is finite µ-a.e. in R},

and

M+(R, µ) = {f ∈ M(R, µ) : f ≥ 0 µ-a.e. on R}.

When R is a subset of Rn, n ∈ N, and µ is the Lebesgue measure on R, we write R
instead of (R, µ), and we will do the same in the notation introduced later.

We will write A ≲ B, where A and B are nonnegative expressions (typically
depending on some parameters) if there is a positive constant c independent of all
relevant parameters appearing in the expressions such that A ≤ c · B. When it is
not obvious from the context what the relevant parameters are, it will be specified.
We will write A ≈ B when A ≲ B and B ≲ A simultaneously.

The expressions 1
∞ , ∞

∞ , 0
0
, and 0 · ∞ are to be interpreted as 0. Furthermore, the

expression 1
0
is to be interpreted as ∞.

2.1 Rearrangements and rearrangement-invariant

function spaces

We briefly recall some parts of the theory of rearrangement-invariant function spaces.
The interested reader is referred to [7] for more information.

The nonincreasing rearrangement f ∗ : (0,∞) → [0,∞] of a function f ∈ M(R, µ)
is defined as

f ∗(t) = inf{λ ∈ (0,∞) : µ({x ∈ R : |f(x)| > λ}) ≤ t}, t ∈ (0,∞).

The nonincreasing rearrangement f ∗ is a nonincreasing right-continuous function
such that f ∗(t) = 0 for every t ∈ [µ(R),∞).
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We say that two functions f ∈ M(R, µ) and g ∈ M(S, ν), where (S, ν) is a
(possibly different) measure space, are equimeasurable, if f ∗ = g∗. This is equivalent
to the fact that µ({x ∈ R : |f(x)| > λ}) = µ({x ∈ S : |g(x)| > λ}) for every
λ ∈ (0,∞). In particular, the functions f and f ∗ are equimeasurable.

The maximal nonincreasing rearrangement f ∗∗ : (0,∞) → [0,∞] of a function
f ∈ M(R, µ) is defined as

f ∗∗(t) =
1

t

∫ t

0

f ∗(s) ds, t ∈ (0,∞).

The maximal nonincreasing rearrangement f ∗∗ is a nonincreasing continuous function
such that f ∗ ≤ f ∗∗.

A functional ∥ · ∥X(R,µ) : M
+(R, µ) → [0,∞] is called a rearrangement-invariant

function norm if, for all f , g and {fk}∞k=1 in M+(R, µ), and every α ∈ [0,∞):

(P1) ∥f∥X(R,µ) = 0 if and only if f = 0 µ-a.e. in R; ∥αf∥X(R,µ) = α∥f∥X(R,µ);
∥f + g∥X(R,µ) ≤ ∥f∥X(R,µ) + ∥g∥X(R,µ);

(P2) ∥f∥X(R,µ) ≤ ∥g∥X(R,µ) if f ≤ g µ-a.e. in R;

(P3) ∥fk∥X(R,µ) ↗ ∥f∥X(R,µ) if fk ↗ f µ-a.e. in R;

(P4) ∥χE∥X(R,µ) < ∞ for every µ-measurable E ⊆ R of finite measure;

(P5) for every µ-measurable E ⊆ R of finite measure, there is a constant CE,X ∈
(0,∞), possibly depending on E and ∥ · ∥X(R,µ) but not on f , such that∫
E
f(x) dx ≤ CE,X∥f∥X(R,µ);

(P6) ∥f∥X(R,µ) = ∥g∥X(R,µ) if f and g are equimeasurable.

Extending a rearrangement-invariant function norm ∥ · ∥X(R,µ) to all functions
f ∈ M(R, µ) by

∥f∥X(R,µ) = ∥ |f | ∥X(R,µ), f ∈ M(R, µ),

the rearrangement-invariant function space X(R, µ) is defined as

X(R, µ) = {f ∈ M(R, µ) : ∥f∥X(R,µ) < ∞}.

The functional ∥ · ∥X(R,µ) is a norm on X(R, µ), and X(R, µ) endowed with it
is a Banach space. A function f ∈ M(R, µ) belongs to X(R, µ) if and only if
∥f∥X(R,µ) < ∞. Every rearrangement-invariant function space X(R, µ) is contained
in M0(R, µ). In fact, it is contained in (L1 + L∞)(R, µ).

Given a rearrangement-invariant function norm ∥·∥X(R,µ), the functional ∥·∥X′(R,µ)

defined as

∥f∥X′(R,µ) = sup
g∈M+(R,µ)
∥g∥X(R,µ)≤1

∫
R

f(x)g(x) dµ(x), f ∈ M+(R, µ),

is called the associate function norm. The associate function norm is also a rear-
rangement-invariant function norm, and the corresponding rearrangement-invariant
function space X ′(R, µ) is called the associate function space (of X(R, µ)). The
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associate function space X ′(R, µ) is (isometrically isomorphic to) a closed norm-
fundamental subspace of the dual space of X(R, µ), but it may be smaller in general
(e.g., the associate function space of L∞(R, µ) is L1(R, µ)).

Rearrangement-invariant function spaces are uniquely determined by their asso-
ciate function spaces because we always have (X ′)′(R, µ) = X(R, µ). This means
that, given a rearrangement-invariant function space X(R, µ), there is a unique
rearrangement-invariant function space Y (R, µ) whose associate function space is
X(R, µ)—namely Y (R, µ) = X ′(R, µ).

We say that a rearrangement-invariant function space X(R, µ) is embedded in a
rearrangement-invariant function space Y (R, µ), and we write

X(R, µ) ↪→ Y (R, µ),

if there is a constant C ∈ (0,∞) such that ∥f∥Y (R,µ) ≤ C∥f∥X(R,µ) for every
f ∈ M(R, µ). In fact, inclusion between rearrangement-invariant function spaces is
always continuous because X(R, µ) ↪→ Y (R, µ) if and only if X(R, µ) ⊆ Y (R, µ).

For every rearrangement-invariant function space X(R, µ), there is a unique rear-
rangement-invariant function space X(0, µ(R)) such that ∥f∥X(R,µ) = ∥f ∗∥X(0,µ(R)).
It follows that rearrangement-invariant function spaces over (R, µ) are completely
determined by rearrangement-invariant function spaces over (0, µ(R)). The rear-
rangement-invariant function space X(0, µ(R)) is called the representation space
(of X(R, µ)). In particular, when R = (0, L) for L ∈ (0,∞] and µ is the Lebesgue
measure, then X(R, µ) coincides with its representation space.

It is possible to equip sums and intersections of rearrangement-invariant function
spaces with rearrangement-invariant function norms; hence they are also rearrange-
ment-invariant function spaces. When ∥ · ∥X(R,µ) and ∥ · ∥Y (R,µ) are rearrangement-
invariant function norms, then so are ∥ · ∥X(R,µ)∩Y (R,µ) and ∥ · ∥(X+Y )(R,µ) defined
as

∥f∥X(R,µ)∩Y (R,µ) = max{∥f∥X(R,µ), ∥f∥Y (R,µ)}, f ∈ M+(R, µ),

and

∥f∥(X+Y )(R,µ) = inf
f=g+h

(∥g∥X(R,µ) + ∥h∥Y (R,µ)), f ∈ M+(R, µ),

where the infimum extends over all possible decompositions f = g + h, g, h ∈
M+(R, µ). Furthermore, we have (e.g., [28, Lemma 1.12])

(X(R, µ) ∩ Y (R, µ))′ = (X ′ + Y ′)(R, µ)

and

(X + Y )′(R, µ) = X ′(R, µ) ∩ Y ′(R, µ),

with equality of norms.
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2.2 Examples of rearrangement-invariant function

spaces

Textbook examples of rearrangement-invariant function spaces are the well-known
Lebesgue spaces Lp(R, µ), p ∈ [1,∞], defined as

Lp(R, µ) = {f ∈ M(R, µ) : ∥f∥Lp(R,µ) < ∞},

where

∥f∥Lp(R,µ) =

{( ∫
R
|f(x)|p dµ(x)

) 1
p if p < ∞,

ess supx∈R |f(x)| if p = ∞.

When p < ∞, the fact that the norm ∥ · ∥Lp(R,µ) is rearrangement invariant follows
from the so-called layer cake representation formula (e.g., [73, Theorem 1.13]), which
tells us that∫

R

|f(x)|p dµ(x) = p

∫ ∞

0

tp−1µ({x ∈ R : |f(x)| > t}) dt =
∫ µ(R)

0

f ∗(t)p dt.

When p = ∞, it follows from ∥f∥L∞(R,µ) = limt→0+ f ∗(t).
Other important examples are the Lorentz spaces Lp,q(R, µ) and Orlicz spaces

LA(R, µ).
For p, q ∈ [1,∞], the Lorentz space Lp,q(R, µ) is defined as

Lp,q(R, µ) = {f ∈ M(R, µ) : ∥f∥Lp,q(R,µ) < ∞},

where
∥f∥Lp,q(R,µ) = ∥t 1

p
− 1

q f ∗(t)∥Lq(0,µ(R)).

We have Lp(R, µ) = Lp,p(R, µ) for every p ∈ [1,∞]. The functional ∥ · ∥Lp,q(R,µ) is a
rearrangement-invariant function norm only when 1 ≤ q ≤ p < ∞ or p = q = ∞.
However, it is still at least equivalent to a rearrangement-invariant function norm
when 1 < p < q ≤ ∞—namely to the rearrangement-invariant function norm

∥ · ∥L(p,q)(R,µ) defined as ∥f∥L(p,q)(R,µ) = ∥t 1
p
− 1

q f ∗∗(t)∥Lq(0,µ(R)). Thanks to this, it is
usually possible to regard the Lorentz spaces Lp,q(R, µ) as rearrangement-invariant
function spaces even when 1 < p < q ≤ ∞, as long as exact values of constants
are not needed. The Lorentz spaces are increasing in the second parameter in the
sense that Lp,q1(R, µ) ⊊ Lp,q2(R, µ) for every p ∈ [1,∞) and 1 ≤ q1 < q2 ≤ ∞. The
Lorentz space Lp,∞(R, µ) is sometimes called a weak Lebesgue space. The interested
reader is referred to, e.g., [7, 54, 90] for more information.

Given a Young function A : [0,∞) → [0,∞]—that is, it is convex, left-continuous,
nonconstant, and A(0) = 0—the Orlicz space LA(R, µ) is defined as

LA(R, µ) = {f ∈ M(R, µ) : ∥f∥LA(R,µ) < ∞},

where

∥f∥LA(R,µ) = inf

{
λ > 0 :

∫
R

A

(
|f(x)|
λ

)
dµ(x) ≤ 1

}
.

The norm ∥ · ∥LA(R,µ) as defined here is usually called the Luxemburg norm. For
p ∈ [1,∞), the Lebesgue space Lp(R, µ) is equal to the Orlicz space LA(R, µ) defined
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by the Young function A(t) = tp, t ∈ [0,∞). The space L∞(R, µ) coincides with
LA(R, µ) with A equal to 0 on [0, 1] and to ∞ on (1,∞). Up to equivalence of norms,
Orlicz spaces LA(R, µ) are determined by the behavior of A near ∞ when µ(R) < ∞.
When µ(R) = ∞, the behavior of A near 0 is also important. The interested reader
can find more information about Orlicz spaces in, e.g., [60, 95].

Some widely used Orlicz spaces, other than Lebesgue spaces, are the following
Orlicz spaces of logarithmic and exponential types. Let µ(R) < ∞. The Orlicz
space LA(R, µ) defined by a Young function A that is equivalent to the function
tp(log t)α near ∞, where either p ∈ (1,∞) and α ∈ R or p = 1 and α ≥ 0, is often
denoted by Lp(logL)α(R, µ). These spaces satisfy Lp(logL)α(R, µ) ⊊ Lp(R, µ) ⊊
Lp(logL)β(R, µ) for every p ∈ (1,∞) and β < 0 < α (the first inclusion is valid even
when p = 1). The Orlicz space often denoted by expLα(R, µ) corresponds to a Young
function A equivalent to the function exp(tα) near ∞, where α > 0. These spaces
satisfy L∞(R, µ) ⊊ expLα(R, µ) ⊊ Lq(R, µ) for every q ∈ [1,∞). These examples
can be generalized to cover more tiers of logarithms/exponentials, or to the case
µ(R) = ∞.

There are other important rearrangement-invariant function spaces and classes
of function spaces closely related to them. We will meet some later (e.g., Lorentz-
Karamata spaces in Chapter 3 or Λ and Γ spaces in Chapter 4).
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Chapter 3

Reduction operators

This chapter describes some of the main results from the papers [5, 81]. The common
theme of this chapter is the question of reducing complicated problems to simpler ones.
The first section, which describes [81], is devoted to the study of optimal behavior of
certain operators, usually referred to as (weighted) Hardy operators, on rearrange-
ment-invariant function spaces. The operators studied there are often found to be at
the core of such reductions in the setting of rearrangement-invariant function spaces.
The second section, which describes [5], deals with one particular reduction—that of
reducing the question of whether every operator having certain endpoint behavior
is bounded between a given pair of rearrangement-invariant function spaces to the
question of whether particular governing operators are bounded.

3.1 Weighted Hardy operators on rearrangement-

invariant function spaces

For the rest of this section, let L ∈ (0,∞]. Let Ru,v,ν and Hu,v,ν be Hardy-type
operators (formally) defined as, for f ∈ M(0, L),

Ru,v,νf(t) = v(t)

∫ ν(t)

0

f(s)u(s) ds, t ∈ (0, L),

and

Hu,v,νf(t) = u(t)

∫ L

ν(t)

f(s)v(s) ds, t ∈ (0, L).

Here u, v ∈ M+(0, L) are nonincreasing and ν is an increasing bijection of (0, L) onto
itself. The interested reader is referred to [62] for the (pre)history of Hardy-type
operators, which in various forms have been an indispensable tool in the mathematical
analysis since the early 1900s. In this chapter, we will call both Ru,v,ν and Hu,v,ν

Hardy-type operators, but the latter is also frequently called Copson-type operator.
In the paper [81], rearrangement-invariant function norms induced by these

operators, optimal rearrangement-invariant function spaces for them and properties
of these optimal spaces are studied. We say that a rearrangement-invariant function
space Y is the optimal target space for an operator T and a rearrangement-invariant
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function space X if T is bounded from X to Y and Y is the smallest such a rearrange-
ment-invariant function space (in other words, the rearrangement-invariant function
norm of Y is the strongest possible)—that is, if Z is a rearrangement-invariant
function space such that T is bounded from X to Z, then Y ↪→ Z. We say that
a rearrangement-invariant function space X is the optimal domain space for an
operator T and a rearrangement-invariant function space Y if T is bounded from X
to Y and X is the largest such a rearrangement-invariant function space (in other
words, the rearrangement-invariant function norm of X is the weakest possible)—that
is, if Z is a rearrangement-invariant function space such that T is bounded from Z
to Y , then Z ↪→ X.

Optimal rearrangement-invariant function spaces for Hardy-type operators can
surprisingly often be used for describing optimal rearrangement-invariant function
spaces for much more complicated operators. This connection can be easily observed
through the following example using the Hardy–Littlewood maximal operator M .
Thanks to the famous equivalence ([7, Theorem 3.8])

C1
1

t

∫ t

0

f ∗(s) ds ≤ (Mf)∗(t) ≤ C2
1

t

∫ t

0

f ∗(s) ds

for every t ∈ (0,∞) and f ∈ M(Rn), we immediately see that M is bounded
from a rearrangement-invariant function space X(Rn) to a rearrangement-invari-
ant function space Y (Rn) if and only if Ru,v,ν with u ≡ 1, v(t) = t−1, ν(t) = t,
and L = ∞, is bounded from X(0,∞) to Y (0,∞). This means that the optimal
rearrangement-invariant function spaces for M are the same as those for Ru,v,ν .

There are other important operators of harmonic analysis for which sharp in-
equalities for their nonincreasing rearrangements in terms of Hardy-type operators
are known. For example, the Hilbert transform ([7]; more generally in [21, p. 55]),
certain convolution operators ([40, 87]), or the fractional maximal operator and its
variants ([24, 35]). In [37], we studied the optimal rearrangement-invariant function
spaces for some important operators of harmonic analysis. Even though the number
of operators T for which sharp inequalities for their nonincreasing rearrangements
are known is limited, what is more often known is at least an upper bound on the
nonincreasing rearrangement of a given operator in terms of Hardy-type operators
(e.g., [2, 17, 35, 72]). If we find the optimal target space for the governing operator, we
find the best possible target rearrangement-invariant function space for the operator
T that we can get from the upper bound at our disposal.

Pointwise inequalities for rearrangements are not the only way in which com-
plicated questions can be reduced to simpler ones involving Hardy-type operators.
Reductions can sometimes be achieved by the right use of interpolation or by making
use of some intrinsic properties of the problem in question. Such approaches have been
notably successful in connection with various embeddings of Sobolev-type spaces built
upon rearrangement-invariant function spaces into rearrangement-invariant function
spaces. In the pioneering paper [58], they proved that the optimal rearrangement-in-
variant function spaces in Sobolev inequalities of mth order on bounded Lipschitz
domains in Rn, 1 ≤ m < n, are the same as those for the operator Hu,v,ν with u ≡ 1,
v(t) = t−1+m/n, ν(t) = t, and L = 1. Since then, a large number of different Sobolev-
type embeddings in rearrangement-invariant function spaces have been reduced (often
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equivalently, or at least in form of sufficient/necessary conditions) to the boundedness
of suitable Hardy-type operators (e.g., [3, 12, 22, 23, 25, 26, 27, 58, 78, 79]).

The paper [81], which generalizes and extends the author’s previous results from
[80], is aimed to thoroughly and comprehensively address some important properties
of the optimal rearrangement-invariant function spaces for the operators Ru,v,ν and
Hu,v,ν . These properties were already studied before (in particular, see the papers
mentioned in the previous paragraph and [37]) but in considerably less generality,
usually for particular choices of the functions u, v, and ν, often scattered and hidden
somewhere between the lines with varying degrees of generality. Although some
restrictions on the functions u, v, and ν, apart from their monotonicity, do appear
in [81], these restrictions are in general dictated by two things. First, they exclude
some pathological cases. Second, they prevent Hardy-type operators with kernels
from appearing. Rearrangement-invariant function norms induced by Hardy-type
operators with kernels go beyond the scope of the paper and they should be studied in
more detail in a future project. For example, rearrangement-invariant function norms
induced by Hardy-type operators with kernels appeared in [26] in connection with
optimal rearrangement-invariant function spaces for higher order Sobolev embeddings
on bounded domains in Rn with respect to their isoperimetric function, or recently in
the author’s paper [82] in connection with optimal rearrangement-invariant function
spaces for higher order iterations of the Laplace–Beltrami operator in the hyperbolic
space.

We now begin describing main results from [81].
We start with a proposition characterizing when the operator Ru,v,ν induces

a rearrangement-invariant function norm. It also describes the connection of the
induced rearrangement-invariant function norm with the optimal domain space for
the operator and a rearrangement-invariant function space. Since it can be easily
observed that the operator Hu,v,ν is bounded from a rearrangement-invariant function
space X(0, L) to a rearrangement-invariant function space Y (0, L) if and only if the
operator Ru,v,ν−1 , where ν−1 is the inverse function to ν, is bounded from Y ′(0, L) to
X ′(0, L), this proposition also has a “dual version”, which characterizes the optimal
target space for the operator Hu,v,ν and a rearrangement-invariant function space
X(0, L) (see [81, Proposition 3.7]).

Proposition 3.1 ([81, Proposition 3.1]). Let ∥ · ∥X(0,L) be a rearrangement-invariant
function norm.

� Let ν : (0, L) → (0, L) be an increasing bijection.

� Let u : (0, L) → (0,∞) be a nonincreasing function that is integrable on a
right-neighborhood of 0. If L < ∞, assume that u(L−) > 0.

� Let v : (0, L) → (0,∞) be measurable.

Set
∥f∥Y (0,L) = ∥Ru,v,ν(f

∗)∥X(0,L), f ∈ M+(0, L),

and

ξ(t) =

{
v(t)U(ν(t)), t ∈ (0, L), if L < ∞,

v(t)U(ν(t))χ(0,1)(t) + v(t)χ(1,∞)(t), t ∈ (0,∞), if L = ∞,
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where

U(t) =

∫ t

0

u(s) ds, t ∈ (0, L). (3.1)

The functional ∥ · ∥Y (0,L) is a rearrangement-invariant function norm if and only
if ξ ∈ X(0, L).

If ξ ∈ X(0, L), then the rearrangement-invariant function space Y (0, L) is the
optimal domain space for the operator Ru,v,ν and X(0, L). If ξ ̸∈ X(0, L), then there
is no rearrangement-invariant function space Z(0, L) such that Ru,v,ν : Z(0, L) →
X(0, L) is bounded.

Before proceeding, we recall slowly varying functions. We say that a measurable
function b : (0, L) → (0,∞) is slowly varying if for every ε > 0 there are nonde-
creasing and nonincreasing functions bε : (0, L) → (0,∞) and b−ε : (0, L) → (0,∞),
respectively, such that tεb(t) ≈ bε(t) and t−εb(t) ≈ b−ε(t) on (0, L). Prototypical
examples of slowly varying functions (apart from positive constant functions) are
functions such as b(t) = 1 + | log t|, t ∈ (0, L), and its real powers (with possibly
different powers near 0 and near ∞ when L = ∞).

In the following theorem (and also in the rest of this section), we will sometimes
need to impose certain mild conditions on the bijection (temporarily denoted by ν)
appearing in the integration range of the Hardy operators.

� We write ν ∈ D0 if there is θ > 1 such that lim inft→0+
ν(θt)
ν(t)

> 1.

� We write ν ∈ D∞ if there is θ > 1 such that lim inft→∞
ν(θt)
ν(t)

> 1.

� We write ν ∈ D0 if there is θ > 1 such that lim supt→0+
ν(θt)
ν(t)

< ∞.

� We write ν ∈ D∞ if there is θ > 1 such that lim supt→∞
ν(θt)
ν(t)

< ∞.

For example, ν ∈ D∞ is satisfied if ν is equivalent to the function t 7→ tαb(t) near ∞,
where α > 0 and b is a slowly varying function (cf. [47, Proposition 2.2(iii)]). On the
other hand, it is not satisfied for example for ν equivalent to logα near ∞, where
α > 0. Furthermore, some functions will be required to satisfy an averaging condition.
We say that a positive a.e. finite measurable function on (0, L) (temporarily denoted
by w) satisfies the averaging condition if

ess sup
t∈(0,L)

1

tw(t)

∫ t

0

w(s) ds < ∞. (3.2)

Prototypical examples of functions that satisfy the averaging condition are the
functions of the form w(t) = t−1+αb(t), t ∈ (0, L), where α > 0 and b : (0, L) → (0, L)
is any slowly varying function. On the other hand, a prototypical example of a
function w that is integrable over (0, t) for every t ∈ (0, L) but does not satisfy the
averaging condition is the function w(t) = t−1(1 + | log t|)α, t ∈ (0, L), with α < −1.

Now, suppose that we start with a rearrangement-invariant function norm ∥ ·
∥X(0,L), and let ∥ · ∥Y1(0,L) be the rearrangement-invariant function norm induced by
the operator Ru1,v1,ν1—that is,

∥f∥Y1(0,L) = ∥Ru1,v1,ν1(f
∗)∥X(0,L), f ∈ M+(0, L).
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Starting now with Y1(0, L) instead of X(0, L) and considering other functions u2, v2,
and ν2, we consider the rearrangement-invariant function norm ∥ · ∥Y2(0,L) induced
by the operator Ru2,v2,ν2—that is,

∥f∥Y2(0,L) = ∥Ru2,v2,ν2(f
∗)∥Y1(0,L) = ∥Ru1,v1,ν1((Ru2,v2,ν2(f

∗))∗)∥X(0,L), f ∈ M+(0, L).

The question is: is the iterated rearrangement-invariant function norm ∥ · ∥Y2(0,L)

equivalent to a rearrangement-invariant function norm induced by a noniterated
operator Ru,v,ν? In other words, are there functions u, v, and ν such that

∥Ru1,v1,ν1((Ru2,v2,ν2(f
∗))∗)∥X(0,L) ≈ ∥Ru,v,ν(f

∗)∥X(0,L) for every f ∈ M+(0, L)?

The following theorem deals with this problem. It should be noted that the function
Ru2,v2,ν2(f

∗) is usually not (equivalent to) a nonincreasing function, and so the outer
star cannot be erased just like that.

Such an iteration is not artificial. It first appeared in [26] as an essential tool
for establishing sharp iteration principles for various Sobolev embeddings. Loosely
speaking, their sharp iteration principles ensure that the optimal rearrangement-
invariant target spaces in various Sobolev embeddings of (k + l)th order are the
same as those obtained by composing the optimal Sobolev embedding of order k
with the optimal Sobolev embedding of order l. They used it for obtaining optimal
higher order Sobolev embeddings from the respective first order ones, where it is
possible to exploit suitable isoperimetric inequalities. Another iteration principle
appeared in [23], where it was used for establishing optimal higher order Sobolev
trace embeddings.

The iteration principle [26, Theorem 9.5] is different from the one presented here
(Theorem 3.2). There, the functions v1 and v2 are the same and the other functions
are limited to u1 = u2 ≡ 1, ν1 = ν2 = id (and L is finite). Moreover, the iteration
principle there in general leads to a Hardy-type operator with a kernel. On the other
hand, the iteration principle presented here not only considerably generalizes [23,
Theorem 3.4] but also improves it. The iteration principle there is limited to the
functions uj ≡ 1, vj(t) = tαj−1, νj(t) = tβj , t ∈ (0, L), L finite, j = 1, 2, with the
parameters αj, βj ∈ (0,∞) satisfying

β2 + α2 ≥ 1, β1 + α1 ≥ 1, β1α2 + α1 < 1. (3.3)

However, the iteration principle presented here can be used for this particular choice
of the functions if (see [81, Remark 5.3] for a more general example)

β1(β2 + α2) + α1 ≥ 1, β1 + α1 ≥ 1, β1α2 + α1 < 1. (3.4)

Note that (3.3) implies (3.4), but the opposite implication is false. For example,
consider α1 = α2 = 1/2 and β1 = 3/4. Then (3.4) is satisfied if and only if β2 ≥ 1/6,
whereas (3.3) is satisfied if and only if β2 ≥ 1/2.

Theorem 3.2 ([81, Theorem 5.2]). Let ∥ · ∥X(0,L) be a rearrangement-invariant
function norm.

� Let ν1, ν2 : (0, L) → (0, L) be increasing bijections. Assume that ν2 ∈ D0. If
L = ∞, assume that ν2 ∈ D∞.

12



� Let u1, u2 : (0, L) → (0,∞) be nonincreasing.

� Let v1 : (0, L) → (0,∞) be a continuous function. Let v2 : (0, L) → (0,∞) be
defined by

1

v2(t)
=

∫ ν2(t)

0

ξ(s) ds, t ∈ (0, L),

where ξ : (0, L) → (0,∞) is a measurable function. Assume that the function
u1v2 satisfies the averaging condition (3.2).

Let v be the function defined as

v(t) = u1(ν1(t))v1(t)ν1(t)v2(ν1(t)), t ∈ (0, L).

Set ν = ν2 ◦ ν1 and

η(t) =
1

U2(t)v(ν−1(t))
, t ∈ (0, L),

where U2 is defined by (3.1) with u replaced by u2. Assume that η and η/ξ are
equivalent to nonincreasing functions. Furthermore, assume that there are positive
constants C1 and C2 such that∫ t

0

η(s)u2(s) ds ≤ C1U2(t)η(t) for every t ∈ (0, L)

and

1

t

∫ t

0

U2(ν(s))v(s) ds ≥ C2U2(ν(t))v(t) for every t ∈ (0, L).

Then we have

∥Ru1,v1,ν1((Ru2,v2,ν2(f
∗))∗)∥X(0,L) ≈ ∥Ru2,v,ν(f

∗)∥X(0,L)

for every f ∈ M+(0, L).

We now turn our attention to the operator Hu,v,ν . The question of when the
operator Hu,v,ν induces a rearrangement-invariant function norm is considerably
more complicated because there is a problem that we inevitably face. The problem
is that the functional

M+(0, L) ∋ f 7→ ∥Hu,v,ν(f
∗)∥X(0,L) (3.5)

is usually not subadditive and the triangle inequality fails (however, it is subadditive
when the functions u, v, and ν are related to each other in a specific way (see
[81, Proposition 4.1]). If we just replaced the functional (3.5) with M+(0, L) ∋
f 7→ ∥Hu,v,νf∥X(0,L), the resulting functional would be subadditive, but it would
not be rearrangement invariant anymore. Nevertheless, both the subadditivity and
rearrangement invariance can be saved by taking a supremum over all nonnegative
equimeasurable functions with f . This is the content of the following proposition,
which also characterizes the optimal domain space for the operator Hu,v,ν and a
rearrangement-invariant function space (for its “dual version”, which describes the
optimal target space for the operator Ru,v,ν and a rearrangement-invariant function
space, see [81, Proposition 3.8]).
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Proposition 3.3 ([81, Proposition 3.3]). Let ∥ · ∥X(0,L) be a rearrangement-invariant
function norm.

� Let ν : (0, L) → (0, L) be an increasing bijection. If L = ∞, assume that
ν ∈ D∞.

� Let u : (0, L) → (0,∞) be nonincreasing.

� Let v : (0, L) → (0,∞) be nonincreasing. If L < ∞, assume that v(L−) > 0.

Set
∥f∥Y (0,L) = sup

h∼f
∥Hu,v,νh∥X(0,L), f ∈ M+(0, L), (3.6)

where the supremum extends over all h ∈ M+(0, L) equimeasurable with f . The
functional ∥ · ∥Y (0,L) is a rearrangement-invariant function norm if and only if

u(t)
∫ L

ν(t)
v(s) ds ∈ X(0, L) if L < ∞,

u(t)χ(0,ν−1(1))(t)

∫ 1

ν(t)

v(s) ds ∈ X(0,∞) and

lim sup
τ→∞

v(τ)∥uχ(0,ν−1(τ))∥X(0,∞) < ∞ if L = ∞.

(3.7)

If (3.7) is satisfied, then the rearrangement-invariant function space Y (0, L)
is the optimal domain space for the operator Hu,v,ν and X(0, L). If (3.7) is not
satisfied, then there is no rearrangement-invariant function space Z(0, L) such that
Hu,v,ν : Z(0, L) → X(0, L) is bounded.

As with the operator Ru,v,ν , there is also a certain iteration principle for the
operator Hu,v,ν . The interested reader is referred to [81, Proposition 5.4].

In concrete situations, we are often interested in explicit descriptions of optimal
rearrangement-invariant function spaces—preferably, in terms of common function
spaces. The supremum in (3.6) usually makes an explicit description of the cor-
responding rearrangement-invariant function space very hard, unless the function
norm is somehow simplified first. Ideally, the rearrangement-invariant function norm
would be equivalent to the functional (3.5), which is significantly less complicated.
While this is not always the case in general, the following result can often be used
for the simplification.

Proposition 3.4 ([81, Proposition 4.2]). Let ∥ · ∥X(0,L) be a rearrangement-invariant
function norm.

� Let ν : (0, L) → (0, L) be an increasing bijection. If L = ∞, assume that
ν ∈ D∞.

� Let u : (0, L) → (0,∞) be nonincreasing.

� Let v : (0, L) → (0,∞) be defined by

1

v(t)
=

∫ ν−1(t)

0

ξ(s) ds for every t ∈ (0, L), (3.8)
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where ξ : (0, L) → (0,∞) is measurable. If L < ∞, assume that ξ ∈ L1(0, L).
Furthermore, assume that the operator Tφ defined as

Tφf(t) =
1

φ(t)
ess sup
s∈[t,L)

φ(s)f ∗(s), t ∈ (0, L), f ∈ M(0, L), (3.9)

with φ = u/ξ is bounded on X ′(0, L).

Assume that ∥∥∥u(t)χ(0,ν−1(a))(t)

∫ a

ν(t)

v(s) ds
∥∥∥
X(0,L)

< ∞,

where a is defined as

a =

{
L if L < ∞,

1 if L = ∞.

Let ∥ · ∥Y (0,L) be the functional defined by (3.6) and set

∥f∥Z(0,L) = sup
g∈M+(0,L)
∥g∥X′(0,L)≤1

∫ L

0

f ∗(s)v(t)
(∫ ν−1(t)

0

Tφg(s)u(s) ds
)
dt, f ∈ M+(0, L).

The functionals ∥ · ∥Y (0,L) and ∥ · ∥Z(0,L) are rearrangement-invariant function norms.
Furthermore, we have

∥Hu,v,ν(f
∗)∥X(0,L) ≤ sup

h∼f
∥Hu,v,νh∥X(0,L) ≤ ∥f∥Z(0,L)

≤ ∥Tφ∥X′(0,L)∥Hu,v,ν(f
∗)∥X(0,L)

for every f ∈ M+(0, L). Here ∥Tφ∥X′(0,L) stands for the operator norm of Tφ on
X ′(0, L). In particular, the rearrangement-invariant function norms ∥ · ∥Y (0,L) and
∥ · ∥Z(0,L) are equivalent; moreover, they are equivalent to the functional (3.5).

The boundedness of the supremum operator Tφ on so-called Lambda spaces,
which encompass a large number of common rearrangement-invariant function spaces
(see Chapter 4), is characterized by [48, Theorem 3.2]. In concrete situations, φ is
usually (equivalent to) a quasiconcave function.

We say that a function φ : (0, L) → (0,∞) is quasiconcave if it is nondecreasing
and the function (0, L) ∋ t 7→ φ(t)/t is nonincreasing. A typical example of a
function on (0, L) that is equivalent to a quasiconcave function is a function that is
equivalent to the function (0, L) ∋ t 7→ tαb(t), where b is slowly varying and either
α ∈ (0, 1), or α = 0 and b is (equivalent to) a nondecreasing function, or α = 1 and
b is (equivalent to) a nonincreasing function.

It turns out that the question of whether the supremum operator Tφ is bounded on
a rearrangement-invariant function space is closely connected with the general notion
of being an optimal function space and with the notion of being an interpolation
space. We start with the former.

Theorem 3.5 ([81, Theorem 4.6]). Let ∥ · ∥X(0,L) be a rearrangement-invariant
function norm.
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� Let ν : (0, L) → (0, L) be an increasing bijection. If L = ∞, assume that
ν ∈ D∞.

� Let u : (0, L) → (0,∞) be a nonincreasing function that is integrable on a
right-neighborhood of 0. If L < ∞, assume that u(L−) > 0.

� Let v : (0, L) → (0,∞) be a nonincreasing function. If L < ∞, assume that
v(L−) > 0.

Let ∥ · ∥Y (0,L) be the functional defined by (3.6). The following three statements
are equivalent.

(i) The space X(0, L) is the optimal target space for the operator Hu,v,ν and some
rearrangement-invariant function space.

(ii) The space X ′(0, L) is the optimal domain space for the operator Ru,v,ν−1 and
some rearrangement-invariant function space.

(iii) We have that

∥f∥X′(0,L) ≈ sup
g∈M+(0,L)
∥g∥Y (0,L)≤1

∫ L

0

g(t)Ru,v,ν−1(f ∗)(t) dt for every f ∈ M+(0, L).

Finally, assume, in addition, that

� v is defined by (3.8) with ξ satisfying

u(t)

U(t)

∫ t

0

ξ(s) ds ≲ ξ(t) for a.e. t ∈ (0, L),

where U is defined by (3.1);

� the function φ ◦ ν−1, where φ = u/ξ, is equivalent to a quasiconcave function.

Then each of the three equivalent statements above implies that

(iv) the operator Tφ, defined by (3.9), is bounded on X ′(0, L).

For example, when u(t) = t−1+α, v(t) = t−1+β, and ν(t) = tγ, t ∈ (0, L), the
assumptions (including the additional ones) of the preceding theorem are satisfied if
α ∈ (0, 1], β ∈ [0, 1), γ > 0 and 1 ≤ α

γ
+ β ≤ 2. Furthermore, it is worth noting that,

if X ′(0, L) is the optimal domain space for Ru,v,ν−1 and some rearrangement-invariant
function space Y (0, L), then X ′(0, L) is actually the optimal domain space for Ru,v,ν−1

and its own optimal target space. Similarly, if X(0, L) is the optimal target space
for Hu,v,ν and some rearrangement-invariant function space Y (0, L), then X(0, L) is
actually the optimal target space for Hu,v,ν and its own optimal domain space (see
[81, Remark 4.7]).

The next theorem provides a sufficient and a necessary condition for the bound-
edness of Tφ on a rearrangement-invariant function space in terms of being an
interpolation space between suitable endpoint spaces. When L < ∞, the theorem
actually provides a characterization.
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We say that a rearrangement-invariant function space X(R, µ) is an interpolation
space between rearrangement-invariant function spaces X1(R, µ) and X2(R, µ) if the
following two conditions are satisfied. First, X(R, µ) is an intermediate space between
X1(R, µ) and X2(R, µ), that is, X1(R, µ)∩X2(R, µ) ↪→ X(R, µ) ↪→ (X1 +X2)(R, µ).
Second, if a linear operator T defined on (X1+X2)(R, µ) with values in (X1+X2)(R, µ)
is bounded on both X1(R, µ) and X2(R, µ), then it is also bounded on X(R, µ). The
interested reader can find more information on interpolation spaces in, for example,
[7, 8, 15, 61].

Theorem 3.6 ([81, Theorem 4.11]). Let ∥ · ∥X(0,L) be a rearrangement-invariant
function norm. Let φ : (0, L) → (0,∞) be a measurable function that is equivalent
to a continuous nondecreasing function. Set ξ = 1/φ. Assume that ξ satisfies the
averaging condition (3.2). Consider the following three statements.

(i) The operator Tφ, defined by (3.9), is bounded on X ′(0, L).

(ii) X(0, L) ∈ Int
(
Λ1

ξ(0, L), L
∞(0, L)

)
, where

Λ1
ξ(0, L) =

{
f ∈ M(0, L) : ∥f∥Λ1

ξ(0,L)
=

∫ L

0

f ∗(t)ξ(t) dt < ∞
}
.

(iii) X ′(0, L) ∈ Int
(
L1(0, L),Mφ(0, L)

)
, where

Mφ(0, L) =
{
f ∈ M(0, L) : ∥f∥Mφ(0,L) = sup

t∈(0,L)
f ∗∗(t)φ(t) < ∞

}
.

If L < ∞, then the three statements are equivalent to each other. If L = ∞, then (i)
implies (ii), and (iii) implies (i).

At the beginning of the proof of the preceding theorem, it is observed that the
function φ is equivalent to a quasiconcave function. The function spaces Λ1

ξ(0, L)
and Mφ(0, L) are so-called Lorentz and Marcinkiewicz endpoint spaces (see, e.g., [61]
for more information on these spaces). The assumptions of the preceding theorem
guarantee that both functionals ∥ · ∥Λ1

ξ(0,L)
and ∥ · ∥Mφ(0,L) are equivalent to rear-

rangement-invariant function norms, and so the respective function spaces can be
regarded as rearrangement-invariant function spaces.

Now, recall that, loosely speaking, we have seen so far that

� the boundedness of Tφ on X ′(0, L) for a suitable function φ is sufficient for the
equivalence of the functionals (3.5) and (3.6) (Proposition 3.4);

� if X(0, L) is the optimal target space for the operator Hu,v,ν and some re-
arrangement-invariant function space, then Tφ with a suitable function φ is
bounded on X ′(0, L) (Theorem 3.5);

� the boundedness of Tφ goes hand in hand with the notion of interpolation
spaces (Theorem 3.6).

We conclude this section with the following theorem concerning the important case
u ≡ 1. In this case, we have the following characterization.
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Theorem 3.7 ([81, Theorem 4.16]). Let ∥ · ∥X(0,L) be a rearrangement-invariant
function norm.

� Let ν : (0, L) → (0, L) be an increasing bijection. Assume that ν−1 ∈ D0. If
L = ∞, assume that ν−1 ∈ D∞ and ν ∈ D∞.

� Let v : (0, L) → (0,∞) be defined by (3.8) with ξ : (0, L) → (0,∞) satisfying
the averaging condition (3.2). Assume that v, too, satisfies the averaging
condition (3.2). Furthermore, assume that the function φ ◦ ν−1 is equivalent to
a quasiconcave function, where φ = 1/ξ.

Let ∥ · ∥Y (0,L) be the functional defined by (3.6) with u ≡ 1. The following five
statements are equivalent.

(i) The operator Tφ, defined by (3.9), is bounded on X ′(0, L).

(ii) The functionals (3.5) and (3.6) with u ≡ 1 are equivalent.

(iii) The space X(0, L) is the optimal target space for the operator H1,v,ν and some
rearrangement-invariant function space.

(iv) The space X ′(0, L) is the optimal domain space for the operator R1,v,ν−1 and
some rearrangement-invariant function space.

(v) We have

∥f∥X′(0,L) ≈ sup
g∈M+(0,L)
∥g∥Y (0,L)≤1

∫ L

0

g(t)R1,v,ν−1(f ∗)(t) dt for every f ∈ M+(0, L).

Moreover, if L < ∞, these five statements are also equivalent to

(vi) X(0, L) ∈ Int
(
Λ1

ξ(0, L), L
∞(0, L)

)
.

3.2 Reduction of the Gaussian K-inequality

This section describes the main results from [5].
Throughout the section, (R, µ) and (S, ν) are two (possibly different) probabilistic

non-atomic measure spaces; however, the results and their proofs in [5] could be
easily generalized to finite (not necessarily probabilistic) measure spaces.

Given two, say, rearrangement-invariant function spaces Z1(R, µ) and Z2(R, µ),
the corresponding K-functional is defined, for each g ∈ M0(R, µ) and t > 0, as

K(g, t;Z1, Z2) = inf
g=g1+g2

(∥g1∥Z1(R,µ) + t∥g2∥Z2(R,µ)),

where the infimum extends over all possible decompositions g = g1+g2, gi ∈ Zi(R, µ),
i = 1, 2. The interested reader can find more information on the K-functional and
its importance in the interpolation theory in, for example, [7, 8, 15, 61].
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Let T be an operator defined on (X1 +X2)(R, µ) with values in M0(S, ν), for
which we have the following endpoint estimates at our disposal:

T : X1(R, µ) → Y1(S, ν) and T : X2(R, µ) → Y2(S, ν), (3.10)

where Xj(R, µ) and Yj(S, ν), j = 1, 2, are (rearrangement-invariant) function spaces.
Here T : Xj(R, µ) → Yj(S, ν) stands for the fact that the operator T is bounded
from Xj(R, µ) to Yj(S, ν). For a wide class of operators T , which includes not
only quasi-linear operators ([7, Chapter 3, Definition 5.3]) but also other types of
operators (see [15, Section 4.1] for more detail), the endpoint estimates (3.10) imply
the following inequality between the corresponding K-functionals:

K(Tf, t;Y1, Y2) ≲ K(f, t;X1, X2) for every f ∈ (X1 +X2)(R, µ) and t > 0.

Such an inequality between K-functionals will be referred to as a K-inequality.
In [5], we considered a K-inequality corresponding to a certain choice of the

endpoint spaces. The prototypical example of a K-inequality studied in [5] is

K(Tf, t;L
√

logL, eL
2

) ≲ K(f, t;L1, L∞) (3.11)

for every f ∈ L1(R, µ) and t > 0. We addressed the question of whether there is a
reduction operator (or operators) whose boundedness between rearrangement-invari-
ant function spaces X(0, 1) and Y (0, 1) is equivalent to the fact that every operator
T satisfying the K-inequality is bounded from X(R, µ) to Y (S, ν). By means of
such a reduction operator (or operators), the question of whether every operator
satisfying the K-inequality is bounded from a rearrangement-invariant function
space to another is reduced to a simpler question of boundedness of the reduction
operator(s) between the corresponding representation spaces.

The prototypical example (3.11) is motivated by the Gaussian Sobolev inequali-
ties—that is, Sobolev-type inequalities in Rn endowed with the (standard) Gaussian
measure γn defined as

dγn(x) = (2π)−
n
2 e−

|x|2
2 dx.

In the general setting of rearrangement-invariant function spaces, these inequalities
can be stated as

∥u− uγn∥Y (Rn,γn) ≤ C∥∇u∥X(Rn,γn) (3.12)

for every weakly differentiable function u such that |∇u| ∈ X(Rn, γn). Here uγn is
the integral mean of u with respect to the measure γn, and C is a constant that is
independent not only of u but also of the dimension n. The ongoing interested in
such inequalities was raised by the seminal paper [55], which established such an
inequality for X(Rn, γn) = L2(Rn, γn) and Y (Rn, γn) = L2 logL(Rn, γn), and which
pointed out its importance for the study of quantum fields and hypercontractivity
semigroups. Since then, such inequalities have been intensively studied in various
forms and settings. In particular, in the general setting of rearrangement-invariant
function spaces, these inequalities were intensively studied in [22] with focus being
on the optimality of function spaces. In that paper, they described the optimal
rearrangement-invariant function space Y (Rn, γn) in (3.12) for a given rearrange-
ment-invariant function space X(Rn, γn) (see also [26]). For the endpoint spaces
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L1(Rn, γn) and L∞(Rn, γn), the optimal form of (3.12) reads as

∥u− uγn∥L√logL(Rn,γn) ≤ C∥∇u∥L1(Rn,γn)

and

∥u− uγn∥eL2 (Rn,γn)
≤ C∥∇u∥L∞(Rn,γn),

which is exactly the endpoint behavior modeled by (3.11). What makes such endpoint
behavior rather nonstandard is that Lp(Rn, γn) ⊊ L

√
logL(Rn, γn) ⊊ L1(Rn, γn)

for every p ∈ (1,∞], whereas L∞(Rn, γn) ⊊ eL
2
(Rn, γn) ⊊ Lq(Rn, γn) for every

q ∈ [1,∞). This means that one endpoint estimate corresponds to slight gain in
integrability, whereas the other corresponds to slight loss. Moreover, loosely speaking,
both gain and loss are just logarithmic, which entails further difficulties.

A more general version of the K-inequality studied in [5] is

K(Tf, t;L1,1,b1 , L∞,∞,b2) ≲ K(f, t;L1, L∞) (3.13)

for every f ∈ L1(R, µ) and t > 0. The endpoint spaces on the left-hand side are
so-called Lorentz-Karamata spaces, which will be introduced soon. In fact, we
studied a more general K-inequality than (3.13) in the setting of p-convex rearrange-
ment-invariant quasi-Banach function spaces; however, we stick with the setting of
rearrangement-invariant (Banach) function spaces here (i.e., p = 1) in order not to
make things needlessly technical.

Given a σ-finite (non necessarily probabilistic/finite, as is the case in the rest of
this section) non-atomic measure space (S, ν), p, q ∈ [1,∞], and a slowly varying
function (see page 11) b : (0, ν(S)) → (0,∞), the Lorentz-Karamata space Lp,q,b(S, ν)
is defined as

Lp,q,b(S, ν) = {f ∈ M(S, ν) : ∥f∥Lp,q,b(S,ν) < ∞},
where

∥f∥Lp,q,b(S,ν) = ∥t 1
p
− 1

q b(t)f ∗(t)∥Lq(0,ν(S)).

The interested reader is referred to [83, 89] (cf. [47, 88]) for comprehensive information
on this class of function spaces. Lorentz-Karamata spaces are not (equivalent to)
rearrangement-invariant function spaces for every p, q and b (to this end, see [89,
Theorem 3.33]). In particular, L1,1,b(S, ν) is (equivalent to) a rearrangement-invariant
function space if and only if b is (equivalent to a) nonincreasing (function), whereas
L∞,∞,b(S, ν) is equivalent to a rearrangement-invariant function space if and only if
bχ(0,1) ∈ L∞(0, ν(S)).

The class of Lorentz-Karamata spaces contains not only Lebesgue and Lorentz
spaces (b ≡ 1) but also some Orlicz spaces. In particular, when ν(S) = 1 and
b(t) = (1 − log t)α, t ∈ (0, 1), then L1,1,b(S, ν) is equivalent to the Orlicz space
L1(logL)α(S, ν) provided that α ≥ 0, and L∞,∞,b(S, ν) is equivalent to the Orlicz

space expL− 1
α (S, ν) provided that α < 0 (see [88, Section 8]).

In (3.13), b1 and b2 is a pair of continuous slowly varying functions on (0, 1)
satisfying:

(i) b1 is nonincreasing and b2 is nondecreasing;
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(ii) b1(t) ≈ b1 (tb1(t)b2(t)
−1) near 0+;

(iii) sup0<t<1 b2(t)
∫ 1

t
1

sb1(s)
ds < ∞.

We will write (b1, b2) ∈ B. For example, let α, β ∈ R and consider

b1(t) = (1− log t)α and b2(t) = (1− log t)−β, t ∈ (0, 1). (3.14)

Then (b1, b2) ∈ B if and only if α, β ≥ 0 and either α + β ≥ 1 and β > 0 or α > 1
and β = 0. In particular, when α = β = 1

2
, we have L1,1,b1(S, ν) = L

√
logL(S, ν)

and L∞,∞,b2(S, ν) = eL
2
(S, ν), and so (3.13) reads as (3.11).

Given a pair (b1, b2) of slowly varying functions on (0, 1), we define the function
σ = σ(b1, b2) : [0, 1] → [0, 1] as the increasing bijection satisfying

t =
1

C

∫ σ(t)

0

b1(s)

b2(s)
ds for every t ∈ [0, 1], (3.15)

where

C =

∫ 1

0

b1(s)

b2(s)
ds.

We begin with a characterization of the K-inequality (3.13) in terms of the
validity of a certain inequality involving integrals.

Theorem 3.8 ([5, Theorem 3.3]). Let (R, µ) and (S, ν) be probabilistic non-atomic
measure spaces. Let (b1, b2) be a pair of continuous slowly varying functions on
(0, 1). Assume that b2 is nondecreasing. Let f ∈ L1(R, µ) and g ∈ L1,1,b1(S, ν). The
inequality

K(g, t;L1,1,b1 , L∞,∞,b2) ≲ K(f, t;L1, L∞)

is valid for every t ∈ (0,∞) with a multiplicative constant independent of f and g if
and only if the inequality∫ t

0

g∗(s)b1(s) ds ≲
∫ t

0

f ∗(σ−1(s)
)b1(s)
b2(s)

ds

is valid for every t ∈ (0, 1) with a multiplicative constant independent of f and g.

In view of the preceding theorem, an operator T defined on L1(R, µ) with values
in M0(S, ν) satisfies the K-inequality (3.13) if and only if∫ t

0

(Tf)∗(s)b1(s) ds ≲
∫ t

0

f ∗(σ−1(s)
)b1(s)
b2(s)

ds

for every t ∈ (0, 1) and f ∈ L1(R, µ). Motivated by (3.11) and the endpoint behavior
of the Gaussian Sobolev inequalities, we call such operators (b1, b2)-gaussible.

The following theorem characterizes those pairs of rearrangement-invariant func-
tion spaces between which every (b1, b2)-gaussible operator is bounded by means of
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boundedness of certain governing operators. Given a pair (b1, b2) of slowly varying
functions, the operators Ub1,b2 , Tb1,b2 , and Sb1 are defined as, for every g ∈ M(0, 1),

Ub1,b2g(t) =
g∗(σ−1(t))

b2(t)
, t ∈ (0, 1),

Tb1,b2g(t) = sup
t≤s<1

g∗(σ(s))

b1(σ(s))
, t ∈ (0, 1),

and

Sb1g(t) =

∫ 1

t

|g(s)|
sb1(s)

ds, t ∈ (0, 1).

Here σ is the increasing bijection defined by (3.15).

Theorem 3.9 ([5, Theorem 3.11]). Let (R, µ) and (S, ν) be probabilistic non-atomic
measure spaces. Let X(R, µ) and Y (S, ν) be rearrangement-invariant function spaces.
Let (b1, b2) ∈ B. The following statements are equivalent.

(i) Every (b1, b2)-gaussible operator T is bounded from X(R, µ) to Y (S, ν).

(ii) The operators Ub1,b2 and Sb1 are bounded from X(0, 1) to Y (0, 1).

(iii) The operator Tb1,b2 is bounded from Y ′(0, 1) to X ′(0, 1).

Note that Theorem 3.9(ii) involves two governing operators. The following
theorem shows that, under some extra assumptions on the functions b1 and b2, only
one of them is needed.

Theorem 3.10 ([5, Theorem 3.12]). Let (R, µ) and (S, ν) be probabilistic non-
atomic measure spaces. Let Y (0, 1) be a rearrangement-invariant function space. Let
(b1, b2) ∈ B. Furthermore, assume that the function b1/b2 is decreasing and that

lim
s→0+

b2(s)

∫ 1

s

1

τb1(τ)
dτ ∈ (0,∞).

Then we have

∥Sb1(f
∗)∥Y (0,1) ≲ ∥Ub1,b2f∥Y (0,1) for every f ∈ M(0, 1).

Moreover, if Ub1,b2 is bounded from a rearrangement-invariant function space X(0, 1)
to Y (0, 1), then so is Sb1. In particular, the equivalent statements from Theorem 3.9
are also equivalent to:

(ii’) The operator Ub1,b2 is bounded from X(0, 1) to Y (0, 1).

When the functions b1 and b2 are defined by (3.14), the extra assumptions of the
preceding theorem are satisfied if and only if either α ∈ [0, 1) and β = 1−α or α > 1
and β = 0. In particular, they are satisfied when α = β = 1

2
, which corresponds to

(3.11).
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Chapter 4

Weighted inequalities

This chapter describes the main results from the papers [52, 66]. These papers are
devoted to characterizing optimal constants, up to equivalences, in certain weighted
inequalities involving functions of one variable. The important feature of the results
from [52, 66] is that they do not involve various important restrictions from the
previous work.

Throughout this chapter, let a, b ∈ [−∞,∞], a < b. Recall that all the expressions
1
∞ , ∞

∞ , 0
0
, and 0 · ∞ are to be interpreted as 0. Furthermore, the expression 1

0
is to

be interpreted as ∞.

4.1 The embedding Γp
u(v) ↪→ Λq(w) with no restric-

tion on the weights

In [66], we characterized the optimal (i.e., the least) constant, up to equivalences,
C ∈ [0,∞] with which the inequality(∫ b

0

f ∗(t)qw(t) dt

) 1
q

≤ C

(∫ b

0

(
1

U(t)

∫ t

0

f ∗(s)u(s) ds

)p

v(t) dt

) 1
p

(4.1)

is satisfied for every f ∈ M+(0, b). Here p, q ∈ (0,∞) and u, v, w ∈ M+(0, b) are
fixed weights that are locally integrable on [0, b), with u being positive a.e. Recall
that u ∈ M+(0, b) is locally integrable on [0, b) if

U(t) =

∫ t

0

u(s) ds < ∞ for every t ∈ (0, b).

This definition is extended to the functions v and w in the obvious way. We also
considered the weak variant of the inequality (see (4.5)) corresponding to p = ∞.

From the point of view of function spaces, the optimal constant C in (4.1) is
equal to the embedding constant of the embedding Γp

u(v) ↪→ Λq(w), that is,

C = sup
∥f∥

Γ
p
u(v)

≤1

∥f∥Λq(w). (4.2)

Given a σ-finite non-atomic measure space (R, µ) with µ(R) = b, the Lambda space
Λq(w) is defined as

Λq(w) = {f ∈ M(R, µ) : ∥f∥Λq(w) < ∞},

23



where

∥f∥Λq(w) =

(∫ b

0

f ∗(t)qw(t) dt

) 1
q

.

The (generalized) Gamma space Γp
u(v) is defined as

Γp
u(v) = {f ∈ M(R, µ) : ∥f∥Γp

u(v) < ∞},

where

∥f∥Γp
u(v) =

(∫ b

0

(
1

U(t)

∫ t

0

f ∗(s)u(s) ds

)p

v(t) dt

) 1
p

.

The Lambda spaces are sometimes called classical Lorentz spaces. They were intro-
duced by G.G. Lorentz in [75] already in 1951, and they have been widely studied
since then. In particular, they encompass a large number of customary function
spaces, such as Lebesgue spaces, Lorentz spaces, some Orlicz spaces, or Lorentz–
Karamata spaces. The wide-ranging interest in Gamma spaces was sparked by the
paper [98], where E. Sawyer established his so-called principle of duality for Lambda
spaces in connection with boundedness of some classical operators between Lambda
spaces. Nowadays, Gamma spaces are known to play an important role not only in
boundedness of operators but also in the interpolation theory, Sobolev embeddings,
regularity of so-called very weak solutions to partial differential equations, or in the
elasticity theory. The interested reader is referred to the introductory section of [51]
and references therein for more information.

In fact, explicit manageable equivalent expressions for the optimal constant in
(4.1) for all values of the parameters p, q ∈ (0,∞) were already found in [45], where
they used the method of discretization (cf. [53, 56]) innovatively followed by so-called
antidiscretization. Even though the entire range of the parameters is covered there
and the equivalent expressions are explicit and easily manageable, there is still an
important restriction in their result. The restriction lies in the fact that b = ∞
and, much more importantly, that the weights are assumed to be not only locally
integrable on [0,∞) but also “non-degenerate” in the sense that∫ ∞

0

v(s)

U(s)p + U(t)p
ds < ∞ for every t ∈ (0,∞) (4.3)

and ∫ 1

0

v(s)

U(s)p
ds =

∫ ∞

1

v(s) ds = ∞. (4.4)

With use of different techniques, explicit manageable equivalent expressions for the
optimal constant in (4.1) were also obtained in [99, 100] and later in [44]. While
they do not involve any nondegeneracy restrictions on the weights, the range of the
parameters p and q is limited to p ∈ (1,∞) and q = 1 instead.

The novelty of our results lies in the fact that, while the entire range of the
parameters is covered, there are no extra assumptions on the weights u, v, and w,
except for the natural one that they are locally integrable on [0, b). Although (4.3)
can be assumed without loss of generality (see [66, Proof of Theorem 4.1]), (4.4)
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effectively rules out, apart from the weights on (0,∞) that are really “degenerate”
in some sense, the possibility of using their result in the case b < ∞. Since the case
b < ∞ naturally appears when the function spaces Γp

u(v) and Λq(w) are considered
over measure spaces of finite measure, this restriction is important. It is worth noting
that the obvious idea of replacing (4.4) with∫ c

0

v(s)

U(s)p
ds =

∫ b

c

v(s) ds = ∞ for some c ∈ (0, b)

does not work, because the second integral is typically finite when b < ∞. In fact,
we came across this restriction, and the need for eliminating it, in the joint paper
[20] when we were characterizing some particular examples of compactness results
for traces of Sobolev functions onto low-dimensional sets. The interested reader is
referred to [66, Remark 4.6] for more information.

In [66], we also used the discretization and antidiscretization technique, but no
nondegeneracy restrictions on the weights are imposed, and, at the same time, the
entire range of the parameters p, q ∈ (0,∞) is covered.

Theorem 4.1 ([66, Theorem 4.1]). Let p, q ∈ (0,∞). Let u, v, w ∈ M+(0, b) be
locally integrable [0, b), with u being positive a.e. in (0, b). Let C be the optimal
constant in (4.1), that is, C is defined by (4.2).

(i) If 1 ≤ q and p ≤ q < ∞, then

C ≈ sup
0<t<b

W (t)
1
q(

V (t) + U(t)p
∫ b

t
v(s)U(s)−p ds

) 1
p

.

(ii) If 1 ≤ q < p < ∞, then

C ≈

∫ b

0

V (t)
∫ b

t
v(s)U(s)−p dsU(t)

pq
p−q

+p−1u(t) supτ∈[t,b) U(τ)−
pq
p−qW (τ)

p
p−q(

V (t) + U(t)p
∫ b

t
v(s)U(s)−p ds

) q
p−q

+2
dt


p−q
pq

+

(
lim
t→0+

Up(t)

V (t) + U(t)p
∫ b

t
v(s)U(s)−p ds

) 1
p
(

sup
t∈(0,b)

W (t)

U(t)q

) 1
q

+

(
lim
t→b−

1

V (t) + U(t)p
∫ b

t
v(s)U(s)−p ds

) 1
p

W (b)
1
q .

(iii) If p ≤ q < 1, then

C ≈ sup
0<t<b

W (t)
1
q + U(t)

(∫ b

t
W (s)

q
1−qw(s)U(s)−

q
1−q ds

) 1−q
q

(
V (t) + U(t)p

∫ b

t
v(s)U(s)−p ds

) 1
p

.
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(iv) If q < 1 and q < p < ∞, then

C ≈
(

lim
t→0+

U(t)p

V (t) + U(t)p
∫ b

t
v(s)U(s)−p ds

) 1
p (∫ b

0

W (t)
q

1−qw(t)U(t)−
q

1−q dt

) 1−q
q

+

(
lim
t→b−

1

V (t) + U(t)p
∫ b

t
v(s)U(s)−p ds

) 1
p (∫ b

0

W (t)
q

1−qw(t) dt

) 1−q
q

+

∫ b

0

(
W (t)

1
1−q + U(t)

q
1−q
∫ b

t
W (s)

q
1−qw(s)U(s)−

q
1−q ds

) p(1−q)
p−q(

V (t) + U(t)p
∫ b

t
v(s)U(s)−p ds

) q
p−q

+2

× V (t)U(t)p−1u(t)

∫ b

t

v(s)U(s)−p ds dt


p−q
pq

.

The equivalence constants depend only on the parameters p and q. In particular, they
are independent of the weights u, v, and w.

In [66], we also characterized the optimal constant C ∈ [0,∞] in the weak variant
of (4.1) corresponding to p = ∞, that is,(∫ b

0

f ∗(t)qw(t) dt

) 1
q

≤ C ess sup
t∈(0,b)

(
1

U(t)

∫ t

0

f ∗(s)u(s) ds

)
v(t) (4.5)

for every f ∈ M+(0, b), without any nondegeneracy restrictions on the weights. As
with (4.1), explicit manageable expressions for the optimal constant in (4.5) were
already established in [46] for every q ∈ (0,∞) but with nondegeneracy restrictions
again.

From the point of view of function spaces, the optimal constant in (4.5) is equal
to the embedding constant of the embedding Γ∞

u (v) ↪→ Λq(w), that is,

C = sup
∥f∥Γ∞

u (v)≤1

∥f∥Λq(w). (4.6)

The weak Gamma space Γ∞
u (v) (cf. [18]) is defined as

Γ∞
u (v) = {f ∈ M(R, µ) : ∥f∥Γ∞

u (v) < ∞},

where

∥f∥Γ∞
u (v) = ess sup

t∈(0,b)

(
1

U(t)

∫ t

0

f ∗(s)u(s) ds

)
v(t).

The characterization in the following theorem is slightly less explicit than that in
Theorem 4.1 because it is expressed in terms of a so-called representation measure
(see (4.8)) of the fundamental function of Γ∞

u (v), which is defined as

φ(t) = ess sup
τ∈(0,t)

U(τ) ess sup
s∈(τ,b)

v(s)

U(s)
, t ∈ (0, b). (4.7)
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The reason behind this is the fact that the fundamental function of Γ∞
u (v) is a

supremum, whereas that of Γp
u(v), p ∈ (0,∞), is an integral—namely,

φ(t) =

∫ b

0

min{U(t)p, U(s)p} v(s)

U(s)p
ds, t ∈ (0, b).

However, a representation (4.8) always exists, and it is usually easy to obtain such a
representation in an explicit form (see [41, Chapter 2] and [66, Remark 4.4] for more
information).

Theorem 4.2 ([66, Theorem 4.3]). Let q ∈ (0,∞). Let u, v, w ∈ M+(0, b) be locally
integrable on [0, b), with u being positive a.e. in (0, b). Let C be the optimal constant
in (4.5), that is, C is defined by (4.6). Let φ be the function defined by (4.7). Let
B1, B2 ∈ (0,∞), γ, δ ∈ [0,∞), and ν a nonnegative Borel measure on (0, b) such that

B1φ(t) ≤ γ + δU(t) +

∫
(0,b)

min{U(t), U(s)} dν(s) ≤ B2φ(t) (4.8)

for every t ∈ (0, b).

(i) If 1 ≤ q < ∞, then

C ≈
(
lim
t→0+

U(t)

φ(t)

)(
sup
t∈(0,b)

W (t)
1
q

U(t)

)
+ lim

t→b−

1

φ(t)
W (b)

1
q

+

(∫ b

0

U(t)q

(
sup

τ∈(t,b)

W (τ)

U(τ)q

)
φ(t)−(q+2)u(t)

×
(
γ +

∫
(0,t]

U(s) dν(s)

)(
δ +

∫
[t,b)

dν(s)

)
dt

) 1
q

.

(ii) If 0 < q < 1, then

C ≈
(
lim
t→0+

U(t)

φ(t)

)(∫ b

0

W (t)
q

1−qw(t)U(t)−
q

1−qdt

) 1−q
q

+ lim
t→b−

1

φ(t)
W (b)

1
q

+

(∫ b

0

ξ(t)φ(t)−(q+2)u(t)

(
γ +

∫
(0,t]

U(s) dν(s)

)(
δ +

∫
[t,b)

dν(s)

)
dt

) 1
q

,

where

ξ(t) =

(∫ b

0

W (s)
q

1−qw(s)U(s)−
q

1−q min{U(t)
q

1−q , U(s)
q

1−q } ds
)1−q

, t ∈ (0, b).

The equivalence constants depend only on the parameter q and on the constants B1

and B2. In particular, they are independent of the weights u, v, and w.
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4.2 Superposition of the weighted Hardy and Cop-

son operators

In [52], we characterized the optimal constant C ∈ [0,∞], up to equivalences, in the
inequality(∫ b

a

(∫ b

t

(∫ s

a

f(τ)pv(τ) dτ

) q
p

u(s) ds

) r
q

w(t) dt

) 1
r

≤ C

∫ b

a

f(t) dt (4.9)

for every f ∈ M+(a, b), where u, v, w ∈ M+(a, b) are a.e. positive, p ∈ (0, 1], and
q, r ∈ (0,∞). The fact that p ∈ (0, 1] is actually no restriction at all, because if p > 1,
then it is always possible to find a function f ∈ L1(a, b) such that fpv /∈ L1(a, s) for
every s > a; in other words, the left-hand side is infinite for such a function, whereas
the right-hand side is finite.

The inequality (4.9) can be viewed as a weighted inequality for a superposition
of two different types of integral operators, namely of Hardy and Copson types. The
importance of studying weighted inequalities for compositions of operators of Hardy
and Copson types, whether of the same or different types, comes from various sources.
Several of them is pointed out in the introductory section of [52] and references
therein.

Partial cases of the inequality (usually in its transformed form (4.10) below)
were already studied before but under various restrictions, such as on the weights
(cf. [49, 50]) or on the parameters (cf. [9, 85, 86]). Similarly to the previous section, the
novelty of our result is that the characterization is complete without any unnecessary
restrictions, whether on the parameters, on the weights, or on the underlying
interval (a, b). We removed those previous restrictions by carefully combining discrete
Hardy inequalities with discretization of the inequality done in such a way that no
nondegeneracy restrictions on the weights were brought in. At the same time, the
discretization method that we used enabled us to completely avoid duality techniques,
and so the entire range of the parameters is covered. Moreover, the equivalent
expressions for C are explicit and manageable thanks to the antidiscretization done
after the discretization part.

Before we state our main result, it is worth noting that the inequality (4.9) can
be turned into other important inequalities. For example, by performing the change
of variables τ 7→ −τ in the innermost integral and replacing the interval (a, b) with
(−b,−a), it is possible to switch the order of the two operators in (4.9)—it then
becomes(∫ b

a

(∫ t

a

(∫ b

s

f(τ)pv(τ) dτ

) q
p

u(s) ds

) r
q

w(t) dt

) 1
r

≤ C

∫ b

a

f(t) dt.

A second example is(∫ b

a

(∫ b

t

(∫ s

a

f(τ) dτ

)q

u(s) ds

) r
q

w(t) dt

) 1
r

≤ C

(∫ b

a

f(t)pv(t) dt

) 1
p

(4.10)

with p ∈ [1,∞), which can be obtained from (4.9) by replacing (in this order) f with

f
1
pv−

1
p , v with v−p, q with qp, r with rp, and p with 1/p. Therefore, the following
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theorem can be easily reformulated to provide equivalent expressions also for the
optimal constants in these inequalities.

Theorem 4.3 ([52, Theorem A]). Let p ∈ (0, 1], q, r ∈ (0,∞), and u, v, w ∈ M+(a, b)
be a.e. positive. For t ∈ (a, b), define the function Va,p as

Va,p(t) =

{( ∫ t

a
v(s)

1
1−p ds

) 1−p
p if 0 < p < 1,

ess sups∈(a,t) v(s) if p = 1.

The optimal constant C in the inequality (4.9), that is,

C = sup
∥f∥L1(a,b)≤1, f≥0

(∫ b

a

(∫ b

t

(∫ s

a

f(τ)pv(τ) dτ

) q
p

u(s) ds

) r
q

w(t) dt

) 1
r

,

satisfies

C ≈


C1 + C2 if r ≥ 1 and q ≥ 1,

C2 + C3 if r ≥ 1 and q < 1,

C4 + C5 if r < 1 and q ≥ 1,

C5 + C6 if r < 1 and q < 1,

where

C1 = sup
t∈(a,b)

(∫ t

a

w(s) ds

) 1
r

ess sup
s∈(t,b)

(∫ b

s

u(τ) dτ

) 1
q

Va,p(s)

C2 = sup
t∈(a,b)

(∫ b

t

w(s)

(∫ b

s

u(τ) dτ

) r
q

ds

) 1
r

Va,p(t)

C3 = sup
t∈(a,b)

(∫ t

a

w(s) ds

) 1
r
(∫ b

t

(∫ b

s

u(τ) dτ

) q
1−q

u(s)Va,p(s)
q

1−q ds

) 1−q
q

C4 =

(∫ b

a

(∫ t

a

w(s) ds

) r
1−r

w(t) ess sup
s∈(t,b)

(∫ b

s

u(τ) dτ

) r
q(1−r)

Va,p(s)
r

1−r dt

) 1−r
r

C5 =

(∫ b

a

(∫ b

t

w(s)

(∫ b

s

u(τ) dτ

) r
q

ds

) r
1−r

w(t)

(∫ b

t

u(τ) dτ

) r
q

Va,p(t)
r

1−r dt

) 1−r
r

,

and

C6 =

(∫ b

a

(∫ t

a

w(s) ds

) r
1−r

w(t)

(∫ b

t

(∫ b

s

u(τ) dτ

) q
1−q

u(s)Va,p(s)
q

1−q ds

) r(1−q)
q(1−r)

dt

) 1−r
r

.
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Chapter 5

Quantitative aspects of
noncompact Sobolev embeddings

This chapter describes the main results from [38, 68].
In the papers [19, 20], we investigated the question of compactness of Sobolev

(trace) embeddings on (regular enough) bounded domains in Rd, d ≥ 2, in the general
framework of rearrangement-invariant function spaces in the situation where the
target space is endowed with an (upper) Ahlfors regular measure. The results from
these papers considerably extend those from [59], where the measure is the Lebesgue
measure, and are complementary to those from [101], where the measure is related
to the isoperimetric function of the (possibly irregular) underlying domain. The
results in all these papers are qualitative—they address the question of whether the
considered Sobolev embedding is compact or not.

Opposite to the aforementioned papers, the papers [38, 68] focus on quantita-
tive aspects of compactness. Whereas there are a large number of quantitative
results for compact Sobolev embeddings (e.g., [32, 36, 63, 93, 105]), much less seems
to be known about noncompact Sobolev embeddings. In [38, 68], we considered
certain noncompact Sobolev embeddings and addressed the question of how much
noncompact they are.

Loosely speaking, there are three usual reasons why a Sobolev embedding is
noncompact. Namely,

(i) the underlying domain is too irregular (e.g., [76, 77]);

(ii) the target space is too small (in other words, the norm of the target space
is too strong), that is, the target space is optimal or “almost optimal” (e.g.,
[59, 70]);

(iii) the underlying domain is “too unbounded” (e.g., [1]).

The results described in this chapter fall into the categories (ii) and (iii). The
interested reader is referred to [67] for some quantitative results when the lack of
compactness is caused by the (ir)regularity of the underlying domain. The interested
reader is also referred to [70], where we qualitatively studied the lack of compactness
caused by (ii) in the general framework of rearrangement-invariant spaces.
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One of the standard ways of measuring (non)compactness of operators between
Banach spaces is the (ball) measure of noncompactness. The measure of noncom-
pactness β(T ) of a bounded linear operator T from a Banach space X to a Banach
space Y (in short, T ∈ B(X, Y )) is defined as

β(T ) = lim
n→∞

en(T ),

where en(T ) is the nth entropy number of the operator T ∈ B(X, Y ) defined as

en(T ) = inf{ε > 0 : T (BX) can be covered by 2n−1 balls in Y with radius ε}.

Here BX denotes the (closed) unit ball of X. Since the sequence {en(T )}∞n=1 is
nonincreasing, the limit always exists. Furthermore, it can be easily observed that
0 ≤ β(T ) ≤ ∥T∥ (the operator norm of T ∈ B(X, Y )), and that T is compact if and
only if β(T ) = 0.

There is also an important axiomatic way of measuring the quality of operators
between Banach spaces by means of so-called s-numbers, introduced by A. Pietsch
in [91]. A (strict) s-number is any rule s that assigns to each bounded linear operator
T ∈ B(X, Y ) a sequence {sn(T )}∞n=1 of nonnegative numbers having, for every n ∈ N,
the following properties:

(S1) ∥T∥ = s1(T ) ≥ s2(T ) ≥ · · · ≥ 0;

(S2) sn(S + T ) ≤ sn(S) + ∥T∥ for every S ∈ B(X, Y );

(S3) sn(BTA) ≤ ∥B∥sn(T )∥A∥ for every A ∈ B(W,X) and B ∈ B(Y, Z), where
W,Z are Banach spaces;

(S4) sn(I : E → E) = 1 for every Banach space E with dimE ≥ n;

(S5) sn(T ) = 0 if rankT < n.

The s-numbers as defined here are sometimes referred to as strict s-numbers. “Non-
strict” s-numbers are then define as the strict ones but in the property (S4) E is
replaced by Rn (with the Euclidean norm). Examples of (strict) s-numbers are the
approximation numbers an, the isomorphism numbers in, the Gelfand numbers cn,
the Bernstein numbers bn, the Kolmogorov numbers dn, or the Mityagin numbers mn.
We will meet the Bernstein numbers, whose definition is given below. The interested
reader is referred to [33, 34] for the definitions of the other (strict) s-numbers as well
as of some “non-strict” ones.

Even though entropy numbers possess similar properties to those of (strict)
s-number, they are not s-numbers (e.g., property (S4) is violated ([33, Chapter 2,
Proposition 1.3])). The interested reader is referred to [16, 33, 36] for more information
about entropy numbers and s-number and how they are connected to spectral
properties of differential operators, and to [92] for more information about the history
of these quantities.

The Bernstein numbers bn of an operator T ∈ B(X, Y ) are defined as

bn(T ) = sup
Xn⊆X

inf
x∈Xn

∥x∥X=1

∥Tx∥Y ,
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where the supremum extends over all n-dimensional subspaces of X. From the point
of view of the approximation theory, Bernstein numbers are useful for proving lower
bounds (e.g., [29, 31, 64, 93]). From the point of view of the operator theory, the
Bernstein numbers are related to the concept of strictly singular and finitely strictly
singular operators, which are classes of operators that need not be compact but
whose behavior is still in some sense better than that of merely bounded operators.

An operator T ∈ B(X, Y ) is said to be strictly singular if it is not bounded from
below on any (closed) infinite dimensional subspace of X. In other words, for every
infinite dimensional (closed) subspace Z of X,

inf {∥Tx∥Y : ∥x∥X = 1, x ∈ Z} = 0.

If this unboundedness from below is in a sense uniform over finite dimensional
subspaces, the operator is called finitely strictly singular. More precisely, an operator
T ∈ B(X, Y ) is said to be finitely strictly singular if it has the property that given any
ε > 0 there exists N(ε) ∈ N such that, if Z is a subspace of X with dimZ ≥ N(ε),
then there exists x ∈ Z, ∥x∥X = 1, such that ∥Tx∥Y ≤ ε. This can be equivalently
reformulated in terms of the Bernstein numbers of T . The operator T is finitely
strictly singular if and only if

lim
n→∞

bn(T ) = 0.

The relation between these classes of operators is:

T is compact =⇒ T is finitely strictly singular =⇒ T is strictly singular,

with each converse implication being false in general. The interested reader is referred
to [4, 71, 94] for more information about (finitely) strictly singular operators.

5.1 Quantitative results

In the paper [68], we quantitatively studied two noncompact Sobolev embeddings,
namely

I : V m,p
0 (Ω) → Lp∗(Ω) (5.1)

and
I : V m,p

0 (Ω) → Lp∗,p(Ω). (5.2)

Here d,m ∈ N, 1 ≤ m < d, p ∈ [1, d/m), p∗ = dp/(n −mp), Ω ⊆ Rd is a bounded
domain, and I is the identity operator. The Sobolev space V m,p

0 (Ω) is a Banach
space of all mtimes weakly differentiable functions in Ω whose continuation by 0
outside Ω is mtimes weakly differentiable function and whose mth order weak partial
derivatives belong to the Lebesgue space Lp(Ω). The space V m,p

0 (Ω) is endowed with
the norm ∥u∥V m,p

0 (Ω) = ∥|∇mu|ℓp∥Lp(Ω), where ∇mu is the vector of all mth order
weak derivatives of u.

Both target spaces in (5.1) and (5.2) are in a sense optimal. It is well known that
the Lebesgue space Lp∗(Ω) is the optimal target space in (5.1) among all Lebesgue
spaces (i.e., the exponent p∗ cannot be replaced by a bigger one). However, if more
general target function spaces are considered, (5.1) can be improved to (5.2). The
latter is indeed an improvement because the Lorentz space Lp∗,p(Ω) is strictly smaller
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than the Lebesgue space Lp∗(Ω), inasmuch as 1 ≤ p < p∗. In fact, the Lorentz space
Lp∗,p(Ω) is actually the optimal target space in (5.2) among all rearrangement-in-
variant function spaces ([58])—that is, if (5.2) is valid with Lp∗,p(Ω) replaced by a
rearrangement-invariant funtion space Y (Ω), then Lp∗,p(Ω) ↪→ Y (Ω).

It was proved in [10, 57] that the measure of noncompactness of both embeddings
(5.1) and (5.2) is the worst possible, that is, it coincides with their norms. From
this point of view, the embeddings are maximally noncompact. Moreover, even when
the Lebesgue space Lp∗(Ω) is enlarged to the weak Lebesgue space Lp∗,∞(Ω), the
Sobolev embedding I : V m,p

0 (Ω) → Lp∗,∞(Ω) is still maximally noncompact in this
sense ([69]). Nevertheless, we proved in [68] that there is a quantitative difference
between the noncompactness of (5.1) and that of (5.2). This difference is captured
by different behavior of the corresponding Bernstein numbers.

On the one hand, measured by means of the Bernstein numbers, the noncompact-
ness of the “really optimal” Sobolev embedding (5.2) is again the worst possible.

Theorem 5.1 ([68, Theorem 3.4]). Let Ω ⊆ Rd be a nonempty bounded open set,
m ∈ N, 1 ≤ m < d, and p ∈ [1, d/m). Let I be the identity operator I : V m,p

0 (Ω) →
Lp∗,p(Ω), where p∗ = dp/(d−mp). Then

bn(I) = ∥I∥ for every n ∈ N,

where ∥I∥ denotes the operator norm. Furthermore, I is not strictly singular.

On the other hand, when (5.1) is considered instead of (5.2), the corresponding
Bernstein numbers decay to 0. Therefore, there is a quantitative difference between
the noncompactness of (5.1) and (5.2). In the particular case m = p = 1, the upper
estimate in the following theorem was proved in [11].

Theorem 5.2 ([68, Theorem 3.3]). Let Ω ⊆ Rd be a nonempty bounded open set,
m ∈ N, 1 ≤ m < d, and p ∈ [1, d/m). Let I be the identity operator I : V m,p

0 (Ω) →
Lp∗(Ω), where p∗ = dp/(d−mp). There exists n0 ∈ N, depending only on d and m,
such that

C1n
−m

d ≤ bn(I) ≤ C2n
−m

d for every n ≥ n0.

Here C1 and C2 are constants depending only on d, m, and p. In particular, I is
finitely strictly singular.

Finally, we turn our attention to [38].
In [38], we quantitatively studied a Sobolev embedding on an infinite strip in Rd,

d ≥ 2. The Sobolev embedding in question is

I : W 1
0L

p(Ω) → Lp(Ω), (5.3)

where p ∈ (1,∞) and

Ω = Rk ×
d−k∏
j=1

(qj, rj), (5.4)

−∞ < qj < rj < ∞, k ∈ {1, . . . , d− 1}, is an infinite strip in Rd. The Sobolev space
W 1

0L
p(Ω) is defined as the closure of smooth functions compactly supported in Ω

with respect to the norm ∥u∥W 1
0L

p(Ω) = (∥u∥pLp(Ω) + ∥|∇u|ℓp∥pLp(Ω))
1/p.
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What attracted our attention to this embedding was that, while (5.3) is an
example of a simple Sobolev embedding where the lack of compactness is caused by
the unboundedness of the domain, it was open what the exact value of its measure
of noncompactness was or what the behavior of its s-numbers was. In [38], we were
able to establish the exact values of these quantities.

Theorem 5.3 ([38, Theorem 3.9]). Let p ∈ (1,∞) and Ω be as in (5.4). We have

sn(I) = β(I) =

(
1 +

(
2π

p sin(π
p
)

)p

(p− 1)
d−k∑
j=1

1

(rj − qj)p

)− 1
p

for every n ∈ N and every strict s-number s, where I stands for the identity operator
I : W 1,p

0 (Ω) → Lp(Ω).

Although it is not mentioned in the paper [38], the proof of [38, Theorem 3.9]
also shows that the Sobolev embedding (5.3) is not strictly singular. The reason
is that, for any fix ε > 0, using the construction at the beginning of the proof, we
find a system of functions {uj}∞j=1 having mutually disjoint supports and satisfying
∥uj∥Lp(Ω) = ∥I∥/(1 + ε) and ∥u∥W 1,p

0 (Ω) = 1. Then we just need to observe that

the identity operator I : W 1,p
0 (Ω) → Lp(Ω) is bounded from below on the infinite

dimensional subspace of W 1,p
0 (Ω) spanned by the system.
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inequalities for a superposition of the Copson operator and the Hardy
operator. J. Fourier Anal. Appl., 28(2):Paper No. 24, 24 pp., 2022.
doi: 10.1007/s00041-022-09918-6.

[Paper E] J. Lang and Z. Mihula. Different degrees of non-compactness for optimal
Sobolev embeddings. J. Funct. Anal., 284(10):Paper No. 109880, 22 pp.,
2023. doi: 10.1016/j.jfa.2023.109880.

[Paper F] D.E. Edmunds, J. Lang, and Z. Mihula. Measure of noncompactness of
Sobolev embeddings on strip-like domains. J. Approx. Theory, 269:Paper
No. 105608, 13 pp., 2021. doi: 10.1016/j.jat.2021.105608.

43



Received: 9 January 2022 Revised: 8 July 2022 Accepted: 14 September 2022

DOI: 10.1002/mana.202200015

ORIG INAL ARTICLE

Optimal behavior of weighted Hardy operators on
rearrangement-invariant spaces

ZdeněkMihula1,2

1Czech Technical University in Prague,
Faculty of Electrical Engineering,
Department of Mathematics, Czech
Republic
2Charles University, Faculty of
Mathematics and Physics, Department of
Mathematical Analysis, Czech Republic

Correspondence
Zdeněk Mihula, Department of
Mathematics, Faculty of Electrical
Engineering, Czech Technical University
in Prague, Technická 2, 166 27 Praha 6,
Czech Republic.
Email: mihulzde@fel.cvut.cz

Funding information
Ministerstvo Školství, Mládeže a
Tělovýchovy, Grant/Award Number:
OPVVV CAAS
CZ.02.1.01/0.0/0.0/16_019/0000778;
Univerzita Karlova v Praze, Grant/Award
Number: SVV-2020-260583

Abstract
The behavior of certain weighted Hardy-type operators on rearrangement-
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1 INTRODUCTION

In this paper, we thoroughly study the behavior of Hardy-type operators 𝑅𝑢,𝑣,𝜈 and 𝐻𝑢,𝑣,𝜈 on rearrangement-invariant
function spaces, focusing on the optimality of our results. The Hardy-type operators are defined for measurable functions
𝑔 on (0, 𝐿), 𝐿 ∈ (0,∞], as

𝑅𝑢,𝑣,𝜈𝑔(𝑡) = 𝑣(𝑡)∫
𝜈(𝑡)

0

|𝑔(𝑠)|𝑢(𝑠) 𝑑𝑠, 𝑡 ∈ (0, 𝐿), (1.1)

and

𝐻𝑢,𝑣,𝜈𝑔(𝑡) = 𝑢(𝑡)∫
𝐿

𝜈(𝑡)

|𝑔(𝑠)|𝑣(𝑠) 𝑑𝑠, 𝑡 ∈ (0, 𝐿). (1.2)

Here, 𝑢, 𝑣 are nonnegative nonincreasing functions on (0, 𝐿) and 𝜈 is an increasing bijection of the interval (0, 𝐿) onto
itself. Recall that rearrangement-invariant function spaces are, loosely speaking, Banach spaces of functions whose norms
are invariant with respect to measure-preserving rearrangements/transformations of functions. Rearrangement-invariant
function spaces constitute a broad class of function spaces. Some classical examples of rearrangement-invariant function
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spaces are Lebesgue spaces, Orlicz spaces, or Lorentz(–Zygmund) spaces to name a few. Precise definitions as well as some
preliminary results and notations used in this paper are presented in Section 2.
First, let 𝑇 be either of the operators and 𝑋(0, 𝐿) a rearrangement-invariant function space over the interval (0, 𝐿).

We characterize the optimal domain and the optimal target rearrangement-invariant function space 𝑌(0, 𝐿) for 𝑋(0, 𝐿)
and 𝑇. By that we mean the following. We describe the weakest rearrangement-invariant function norm ‖ ⋅ ‖𝑌(0,𝐿)
for which there is a positive constant 𝐶 such that ‖𝑇𝑓‖𝑋(0,𝐿) ≤ 𝐶‖𝑓‖𝑌(0,𝐿) for every 𝑓 ∈ 𝑌(0, 𝐿). We also describe the
strongest rearrangement-invariant function norm ‖ ⋅ ‖𝑌(0,𝐿) for which there is a positive constant𝐶 such that ‖𝑇𝑓‖𝑌(0,𝐿) ≤
𝐶‖𝑓‖𝑋(0,𝐿) for every 𝑓 ∈ 𝑋(0, 𝐿). In other words, we characterize the largest and the smallest rearrangement-invariant
function space 𝑌(0, 𝐿) such that 𝑇 is bounded from 𝑌(0, 𝐿) to 𝑋(0, 𝐿) and from 𝑋(0, 𝐿) to 𝑌(0, 𝐿), respectively. This is
the content of Section 3. As a simple corollary, we also obtain a description of the optimal rearrangement-invariant func-
tion spaces for a sum of the two operators, each with possibly different functions 𝑢, 𝑣, 𝜈. The description is less explicit
than it could be if we studied directly the sum, though. Next, in Section 4, we take a close look at how to simplify the
description of these optimal rearrangement-invariant function norms and whether it is possible at all. The motivation
behind this is simple: The simpler and more manageable description we have at our disposal, the more useful it is. It
turns out that this problem is more complex than it may appear at first glance. It leads us to studying a certain supre-
mum operator, and it is closely related to the notion of interpolation spaces. Next, in Section 5, we investigate the optimal
behavior of iteratedHardy-type operators—namely,𝑅𝑢1,𝑣1,𝜈1◦𝑅𝑢2,𝑣2,𝜈2 and𝐻𝑢1,𝑣1,𝜈1◦𝐻𝑢2,𝑣2,𝜈2—on rearrangement-invariant
function spaces. These iterated operators naturally arise when one studies the question of whether iteration of optimal
function spaces leads to an optimal function space. Last, in Section 6, we present some concrete examples of optimal
rearrangement-invariant function spaces when 𝑋(0, 𝐿) is a Lorentz–Zygmund space.
In considerably less general settings, the questions mentioned in the preceding paragraph were already studied, see

[20–23, 28, 30, 39, 40, 46, 58] and references therein. However, those results are limited to some particular choices of the
functions 𝑢, 𝑣, and 𝜈—namely, 𝑢 ≡ 1 and 𝑣, 𝜈 being power functions for the most part, but see [33, 37]. Moreover, they are
also scattered and often hidden somewhere between the lines with varying degrees of generality. The aim of this paper
is to thoroughly address the questions in a coherent unified way and in considerable generality. Not only do the results
obtained here encompass their already-known particular cases, but they also provide a general theory suitable for various
future applications. Some are outlined at the end of this introductory section.
General as the results in this paper are, we do usually impose some mild restrictions on the functions 𝑢, 𝑣, 𝜈 so that we

can obtain interesting, strong results. However, the imposed assumptions on the functions are actually not too restrictive
for the most part and often exclude only cases being in a way pathological. The assumptions also often reflect the very
forms of theHardy-type operators considered here. In particular, the operators do not involve kernels. Indisputably,Hardy-
type operators with kernels are of great importance, too. However, they go beyond the scope of this paper, although to
investigate thoroughly their behavior on rearrangement-invariant function spaces would be of interest (e.g., see [1, 22]).
Our motivation behind studying the Hardy-type operators 𝑅𝑢,𝑣,𝜈 and 𝐻𝑢,𝑣,𝜈 is the following. Questions involving con-

siderably more complicated operators can sometimes be reduced to questions concerning these Hardy-type operators for
suitable choices of 𝑢, 𝑣, and 𝜈. In turn, the better we control the Hardy-type operators, the better we control themore com-
plicated ones. Arguably the most straightforwardly, this can be illustrated by the following well-known example, which
traces back to the 1930s. Consider the question of establishing the boundedness of the Hardy–Littlewood maximal opera-
tor𝑀 from a rearrangement-invariant function space 𝑋(ℝ𝑛) to a rearrangement-invariant function space 𝑌(ℝ𝑛). It turns
out that𝑀 is bounded from 𝑋(ℝ𝑛) to 𝑌(ℝ𝑛) if and only if 𝑅𝑢,𝑣,𝜈 with 𝑢 ≡ 1, 𝑣(𝑡) = 𝑡−1, 𝜈(𝑡) = 𝑡, 𝐿 = ∞, is bounded from
𝑋(0,∞) to 𝑌(0,∞). This is a consequence of the famous equivalence

𝐶1
1

𝑡 ∫
𝑡

0

𝑓∗(𝑠) 𝑑𝑠 ≤ (𝑀𝑓)∗(𝑡) ≤ 𝐶2 1𝑡 ∫
𝑡

0

𝑓∗(𝑠) 𝑑𝑠 for every 𝑡 ∈ (0,∞).

Here ∗ denotes the nonincreasing rearrangement and𝐶1, 𝐶2 are positive constants depending only on 𝑛. The upper bound
on (𝑀𝑓)∗ was proved by F. Riesz ([54], 𝑛 = 1) and N. Wiener ([61], 𝑛 ∈ ℕ). The lower one was proved by C. Hertz ([38],
𝑛 = 1) and byC. Bennett andR. Sharpley ([4], 𝑛 ∈ ℕ). There are other important operators of harmonic analysis that sharp
inequalities for their nonincreasing rearrangements are known for. For example, theHilbert transform ([3, Theorem 16.12],
[57, Lemma 2.1]), or, more generally, certain singular integral operators with odd kernels [16, p. 55]. It is easy to show that
the boundedness of these operators on rearrangement-invariant function spaces is equivalent to the boundedness of a
sum of two Hardy-type operators—namely, 𝑅𝑢,𝑣,𝜈 + 𝐻𝑢,𝑣,𝜈. Here 𝑢, 𝑣, 𝜈 are the same as those for the Hardy–Littlewood
maximal function. Other classical operators whose nonincreasing rearrangements are controlled by 𝑅𝑢,𝑣,𝜈 and/or 𝐻𝑢,𝑣,𝜈

 15222616, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.202200015 by C
zech T

echnical U
niversity, W

iley O
nline L

ibrary on [11/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3494 MIHULA

for suitable choices of 𝑢, 𝑣, and 𝜈 are certain convolution operators [32, 49] or the fractional maximal operator and its
variants [24, 29]. The number of operators that sharp inequalities for their nonincreasing rearrangements are known for
is limited. Nevertheless, what is often at our disposal is at least an upper bound on the nonincreasing rearrangement of a
given operator. Obviously, the better we control the upper bound, the better we control the given operator. It is also worth
noting that inequalities for rearrangements of various maximal operators may actually involve a Hardy-type operator
inside a supremum (see [42] and references therein). However, the supremum usually does not cause any trouble (see [30,
Lemma 4.10]). For example, consider the fractional maximal operator𝑀𝛾 of order 𝛾 ∈ (0, 𝑛). It is bounded from 𝑋(ℝ𝑛) to
𝑌(ℝ𝑛) if and only if the supremum operator mapping a measurable function 𝑓 on (0,∞) to the function

(0,∞) ∋ 𝑡 ↦ sup
𝑠∈[𝑡,∞)

𝑅𝑢,𝑣,𝜈(𝑓
∗)(𝑠)

is bounded from 𝑋(0,∞) to 𝑌(0,∞). Here, 𝑢 ≡ 1, 𝑣(𝑡) = 𝑡𝛾∕𝑛−1, and 𝜈(𝑡) = 𝑡. This equivalence follows from the sharp
inequality for the nonincreasing rearrangement of𝑀𝛾 (see [24, Theorem 1.1] and [42, Example 1]). Importantly, it turns
out that the supremum operator is bounded from 𝑋(0,∞) to 𝑌(0,∞) if and only if the Hardy-type operator 𝑅𝑢,𝑣,𝜈 itself
is. This follows from [30, Lemma 4.10] combined with the Hardy–Littlewood inequality (see (2.5)). The interested reader
can find more information on boundedness of some classical operators of harmonic analysis on rearrangement-invariant
function spaces in [30].
Pointwise inequalities for rearrangements are not the only way to reduce complicated questions to simpler ones involv-

ing Hardy-type operators. Reductions are also sometimes achieved with the right use of interpolation or by making use
of some intrinsic properties of the problem in question. Such approaches have been notably successful in connection
with various embeddings of Sobolev-type spaces built upon rearrangement-invariant function spaces into rearrangement-
invariant function spaces. There, interpolation techniques, symmetrization principles, and isoperimetric inequalities have
been of great use. For a wide variety of such embeddings, either complete characterizations or at least sufficient and/or
necessary conditions have been obtained. See [2, 7, 17, 20–23, 39, 46] for complete characterizations and [18, 19, 23, 47] for
sufficient and/or necessary conditions. These so-called reduction principles effectively transform the question of whether
a certain Sobolev-type embedding is valid to that of whether a Hardy-type operator is bounded. For example, consider the
Sobolev-type embedding

𝑊𝑚𝑋(Ω) ↪ 𝑌(Ω, 𝜇), (1.3)

which was thoroughly studied in [23]. Here, 𝑊𝑚𝑋(Ω) is the 𝑚-th order Sobolev space built upon a rearrangement-
invariant function space 𝑋 over a bounded Lipschitz domainΩ inℝ𝑛,𝑚 < 𝑛,𝑚 ∈ ℕ, and 𝑌 is a rearrangement-invariant
function space overΩ endowed with a positive 𝑑-upper Ahlfors measure 𝜇. A 𝑑-upper Ahlfors measure 𝜇 is a finite Borel
measure 𝜇 on Ω satisfying

sup
𝑥∈ℝ𝑛,𝑟>0

𝜇(𝐵𝑟(𝑥) ∩ Ω)

𝑟𝑑
< ∞ (1.4)

with 𝑑 ∈ (0, 𝑛]. Here,𝐵𝑟(𝑥) is the open ball centered at 𝑥with radius 𝑟. It turns out that, when 𝑑 ∈ [𝑛 − 𝑚, 𝑛], the question
ofwhether (1.3) is valid leads us to theHardy-type operator𝐻𝑢1,𝑣1,𝜈 with 𝑢1 ≡ 1, 𝑣1(𝑡) = 𝑡−1+

𝑚

𝑛 , 𝜈(𝑡) = 𝑡
𝑛

𝑑 , and 𝐿 = 1.When
𝑑 ∈ (0, 𝑛 − 𝑚), the question is more complicated and leads us not only to the same Hardy-type operator 𝐻𝑢1,𝑣1,𝜈 but also

to 𝑅𝑢2,𝑣2,𝜈 with 𝑢2(𝑡) = 𝑡
−
𝑚

𝑛−𝑑 and 𝑣2(𝑡) = 𝑡
−1+

𝑚

𝑛−𝑑 .
We conclude this introductory section by briefly mentioning some new applications that general results obtained in

this paper could be useful for. For example, we get under control the optimal behavior of upper bounds for nonincreasing
rearrangements of various less standard (nonfractional and fractional) maximal operators (see [29, 42]). Furthermore, we
get under control the optimal behavior of upper bounds for some operators that play a role in the a.e. convergence of the
partial spherical Fourier integrals or in the solvability of the Dirichlet problem for the Laplacian on planar domains. See
[12–14] and references therein for more information on such operators. Another possible application is related to traces of
Sobolev functions. There are 𝑑-dimensional setsΩ𝑑 ⊆ ℝ𝑛, 𝑑 ∈ (0, 𝑛], that are “unrecognizable” by 𝑑-upper Ahlfors mea-
sures 𝜇, that is, it may happen that 𝜇(Ω𝑑) = 0 for every 𝑑-upper Ahlforsmeasure 𝜇. For instance, this is, with probability 1,
the case whenΩ𝑑 is a Brownian path inℝ𝑛, 𝑛 ≥ 2. With probability 1, its Hausdorff dimension is 2 but it is unrecognizable
by 2-upper Ahlfors measures. To rectify the situation, more general functions than power functions have to be considered
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MIHULA 3495

in (1.4). For more information, see [10, 25, 31]. Inevitably, if one is to generalize the results of [23] to cover such exceptional
sets, one will need to deal with general enough Hardy-type operators. In particular, one would need to allow 𝜈 to have
nonpower growth, as is the case with the Hardy-type operators studied in this paper.

2 PRELIMINARIES

Conventions and notation

(1) Throughout the paper, 𝐿 ∈ (0,∞].
(2) We adhere to the convention that 1

∞
= 0 ⋅ ∞ = 0.

(3) Wewrite𝑃 ≲ 𝑄, where𝑃,𝑄 are nonnegative quantities, when there is a positive constant 𝑐 independent of all appropri-
ate quantities appearing in the expressions 𝑃 and 𝑄 such that 𝑃 ≤ 𝑐 ⋅ 𝑄. If not stated explicitly, what “the appropriate
quantities appearing in the expressions 𝑃 and 𝑄” are should be obvious from the context. At the few places where it
is not obvious, we will explicitly specify what the appropriate quantities are. We also write 𝑃 ≳ 𝑄 with the obvious
meaning, and 𝑃 ≈ 𝑄 when 𝑃 ≲ 𝑄 and 𝑃 ≳ 𝑄 simultaneously.

(4) When 𝐴 ⊆ (0, 𝐿) is a (Lebesgue) measurable set, |𝐴| stands for its Lebesgue measure.
(5) When 𝑢 is a nonnegative measurable function defined on (0, 𝐿), we denote by 𝑈 the function defined as 𝑈(𝑡) =

∫ 𝑡
0
𝑢(𝑠) 𝑑𝑠, 𝑡 ∈ (0, 𝐿]. We say that 𝑢 is nondegenerate if there is 𝑡0 ∈ (0, 𝐿) such that 0 < 𝑈(𝑡0) < ∞.

We set

𝔐(0, 𝐿) = {𝑓 ∶ 𝑓 is a measurable function on (0, 𝐿) with values in [−∞,∞]},

𝔐0(0, 𝐿) = {𝑓 ∈ 𝔐(0, 𝐿) ∶ 𝑓 is finite a.e. on (0, 𝐿)},

and

𝔐+(0, 𝐿) = {𝑓 ∈ 𝔐(0, 𝐿) ∶ 𝑓 ≥ 0 a.e. on (0, 𝐿)}.
The nonincreasing rearrangement 𝑓∗ ∶ (0,∞) → [0,∞] of a function 𝑓 ∈ 𝔐(0, 𝐿) is defined as

𝑓∗(𝑡) = inf {𝜆 ∈ (0,∞) ∶ |{𝑠 ∈ (0, 𝐿) ∶ |𝑓(𝑠)| > 𝜆}| ≤ 𝑡}, 𝑡 ∈ (0,∞).
Note that 𝑓∗(𝑡) = 0 for every 𝑡 ∈ [𝐿,∞). We say that functions 𝑓, 𝑔 ∈ 𝔐(0, 𝐿) are equimeasurable, and we write 𝑓 ∼ 𝑔,
if |{𝑠 ∈ (0, 𝐿) ∶ |𝑓(𝑠)| > 𝜆}| = |{𝑠 ∈ (0, 𝐿) ∶ |𝑔(𝑠)| > 𝜆}| for every 𝜆 ∈ (0,∞). We always have that 𝑓 ∼ 𝑓∗. The relation ∼
is transitive.
Themaximal nonincreasing rearrangement 𝑓∗∗ ∶ (0,∞) → [0,∞] of a function 𝑓 ∈ 𝔐(0, 𝐿) is defined as

𝑓∗∗(𝑡) =
1

𝑡 ∫
𝑡

0

𝑓∗(𝑠) 𝑑𝑠, 𝑡 ∈ (0,∞).

The mapping 𝑓 ↦ 𝑓∗ is monotone in the sense that, for every 𝑓, 𝑔 ∈ 𝔐(0, 𝐿),

|𝑓| ≤ |𝑔| a.e. on (0, 𝐿) ⟹ 𝑓∗ ≤ 𝑔∗ on (0,∞).

The same implication remains true if ∗ is replaced by ∗∗. We have that

𝑓∗ ≤ 𝑓∗∗ for every 𝑓 ∈ 𝔐(0, 𝐿). (2.1)

The operation 𝑓 ↦ 𝑓∗ is neither subadditive nor multiplicative. Although 𝑓 ↦ 𝑓∗ is not subadditive, the following
pointwise inequality is valid for every 𝑓, 𝑔 ∈ 𝔐0(0, 𝐿) [5, Chapter 2, Proposition 1.7, (1.16)]:

(𝑓 + 𝑔)∗(𝑡) ≤ 𝑓∗( 𝑡
2

)
+ 𝑔∗

( 𝑡
2

)
for every 𝑡 ∈ (0, 𝐿). (2.2)
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3496 MIHULA

Furthermore, the lack of subadditivity of the operation of taking the nonincreasing rearrangement is, up to some extent,
compensated by the following fact [5, Chapter 2, (3.10)]. For every 𝑡 ∈ (0,∞) and 𝑓, 𝑔 ∈ 𝔐0(0, 𝐿), we have that

∫
𝑡

0

(𝑓 + 𝑔)∗(𝑠) 𝑑𝑠 ≤ ∫
𝑡

0

𝑓∗(𝑠) 𝑑𝑠 + ∫
𝑡

0

𝑔∗(𝑠) 𝑑𝑠. (2.3)

In other words, the operation 𝑓 ↦ 𝑓∗∗ is subadditive.
There are a large number of inequalities concerning rearrangements (e.g., [36, 41, Chapter II, Section 2]). We state two

of them, which shall prove particularly useful for us. TheHardy–Littlewood inequality [5, Chapter 2, Theorem 2.2] tells us
that, for every 𝑓, 𝑔 ∈ 𝔐(0, 𝐿),

∫
𝐿

0

|𝑓(𝑡)||𝑔(𝑡)|𝑑𝑡 ≤ ∫
𝐿

0

𝑓∗(𝑡)𝑔∗(𝑡) 𝑑𝑡. (2.4)

In particular, by taking 𝑔 = 𝜒𝐸 in (2.4), one obtains that

∫
𝐸

|𝑓(𝑡)|𝑑𝑡 ≤ ∫
|𝐸|

0

𝑓∗(𝑡) 𝑑𝑡 (2.5)

for every measurable 𝐸 ⊆ (0, 𝐿). The Hardy lemma [5, Chapter 2, Proposition 3.6] states that

if 𝑓, 𝑔 ∈ 𝔐+(0,∞) are such that ∫
𝑡

0

𝑓(𝑠) 𝑑𝑠 ≤ ∫
𝑡

0

𝑔(𝑠) 𝑑𝑠 for all 𝑡 ∈ (0,∞),

then ∫
∞

0

𝑓(𝑡)ℎ(𝑡) 𝑑𝑡 ≤ ∫
∞

0

𝑔(𝑡)ℎ(𝑡) 𝑑𝑡 for every nonincreasing ℎ ∈ 𝔐+(0,∞). (2.6)

A functional ‖ ⋅ ‖𝑋(0,𝐿) ∶ 𝔐+(0, 𝐿) → [0,∞] is called a rearrangement-invariant function norm (on (0, 𝐿)) if, for all 𝑓, 𝑔
and {𝑓𝑘}∞𝑘=1 in𝔐

+(0, 𝐿), and every 𝜆 ∈ [0,∞),

(P1) ‖𝑓‖𝑋(0,𝐿) = 0 if and only if 𝑓 = 0 a.e. on (0, 𝐿); ‖𝜆𝑓‖𝑋(0,𝐿) = 𝜆‖𝑓‖𝑋(0,𝐿), ‖𝑓 + 𝑔‖𝑋(0,𝐿) ≤ ‖𝑓‖𝑋(0,𝐿) + ‖𝑔‖𝑋(0,𝐿);
(P2) ‖𝑓‖𝑋(0,𝐿) ≤ ‖𝑔‖𝑋(0,𝐿) if 𝑓 ≤ 𝑔 a.e. on (0, 𝐿);
(P3) ‖𝑓𝑘‖𝑋(0,𝐿) ↗ ‖𝑓‖𝑋(0,𝐿) if 𝑓𝑘 ↗ 𝑓 a.e. on (0, 𝐿);
(P4) ‖𝜒𝐸‖𝑋(0,𝐿) < ∞ for every measurable 𝐸 ⊆ (0, 𝐿) of finite measure;
(P5) for every measurable 𝐸 ⊆ (0, 𝐿) of finite measure, there is a positive, finite constant 𝐶𝐸,𝑋 , possibly depending on 𝐸

and ‖ ⋅ ‖𝑋(0,𝐿) but not on 𝑓, such that ∫𝐸 𝑓(𝑡) 𝑑𝑡 ≤ 𝐶𝐸,𝑋‖𝑓‖𝑋(0,𝐿);
(P6) ‖𝑓‖𝑋(0,𝐿) = ‖𝑔‖𝑋(0,𝐿) whenever 𝑓 ∼ 𝑔.

The Hardy–Littlewood–Pólya principle [5, Chapter 2, Theorem 4.6] asserts that, for every 𝑓, 𝑔 ∈ 𝔐(0, 𝐿) and every
rearrangement-invariant function norm ‖ ⋅ ‖𝑋(0,𝐿),

if∫
𝑡

0

𝑓∗(𝑠) 𝑑𝑠 ≤ ∫
𝑡

0

𝑔∗(𝑠) 𝑑𝑠 for all 𝑡 ∈ (0, 𝐿), then ‖𝑓‖𝑋(0,𝐿) ≤ ‖𝑔‖𝑋(0,𝐿). (2.7)

With every rearrangement-invariant function norm ‖ ⋅ ‖𝑋(0,𝐿), we associate another functional ‖ ⋅ ‖𝑋′(0,𝐿) defined as

‖𝑓‖𝑋′(0,𝐿) = sup
𝑔∈𝔐+(0,𝐿)
‖𝑔‖𝑋(0,𝐿)≤1

∫
𝐿

0

𝑓(𝑡)𝑔(𝑡) 𝑑𝑡, 𝑓 ∈ 𝔐+(0, 𝐿). (2.8)

The functional ‖ ⋅ ‖𝑋′(0,𝐿) is also a rearrangement-invariant function norm [5, Chapter 2, Proposition 4.2], and it is called
the associate function norm of ‖ ⋅ ‖𝑋(0,𝐿). Furthermore, we always have that [5, Chapter 1, Theorem 2.7]

‖𝑓‖𝑋(0,𝐿) = sup
𝑔∈𝔐+(0,𝐿)
‖𝑔‖𝑋′(0,𝐿)≤1

∫
𝐿

0

𝑓(𝑡)𝑔(𝑡) 𝑑𝑡 for every𝑓 ∈ 𝔐+(0, 𝐿), (2.9)

 15222616, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.202200015 by C
zech T

echnical U
niversity, W

iley O
nline L

ibrary on [11/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



MIHULA 3497

that is,

‖ ⋅ ‖(𝑋′)′(0,𝐿) = ‖ ⋅ ‖𝑋(0,𝐿). (2.10)

Consequently, statements like “Let ‖ ⋅ ‖𝑋(0,𝐿) be the rearrangement-invariant function norm whose associate function
norm is ...” are well justified. The supremum in (2.9) does not change when the functions involved are replaced with their
nonincreasing rearrangements [5, Chapter 2, Proposition 4.2], that is,

‖𝑓‖𝑋(0,𝐿) = sup
𝑔∈𝔐+(0,𝐿)
‖𝑔‖𝑋′(0,𝐿)≤1

∫
𝐿

0

𝑓∗(𝑡)𝑔∗(𝑡) 𝑑𝑡 for every 𝑓 ∈ 𝔐+(0, 𝐿). (2.11)

Given a rearrangement-invariant function norm ‖ ⋅ ‖𝑋(0,𝐿), we extend it from 𝔐+(0, 𝐿) to 𝔐(0, 𝐿) by ‖𝑓‖𝑋(0,𝐿) =
‖ |𝑓| ‖𝑋(0,𝐿). The extended functional ‖ ⋅ ‖𝑋(0,𝐿) restricted to the linear set 𝑋(0, 𝐿) defined as

𝑋(0, 𝐿) = {𝑓 ∈ 𝔐(0, 𝐿) ∶ ‖𝑓‖𝑋(0,𝐿) < ∞}

is a norm, provided that we identify any two functions from𝔐(0, 𝐿) coinciding a.e. on (0, 𝐿), as usual. In fact, 𝑋(0, 𝐿)
endowed with the norm ‖ ⋅ ‖𝑋(0,𝐿) is a Banach space [5, Chapter 1, Theorem 1.6]. We say that 𝑋(0, 𝐿) is a rearrangement-
invariant function space. Note that 𝑓 ∈ 𝔐(0, 𝐿) belongs to 𝑋(0, 𝐿) if and only if ‖𝑓‖𝑋(0,𝐿) < ∞. We always have that

𝑆(0, 𝐿) ⊆ 𝑋(0, 𝐿) ⊆ 𝔐0(0, 𝐿), (2.12)

where 𝑆(0, 𝐿) denotes the set of all simple functions on (0, 𝐿). By a simple function, we mean a (finite) linear combination
of characteristic functions of measurable sets having finite measure. Moreover, the second inclusion is continuous if the
linear set𝔐0(0, 𝐿) is endowed with the (metrizable) topology of convergence in measure on sets of finite measure [5,
Chapter 1, Theorem 1.4].
The class of rearrangement-invariant function spaces contains a large number of customary function spaces, such as

Lebesgue spaces 𝐿𝑝 (𝑝 ∈ [1,∞]), Lorentz spaces 𝐿𝑝,𝑞 (e.g., [5, pp. 216–220]), Orlicz spaces (e.g., [53]), or Lorentz–Zygmund
spaces (e.g., [3, 50]), to name a few. Here, we provide definitions of only those rearrangement-invariant function norms
that we shall explicitly need. For 𝑝 ∈ [1,∞], we define the Lebesgue function norm ‖ ⋅ ‖𝐿𝑝(0,𝐿) as

‖𝑓‖𝐿𝑝(0,𝐿) =
{∫ 𝐿

0
𝑓(𝑡)𝑝 𝑑𝑡 if 𝑝 ∈ [1,∞),

ess sup𝑡∈(0,𝐿) 𝑓(𝑡) if 𝑝 = ∞,

𝑓 ∈ 𝔐+(0, 𝐿). Given a measurable function 𝑣 ∶ (0, 𝐿) → (0,∞) such that 𝑉(𝑡) < ∞ for every 𝑡 ∈ (0, 𝐿), we define the
functional ‖ ⋅ ‖Λ1𝑣(0,𝐿) as

‖𝑓‖Λ1𝑣(0,𝐿) = ∫
𝐿

0

𝑓∗(𝑠)𝑣(𝑠) 𝑑𝑠, 𝑓 ∈ 𝔐+(0, 𝐿).

Here, 𝑉(𝑡) = ∫ 𝑡
0
𝑣(𝑠) 𝑑𝑠, 𝑡 ∈ (0, 𝐿). The functional is equivalent to a rearrangement-invariant function norm if and only if

𝑉(𝑡)

𝑡
≲
𝑉(𝑠)

𝑠
for every 0 < 𝑠 < 𝑡 < 𝐿. (2.13)

This follows from [11, Theorem 2.3] (see also [59, Proposition 1] with regard to local embedding of Λ1𝑣(0, 𝐿) in 𝐿1(0, 𝐿)). By
the fact that it is equivalent to a rearrangement-invariant function norm, wemean that there is a rearrangement-invariant
function norm ‖ ⋅ ‖𝑋(0,𝐿) on (0, 𝐿) such that ‖𝑓‖Λ1𝑣(0,𝐿) ≈ ‖𝑓‖𝑋(0,𝐿) for every 𝑓 ∈ 𝔐+(0, 𝐿). Hence, we can treatΛ1𝑣(0, 𝐿) as
a rearrangement-invariant function space whenever (2.13) is satisfied. Let 𝜓 ∶ (0, 𝐿) → (0,∞) be a quasiconcave function,
that is, a nondecreasing function such that the function (0, 𝐿) ∋ 𝑡 ↦ 𝜓(𝑡)

𝑡
is nonincreasing. The functional ‖ ⋅ ‖𝑀𝜓(0,𝐿)
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3498 MIHULA

defined as

‖𝑓‖𝑀𝜓(0,𝐿) = sup
𝑡∈(0,𝐿)

𝜓(𝑡)𝑓∗∗(𝑡), 𝑡 ∈ (0, 𝐿),

is a rearrangement-invariant function norm [52, Proposition 7.10.2]. We shall also meet Lorentz–Zygmund spaces. They
are defined in Section 6, where they are used.
The rearrangement-invariant function space 𝑋′(0, 𝐿) built upon the associate function norm ‖ ⋅ ‖𝑋′(0,𝐿) of a

rearrangement-invariant function norm ‖ ⋅ ‖𝑋(0,𝐿) is called the associate function space of 𝑋(0, 𝐿). Thanks to (2.10), we
have that (𝑋′)′(0, 𝐿) = 𝑋(0, 𝐿). Furthermore, one has that

∫
𝐿

0

|𝑓(𝑡)||𝑔(𝑡)|𝑑𝑡 ≤ ‖𝑓‖𝑋(0,𝐿)‖𝑔‖𝑋′(0,𝐿) for every𝑓, 𝑔 ∈ 𝔐(0, 𝐿). (2.14)

Inequality (2.14) is a Hölder-type inequality, and we shall refer to it as the Hölder inequality.
Let 𝑋(0, 𝐿) and 𝑌(0, 𝐿) be rearrangement-invariant function spaces. We say that 𝑋(0, 𝐿) is embedded in 𝑌(0, 𝐿), and

we write 𝑋(0, 𝐿) ↪ 𝑌(0, 𝐿), if there is a positive constant 𝐶 such that ‖𝑓‖𝑌(0,𝐿) ≤ 𝐶‖𝑓‖𝑋(0,𝐿) for every 𝑓 ∈ 𝔐(0, 𝐿). If
𝑋(0, 𝐿) ↪ 𝑌(0, 𝐿) and 𝑌(0, 𝐿) ↪ 𝑋(0, 𝐿) simultaneously, we write that 𝑋(0, 𝐿) = 𝑌(0, 𝐿). We have that [5, Chapter 1,
Theorem 1.8]

𝑋(0, 𝐿) ↪ 𝑌(0, 𝐿) if and only if 𝑋(0, 𝐿) ⊆ 𝑌(0, 𝐿). (2.15)

Furthermore,

𝑋(0, 𝐿) ↪ 𝑌(0, 𝐿) if and only if 𝑌′(0, 𝐿) ↪ 𝑋′(0, 𝐿) (2.16)

with the same embedding constants.
If ‖ ⋅ ‖𝑋(0,𝐿) and ‖ ⋅ ‖𝑌(0,𝐿) are rearrangement-invariant function norms, then so are ‖ ⋅ ‖𝑋(0,𝐿)∩𝑌(0,𝐿) and ‖ ⋅ ‖(𝑋+𝑌)(0,𝐿)

defined as

‖𝑓‖𝑋(0,𝐿)∩𝑌(0,𝐿) = max{‖𝑓‖𝑋(0,𝐿), ‖𝑓‖𝑌(0,𝐿)}, 𝑓 ∈ 𝔐+(0, 𝐿),

and

‖𝑓‖(𝑋+𝑌)(0,𝐿) = inf
𝑓=𝑔+ℎ

(‖𝑔‖𝑋(0,𝐿) + ‖ℎ‖𝑌(0,𝐿)), 𝑓 ∈ 𝔐+(0, 𝐿).

Here, the infimum extends over all possible decompositions 𝑓 = 𝑔 + ℎ, 𝑔, ℎ ∈ 𝔐+(0, 𝐿). Furthermore, we have that ([43,
Theorem 3.1], also [27, Lemma 1.12])

(𝑋(0, 𝐿) ∩ 𝑌(0, 𝐿))′ = (𝑋′ + 𝑌′)(0, 𝐿) and (𝑋 + 𝑌)′(0, 𝐿) = 𝑋′(0, 𝐿) ∩ 𝑌′(0, 𝐿) (2.17)

with equality of norms. The K-functional between 𝑋(0, 𝐿) and 𝑌(0, 𝐿) is, for every 𝑓 ∈ (𝑋 + 𝑌)(0, 𝐿) and 𝑡 ∈ (0,∞),
defined as

K(𝑓, 𝑡; 𝑋, 𝑌) = inf
𝑓=𝑔+ℎ

(‖𝑔‖𝑋(0,𝐿) + 𝑡‖ℎ‖𝑌(0,𝐿)).

Here, the infimum extends over all possible decompositions 𝑓 = 𝑔 + ℎ with 𝑔 ∈ 𝑋(0, 𝐿) and ℎ ∈ 𝑌(0, 𝐿). For every 𝑓 ∈
(𝑋 + 𝑌)(0, 𝐿) ⧵ {0}, K(𝑓, ⋅; 𝑋, 𝑌) is a positive increasing concave function on (0,∞) [5, Chapter 5, Proposition 1.2].
Let 𝑋0(0, 𝐿) and 𝑋1(0, 𝐿) be rearrangement-invariant function spaces. We say that a rearrangement-invariant function

space 𝑋(0, 𝐿) is an intermediate space between 𝑋0(0, 𝐿) and 𝑋1(0, 𝐿) if 𝑋0(0, 𝐿) ∩ 𝑋1(0, 𝐿) ↪ 𝑋(0, 𝐿) ↪ (𝑋0 + 𝑋1)(0, 𝐿).
A linear operator 𝑇 defined on (𝑋0 + 𝑋1)(0, 𝐿) having values in (𝑋0 + 𝑋1)(0, 𝐿) is said to be admissible for the cou-
ple (𝑋0(0, 𝐿), 𝑋1(0, 𝐿)) if 𝑇 is bounded on both 𝑋0(0, 𝐿) and 𝑋1(0, 𝐿). An intermediate space 𝑋(0, 𝐿) between 𝑋0(0, 𝐿)
and 𝑋1(0, 𝐿) is an interpolation space with respect to the couple (𝑋0(0, 𝐿), 𝑋1(0, 𝐿)) if every admissible operator for the
couple is bounded on 𝑋(0, 𝐿). By [9, Theorem 3], 𝑋(0, 𝐿) is always an interpolation space with respect to the couple
(𝐿1(0, 𝐿), 𝐿∞(0, 𝐿)).
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MIHULA 3499

We always have that [5, Chapter 2, Theorem 6.6]

𝐿1(0, 𝐿) ∩ 𝐿∞(0, 𝐿) ↪ 𝑋(0, 𝐿) ↪ 𝐿1(0, 𝐿) + 𝐿∞(0, 𝐿).

In particular,

𝐿∞(0, 𝐿) ↪ 𝑋(0, 𝐿) ↪ 𝐿1(0, 𝐿) (2.18)

provided that 𝐿 < ∞.
Let 𝑎 > 0. The dilation operator 𝐷𝑎 maps a function 𝑓 ∈ 𝔐(0, 𝐿) to the function

𝐷𝑎𝑓(𝑡) =

{
𝑓(
𝑡

𝑎
), if 𝐿 = ∞,

𝑓(
𝑡

𝑎
)𝜒(0,𝑎𝐿)(𝑡), if 𝐿 < ∞.

Importantly,𝐷𝑎 is bounded on every rearrangement-invariant function space𝑋(0, 𝐿) (see [5, Chapter 3, Proposition 5.11]).
More precisely, we have that

‖𝐷𝑎𝑓‖𝑋(0,𝐿) ≤ max{1, 𝑎}‖𝑓‖𝑋(0,𝐿) for every 𝑓 ∈ 𝔐(0, 𝐿). (2.19)

3 OPTIMAL REARRANGEMENT-INVARIANT FUNCTION SPACES

In this section, we shall investigate optimal mapping properties of the operators 𝐻𝑢,𝑣,𝜈 and 𝑅𝑢,𝑣,𝜈. Let 𝑇 be either of
them. We say that a rearrangement-invariant function space 𝑌(0, 𝐿) is the optimal domain space for the operator 𝑇 and
a rearrangement-invariant function space 𝑋(0, 𝐿) if the following two facts are true. 𝑇 ∶ 𝑌(0, 𝐿) → 𝑋(0, 𝐿) is bounded
and 𝑍(0, 𝐿) ↪ 𝑌(0, 𝐿) whenever 𝑍(0, 𝐿) is a rearrangement-invariant function space such that 𝑇 ∶ 𝑍(0, 𝐿) → 𝑋(0, 𝐿) is
bounded. In other words, ‖ ⋅ ‖𝑌(0,𝐿) is the weakest domain rearrangement-invariant function norm for 𝑇 and ‖ ⋅ ‖𝑋(0,𝐿).
We say that a rearrangement-invariant function space 𝑌(0, 𝐿) is the optimal target space for the operator 𝑇 and a
rearrangement-invariant function space 𝑋(0, 𝐿) if the following two facts are true. 𝑇 ∶ 𝑋(0, 𝐿) → 𝑌(0, 𝐿) is bounded
and 𝑌(0, 𝐿) ↪ 𝑍(0, 𝐿) whenever 𝑍(0, 𝐿) is a rearrangement-invariant function space such that 𝑇 ∶ 𝑋(0, 𝐿) → 𝑍(0, 𝐿) is
bounded. In other words, ‖ ⋅ ‖𝑌(0,𝐿) is the strongest target rearrangement-invariant function norm for 𝑇 and ‖ ⋅ ‖𝑋(0,𝐿).

3.1 Optimal domain spaces

We start by characterizing when the functional𝔐+(0, 𝐿) ∋ 𝑓 ↦ ‖𝑅𝑢,𝑣,𝜈(𝑓∗)‖𝑋(0,𝐿) is a rearrangement-invariant function
norm. It turns out that it also enables us to characterize optimal domain spaces for 𝑅𝑢,𝑣,𝜈. In the following subsection, we
will also use it to characterize optimal target spaces for𝐻𝑢,𝑣,𝜈.

Proposition 3.1. Let ‖ ⋅ ‖𝑋(0,𝐿) be a rearrangement-invariant function norm.

(1) Let 𝜈 ∶ (0, 𝐿) → (0, 𝐿) be an increasing bijection.
(2) Let 𝑢 ∶ (0, 𝐿) → (0,∞) be a nondegenerate nonincreasing function. If 𝐿 < ∞, assume that 𝑢(𝐿−) > 0.
(3) Let 𝑣 ∶ (0, 𝐿) → (0,∞) be measurable.

Set

‖𝑓‖𝑌(0,𝐿) = ‖𝑅𝑢,𝑣,𝜈(𝑓∗)‖𝑋(0,𝐿), 𝑓 ∈ 𝔐+(0, 𝐿),

and

𝜉(𝑡) =

{
𝑣(𝑡)𝑈(𝜈(𝑡)), 𝑡 ∈ (0, 𝐿), if 𝐿 < ∞,
𝑣(𝑡)𝑈(𝜈(𝑡))𝜒(0,1)(𝑡) + 𝑣(𝑡)𝜒(1,∞)(𝑡), 𝑡 ∈ (0,∞), if 𝐿 = ∞.

(3.1)

The functional ‖ ⋅ ‖𝑌(0,𝐿) is a rearrangement-invariant function norm if and only if 𝜉 ∈ 𝑋(0, 𝐿).
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3500 MIHULA

If 𝜉 ∈ 𝑋(0, 𝐿), then the rearrangement-invariant function space𝑌(0, 𝐿) is the optimal domain space for the operator 𝑅𝑢,𝑣,𝜈
and 𝑋(0, 𝐿). If 𝜉 ∉ 𝑋(0, 𝐿), then there is no rearrangement-invariant function space 𝑍(0, 𝐿) such that 𝑅𝑢,𝑣,𝜈 ∶ 𝑍(0, 𝐿) →
𝑋(0, 𝐿) is bounded.

Proof. We shall show that ‖ ⋅ ‖𝑌(0,𝐿) is a rearrangement-invariant function norm provided that 𝜉 ∈ 𝑋(0, 𝐿). Before we do
that, note that, since 𝑢 is positive and nonincreasing, its nondegeneracy implies that 0 < 𝑈(𝑡) < ∞ for every 𝑡 ∈ (0, 𝐿] ∩ ℝ.
Property (P1). The positive homogeneity and positive definiteness of ‖ ⋅ ‖𝑌(0,𝐿) can be readily verified. As for the

subadditivity of ‖ ⋅ ‖𝑌(0,𝐿), it follows from (2.3) combined with Hardy’s lemma (2.6) that

∫
𝐿

0

(𝑓 + 𝑔)∗(𝑠)𝑢(𝑠)𝜒(0,𝜈(𝑡))(𝑠) 𝑑𝑠 ≤ ∫
𝐿

0

𝑓∗(𝑠)𝑢(𝑠)𝜒(0,𝜈(𝑡))(𝑠) 𝑑𝑠 + ∫
𝐿

0

𝑔∗(𝑠)𝑢(𝑠)𝜒(0,𝜈(𝑡))(𝑠) 𝑑𝑠

for every 𝑓, 𝑔 ∈ 𝔐+(0, 𝐿) and 𝑡 ∈ (0, 𝐿) thanks to the fact that 𝑢 is nonincreasing. Since ‖ ⋅ ‖𝑋(0,𝐿) is subadditive, it follows
that

‖𝑓 + 𝑔‖𝑌(0,𝐿) ≤ ‖𝑓‖𝑌(0,𝐿) + ‖𝑔‖𝑌(0,𝐿) for every 𝑓, 𝑔 ∈ 𝔐+(0, 𝐿).

Properties (P2) and (P3). Since ‖ ⋅ ‖𝑋(0,𝐿) has these properties, it can be readily verified that ‖ ⋅ ‖𝑌(0,𝐿), too, has them.
Property (P4). First, assume that 𝐿 < ∞. Clearly, ‖𝜒(0,𝐿)‖𝑌(0,𝐿) < ∞ if and only if 𝑣(𝑡)𝑈(𝜈(𝑡)) ∈ 𝑋(0, 𝐿). Since ‖ ⋅ ‖𝑌(0,𝐿)

has property (P2), ‖ ⋅ ‖𝑌(0,𝐿) has property (P4) if and only if 𝑣(𝑡)𝑈(𝜈(𝑡)) ∈ 𝑋(0, 𝐿). Second, assume that 𝐿 = ∞. Let 𝐸 ⊆
(0,∞) be a set of finite positive measure. Clearly, ‖𝜒𝐸‖𝑌(0,∞) < ∞ if and only if 𝑣(𝑡)𝑈(𝜈(𝑡))𝜒(0,|𝐸|)(𝑡) + 𝑣(𝑡)𝜒(|𝐸|,∞)(𝑡) ∈
𝑋(0,∞). If |𝐸| ≤ 1, then

‖𝑣(𝑡)𝑈(𝜈(𝑡))𝜒(0,|𝐸|)(𝑡) + 𝑣(𝑡)𝜒(|𝐸|,∞)(𝑡)‖𝑋(0,∞)
≤ ‖𝑣(𝑡)𝑈(𝜈(𝑡))𝜒(0,1)(𝑡)‖𝑋(0,∞) + ‖𝑣(𝑡)𝜒(|𝐸|,1)(𝑡)‖𝑋(0,∞) + ‖𝑣(𝑡)𝜒(1,∞)(𝑡)‖𝑋(0,∞)
≤ ‖𝑣(𝑡)𝑈(𝜈(𝑡))𝜒(0,1)(𝑡)‖𝑋(0,∞) + 1

𝑈(𝜈(|𝐸|))‖𝑈(𝜈(𝑡))𝑣(𝑡)𝜒(|𝐸|,1)(𝑡)‖𝑋(0,∞)

+ ‖𝑣(𝑡)𝜒(1,∞)(𝑡)‖𝑋(0,∞)

≤
(
1 +

1

𝑈(𝜈(|𝐸|))
)
‖𝑣(𝑡)𝑈(𝜈(𝑡))𝜒(0,1)(𝑡)‖𝑋(0,∞) + ‖𝑣(𝑡)𝜒(1,∞)(𝑡)‖𝑋(0,∞).

If 𝐸 ≥ 1, we can obtain, in a similar way, that
‖𝑣(𝑡)𝑈(𝜈(𝑡))𝜒(0,|𝐸|)(𝑡) + 𝑣(𝑡)𝜒(|𝐸|,∞)(𝑡)‖𝑋(0,∞)

≤ ‖𝑣(𝑡)𝑈(𝜈(𝑡))𝜒(0,1)(𝑡)‖𝑋(0,∞) + (1 + 𝑈(𝜈(|𝐸|)))‖𝑣(𝑡)𝜒(1,∞)(𝑡)‖𝑋(0,∞).

Either way, we have that ‖𝜒𝐸‖𝑌(0,∞) < ∞ if and only if

𝑣(𝑡)𝑈(𝜈(𝑡))𝜒(0,1)(𝑡) + 𝑣(𝑡)𝜒(1,∞)(𝑡) ∈ 𝑋(0,∞).

Property (P5). Let 𝐸 ⊆ (0, 𝐿) be a set of finite positive measure. Let 𝑓 ∈ 𝔐+(0, 𝐿). Note that the function (0, 𝐿) ∋ 𝑡 ↦
1

𝑈(𝜈(𝑡))
∫ 𝜈(𝑡)
0

𝑓∗(𝑠)𝑢(𝑠) 𝑑𝑠 is nonincreasing because it is the integral mean of a nonnegative nonincreasing function over the
interval (0, 𝜈(𝑡)) with respect to the measure 𝑢(𝑠) 𝑑𝑠. Thanks to that and the monotonicity of 𝑢, we obtain that

‖‖‖‖‖
𝑣(𝑡)∫

𝜈(𝑡)

0

𝑓∗(𝑠)𝑢(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,𝐿)

≥ ‖‖‖‖‖
𝑣(𝑡)𝜒(0,𝜈−1(|𝐸|))(𝑡)∫

𝜈(𝑡)

0

𝑓∗(𝑠)𝑢(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,𝐿)

≥ ‖‖𝑣(𝑡)𝑈(𝜈(𝑡))𝜒(0,𝜈−1(|𝐸|))(𝑡)‖‖𝑋(0,𝐿)
1

𝑈(|𝐸|) ∫
|𝐸|

0

𝑓∗(𝑠)𝑢(𝑠) 𝑑𝑠
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MIHULA 3501

≥ ‖‖𝑣(𝑡)𝑈(𝜈(𝑡))𝜒(0,𝜈−1(|𝐸|))(𝑡)‖‖𝑋(0,𝐿)
𝑢(|𝐸|−)
𝑈(|𝐸|) ∫

|𝐸|

0

𝑓∗(𝑠) 𝑑𝑠

≥ ‖‖𝑣(𝑡)𝑈(𝜈(𝑡))𝜒(0,𝜈−1(|𝐸|))(𝑡)‖‖𝑋(0,𝐿)
𝑢(|𝐸|−)
𝑈(|𝐸|) ∫𝐸 𝑓(𝑠) 𝑑𝑠.

Here, we used (2.5) in the last inequality.
Property (P6). Since 𝑓∗ = 𝑔∗ when 𝑓, 𝑔 ∈ 𝔐+(0, 𝐿) are equimeasurable, this is obvious.
Note that the necessity of 𝜉 ∈ 𝑋(0, 𝐿) for ‖ ⋅ ‖𝑌(0,𝐿) to be a rearrangement-invariant function norm was already proved

in the paragraph devoted to property (P4).
Assume now that 𝜉 ∈ 𝑋(0, 𝐿). Thanks to the Hardy–Littlewood inequality (2.4) and the monotonicity of 𝑢, we have

that

‖𝑅𝑢,𝑣,𝜈𝑓‖𝑋(0,𝐿) ≤ ‖𝑅𝑢,𝑣,𝜈(𝑓∗)‖𝑋(0,𝐿) = ‖𝑓‖𝑌(0,𝐿) for every 𝑓 ∈ 𝔐+(0, 𝐿).

Hence,𝑅𝑢,𝑣,𝜈 ∶ 𝑌(0, 𝐿) → 𝑋(0, 𝐿) is bounded.Next, if𝑍(0, 𝐿) is a rearrangement-invariant function space such that𝑅𝑢,𝑣,𝜈 ∶
𝑍(0, 𝐿) → 𝑋(0, 𝐿) is bounded, then we have that

‖𝑓‖𝑌(0,𝐿) = ‖𝑅𝑢,𝑣,𝜈(𝑓∗)‖𝑋(0,𝐿) ≲ ‖𝑓∗‖𝑍(0,𝐿) = ‖𝑓‖𝑍(0,𝐿) for every 𝑓 ∈ 𝔐+(0, 𝐿),

and so 𝑍(0, 𝐿) ↪ 𝑌(0, 𝐿). Finally, note that, if 𝑅𝑢,𝑣,𝜈 ∶ 𝑍(0, 𝐿) → 𝑋(0, 𝐿) is bounded, then

‖𝜉‖𝑋(0,𝐿) ≈ ‖𝑅𝑢,𝑣,𝜈(𝜒(0,𝑎))‖𝑋(0,𝐿) ≲ ‖𝜒(0,𝑎)‖𝑍(0,𝐿) < ∞.
Here,

𝑎 =

{
𝐿 if 𝐿 < ∞,
1 if 𝐿 = ∞.

(3.2)

Hence, 𝜉 ∈ 𝑋(0, 𝐿). □

Remark 3.2. Since 𝜈 ∶ (0, 𝐿) → (0, 𝐿) will always be an increasing bijection, let us briefly comment on this assumption.
It may seem that the assumption is quite restrictive. However, from the point of view of applications that this paper
is motivated by, the assumption is quite natural and not overly restrictive. They tell us that it is reasonable to assume
that 𝜈 is an increasing bijection mapping the interval (0, 𝐿) onto an interval (0, �̃�), and that 𝐿 is finite if and only if �̃�
is. Furthermore, when 𝐿 < ∞, our assumption that 𝐿 = �̃� only makes some computations easier and is not restrictive.
The reason is that, if 𝜈 ∶ (0, 𝐿) → (0, �̃�) is an increasing bijection, then �̃�(𝑡) = 𝐿𝜈(𝑡)∕�̃� is an increasing bijection of the
interval (0, 𝐿) onto itself. Although it might be of interest to allow 𝜈 to map an unbounded interval onto a bounded one or
vice versa, that would make this paper considerably more technical. Nevertheless, the interested reader should be able to
follow proofs presented in this paper and modify them if needed.

We now turn our attention to 𝐻𝑢,𝑣,𝜈. It turns out that the situation becomes significantly more complicated. Notably
the fact that, unlike with 𝑅𝑢,𝑣,𝜈, the integration is carried out over intervals away from 0 often causes great difficulties.
In particular, the functional𝔐+(0, 𝐿) ∋ 𝑓 ↦ ‖𝐻𝑢,𝑣,𝜈(𝑓∗)‖𝑋(0,𝐿) is hardly ever subadditive. Instead, in general, we need
to consider a more complicated functional (see Proposition 4.1, however). Here and in subsequent sections, we will often
need to impose certain mild conditions on 𝜈.

(1) We write 𝜈 ∈ 𝐷0 if there is 𝜃 > 1 such that lim inf 𝑡→0+
𝜈(𝜃𝑡)

𝜈(𝑡)
> 1.

(2) We write 𝜈 ∈ 𝐷∞ if there is 𝜃 > 1 such that lim inf 𝑡→∞
𝜈(𝜃𝑡)

𝜈(𝑡)
> 1.

(3) We write 𝜈 ∈ 𝐷0 if there is 𝜃 > 1 such that lim sup𝑡→0+
𝜈(𝜃𝑡)

𝜈(𝑡)
< ∞.

(4) We write 𝜈 ∈ 𝐷∞ if there is 𝜃 > 1 such that lim sup𝑡→∞
𝜈(𝜃𝑡)

𝜈(𝑡)
< ∞.

When we need to emphasize the exact value of 𝜃, we will write 𝜈 ∈ 𝐷0
𝜃
and so forth.
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3502 MIHULA

Proposition 3.3. Let ‖ ⋅ ‖𝑋(0,𝐿) be a rearrangement-invariant function norm.

(1) Let 𝜈 ∶ (0, 𝐿) → (0, 𝐿) be an increasing bijection. If 𝐿 = ∞, assume that 𝜈 ∈ 𝐷∞.
(2) Let 𝑢 ∶ (0, 𝐿) → (0,∞) be nonincreasing.
(3) Let 𝑣 ∶ (0, 𝐿) → (0,∞) be nonincreasing. If 𝐿 < ∞, assume that 𝑣(𝐿−) > 0.

Set

‖𝑓‖𝑌(0,𝐿) = sup
ℎ∼𝑓

‖𝐻𝑢,𝑣,𝜈ℎ‖𝑋(0,𝐿), 𝑓 ∈ 𝔐+(0, 𝐿), (3.3)

where the supremum extends over all ℎ ∈ 𝔐+(0, 𝐿) equimeasurable with 𝑓. The functional ‖ ⋅ ‖𝑌(0,𝐿) is a rearrangement-
invariant function norm if and only if

⎧
⎪⎪⎨⎪⎪⎩

𝑢(𝑡) ∫ 𝐿
𝜈(𝑡)
𝑣(𝑠) 𝑑𝑠 ∈ 𝑋(0, 𝐿) if 𝐿 < ∞,

𝑢(𝑡)𝜒(0,𝜈−1(1))(𝑡) ∫ 1𝜈(𝑡) 𝑣(𝑠) 𝑑𝑠 ∈ 𝑋(0,∞) and
lim sup𝜏→∞ 𝑣(𝜏)‖𝑢𝜒(0,𝜈−1(𝜏))‖𝑋(0,∞) < ∞

if 𝐿 = ∞.
(3.4)

If (3.4) is satisfied, then the rearrangement-invariant function space 𝑌(0, 𝐿) is the optimal domain space for the operator
𝐻𝑢,𝑣,𝜈 and 𝑋(0, 𝐿). If (3.4) is not satisfied, then there is no rearrangement-invariant function space 𝑍(0, 𝐿) such that𝐻𝑢,𝑣,𝜈 ∶
𝑍(0, 𝐿) → 𝑋(0, 𝐿) is bounded.

Proof. We shall show that ‖ ⋅ ‖𝑌(0,𝐿) is a rearrangement-invariant function norm provided that (3.4) is satisfied.
Property (P2). Let 𝑓, 𝑔 ∈ 𝔐+(0, 𝐿) be such that 𝑓 ≤ 𝑔 a.e. Consequently, 𝑓∗ ≤ 𝑔∗. Suppose that ‖𝑓‖𝑌(0,𝐿) > ‖𝑔‖𝑌(0,𝐿). It

implies that there is 𝑓 ∈ 𝔐+(0, 𝐿), 𝑓 ∼ 𝑓, such that

sup
ℎ∼𝑔

‖𝐻𝑢,𝑣,𝜈ℎ‖𝑋(0,𝐿) < ‖𝐻𝑢,𝑣,𝜈𝑓‖𝑋(0,𝐿). (3.5)

When 𝐿 = ∞, we may assume that lim𝑡→∞(𝑓)∗(𝑡) = lim𝑡→∞ 𝑓∗(𝑡) = 0, for we would otherwise approximate 𝑓 by func-
tions 𝑓𝑛 = 𝑓𝜒(0,𝑛), 𝑛 ∈ ℕ. The monotone convergence theorem and property (P3) of ‖ ⋅ ‖𝑋(0,𝐿) would guarantee that
the inequality above holds with 𝑓 replaced by 𝑓𝑛 for 𝑛 large enough. Thanks to [5, Chapter 2, Corollary 7.6] (also [55,
Proposition 3]), there is a measure-preserving transformation 𝜎 ∶ (0, 𝐿) → (0, 𝐿) such that 𝑓 = 𝑓∗◦𝜎. For the definition
of measure-preserving transformations, see [5, Chapter 2, Definition 7.1]. Since 𝜎 is measure preserving, we have that
(𝑔∗◦𝜎) ∼ 𝑔∗ ∼ 𝑔 [5, Chapter 2, Proposition 7.2]. Consequently,

sup
ℎ∼𝑔

‖‖‖‖‖
𝑢(𝑡)∫

𝐿

𝜈(𝑡)

ℎ(𝑠)𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,𝐿)

≥ ‖‖‖‖‖
𝑢(𝑡)∫

𝐿

𝜈(𝑡)

𝑔∗(𝜎(𝑠))𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,𝐿)

≥ ‖‖‖‖‖
𝑢(𝑡)∫

𝐿

𝜈(𝑡)

𝑓∗(𝜎(𝑠))𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,𝐿)

=
‖‖‖‖‖
𝑢(𝑡)∫

𝐿

𝜈(𝑡)

𝑓(𝑠)𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,𝐿)

. (3.6)

By combining (3.5) and (3.6), we reach a contradiction. Hence, ‖𝑓‖𝑌(0,𝐿) ≤ ‖𝑔‖𝑌(0,𝐿).
Property (P3). Let 𝑓, 𝑓𝑘 ∈ 𝔐+(0, 𝐿), 𝑘 ∈ ℕ, be such that 𝑓𝑘 ↗ 𝑓 a.e. Thanks to property (P2) of ‖ ⋅ ‖𝑌(0,𝐿), the limit

lim𝑘→∞ ‖𝑓𝑘‖𝑌(0,𝐿) exists and we clearly have that lim𝑘→∞ ‖𝑓𝑘‖𝑌(0,𝐿) ≤ ‖𝑓‖𝑌(0,𝐿). The fact that lim𝑘→∞ ‖𝑓𝑘‖𝑌(0,𝐿) =
‖𝑓‖𝑌(0,𝐿) can be proved by contradiction in a similar way to the proof of (P2).
Property (P1). The positive homogeneity and positive definiteness of ‖ ⋅ ‖𝑌(0,𝐿) can be readily verified. As for the

subadditivity of ‖ ⋅ ‖𝑌(0,𝐿), let 𝑓, 𝑔 ∈ 𝔐+(0, 𝐿) be simple functions. Let ℎ ∈ 𝔐+(0, 𝐿) be such that ℎ ∼ 𝑓 + 𝑔. Being
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MIHULA 3503

equimeasurable with 𝑓 + 𝑔, ℎ is a simple function having the same range as 𝑓 + 𝑔. Furthermore, it is easy to see that
ℎ can be decomposed as ℎ = ℎ1 + ℎ2, where ℎ1, ℎ2 ∈ 𝔐+(0, 𝐿) are simple functions such that ℎ1 ∼ 𝑓 and ℎ2 ∼ 𝑔. Using
the subadditivity of ‖ ⋅ ‖𝑋(0,𝐿), we obtain that

‖‖‖‖‖
𝑢(𝑡)∫

𝐿

𝜈(𝑡)

ℎ(𝑠)𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,𝐿)

≤ ‖‖‖‖‖
𝑢(𝑡)∫

𝐿

𝜈(𝑡)

ℎ1(𝑠)𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,𝐿)

+
‖‖‖‖‖
𝑢(𝑡)∫

𝐿

𝜈(𝑡)

ℎ2(𝑠)𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,𝐿)

≤ ‖𝑓‖𝑌(0,𝐿) + ‖𝑔‖𝑌(0,𝐿).

Hence, ‖𝑓 + 𝑔‖𝑌(0,𝐿) ≤ ‖𝑓‖𝑌(0,𝐿) + ‖𝑔‖𝑌(0,𝐿). When 𝑓, 𝑔 ∈ 𝔐+(0, 𝐿) are general functions, we approximate each of them
by a nondecreasing sequence of nonnegative, simple functions and use property (P3) of ‖ ⋅ ‖𝑌(0,𝐿) to get ‖𝑓 + 𝑔‖𝑌(0,𝐿) ≤
‖𝑓‖𝑌(0,𝐿) + ‖𝑔‖𝑌(0,𝐿).
Property (P4). Assume that 𝐿 < ∞. Since ‖ ⋅ ‖𝑌(0,𝐿) has property (P2), ‖ ⋅ ‖𝑌(0,𝐿) has property (P4) if and only if

‖𝜒(0,𝐿)‖𝑌(0,𝐿) < ∞. If ℎ ∈ 𝔐+(0, 𝐿) is equimeasurable with 𝜒(0,𝐿), then ℎ = 1 a.e. on (0, 𝐿); therefore,

‖𝜒(0,𝐿)‖𝑌(0,𝐿) = ‖𝐻𝑢,𝑣,𝜈𝜒(0,𝐿)‖𝑋(0,𝐿).

Hence, ‖ ⋅ ‖𝑌(0,𝐿) has property (P4) if and only if 𝑢(𝑡) ∫ 𝐿𝜈(𝑡) 𝑣(𝑠) 𝑑𝑠 ∈ 𝑋(0, 𝐿). Assume now that 𝐿 = ∞. Fix 𝜃 > 1 such that

𝜈 ∈ 𝐷∞
𝜃
. Let 𝐸 ⊆ (0,∞) be of finite measure. Set 𝑏 = max

{
1, 𝜈(1),

𝜃|𝐸|
𝑀−1

}
, where 𝑀 = inf 𝑡∈[1,∞)

𝜈(𝜃𝑡)

𝜈(𝑡)
. Note that 𝑀 > 1.

Let ℎ ∈ 𝔐+(0,∞) be equimeasurable with 𝜒𝐸 . It is easy to see that ℎ = 𝜒𝐹 for some measurable 𝐹 ⊆ (0,∞) such that
|𝐹| = |𝐸|. Thanks to the (outer) regularity of the Lebesgue measure, there is an open set 𝐺 ⊇ 𝐹 such that |𝐺| ≤ 𝜃|𝐹|.
Since 𝐺 is an open set on the real line, there is a countable system of mutually disjoint open intervals {(𝑎𝑘, 𝑏𝑘)}𝑘 such that
𝐺 ∩ (𝑏,∞) =

⋃
𝑘
(𝑎𝑘, 𝑏𝑘). We plainly have that 𝐹 ⊆ (0, 𝑏] ∪ (𝐺 ∩ (𝑏,∞)) and 𝑎𝑘 > 𝑏. Furthermore, we have that 𝑏𝑘 − 𝑎𝑘 ≤

𝜃|𝐹| ≤ (𝑀 − 1)𝑏 < (𝑀 − 1)𝑎𝑘, whence
𝜈−1(𝑏𝑘) − 𝜈

−1(𝑎𝑘) < (𝜃 − 1)𝜈
−1(𝑎𝑘). (3.7)

We have that

‖‖‖‖‖
𝑢(𝑡)∫

∞

𝜈(𝑡)

𝜒𝐹(𝑠)𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,∞)

≤
‖‖‖‖‖‖
𝑢(𝑡)∫

∞

𝜈(𝑡)

(
𝜒(0,𝑏](𝑠) +

∑
𝑘

𝜒(𝑎𝑘,𝑏𝑘)(𝑠)

)
𝑣(𝑠) 𝑑𝑠

‖‖‖‖‖‖𝑋(0,∞)

≤ ‖‖‖‖‖
𝑢(𝑡)𝜒(0,𝜈−1(𝑏))(𝑡)∫

𝑏

𝜈(𝑡)

𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,∞)

+
∑
𝑘

‖‖‖‖‖
𝑢(𝑡)𝜒(0,𝜈−1(𝑎𝑘))(𝑡)∫

𝑏𝑘

𝑎𝑘

𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,∞)

+
∑
𝑘

‖‖‖‖‖
𝑢(𝑡)𝜒(𝜈−1(𝑎𝑘),𝜈−1(𝑏𝑘))(𝑡)∫

𝑏𝑘

𝜈(𝑡)

𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,∞)

. (3.8)

Note that the assumption

‖‖‖‖‖
𝑢(𝑡)𝜒(0,𝜈−1(1))(𝑡)∫

1

𝜈(𝑡)

𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,∞)

< ∞ (3.9)

together with the monotonicity of 𝑢 and 𝑣 implies that

‖𝑢𝜒(0,𝑎)‖𝑋(0,∞) < ∞ for every 𝑎 ∈ (0,∞). (3.10)
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3504 MIHULA

Indeed, since 𝑢 is nonincreasing, it is sufficient to show that ‖𝑢𝜒
(0,𝜈−1(

1

2
))
‖𝑋(0,∞) < ∞, which follows from

∞ >
‖‖‖‖‖
𝑢(𝑡)𝜒(0,𝜈−1(1))(𝑡)∫

1

𝜈(𝑡)

𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,∞)

≥ ‖‖‖‖‖
𝑢(𝑡)𝜒

(0,𝜈−1(
1

2
))
(𝑡)∫

1

𝜈(𝑡)

𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,∞)

≥ 𝑣(1)
2

‖‖‖‖𝑢𝜒(0,𝜈−1( 12 ))
‖‖‖‖𝑋(0,∞)

.

Furthermore, note that (3.10) guarantees that

lim sup
𝜏→∞

𝑣(𝜏)‖𝑢𝜒(0,𝜈−1(𝜏))‖𝑋(0,∞) < ∞ (3.11)

if and only if

sup
𝜏∈[1,∞)

𝑣(𝜏)‖𝑢𝜒(0,𝜈−1(𝜏))‖𝑋(0,∞) < ∞. (3.12)

Now, as for the first term on the right-hand side of (3.8), we have that

‖‖‖‖‖
𝑢(𝑡)𝜒(0,𝜈−1(𝑏))(𝑡)∫

𝑏

𝜈(𝑡)

𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,∞)

≤ ‖‖‖‖‖
𝑢(𝑡)𝜒(0,𝜈−1(1))(𝑡)∫

1

𝜈(𝑡)

𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,∞)

+
‖‖‖‖‖
𝑢(𝑡)𝜒(0,𝜈−1(1))(𝑡)∫

𝑏

1

𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,∞)

+
‖‖‖‖‖
𝑢(𝑡)𝜒(𝜈−1(1),𝜈−1(𝑏))(𝑡)∫

𝑏

𝜈(𝑡)

𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,∞)

≤ 𝐴 < ∞. (3.13)

Here,

𝐴 =
‖‖‖‖‖
𝑢(𝑡)𝜒(0,𝜈−1(1))(𝑡)∫

1

𝜈(𝑡)

𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,∞)

+ 𝑣(1)(𝑏 − 1)‖𝑢𝜒(0,𝜈−1(1))‖𝑋(0,∞)

+ 𝑣(1)(𝑏 − 1)‖𝑢𝜒(0,𝜈−1(𝑏)−𝜈−1(1))‖𝑋(0,∞).
As for the second term on the right-hand side of (3.8), we have that

‖‖‖‖‖
𝑢(𝑡)𝜒(0,𝜈−1(𝑎𝑘))(𝑡)∫

𝑏𝑘

𝑎𝑘

𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,∞)

≤ 𝑣(𝑎𝑘)(𝑏𝑘 − 𝑎𝑘)‖𝑢𝜒(0,𝜈−1(𝑎𝑘))‖𝑋(0,∞)
≤ 𝐵(𝑏𝑘 − 𝑎𝑘), (3.14)

where 𝐵 is the supremum in (3.12), which is independent of 𝑘. Next,

‖‖‖‖‖
𝑢(𝑡)𝜒(𝜈−1(𝑎𝑘),𝜈−1(𝑏𝑘))(𝑡)∫

𝑏𝑘

𝜈(𝑡)

𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,∞)

≤ ∫
𝑏𝑘

𝑎𝑘

𝑣(𝑠) 𝑑𝑠‖𝑢𝜒(𝜈−1(𝑎𝑘),𝜈−1(𝑏𝑘))‖𝑋(0,∞)

≤ 𝑣(𝑎𝑘)(𝑏𝑘 − 𝑎𝑘)‖𝑢𝜒(𝜈−1(𝑎𝑘),𝜈−1(𝑏𝑘))‖𝑋(0,∞)
≤ 𝑣(𝑎𝑘)(𝑏𝑘 − 𝑎𝑘)‖𝑢𝜒(0,(𝜃−1)𝜈−1(𝑎𝑘))‖𝑋(0,∞)
≤ ⌈𝜃 − 1⌉𝑣(𝑎𝑘)(𝑏𝑘 − 𝑎𝑘)‖𝑢𝜒(0,𝜈−1(𝑎𝑘))‖𝑋(0,∞)
≤ ⌈𝜃 − 1⌉𝐵(𝑏𝑘 − 𝑎𝑘). (3.15)
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MIHULA 3505

Here, we used the monotonicity of 𝑢 and 𝑣 in the second inequality, (3.7) in the third one, and the monotonicity of 𝑢 in
the fourth one. By combining (3.8) with (3.13), (3.14), and (3.15), we obtain that

‖‖‖‖‖
𝑢(𝑡)∫

∞

𝜈(𝑡)

ℎ(𝑠)𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,∞)

≤ 𝐴 + ⌈𝜃⌉𝐵∑
𝑘

(𝑏𝑘 − 𝑎𝑘) ≤ 𝐴 + ⌈𝜃⌉𝜃𝐵|𝐸| < ∞.

Hence, ‖𝜒𝐸‖𝑌(0,𝐿) < ∞ provided that (3.9) and (3.11) are satisfied. The necessity of (3.9) is obvious because we have that

‖‖‖‖‖
𝑢(𝑡)𝜒(0,𝜈−1(1))(𝑡)∫

1

𝜈(𝑡)

𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,∞)

≤ ‖𝜒(0,1)‖𝑌(0,∞).

As for the necessity of (3.11), suppose that lim sup𝜏→∞ 𝑣(𝜏) ‖‖𝑢𝜒(0,𝜈−1(𝜏))‖‖𝑋(0,∞) = ∞. It follows that there is a sequence
𝜏𝑘 ↗ ∞, 𝑘 → ∞, such that

lim
𝑘→∞

𝑣(𝜏𝑘)‖𝑢𝜒(0,𝜈−1(𝜏𝑘))‖𝑋(0,∞) = ∞.

Since inf 𝑡∈[1,∞)
𝜈(𝜃𝑡)

𝜈(𝑡)
> 1, we can find an 𝜀 > 0 such that 𝜈(𝜃𝑡)

𝜈(𝑡)
≥ 1 + 𝜀 for every 𝑡 ∈ [1,∞).Moreover,wemay clearly assume

that 𝜏𝑘 ≥ 𝜈(1) + 1 and 𝜏𝑘

𝜏𝑘−1
≤ 1 + 𝜀. Hence,

𝜈−1(𝜏𝑘) − 𝜈
−1(𝜏𝑘 − 1) ≤ (𝜃 − 1)𝜈−1(𝜏𝑘 − 1) (3.16)

inasmuch as 𝜈(𝜃𝜈
−1(𝜏𝑘−1))

𝜈(𝜈−1(𝜏𝑘−1))
≥ 1 + 𝜀. Using (3.16) and the fact that 𝑢 is nonincreasing, we obtain that

‖𝑢𝜒(0,𝜈−1(𝜏𝑘))‖𝑋(0,∞) ≤ ‖𝑢𝜒(0,𝜈−1(𝜏𝑘−1))‖𝑋(0,∞) + ‖𝑢𝜒(𝜈−1(𝜏𝑘−1),𝜈−1(𝜏𝑘))‖𝑋(0,∞)
≤ ‖𝑢𝜒(0,𝜈−1(𝜏𝑘−1))‖𝑋(0,∞) + ‖𝑢𝜒(0,𝜈−1(𝜏𝑘)−𝜈−1(𝜏𝑘−1))‖𝑋(0,∞)
≤ ‖𝑢𝜒(0,𝜈−1(𝜏𝑘−1))‖𝑋(0,∞) + ‖𝑢𝜒(0,(𝜃−1)𝜈−1(𝜏𝑘−1))‖𝑋(0,∞)
= ⌈𝜃⌉‖𝑢𝜒(0,𝜈−1(𝜏𝑘−1))‖𝑋(0,∞).

Therefore,

‖𝜒(0,1)‖𝑌(0,∞) ≥ ‖‖‖‖‖
𝑢(𝑡)𝜒(0,𝜈−1(𝜏𝑘−1))(𝑡)∫

∞

𝜈(𝑡)

𝜒(𝜏𝑘−1,𝜏𝑘)(𝑠)𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,∞)

≥ 𝑣(𝜏𝑘)‖𝑢𝜒(0,𝜈−1(𝜏𝑘−1))‖𝑋(0,∞) ≥ 1

⌈𝜃⌉𝑣(𝜏𝑘)‖𝑢𝜒(0,𝜈−1(𝜏𝑘))‖𝑋(0,∞),

which tends to∞ as 𝑘 → ∞. Hence, ‖𝜒(0,1)‖𝑌(0,∞) = ∞, and so ‖ ⋅ ‖𝑌(0,∞) does not have property (P4).
Property (P5). Assume that 𝐿 < ∞. Note that (3.4) together with 𝑣(𝐿−) > 0 implies that ‖𝑢‖𝑋(0,𝐿) < ∞. Let 𝑓 ∈

𝔐+(0, 𝐿). Since 𝑓∗ is nonincreasing, we have that ∫ 𝐿
0
𝑓∗(𝑠) 𝑑𝑠 ≤ 2 ∫ 𝐿

2

0 𝑓
∗(𝑠) 𝑑𝑠. Since the function (0, 𝐿) ∋ 𝑡 ↦ 𝑓∗(𝐿 − 𝑡)

is equimeasurable with 𝑓, we have that

‖𝑓‖𝑌(0,𝐿) ≥ ‖‖‖‖‖
𝑢(𝑡)∫

𝐿

𝜈(𝑡)

𝑓∗(𝐿 − 𝑠)𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,𝐿)

≥ 𝑣(𝐿−)‖‖‖‖‖𝑢(𝑡)𝜒(0,𝜈−1( 𝐿2 ))(𝑡)∫
𝐿

𝜈(𝑡)

𝑓∗(𝐿 − 𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,𝐿)

= 𝑣(𝐿−)
‖‖‖‖‖
𝑢(𝑡)𝜒

(0,𝜈−1(
𝐿

2
))
(𝑡)∫

𝐿−𝜈(𝑡)

0

𝑓∗(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,𝐿)
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3506 MIHULA

≥ 𝑣(𝐿−)‖𝑢𝜒
(0,𝜈−1(

𝐿

2
))
‖𝑋(0,𝐿) ∫

𝐿

2

0

𝑓∗(𝑠) 𝑑𝑠

≥ 𝑣(𝐿−)
2

‖𝑢𝜒
(0,𝜈−1(

𝐿

2
))
‖𝑋(0,𝐿) ∫

𝐿

0

𝑓∗(𝑠) 𝑑𝑠

≥ 𝑣(𝐿−)
2

‖𝑢𝜒
(0,𝜈−1(

𝐿

2
))
‖𝑋(0,𝐿) ∫

𝐿

0

𝑓(𝑠) 𝑑𝑠.

Here, we used (2.5) in the last inequality. Since 𝑣(𝐿
−)

2
‖𝑢𝜒

(0,𝜈−1(
𝐿

2
))
‖𝑋(0,𝐿) ∈ (0,∞) does not depend on 𝑓, property (P5)

follows. Assume now that 𝐿 = ∞. Recall that (3.10) is satisfied provided that (3.9) is satisfied. Let 𝑓 ∈ 𝔐+(0,∞) and
𝐸 ⊆ (0,∞) be of finite measure. The function (0,∞) ∋ 𝑡 ↦ 𝑓∗(𝑡 − |𝐸|)𝜒(|𝐸|,∞)(𝑡) is equimeasurable with 𝑓. By arguing
similarly to the case 𝐿 < ∞, we obtain that

‖𝑓‖𝑌(0,∞) ≥ 𝑣(2|𝐸|)‖𝑢𝜒(0,𝜈−1(|𝐸|))‖𝑋(0,∞) ∫
𝐸

𝑓(𝑠) 𝑑𝑠,

whence property (P5) follows.
Property (P6). Since the relation ∼ is transitive, it plainly follows that ‖ ⋅ ‖𝑌(0,𝐿) has property (P6).
Note that the necessity of (3.4) for ‖ ⋅ ‖𝑌(0,𝐿) to be a rearrangement-invariant function norm was already proved in the

paragraph devoted to property (P4).
Assume now that (3.4) is satisfied. We plainly have that

‖𝐻𝑢,𝑣,𝜈𝑓‖𝑋(0,𝐿) ≤ ‖𝑓‖𝑌(0,𝐿) for every 𝑓 ∈ 𝔐+(0, 𝐿),

and so 𝐻𝑢,𝑣,𝜈 ∶ 𝑌(0, 𝐿) → 𝑋(0, 𝐿) is bounded. Next, let 𝑍(0, 𝐿) be a rearrangement-invariant function space such that
𝐻𝑢,𝑣,𝜈 ∶ 𝑍(0, 𝐿) → 𝑋(0, 𝐿) is bounded. For every 𝑓 ∈ 𝔐+(0,∞) and each ℎ ∈ 𝔐+(0, 𝐿) equimeasurable with 𝑓, we have
that

‖𝐻𝑢,𝑣,𝜈ℎ‖𝑋(0,𝐿) ≲ ‖ℎ‖𝑍(0,𝐿) = ‖𝑓‖𝑍(0,𝐿).

Therefore,

‖𝑓‖𝑌(0,𝐿) ≲ ‖𝑓‖𝑍(0,𝐿) for every 𝑓 ∈ 𝔐+(0, 𝐿).

Hence, 𝑍(0, 𝐿) ↪ 𝑌(0, 𝐿). Finally, we claim that (3.4) needs to be satisfied if there is any rearrangement-invariant function
space 𝑍(0, 𝐿) such that𝐻𝑢,𝑣,𝜈 ∶ 𝑍(0, 𝐿) → 𝑋(0, 𝐿) is bounded. If 𝐿 < ∞, we plainly have that

‖‖‖‖‖
𝑢(𝑡)∫

𝐿

𝜈(𝑡)

𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,𝐿)

= ‖𝐻𝑢,𝑣,𝜈𝜒(0,𝐿)‖𝑋(0,𝐿) ≲ ‖𝜒(0,𝐿)‖𝑍(0,𝐿) < ∞.

If 𝐿 = ∞, we can argue as in the paragraph devoted to property (P4) to show that, if (3.4) is not satisfied, then

sup
ℎ∼𝜒(0,1)

‖𝐻𝑢,𝑣,𝜈ℎ‖𝑋(0,∞) = ∞.

However, this implies, thanks to the boundedness of𝐻𝑢,𝑣,𝜈 ∶ 𝑍(0,∞) → 𝑋(0,∞),

∞ = sup
ℎ∼𝜒(0,1)

‖𝐻𝑢,𝑣,𝜈ℎ‖𝑋(0,∞) ≲ ‖𝜒(0,1)‖𝑍(0,∞) < ∞,

which would be a contradiction. □
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MIHULA 3507

Remark 3.4.

(1) The assumption 𝜈 ∈ 𝐷∞ is not overly restrictive. For example, it is satisfied whenever 𝜈 is equivalent to 𝑡 ↦ 𝑡𝛼𝑏(𝑡)
near∞ for some 𝛼 > 0 and a slowly varying function 𝑏 (cf. [35, Proposition 2.2]). On the other hand, 𝜈(𝑡) = log𝛼(𝑡)
near ∞, where 𝛼 > 0, is a typical example of a function not satisfying the assumption. The same remark (with the
obvious modifications) is true for the assumption 𝜈 ∈ 𝐷0, which will appear in Proposition 5.4.

(2) When 𝑢 ≡ 1, (3.11) is equivalent to
lim sup
𝑡→∞

𝑣(𝜈(𝑡))‖𝜒(0,𝑡)‖𝑋(0,∞) < ∞.
(3) The functional (3.3) is quite complicated; however, we shall see in Section 4 that it can often be significantly simplified.
(4) Let 𝑌1(0, 𝐿) and 𝑌2(0, 𝐿) be the optimal domain spaces for 𝑅𝑢1,𝑣1,𝜈1 and 𝐻𝑢2,𝑣2,𝜈2 , respectively. Note that (𝑅𝑢1,𝑣1,𝜈1 +

𝐻𝑢2,𝑣2,𝜈2 ) ∶ 𝑍(0, 𝐿) → 𝑋(0, 𝐿) is bounded if and only if both 𝑅𝑢1,𝑣1,𝜈1 and𝐻𝑢2,𝑣2,𝜈2 are bounded from 𝑍(0, 𝐿) to 𝑋(0, 𝐿).
Consequently, 𝑌1(0, 𝐿) ∩ 𝑌2(0, 𝐿) is the optimal domain space for 𝑅𝑢1,𝑣1,𝜈1 + 𝐻𝑢2,𝑣2,𝜈2 and 𝑋(0, 𝐿).

3.2 Optimal target spaces

We start with an easy but useful observation concerning the Hardy-type operators defined by (1.1) and (1.2). Let 𝑢, 𝑣 ∶
(0, 𝐿) → (0,∞) bemeasurable functions. Let 𝜈 ∶ (0, 𝐿) → (0, 𝐿) be an increasing bijection. The operators𝑅𝑢,𝑣,𝜈 and𝐻𝑢,𝑣,𝜈−1
are in a sense dual to each other. More precisely, by using the Fubini theorem, one can easily verify that

∫
𝐿

0

𝑓(𝑡)𝑅𝑢,𝑣,𝜈𝑔(𝑡) 𝑑𝑡 = ∫
𝐿

0

𝑔(𝑡)𝐻𝑢,𝑣,𝜈−1𝑓(𝑡) 𝑑𝑡 for every 𝑓, 𝑔 ∈ 𝔐+(0, 𝐿). (3.17)

Here, 𝜈−1 is the inverse function to 𝜈.
The validity of (3.17) has an unsurprising, well-known consequence, which we state here for future reference (see also

Corollary 4.9).

Proposition 3.5. Let ‖ ⋅ ‖𝑋(0,𝐿), ‖ ⋅ ‖𝑌(0,𝐿) be rearrangement-invariant function norms.

(1) Let 𝜈 ∶ (0, 𝐿) → (0, 𝐿) be an increasing bijection.
(2) Let 𝑢, 𝑣 ∶ (0, 𝐿) → (0,∞) be measurable.

We have that

sup
‖𝑓‖𝑋(0,𝐿)≤1

‖𝑅𝑢,𝑣,𝜈𝑓‖𝑌(0,𝐿) = sup
‖𝑔‖𝑌′(0,𝐿)≤1

‖𝐻𝑢,𝑣,𝜈−1𝑔‖𝑋′(0,𝐿). (3.18)

In particular,

𝑅𝑢,𝑣,𝜈 ∶ 𝑋(0, 𝐿) → 𝑌(0, 𝐿) is bounded if and only if

𝐻𝑢,𝑣,𝜈−1 ∶ 𝑌
′(0, 𝐿) → 𝑋′(0, 𝐿) is bounded. (3.19)

Proof. We have that

sup
‖𝑓‖𝑋(0,𝐿)≤1

‖𝑅𝑢,𝑣,𝜈𝑓‖𝑌(0,𝐿) = sup
‖𝑓‖𝑋(0,𝐿)≤1

sup
‖𝑔‖𝑌′(0,𝐿)≤1∫

𝐿

0

𝑅𝑢,𝑣,𝜈𝑓(𝑡)|𝑔(𝑡)|𝑑𝑡

= sup
‖𝑓‖𝑋(0,𝐿)≤1

sup
‖𝑔‖𝑌′(0,𝐿)≤1∫

𝐿

0

|𝑓(𝑡)|𝐻𝑢,𝑣,𝜈−1𝑔(𝑡) 𝑑𝑡

= sup
‖𝑔‖𝑌′(0,𝐿)≤1

‖𝐻𝑢,𝑣,𝜈−1𝑔‖𝑋′(0,𝐿)

thanks to (2.9), (3.17), and (2.8). □
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3508 MIHULA

Remark 3.6. Thanks to (3.19) and (2.10), 𝑌(0, 𝐿) is the optimal target space for the operator 𝐻𝑢,𝑣,𝜈 and 𝑋(0, 𝐿) if and only
if 𝑌′(0, 𝐿) is the optimal domain space for the operator 𝑅𝑢,𝑣,𝜈−1 and 𝑋′(0, 𝐿). Similarly, 𝑌(0, 𝐿) is the optimal target space
for the operator 𝑅𝑢,𝑣,𝜈 and 𝑋(0, 𝐿) if and only if 𝑌′(0, 𝐿) is the optimal domain space for the operator𝐻𝑢,𝑣,𝜈−1 and 𝑋′(0, 𝐿).

As immediate corollaries of Remark 3.6 combined with Proposition 3.1 and Proposition 3.3, we obtain the following
descriptions of the optimal target spaces for the operators𝐻𝑢,𝑣,𝜈 and 𝑅𝑢,𝑣,𝜈, respectively.

Proposition 3.7. Let ‖ ⋅ ‖𝑋(0,𝐿) be a rearrangement-invariant function norm.

∙ Let 𝜈, 𝑢, 𝑣 be as in Proposition 3.1.

Assume that 𝜉 ∈ 𝑋′(0, 𝐿), where 𝜉 is defined by (3.1) with 𝜈 replaced by 𝜈−1. Let ‖ ⋅ ‖𝑌(0,𝐿) be the rearrangement-invariant
function norm whose associate function norm ‖ ⋅ ‖𝑌′(0,𝐿) is defined as

‖𝑓‖𝑌′(0,𝐿) = ‖𝑅𝑢,𝑣,𝜈−1(𝑓∗)‖𝑋′(0,𝐿), 𝑓 ∈ 𝔐+(0, 𝐿).

The rearrangement-invariant function space𝑌(0, 𝐿) is the optimal target space for the operator𝐻𝑢,𝑣,𝜈 and𝑋(0, 𝐿).Moreover, if
𝜉 ∉ 𝑋′(0, 𝐿), then there is no rearrangement-invariant function space𝑍(0, 𝐿) such that𝐻𝑢,𝑣,𝜈 ∶ 𝑋(0, 𝐿) → 𝑍(0, 𝐿) is bounded.

Proposition 3.8. Let ‖ ⋅ ‖𝑋(0,𝐿) be a rearrangement-invariant function norm.

∙ Let 𝜈 ∶ (0, 𝐿) → (0, 𝐿) be an increasing bijection. If 𝐿 = ∞, assume that 𝜈−1 ∈ 𝐷∞.
∙ Let 𝑢, 𝑣 be as in Proposition 3.3.

Assume that

⎧
⎪⎪⎨⎪⎪⎩

𝑢(𝑡) ∫ 𝐿
𝜈−1(𝑡)

𝑣(𝑠) 𝑑𝑠 ∈ 𝑋′(0, 𝐿) if 𝐿 < ∞,

𝑢(𝑡)𝜒(0,𝜈(1))(𝑡) ∫ 1𝜈−1(𝑡) 𝑣(𝑠) 𝑑𝑠 ∈ 𝑋′(0,∞) and
lim sup𝜏→∞ 𝑣(𝜏)‖𝑢𝜒(0,𝜈(𝜏))‖𝑋′(0,∞) < ∞

if 𝐿 = ∞.
(3.20)

Let ‖ ⋅ ‖𝑌(0,𝐿) be the rearrangement-invariant function norm whose associate function norm ‖ ⋅ ‖𝑌′(0,𝐿) is defined as

‖𝑓‖𝑌′(0,𝐿) = sup
ℎ∼𝑓

‖𝐻𝑢,𝑣,𝜈−1ℎ‖𝑋′(0,𝐿), 𝑓 ∈ 𝔐+(0, 𝐿). (3.21)

Here, the supremum extends over all ℎ ∈ 𝔐+(0, 𝐿) equimeasurable with 𝑓. The rearrangement-invariant function space
𝑌(0, 𝐿) is the optimal target space for the operator 𝑅𝑢,𝑣,𝜈 and 𝑋(0, 𝐿). Moreover, if (3.20) is not satisfied, then there is no
rearrangement-invariant function space 𝑍(0, 𝐿) such that 𝑅𝑢,𝑣,𝜈 ∶ 𝑋(0, 𝐿) → 𝑍(0, 𝐿) is bounded.

Remark 3.9. Let 𝑌1(0, 𝐿) and 𝑌2(0, 𝐿) be the optimal target spaces for 𝑅𝑢1,𝑣1,𝜈1 and 𝐻𝑢2,𝑣2,𝜈2 , respectively. Note that
(𝑅𝑢1,𝑣1,𝜈1 + 𝐻𝑢2,𝑣2,𝜈2 ) ∶ 𝑋(0, 𝐿) → 𝑍(0, 𝐿) is bounded if and only if both 𝑅𝑢1,𝑣1,𝜈1 and 𝐻𝑢2,𝑣2,𝜈2 are bounded from 𝑋(0, 𝐿)
to 𝑍(0, 𝐿). It follows that (𝑌1 + 𝑌2)(0, 𝐿) is the optimal target space for 𝑅𝑢1,𝑣1,𝜈1 + 𝐻𝑢2,𝑣2,𝜈2 and 𝑋(0, 𝐿).

4 SIMPLIFICATION OF OPTIMAL FUNCTION NORMS AND THEIR CONNECTION
WITH INTERPOLATION

4.1 Simplification of optimal function norms

The description of the optimal domain spaces for the operator 𝐻𝑢,𝑣,𝜈 is complicated by the fact that the functional
𝔐+(0, 𝐿) ∋ 𝑓 ↦ ‖𝐻𝑢,𝑣,𝜈(𝑓∗)‖𝑋(0,𝐿) is usually not a rearrangement-invariant function norm. However, it actually is a
rearrangement-invariant function norm when 𝑢, 𝑣, and 𝜈 are related to each other in such a way that the function
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MIHULA 3509

𝑅𝑢,𝑣,𝜈−1(𝑔
∗) is nonincreasing for every 𝑔 ∈ 𝔐+(0, 𝐿). This fact is the content of the following proposition, in which we

omit its obvious consequences for optimal spaces. In the light of Proposition 3.8, the situation is similar for the optimal
target spaces for the operator 𝑅𝑢,𝑣,𝜈.

Proposition 4.1. Let ‖ ⋅ ‖𝑋(0,𝐿) be a rearrangement-invariant function norm.

(1) Let 𝜈 ∶ (0, 𝐿) → (0, 𝐿) be an increasing bijection.
(2) Let 𝑢 ∶ (0, 𝐿) → (0,∞) be a nondegenerate nonincreasing function.
(3) Let 𝑣 ∶ (0, 𝐿) → (0,∞) be defined by

1

𝑣(𝑡)
= ∫

𝜈−1(𝑡)

0

𝑢(𝑠) 𝑑𝑠 for every 𝑡 ∈ (0, 𝐿).

Set

‖𝑓‖𝑌(0,𝐿) = ‖𝐻𝑢,𝑣,𝜈(𝑓∗)‖𝑋(0,𝐿), 𝑓 ∈ 𝔐+(0, 𝐿).

The functional ‖ ⋅ ‖𝑌(0,𝐿) is a rearrangement-invariant function norm if and only if

‖‖‖‖‖
𝑢(𝑡)𝜒(0,𝜈−1(𝑎))(𝑡)∫

𝑎

𝜈(𝑡)

1

𝑈(𝜈−1(𝑠))
𝑑𝑠
‖‖‖‖‖𝑋(0,𝐿)

< ∞, (4.1)

where 𝑎 is defined by (3.2).

Proof. We only sketch the proof, which is significantly easier than that of Proposition 3.3. The functional ‖ ⋅ ‖𝑌(0,𝐿) plainly
possesses properties (P2), (P3), and (P6). It is easy to see that ‖ ⋅ ‖𝑌(0,𝐿) has property (P4) if and only if (4.1) is satisfied. To
this end, note that (4.1) implies (3.10). As for property (P1), only the subadditivity needs a comment. The key observation
is that (0, 𝐿) ∋ 𝑡 ↦ 𝑅𝑢,𝑣,𝜈−1(ℎ∗)(𝑡) is nonincreasing for every ℎ ∈ 𝔐+(0, 𝐿) inasmuch as it is the integral mean of a non-
negative nonincreasing function over the interval (0, 𝜈−1(𝑡)) with respect to the measure 𝑢(𝑠) 𝑑𝑠. Hence, thanks to (2.11),
(3.17), and (2.3) combined with the Hardy lemma (2.6), we have that

‖𝑓 + 𝑔‖𝑌(0,𝐿) = ‖𝐻𝑢,𝑣,𝜈((𝑓 + 𝑔)∗)‖𝑋(0,𝐿) = sup
ℎ∈𝔐+(0,𝐿)
‖ℎ‖𝑋′(0,𝐿)≤1

∫
𝐿

0

𝐻𝑢,𝑣,𝜈((𝑓 + 𝑔)
∗)(𝑡)ℎ∗(𝑡) 𝑑𝑡

= sup
ℎ∈𝔐+(0,𝐿)
‖ℎ‖𝑋′(0,𝐿)≤1

∫
𝐿

0

(𝑓 + 𝑔)∗(𝑡)𝑅𝑢,𝑣,𝜈−1(ℎ
∗)(𝑡) 𝑑𝑡

≤ sup
ℎ∈𝔐+(0,𝐿)
‖ℎ‖𝑋′(0,𝐿)≤1

∫
𝐿

0

𝑓∗(𝑡)𝑅𝑢,𝑣,𝜈−1(ℎ
∗)(𝑡) 𝑑𝑡

+ sup
ℎ∈𝔐+(0,𝐿)
‖ℎ‖𝑋′(0,𝐿)≤1

∫
𝐿

0

𝑔∗(𝑡)𝑅𝑢,𝑣,𝜈−1(ℎ
∗)(𝑡) 𝑑𝑡

= sup
ℎ∈𝔐+(0,𝐿)
‖ℎ‖𝑋′(0,𝐿)≤1

∫
𝐿

0

𝐻𝑢,𝑣,𝜈(𝑓
∗)(𝑡)ℎ∗(𝑡) 𝑑𝑡

+ sup
ℎ∈𝔐+(0,𝐿)
‖ℎ‖𝑋′(0,𝐿)≤1

∫
𝐿

0

𝐻𝑢,𝑣,𝜈(𝑔
∗)(𝑡)ℎ∗(𝑡) 𝑑𝑡

= ‖𝑓‖𝑌(0,𝐿) + ‖𝑔‖𝑌(0,𝐿)
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3510 MIHULA

for every𝑓, 𝑔 ∈ 𝔐+(0, 𝐿). Finally, as for the validity of property (P5), owing to (2.11), (3.17), themonotonicity of𝑅𝑢,𝑣,𝜈−1(𝑔∗),
and the Hardy–Littlewood inequality (2.4), we have that

‖𝑓‖𝑌(0,𝐿) ≥ ‖𝑓𝜒𝐸‖𝑌(0,𝐿) = sup
𝑔∈𝔐+(0,𝐿)
‖𝑔‖𝑋′(0,𝐿)≤1

∫
𝐿

0

(𝑓𝜒𝐸)
∗(𝑡)𝑅𝑢,𝑣,𝜈−1(𝑔

∗)(𝑡) 𝑑𝑡

= sup
𝑔∈𝔐+(0,𝐿)
‖𝑔‖𝑋′(0,𝐿)≤1

∫
|𝐸|

0

(𝑓𝜒𝐸)
∗(𝑡)𝑅𝑢,𝑣,𝜈−1(𝑔

∗)(𝑡) 𝑑𝑡

≥ ∫
|𝐸|

0

(𝑓𝜒𝐸)
∗(𝑡) 𝑑𝑡 sup

𝑔∈𝔐+(0,𝐿)
‖𝑔‖𝑋′(0,𝐿)≤1

𝑅𝑢,𝑣,𝜈−1(𝑔
∗)(|𝐸|)

≥ 𝑅𝑢,𝑣,𝜈−1
(

𝜒(0,|𝐸|)
‖𝜒(0,|𝐸|)‖𝑋′(0,𝐿)

)
(|𝐸|)∫

|𝐸|

0

(𝑓𝜒𝐸)
∗(𝑡) 𝑑𝑡

≥ 𝑣(|𝐸|)
‖𝜒(0,|𝐸|)‖𝑋′(0,𝐿) 𝑈(𝜈

−1(|𝐸|))∫
𝐸

𝑓(𝑡) 𝑑𝑡

for every 𝑓 ∈ 𝔐+(0, 𝐿) and 𝐸 ⊆ (0, 𝐿) having finite measure. □

In general, when the functions 𝑢, 𝑣, and 𝜈 are not related to each other in the particular way as in Proposition 4.1, we
have to live with the complicated functional (3.3). Nevertheless, we shall see that the functional is often equivalent to a
significantly moremanageable functional (cf. [30, Theorem 4.2]). To this end, we need to introduce a supremum operator.
For a fixed measurable function 𝜑 ∶ (0, 𝐿) → (0,∞), we define the operator 𝑇𝜑 as

𝑇𝜑𝑓(𝑡) =
1

𝜑(𝑡)
ess sup
𝑠∈[𝑡,𝐿)

𝜑(𝑠)𝑓∗(𝑠), 𝑡 ∈ (0, 𝐿), 𝑓 ∈ 𝔐(0, 𝐿). (4.2)

Note that 𝑇𝜑𝑓(𝑡) =
1

𝜑(𝑡)
sup𝑠∈[𝑡,𝐿) 𝜑(𝑠)𝑓

∗(𝑠) for every 𝑡 ∈ (0, 𝐿) provided that 𝜑 is nondecreasing and/or right-continuous.

If 𝜑 is nonincreasing, we have that 𝑇𝜑𝑓(𝑡) =
𝑓∗(𝑡)

𝜑(𝑡)
𝜑(𝑡+) for every 𝑡 ∈ (0, 𝐿), and so 𝑇𝜑𝑓 = 𝑓∗ possibly up to a countably

many points.

Proposition 4.2. Let ‖ ⋅ ‖𝑋(0,𝐿) be a rearrangement-invariant function norm.

(1) Let 𝜈 ∶ (0, 𝐿) → (0, 𝐿) be an increasing bijection. If 𝐿 = ∞, assume that 𝜈 ∈ 𝐷∞.
(2) Let 𝑢 ∶ (0, 𝐿) → (0,∞) be nonincreasing.
(3) Let 𝑣 ∶ (0, 𝐿) → (0,∞) be defined by

1

𝑣(𝑡)
= ∫

𝜈−1(𝑡)

0

𝜉(𝑠) 𝑑𝑠 for every 𝑡 ∈ (0, 𝐿), (4.3)

where 𝜉 ∶ (0, 𝐿) → (0,∞) is a measurable function. If 𝐿 < ∞, assume that 𝑣(𝐿−) > 0. Furthermore, assume that the
operator 𝑇𝜑 defined by (4.2) with 𝜑 = 𝑢∕𝜉 is bounded on 𝑋′(0, 𝐿).

Assume that

‖‖‖‖‖
𝑢(𝑡)𝜒(0,𝜈−1(𝑎))(𝑡)∫

𝑎

𝜈(𝑡)

𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,𝐿)

< ∞,
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MIHULA 3511

where 𝑎 is defined by (3.2). Let ‖ ⋅ ‖𝑌(0,𝐿) be the functional defined by (3.3) and set

‖𝑓‖𝑍(0,𝐿) = sup
𝑔∈𝔐+(0,𝐿)
‖𝑔‖𝑋′(0,𝐿)≤1

∫
𝐿

0

𝑓∗(𝑠)𝑣(𝑡)∫
𝜈−1(𝑡)

0

𝑇𝜑𝑔(𝑠)𝑢(𝑠) 𝑑𝑠 𝑑𝑡, 𝑓 ∈ 𝔐
+(0, 𝐿).

The functionals ‖ ⋅ ‖𝑌(0,𝐿) and ‖ ⋅ ‖𝑍(0,𝐿) are rearrangement-invariant function norms. Furthermore, we have that

‖𝐻𝑢,𝑣,𝜈(𝑓∗)‖𝑋(0,𝐿) ≤ sup
ℎ∼𝑓

‖𝐻𝑢,𝑣,𝜈ℎ‖𝑋(0,𝐿) ≤ ‖𝑓‖𝑍(0,𝐿)

≤ ‖𝑇𝜑‖𝑋′(0,𝐿)‖𝐻𝑢,𝑣,𝜈(𝑓∗)‖𝑋(0,𝐿) (4.4)

for every 𝑓 ∈ 𝔐+(0, 𝐿). Here, ‖𝑇𝜑‖𝑋′(0,𝐿) stands for the operator norm of 𝑇𝜑 on 𝑋′(0, 𝐿). In particular, the rearrangement-
invariant function norms ‖ ⋅ ‖𝑌(0,𝐿) and ‖ ⋅ ‖𝑍(0,𝐿) are equivalent.

Proof. Since 𝑓 ∼ 𝑓∗ for every 𝑓 ∈ 𝔐+(0, 𝐿), the first inequality in (4.4) plainly holds. As for the second inequality, note
that the function (0, 𝐿) ∋ 𝑡 ↦ 𝑅𝑢,𝑣,𝜈−1(𝑇𝜑𝑔)(𝑡) is nonincreasing for every 𝑔 ∈ 𝔐+(0, 𝐿). Indeed, it is the integral mean of
the nonincreasing function (0, 𝐿) ∋ 𝑠 ↦ ess sup𝜏∈[𝑠,𝐿) 𝜑(𝜏)𝑔

∗(𝜏) over the interval (0, 𝜈−1(𝑡)) with respect to the measure
𝜉(𝑠) 𝑑𝑠. Consequently, for every 𝑓 ∈ 𝔐+(0, 𝐿) and every ℎ ∈ 𝔐+(0, 𝐿) equimeasurable with 𝑓, we have that

‖𝐻𝑢,𝑣,𝜈ℎ‖𝑋(0,𝐿) = sup
𝑔∈𝔐+(0,𝐿)
‖𝑔‖𝑋′(0,𝐿)≤1

∫
𝐿

0

ℎ(𝑡)𝑅𝑢,𝑣,𝜈−1(𝑔
∗)(𝑡) 𝑑𝑡

≤ sup
𝑔∈𝔐+(0,𝐿)
‖𝑔‖𝑋′(0,𝐿)≤1

∫
𝐿

0

ℎ(𝑡)𝑅𝑢,𝑣,𝜈−1(𝑇𝜑𝑔)(𝑡) 𝑑𝑡

≤ sup
𝑔∈𝔐+(0,𝐿)
‖𝑔‖𝑋′(0,𝐿)≤1

∫
𝐿

0

ℎ∗(𝑡)𝑅𝑢,𝑣,𝜈−1(𝑇𝜑𝑔)(𝑡) 𝑑𝑡

= sup
𝑔∈𝔐+(0,𝐿)
‖𝑔‖𝑋′(0,𝐿)≤1

∫
𝐿

0

𝑓∗(𝑡)𝑅𝑢,𝑣,𝜈−1(𝑇𝜑𝑔)(𝑡) 𝑑𝑡

= ‖𝑓‖𝑍(0,𝐿). (4.5)

Here, we used (2.11) together with (3.17) in the first equality, the pointwise estimate 𝑔∗(𝑡) ≤ 𝑇𝜑𝑔(𝑡) for a.e. 𝑡 ∈ (0, 𝐿) in the
first inequality, the Hardy–Littlewood inequality (2.4) in the second inequality, and the equimeasurability of 𝑓 and ℎ in
the last inequality. Hence, the second inequality in (4.4) follows from (4.5). As for the third inequality in (4.4), we have
that

sup
𝑔∈𝔐+(0,𝐿)
‖𝑔‖𝑋′(0,𝐿)≤1

∫
𝐿

0

𝑓∗(𝑡)𝑅𝑢,𝑣,𝜈−1(𝑇𝜑𝑔)(𝑡) 𝑑𝑡 = sup
𝑔∈𝔐+(0,𝐿)
‖𝑔‖𝑋′(0,𝐿)≤1

∫
𝐿

0

𝑇𝜑𝑔(𝑡)𝐻𝑢,𝑣,𝜈(𝑓
∗)(𝑡) 𝑑𝑡

≤ ‖𝐻𝑢,𝑣,𝜈(𝑓∗)‖𝑋(0,𝐿) sup
𝑔∈𝔐+(0,𝐿)
‖𝑔‖𝑋′(0,𝐿)≤1

‖𝑇𝜑𝑔‖𝑋′(0,𝐿)

= ‖𝑇𝜑‖𝑋′(0,𝐿)‖𝐻𝑢,𝑣,𝜈(𝑓∗)‖𝑋(0,𝐿)
for every 𝑓 ∈ 𝔐+(0, 𝐿) thanks to (3.17) and the Hölder inequality (2.14).
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3512 MIHULA

Second, we shall prove that the functional ‖ ⋅ ‖𝑌(0,𝐿), defined by (3.3), is a rearrangement-invariant function norm. If
𝐿 < ∞, this follows immediately from Proposition 3.3. If 𝐿 = ∞, owing to Proposition 3.3 again, we only need to verify
that (3.11) is satisfied. To this end, it follows from the proof of property (P4) of ‖ ⋅ ‖𝑌(0,𝐿) that, if (3.11) did not hold, then
we would have

sup
ℎ∼𝜒(0,1)

‖𝐻𝑢,𝑣,𝜈ℎ‖𝑋(0,∞) = ∞.

However, thanks to (4.4), we have that

sup
ℎ∼𝜒(0,1)

‖𝐻𝑢,𝑣,𝜈ℎ‖𝑋(0,∞) ≈ ‖𝐻𝑢,𝑣,𝜈𝜒(0,1)‖𝑋(0,∞)

=
‖‖‖‖‖
𝑢(𝑡)𝜒(0,𝜈−1(1))(𝑡)∫

1

𝜈(𝑡)

𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,∞)

< ∞.

Therefore, (3.11) is satisfied.
Finally, now thatweknow that the functionals‖ ⋅ ‖𝑌(0,𝐿) and ‖ ⋅ ‖𝑍(0,𝐿) are equivalent and the former is a rearrangement-

invariant function norm, it readily follows that ‖ ⋅ ‖𝑍(0,𝐿), too, is a rearrangement-invariant function normoncewe observe
that ‖ ⋅ ‖𝑍(0,𝐿) is subadditive. The subadditivity follows from

‖𝑓 + 𝑔‖𝑍(0,𝐿) = sup
ℎ∈𝔐+(0,𝐿)
‖ℎ‖𝑋′(0,𝐿)≤1

∫
𝐿

0

(𝑓 + 𝑔)∗(𝑡)𝑅𝑢,𝑣,𝜈−1(𝑇𝜑ℎ)(𝑡) 𝑑𝑡

≤ sup
ℎ∈𝔐+(0,𝐿)
‖ℎ‖𝑋′(0,𝐿)≤1

∫
𝐿

0

𝑓∗(𝑡)𝑅𝑢,𝑣,𝜈−1(𝑇𝜑ℎ)(𝑡) 𝑑𝑡

+ sup
ℎ∈𝔐+(0,𝐿)
‖ℎ‖𝑋′(0,𝐿)≤1

∫
𝐿

0

𝑔∗(𝑡)𝑅𝑢,𝑣,𝜈−1(𝑇𝜑ℎ)(𝑡) 𝑑𝑡

= ‖𝑓‖𝑍(0,𝐿) + ‖𝑔‖𝑍(0,𝐿) for every 𝑓, 𝑔 ∈ 𝔐+(0, 𝐿).

Here, we used (2.3) together with the Hardy lemma (2.6) (recall that the function 𝑅𝑢,𝑣,𝜈−1(𝑇𝜑ℎ) is nonincreasing for every
ℎ ∈ 𝔐+(0, 𝐿)). □

Remark 4.3.

(i) If 𝜑 = 𝑢∕𝜉 is (equivalent to) a nonincreasing function, 𝑇𝜑𝑓(𝑡) is (equivalent to) 𝑓∗(𝑡) for a.e. 𝑡 ∈ (0, 𝐿); hence 𝑇𝜑 is
bounded on every rearrangement-invariant function space in this case. Furthermore, when𝜑 = 𝑢∕𝜉 is nonincreasing,
the norm of 𝑇𝜑 on every rearrangement-invariant function space is equal to 1; therefore, all the inequalities in (4.4)
are actually equalities (cf. Proposition 4.1) in this case.

(ii) The boundedness of 𝑇𝜑 on a large number of rearrangement-invariant function spaces is characterized by [34,
Theorem 3.2].

By combining Proposition 4.2 and Proposition 3.8, we obtain the following proposition. It tells us that the optimal target
space for the operator 𝑅𝑢,𝑣,𝜈 and a rearrangement-invariant function space 𝑋(0, 𝐿) often has a much more manageable
description than that given by Proposition 3.8. This is the case if the supremum operator 𝑇𝜑 defined by (4.2) with an
appropriate function 𝜑 is bounded on 𝑋(0, 𝐿).

Proposition 4.4. Let ‖ ⋅ ‖𝑋(0,𝐿) be a rearrangement-invariant function norm.

(1) Let 𝜈 ∶ (0, 𝐿) → (0, 𝐿) be an increasing bijection. If 𝐿 = ∞, assume that 𝜈−1 ∈ 𝐷∞.
(2) Let 𝑢 ∶ (0, 𝐿) → (0,∞) be nonincreasing.
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MIHULA 3513

(3) Let 𝑣 ∶ (0, 𝐿) → (0,∞) be defined by

1

𝑣(𝑡)
= ∫

𝜈(𝑡)

0

𝜉(𝑠) 𝑑𝑠 for every 𝑡 ∈ (0, 𝐿),

where 𝜉 ∶ (0, 𝐿) → (0,∞) is a measurable function. If 𝐿 < ∞, assume that 𝑣(𝐿−) > 0. Furthermore, assume that the
operator 𝑇𝜑 defined by (4.2) with 𝜑 = 𝑢∕𝜉 is bounded on 𝑋(0, 𝐿).

Assume that

‖‖‖‖‖
𝑢(𝑡)𝜒(0,𝜈(𝑎))(𝑡)∫

𝑎

𝜈−1(𝑡)

𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋′(0,𝐿)

< ∞,

where 𝑎 is defined by (3.2). Let ‖ ⋅ ‖𝑌(0,𝐿) be the rearrangement-invariant function norm whose associate function norm ‖ ⋅
‖𝑌′(0,𝐿) is defined as

‖𝑓‖𝑌′(0,𝐿) = sup
𝑔∈𝔐+(0,𝐿)
‖𝑔‖𝑋(0,𝐿)≤1

∫
𝐿

0

𝑓∗(𝑠)𝑣(𝑡)∫
𝜈(𝑡)

0

𝑇𝜑𝑔(𝑠)𝑢(𝑠) 𝑑𝑠 𝑑𝑡, 𝑓 ∈ 𝔐
+(0, 𝐿).

The rearrangement-invariant function space𝑌(0, 𝐿) is the optimal target space for the operator 𝑅𝑢,𝑣,𝜈 and𝑋(0, 𝐿). Moreover,

‖𝐻𝑢,𝑣,𝜈−1(𝑓∗)‖𝑋′(0,𝐿) ≤ ‖𝑓‖𝑌′(0,𝐿) ≤ ‖𝑇𝜑‖𝑋(0,𝐿)‖𝐻𝑢,𝑣,𝜈−1(𝑓∗)‖𝑋′(0,𝐿)
for every 𝑓 ∈ 𝔐+(0, 𝐿). Here, ‖𝑇𝜑‖𝑋(0,𝐿) stands for the operator norm of 𝑇𝜑 on 𝑋(0, 𝐿).

Remark 4.5. Owing to Remark 3.6, Proposition 4.4 can also be used to get a simpler description of optimal domain spaces
for the operator 𝐻𝑢,𝑣,𝜈.

A great deal of our effort has been devoted to describing optimal rearrangement-invariant function spaces. A natural,
somewhat related question is, can every rearrangement-invariant function space be an optimal space? Suppose that𝑍(0, 𝐿)
is the optimal domain space for 𝐻𝑢,𝑣,𝜈 and 𝑋(0, 𝐿), and denote by𝑊(0, 𝐿) the optimal target space for 𝐻𝑢,𝑣,𝜈 and 𝑍(0, 𝐿).
Owing to the optimality of𝑊(0, 𝐿), we immediately see that𝑊(0, 𝐿) ↪ 𝑋(0, 𝐿). What is not obvious, however, is whether
the opposite embedding, too, (is)/(can be) true. This leads us to the following theorem, which shows that the notion of
being an optimal function space is related to the question of whether the complicated functional (3.3) can be simplified.

Theorem 4.6. Let ‖ ⋅ ‖𝑋(0,𝐿) be a rearrangement-invariant function norm.

(1) Let 𝜈 ∶ (0, 𝐿) → (0, 𝐿) be an increasing bijection. If 𝐿 = ∞, assume that 𝜈 ∈ 𝐷∞.
(2) Let 𝑢 ∶ (0, 𝐿) → (0,∞) be a nondegenerate nonincreasing function. If 𝐿 < ∞, assume that 𝑢(𝐿−) > 0.
(3) Let 𝑣 ∶ (0, 𝐿) → (0,∞) be a nonincreasing function. If 𝐿 < ∞, assume that 𝑣(𝐿−) > 0.

Let ‖ ⋅ ‖𝑌(0,𝐿) be the functional defined by (3.3). The following three statements are equivalent.

(i) The space 𝑋(0, 𝐿) is the optimal target space for the operator𝐻𝑢,𝑣,𝜈 and some rearrangement-invariant function space.
(ii) The space 𝑋′(0, 𝐿) is the optimal domain space for the operator 𝑅𝑢,𝑣,𝜈−1 and some rearrangement-invariant function

space.
(iii) We have that

‖𝑓‖𝑋′(0,𝐿) ≈ sup
𝑔∈𝔐+(0,𝐿)
‖𝑔‖𝑌(0,𝐿)≤1

∫
𝐿

0

𝑔(𝑡)𝑅𝑢,𝑣,𝜈−1(𝑓
∗)(𝑡) 𝑑𝑡 for every 𝑓 ∈ 𝔐+(0, 𝐿). (4.6)
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3514 MIHULA

Finally, assume, in addition, that

(1) 𝑣 is defined by (4.3) with 𝜉 satisfying

𝑢(𝑡)

𝑈(𝑡) ∫
𝑡

0

𝜉(𝑠) 𝑑𝑠 ≲ 𝜉(𝑡) for a.e. 𝑡 ∈ (0, 𝐿), (4.7)

(2) the function 𝜑◦𝜈−1, where 𝜑 = 𝑢∕𝜉, is equivalent to a quasiconcave function.

Then, each of the three equivalent statements above implies that

(iv) the operator 𝑇𝜑, defined by (4.2), is bounded on 𝑋′(0, 𝐿).

Proof. Westart off by observing that each of the three equivalent statements implies that the functional ‖ ⋅ ‖𝑌(0,𝐿) is actually
a rearrangement-invariant function norm. Statements (i) and (ii) imply it thanks to Proposition 3.3 and Proposition 3.8,
respectively. If we assume (iii), then, in particular, the set {𝑔 ∈ 𝔐+(0, 𝐿) ∶ ‖𝑔‖𝑌(0,𝐿) ≤ 1} needs to contain a function 𝑔 ∈
𝔐+(0, 𝐿) not equal to 0 a.e. Thanks to Proposition 3.3 and its proof, ‖𝑔‖𝑌(0,𝐿) = ∞ for every 𝑔 ∈ 𝔐+(0, 𝐿) not equal
to 0 a.e. if 𝜚 fails to be a rearrangement-invariant function norm. Hence, ‖ ⋅ ‖𝑌(0,𝐿) is a rearrangement-invariant function
norm if (iii) is assumed. Therefore, in all of the cases, we are entitled to denote the corresponding rearrangement-invariant
function space over (0, 𝐿) by 𝑌(0, 𝐿). Moreover, note that (4.6) actually reads as

‖𝑓‖𝑋′(0,𝐿) ≈ ‖𝑅𝑢,𝑣,𝜈−1(𝑓∗)‖𝑌′(0,𝐿) for every 𝑓 ∈ 𝔐+(0, 𝐿). (4.8)

Second, statements (i) and (ii) are clearly equivalent to each other owing to Remark 3.6.
Next, the proof of the fact that (ii) implies (iii) is based on the following important observation. If𝑋′(0, 𝐿) is the optimal

domain space for the operator 𝑅𝑢,𝑣,𝜈−1 and a rearrangement-invariant function space 𝑍(0, 𝐿), then, in particular, 𝑅𝑢,𝑣,𝜈−1 ∶
𝑋′(0, 𝐿) → 𝑍(0, 𝐿) is bounded. Consequently, by virtue of Proposition 3.8, the rearrangement-invariant function space
whose associate function norm is ‖ ⋅ ‖𝑌(0,𝐿) is the optimal target space for the operator 𝑅𝑢,𝑣,𝜈−1 and 𝑋′(0, 𝐿). By (2.10), this
optimal target space is actually the space 𝑌′(0, 𝐿). Owing to Proposition 3.1, the optimal domain space for the operator
𝑅𝑢,𝑣,𝜈−1 and 𝑌′(0, 𝐿) exists, and we denote it by𝑊(0, 𝐿). Moreover,

‖𝑓‖𝑊(0,𝐿) ≈ ‖𝑅𝑢,𝑣,𝜈−1(𝑓∗)‖𝑌′(0,𝐿) for every 𝑓 ∈ 𝔐+(0, 𝐿). (4.9)

The crucial observation is thatwehave, in fact, that𝑋′(0, 𝐿) = 𝑊(0, 𝐿). The embedding𝑋′(0, 𝐿) ↪ 𝑊(0, 𝐿) is valid because
𝑅𝑢,𝑣,𝜈−1 ∶ 𝑋

′(0, 𝐿) → 𝑌′(0, 𝐿) is bounded and𝑊(0, 𝐿) is the optimal domain space for the operator 𝑅𝑢,𝑣,𝜈−1 and 𝑌′(0, 𝐿).
The validity of the opposite embedding is slightly more complicated. Since 𝑅𝑢,𝑣,𝜈−1 ∶ 𝑋′(0, 𝐿) → 𝑍(0, 𝐿) is bounded and
𝑌′(0, 𝐿) is the optimal target space for the operator 𝑅𝑢,𝑣,𝜈−1 and 𝑋′(0, 𝐿), we have that 𝑌′(0, 𝐿) ↪ 𝑍(0, 𝐿). Consequently,
since𝑅𝑢,𝑣,𝜈−1 ∶ 𝑊(0, 𝐿) → 𝑌′(0, 𝐿) is bounded, so is𝑅𝑢,𝑣,𝜈−1 ∶ 𝑊(0, 𝐿) → 𝑍(0, 𝐿). Using the fact that𝑋′(0, 𝐿) is the optimal
domain space for the operator 𝑅𝑢,𝑣,𝜈−1 and 𝑍(0, 𝐿), we obtain that𝑊(0, 𝐿) ↪ 𝑋′(0, 𝐿). Now that we know that 𝑋′(0, 𝐿) =
𝑊(0, 𝐿), (4.8) follows from (4.9).
Next, note that (iii) implies (ii). Indeed, (4.8) coupled with Proposition 3.1 tells us that 𝑋′(0, 𝐿) is the optimal domain

space for the operator 𝑅𝑢,𝑣,𝜈−1 and 𝑌′(0, 𝐿).
Finally, it only remains to prove that (iii) implies (iv) under the additional assumptions. By (4.8), we have that

‖𝑇𝜑𝑓‖𝑋′(0,𝐿) ≈ ‖𝑅𝑢,𝑣,𝜈−1((𝑇𝜑𝑓)∗)‖𝑌′(0,𝐿) ≈ ‖𝑅𝑢,𝑣,𝜈−1(𝑇𝜑𝑓)‖𝑌′(0,𝐿)

=

‖‖‖‖‖‖
𝑣(𝑡)∫

𝜈−1(𝑡)

0

𝜉(𝑠) ess sup
𝜏∈[𝑠,𝐿)

𝜑(𝜏)𝑓∗(𝜏) 𝑑𝑠

‖‖‖‖‖‖𝑌′(0,𝐿)

≤
‖‖‖‖‖‖
𝑣(𝑡)∫

𝜈−1(𝑡)

0

𝜉(𝑠) ess sup
𝜏∈[𝑠,𝜈−1(𝑡))

𝜑(𝜏)𝑓∗(𝜏) 𝑑𝑠

‖‖‖‖‖‖𝑌′(0,𝐿)
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MIHULA 3515

+

‖‖‖‖‖‖
𝑣(𝑡)

(
ess sup
𝜏∈[𝜈−1(𝑡),𝐿)

𝜑(𝜏)𝑓∗(𝜏)

)
∫
𝜈−1(𝑡)

0

𝜉(𝑠) 𝑑𝑠

‖‖‖‖‖‖𝑌′(0,𝐿)

=

‖‖‖‖‖‖
𝑣(𝑡)∫

𝜈−1(𝑡)

0

𝜉(𝑠) ess sup
𝜏∈[𝑠,𝜈−1(𝑡))

𝜑(𝜏)𝑓∗(𝜏) 𝑑𝑠

‖‖‖‖‖‖𝑌′(0,𝐿)

+
‖‖‖‖‖
ess sup
𝜏∈[𝜈−1(𝑡),𝐿)

𝜑(𝜏)𝑓∗(𝜏)
‖‖‖‖‖𝑌′(0,𝐿)

. (4.10)

Here, we used the fact that 𝑇𝜑𝑓 is equivalent to a nonincreasing function for every 𝑓 ∈ 𝔐+(0, 𝐿), and the multiplicative
constants in this equivalence are independent of 𝑓. Since 𝜑 is equivalent to a continuous nondecreasing function and 𝜉
satisfies (4.7), it follows from [34, Theorem 3.2] that

∫
𝜈−1(𝑡)

0

𝜉(𝑠) ess sup
𝜏∈[𝑠,𝜈−1(𝑡))

𝜑(𝜏)𝑓∗(𝜏) 𝑑𝑠 ≲ ∫
𝜈−1(𝑡)

0

𝑓∗(𝑠)𝑢(𝑠) 𝑑𝑠 for every 𝑡 ∈ (0, 𝐿).

Hence,

‖‖‖‖‖‖
𝑣(𝑡)∫

𝜈−1(𝑡)

0

𝜉(𝑠) ess sup
𝜏∈[𝑠,𝜈−1(𝑡))

𝜑(𝜏)𝑓∗(𝜏) 𝑑𝑠

‖‖‖‖‖‖𝑌′(0,𝐿)
≲ ‖𝑅𝑢,𝑣,𝜈−1(𝑓∗)‖𝑌′(0,𝐿). (4.11)

Since the function 𝜑◦𝜈−1 is equivalent to a quasiconcave function, it follows from [30, Lemma 4.10] that

‖‖‖‖‖
ess sup
𝜏∈[𝜈−1(𝑡),𝐿)

𝜑(𝜏)𝑓∗(𝜏)
‖‖‖‖‖𝑌′(0,𝐿)

≲ ‖𝜑(𝜈−1(𝑡))𝑓∗(𝜈−1(𝑡))‖𝑌′(0,𝐿).

We note that, although [30, Lemma 4.10] deals only with the case 𝐿 = ∞, its proof translates verbatim to the case of
𝐿 ∈ (0,∞). Furthermore, we have that

‖𝜑(𝜈−1(𝑡))𝑓∗(𝜈−1(𝑡))‖𝑌′(0,𝐿) ≲
‖‖‖‖‖‖‖
𝑈(𝜈−1(𝑡))

∫ 𝜈−1(𝑡)
0

𝜉(𝑠) 𝑑𝑠
𝑓∗(𝜈−1(𝑡))

‖‖‖‖‖‖‖𝑌′(0,𝐿)
≤ ‖𝑅𝑢,𝑣,𝜈−1(𝑓∗)‖𝑌′(0,𝐿). (4.12)

Here, we used the fact that 𝜉 satisfies (4.7) in the first inequality and the monotonicity of 𝑓∗ in the second one. By
combining (4.10) with (4.11) and (4.12) and using (4.8), we obtain that

‖𝑇𝜑𝑓‖𝑋′(0,𝐿) ≲ ‖𝑅𝑢,𝑣,𝜈−1(𝑓∗)‖𝑌′(0,𝐿) ≈ ‖𝑓‖𝑋′(0,𝐿) for every 𝑓 ∈ 𝔐+(0, 𝐿);

hence 𝑇𝜑 is bounded on 𝑋′(0, 𝐿). □

Remark 4.7.

(i) If 𝑋′(0, 𝐿) is the optimal domain space for 𝑅𝑢,𝑣,𝜈−1 and some rearrangement-invariant function space 𝑌(0, 𝐿), then
𝑋′(0, 𝐿) is actually the optimal domain space for 𝑅𝑢,𝑣,𝜈−1 and its own optimal target space. This follows from the
following. Thanks to Proposition 3.8 and Proposition 3.1, we are entitled to denote by 𝑍(0, 𝐿) the optimal target space
for 𝑅𝑢,𝑣,𝜈−1 and 𝑋′(0, 𝐿) and by 𝑊(0, 𝐿) the optimal domain space for 𝑅𝑢,𝑣,𝜈−1 and 𝑍(0, 𝐿). We need to show that
𝑋′(0, 𝐿) = 𝑊(0, 𝐿). On the onehand, since𝑅𝑢,𝑣,𝜈−1 ∶ 𝑋′(0, 𝐿) → 𝑍(0, 𝐿) is bounded and𝑊(0, 𝐿) is the optimal domain
space for 𝑅𝑢,𝑣,𝜈−1 and 𝑍(0, 𝐿), we have that𝑋′(0, 𝐿) ↪ 𝑊(0, 𝐿). On the other hand, since 𝑅𝑢,𝑣,𝜈−1 ∶ 𝑋′(0, 𝐿) → 𝑌(0, 𝐿)
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3516 MIHULA

is bounded and 𝑍(0, 𝐿) is the optimal target space for 𝑅𝑢,𝑣,𝜈−1 and 𝑋′(0, 𝐿), we have that 𝑍(0, 𝐿) ↪ 𝑌(0, 𝐿). Conse-
quently, 𝑅𝑢,𝑣,𝜈−1 ∶ 𝑊(0, 𝐿) → 𝑌(0, 𝐿) is bounded. Finally, since 𝑋′(0, 𝐿) is the optimal domain space for 𝑅𝑢,𝑣,𝜈−1 and
𝑌(0, 𝐿), we obtain that 𝑊(0, 𝐿) ↪ 𝑋′(0, 𝐿). Furthermore, by combining this observation with Remark 3.6, we also
obtain the following fact. If 𝑋(0, 𝐿) is the optimal target space for𝐻𝑢,𝑣,𝜈 and some rearrangement-invariant function
space 𝑌(0, 𝐿), then 𝑋(0, 𝐿) is actually the optimal target space for𝐻𝑢,𝑣,𝜈 and its own optimal domain space.

(ii) If 𝜉 satisfies the averaging condition (4.24), then (4.7) is satisfied for every nonincreasing function 𝑢 inasmuch as
𝑡𝑢(𝑡) ≤ 𝑈(𝑡) for every 𝑡 ∈ (0, 𝐿).

(iii) When 𝑢(𝑡) = 𝑡−1+𝛼, 𝑣(𝑡) = 𝑡−1+𝛽 , and 𝜈(𝑡) = 𝑡𝛾, 𝑡 ∈ (0, 𝐿), the additional assumptions of Theorem 4.6 are satisfied if
𝛼 ∈ (0, 1], 𝛽 ∈ [0, 1), 𝛾 > 0, and 1 ≤ 𝛼

𝛾
+ 𝛽 ≤ 2.

We conclude this subsection with a result that is somewhat unrelated to the rest but of independent interest. It shows
that, to verify the boundedness of𝐻𝑢,𝑣,𝜈 between a pair of rearrangement-invariant function spaces, it is sufficient to verify
it on nonincreasing functions. It is an easy consequence of Hardy–Littlewood inequality (2.4) that this is the case for the
operator 𝑅𝑢,𝑣,𝜈, provided that 𝑢 is nonincreasing. However, the validity of such a result for the operator 𝐻𝑢,𝑣,𝜈 is far from
being obvious because this time the integration is not carried out over a right-neighborhood of 0. Such a result was first
obtained by Cianchi, Pick, and Slavíková in [22, Corollary 9.8] for 𝑢 ≡ 1, 𝜈 = id, and 𝐿 < ∞. Later, Peša generalized their
result to cover also the case 𝐿 = ∞ in [51, Theorem 3.10]. In [15], we needed such a result for 𝜈(𝑡) = 𝑡𝛼, 𝛼 > 0, and 𝑢 ≢ 1,
and, while we felt certain that their proofs would carry over to the needed setting, we still had to carefully check them
because there is plenty of fine analysis involved. The following proposition extends the result to the generality considered
in this paper. It turns out that their proofs can easily be adapted for our setting. Our proof is actually in a way simpler
because they considered operators with kernels.

Proposition 4.8. Let ‖ ⋅ ‖𝑋(0,𝐿) and ‖ ⋅ ‖𝑌(0,𝐿) be rearrangement-invariant function norms.

(1) Let 𝜈 ∶ (0, 𝐿) → (0, 𝐿) be an increasing bijection. Assume that 𝜈−1 ∈ 𝐷0
𝜃
for some 𝜃 > 1. If𝐿 = ∞, assume that 𝜈−1 ∈ 𝐷∞

𝜃
.

(2) Let 𝑢, 𝑣 ∶ (0, 𝐿) → (0,∞) be nonincreasing.

The following two statements are equivalent.

(i) There is a positive constant 𝐶 such that

‖𝐻𝑢,𝑣,𝜈𝑓‖𝑌(0,𝐿) ≤ 𝐶‖𝑓‖𝑋(0,𝐿) (4.13)

for every 𝑓 ∈ 𝔐(0, 𝐿).
(ii) There is a positive constant 𝐶 such that

‖𝐻𝑢,𝑣,𝜈(𝑓∗)‖𝑌(0,𝐿) ≤ 𝐶‖𝑓‖𝑋(0,𝐿) (4.14)

for every 𝑓 ∈ 𝔐(0, 𝐿).

Moreover, if (4.14) holds with a constant 𝐶, then (4.13) holds with the constant 𝐶 𝜃

𝜃−1
sup𝑡∈(0,𝐿)

𝜈−1(𝑡)

𝜈−1(
𝑡

𝜃
)
.

Proof. Since (i) plainly implies (ii), we only need to prove that (ii) implies (i). Since the quantities in (4.13) and (4.14) do
not change when the function 𝑣 is redefined on a countable set, wemay assume that 𝑣 is left continuous. Note that𝐻𝑢,𝑣,𝜈𝑓
is nonincreasing for every 𝑓 ∈ 𝔐(0, 𝐿). Hence, thanks to (2.11) and (3.17), in order to prove that (ii) implies (i), we need
to show that

sup
𝑓∈𝔐+(0,𝐿)
‖𝑓‖𝑋(0,𝐿)≤1

sup
𝑔∈𝔐+(0,𝐿)
‖𝑔‖𝑌′(0,𝐿)≤1

∫
𝐿

0

𝑓(𝑠)𝑅𝑢,𝑣,𝜈−1(𝑔
∗)(𝑠) 𝑑𝑠 ≲ sup

𝑓∈𝔐+(0,𝐿)
‖𝑓‖𝑋(0,𝐿)≤1

sup
𝑔∈𝔐+(0,𝐿)
‖𝑔‖𝑌′(0,𝐿)≤1

∫
𝐿

0

𝑓∗(𝑠)𝑅𝑢,𝑣,𝜈−1(𝑔
∗)(𝑠) 𝑑𝑠. (4.15)
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MIHULA 3517

We define the operator 𝐺 as

𝐺𝑔(𝑡) = sup
𝜏∈[𝑡,𝐿)

𝑅𝑢,𝑣,𝜈−1(𝑔
∗)(𝜏), 𝑡 ∈ (0, 𝐿),

for every 𝑔 ∈ 𝔐+(0, 𝐿). Note that 𝐺𝑔 is nonincreasing for every 𝑔 ∈ 𝔐+(0, 𝐿). Fix 𝑔 ∈ 𝔐+(0, 𝐿) such that |{𝑡 ∈ (0, 𝐿) ∶
𝑔(𝑡) > 0}| < ∞, and set

𝐸 =
{
𝑡 ∈ (0, 𝐿) ∶ 𝑅𝑢,𝑣,𝜈−1(𝑔

∗)(𝑡) < 𝐺𝑔(𝑡)
}
.

It can be shown that there is a countable system {(𝑎𝑘, 𝑏𝑘)}𝑘∈ of mutually disjoint, bounded intervals in (0, 𝐿) such that

𝐸 =
⋃
𝑘∈
(𝑎𝑘, 𝑏𝑘), (4.16)

𝐺𝑔(𝑡) = 𝑅𝑢,𝑣,𝜈−1(𝑔
∗)(𝑡) if 𝑡 ∈ (0, 𝐿) ⧵ 𝐸, (4.17)

𝐺𝑔(𝑡) = 𝑅𝑢,𝑣,𝜈−1(𝑔
∗)(𝑏𝑘) if 𝑡 ∈ (𝑎𝑘, 𝑏𝑘) for 𝑘 ∈ . (4.18)

This was proved in [22, Proposition 9.3] for 𝐿 < ∞ and in [51, Lemma 3.9] for 𝐿 = ∞. Their proofs are for 𝑢 ≡ 1 and 𝜈 = id,
but the fact that 𝑔∗𝑢 is nonincreasing and 𝑅𝑢,𝑣,𝜈−1(𝑔∗) is upper semicontinuous remains valid in our situation, and so it
can be readily seen that their proofs carry over verbatim to our setting.
Note that𝑀 = sup𝑡∈(0,𝐿)

𝜈−1(𝑡)

𝜈−1(
𝑡

𝜃
)
< ∞. Set 𝜎 = 𝜃

𝜃−1
∈ (1,∞). Since 𝑣 and 𝑔∗𝑢 are nonincreasing, we have that, for every

𝑘 ∈ ,

(𝑏𝑘 − 𝑎𝑘)𝑅𝑢,𝑣,𝜈−1(𝑔
∗)(𝑏𝑘) = 𝜎 ∫

𝑏𝑘

𝑎𝑘+(𝜎−1)𝑏𝑘
𝜎

𝑅𝑢,𝑣,𝜈−1(𝑔
∗)(𝑏𝑘) 𝑑𝑡

= 𝜎 ∫
𝑏𝑘

𝑎𝑘+(𝜎−1)𝑏𝑘
𝜎

𝑣(𝑏𝑘)

𝜈−1(𝑏𝑘)
𝜈−1(𝑏𝑘)∫

𝜈−1(𝑏𝑘)

0

𝑔∗(𝑠)𝑢(𝑠) 𝑑𝑠 𝑑𝑡

≤ 𝜎 ∫
𝑏𝑘

𝑎𝑘+(𝜎−1)𝑏𝑘
𝜎

𝑣(𝑡)

𝜈−1(𝑡)
𝜈−1(𝑏𝑘)∫

𝜈−1(𝑡)

0

𝑔∗(𝑠)𝑢(𝑠) 𝑑𝑠 𝑑𝑡

≤ 𝜎 𝜈−1(𝑏𝑘)

𝜈−1(
𝑎𝑘+(𝜎−1)𝑏𝑘

𝜎
)
∫
𝑏𝑘

𝑎𝑘+(𝜎−1)𝑏𝑘
𝜎

𝑅𝑢,𝑣,𝜈−1(𝑔
∗)(𝑡) 𝑑𝑡

≤ 𝜎𝜈−1(𝑏𝑘)
𝜈−1(

𝑏𝑘

𝜃
) ∫

𝑏𝑘

𝑎𝑘+(𝜎−1)𝑏𝑘
𝜎

𝑅𝑢,𝑣,𝜈−1(𝑔
∗)(𝑡) 𝑑𝑡

≤ 𝜎𝑀 ∫
𝑏𝑘

𝑎𝑘+(𝜎−1)𝑏𝑘
𝜎

𝑅𝑢,𝑣,𝜈−1(𝑔
∗)(𝑡) 𝑑𝑡

≤ 𝜎𝑀 ∫
𝑏𝑘

𝑎𝑘

𝑅𝑢,𝑣,𝜈−1(𝑔
∗)(𝑡) 𝑑𝑡. (4.19)

Here, we used the fact that 𝑣 and (𝑔∗𝑢)∗∗ are nonincreasing in the first inequality.
Consider the averaging operator 𝐴 defined as

𝐴𝑓 = 𝑓∗𝜒(0,𝐿)⧵𝐸 +
∑
𝑘∈

(
1

𝑏𝑘 − 𝑎𝑘 ∫
𝑏𝑘

𝑎𝑘

𝑓∗(𝑠) 𝑑𝑠

)
𝜒(𝑎𝑘,𝑏𝑘), 𝑓 ∈ 𝔐

+(0, 𝐿).
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3518 MIHULA

Note that 𝐴𝑓 is a nonincreasing function for every 𝑓 ∈ 𝔐+(0, 𝐿). Furthermore, it is known [5, Chapter 2, Theorem 4.8]
that

‖𝐴𝑓‖𝑋(0,𝐿) ≤ ‖𝑓‖𝑋(0,𝐿) for every 𝑓 ∈ 𝔐+(0, 𝐿). (4.20)

For every 𝑓 ∈ 𝔐+(0, 𝐿), we have that

∫
𝐿

0

𝑓(𝑡)𝑅𝑢,𝑣,𝜈−1(𝑔
∗)(𝑡) 𝑑𝑡 ≤ ∫

𝐿

0

𝑓(𝑡)𝐺𝑔(𝑡) 𝑑𝑡 ≤ ∫
𝐿

0

𝑓∗(𝑡)𝐺𝑔(𝑡) 𝑑𝑡

= ∫
(0,𝐿)⧵𝐸

𝑓∗(𝑡)𝑅𝑢,𝑣,𝜈−1(𝑔
∗)(𝑡) 𝑑𝑡 +

∑
𝑘∈ ∫

𝑏𝑘

𝑎𝑘

𝑓∗(𝑡)𝑅𝑢,𝑣,𝜈−1(𝑔
∗)(𝑏𝑘) 𝑑𝑡

≤ ∫
𝐿

0

𝑓∗(𝑡)𝜒(0,𝐿)⧵𝐸(𝑡)𝑅𝑢,𝑣,𝜈−1(𝑔
∗)(𝑡) 𝑑𝑡

+ 𝜎𝑀
∑
𝑘∈

(
1

𝑏𝑘 − 𝑎𝑘 ∫
𝑏𝑘

𝑎𝑘

𝑓∗(𝑡) 𝑑𝑡

)(
∫
𝑏𝑘

𝑎𝑘

𝑅𝑢,𝑣,𝜈−1(𝑔
∗)(𝑡) 𝑑𝑡

)

≤ 𝜎𝑀 ∫
𝐿

0

𝐴𝑓(𝑡)𝑅𝑢,𝑣,𝜈−1(𝑔
∗)(𝑡) 𝑑𝑡. (4.21)

Here, we used theHardy–Littlewood inequality (2.4), (4.16), (4.17), (4.18), and (4.19). If𝐿 = ∞ and 𝑔 ∈ 𝔐+(0,∞) is positive
on a set of infinite measure, we consider 𝑔𝜒(0,𝑛) ↗ 𝑔, 𝑛 → ∞, and obtain (4.21) even for such functions 𝑔, thanks to the
monotone convergence theorem. Hence, we have proved that

∫
𝐿

0

𝑓(𝑡)𝑅𝑢,𝑣,𝜈−1(𝑔
∗)(𝑡) 𝑑𝑡 ≤ 𝜎𝑀 ∫

𝐿

0

𝐴𝑓(𝑡)𝑅𝑢,𝑣,𝜈−1(𝑔
∗)(𝑡) 𝑑𝑡 for every 𝑓, 𝑔 ∈ 𝔐+(0, 𝐿). (4.22)

By combining (4.20) and (4.22), we obtain that

∫
𝐿

0

𝑓(𝑡)𝑅𝑢,𝑣,𝜈−1(𝑔
∗)(𝑡) 𝑑𝑡 ≤ 𝜎𝑀 sup

ℎ∈𝔐+(0,𝐿)
‖ℎ‖𝑋(0,𝐿)≤1

∫
𝐿

0

ℎ∗(𝑡)𝑅𝑢,𝑣,𝜈−1(𝑔
∗)(𝑡) 𝑑𝑡

for every 𝑓 ∈ 𝔐+(0, 𝐿), ‖𝑓‖𝑋(0,𝐿) ≤ 1, and 𝑔 ∈ 𝔐+(0, 𝐿). Note that here we used the fact that 𝐴𝑓 is nonincreasing for
every 𝑓 ∈ 𝔐+(0, 𝐿). By taking the supremum over all 𝑓, 𝑔 ∈ 𝔐+(0, 𝐿) from the closed unit balls of 𝑋(0, 𝐿) and 𝑌′(0, 𝐿),
respectively, we obtain (4.15) with the multiplicative constant equal to 𝜎𝑀. □

Proposition 4.8 together with Proposition 3.5 has the following important corollary. Note that the first equality is just a
consequence of the Hardy–Littlewood inequality (2.4) combined with the obvious inequality

sup
‖𝑓‖𝑋(0,𝐿)≤1

‖𝑅𝑢,𝑣,𝜈(𝑓∗)‖𝑌(0,𝐿) ≤ sup
‖𝑓‖𝑋(0,𝐿)≤1

‖𝑅𝑢,𝑣,𝜈𝑓‖𝑌(0,𝐿).

Corollary 4.9. Let ‖ ⋅ ‖𝑋(0,𝐿) and ‖ ⋅ ‖𝑌(0,𝐿) be rearrangement-invariant function norms.

(1) Let 𝜈 ∶ (0, 𝐿) → (0, 𝐿) be an increasing bijection. Assume that 𝜈 ∈ 𝐷0. If 𝐿 = ∞, assume that 𝜈 ∈ 𝐷∞.
(2) Let 𝑢, 𝑣 ∶ (0, 𝐿) → (0,∞) be nonincreasing.

We have that

sup
‖𝑓‖𝑋(0,𝐿)≤1

‖𝑅𝑢,𝑣,𝜈(𝑓∗)‖𝑌(0,𝐿) = sup
‖𝑓‖𝑋(0,𝐿)≤1

‖𝑅𝑢,𝑣,𝜈𝑓‖𝑌(0,𝐿)

= sup
‖𝑔‖𝑌′(0,𝐿)≤1

‖𝐻𝑢,𝑣,𝜈−1𝑔‖𝑋′(0,𝐿)

≈ sup
‖𝑔‖𝑌′(0,𝐿)≤1

‖𝐻𝑢,𝑣,𝜈−1(𝑔∗)‖𝑋′(0,𝐿).
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MIHULA 3519

Remark 4.10. The assumption 𝜈 ∈ 𝐷0 is not overly restrictive. For example, it is satisfied whenever 𝜈 is equivalent to
𝑡 ↦ 𝑡𝛼𝓁1(𝑡)

𝛽1 ⋯𝓁𝑘(𝑡)
𝛽𝑘 near 0 for any 𝛼 > 0, 𝑘 ∈ ℕ0, and 𝛽𝑗 ∈ ℝ, 𝑗 = 1, 2, … , 𝑘. Here, the functions𝓁𝑗 are 𝑗-times iterated

logarithmic functions defined as

𝓁𝑗(𝑡) =

{
1 + | log 𝑡| if 𝑗 = 1,
1 + log 𝓁𝑗−1(𝑡) if 𝑗 > 1,

(4.23)

for 𝑡 ∈ (0, 𝐿). On the other hand, 𝜈(𝑡) = exp(−𝑡𝛼) near 0, where 𝛼 < 0, is a typical example of a function not satisfying the
assumption. The same remark (with the obvious modifications) is true for the assumption 𝜈 ∈ 𝐷∞.

4.2 Optimal function norms and their connection with interpolation

We already know that a sufficient condition for simplification of the complicated function norm (3.21) is boundedness of
a certain supremum operator. Furthermore, we have also already seen that the supremum operator is often bounded on
optimal function spaces. We shall also soon see that the boundedness of the supremum operator goes hand in hand with
a certain interpolation property of the rearrangement-invariant function space on which the supremum operator acts. In
other words, the question of whether the supremum in the function norm (3.21) can be “simplified,” the notion of being
an optimal function space, and interpolation are all closely related to each other.
As the following theorem shows, there is a connection between a rearrangement-invariant function space𝑋(0, 𝐿) being

an interpolation space with respect to a certain pair of endpoint spaces and the boundedness of 𝑇𝜑 on the associate space
of𝑋(0, 𝐿) (cf. [39, Theorem 3.12]). We say that a measurable a.e. positive function on (0, 𝐿) satisfies the averaging condition
(4.24) (cf. [60, Lemma 2.3]) if

ess sup
𝑡∈(0,𝐿)

1

𝑡𝑤(𝑡) ∫
𝑡

0

𝑤(𝑠) 𝑑𝑠 < ∞. (4.24)

Here, 𝑤 temporarily denotes the function in question. The value of the essential supremum will be referred to as the
averaging constant of the function.

Theorem4.11. Let ‖ ⋅ ‖𝑋(0,𝐿) be a rearrangement-invariant function norm. Let𝜑 ∶ (0, 𝐿) → (0,∞) be ameasurable function
that is equivalent to a continuous nondecreasing function. Set 𝜉 = 1∕𝜑. Assume that 𝜉 satisfies the averaging condition (4.24).
Set 𝜓(𝑡) = 𝑡∕ ∫ 𝑡

0
𝜉(𝑠) 𝑑𝑠, 𝑡 ∈ (0, 𝐿). Consider the following three statements.

(i) The operator 𝑇𝜑, defined by (4.2), is bounded on 𝑋′(0, 𝐿).
(ii) 𝑋(0, 𝐿) ∈ Int

(
Λ1
𝜉
(0, 𝐿), 𝐿∞(0, 𝐿)

)
.

(iii) 𝑋′(0, 𝐿) ∈ Int
(
𝐿1(0, 𝐿),𝑀𝜓(0, 𝐿)

)
.

If 𝐿 < ∞, then the three statements are equivalent to each other. If 𝐿 = ∞, then (i) implies (ii), and (iii) implies (i).

Proof. We start off by noting that we may without loss of generality assume that 𝜑 is continuous and nondecreasing.
Furthermore, (Λ1

𝜉
)′(0, 𝐿) = 𝑀𝜓(0, 𝐿) [52, Theorem 10.4.1] and

𝜓 ≈ 𝜑 on (0, 𝐿), (4.25)

thanks to the fact that 𝜉 satisfies the averaging condition (4.24) and is (equivalent to) a nonincreasing function. We shall
show that (i) implies (ii), whether 𝐿 is finite or infinite. First, we observe that 𝑋(0, 𝐿) is an intermediate space between
Λ1
𝜉
(0, 𝐿) and 𝐿∞(0, 𝐿). Set Ξ𝐿 = ∫ 𝐿

0
𝜉(𝑠) 𝑑𝑠 ∈ (0,∞], and note that Ξ𝐿 < ∞ if 𝐿 < ∞. Let Ξ−1 ∶ (0, Ξ𝐿) → (0, 𝐿) be the

increasing bijection that is inverse to the function (0, 𝐿) ∋ 𝑡 ↦ ∫ 𝑡
0
𝜉(𝑠) 𝑑𝑠. By [56, Lemma 6.8], we have that

K(𝑓, 𝑡; Λ1
𝜉
, 𝐿∞) ≈ ∫

Ξ−1(𝑡)

0

𝑓∗(𝑠)𝜉(𝑠) 𝑑𝑠 for every 𝑓 ∈ 𝔐+(0, 𝐿) and 𝑡 ∈ (0, Ξ𝐿). (4.26)
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3520 MIHULA

Let 𝑎 be defined by (3.2). The embedding 𝑋(0, 𝐿) ↪ (Λ1
𝜉
+ 𝐿∞)(0, 𝐿) follows from

‖𝑓‖(Λ1
𝜉
+𝐿∞)(0,𝐿) = K(𝑓, 1; Λ

1
𝜉
, 𝐿∞) ≤ max

{
1,

1

∫ 𝑎
0
𝜉(𝑠) 𝑑𝑠

}
K(𝑓,∫

𝑎

0

𝜉(𝑠) 𝑑𝑠; Λ1
𝜉
, 𝐿∞)

≈ ∫
𝑎

0

𝑓∗(𝑡)𝜉(𝑡) 𝑑𝑡 ≲
1

𝜓(𝑎) ∫
𝑎

0

𝑓∗(𝑡)𝑇𝜑𝜒(0,𝑎)(𝑡) 𝑑𝑡

≲ ‖𝑓‖𝑋(0,𝐿)‖𝑇𝜑𝜒(0,𝑎)‖𝑋′(0,𝐿) ≲ ‖𝑓‖𝑋(0,𝐿).
Here, we used Hölder’s inequality (2.14) in the last but one inequality and the boundedness of 𝑇𝜑 on 𝑋′(0, 𝐿) in the last
one. We now turn our attention to the embedding Λ1

𝜉
(0, 𝐿) ∩ 𝐿∞(0, 𝐿) ↪ 𝑋(0, 𝐿). If 𝐿 < ∞, the embedding is plainly true

owing to (2.18). If 𝐿 = ∞, it is sufficient to observe that, for every𝑓 ∈ 𝑋′(0,∞),𝑓∗ = 𝑔 + ℎ for some functions 𝑔 ∈ 𝐿1(0,∞)
and ℎ ∈ 𝑀𝜓(0,∞), thanks to (2.16), the fact that (Λ1𝜉(0,∞) ∩ 𝐿

∞(0,∞))′ = 𝐿1(0,∞) +𝑀𝜓(0,∞) by (2.17), and (2.15). Set
𝑔 = 𝑓∗𝜒(0,1) and ℎ = 𝑓∗𝜒(1,∞). Clearly, 𝑔 ∈ 𝐿1(0,∞) thanks to property (P5) of ‖ ⋅ ‖𝑋′(0,𝐿). Furthermore,

‖ℎ‖𝑀𝜓(0,∞) ≈ sup
𝑡∈(0,∞)

𝜓(𝑡)(𝑓∗𝜒(1,∞))
∗(𝑡) ≲ sup

𝑡∈(0,∞)
𝜓(𝑡 + 1)𝑓∗(𝑡 + 1) =

𝜓(1)

𝜓(1)
sup
𝑡∈[1,∞)

𝜓(𝑡)𝑓∗(𝑡)

= 𝜓(1)𝑇𝜓𝑓(1) ≈ 𝑇𝜑𝑓(1) < ∞.

Here, we used the fact that 𝜉 satisfies the averaging condition (4.24) in the first equivalence (cf. [48, Lemma 2.1]) and
(4.25) in the last one. Note that 𝑇𝜑𝑓(1) is finite owing to (2.12) inasmuch as 𝑇𝜑𝑓 ∈ 𝑋′(0,∞) and it is a nonincreasing
function. Hence, 𝑋(0, 𝐿) is an intermediate space between Λ1

𝜉
(0, 𝐿) and 𝐿∞(0, 𝐿). Next, in order to prove that (i) implies

(ii), it remains to show that every admissible operator 𝑆 for the couple
(
Λ1
𝜉
(0, 𝐿), 𝐿∞(0, 𝐿)

)
is bounded on 𝑋(0, 𝐿). Let

𝑆 be such an operator. Since 𝑆 is linear and bounded on both Λ1
𝜉
(0, 𝐿) and 𝐿∞(0, 𝐿), it follows that (see [5, Chapter 5,

Theorem 1.11])

K(𝑆𝑓, 𝑡; Λ1
𝜉
, 𝐿∞) ≲ K(𝑓, 𝑡; Λ1

𝜉
, 𝐿∞) for every 𝑓 ∈ (Λ1

𝜉
+ 𝐿∞)(0, 𝐿) and 𝑡 ∈ (0, 𝐿). (4.27)

By combining (4.26) and (4.27), we obtain that

∫
𝑡

0

(𝑆𝑓)∗(𝑠)𝜉(𝑠) 𝑑𝑠 ≲ ∫
𝑡

0

𝑓∗(𝑠)𝜉(𝑠) 𝑑𝑠 for every 𝑓 ∈ (Λ1
𝜉
+ 𝐿∞)(0, 𝐿) and 𝑡 ∈ (0, 𝐿). (4.28)

Since the function (0, 𝐿) ∋ 𝑡 ↦ sup𝑡≤𝑠<𝐿 𝜑(𝑠)𝑔∗(𝑠) is nonincreasing for every 𝑔 ∈ 𝔐+(0, 𝐿), the Hardy lemma (2.6)
together with (4.28) implies that

∫
𝐿

0

(𝑆𝑓)∗(𝑡)𝑇𝜑𝑔(𝑡) 𝑑𝑡 ≲ ∫
𝐿

0

𝑓∗(𝑡)𝑇𝜑𝑔(𝑡) 𝑑𝑡 for every 𝑓 ∈ (Λ1
𝜉
+ 𝐿∞)(0, 𝐿) and 𝑔 ∈ 𝔐+(0, 𝐿).

Therefore,

‖𝑆𝑓‖𝑋(0,𝐿) = sup
𝑔∈𝔐+(0,𝐿)
‖𝑔‖𝑋′(0,𝐿)≤1

∫
𝐿

0

(𝑆𝑓)∗(𝑡)𝑔∗(𝑡) 𝑑𝑡 ≤ sup
𝑔∈𝔐+(0,𝐿)
‖𝑔‖𝑋′(0,𝐿)≤1

∫
𝐿

0

(𝑆𝑓)∗(𝑡)𝑇𝜑𝑔(𝑡) 𝑑𝑡

≲ sup
𝑔∈𝔐+(0,𝐿)
‖𝑔‖𝑋′(0,𝐿)≤1

∫
𝐿

0

𝑓∗(𝑡)𝑇𝜑𝑔(𝑡) 𝑑𝑡 ≤ ‖𝑓‖𝑋(0,𝐿) sup
𝑔∈𝔐+(0,𝐿)
‖𝑔‖𝑋′(0,𝐿)≤1

‖𝑇𝜑𝑔‖𝑋′(0,𝐿)

≲ ‖𝑓‖𝑋(0,𝐿)
for every 𝑓 ∈ 𝑋(0, 𝐿). Here, we used (2.11) in the equality, Hölder’s inequality (2.14) in the last but one inequality, and the
boundedness of 𝑇𝜑 on 𝑋′(0, 𝐿) in the last one. Hence, 𝑆 is bounded on 𝑋(0, 𝐿).
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MIHULA 3521

Weshall nowprove that (iii) implies (i), whether𝐿 is finite or infinite. Since 𝜉 is nonincreasing and satisfies the averaging
condition (4.24), it follows from [34, Theorem 3.2] (cf. [48, Lemma 3.1]) that 𝑇𝜑 is bounded on 𝐿1(0, 𝐿). Furthermore, 𝑇𝜑
is also bounded on𝑀𝜓(0, 𝐿), for

‖𝑇𝜑𝑓‖𝑀𝜓(0,𝐿) = sup
𝑡∈(0,𝐿)

(𝑇𝜑𝑓)
∗∗(𝑡)𝜓(𝑡) = sup

𝑡∈(0,𝐿)

1

∫ 𝑡
0
𝜉(𝑠) 𝑑𝑠 ∫

𝑡

0

𝜉(𝑠) sup
𝜏∈[𝑠,𝐿)

𝜑(𝜏)𝑓(𝜏) 𝑑𝑠

≤ sup
𝑡∈(0,𝐿)

𝜑(𝑡)𝑓∗(𝑡) ≲ ‖𝑓‖𝑀𝜓(0,𝐿).

Here, we used (4.25) and (2.1) in the last inequality. Fix 𝑓 ∈ (𝐿1 +𝑀𝜓)(0, 𝐿). We claim that

K(𝑇𝜑𝑓, 𝑡; 𝐿
1,𝑀𝜓) ≲ K(𝑓, 𝑡; 𝐿

1,𝑀𝜓) for every 𝑡 ∈ (0,∞) (4.29)

with a multiplicative constant independent of 𝑓. Let 𝑓 = 𝑔 + ℎ with 𝑔 ∈ 𝐿1(0, 𝐿) and ℎ ∈ 𝑀𝜓(0, 𝐿) be a decomposition of
𝑓. Note that the fact that 𝜉 is nonincreasing and satisfies the averaging condition (4.24) implies that

𝜑(𝑠) ≲ 𝜑
( 𝑠
2

)
for every 𝑠 ∈ (0, 𝐿).

Thanks to this and (2.2), we have that

𝑇𝜑𝑓(𝑠) ≤ 1

𝜑(𝑠)

(
sup
𝜏∈[𝑠,𝐿)

𝜑(𝜏)𝑔∗
(𝜏
2

)
+ sup
𝜏∈[𝑠,𝐿)

𝜑(𝜏)ℎ∗
(𝜏
2

))

≲ 𝑇𝜑𝑔
( 𝑠
2

)
+ 𝑇𝜑ℎ

( 𝑠
2

)
(4.30)

for every 𝑠 ∈ (0, 𝐿). By combining (4.30) and the boundedness of the dilation operator 𝐷2 (see (2.19)) with the fact that 𝑇𝜑
is bounded on both 𝐿1(0, 𝐿) and𝑀𝜓(0, 𝐿), we obtain that (cf. [8, p. 497])

K(𝑇𝜑𝑓, 𝑡; 𝐿
1,𝑀𝜓) ≲ K

(
𝑇𝜑𝑔

( ⋅
2

)
, 𝑡; 𝐿1,𝑀𝜓

)
+ K

(
𝑇𝜑ℎ

( ⋅
2

)
, 𝑡; 𝐿1,𝑀𝜓

)

≲ ‖𝑇𝜑𝑔‖𝐿1(0,𝐿) + 𝑡‖𝑇𝜑ℎ‖𝑀𝜓(0,𝐿) ≲ ‖𝑔‖𝐿1(0,𝐿) + 𝑡‖ℎ‖𝑀𝜓(0,𝐿)
for every 𝑡 ∈ (0,∞). Here, the multiplicative constants are independent of 𝑓, 𝑔, ℎ, and 𝑡. Hence (4.29) is true. Now, since
we have (4.29) at our disposal, there is a linear operator 𝑆 bounded on both 𝐿1(0, 𝐿) and𝑀𝜓(0, 𝐿) with norms that can be
bounded from above by a constant independent of 𝑓 such that 𝑆𝑓 = 𝑇𝜑𝑓. This follows from [26, Theorem 2]. Owing to
(iii), 𝑆 is also bounded on 𝑋′(0, 𝐿); moreover, its norm on 𝑋′(0, 𝐿) can be bounded from above by a constant independent
of 𝑓 [5, Chapter 3, Proposition 1.11]. Therefore,

‖𝑇𝜑𝑓‖𝑋′(0,𝐿) = ‖𝑆𝑓‖𝑋′(0,𝐿) ≲ ‖𝑓‖𝑋′(0,𝐿),
in which the multiplicative constant is independent of 𝑓. Hence, 𝑇𝜑 is bounded on 𝑋′(0, 𝐿).
Finally, if 𝐿 < ∞, then (ii) is equivalent to (iii); hence, the three statements are equivalent to each other in this case.

Indeed, since (Λ1
𝜉
+ 𝐿∞)(0, 𝐿) = Λ1

𝜉
(0, 𝐿) and (𝐿1 + 𝑀𝜓)(0, 𝐿) = 𝐿1(0, 𝐿) owing to (2.18), the equivalence of (ii) and (iii)

follows from [44, Corollary 3.6]. Here, we used the fact that both Λ1
𝜉
(0, 𝐿) and 𝐿1(0, 𝐿) have absolutely continuous norm

(in the sense of [5, Chapter 1, Definition 3.1]). □

4.3 More on the case 𝒖 ≡ 𝟏
The remainder of this section is devoted to the particular but important case 𝑢 ≡ 1. We shall see that the connection
between the supremum operator and the various notions that we have met is even tighter in this case.
First, we need to equip ourselves with the following auxiliary result, which generalizes [30, Lemma 4.9] and whose

immediate corollary for 𝑢 ≡ 1 is of independent interest.
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3522 MIHULA

Proposition 4.12. Let ‖ ⋅ ‖𝑋(0,𝐿) be a rearrangement-invariant function norm.

(1) Let 𝜈 ∶ (0, 𝐿) → (0, 𝐿) be an increasing bijection. Assume that 𝜈−1 ∈ 𝐷0. If 𝐿 = ∞, assume that 𝜈−1 ∈ 𝐷∞.
(2) Let 𝑢 ∶ (0, 𝐿) → (0,∞) be nonincreasing.
(3) Let 𝑣 ∶ (0, 𝐿) → (0,∞) be nonincreasing. Assume that 𝑣 satisfies the averaging condition (4.24), and denote its averaging

constant by 𝐶.

Set 𝑓 =
∑𝑁

𝑖=1
𝑐𝑖𝜒(0,𝑎𝑖), where 𝑐𝑖 ∈ (0,∞), 𝑖 = 1, … ,𝑁, and 0 < 𝑎1 < ⋯ < 𝑎𝑁 < 𝐿. We have that

‖𝐻𝑢,𝑣,𝜈𝑓‖𝑋(0,𝐿) ≈
‖‖‖‖‖‖
𝑢(𝑡)

𝑁∑
𝑖=1

𝑎𝑖𝑐𝑖𝑣(𝑎𝑖)𝜒(0,𝜈−1(𝑎𝑖))(𝑡)

‖‖‖‖‖‖𝑋(0,𝐿)
, (4.31)

in which the multiplicative constants depend only on 𝜈 and 𝐶.

Proof. First, observe that inf 𝑡∈(0,𝐿)
𝜈−1(

𝑡

𝜃
)

𝜈−1(𝑡)
∈ (0, 1), where 𝜃 > 1 is such that 𝜈−1 ∈ 𝐷0

𝜃
and, if 𝐿 = ∞, also 𝜈−1 ∈ 𝐷∞

𝜃
. We

denote the infimum by𝑀.
Second, we have that

‖‖‖‖‖
𝑢(𝑡)∫

𝐿

𝜈(𝑡)

𝑓(𝑠)𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,𝐿)

=

‖‖‖‖‖‖
𝑢(𝑡)

𝑁∑
𝑖=1

𝑐𝑖𝜒(0,𝜈−1(𝑎𝑖))(𝑡)∫
𝑎𝑖

𝜈(𝑡)

𝑣(𝑠) 𝑑𝑠

‖‖‖‖‖‖𝑋(0,𝐿)

≥
‖‖‖‖‖‖
𝑢(𝑡)

𝑁∑
𝑖=1

𝑐𝑖𝜒(0,𝜈−1( 𝑎𝑖
𝜃
))(𝑡)𝑣(𝑎𝑖)(𝑎𝑖 − 𝜈(𝑡))

‖‖‖‖‖‖𝑋(0,𝐿)

≥ 𝜃 − 1
𝜃

‖‖‖‖‖‖
𝑢(𝑡)

𝑁∑
𝑖=1

𝑐𝑖𝜒(0,𝜈−1( 𝑎𝑖
𝜃
))(𝑡)𝑣(𝑎𝑖)𝑎𝑖

‖‖‖‖‖‖𝑋(0,𝐿)

≥ 𝜃 − 1
𝜃

‖‖‖‖‖‖
𝑢(𝑡)

𝑁∑
𝑖=1

𝑐𝑖𝜒(0,𝑀𝜈−1(𝑎𝑖))(𝑡)𝑣(𝑎𝑖)𝑎𝑖

‖‖‖‖‖‖𝑋(0,𝐿)

≥ 𝑀𝜃 − 1
𝜃

‖‖‖‖‖‖
𝑢(𝑀𝑡)

𝑁∑
𝑖=1

𝑐𝑖𝜒(0,𝜈−1(𝑎𝑖))(𝑡)𝑣(𝑎𝑖)𝑎𝑖

‖‖‖‖‖‖𝑋(0,𝐿)

≥ 𝑀𝜃 − 1
𝜃

‖‖‖‖‖‖
𝑢(𝑡)

𝑁∑
𝑖=1

𝑐𝑖𝜒(0,𝜈−1(𝑎𝑖))(𝑡)𝑣(𝑎𝑖)𝑎𝑖

‖‖‖‖‖‖𝑋(0,𝐿)
(4.32)

thanks to the fact that 𝑢 and 𝑣 are nonincreasing and the boundedness of 𝐷 1

𝑀

(see (2.19)).

Last, using the fact that 𝑣 satisfies the averaging condition (4.24), we obtain that

‖‖‖‖‖
𝑢(𝑡)∫

𝐿

𝜈(𝑡)

𝑓(𝑠)𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,𝐿)

=

‖‖‖‖‖‖
𝑢(𝑡)

𝑁∑
𝑖=1

𝑐𝑖𝜒(0,𝜈−1(𝑎𝑖))(𝑡)∫
𝑎𝑖

𝜈(𝑡)

𝑣(𝑠) 𝑑𝑠

‖‖‖‖‖‖𝑋(0,𝐿)

≤ 𝐶
‖‖‖‖‖‖
𝑢(𝑡)

𝑁∑
𝑖=1

𝑐𝑖𝜒(0,𝜈−1(𝑎𝑖))(𝑡)𝑎𝑖𝑣(𝑎𝑖)

‖‖‖‖‖‖𝑋(0,𝐿)
. (4.33)

By combining (4.33) and (4.32), we obtain (4.31). □

Since every nonnegative, nonincreasing function on (0, 𝐿) is the pointwise limit of a nondecreasing sequence of
nonnegative, nonincreasing simple functions, Proposition 4.12 with 𝑢 ≡ 1 has the following important corollary.
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MIHULA 3523

Corollary 4.13. Let ‖ ⋅ ‖𝑋(0,𝐿) be a rearrangement-invariant function norm.

(1) Let 𝜈, 𝑣 be as in Proposition 4.12.

Let 𝑓 ∈ 𝔐+(0, 𝐿). There is a nondecreasing sequence {𝑓𝑘}∞𝑘=1 of nonnegative, nonincreasing simple functions on (0, 𝐿) such
that

lim
𝑘→∞

‖𝐻1,𝑣,𝜈(𝑓𝑘)‖𝑋(0,𝐿) ≈ ‖𝑓∗‖𝑋(0,𝐿) = ‖𝑓‖𝑋(0,𝐿).

Here, the multiplicative constants depend only on 𝜈 and the averaging constant of 𝑣.

Remark 4.14. The assumption 𝜈−1 ∈ 𝐷0 is not overly restrictive. For example, it is satisfied whenever 𝜈 is equivalent to 𝑡 ↦
𝑡𝛼𝓁1(𝑡)

𝛽1 ⋯𝓁𝑘(𝑡)
𝛽𝑘 near 0 for any 𝛼 > 0, 𝑘 ∈ ℕ0 and 𝛽𝑗 ∈ ℝ, 𝑗 = 1, 2, … , 𝑘. Here, the functions 𝓁𝑗 are iterated logarithmic

functions defined by (4.23). In this case, 𝜈−1 is equivalent to 𝑡 ↦ 𝑡
1

𝛼 𝓁1(𝑡)
−
𝛽1
𝛼 ⋯𝓁𝑘(𝑡)

−
𝛽𝑘
𝛼 near 0 (cf. [6, Appendix 5]). On

the other hand, 𝜈(𝑡) = log𝛼( 1
𝑡
) near 0, where 𝛼 < 0, is a typical example of a function not satisfying the assumption. The

same remark (with the obvious modifications) is true for the assumption 𝜈−1 ∈ 𝐷∞.

While Proposition 4.2 provides a sufficient condition for simplification of (3.3), the following proposition provides a
necessary one.

Proposition 4.15. Let ‖ ⋅ ‖𝑋(0,𝐿) be a rearrangement-invariant function norm.

(1) Let 𝜈 ∶ (0, 𝐿) → (0, 𝐿) be an increasing bijection. Assume that 𝜈−1 ∈ 𝐷0. If 𝐿 = ∞, assume that 𝜈−1 ∈ 𝐷∞ and 𝜈 ∈ 𝐷∞.
(2) Let 𝑣 ∶ (0, 𝐿) → (0,∞) be a nonincreasing function satisfying the averaging condition (4.24).

If there is a positive constant 𝐶 such that

sup
ℎ∼𝑓

‖𝐻1,𝑣,𝜈ℎ‖𝑋(0,𝐿) ≤ 𝐶‖𝐻1,𝑣,𝜈(𝑓∗)‖𝑋(0,𝐿) for every 𝑓 ∈ 𝔐+(0, 𝐿), (4.34)

then the three equivalent statements from Theorem 4.6 with 𝑢 ≡ 1 are satisfied.
Proof. Let 𝑎 be defined by (3.2). Since 𝑣 is integrable over (0, 𝑎), for it satisfies the averaging condition (4.24), we have that

‖‖‖‖‖
𝜒(0,𝜈−1(𝑎))(𝑡)∫

𝑎

𝜈(𝑡)

𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,𝐿)

≤ ∫
𝑎

0

𝑣(𝑠) 𝑑𝑠‖𝜒(0,𝜈−1(𝑎))‖𝑋(0,𝐿) < ∞. (4.35)

Furthermore, if 𝐿 = ∞, then lim sup𝜏→∞ 𝑣(𝜏)‖𝜒(0,𝜈−1(𝜏))‖𝑋(0,∞) < ∞. Indeed, suppose that lim sup𝜏→∞ 𝑣(𝜏)

‖𝜒(0,𝜈−1(𝜏))‖𝑋(0,∞) = ∞. It follows from the proof of Proposition 3.3 that

sup
ℎ∼𝜒(0,1)

‖𝐻1,𝑣,𝜈ℎ‖𝑋(0,∞) = ∞. (4.36)

However, since

sup
ℎ∼𝜒(0,1)

‖𝐻1,𝑣,𝜈ℎ‖𝑋(0,∞) ≈ ‖𝐻1,𝑣,𝜈𝜒(0,1)‖𝑋(0,∞) =
‖‖‖‖‖
𝜒(0,𝜈−1(1))(𝑡)∫

1

𝜈(𝑡)

𝑣(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,∞)

< ∞,

thanks to (4.34) and (4.35), (4.36) is not possible. Hence, Proposition 3.3 guarantees that the optimal domain space for
𝐻1,𝑣,𝜈 and 𝑋(0, 𝐿) exists. Moreover, if we denote it by 𝑍(0, 𝐿), then (4.34) implies that

‖𝑓‖𝑍(0,𝐿) ≈ ‖𝐻1,𝑣,𝜈(𝑓∗)‖𝑋(0,𝐿) for every 𝑓 ∈ 𝔐+(0, 𝐿). (4.37)
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3524 MIHULA

Now, we finally turn our attention to proving that (4.34) implies statement (iii) from Theorem 4.6. Let 𝑌(0, 𝐿) be the
optimal target space for the operator𝐻1,𝑣,𝜈 and 𝑍(0, 𝐿). Its existence is guaranteed by Proposition 3.7, and we have that

‖𝑓‖𝑌′(0,𝐿) = ‖𝑅1,𝑣,𝜈−1(𝑓∗)‖𝑍′(0,𝐿) for every 𝑓 ∈ 𝔐+(0, 𝐿). (4.38)

Using the optimality of 𝑌(0, 𝐿) combined with the fact that 𝐻1,𝑣,𝜈 ∶ 𝑍(0, 𝐿) → 𝑋(0, 𝐿) is bounded, and (4.37), we obtain
that

‖𝐻1,𝑣,𝜈(𝑓∗)‖𝑋(0,𝐿) ≲ ‖𝐻1,𝑣,𝜈(𝑓∗)‖𝑌(0,𝐿) ≲ ‖𝑓‖𝑍(0,𝐿) ≈ ‖𝐻1,𝑣,𝜈(𝑓∗)‖𝑋(0,𝐿)
for every 𝑓 ∈ 𝔐+(0, 𝐿). Hence,

‖𝐻1,𝑣,𝜈(𝑓∗)‖𝑋(0,𝐿) ≈ ‖𝐻1,𝑣,𝜈(𝑓∗)‖𝑌(0,𝐿) for every 𝑓 ∈ 𝔐+(0, 𝐿).

In particular, we have that

‖𝐻1,𝑣,𝜈ℎ‖𝑋(0,𝐿) ≈ ‖𝐻1,𝑣,𝜈ℎ‖𝑌(0,𝐿) (4.39)

for every nonincreasing simple function ℎ ∈ 𝔐+(0, 𝐿). By combining (4.39) with Corollary 4.13, we obtain that

‖𝑓∗‖𝑋(0,𝐿) ≈ ‖𝑓∗‖𝑌(0,𝐿) for every 𝑓 ∈ 𝔐+(0, 𝐿).

Owing to the rearrangement invariance of both function norms, it follows that 𝑋(0, 𝐿) = 𝑌(0, 𝐿). Hence, (4.6) with 𝑢 ≡ 1
follows from (4.38) combined with (2.8). □

We obtain the final result of this subsection by combining Theorem 4.6, Proposition 4.15, Proposition 4.2, and
Theorem 4.11.

Theorem 4.16. Let ‖ ⋅ ‖𝑋(0,𝐿) be a rearrangement-invariant function norm.

(1) Let 𝜈 ∶ (0, 𝐿) → (0, 𝐿) be an increasing bijection. Assume that 𝜈−1 ∈ 𝐷0. If 𝐿 = ∞, assume that 𝜈−1 ∈ 𝐷∞ and 𝜈 ∈ 𝐷∞.
(2) Let 𝑣 ∶ (0, 𝐿) → (0,∞) be defined by (4.3) with 𝜉 ∶ (0, 𝐿) → (0,∞) satisfying the averaging condition (4.24). Assume

that 𝑣, too, satisfies the averaging condition (4.24). Furthermore, assume that the function 𝜑◦𝜈−1 is equivalent to a
quasiconcave function, where 𝜑 = 1∕𝜉.

Let ‖ ⋅ ‖𝑌(0,𝐿) be the functional defined by (3.3) with 𝑢 ≡ 1. The following five statements are equivalent.
(i) The operator 𝑇𝜑, defined by (4.2), is bounded on 𝑋′(0, 𝐿).
(ii) There is a positive constant 𝐶 such that

sup
ℎ∼𝑓

‖𝐻1,𝑣,𝜈ℎ‖𝑋(0,𝐿) ≤ 𝐶‖𝐻1,𝑣,𝜈(𝑓∗)‖𝑋(0,𝐿) for every 𝑓 ∈ 𝔐+(0, 𝐿).

(iii) The space 𝑋(0, 𝐿) is the optimal target space for the operator𝐻1,𝑣,𝜈 and some rearrangement-invariant function space.
(iv) The space 𝑋′(0, 𝐿) is the optimal domain space for the operator 𝑅1,𝑣,𝜈−1 and some rearrangement-invariant function

space.
(v) We have that

‖𝑓‖𝑋′(0,𝐿) ≈ sup
𝑔∈𝔐+(0,𝐿)
‖𝑔‖𝑌(0,𝐿)≤1

∫
𝐿

0

𝑔(𝑡)𝑅1,𝑣,𝜈−1(𝑓
∗)(𝑡) 𝑑𝑡 for every 𝑓 ∈ 𝔐+(0, 𝐿).

If 𝐿 < ∞, these five statements are also equivalent to

(vi) 𝑋(0, 𝐿) ∈ Int
(
Λ1
𝜉
(0, 𝐿), 𝐿∞(0, 𝐿)

)
.
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MIHULA 3525

Remark 4.17.

(1) The assumption that 𝑣 satisfies the averaging condition (4.24) is natural. It forbids weights 𝑣 for which the question of
whether 𝑋(0, 𝐿) (or 𝑋′(0, 𝐿)) is the optimal target (or domain) space for 𝐻1,𝑣,𝜈 (or 𝑅1,𝑣,𝜈−1) and some rearrangement-
invariant function space cannot be decided by the boundedness of the corresponding supremum operator 𝑇𝜑. This
can be illustrated by a very simple example. Consider 𝜈 = id and 𝜉 ≡ 1. Since 𝑇𝜑𝑓 = 𝑓∗, 𝑇𝜑 is bounded on any
𝑋′(0, 𝐿). However, 𝑅1,𝑣,𝜈−1𝑓(𝑡) = ∫ 𝑡

0
|𝑓(𝑠)|𝑑𝑠∕𝑡 clearly need not be bounded from 𝑋′(0, 𝐿) to (𝐿1 + 𝐿∞)(0, 𝐿), which

is the largest rearrangement-invariant function space. To this end, consider, for example, 𝑋(0, 𝐿) = 𝐿∞(0,∞) (cf. [58,
Proposition 4.1]).

(2) When 𝑣(𝑡) = 𝑡−1+𝛽 and 𝜈(𝑡) = 𝑡𝛾, 𝑡 ∈ (0, 𝐿), the assumptions of Theorem 4.16 are satisfied if 𝛽 ∈ (0, 1), 𝛾 > 0, and
1 ≤ 1

𝛾
+ 𝛽 ≤ 2.

5 ITERATION OF OPTIMAL FUNCTION NORMS

This section is devoted to so-called sharp iteration principles for the operators 𝑅𝑢,𝑣,𝜈 and 𝐻𝑢,𝑣,𝜈. To illustrate their
meaning and importance, suppose that 𝑌1(0, 𝐿) is the optimal target space for 𝐻𝑢1,𝑣1,𝜈1 and a rearrangement-invariant
function space 𝑋(0, 𝐿). Let us now go one step further and suppose that 𝑌2(0, 𝐿) is the optimal target space for
𝐻𝑢2,𝑣2,𝜈2 and 𝑌1(0, 𝐿). In the light of Proposition 3.7, the associate function norm of ‖ ⋅ ‖𝑌2(0,𝐿) is equal to ‖𝑓‖𝑌′

2
(0,𝐿) =

‖𝑅𝑢1,𝑣1,𝜈−11 ((𝑅𝑢2,𝑣2,𝜈−12 (𝑓∗))∗)‖𝑋′(0,𝐿). We immediately see that there is an inevitable difficulty that we face if we wish to
understand the iterated norm. This difficulty is caused by the fact that the function 𝑅𝑢2,𝑣2,𝜈−12 (𝑓

∗) is hardly ever (equiva-
lent to) a nonincreasing function, unless 𝑢2, 𝑣2, and 𝜈2 are related to each other in a very specific way (see Proposition 4.1).
Therefore, we cannot just readily “delete” the outer star. Nevertheless, with some substantial effort, we shall be able to
equivalently express the iterated norm as a noniterated one under suitable assumptions. The suitable assumptions are
such that the iteration does not lead to the presence of kernels, which would go beyond the scope of this paper (see [22,
section 8] in that regard). It should be noted that such an iteration is not artificial. For example, it is an essential tool
for establishing sharp iteration principles for various Sobolev embeddings. Roughly speaking, they ensure that the opti-
mal rearrangement-invariant target space in a Sobolev embedding of (𝑘 + 𝑙)-th order is the same as that obtained by
composing the optimal Sobolev embedding of order 𝑘 with the optimal Sobolev embedding of order 𝑙 (see [21, 23, 46]
and references therein). Another possible application is description of optimal rearrangement-invariant function norms
for compositions of some operators of harmonic analysis (see [30] and references therein for optimal behavior of some
classical operators on rearrangement-invariant function spaces). Finally, the motivation behind studying function norms
induced by𝐻𝑢1,𝑣1,𝜈1◦𝐻𝑢1,𝑣1,𝜈1 is similar.

5.1 Iteration principle for 𝑹𝒖,𝒗,𝝂

The following proposition is the first step toward the sharp iteration principle for 𝑅𝑢,𝑣,𝜈.

Proposition 5.1. Let ‖ ⋅ ‖𝑋(0,𝐿) be a rearrangement-invariant function norm.

(1) Let 𝜈1, 𝜈2 ∶ (0, 𝐿) → (0, 𝐿) be increasing bijections. Assume that 𝜈2 ∈ 𝐷0. If 𝐿 = ∞, assume that 𝜈2 ∈ 𝐷∞.
(2) Let 𝑢1, 𝑢2 ∶ (0, 𝐿) → (0,∞) be nonincreasing.
(3) Let 𝑣1 ∶ (0, 𝐿) → (0,∞) be measurable. Let 𝑣2 ∶ (0, 𝐿) → (0,∞) be a nonincreasing function satisfying the averaging

condition (4.24).

Set 𝜈 = 𝜈2◦𝜈1 and

𝑣(𝑡) = 𝑢1(𝜈1(𝑡))𝑣1(𝑡)𝜈1(𝑡)𝑣2(𝜈1(𝑡)), 𝑡 ∈ (0, 𝐿). (5.1)

We have that

‖𝑅𝑢1,𝑣1,𝜈1 ((𝑅𝑢2,𝑣2,𝜈2 (𝑓∗))∗)‖𝑋(0,𝐿) ≳ ‖𝑅𝑢2,𝑣,𝜈(𝑓∗)‖𝑋(0,𝐿)
for every 𝑓 ∈ 𝔐+(0, 𝐿), in which the multiplicative constant depends only on 𝜈2 and the averaging constant of 𝑣2.
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3526 MIHULA

Proof. Note that inf 𝑡∈(0,𝐿)
𝜈2(

𝑡

𝜃
)

𝜈2(𝑡)
> 0, where 𝜃 > 1 is such that 𝜈2 ∈ 𝐷0𝜃 and, if 𝐿 = ∞, also 𝜈2 ∈ 𝐷

∞
𝜃
. Consequently, there is

𝑁 ∈ ℕ, such that 𝜈2(𝑡) ≤ 𝑁𝜈2( 𝑡
𝜃
) for every 𝑡 ∈ (0, 𝐿). Hence, for every 𝑓 ∈ 𝔐+(0, 𝐿), we have that

∫
𝜈2(𝑡)

0

𝑓∗(𝑠)𝑢2(𝑠) 𝑑𝑠 ≤ 𝑁 ∫
𝜈2(

𝑡

𝜃
)

0

𝑓∗(𝑠)𝑢2(𝑠) 𝑑𝑠 for every 𝑡 ∈ (0, 𝐿) (5.2)

owing to the fact that𝑓∗𝑢2 is nonincreasing. Thanks to themonotonicity of𝑢1 and 𝑣2, the fact that 𝑣2 satisfies the averaging
condition (4.24) and the inequality (5.2), we have that

‖‖‖‖‖
𝑣1(𝑡)𝑢1(𝜈1(𝑡))𝜈1(𝑡)𝑣2(𝜈1(𝑡))∫

𝜈(𝑡)

0

𝑓∗(𝑠)𝑢2(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,𝐿)

≲
‖‖‖‖‖
𝑣1(𝑡)𝑢1(𝜈1(𝑡))∫

𝜈1(𝑡)

0

𝑣2(𝑠) 𝑑𝑠 ∫
𝜈(𝑡)

0

𝑓∗(𝑠)𝑢2(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,𝐿)

≈

‖‖‖‖‖‖
𝑣1(𝑡)𝑢1(𝜈1(𝑡))∫

𝜈1(𝑡)

𝜈1(𝑡)

𝜃

𝑣2(𝑠) 𝑑𝑠 ∫
𝜈(𝑡)

0

𝑓∗(𝑠)𝑢2(𝑠) 𝑑𝑠

‖‖‖‖‖‖𝑋(0,𝐿)

≤
‖‖‖‖‖‖
𝑣1(𝑡)∫

𝜈1(𝑡)

𝜈1(𝑡)

𝜃

𝑣2(𝑠)𝑢1(𝑠) 𝑑𝑠 ∫
𝜈(𝑡)

0

𝑓∗(𝑠)𝑢2(𝑠) 𝑑𝑠

‖‖‖‖‖‖𝑋(0,𝐿)

≲

‖‖‖‖‖‖‖
𝑣1(𝑡)∫

𝜈1(𝑡)

𝜈1(𝑡)

𝜃

𝑣2(𝑠)𝑢1(𝑠) 𝑑𝑠 ∫
𝜈2(

𝜈1(𝑡)

𝜃
)

0

𝑓∗(𝑠)𝑢2(𝑠) 𝑑𝑠

‖‖‖‖‖‖‖𝑋(0,𝐿)

≤
‖‖‖‖‖‖
𝑣1(𝑡)∫

𝜈1(𝑡)

𝜈1(𝑡)

𝜃

(
𝑣2(𝑠)∫

𝜈2(𝑠)

0

𝑓∗(𝜏)𝑢2(𝜏) 𝑑𝜏

)
𝑢1(𝑠) 𝑑𝑠

‖‖‖‖‖‖𝑋(0,𝐿)

≤
‖‖‖‖‖‖
𝑣1(𝑡)∫

𝜈1(𝑡)

0

(
𝑣2(𝑠)∫

𝜈2(𝑠)

0

𝑓∗(𝜏)𝑢2(𝜏) 𝑑𝜏

)
𝑢1(𝑠) 𝑑𝑠

‖‖‖‖‖‖𝑋(0,𝐿)
≤ ‖‖‖𝑅𝑢1,𝑣1,𝜈1 ((𝑅𝑢2,𝑣2,𝜈2 (𝑓∗))∗)

‖‖‖𝑋(0,𝐿)
for every 𝑓 ∈ 𝔐+(0, 𝐿). Here, we used the Hardy–Littlewood inequality (2.4) in the last inequality. □

We are now in a position to establish the sharp iteration principle for 𝑅𝑢,𝑣,𝜈.

Theorem 5.2. Let ‖ ⋅ ‖𝑋(0,𝐿) be a rearrangement-invariant function norm.

(1) Let 𝜈1, 𝜈2, 𝑢1, 𝑢2 be as in Proposition 5.1.
(2) Let 𝑣1 ∶ (0, 𝐿) → (0,∞) be a continuous function. Let 𝑣2 ∶ (0, 𝐿) → (0,∞) be defined by

1

𝑣2(𝑡)
= ∫

𝜈2(𝑡)

0

𝜉(𝑠) 𝑑𝑠, 𝑡 ∈ (0, 𝐿),

where 𝜉 ∶ (0, 𝐿) → (0,∞) is ameasurable function. Assume that the function𝑢1𝑣2 satisfies the averaging condition (4.24).

Let 𝑣 be the function defined by (5.1). Set 𝜈 = 𝜈2◦𝜈1 and

𝜂(𝑡) =
1

𝑈2(𝑡)𝑣(𝜈−1(𝑡))
, 𝑡 ∈ (0, 𝐿).
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MIHULA 3527

Assume that 𝜂 and 𝜂∕𝜉 are equivalent to nonincreasing functions. Furthermore, assume that there are positive constants 𝐶1
and 𝐶2 such that

∫
𝑡

0

𝜂(𝑠)𝑢2(𝑠) 𝑑𝑠 ≤ 𝐶1𝑈2(𝑡)𝜂(𝑡) for a.e. 𝑡 ∈ (0, 𝐿) (5.3)

and
1

𝑡 ∫
𝑡

0

𝑈2(𝜈(𝑠))𝑣(𝑠) 𝑑𝑠 ≥ 𝐶2𝑈2(𝜈(𝑡))𝑣(𝑡) for a.e. 𝑡 ∈ (0, 𝐿). (5.4)

We have that

‖𝑅𝑢1,𝑣1,𝜈1 ((𝑅𝑢2,𝑣2,𝜈2 (𝑓∗))∗)‖𝑋(0,𝐿) ≈ ‖𝑅𝑢2,𝑣,𝜈(𝑓∗)‖𝑋(0,𝐿)
for every 𝑓 ∈ 𝔐+(0, 𝐿). Here, the multiplicative constants depend only on 𝜈1, 𝜈2, 𝐶1, 𝐶2, the averaging constant of 𝑢1𝑣2 and
the multiplicative constants in the equivalences of 𝜂 and 𝜂

𝜉
to nonincreasing functions.

Proof. First, note that the fact that 𝑣2𝑢1 satisfies the averaging condition (4.24) together with the monotonicity of 𝑢1
implies that 𝑣2, too, satisfies the averaging condition (4.24) (with the same multiplicative constant). Hence, we have that

‖𝑅𝑢1,𝑣1,𝜈1 ((𝑅𝑢2,𝑣2,𝜈2 (𝑓∗))∗)‖𝑋(0,𝐿) ≳ ‖𝑅𝑢2,𝑣,𝜈(𝑓∗)‖𝑋(0,𝐿) for every 𝑓 ∈ 𝔐+(0, 𝐿),

thanks to Proposition 5.1. Therefore, we only need to prove the opposite inequality.
We may assume that 𝑢2 is nondegenerate and 𝜓 ∈ 𝑋(0, 𝐿), where 𝜓 is defined as 𝜓(𝑡) = 𝑣(𝑡)𝑈2(𝜈(𝑡))𝜒(0,𝐿)(𝑡) +

𝑣(𝑡)𝜒(𝐿,∞)(𝑡), 𝑡 ∈ (0, 𝐿). Indeed, if it is not the case, then ‖𝑅𝑢2,𝑣,𝜈(𝑓∗)‖𝑋(0,𝐿) = ∞ for every 𝑓 ∈ 𝔐+(0, 𝐿) that is not equiv-
alent to 0 a.e. Proposition 3.1 with 𝑢 = 𝑢2 guarantees that there is a rearrangement-invariant function space 𝑍(0, 𝐿) such
that

‖𝑓‖𝑍(0,𝐿) = ‖𝑅𝑢2,𝑣,𝜈(𝑓∗)‖𝑋(0,𝐿) for every 𝑓 ∈ 𝔐+(0, 𝐿).

Furthermore, by (3.18) and the Hardy–Littlewood inequality (2.4), we have that

sup
‖𝑔‖𝑋′(0,𝐿)≤1

‖𝐻𝑢2,𝑣,𝜈−1𝑔‖𝑍′(0,𝐿) = 1. (5.5)

Note that, for every 𝑓 ∈ 𝔐+(0, 𝐿), the function

(0, 𝐿) ∋ 𝑡 ↦ 𝑣2(𝑡)∫
𝜈2(𝑡)

0

𝜉(𝑠)𝑢2(𝑠) sup
𝜏∈[𝑠,𝐿)

1

𝜉(𝜏)
𝑓∗(𝜏) 𝑑𝑠

is nonincreasing. Indeed it is the integral mean of the nonincreasing function (0, 𝐿) ∋ 𝑠 ↦ 𝑢2(𝑠) sup𝜏∈[𝑠,𝐿)
1

𝜉(𝜏)
𝑓∗(𝜏) over

the interval (0, 𝜈2(𝑡)) with respect to the measure 𝜉(𝑠) 𝑑𝑠. By (2.9) and (3.17), we have that

‖𝑅𝑢1,𝑣1,𝜈1 ((𝑅𝑢2,𝑣2,𝜈2 (𝑓∗))∗)‖𝑋(0,𝐿) = sup
‖𝑔‖𝑋′(0,𝐿)≤1∫

𝐿

0

(𝑅𝑢2,𝑣2,𝜈2 (𝑓
∗))∗(𝑡)𝐻𝑢1𝑣1,𝜈−11

𝑔(𝑡) 𝑑𝑡

= sup
‖𝑔‖𝑋′(0,𝐿)≤1∫

𝐿

0

[
𝑣2(𝑠)∫

𝜈2(𝑠)

0

𝑢2(𝜏)𝑓
∗(𝜏) 𝑑𝜏

]∗
(𝑡)𝐻𝑢1,𝑣1,𝜈−11

𝑔(𝑡) 𝑑𝑡

≤ sup
‖𝑔‖𝑋′(0,𝐿)≤1∫

𝐿

0

[
𝑣2(𝑠)∫

𝜈2(𝑠)

0

𝜉(𝜏)𝑢2(𝜏) sup
𝑥∈[𝜏,𝐿)

1

𝜉(𝑥)
𝑓∗(𝑥) 𝑑𝜏

]∗
(𝑡)𝐻𝑢1,𝑣1,𝜈−11

𝑔(𝑡) 𝑑𝑡

= sup
‖𝑔‖𝑋′(0,𝐿)≤1∫

𝐿

0

𝑣2(𝑡)∫
𝜈2(𝑡)

0

𝜉(𝑠)𝑢2(𝑠) sup
𝜏∈[𝑠,𝐿)

1

𝜉(𝜏)
𝑓∗(𝜏) 𝑑𝑠 𝐻𝑢1,𝑣1,𝜈−11

𝑔(𝑡) 𝑑𝑡
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3528 MIHULA

= sup
‖𝑔‖𝑋′(0,𝐿)≤1∫

𝐿

0

(
𝜉(𝑠) sup

𝜏∈[𝑠,𝐿)

1

𝜉(𝜏)
𝑓∗(𝜏)

)(
𝑢2(𝑠)∫

𝐿

𝜈−1
2
(𝑠)

𝑣2(𝑡)𝑢1(𝑡)∫
𝐿

𝜈−1
1
(𝑡)

𝑔(𝑥)𝑣1(𝑥) 𝑑𝑥 𝑑𝑡

)
𝑑𝑠

≤ ‖‖‖‖‖
𝜉(𝑡) sup

𝑠∈[𝑡,𝐿)

1

𝜉(𝑠)
𝑓∗(𝑠)

‖‖‖‖‖𝑍(0,𝐿)
sup

‖𝑔‖𝑋′(0,𝐿)≤1
‖‖‖‖‖‖
𝑢2(𝑡)∫

𝐿

𝜈−1
2
(𝑡)

𝑣2(𝑠)𝑢1(𝑠)∫
𝐿

𝜈−1
1
(𝑠)

𝑔(𝜏)𝑣1(𝜏) 𝑑𝜏 𝑑𝑠

‖‖‖‖‖‖𝑍′(0,𝐿)

=
‖‖‖‖‖
𝜉(𝑡) sup

𝑠∈[𝑡,𝐿)

1

𝜉(𝑠)
𝑓∗(𝑠)

‖‖‖‖‖𝑍(0,𝐿)
sup

‖𝑔‖𝑋′(0,𝐿)≤1
‖‖‖‖‖‖
𝑢2(𝑡)∫

𝐿

𝜈−1(𝑡)

𝑔(𝜏)𝑣1(𝜏)∫
𝜈1(𝜏)

𝜈−1
2
(𝑡)

𝑣2(𝑠)𝑢1(𝑠) 𝑑𝑠 𝑑𝜏

‖‖‖‖‖‖𝑍′(0,𝐿)

≲
‖‖‖‖‖
𝜉(𝑡) sup

𝑠∈[𝑡,𝐿)

1

𝜉(𝑠)
𝑓∗(𝑠)

‖‖‖‖‖𝑍(0,𝐿)
sup

‖𝑔‖𝑋′(0,𝐿)≤1
‖‖‖‖‖
𝑢2(𝑡)∫

𝐿

𝜈−1(𝑡)

𝑔(𝜏)𝑣1(𝜏)𝜈1(𝜏)𝑢1(𝜈1(𝜏))𝑣2(𝜈1(𝜏)) 𝑑𝜏
‖‖‖‖‖𝑍′(0,𝐿)

=
‖‖‖‖‖
𝜉(𝑡) sup

𝑠∈[𝑡,𝐿)

1

𝜉(𝑠)
𝑓∗(𝑠)

‖‖‖‖‖𝑍(0,𝐿)
sup

‖𝑔‖𝑋′(0,𝐿)≤1
‖𝐻𝑢2,𝑣,𝜈−1𝑔‖𝑍′(0,𝐿)

=
‖‖‖‖‖
𝜉(𝑡) sup

𝑠∈[𝑡,𝐿)

1

𝜉(𝑠)
𝑓∗(𝑠)

‖‖‖‖‖𝑍(0,𝐿)
,

for every 𝑓 ∈ 𝔐+(0, 𝐿). Here, we used Fubini’s theorem in the fourth and fifth equalities, the Hölder inequality (2.14) in
the second inequality, the fact that 𝑢1𝑣2 satisfies the averaging condition (4.24) in the last inequality, and (5.5) in the last
equality. Therefore, the proof will be finished once we show that

‖‖‖‖‖
𝜉(𝑡) sup

𝑠∈[𝑡,𝐿)

1

𝜉(𝑠)
𝑓∗(𝑠)

‖‖‖‖‖𝑍(0,𝐿)
≲ ‖𝑅𝑢2,𝑣,𝜈(𝑓∗)‖𝑋(0,𝐿) for every 𝑓 ∈ 𝔐+(0, 𝐿).

Since the function 𝜂

𝜉
is equivalent to a nonincreasing function, we have that

‖‖‖‖‖
𝜉(𝑡) sup

𝑠∈[𝑡,𝐿)

1

𝜉(𝑠)
𝑓∗(𝑠)

‖‖‖‖‖𝑍(0,𝐿)
≲
‖‖‖‖‖
𝜂(𝑡) sup

𝑠∈[𝑡,𝐿)

1

𝜂(𝑠)
𝑓∗(𝑠)

‖‖‖‖‖𝑍(0,𝐿)
for every 𝑓 ∈ 𝔐+(0, 𝐿). Hence, it is sufficient to show that

‖‖‖‖‖
𝜂(𝑡) sup

𝑠∈[𝑡,𝐿)

1

𝜂(𝑠)
𝑓∗(𝑠)

‖‖‖‖‖𝑍(0,𝐿)
≲ ‖𝑅𝑢2,𝑣,𝜈(𝑓∗)‖𝑋(0,𝐿) for every 𝑓 ∈ 𝔐+(0, 𝐿). (5.6)

Note that, for every 𝑓 ∈ 𝔐+(0, 𝐿),

‖‖‖‖‖
𝜂(𝑡) sup

𝑠∈[𝑡,𝐿)

1

𝜂(𝑠)
𝑓∗(𝑠)

‖‖‖‖‖𝑍(0,𝐿)
≈
‖‖‖‖‖
𝑣(𝑡)∫

𝜈(𝑡)

0

𝑢2(𝑠)𝜂(𝑠) sup
𝜏∈[𝑠,𝐿)

1

𝜂(𝜏)
𝑓∗(𝜏) 𝑑𝑠

‖‖‖‖‖𝑋(0,𝐿)

≤ ‖‖‖‖‖
𝑣(𝑡)∫

𝜈(𝑡)

0

𝑢2(𝑠)𝜂(𝑠) sup
𝜏∈[𝑠,𝜈(𝑡))

1

𝜂(𝜏)
𝑓∗(𝜏) 𝑑𝑠

‖‖‖‖‖𝑋(0,𝐿)

+

‖‖‖‖‖‖
𝑣(𝑡)

(
sup

𝜏∈[𝜈(𝑡),𝐿)

1

𝜂(𝜏)
𝑓∗(𝜏)

)
∫
𝜈(𝑡)

0

𝑢2(𝑠)𝜂(𝑠) 𝑑𝑠

‖‖‖‖‖‖𝑋(0,𝐿)
, (5.7)

inasmuch as 𝜂 is equivalent to a nonincreasing function. Furthermore, since 𝜂 is equivalent to a nonincreasing function
and satisfies (5.3), [34, Theorem 3.2] guarantees that

∫
𝜈(𝑡)

0

𝑢2(𝑠)𝜂(𝑠) sup
𝜏∈[𝑠,𝜈(𝑡))

1

𝜂(𝜏)
𝑓∗(𝜏) 𝑑𝑠 ≲ ∫

𝜈(𝑡)

0

𝑓∗(𝑠)𝑢2(𝑠) 𝑑𝑠
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MIHULA 3529

for every 𝑡 ∈ (0, 𝐿) and every 𝑓 ∈ 𝔐+(0, 𝐿). Here, the multiplicative constant depends only on 𝐶2. Hence,

‖‖‖‖‖
𝑣(𝑡)∫

𝜈(𝑡)

0

𝑢2(𝑠)𝜂(𝑠) sup
𝜏∈[𝑠,𝜈(𝑡))

1

𝜂(𝜏)
𝑓∗(𝜏) 𝑑𝑠

‖‖‖‖‖𝑋(0,𝐿)
≲
‖‖‖‖‖
𝑣(𝑡)∫

𝜈(𝑡)

0

𝑓∗(𝑠)𝑢2(𝑠) 𝑑𝑠
‖‖‖‖‖𝑋(0,𝐿)

= ‖𝑅𝑢2,𝑣,𝜈(𝑓∗)‖𝑋(0,𝐿) (5.8)

for every 𝑓 ∈ 𝔐+(0, 𝐿). Furthermore, thanks to the fact that 𝜂 satisfies (5.3) again, we have that
‖‖‖‖‖‖
𝑣(𝑡)

(
sup

𝜏∈[𝜈(𝑡),𝐿)

1

𝜂(𝜏)
𝑓∗(𝜏)

)
∫
𝜈(𝑡)

0

𝑢2(𝑠)𝜂(𝑠) 𝑑𝑠

‖‖‖‖‖‖𝑋(0,𝐿)
≲
‖‖‖‖‖
𝑣(𝑡)𝑈2(𝜈(𝑡))𝜂(𝜈(𝑡)) sup

𝜏∈[𝜈(𝑡),𝐿)

1

𝜂(𝜏)
𝑓∗(𝜏)

‖‖‖‖‖𝑋(0,𝐿)

=
‖‖‖‖‖
sup

𝜏∈[𝜈(𝑡),𝐿)

1

𝜂(𝜏)
𝑓∗(𝜏)

‖‖‖‖‖𝑋(0,𝐿)

=
‖‖‖‖‖
sup
𝜏∈[𝑡,𝐿)

1

𝜂(𝜈(𝜏))
𝑓∗(𝜈(𝜏))

‖‖‖‖‖𝑋(0,𝐿)
(5.9)

for every 𝑓 ∈ 𝔐+(0, 𝐿). We claim that
‖‖‖‖‖
sup
𝜏∈[𝑡,𝐿)

1

𝜂(𝜈(𝜏))
𝑓∗(𝜈(𝜏))

‖‖‖‖‖𝑋(0,𝐿)
≲ ‖𝑅𝑢2,𝑣,𝜈(𝑓∗)‖𝑋(0,𝐿). (5.10)

Thanks to the Hardy–Littlewood–Pólya principle (2.7), it is sufficient to show that

∫
𝑡

0

sup
𝜏∈[𝑠,𝐿)

1

𝜂(𝜈(𝜏))
𝑓∗(𝜈(𝜏)) 𝑑𝑠 ≲ ∫

𝑡

0

(𝑅𝑢2,𝑣,𝜈(𝑓
∗))∗(𝑠) 𝑑𝑠 for every 𝑡 ∈ (0, 𝐿). (5.11)

To this end, we have that

∫
𝑡

0

sup
𝜏∈[𝑠,𝑡)

1

𝜂(𝜈(𝜏))
𝑓∗(𝜈(𝜏)) 𝑑𝑠 ≲ ∫

𝑡

0

1

𝜂(𝜈(𝑠))
𝑓∗(𝜈(𝑠)) 𝑑𝑠 = ∫

𝑡

0

𝑈2(𝜈(𝑠))𝑣(𝑠)𝑓
∗(𝜈(𝑠)) 𝑑𝑠

≤ ∫
𝑡

0

𝑅𝑢2,𝑣,𝜈(𝑓
∗)(𝑠) 𝑑𝑠 ≤ ∫

𝑡

0

(𝑅𝑢2,𝑣,𝜈(𝑓
∗))∗(𝑠) 𝑑𝑠 (5.12)

for every 𝑡 ∈ (0, 𝐿). Here, the first inequality follows from [34, Theorem3.2] (the fact that the function (0, 𝐿) ∋ 𝑠 ↦ 1

𝜂(𝜈(𝑠))
=

𝑈2(𝜈(𝑠))𝑣(𝑠) is equivalent to a nondecreasing function and satisfies (5.4)was usedhere), the second inequality follows from
the monotonicity of 𝑓∗, and the last one follows from the Hardy–Littlewood inequality (2.4). Furthermore, owing to (5.4)
again, we have that

sup
𝜏∈[𝑡,𝐿)

1

𝜂(𝜈(𝜏))
𝑓∗(𝜈(𝜏)) = sup

𝜏∈[𝑡,𝐿)
𝑈2(𝜈(𝜏))𝑣(𝜏)𝑓

∗(𝜈(𝜏)) ≲ sup
𝜏∈[𝑡,𝐿)

(
1

𝜏 ∫
𝜏

0

𝑈2(𝜈(𝑠))𝑣(𝑠) 𝑑𝑠

)
𝑓∗(𝜈(𝜏))

≤ sup
𝜏∈[𝑡,𝐿)

1

𝜏 ∫
𝜏

0

𝑈2(𝜈(𝑠))𝑣(𝑠)𝑓
∗(𝜈(𝑠)) 𝑑𝑠 ≤ sup

𝜏∈[𝑡,𝐿)

1

𝜏 ∫
𝜏

0

𝑅𝑢2,𝑣,𝜈(𝑓
∗)(𝑠) 𝑑𝑠

≤ sup
𝜏∈[𝑡,𝐿)

1

𝜏 ∫
𝜏

0

(𝑅𝑢2,𝑣,𝜈(𝑓
∗))∗(𝑠) 𝑑𝑠 =

1

𝑡 ∫
𝑡

0

(𝑅𝑢2,𝑣,𝜈(𝑓
∗))∗(𝑠) 𝑑𝑠. (5.13)

Inequality (5.11) now follows from (5.12) and (5.13) inasmuch as

∫
𝑡

0

sup
𝜏∈[𝑠,𝐿)

1

𝜂(𝜈(𝜏))
𝑓∗(𝜈(𝜏)) 𝑑𝑠 ≤ ∫

𝑡

0

sup
𝜏∈[𝑠,𝑡)

1

𝜂(𝜈(𝜏))
𝑓∗(𝜈(𝜏)) 𝑑𝑠 + 𝑡 sup

𝜏∈[𝑡,𝐿)

1

𝜂(𝜈(𝜏))
𝑓∗(𝜈(𝜏))

for every 𝑡 ∈ (0, 𝐿).
Finally, by combining (5.7) with (5.8), (5.9), and (5.10), we obtain (5.6). □
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3530 MIHULA

Remark 5.3. Since Theorem 5.2 has several assumptions, it is instructive to provide a concrete, important example, which
is also quite general. Let 𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝛾1, 𝛾2 ∈ (0,∞). Set 𝜈𝑗(𝑡) = 𝑡𝛼𝑗 , 𝑢𝑗(𝑡) = 𝑡𝛽𝑗−1𝑏𝑗(𝑡), and 𝑣𝑗(𝑡) = 𝑡𝛾𝑗−1𝑐𝑗(𝑡), 𝑡 ∈ (0, 𝐿),
𝑗 = 1, 2, where 𝑏𝑗 , 𝑐𝑗 are continuous slowly varying functions. Set 𝑑 = (𝑏1◦𝜈1) ⋅ 𝑐1 ⋅ (𝑐2◦𝜈1) and 𝑑 = (𝑏1◦𝜈1) ⋅ 𝑐1. Assume
that 𝛾2 < 1, 𝛽1 + 𝛾2 > 1, and

𝛼1(𝛽1 + 𝛼2𝛽2 + 𝛾2 − 1) + 𝛾1 ≥ 1, 𝛼1(𝛽1 + 𝛼2𝛽2 − 𝛼2) + 𝛾1 ≥ 1, 𝛼1(𝛽1 + 𝛾2 − 1) + 𝛾1 < 1.
If 𝛼1(𝛽1 + 𝛼2𝛽2 + 𝛾2 − 1) + 𝛾1 = 1 or 𝛼1(𝛽1 + 𝛼2𝛽2 − 𝛼2) + 𝛾1 = 1, also assume that 𝑑 or 𝑑, respectively, is equivalent to a
nondecreasing function. Under these assumptions, we can use Theorem 5.2 to obtain that

‖‖‖‖‖‖
𝑣1(𝑡)∫

𝑡𝛼1

0

[
𝑣2(𝜏)∫

𝜏𝛼2

0

𝑓∗(𝜎)𝑢2(𝜎) 𝑑𝜎

]∗
(𝑠)𝑢1(𝑠) 𝑑𝑠

‖‖‖‖‖‖𝑋(0,𝐿)
≈
‖‖‖‖‖
𝑡𝛿𝑑(𝑡)∫

𝑡𝛼1𝛼2

0

𝑓∗(𝑠)𝑠𝛽2−1 𝑑𝑠
‖‖‖‖‖𝑋(0,𝐿)

for every 𝑓 ∈ 𝔐+(0, 𝐿), where 𝛿 = 𝛼1(𝛽1 + 𝛾2 − 1) + 𝛾1 − 1.
When 𝛽𝑗 = 1 and 𝑏𝑗 = 𝑐𝑗 ≡ 1, 𝑗 = 1, 2, the assumptions are satisfied provided that

𝛼1(𝛼2 + 𝛾2) + 𝛾1 ≥ 1, 𝛼1 + 𝛾1 ≥ 1, 𝛼1𝛾2 + 𝛾1 < 1. (5.14)

In particular, (5.14) is satisfied if (cf. [21, Theorem 3.4])

𝛼2 + 𝛾2 ≥ 1, 𝛼1 + 𝛾1 ≥ 1, 𝛼1𝛾2 + 𝛾1 < 1.

5.2 Iteration principle for𝑯𝒖,𝒗,𝝂

We conclude this section with a 𝐻𝑢,𝑣,𝜈 counterpart to Theorem 5.2, whose proof is substantially simpler than that of the
theorem.

Proposition 5.4. Let ‖ ⋅ ‖𝑋(0,𝐿) be a rearrangement-invariant function norm.

(1) Let 𝜈1, 𝜈2 ∶ (0, 𝐿) → (0,∞) be increasing bijections. Assume that 𝜈1 ∈ 𝐷0. If 𝐿 = ∞, assume that 𝜈1 ∈ 𝐷∞.
(2) Let𝑢1, 𝑢2, 𝑣1, 𝑣2 ∶ (0, 𝐿) → (0,∞) bemeasurable. Assume that the function 𝑣1𝑢2 is equivalent to a nonincreasing function

and that it satisfies the averaging condition (4.24).

Set

𝑣(𝑡) = 𝜈−12 (𝑡)𝑣1(𝜈
−1
2 (𝑡))𝑢2(𝜈

−1
2 (𝑡))𝑣2(𝑡), 𝑡 ∈ (0, 𝐿),

and 𝜈 = 𝜈2◦𝜈1. We have that

‖𝐻𝑢1,𝑣1,𝜈1 (𝐻𝑢2,𝑣2,𝜈2𝑓)‖𝑋(0,𝐿) ≈ ‖𝐻𝑢1,𝑣,𝜈𝑓‖𝑋(0,𝐿) for every 𝑓 ∈ 𝔐+(0, 𝐿). (5.15)

Here, the multiplicative constants depend only on 𝜈1, the averaging constant of 𝑣1𝑢2, and the multiplicative constants in the
equivalence of 𝑣1𝑢2 to a nonincreasing function.
Finally, assume, in addition, that

(1) 𝑢1 and 𝑢2 are nonincreasing,
(2) 𝑣1 is defined by

1

𝑣1(𝑡)
= ∫

𝜈−1
1
(𝑡)

0

𝜉(𝑠) 𝑑𝑠 for every 𝑡 ∈ (0, 𝐿),

where 𝜉 ∶ (0, 𝐿) → (0,∞) is a measurable function,
(3) the operator 𝑇𝜑 defined by (4.2) with 𝜑 = 𝑢1∕𝜉 is bounded on 𝑋′(0, 𝐿).
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Then,

sup
𝑔∼𝑓

𝑔∈𝔐+(0,𝐿)

sup
ℎ∼𝐻𝑢2,𝑣2,𝜈2 𝑔

ℎ∈𝔐+(0,𝐿)

‖𝐻𝑢1,𝑣1,𝜈1ℎ‖𝑋(0,𝐿) ≈ sup
𝑔∼𝑓

𝑔∈𝔐+(0,𝐿)

‖𝐻𝑢1,𝑣,𝜈𝑔‖𝑋(0,𝐿) for every 𝑓 ∈ 𝔐+(0, 𝐿).

Here, the multiplicative constants depend only on the norm of 𝑇𝜑 on 𝑋′(0, 𝐿) and the multiplicative constant in (5.15).

Proof. On the one hand, we have that

‖𝐻𝑢1,𝑣1,𝜈1 (𝐻𝑢2,𝑣2,𝜈2𝑓)‖𝑋(0,𝐿) =
‖‖‖‖‖‖
𝑢1(𝑡)∫

𝐿

𝜈1(𝑡)

(
𝑢2(𝑠)∫

𝐿

𝜈2(𝑠)

𝑓(𝜏)𝑣2(𝜏) 𝑑𝜏

)
𝑢2(𝑠)𝑣1(𝑠) 𝑑𝑠

‖‖‖‖‖‖𝑋(0,𝐿)

=

‖‖‖‖‖‖
𝑢1(𝑡)∫

𝐿

𝜈(𝑡)

𝑓(𝜏)𝑣2(𝜏)∫
𝜈−1
2
(𝜏)

𝜈1(𝑡)

𝑢2(𝑠)𝑣1(𝑠) 𝑑𝑠 𝑑𝜏

‖‖‖‖‖‖𝑋(0,𝐿)

≤
‖‖‖‖‖‖
𝑢1(𝑡)∫

𝐿

𝜈(𝑡)

𝑓(𝜏)𝑣2(𝜏)∫
𝜈−1
2
(𝜏)

0

𝑢2(𝑠)𝑣1(𝑠) 𝑑𝑠 𝑑𝜏

‖‖‖‖‖‖𝑋(0,𝐿)

≲
‖‖‖‖‖
𝑢1(𝑡)∫

𝐿

𝜈(𝑡)

𝑓(𝜏)𝑣2(𝜏)𝜈
−1
2 (𝜏)𝑢2(𝜈

−1
2 (𝜏))𝑣1(𝜈

−1
2 (𝜏)) 𝑑𝜏

‖‖‖‖‖𝑋(0,𝐿)
= ‖𝐻𝑢1,𝑣,𝜈𝑓‖𝑋(0,𝐿)

for every 𝑓 ∈ 𝔐+(0, 𝐿), thanks to the fact that 𝑣1𝑢2 satisfies the averaging condition (4.24).
As for the opposite inequality, observe that 𝑀 = inf

𝑡∈(0,
𝐿

𝜃
)

𝜈1(𝜃𝑡)

𝜈1(𝑡)
> 1, where 𝜃 > 1 is such that 𝜈1 ∈ 𝐷0𝜃 and, if 𝐿 = ∞,

also 𝜈1 ∈ 𝐷∞𝜃 . Set 𝐾 = min{
1

𝜃
, 𝜈−11 (

1

𝑀
)}. We have that

‖𝐻𝑢1,𝑣1,𝜈1 (𝐻𝑢2,𝑣2,𝜈2𝑓)‖𝑋(0,𝐿)

=

‖‖‖‖‖‖
𝑢1(𝑡)∫

𝐿

𝜈(𝑡)

𝑓(𝜏)𝑣2(𝜏)∫
𝜈−1
2
(𝜏)

𝜈1(𝑡)

𝑢2(𝑠)𝑣1(𝑠) 𝑑𝑠 𝑑𝜏

‖‖‖‖‖‖𝑋(0,𝐿)

≥
‖‖‖‖‖‖
𝜒(0,𝐾𝐿)(𝑡)𝑢1(𝑡)∫

𝐿

𝜈2(𝑀𝜈1(𝑡))

𝑓(𝜏)𝑣2(𝜏)∫
𝜈−1
2
(𝜏)

𝜈1(𝑡)

𝑢2(𝑠)𝑣1(𝑠) 𝑑𝑠 𝑑𝜏

‖‖‖‖‖‖𝑋(0,𝐿)

≳
‖‖‖‖‖
𝜒(0,𝐾𝐿)(𝑡)𝑢1(𝑡)∫

𝐿

𝜈2(𝑀𝜈1(𝑡))

𝑓(𝜏)𝑣2(𝜏)𝑢2(𝜈
−1
2 (𝜏))𝑣1(𝜈

−1
2 (𝜏))(𝜈

−1
2 (𝜏) − 𝜈1(𝑡)) 𝑑𝜏

‖‖‖‖‖𝑋(0,𝐿)

≥ 𝑀 − 1
𝑀

‖‖‖‖‖
𝜒(0,𝐾𝐿)(𝑡)𝑢1(𝑡)∫

𝐿

𝜈2(𝑀𝜈1(𝑡))

𝑓(𝜏)𝑣(𝜏) 𝑑𝜏
‖‖‖‖‖𝑋(0,𝐿)

≥ 𝑀 − 1
𝑀

‖‖‖‖‖
𝜒(0,𝐾𝐿)(𝑡)𝑢1(𝑡)∫

𝐿

𝜈2(𝜈1(𝜃𝑡))

𝑓(𝜏)𝑣(𝜏) 𝑑𝜏
‖‖‖‖‖𝑋(0,𝐿)

≥ 𝑀 − 1
𝑀

‖‖‖‖‖‖
𝜒(0,𝐿)

( 𝑡
𝐾

)
𝑢1(𝑡)∫

𝐿

𝜈2(𝜈1(
𝑡

𝐾
))

𝑓(𝜏)𝑣(𝜏) 𝑑𝜏

‖‖‖‖‖‖𝑋(0,𝐿)

≥ 𝑀 − 1
𝑀

𝐾
‖‖‖‖‖
𝑢1(𝑡)∫

𝐿

𝜈(𝑡)

𝑓(𝜏)𝑣(𝜏) 𝑑𝜏
‖‖‖‖‖𝑋(0,𝐿)
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3532 MIHULA

for every 𝑓 ∈ 𝔐+(0, 𝐿). Here, we used the fact that 𝑣1𝑢2 is equivalent to a nonincreasing function and the boundedness
of the dilation operator 𝐷 1

𝐾

(see (2.19)).

Finally, under the additional assumptions, we have that

sup
𝑔∼𝑓

𝑔∈𝔐+(0,𝐿)

sup
ℎ∼𝐻𝑢2,𝑣2,𝜈2 𝑔

ℎ∈𝔐+(0,𝐿)

‖𝐻𝑢1,𝑣1,𝜈1ℎ‖𝑋(0,𝐿) ≈ sup
𝑔∼𝑓

𝑔∈𝔐+(0,𝐿)

‖𝐻𝑢1,𝑣1,𝜈1 (𝐻𝑢2,𝑣2,𝜈2𝑔)‖𝑋(0,𝐿)

≈ sup
𝑔∼𝑓

𝑔∈𝔐+(0,𝐿)

‖𝐻𝑢1,𝑣,𝜈𝑔‖𝑋(0,𝐿)

for every 𝑓 ∈ 𝔐+(0, 𝐿), thanks to (4.4) combined with (5.15). □

Remark 5.5. If 𝑇𝜑 is not bounded on 𝑋′(0,∞), then, while we still have that

sup
𝑔∼𝑓

𝑔∈𝔐+(0,𝐿)

sup
ℎ∼𝐻𝑢2,𝑣2,𝜈2 𝑔

ℎ∈𝔐+(0,𝐿)

‖𝐻𝑢1,𝑣1,𝜈1ℎ‖𝑋(0,𝐿) ≳ sup
𝑔∼𝑓

𝑔∈𝔐+(0,𝐿)

‖𝐻𝑢1,𝑣,𝜈𝑔‖𝑋(0,𝐿) for every 𝑓 ∈ 𝔐+(0, 𝐿),

it remains an open question whether the opposite inequality (is)/(can be) valid.

6 CONCRETE EXAMPLES OF OPTIMAL FUNCTION SPACES

We conclude this paper with a few concrete examples of optimal function spaces. Let 𝛾 ∈ [0, 1) and 𝛿 > 0. Set 𝑣(𝑡) = 𝑡−1+𝛾
and 𝜈(𝑡) = 𝑐𝑡𝛿, 𝑡 ∈ (0, 𝐿), where 𝑐 = 1 if 𝐿 = ∞ and 𝑐 = 𝐿1−𝛿 if 𝐿 < ∞. Throughout this section, 𝑅𝛾,𝛿 and𝐻𝛾,𝛿 denote 𝑅1,𝑣,𝜈
and 𝐻1,𝑣,𝜈, respectively. In all the examples, the fixed function space is a Lorentz–Zygmund space. The class of Lorentz–
Zygmund spaces contains several customary function spaces, for example, the Lebesgue spaces 𝐿𝑝, the Lorentz spaces
𝐿𝑝,𝑞, and some Orlicz spaces—namely, logarithmic and exponential Orlicz spaces.
If 𝐿 = ∞ and 𝔸 = (𝛼0, 𝛼∞) ∈ ℝ2, we define the broken logarithmic function 𝓁𝔸𝑗 as 𝓁

𝔸
𝑗
= 𝓁

𝛼0
𝑗
𝜒(0,1] + 𝓁

𝛼∞
𝑗
𝜒(1,∞), where

𝓁𝑗 is defined by (4.23). Let 𝑝, 𝑞 ∈ [1,∞],𝔸 = (𝛼0, 𝛼∞), 𝔹 = (𝛽0, 𝛽∞) ∈ ℝ2, and 𝛼, 𝛽 ∈ ℝ. If 𝐿 = ∞, the Lorentz–Zygmund
space 𝐿𝑝,𝑞;𝔸,𝔹(0,∞) is defined as the collection of all the functions 𝑓 ∈ 𝔐(0,∞) for which the functional ‖ ⋅ ‖𝐿𝑝,𝑞;𝔸,𝔹(0,∞)
defined as

‖𝑓‖𝐿𝑝,𝑞;𝔸,𝔹(0,∞) =
‖‖‖‖‖
𝑡
1

𝑝
−
1

𝑞 𝓁𝔸1 (𝑡)𝓁
𝔹
2 (𝑡)𝑓

∗(𝑡)
‖‖‖‖‖𝐿𝑞(0,∞)

(6.1)

is finite. If 𝐿 < ∞, the Lorentz–Zygmund space 𝐿𝑝,𝑞;𝛼,𝛽(0, 𝐿) is defined as the collection of all the functions 𝑓 ∈ 𝔐(0, 𝐿)
for which the functional ‖ ⋅ ‖𝐿𝑝,𝑞;𝛼,𝛽(0,𝐿) defined as

‖𝑓‖𝐿𝑝,𝑞;𝛼,𝛽(0,𝐿) =
‖‖‖‖‖
𝑡
1

𝑝
−
1

𝑞 𝓁𝛼1 (𝑡)𝓁
𝛽
2 (𝑡)𝑓

∗(𝑡)
‖‖‖‖‖𝐿𝑞(0,𝐿)

(6.2)

is finite. When𝔹 = (0, 0) and 𝛽 = 0, we write 𝐿𝑝,𝑞;𝔸(0,∞) and 𝐿𝑝,𝑞;𝛼(0, 𝐿) for short, respectively. Similarly, when𝔸 = 𝔹 =
(0, 0) and 𝛼 = 𝛽 = 0, wewrite 𝐿𝑝,𝑞(0,∞) and 𝐿𝑝,𝑞(0, 𝐿) for short, respectively. Note that these are the usual Lorentz spaces.
We shall also encounter Lorentz–Zygmund spaces 𝐿(𝑝,𝑞;𝔸,𝔹)(0,∞) and 𝐿(𝑝,𝑞;𝛼,𝛽)(0, 𝐿). In the definitions of these spaces, the
nonincreasing rearrangement 𝑓∗ is replaced by themaximal nonincreasing rearrangement 𝑓∗∗. At one point, wewill need
a Lorentz–Zygmund space with three tiers of logarithm, which is defined in the obvious way. For more information on
Lorentz–Zygmund spaces, see [50]. In particular, the functional ‖ ⋅ ‖𝐿𝑝,𝑞;𝔸(0,∞) is equivalent to a rearrangement-invariant
function norm if and only if 𝑝 = 𝑞 = 1, 𝛼0 ≥ 0, and 𝛼∞ ≤ 0, or if 𝑝 ∈ (1,∞) and 𝑞 ∈ [1,∞], or if 𝑝 = ∞, 𝑞 ∈ [1,∞),
and 𝛼0 + 1∕𝑞 < 0, or if 𝑝 = 𝑞 = ∞ and 𝛼0 ≤ 0. The functional ‖ ⋅ ‖𝐿𝑝,𝑞;𝛼(0,𝐿) is equivalent to a rearrangement-invariant
function norm if and only if 𝑝 = 𝑞 = 1, 𝛼 ≥ 0, or if 𝑝 ∈ (1,∞) and 𝑞 ∈ [1,∞], or if 𝑝 = ∞, 𝑞 ∈ [1,∞), and 𝛼 + 1∕𝑞 < 0,
or if 𝑝 = 𝑞 = ∞ and 𝛼 ≤ 0. Throughout the rest of this section, we implicitly assume that the parameters 𝑝, 𝑞,𝔸, and 𝛼
satisfy one of these conditions.
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We omit proofs in this section, which are to some extent straightforward but lengthy and technical. However, the inter-
ested reader can find detailed proofs in the author’s PhD thesis [45, section 2.2.3]. Some particular examples with detailed
proofs can also be found in [21, 30, 46].

6.1 Optimal function spaces for 𝑹𝜸,𝜹

We start with optimal domain spaces for the operator 𝑅𝛾,𝛿.

Proposition 6.1. Let 𝛾 ∈ [0, 1) and 𝛿 > 0.
If 𝐿 = ∞, the optimal domain space 𝑋(0,∞) for the operator 𝑅𝛾,𝛿 and the space 𝐿𝑝,𝑞;𝔸(0,∞) satisfies

𝑋(0,∞) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐿1,1;(0,𝛼∞+1)(0,∞) if 𝑝 = 1

1−𝛾
, 𝑞 = 1, 𝛼0 + 1 < 0, 𝛼∞ + 1 < 0, 𝛾 ∈ (0, 1);

𝐿1,1;(𝛼0+1,𝛼∞+1)(0,∞) if 𝑝 = 1

1−𝛾
, 𝑞 = 1, 𝛼0 + 1 > 0, 𝛼∞ + 1 < 0, 𝛾 ∈ (0, 1) or

𝑝 = 𝑞 = 1, 𝛼0 ≥ 0, 𝛼∞ + 1 < 0, 𝛾 = 0;
𝐿1,1;(0,𝛼∞+1),(1,0)(0,∞) if 𝑝 = 1

1−𝛾
, 𝑞 = 1, 𝛼0 + 1 = 0, 𝛼∞ + 1 < 0, 𝛾 ∈ (0, 1);

𝐿(1,𝑞;𝔸)(0,∞) if 𝑝 = 1

1−𝛾
, 𝑞 ∈ (1,∞), 𝛼∞ +

1

𝑞
< 0, 𝛾 ∈ (0, 1) or

𝑝 =
1

1−𝛾
, 𝑞 = ∞, 𝛼∞ ≤ 0, 𝛾 ∈ (0, 1);

𝐿
𝛿𝑝

1+𝑝(𝛾+𝛿−1)
,𝑞;𝔸
(0,∞) if 𝑝 ∈ ( 1

1−𝛾
,

1

1−𝛾−𝛿
), 𝛾 + 𝛿 < 1 or

𝑝 ∈ (
1

1−𝛾
,∞), 𝛾 + 𝛿 ≥ 1;

𝐿∞,𝑞;𝔸(0,∞) if 𝑝 = 1

1−𝛾−𝛿
, 𝛼0 +

1

𝑞
< 0, 𝛾 + 𝛿 ≤ 1 or

𝑝 =
1

1−𝛾−𝛿
, 𝑞 = ∞, 𝛼0 ≤ 0, 𝛾 + 𝛿 ≤ 1;

𝐿
𝛿

𝛾+𝛿−1
,∞;𝔸

(0,∞) if 𝑝 = 𝑞 = ∞, 𝛼0 ≤ 0, 𝛼∞ ≥ 0, 𝛾 + 𝛿 > 1.
If 𝐿 < ∞, the optimal domain space 𝑋(0, 𝐿) for the operator 𝑅𝛾,𝛿 and the space 𝐿𝑝,𝑞;𝛼(0, 𝐿) satisfies

𝑋(0, 𝐿) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐿1(0, 𝐿) if 𝑝 ∈ [1, 1

1−𝛾
), 𝛾 ∈ (0, 1) or

𝑝 =
1

1−𝛾
, 𝛼 + 1

𝑞
< 0, 𝛾 ∈ (0, 1) or

𝑝 =
1

1−𝛾
, 𝑞 = ∞, 𝛼 ≤ 0, 𝛾 ∈ (0, 1);

𝐿1,1;𝛼+1(0, 𝐿) if 𝑝 = 1

1−𝛾
, 𝑞 = 1, 𝛼 + 1 > 0, 𝛾 ∈ (0, 1) or

𝑝 = 𝑞 = 1, 𝛼 ≥ 0, 𝛾 = 0;
𝐿1,1;0,1(0, 𝐿) if 𝑝 = 1

1−𝛾
, 𝑞 = 1, 𝛼 + 1 = 0, 𝛾 ∈ (0, 1);

𝐿(1,𝑞;𝛼)(0, 𝐿) if 𝑝 = 1

1−𝛾
, 𝑞 ∈ (1,∞), 𝛼 + 1

𝑞
≥ 0, 𝛾 ∈ (0, 1) or

𝑝 =
1

1−𝛾
, 𝑞 = ∞, 𝛼 > 0, 𝛾 ∈ (0, 1);

𝐿
𝛿𝑝

1+𝑝(𝛾+𝛿−1)
,𝑞;𝛼
(0, 𝐿) if 𝑝 ∈ ( 1

1−𝛾
,

1

1−𝛾−𝛿
), 𝛾 + 𝛿 < 1 or

𝑝 ∈ (
1

1−𝛾
,∞), 𝛾 + 𝛿 ≥ 1;

𝐿∞,𝑞;𝛼(0, 𝐿) if 𝑝 = 1

1−𝛾−𝛿
, 𝛼 + 1

𝑞
< 0, 𝛾 + 𝛿 ≤ 1 or

𝑝 =
1

1−𝛾−𝛿
, 𝑞 = ∞, 𝛼 ≤ 0, 𝛾 + 𝛿 ≤ 1;

𝐿
𝛿

𝛾+𝛿−1
,∞;𝛼
(0, 𝐿) if 𝑝 = 𝑞 = ∞, 𝛼 ≤ 0, 𝛾 + 𝛿 > 1.

The following proposition describes optimal target spaces for the operator 𝑅𝛾,𝛿.
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3534 MIHULA

Proposition 6.2. Let 𝛾 ∈ [0, 1) and 𝛿 > 0.
If 𝐿 = ∞, the optimal target space 𝑋(0,∞) for the operator 𝑅𝛾,𝛿 and the space 𝐿𝑝,𝑞;𝔸(0,∞) satisfies

𝑋(0,∞) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐿
1

1−𝛾
,∞
(0,∞) if 𝑝 = 𝑞 = 1, 𝛼0 = 𝛼∞ = 0, 𝛾 ∈ (0, 1);

𝐿1,1;(𝛼0−1,𝛼∞−1)(0,∞) if 𝑝 = 𝑞 = 1, 𝛼0 ≥ 1, 𝛼∞ < 0, 𝛾 = 0;
𝐿

𝑝

𝑝(1−𝛾−𝛿)+𝛿
,𝑞;𝔸
(0,∞) if 𝑝 ∈ (1,∞), 𝛾 + 𝛿 ≤ 1, 𝛾 ∈ (0, 1) or

𝑝 ∈ (1,∞), 𝛿 < 1, 𝛾 = 0 or
𝑝 ∈ (1,

𝛿

𝛾+𝛿−1
), 𝛾 + 𝛿 > 1;

𝐿𝑝,𝑞;𝔸(0,∞) if 𝑝 ∈ (1,∞), 𝛿 = 1, 𝛾 = 0 or
𝑝 = ∞, 𝑞 ∈ [1,∞), 𝛼0 +

1

𝑞
< 0, 𝛿 = 1, 𝛾 = 0 or

𝑝 = 𝑞 = ∞, 𝛼0 ≤ 0, 𝛿 = 1, 𝛾 = 0;
𝐿

1

1−𝛾−𝛿
,∞;𝔸

(0,∞) if 𝑝 = 𝑞 = ∞, 𝛼0 ≤ 0, 𝛼∞ ≥ 0, 𝛾 + 𝛿 ≤ 1, 𝛾 ∈ (0, 1) or
𝑝 = 𝑞 = ∞, 𝛼0 ≤ 0, 𝛼∞ ≥ 0, 𝛿 < 1, 𝛾 = 0;

𝐿∞,∞;𝔸(0,∞) if 𝑝 = 𝛿

𝛾+𝛿−1
, 𝑞 = ∞, 𝛼0 ≤ 0, 𝛼∞ ≥ 0, 𝛾 + 𝛿 > 1;

𝐿∞(0,∞) if 𝑝 = 𝛿

𝛾+𝛿−1
, 𝑞 ∈ [1,∞), 𝛼0 = 𝛼∞ = 0, 𝛾 + 𝛿 > 1, 𝛾 ∈ (0, 1).

If 𝐿 < ∞, the optimal target space 𝑋(0, 𝐿) for the operator 𝑅𝛾,𝛿 and the space 𝐿𝑝,𝑞;𝛼(0, 𝐿) satisfies

𝑋(0, 𝐿) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐿
1

1−𝛾
,∞
(0, 𝐿) if 𝑝 = 𝑞 = 1, 𝛼 = 0, 𝛾 ∈ (0, 1);

𝐿1,1;𝛼−1(0, 𝐿) if 𝑝 = 𝑞 = 1, 𝛼 ≥ 1, 𝛾 = 0;
𝐿

𝑝

𝑝(1−𝛾−𝛿)+𝛿
,𝑞;𝛼
(0, 𝐿) if 𝑝 ∈ (1,∞), 𝛾 + 𝛿 ≤ 1, 𝛾 ∈ (0, 1) or

𝑝 ∈ (1,∞), 𝛿 < 1, 𝛾 = 0 or
𝑝 ∈ (1,

𝛿

𝛾+𝛿−1
), 𝛾 + 𝛿 > 1;

𝐿𝑝,𝑞;𝛼(0, 𝐿) if 𝑝 ∈ (1,∞), 𝛿 = 1, 𝛾 = 0 or
𝑝 = ∞, 𝑞 ∈ [1,∞), 𝛼 + 1

𝑞
< 0, 𝛿 = 1, 𝛾 = 0 or

𝑝 = 𝑞 = ∞, 𝛼 ≤ 0, 𝛿 = 1, 𝛾 = 0;
𝐿

1

1−𝛾−𝛿
,∞;𝛼
(0, 𝐿) if 𝑝 = 𝑞 = ∞, 𝛼 ≤ 0, 𝛾 + 𝛿 ≤ 1, 𝛾 ∈ (0, 1) or

𝑝 = 𝑞 = ∞, 𝛼 ≤ 0, 𝛿 < 1, 𝛾 = 0;
𝐿∞,∞;𝛼(0, 𝐿) if 𝑝 = 𝛿

𝛾+𝛿−1
, 𝑞 = ∞, 𝛼 ≤ 0, 𝛾 + 𝛿 > 1;

𝐿∞(0, 𝐿) if 𝑝 = 𝛿

𝛾+𝛿−1
, 𝑞 < ∞, 𝛼 = 0, 𝛾 + 𝛿 > 1, 𝛾 ∈ (0, 1) or

𝑝 ∈ (
𝛿

𝛾+𝛿−1
,∞], 𝛾 + 𝛿 > 1.

6.2 Optimal function spaces for𝑯𝜸,𝜹

The following proposition describes optimal domain spaces for the operator𝐻𝛾,𝛿.

Proposition 6.3. Let 𝛾 ∈ [0, 1) and 𝛿 > 0.
If 𝐿 = ∞, the optimal domain space 𝑋(0,∞) for the operator𝐻𝛾,𝛿 and the space 𝐿𝑝,𝑞;𝔸(0,∞) satisfies
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MIHULA 3535

𝑋(0,∞) =

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝐿
1

𝛾+𝛿
,1;𝔸
(0,∞) if 𝑝 = 𝑞 = 1, 𝛼0 ≥ 0, 𝛼∞ ≤ 0, 𝛾 + 𝛿 ≤ 1;

𝐿1,1;𝔸(0,∞) if 𝑝 = 𝛿

1−𝛾
, 𝑞 = 1, 𝛼0 ≥ 0, 𝛼∞ ≤ 0, 𝛾 + 𝛿 > 1;

𝐿1(0,∞) if 𝑝 = 𝛿

1−𝛾
, 𝛼0 = 𝛼∞ = 0, 𝛾 + 𝛿 > 1, 𝛾 ∈ (0, 1);

𝐿
𝑝

𝑝𝛾+𝛿
,𝑞;𝔸
(0,∞) if 𝑝 ∈ (1,∞), 𝛾 + 𝛿 ≤ 1 or

𝑝 ∈ (
𝛿

1−𝛾
,∞), 𝛾 + 𝛿 > 1;

𝐿
1

𝛾
,1
(0,∞) if 𝑝 = 𝑞 = ∞, 𝛼0 = 𝛼∞ = 0, 𝛾 ∈ (0, 1);

𝐿∞,∞;(𝛼0+1,𝛼∞+1)(0,∞) if 𝑝 = 𝑞 = ∞, 𝛼0 + 1 ≤ 0, 𝛼∞ > 0, 𝛾 = 0.
If 𝐿 < ∞, the optimal domain space 𝑋(0, 𝐿) for the operator𝐻𝛾,𝛿 and the space 𝐿𝑝,𝑞;𝛼(0, 𝐿) satisfies

𝑋(0, 𝐿) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐿
1

𝛾+𝛿
,1;𝛼
(0, 𝐿) if 𝑝 = 𝑞 = 1, 𝛼 ≥ 0, 𝛾 + 𝛿 ≤ 1;

𝐿1(0, 𝐿) if 𝑝 ∈ [1, 𝛿
1−𝛾
), 𝛾 + 𝛿 > 1 or

𝑝 =
𝛿

1−𝛾
, 𝛼 = 0, 𝛾 + 𝛿 > 1, 𝛾 ∈ (0, 1);

𝐿1,1;𝛼(0, 𝐿) if 𝑝 = 𝛿

1−𝛾
, 𝑞 = 1, 𝛼 ≥ 0, 𝛾 + 𝛿 > 1;

𝐿
𝑝

𝑝𝛾+𝛿
,𝑞;𝛼
(0, 𝐿) if 𝑝 ∈ (1,∞), 𝛾 + 𝛿 ≤ 1 or

𝑝 ∈ (
𝛿

1−𝛾
,∞), 𝛾 + 𝛿 > 1;

𝐿
1

𝛾
,1
(0, 𝐿) if 𝑝 = 𝑞 = ∞, 𝛼 = 0, 𝛾 ∈ (0, 1);

𝐿∞,∞;𝛼+1(0, 𝐿) if 𝑝 = 𝑞 = ∞, 𝛼 + 1 ≤ 0, 𝛾 = 0.
Finally, we end with optimal target spaces for the operator𝐻𝛾,𝛿.

Proposition 6.4. Let 𝛾 ∈ [0, 1) and 𝛿 > 0.
If 𝐿 = ∞, the optimal target space 𝑋(0,∞) for the operator𝐻𝛾,𝛿 and the space 𝐿𝑝,𝑞;𝔸(0,∞) satisfies

𝑋(0,∞) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐿
𝑝𝛿

1−𝑝𝛾
,𝑞;𝔸
(0,∞) if 𝑝 = 𝑞 = 1, 𝛼0 ≥ 0, 𝛼∞ ≤ 0, 𝛾 + 𝛿 ≥ 1 or

𝑝 ∈ (1,
1

𝛾
), 𝛾 + 𝛿 ≥ 1 or

𝑝 ∈ (
1

𝛾+𝛿
,
1

𝛾
), 𝛾 + 𝛿 < 1;

𝐿1,1;𝔸(0,∞) if 𝑝 = 1

𝛾+𝛿
, 𝑞 = 1, 𝛼0 ≥ 0, 𝛼∞ ≤ 0, 𝛾 + 𝛿 < 1;

𝐿1,1;(𝛼0,0)(0,∞) if 𝑝 = 1

𝛾+𝛿
, 𝑞 = 1, 𝛼0 ≥ 0, 𝛼∞ > 0, 𝛾 + 𝛿 < 1;

𝐿(1,𝑞;(𝛼0−1,𝛼∞−1))(0,∞) if 𝑝 = 1

𝛾+𝛿
, 𝑞 ∈ (1,∞], 𝛼0 > 1 −

1

𝑞
, 𝛼∞ < 1 −

1

𝑞
, 𝛾 + 𝛿 < 1;

𝐿
(1,𝑞;(𝛼0−1,−

1

𝑞
),(0,−1))

(0,∞) if 𝑝 = 1

𝛾+𝛿
, 𝑞 ∈ (1,∞], 𝛼0 > 1 −

1

𝑞
, 𝛼∞ = 1 −

1

𝑞
, 𝛾 + 𝛿 < 1;

𝑋1(0,∞) if 𝑝 = 1

𝛾+𝛿
, 𝑞 ∈ (1,∞], 𝛼0 > 1 −

1

𝑞
, 𝛼∞ > 1 −

1

𝑞
, 𝛾 + 𝛿 < 1;

𝐿∞,𝑞;(𝛼0−1,𝛼∞−1)(0,∞) if 𝑝 = 1

𝛾
, 𝛼0 < 1 −

1

𝑞
, 𝛼∞ > 1 −

1

𝑞
, 𝛾 ∈ (0, 1);

𝑋2(0,∞) if 𝑝 = 1

𝛾
, 𝑞 ∈ [1,∞), 𝛼0 > 1 −

1

𝑞
, 𝛼∞ > 1 −

1

𝑞
, 𝛾 ∈ (0, 1) or

𝑝 =
1

𝛾
, 𝑞 = 1, 𝛼0 = 0, 𝛼∞ > 0, 𝛾 ∈ (0, 1);

𝐿∞,∞;(0,𝛼∞−1)(0,∞) if 𝑝 = 1

𝛾
, 𝑞 = ∞, 𝛼0 > 1, 𝛼∞ > 1, 𝛾 ∈ (0, 1);

𝐿
∞,𝑞;(−

1

𝑞
,𝛼∞−1),(−1,0)

(0,∞) if 𝑝 = 1

𝛾
, 𝑞 ∈ (1,∞], 𝛼0 = 1 −

1

𝑞
, 𝛼∞ > 1 −

1

𝑞
, 𝛾 ∈ (0, 1);

𝑋3(0,∞) if 𝑝 = 1

𝛾
, 𝑞 = 1, 𝛼0 < 0, 𝛼∞ = 0, 𝛾 ∈ (0, 1);

𝐿∞(0,∞) if 𝑝 = 1

𝛾
, 𝑞 = 1, 𝛼0 ≥ 0, 𝛼∞ = 0, 𝛾 ∈ (0, 1);

𝐿∞,∞;(𝛼0−1,𝛼∞−1)(0,∞) if 𝑝 = 𝑞 = ∞, 𝛼0 ≤ 0, 𝛼∞ > 1, 𝛾 = 0.
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3536 MIHULA

Here, 𝑋1(0,∞), 𝑋2(0,∞), and 𝑋3(0,∞) are rearrangement-invariant function spaces such that

‖𝑓‖𝑋1(0,∞) ≈ ‖𝑡1−
1

𝑞 𝓁𝛼0−1(𝑡)𝑓∗∗(𝑡)‖𝐿1(0,1) + ‖𝑓‖𝐿1(0,∞),

‖𝑓‖𝑋2(0,∞) ≈ ‖𝑡−
1

𝑞 𝓁𝛼∞−1(𝑡)𝑓∗(𝑡)𝜒(1,∞)(𝑡)‖𝐿𝑞(0,∞) + ‖𝑓‖𝐿∞(0,∞),
‖𝑓‖𝑋3(0,∞) ≈ ‖𝑡−1𝓁𝛼0−1(𝑡)𝑓∗(𝑡)‖𝐿1(0,1),

for every 𝑓 ∈ 𝔐(0,∞).
If 𝐿 < ∞, the optimal target space 𝑋(0, 𝐿) for the operator𝐻𝛾,𝛿 and the space 𝐿𝑝,𝑞;𝛼(0, 𝐿) satisfies

𝑋(0, 𝐿) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐿
𝑝𝛿

1−𝑝𝛾
,𝑞;𝛼
(0, 𝐿) if 𝑝 = 𝑞 = 1, 𝛼 ≥ 0, 𝛾 + 𝛿 ≥ 1 or

𝑝 ∈ (1,
1

𝛾
), 𝛾 + 𝛿 ≥ 1 or

𝑝 ∈ (
1

𝛾+𝛿
,
1

𝛾
), 𝛾 + 𝛿 < 1;

𝐿1,1;𝛼(0, 𝐿) if 𝑝 = 1

𝛾+𝛿
, 𝑞 = 1, 𝛼 ≥ 0, 𝛾 + 𝛿 < 1;

𝐿(1,𝑞;𝛼−1)(0, 𝐿) if 𝑝 = 1

𝛾+𝛿
, 𝑞 ∈ (1,∞], 𝛼 > 1 − 1

𝑞
, 𝛾 + 𝛿 < 1;

𝐿∞,𝑞;𝛼−1(0, 𝐿) if 𝑝 = 1

𝛾
, 𝛼 < 1 − 1

𝑞
, 𝛾 ∈ (0, 1);

𝐿
∞,𝑞;−

1

𝑞
,−1
(0, 𝐿) if 𝑝 = 1

𝛾
, 𝑞 ∈ (1,∞], 𝛼 = 1 − 1

𝑞
, 𝛾 ∈ (0, 1);

𝐿∞(0, 𝐿) if 𝑝 = 1

𝛾
, 𝛼 > 1 − 1

𝑞
, 𝛾 ∈ (0, 1) or

𝑝 =
1

𝛾
, 𝑞 = 1, 𝛼 ≥ 0, 𝛾 ∈ (0, 1) or

𝑝 >
1

𝛾
, 𝛾 ∈ (0, 1);

𝐿∞,∞;𝛼−1(0, 𝐿) if 𝑝 = 𝑞 = ∞, 𝛼 ≤ 0, 𝛾 = 0.
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We study interpolation properties of operators (not necessarily linear) which satisfy 
a specific K-inequality corresponding to endpoints defined in terms of Orlicz–
Karamata spaces modeled upon the example of the Gaussian–Sobolev embedding. 
We prove a reduction principle for a fairly wide class of such operators.
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1. Introduction

The principal motivation for our research is to investigate the applicability of interpolation techniques, 
in particular the K-method, to sharp Gaussian–Sobolev embeddings, or, more generally, Boltzman–Sobolev 
embeddings. Such an approach was successfully applied earlier for example to Euclidean–Sobolev embed-
dings ([18]), boundary trace embeddings ([7]), or to a wide variety of classical operators of harmonic analysis 
([11]). The method can be outlined as follows: we begin with two sharp endpoint estimates from which an 
inequality between corresponding K-functionals is derived (we will refer to this step as a K-inequality). 
The K-inequality typically gives a pointwise comparison of certain operators involving nonincreasing rear-
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rangements of images of an operator to those involving the functions themselves. This inequality is then 
corroborated using ideas involving some modification of the Hardy–Littlewood–Pólya relation. In case of 
Sobolev embeddings, some result in the spirit of the DeVore–Scherer theorem is used at the end.

In [18], [7] and [11], this approach worked very well. On the other hand, for example in [8], where sharp 
Gaussian–Sobolev embeddings were established, interpolation methods were not used. Instead, the optimal 
embeddings were derived from an appropriate isoperimetric inequality. This step required a symmetrization 
argument exploiting a general Pólya–Szegő principle on the decrease of rearrangement-invariant norms of 
the gradient of Sobolev functions in the Gauss space, extending earlier results of [12] and [27]. The proof 
relied upon the Gaussian isoperimetric inequality by Borell [4] which gives an explicit description of the 
isoperimetric profile of Rn endowed with the probability Gaussian measure. A serious disadvantage of this 
technique consists in the fact that it works only for the first-order embeddings. This shortcoming was later 
overcome by establishing higher-order results using sharp iteration methods ([9]). Thanks to those results, 
sharp function spaces appearing in such embeddings are known, at least in the rearrangement-invariant 
environment.

In the light of the described situation, it would clearly be of interest to investigate the very existence of an 
operator (or operators) whose boundedness between a given pair of rearrangement-invariant function spaces 
would guarantee that every operator satisfying the K-inequality corresponding to specific pairs of endpoint 
spaces, modeled upon the example of endpoint spaces appropriate for Gaussian–Sobolev embeddings, is 
bounded between that pair. This idea is to some extent connected with the classical result of Calderón 
([6]). However, in this paper, we are not so much interested in characterizing Calderón couples, but instead 
we aim at nailing down those pairs of function spaces for which the corresponding K-inequality always 
guarantees the boundedness of operators. Although our research was originally motivated by Gaussian–
Sobolev embeddings, operators having similar endpoint behavior appear also in other circumstances, for 
instance in studying problems appearing in Gaussian harmonic analysis ([28]).

A prototypical example, motivated by the Gaussian–Sobolev embeddings, of endpoint behavior that we 
have in our mind is that of an operator T satisfying the K-inequality

K(Tf, t;L
√

log L, eL2
) � K(f, t;L1, L∞) for every t ∈ (0, 1) (1.1)

with a multiplicative constant independent of f . It will be useful to notice that both of the spaces on 
the left-hand side are the classical Orlicz spaces of either logarithmic or exponential type, sometimes also 
called Zygmund classes. It is also important to recall that these spaces are neither Lebesgue spaces nor two-
parameter Lorentz spaces, which makes their study through interpolation techniques considerably difficult. 
On the other hand, they are special cases of the Lorentz–Zygmund spaces ([2]), and also of the yet more 
general Lorentz–Karamata spaces, based on the so-called slowly varying functions. These spaces were first 
introduced in [10] and then treated by many authors (see e.g. [1,13,14,25]). It might be useful to note that, 
in the notation of Lorentz–Zygmund spaces [2], (1.1) reads as

K(Tf, t;L1,1; 12 , L∞,∞;− 1
2 ) � K(f, t;L1, L∞) for every t ∈ (0, 1). (1.2)

It turns out that the principal property of every operator T satisfying (1.2) is the validity of

t∫

0

(Tf)∗(s)√
log e

s

ds �
t∫

0

f∗(s log e√
s
)

log e
s

ds for every t ∈ (0, 1). (1.3)

We shall use a far more general form of this inequality as a point of departure. Namely, for p ∈ (0, ∞) and 
for a pair (b1, b2) of slowly varying functions, we will consider operators T satisfying



S. Baena-Miret et al. / J. Math. Anal. Appl. 516 (2022) 126522 3

t∫

0

[(Tf)∗(s)b1(s)]p ds �
t∫

0

[
f∗(σ−1(s1/p)p

)
b1(s)b2(s)−1

]p
ds

for every f ∈ Lp(R, μ) and t ∈ (0, 1), where

σ : [0, 1] → [0, 1]

is the increasing, bijective function such that

tp = 1
C

σ(t)p∫

0

[
b1(s)b2(s)−1]p ds for every t ∈ [0, 1]

for an appropriate constant C. Motivated by the principal inspiration and motivation, we shall call such 
operators (p, b1, b2)-gaussible.

Our main result is Theorem 3.11, complemented with Theorem 3.12, below. It gives several character-
izations of boundedness of every (p, b1, b2)-gaussible operator from X to Y , where X, Y is a prescribed 
pair of rearrangement-invariant spaces over two (possibly different) nonatomic measure spaces of measure 
1. Of course, our choice of the value 1 is made only for technical convenience, and is immaterial as simple 
modifications can be used to extend the results to any nonatomic finite measure spaces. For the particular 
case corresponding to (1.1), Theorems 3.11 and 3.12 yield (among other results) that for a given pair of 
rearrangement-invariant spaces X and Y , the following three statements are equivalent:

(i) every operator T satisfying (1.3) is bounded from X to Y ,
(ii) every operator T satisfying (1.1) is bounded from X to Y ,
(iii) the operator U defined by Uf(s) = f∗(s log e√

s
)
√

log e
s for s ∈ (0, 1) and every suitable f is bounded 

from X(0, 1) to Y (0, 1), where X(0, 1) and Y (0, 1) are the representation spaces of X and Y in the 
classical Lorentz–Luxemburg sense.

It is worth noticing that the operator U in (iii) is far away from being quasilinear, let alone linear.
To provide the interested reader with some useful information, we shall now describe the motivation and 

what lies at the root of (1.2) in more detail. The story begins with the seminal paper [16] of L. Gross, 
who established the first of Gaussian–Sobolev embeddings and also pointed out its importance. In the 
study of quantum fields and hypercontractivity semigroups, one often needs semigroup estimates, which 
can be equivalently described in terms of inequalities of Sobolev type in infinitely many variables (see, for 
instance, [23] and the references therein). In [16], the major problem occurring in attempts to generalize 
classical Sobolev embeddings to cases of infinitely many variables (recall that the Lebesgue measure does 
not make sense for infinitely many variables) was solved by replacing the Lebesgue measure by the Gaussian 
probability measure in Rn, n ≥ 1, having the density

dγn(x) = (2π)− n
2 e

−|x|2
2 dx,

and requiring the embedding constants to be independent of the dimension. Since γn(Rn) = 1 for every 
n ∈ N, taking limit as n → ∞ makes sense. It should be mentioned though that another very important 
question was settled in the same paper, a question concerned with the comparison of integrability of the 
gradient of a scalar function of several variables with the integrability of the function itself. While in the 
Euclidean environment there is always a huge gain in integrability, expressible by change of certain power, 
no such thing is available in the Gaussian setting. Typically, if ∇u ∈ Lp(Rn, dx) for some p ∈ [1, n), then 
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u ∈ L
np

n−p (Rn, dx), in which dx stands for the n-dimensional Lebesgue measure, and, of course, np
n−p > p. 

But with n → ∞ one has np
n−p → p, so there is a good chance that the gain will be lost. However, L. Gross 

discovered that there still is some gain, albeit only of a logarithmic, rather than power, nature. Namely, 
he proved that if a function u satisfies ∇u ∈ L2(Rn, γn) and is suitably normalized (for example when 
its median is zero), then u itself belongs to a slightly “better” space (better means smaller here), namely 
L2 log L(Rn, γn). A more precise formulation of this inequality reads as follows:

‖u − uγn
‖L2 log L(Rn,γn) ≤ C‖∇u‖L2(Rn,γn),

where C depends on neither u nor n, and uγn
denotes the integral mean of u, that is

uγn
=
∫

Rn

u(x) dγn(x).

The discovery of L. Gross paved the way for extensive research of all kinds. His result has been extended, 
generalized and modified many times, and simple proofs occurred as well as new applications. In [8], a 
comprehensive treatment of sharp Gaussian–Sobolev embeddings of the form

‖u − uγn
‖Y (Rn,γn) ≤ C‖∇u‖X(Rn,γn) (1.4)

was carried out, in which X and Y are general rearrangement-invariant spaces. The focus has been on 
the “optimality” of the function spaces involved. One of the most important discoveries of [8] was that 
the Gaussian–Sobolev embedding can be equivalently described by the action of an operator acting on 
functions of a single variable, providing thus a considerable simplification of the problem in hand. Namely, 
it was shown in [8, Theorem 3.1] that the inequality (1.4) is equivalent to the boundedness of the operator 
S defined as

Sg(t) =
1∫

t

g(s)
s
√

log e
s

ds

for suitable functions g : (0, 1) → R and every t ∈ (0, 1) from X(0, 1) to Y (0, 1). This result is usually called 
a reduction principle. The operator S is known to satisfy

S : L1(0, 1) → L(log L) 1
2 (0, 1),

S : L∞(0, 1) → expL2(0, 1),
(1.5)

and, interestingly, this “endpoint behavior” is shared also by the operator U . We shall, however, prove as 
a particular case of Theorem 3.12 that U majorizes S in the sense that, for every rearrangement-invariant 
space Y (0, 1),

‖Sf∗‖Y (0,1) � ‖Uf‖Y (0,1) for every f .

Moreover, unlike U , S is linear. The reduction principle leads to a surprising discovery: while the op-
erator S, hence the Gaussian–Sobolev embedding, always provides a gain in integrability for example 
when X(Rn, γn) = Lp(Rn, γn) for p < ∞, there is actually a loss of integrability for example when 
X(Rn, γn) = L∞(Rn, γn) or X(Rn, γn) = expLβ(Rn, γn) for β > 0, in which expLβ(Rn, γn) is the classical 
exponential-type Orlicz space. Roughly speaking, the gain in integrability vanishes, and eventually is even 
turned to a loss when we are near the endpoint L∞. This is very graphically reflected by the second part 
of (1.5).
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In this paper we focus on operators with endpoint behavior similar to that of (1.1) or (1.2), but for a 
considerably wider class of function spaces of which the operator governing the Gaussian–Sobolev embed-
dings is a particular instance. Let us finally add for the sake of completeness that operators of another type 
of nonstandard behavior were studied by different methods in [15,20]. However, both the motivation of the 
research and techniques used in those papers were completely different.

2. Preliminaries

Conventions.

• Throughout this paper, (R, μ) and (S, ν) are two (possibly different) probabilistic nonatomic measure 
spaces. If (R, μ) = ((0, 1), λ), where λ is the 1-dimensional Lebesgue measure on (0, 1), we write in short 
(0, 1) instead of ((0, 1), λ).

• We write P � Q, where P, Q are nonnegative quantities, when there is a positive constant c independent 
of all appropriate quantities appearing in the expressions P and Q such that P ≤ c · Q. If not stated 
explicitly, what “the appropriate quantities appearing in the expressions P and Q” are should be obvious 
from the context. At the few places where it is not obvious, we will explicitly specify what the appropriate 
quantities are. We also write P � Q with the obvious meaning. Furthermore, we write P ≈ Q when 
P � Q and P � Q simultaneously.

• We adhere to the convention that 1
∞ = 0 · ∞ = 0.

We set

M(R,μ) = {f : f is a μ-measurable complex-valued function on R},

and

M+(R,μ) = {f ∈ M(R,μ) : f ≥ 0 μ-a.e.}.

Rearrangements and rearrangement-invariant function spaces. The nonincreasing rearrangement f∗ : (0, 1)
→ [0, ∞] of a function f ∈ M(R, μ) is defined as

f∗(t) = inf{λ ∈ (0,∞) : μ ({x ∈ R : |f(x)| > λ} ≤ t}) , t ∈ (0, 1).

The maximal nonincreasing rearrangement f∗∗ : (0, 1) → [0, ∞] of a function f ∈ M(R, μ) is defined as

f∗∗(t) = 1
t

t∫

0

f∗(s) ds, t ∈ (0, 1).

If there is any possibility of misinterpretation, we use the more explicit notations f∗
μ and f∗∗

μ instead of f∗

and f∗∗, respectively, to stress what measure the rearrangements are taken with respect to. The mapping 
f 
→ f∗ is monotone in the sense that, for every f, g ∈ M(R, μ),

|f | ≤ |g| μ-a.e. on R =⇒ f∗ ≤ g∗ on (0, 1);

consequently, the same implication remains true if ∗ is replaced by ∗∗. We have that f∗ ≤ f∗∗ for every 
f ∈ M(R, μ).

The Hardy lemma ([3, Chapter 2, Proposition 3.6]) ensures that, for every f, g ∈ M+(0, 1) and every 
nonincreasing h ∈ M+(0, 1),
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if
t∫

0

f(s) ds ≤
t∫

0

g(s) ds for every t ∈ (0, 1),

then
1∫

0

f(t)h(t) dt ≤
1∫

0

g(t)h(t) dt.

(2.1)

A functional ‖ · ‖X(0,1) : M+(0, 1) → [0, ∞] is called a rearrangement-invariant Banach function norm
(on (0, 1)) if, for all f , g and {fk}k∈N in M+(0, 1), and every λ ∈ [0, ∞):

(P1) ‖f‖X(0,1) = 0 if and only if f = 0 a.e. on (0, 1); ‖λf‖X(0,1) = λ‖f‖X(0,1); ‖f + g‖X(0,1) ≤ ‖f‖X(0,1) +
‖g‖X(0,1);

(P2) ‖f‖X(0,1) ≤ ‖g‖X(0,1) if f ≤ g a.e. on (0, 1);
(P3) ‖fk‖X(0,1) ↗ ‖f‖X(0,1) if fk ↗ f a.e. on (0, 1);
(P4) ‖1‖X(0,1) < ∞;
(P5) there is a positive constant CX , possibly depending on ‖ · ‖X(0,1) but not on f , such that 

∫ 1
0 f(t) dt ≤

CX‖f‖X(0,1);
(P6) ‖f‖X(0,1) = ‖g‖X(0,1) whenever f∗ = g∗.

The Hardy–Littlewood–Pólya principle ([3, Chapter 2, Theorem 4.6]) asserts that, for every f, g ∈ M(0, 1)
and every rearrangement-invariant Banach function norm ‖ · ‖X(0,1),

if
t∫

0

f∗(s) ds ≤
t∫

0

g∗(s) ds for every t ∈ (0, 1), then ‖f‖X(0,1) ≤ ‖g‖X(0,1). (2.2)

With every rearrangement-invariant Banach function norm ‖ · ‖X(0,1), we associate another functional 
‖ · ‖X′(0,1) defined as

‖f‖X′(0,1) = sup
g∈M+(0,1)
‖g‖X(0,1)≤1

1∫

0

f(t)g(t) dt, f ∈ M+(0, 1).

The functional ‖ · ‖X′(0,1) is also a rearrangement-invariant Banach function norm ([3, Chapter 2, Proposi-
tion 4.2]), and it is called the associate Banach function norm of ‖ · ‖X(0,1). Furthermore, we always have 
that ([3, Chapter 1, Theorem 2.7])

‖f‖X(0,1) = sup
g∈M+(0,1)

‖g‖X′(0,1)≤1

1∫

0

f(t)g(t) dt for every f ∈ M+(0, 1), (2.3)

that is,

‖ · ‖(X′)′(0,1) = ‖ · ‖X(0,1). (2.4)

The supremum in (2.3) does not change when the functions involved are replaced with their nonincreasing 
rearrangements ([3, Chapter 2, Proposition 4.2]), that is,

‖f‖X(0,1) = sup
g∈M+(0,1)

‖g‖X′(0,1)≤1

1∫

0

f∗(t)g∗(t) dt for every f ∈ M+(0, 1).
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Given a rearrangement-invariant Banach function norm ‖ · ‖X(0,1), we define the functional ‖ · ‖X(R,μ) as

‖f‖X(R,μ) = ‖f∗
μ‖X(0,1) for every f ∈ M(R,μ). (2.5)

Note that ‖f‖X(R,μ) = ‖|f |‖X(R,μ). When (R, μ) = (0, 1), (2.5) extends the given rearrangement-invariant 
Banach function norm to all f ∈ M(0, 1). The functional ‖ · ‖X(R,μ) restricted to the linear set X(R, μ)
defined as

X(R,μ) = {f ∈ M(R,μ) : ‖f‖X(R,μ) < ∞} (2.6)

is a norm (provided that we identify any two functions from M(R, μ) coinciding μ-a.e. on R, as usual). 
In fact, X(R, μ) endowed with the norm ‖ · ‖X(R,μ) is a Banach space ([3, Chapter 1, Theorem 1.6]). We 
say that X(R, μ) is a rearrangement-invariant Banach function space (an r.i. Banach function space). Note 
that f ∈ M(R, μ) belongs to X(R, μ) if and only if ‖f‖X(R,μ) < ∞.

The rearrangement-invariant Banach function space X ′(R, μ) built upon the associate Banach function 
norm ‖ · ‖X′(0,1) of ‖ · ‖X(0,1) is called the associate Banach function space of X(R, μ). Thanks to (2.4), we 
have that (X ′)′(R, μ) = X(R, μ). Furthermore, one has that

∫

R

|f ||g| dμ ≤ ‖f‖X(R,μ)‖g‖X′(R,μ) for every f, g ∈ M(R,μ). (2.7)

We shall refer to (2.7) as the Hölder inequality.
A functional ‖ · ‖X(0,1) : M+(0, 1) → [0, ∞] is called a rearrangement-invariant quasi-Banach function 

norm (on (0, 1)) if it satisfies all the properties of a rearrangement-invariant Banach function norm but (P1) 
and (P5), and instead of (P1) it satisfies, for every f, g ∈ M+(0, 1) and λ ≥ 0,

(P1’) ‖f‖X(0,1) = 0 if and only if f = 0 a.e. on (0, 1); ‖λf‖X(0,1) = λ‖f‖X(0,1); there is a constant C ≥ 1, 
such that ‖f + g‖X(0,1) ≤ C

(
‖f‖X(0,1) + ‖g‖X(0,1)

)
.

Given a rearrangement-invariant quasi-Banach function norm ‖ · ‖X(0,1), the functional defined by (2.5) is a 
quasinorm on the linear set defined by (2.6). Moreover, X(R, μ) endowed with the quasinorm ‖ · ‖X(R,μ) is a 
quasi-Banach space ([22, Corollary 3.7]), and we called it a rearrangement-invariant quasi-Banach function 
space (an r.i. quasi-Banach function space). The rearrangement-invariant (quasi-)Banach function space 
X(0, 1) is called the representation space of X(R, μ).

Statements like, “let X(R, μ) be a rearrangement-invariant (quasi-)Banach function space”, are to be 
interpreted as “let ‖ · ‖X(0,1) be a rearrangement-invariant (quasi-)Banach function norm and let X(R, μ)
be the corresponding rearrangement-invariant (quasi-)Banach function space”.

Let X(R, μ) and Y (R, μ) be rearrangement-invariant (quasi-)Banach function spaces over the same mea-
sure space. We say that X(R, μ) is embedded in Y (R, μ), and we write X(R, μ) ↪→ Y (R, μ), if there is a 
positive constant C such that ‖f‖Y (R,μ) ≤ C‖f‖X(R,μ) for every f ∈ M(R, μ). If X(R, μ) ↪→ Y (R, μ) and 
Y (R, μ) ↪→ X(R, μ) simultaneously, we write X(R, μ) = Y (R, μ). We have that ([3, Chapter 1, Theorem 1.8]
and [22, Corollary 3.9])

X(R,μ) ↪→ Y (R,μ) if and only if X(R,μ) ⊆ Y (R,μ).

We say that a rearrangement-invariant quasi-Banach function norm ‖ · ‖X(0,1) is p-convex, where p ∈
(0, ∞), if the functional

‖f‖
X

1
p (0,1)

= ‖f 1
p ‖p

X(0,1), f ∈ M+(0, 1),
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is a rearrangement-invariant Banach function norm. The corresponding rearrangement-invariant Banach 
function space X

1
p (R, μ) is said to be p-convex.

The K-functional for a couple of (quasi-)Banach function spaces (X0(R, μ), X1(R, μ)) is defined, for every 
f ∈ M(R, μ) and t ∈ (0, ∞), as

K(f, t;X0, X1) = inf{‖g‖X0 + t‖h‖X1 : f = g + h},

where the infimum is taken over all representations f = g+h with g ∈ X0 and h ∈ X1. If f /∈ (X0+X1)(R, μ), 
then the infimum is to be interpreted as ∞.

Orlicz–Karamata spaces. A measurable function b: (0, 1) → (0, ∞) is said to be slowly varying if for every 
ε > 0 there are a nondecreasing function bε and a nonincreasing function b−ε such that tεb(t) ≈ bε(t) and 
t−εb(t) ≈ b−ε(t) on (0, 1). A slowly varying function b satisfies

0 < inf
t∈[a,1)

b(t) ≤ sup
t∈[a,1)

b(t) < ∞ for every a ∈ (0, 1).

A positive linear combination of slowly varying functions is a slowly varying function. If b1, b2 are slowly 
varying functions, so is b1b2. Any real power of a slowly varying function is a slowly varying function. For 
every α ∈ R \ {0} and a slowly varying function b, we have that limt→0+ tαb(t) = limt→0+ tα. Furthermore, 
if α > 0, then

t∫

0

s−1+αb(s) ds ≈ tαb(t) for every t ∈ (0, 1).

For more details, we refer the reader to [14,25].
The Orlicz–Karamata functional ‖ · ‖Lp,b(0,1), where p ∈ (0, ∞] and b is a slowly varying function, is 

defined as

‖f‖Lp,b(0,1) = ‖b(t)f∗(t)‖Lp(0,1), f ∈ M+(0, 1),

where ‖ · ‖Lp(0,1) is the Lebesgue quasi-norm on (0, 1), that is,

‖f‖Lp(0,1) =

⎧
⎪⎨
⎪⎩

(∫ 1
0 |f(t)|p dt

) 1
p if p ∈ (0,∞),

ess sup
t∈(0,1)

|f(t)| if p = ∞.

The functional ‖ · ‖Lp,b(0,1) is a rearrangement-invariant quasi-Banach function norm provided that either 
p ∈ (0, ∞) or p = ∞ and b ∈ L∞(0, 1) ([25, Proposition 3.7]). The corresponding function spaces are called 
Orlicz–Karamata spaces. The Orlicz–Karamata functional ‖ · ‖Lp,b(0,1) is equivalent to a rearrangement-
invariant Banach function norm if and only if p = 1 and b is equivalent to a nonincreasing function, or 
p ∈ (1, ∞), or p = ∞ and b ∈ L∞(0, 1) ([25, Theorem 3.26]). The class of Orlicz–Karamata spaces contains 
Lebesgue spaces as well as some important Orlicz spaces. If b ≡ 1, then ‖ · ‖Lp,b(0,1) = ‖ · ‖Lp(0,1) ([3, 
Chapter 2, Proposition 1.8]). Set �(t) = 1 − log(t), t ∈ (0, 1). If p ∈ [1, ∞) and b = �α, where α > 0
if p = 1, otherwise α ∈ R, then Lp,b(R, μ) = Lp (log L)αp (R, μ), the Orlicz space induced by a Young 
function Φ satisfying, for large values of t, Φ(t) ≈ tp(log t)αp. Furthermore, if b = �α, where α < 0, then 
L∞,b(R, μ) = expL− 1

α (R, μ), the Orlicz space induced by a Young function Φ satisfying, for large values of 
t, Φ(t) ≈ exp(t− 1

α ). For more details, we refer the reader to [24, Section 8].
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3. Main results

In this section we shall state and prove our main results. We begin by introducing a key function.

Definition 3.1. Let p ∈ (0, ∞) and b1, b2 be slowly varying functions. We define the function

σ = σ(b1, b2, p) : [0, 1] → [0, 1]

as the increasing, bijective function satisfying

tp = 1
C

σ(t)p∫

0

[
b1(s)b2(s)−1]p ds for every t ∈ [0, 1], (3.1)

where

C =
1∫

0

[
b1(s)b2(s)−1]p ds ∈ (0,∞).

Remark 3.2. Let C([0, 1]) denote the space of continuous (real-valued) functions on the interval [0, 1], and 
let C1(0, 1) denote the space of continuously differentiable functions on the interval (0, 1). It immediately 
follows from (3.1) that σ, σ−1 ∈ C([0, 1]), where σ−1 denotes the inverse function. Furthermore, we have 
that

σ−1(t) ≈ tb1(tp)b2(tp)−1

on (0, 1). If the functions b1, b2 are continuous, then σ, σ−1 ∈ C1(0, 1) and
(
σ−1(t1/p)p

)′ ≈ b1(t)pb2(t)−p

on (0, 1). We shall use these properties of σ without making any explicit reference to them.

We shall now characterize the K-inequality corresponding to the couples (Lp,b1 , L∞,b2) and (Lp, L∞) by 
an inequality for certain integrals.

Note that, since (R, μ) and (S, ν) are finite nonatomic measure spaces, we have the embeddings 
L∞,b2(S, ν) ↪→ Lp,b1(S, ν) and L∞(R, μ) ↪→ Lp(R, μ), and so to write f ∈ Lp(R, μ) and g ∈ Lp,b1(S, ν)
is the same as to write f ∈ (Lp + L∞) (R, μ) and g ∈

(
Lp,b1 + L∞,b2

)
(S, ν).

Theorem 3.3. Let p ∈ (0, ∞) and (b1, b2) be a pair of continuous slowly varying functions. Assume that b2
is nondecreasing. Let f ∈ Lp(R, μ) and g ∈ Lp,b1(S, ν). The inequality

K(g, t;Lp,b1 , L∞,b2) � K(f, t;Lp, L∞) (3.2)

holds for every t ∈ (0, 1) with a multiplicative constant independent of f and g if and only if the inequality

t∫

0

[g∗(s)b1(s)]p ds �
t∫

0

[
f∗(σ−1(s1/p)p

)
b1(s)b2(s)−1

]p
ds

holds for every t ∈ (0, 1) with a multiplicative constant independent of f and g.
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Proof. First, we claim that, for every g ∈ Lp,b1(S, ν) and every t ∈ (0, 1),

K(g, t;Lp,b1 , L∞,b2) ≈

⎛
⎜⎝

σ(t)p∫

0

[g∗(s)b1(s)]p ds

⎞
⎟⎠

1
p

+ t · sup
σ(t)p≤s<1

g∗(s)b2(s), (3.3)

in which the multiplicative constants are independent of g and t. This result can be derived from a general 
implicit formula appearing in [21, Theorem 4.1]. Since we need the explicit formula here, we shall prove it 
in detail for the sake of completeness. Let g ∈ Lp,b1(S, ν) and t ∈ (0, 1). For the sake of brevity, we set

I(g)(t) =

⎛
⎜⎝

σ(t)p∫

0

[g∗(s)b1(s)]p ds

⎞
⎟⎠

1
p

+ t · sup
σ(t)p≤s<1

g∗(s)b2(s).

Let g = g1 + g2, where g1 ∈ Lp,b1(S, ν) and g2 ∈ L∞,b2(S, ν), be a decomposition of g. We have that

I(g)(t) =

⎛
⎜⎝

σ(t)p∫

0

[(g1 + g2)∗(s)b1(s)]p ds

⎞
⎟⎠

1
p

+ t · sup
σ(t)p≤s<1

(g1 + g2)∗(s)b2(s)

≤

⎛
⎜⎝

σ(t)p∫

0

[(g∗
1(s/2) + g∗

2(s/2))b1(s)]p ds

⎞
⎟⎠

1
p

+ t · sup
σ(t)p≤s<1

[g∗
1(s/2) + g∗

2(s/2)] b2(s)

� I(g∗
1(·/2))(t) + I(g∗

2(·/2))(t).

(3.4)

As for I(g∗
1(·/2))(t), since

g∗
1(s) ≈ g∗

1(s)

⎛
⎝ 1

sb1(s)p

s∫

0

b1(τ)p dτ

⎞
⎠

1
p

≤ 1
s

1
p b1(s)

⎛
⎝

s∫

0

[g∗
1(τ)b1(τ)]p dτ

⎞
⎠

1
p

for every s ∈ (0, 1), we obtain that

I(g∗
1(·/2))(t) � ‖g1‖Lp,b1 (S,ν) + t · sup

σ(t)p≤s<1
g∗
1(s/2)b2(s)

� ‖g1‖Lp,b1 (S,ν) + t · sup
σ(t)p≤s<1

⎛
⎜⎝

s
2∫

0

[g∗
1(τ)b1(τ)]p dτ

⎞
⎟⎠

1
p

s
1
p b1(s)b2(s)−1

≤ ‖g1‖Lp,b1 (S,ν)

(
1 + t · sup

σ(t)p≤s<1

1
s

1
p b1(s)b2(s)−1

)

≈ ‖g1‖Lp,b1 (S,ν)

(
1 + t · 1

σ(t)b1(σ(t)p)b2(σ(t)p)−1

)

≈ ‖g1‖Lp,b1 (S,ν).

(3.5)

As for the second term on the right-hand side of (3.4), note that
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I(g∗
2(·/2))(t) � ‖g2‖L∞,b2 (S,ν)

⎛
⎜⎝

σ(t)p∫

0

[
b1(s)b2(s)−1]p ds

⎞
⎟⎠

1
p

+ t · sup
σ(t)p≤s<1

g∗
2(s/2)b2(s/2)

≈ t‖g2‖L∞,b2 (S,ν) + t · sup
σ(t)p

2 ≤s< 1
2

g∗
2(s)b2(s)

� t · ‖g2‖L∞,b2 (S,ν),

(3.6)

in which we used (3.1). Hence, by combining (3.6) and (3.5) together with (3.4), and taking the infimum 
over all such representations g = g1 + g2, we obtain that

I(g)(t) � K(g, t;Lp,b1 , L∞,b2). (3.7)

As for the opposite inequality, we may assume that I(g)(t) < ∞, for otherwise there is nothing to prove. 
Define the functions g1, g2 ∈ M(S, ν) as

g1(x) = max{|g(x)| − g∗(σ(t)p), 0} · sgn g(x), x ∈ S,

and

g2(x) = g(x) − g1(x) = min{|g(x)|, g∗(σ(t)p)} · sgn g(x), x ∈ S.

Clearly, g = g1 + g2 and we have that

g∗
1(s) = (g∗(s) − g∗(σ(t)p))χ(0,σ(t)p)(s) and g∗

2(s) = min{g∗(s), g∗(σ(t)p)}

for every s ∈ (0, 1). Note that

‖g1‖Lp,b1 (S,ν) =

⎛
⎜⎝

σ(t)p∫

0

[(g∗(s) − g∗(σ(t)p))b1(s)]p ds

⎞
⎟⎠

1
p

≤

⎛
⎜⎝

σ(t)p∫

0

[g∗(s)b1(s)]p ds

⎞
⎟⎠

1
p

and

‖g2‖L∞,b2 (S,ν) = g∗(σ(t)p) sup
0<s≤σ(t)p

b2(s) + sup
σ(t)p≤s<1

g∗(s)b2(s) ≈ sup
σ(t)p≤s<1

g∗(s)b2(s);

consequently,

‖g1‖Lp,b1 (S,ν) + t‖g2‖L∞,b2 (S,ν) � I(g)(t)

and g1 ∈ Lp,b1(S, ν) and g2 ∈ L∞,b2(S, ν). Hence,

K(g, t;Lp,b1 , L∞,b2) � I(g)(t),

which together with (3.7) establishes our claim (3.3).
Second, since we have that (see [19], also [17, Theorem 4.1])

K(f, t;Lp, L∞) ≈

⎛
⎝

tp∫

0

f∗(s)p ds

⎞
⎠

1
p

,
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in which the multiplicative constants depend only on p, in view of (3.3), we need to prove that

⎛
⎜⎝

σ(t)p∫

0

[g∗(s)b1(s)]p ds

⎞
⎟⎠

1
p

+ t · sup
σ(t)p≤s<1

g∗(s)b2(s) �

⎛
⎝

tp∫

0

f∗(s)p ds

⎞
⎠

1
p

(3.8)

for every t ∈ (0, 1) if and only if

t∫

0

[g∗(s)b1(s)]p ds �
t∫

0

[
f∗(σ−1(s1/p)p

)
b1(s)b2(s)−1

]p
ds for every t ∈ (0, 1). (3.9)

We shall observe that

σ(t)p∫

0

[g∗(s)b1(s)]p ds �
tp∫

0

f∗(s)p ds for every t ∈ (0, 1) (3.10)

if and only if

tp · sup
σ(t)p≤s<1

1
sb1(s)pb2(s)−p

s∫

0

[g∗(τ)b1(τ)]p dτ �
tp∫

0

f∗(s)p ds for every t ∈ (0, 1). (3.11)

Note that (3.11) plainly implies (3.10) inasmuch as

σ(t)b1(σ(t)p)b2(σ(t)p)−1 ≈ t for every t ∈ (0, 1).

As for the opposite implication, let t ∈ (0, 1). Since the function (0, 1) � t 
→ (|f |p)∗∗(tp) is nonincreasing, 
(3.10) actually implies that

sup
t≤s<1

1
sp

σ(s)p∫

0

[g∗(τ)b1(τ)]p dτ � 1
tp

tp∫

0

f∗(s)p ds. (3.12)

Since σ−1 is an increasing bijection of [0, 1] onto itself, by the change of variables s = σ−1(s̃1/p), (3.12) is 
equivalent to

sup
σ(t)p≤s̃<1

1
s̃b1(s̃)pb2(s̃)−p

s̃∫

0

[g∗(τ)b1(τ)]p dτ � 1
tp

tp∫

0

f∗(s)p ds,

whence (3.11) follows. Furthermore, by the change of variables s = σ−1(s̃1/p)p, we have that

tp∫

0

f∗(s) ds ≈
σ(t)p∫

0

f∗(σ−1(s̃1/p)p)b1(s̃)pb2(s̃)−p ds̃ for every t ∈ (0, 1).

Hence, since σ is a bijection of [0, 1] onto itself, (3.9) is equivalent to (3.10).
Finally, the proof will be complete once we show that (3.11) is equivalent to (3.8). Since (3.8) plainly 

implies (3.10), which is equivalent to (3.11), we only need to observe that (3.11) implies (3.8) (the former 
actually implies the latter pointwise). To this end, note that
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sup
σ(t)p≤s<1

g∗(s)b2(s) ≈ sup
σ(t)p≤s<1

g∗(s)
s

1
p b1(s)b2(s)−1

⎛
⎝

s∫

0

b1(τ)p dτ

⎞
⎠

1
p

≤ sup
σ(t)p≤s<1

1
s

1
p b1(s)b2(s)−1

⎛
⎝

s∫

0

[g∗(τ)b1(τ)]p dτ

⎞
⎠

1
p

for every t ∈ (0, 1). Hence, if (3.11) is true (consequently, so is (3.10)), then

K(g, t;Lp,b1 , L∞,b2)

�

⎛
⎜⎝

σ(t)p∫

0

[g∗(s)b1(s)]p ds

⎞
⎟⎠

1
p

+ t · sup
σ(t)p≤s<1

1
s

1
p b1(s)b2(s)−1

⎛
⎝

s∫

0

[g∗(τ)b1(τ)]p dτ

⎞
⎠

1
p

�

⎛
⎝

tp∫

0

f∗(s)p ds

⎞
⎠

1
p

for every t ∈ (0, 1). �
Remark 3.4. If (3.2) is valid for every t ∈ (0, 1), it is actually valid for every t ∈ (0, ∞) (with a possibly 
different multiplicative constant). Indeed, owing to the embeddings mentioned before Theorem 3.3, we have 
that K(f, t; Lp, L∞) ≈ K(f, 1; Lp, L∞) and K(g, t; Lp,b1 , L∞,b2) ≈ K(g, 1; Lp,b1 , L∞,b2) for every t ∈ [1, ∞), 
in which the multiplicative constants are independent of f, g and t; therefore

K(g, t;Lp,b1 , L∞,b2) ≈ K(g, 1;Lp,b1 , L∞,b2)

� K(f, 1;Lp, L∞) ≈ K(f, t;Lp, L∞)

for every t ∈ [1, ∞).

Now we shall introduce a key notion of a gaussible operator.

Definition 3.5. Let p ∈ (0, ∞) and b1, b2 be slowly varying functions. We say that an operator T defined on 
Lp(R, μ) having values in M(S, ν) is (p, b1, b2)-gaussible if

t∫

0

[(Tf)∗(s)b1(s)]p ds �
t∫

0

[
f∗(σ−1(s1/p)p

)
b1(s)b2(s)−1

]p
ds

for every f ∈ Lp(R, μ) and t ∈ (0, 1).

Remarks 3.6.

(i) It follows immediately from the definition that a (p, b1, b2)-gaussible operator is bounded from Lp(R, μ)
to Lp,b1(S, ν). Indeed, any (p, b1, b2)-gaussible operator T satisfies

‖Tf‖Lp,b1 (S,ν) �

⎛
⎝

1∫

0

[
f∗(σ−1(s1/p)p

)
b1(s)b2(s)−1

]p
ds

⎞
⎠

1/p

≈ ‖f‖Lp(R,μ).



14 S. Baena-Miret et al. / J. Math. Anal. Appl. 516 (2022) 126522

(ii) In view of Theorem 3.3, an operator T defined on Lp(R, μ) having values in M(S, ν) is (p, b1, b2)-
gaussible if and only if it satisfies

K(Tf, t;Lp,b1 , L∞,b2) � K(f, t;Lp, L∞) for every f ∈ Lp(R,μ) and t ∈ (0, 1). (3.13)

(iii) The class of operators satisfying the K-inequality (3.13) actually coincides with a certain class of 
operators introduced in [5, Section 4.1]. An operator T defined on X0 + X1 having values in Y0 + Y1, 
where (X0, X1) and (Y0, Y1) are two pairs of compatible couples of quasi-Banach spaces, belongs to the 
class B(X0, X1; Y0, Y1) if there is a constant C > 0 such that, for every fi ∈ Xi, i = 0, 1, and every 
ε > 0, there are gi ∈ Yi, i = 0, 1, such that

T (f0 + f1) = g0 + g1 and ‖gi‖Yi
≤ C‖fi‖Xi

+ ε, i = 0, 1.

By [5, Proposition 4.1.3] with some appropriate modifications, an operator T defined on Lp(R, μ)
having values in M(S, ν) satisfies the K-inequality (3.13) if and only if it belongs to the class 
B(Lp(R, μ), L∞(R, μ); Lp,b1(S, ν), L∞,b2(S, ν)).
Assume that (3.13) holds. Let f0 ∈ Lp(R, μ), f1 ∈ L∞(R, μ) and ε > 0 be given. Assume that neither 
f0 nor f1 is equivalent to the zero function (otherwise the proof is trivial). Thanks to (3.13) with 

t = t0 =
‖f0‖Lp(R,μ)

‖f1‖L∞(R,μ)
, there are g0 ∈ Lp,b1(S, ν) and g1 ∈ L∞,b2(S, ν) such that T (f0 + f1) = g0 + g1

and

‖g0‖Lp,b1 (S,ν) +
‖f0‖Lp(R,μ)

‖f1‖L∞(R,μ)
‖g1‖L∞,b2 (S,ν) ≤ 2C‖f0‖Lp(R,μ) + min

{ ‖f0‖Lp(R,μ)

‖f1‖L∞(R,μ)
, 1
}

ε,

whence

‖g0‖Lp,b1 (S,ν) ≤ 2C‖f0‖Lp(R,μ) + ε

and

‖g1‖L∞,b2 (S,ν) ≤ 2C‖f1‖L∞(R,μ) + ε.

Hence T ∈ B(Lp(R, μ), L∞(R, μ); Lp,b1(S, ν), L∞,b2(S, ν)). Conversely, assume that T ∈ B(Lp(R, μ),
L∞(R, μ);Lp,b1(S, ν), L∞,b2(S, ν)). Let f ∈ Lp(R, μ) and t ∈ (0, ∞) be given. Let f = f0 + f1 be a 
decomposition of f , where f0 ∈ Lp(R, μ), f1 ∈ L∞(R, μ). Fix arbitrary ε > 0. There are g0 ∈ Lp,b1(S, ν)
and g1 ∈ L∞,b2(S, ν) such that T (f0 + f1) = g0 + g1 and

‖g0‖Lp,b1 (S,ν) ≤ C‖f0‖Lp(R,μ) + ε and ‖g1‖L∞,b2 (S,ν) ≤ C‖f1‖L∞(R,μ) + ε,

where C > 0 is a constant independent of f0, f1, g0, g1, t and ε. Consequently,

K(Tf, t;Lp,b1 , L∞,b2) ≤ C(‖f0‖Lp(R,μ) + t‖f1‖L∞(R,μ)) + (1 + t)ε.

Since ε > 0 was arbitrary, it follows that

K(Tf, t;Lp,b1 , L∞,b2) ≤ C(‖f0‖Lp(R,μ) + t‖f1‖L∞(R,μ)).

By taking the infimum over all decompositions f = f0 + f1, f0 ∈ Lp(R, μ), f1 ∈ L∞(R, μ), we obtain 
(3.13).
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We now specify the class of pairs of slowly varying functions for which we shall later obtain our main 
result.

Definition 3.7. Let p ∈ (0, ∞). We say that a pair (b1, b2) of slowly varying functions belongs to the class 
Bp if

(a) b1, b2 ∈ C(0, 1),
(b) b1 is nonincreasing and b2 is nondecreasing,
(c) b1(t) ≈ b1 (tb1(t)pb2(t)−p) near 0+,

(d) sup
0<t<1

b2(t)p

1∫

t

ds

sb1(s)p
< ∞.

Remarks 3.8.

(i) Note that (c) in Definition 3.7 actually implies that

b1(t) ≈ b1
(
σ−1(t1/p)p

)
≈ b1

(
σ(t1/p)p

)
for every t ∈ (0, 1).

(ii) Since the function t 
→ b1(t)pb2(t)−p, t ∈ (0, 1), is nonincreasing, it follows that

t ≤ σ−1(t1/p)p for every t ∈ (0, 1). (3.14)

Indeed, owing to (3.1), we have that

σ−1(t1/p)p

t
=

⎛
⎝

1∫

0

[
b1(s)b2(s)−1]p ds

⎞
⎠

−1
1
t

t∫

0

[
b1(s)b2(s)−1]p ds

≥

⎛
⎝

1∫

0

[
b1(s)b2(s)−1]p ds

⎞
⎠

−1 1∫

0

[
b1(s)b2(s)−1]p ds

= 1

for every t ∈ (0, 1). Moreover, if the function t 
→ b1(t)pb2(t)−p, t ∈ (0, 1), is decreasing, then the 
inequality in (3.14) is strict.

Now we shall introduce three operators, which will play an essential role in what follows.

Definition 3.9. Let p ∈ (0, ∞) and b1, b2 be slowly varying functions. We define the operators Ub1,b2,p, 
Tb1,b2,p and Sb1,p as, for every f ∈ M(0, 1),

Ub1,b2,pf(t) = f∗(σ−1(t1/p)p)b2(t)−1, t ∈ (0, 1),

Tb1,b2,pf(t) = sup
t≤s<1

f∗(σ(s1/p)p)
b1(σ(s1/p)p)p

, t ∈ (0, 1),

and
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Sb1,pf(t) =

⎛
⎝

1∫

t

|f(s)|p
sb1(s)p

ds

⎞
⎠

1
p

, t ∈ (0, 1),

where σ is the function from Definition 3.1.

Remarks 3.10.

(i) Note that the functions Ub1,b2,pf , Tb1,b2,pf and Sb1,pf are nonincreasing for every f ∈ M(0, 1).
(ii) The operator Ub1,b2,p is plainly (p, b1, b2)-gaussible (with (R, μ) = (S, ν) = (0, 1)). Hence

K(Ub1,b2,pf, t;Lp,b1 , L∞,b2) � K(f, t;Lp, L∞) for every f ∈ Lp(R,μ) and t ∈ (0, 1)

owing to Remark 3.6(ii). Moreover, although Ub1,b2,p is neither linear nor quasilinear, it is bounded 
(in the classic sense) from Lp(0, 1) to Lp,b1(0, 1) (see Remark 3.6(i)) and from L∞(0, 1) to L∞,b2(0, 1); 
indeed,

‖Ub1,b2,pf‖L∞,b2 (0,1) = sup
0<t<1

(
f∗(σ−1(t1/p)p)

b2(t)

)
b2(t) = ‖f‖L∞(0,1)

for every f ∈ M(0, 1).

Now we are in a position to state and prove our main results.

Theorem 3.11. Let p ∈ (0, ∞) and (b1, b2) ∈ Bp. Let X(R, μ) and Y (S, ν) be r.i. quasi-Banach function 
spaces that are p-convex. The following four statements are equivalent.

(i) Every (p, b1, b2)-gaussible operator T is bounded from X(R, μ) to Y (S, ν).
(ii) Every operator T defined on Lp(R, μ) having values in M(S, ν) that satisfies

K(Tf, t;Lp,b1 , L∞,b2) � K(f, t;Lp, L∞) for every f ∈ Lp(R,μ) and t ∈ (0, 1)

is bounded from X(R, μ) to Y (S, ν).
(iii) The operators Ub1,b2,p and Sb1,p are bounded from X(0, 1) to Y (0, 1).
(iv) The operator Tb1,b2,p is bounded from 

(
Y

1
p
)′(0, 1) to 

(
X

1
p
)′(0, 1).

Proof. (i) and (ii) are equivalent. This is an immediate consequence of the very definition of (p, b1, b2)-
gaussible operators and Theorem 3.3, as was already observed in Remark 3.6(ii).

(i) implies (iii). Note that, for every f ∈ Lp(R, μ), the function Ub1,b2,p(f∗) is a nonnegative, nonincreas-
ing, finite function on (0, 1). By [3, Chapter 2, Corollary 7.8], there is a function gf ∈ M(S, ν) such that 
g∗
f = Ub1,b2,p(f∗). The auxiliary operator T defined as Tf = gf , f ∈ Lp(R, μ), is plainly (p, b1, b2)-gaussible 

(note that this does not depend on particular choices of gf). Hence, owing to (i), T is bounded from X(R, μ)
to Y (S, ν). By [3, Chapter 2, Corollary 7.8] again, for every h ∈ X(0, 1), there is a function fh ∈ X(R, μ)
such that f∗

h = h∗. Therefore,

‖Ub1,b2,ph‖Y (0,1) = ‖(Tfh)∗‖Y (0,1) = ‖Tfh‖Y (S,ν) � ‖fh‖X(R,μ) = ‖h∗‖X(0,1) = ‖h‖X(0,1)

for every h ∈ X(0, 1). Hence Ub1,b2,p is bounded from X(0, 1) to Y (0, 1).
Next, it is easy to see that Sb1,p is bounded from Lp(0, 1) to Lp,b1(0, 1) and from L∞(0, 1) to L∞,b2(0, 1). 

Moreover, the operator is quasilinear. It follows that
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K(Sb1,pf, t;Lp,b1 , L∞,b2) � K(f, t;Lp, L∞) for every f ∈ Lp(0, 1) and t ∈ (0, 1);

hence Sb1,p is a (p, b1, b2)-gaussible operator with respect to (R, μ) = (S, ν) = (0, 1) (see Remark 3.6(ii)). 
Arguing along the same lines as for Ub1,b2,p, we obtain that Sb1,p is bounded from X(0, 1) to Y (0, 1).

(iii) implies (iv). Fix f ∈ M(0, 1). First, note that

Tb1,b2,pf(t) � f∗(σ(t1/p)p)
b1(σ(t1/p)p)p

+ Tb1,b2,pf(σ−1(t1/p)p) for every t ∈ (0, 1). (3.15)

Indeed, since t ≤ σ−1(t1/p)p, we have that

Tb1,b2,pf(t) ≤ sup
t≤s≤σ−1(t1/p)p

f∗(σ(s1/p)p)
b1(σ(s1/p)p)p

+ sup
σ−1(t1/p)p≤s<1

f∗(σ(s1/p)p)
b1(σ(s1/p)p)p

≤ f∗(σ(t1/p)p)
b1(t)p

+ Tb1,b2,pf(σ−1(t1/p)p)

≈ f∗(σ(t1/p)p)
b1(σ(t1/p)p)p

+ Tb1,b2,pf(σ−1(t1/p)p).

It follows from (3.15) that

1∫

0

Tb1,b2,pf(t)g∗(t) dt �
1∫

0

(
f∗(σ(t1/p)p)
b1(σ(t1/p)p)p

)
g∗(t) dt +

1∫

0

Tb1,b2,pf(σ−1(t1/p)p)g∗(t) dt

= I1(g) + I2(g) (3.16)

for every g ∈ M(0, 1). As for I1(g), by the change of variables t = σ−1(t̃1/p)p, Hölder’s inequality (2.7), and 
(iii), we have that

I1(g) ≈
1∫

0

f∗(t̃)(Ub1,b2,p(|g|1/p)(t̃))p dt̃ ≤ ‖f‖(
Y

1
p
)′(0,1)

‖Ub1,b2,p(|g|1/p)‖p
Y (0,1)

� ‖f‖(
Y

1
p
)′(0,1)

‖|g|1/p‖p
X(0,1) = ‖f‖(

Y
1
p
)′(0,1)

‖g‖
X

1
p (0,1)

.

(3.17)

As for I2(g), since the function 1
b1

is equivalent to a quasiconcave function on (0, 1), it follows from [11, 
Lemma 4.10] that

t∫

0

Tb1,b2,pf(σ−1(s1/p)p) ds =
t∫

0

sup
s≤τ<1

f∗(τ)
b1(τ)p

ds �
t∫

0

(
f∗(τ)
b1(τ)p

)∗
(s) ds

for every t ∈ (0, 1). Hence, by virtue of Hardy’s lemma (2.1),

I2(g) �
1∫

0

(
f∗(s)
b1(s)p

)∗
(t)g∗(t) dt. (3.18)

Finally, by combining (3.16) with (3.17) and (3.18), and using Hölder’s inequality (2.7) and the bound-
edness of Sb1,p, we obtain
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‖Tb1,b2,pf‖(
X

1
p
)′(0,1)

= sup
‖g‖

X
1
p (0,1)

≤1

1∫

0

Tb1,b2,pf(t)g∗(t) dt � sup
‖g‖

X
1
p (0,1)

≤1
(I1(g) + I2(g))

� ‖f‖(
Y

1
p
)′(0,1)

+ sup
‖g‖

X
1
p (0,1)

≤1

1∫

0

(
f∗(s)
b1(s)p

)∗
(t)g∗(t) dt

= ‖f‖(
Y

1
p
)′(0,1)

+ sup
‖g‖

X
1
p (0,1)

≤1

1∫

0

f∗(t)
b1(t)p

|g(t)| dt

≤ ‖f‖(
Y

1
p
)′(0,1)

+ sup
‖g‖

X
1
p (0,1)

≤1

1∫

0

f∗∗(t)
b1(t)p

|g(t)| dt

= ‖f‖(
Y

1
p
)′(0,1)

+ sup
‖g‖

X
1
p (0,1)

≤1

1∫

0

f∗(t)Sb1,p(|g|1/p)(t)p dt

≤ ‖f‖(
Y

1
p
)′(0,1)

+ ‖f‖(
Y

1
p
)′(0,1)

sup
‖g‖

X
1
p (0,1)

≤1
‖Sb1,p(|g|1/p)‖p

Y (0,1)

� ‖f‖(
Y

1
p
)′(0,1)

+ ‖f‖(
Y

1
p
)′(0,1)

sup
‖g‖

X
1
p (0,1)

≤1
‖|g|1/p‖p

X(0,1)

≈ ‖f‖(
Y

1
p
)′(0,1)

.

Hence Tb1,b2,p is bounded from 
(
Y

1
p
)′(0, 1) to 

(
X

1
p
)′(0, 1).

(iv) implies (i). Since T is (p, b1, b2)-gaussible, by virtue of Hardy’s lemma (2.1) we have that

1∫

0

(Tf)∗(s)pg∗(s) ds ≤
1∫

0

[(Tf)∗(s)b1(s)]p
(

sup
s≤τ<1

g∗(τ)
b1(τ)p

)
ds

�
1∫

0

f∗(σ−1(s1/p)p)pb1(s)pb2(s)−p Tb1,b2,pg(σ−1(s1/p)p) ds

≈
1∫

0

f∗(s)p Tb1,b2,pg(s) ds

for every g ∈ M(0, 1). Hence, by using Hölder’s inequality (2.7) on the right-hand side and (iv),

1∫

0

(Tf)∗(s)pg∗(s) ds � ‖|f |p‖
X

1
p (0,1)

‖Tb1,b2,pg‖(
X

1
p
)′(0,1)

� ‖f‖p
X(R,μ)‖g‖(

Y
1
p
)′(0,1)

,

whence, by taking the supremum over all g from the unit ball of 
(
Y

1
p
)′(0, 1), we obtain that T is bounded 

from X(R, μ) to Y (S, ν). �
It turns out that the statement Theorem 3.11(iii) is often actually equivalent to (in turn, so are the other 

three statements):
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(iii’) The operator Ub1,b2,p is bounded from X(0, 1) to Y (0, 1).

Theorem 3.12. Let p ∈ (0, ∞) and Y (0, 1) be a p-convex r.i. quasi-Banach function space. Let (b1, b2) ∈ Bp. 
Furthermore, assume that the function (0, 1) � τ 
→ b1(τ)b2(τ)−1 is strictly decreasing and that

lim
s→0+

b2(s)p

1∫

s

dτ

τb1(τ)p
∈ (0,∞).

We have that

‖Sb1,p(f∗)‖Y (0,1) � ‖Ub1,b2,pf‖Y (0,1) for every f ∈ M(0, 1). (3.19)

Moreover, let X(0, 1) be another r.i. quasi-Banach function space that is p-convex. If Ub1,b2,p is bounded 
from X(0, 1) to Y (0, 1), so is Sb1,p.

Proof. First, note that t < σ−1(t1/p)p for every t ∈ (0, 1) (recall Remark 3.8(ii)).
Next, since Y

1
p (0, 1) is an r.i. Banach function space, in order to prove (3.19), by virtue of the Hardy–

Littlewood–Pólya principle (2.2) it is sufficient to show that

t∫

0

1∫

s

f∗(τ)p

τb1(τ)p
dτ ds �

t∫

0

f∗(σ−1(s1/p)p)pb2(s)−p ds (3.20)

for every t ∈ (0, 1) and every f ∈ M(0, 1) with a multiplicative constant independent of f and t. Fix such 
f and t. By Fubini’s theorem, the left-hand side of (3.20) is equal to

t∫

0

f∗(s)p

b1(s)p
ds + t

1∫

t

f∗(s)p

sb1(s)p
ds, (3.21)

and, by the change of variables s̃ = σ−1(s1/p)p, the right-hand side of (3.20) is equivalent to

σ−1(t1/p)p∫

0

f∗(s̃)p

b1(s̃)p
ds̃ =

t∫

0

f∗(s̃)p

b1(s̃)p
ds̃ +

σ−1(t1/p)p∫

t

f∗(s̃)p

b1(s̃)p
ds̃. (3.22)

In the light of (3.21) and (3.22), in order to prove (3.20), it is sufficient to show that

t

1∫

t

f∗(s)p

sb1(s)p
ds �

σ−1(t1/p)p∫

t

f∗(s)p

b1(σ(s1/p)p)p
ds (3.23)

with a multiplicative constant independent of f and t. To this end, owing to the monotone convergence 
theorem and the fact that every nonnegative, nonincreasing function on (0, 1) is the pointwise limit of a 
nondecreasing sequence of nonincreasing simple functions on (0, 1), it is actually sufficient to prove (3.23)
for f∗ = χ(0,a), where a ∈ (0, 1). Therefore, (3.23) will follow once we prove that

t

1∫

t

χ(0,a)(s)
sb1(s)p

ds �
σ−1(t1/p)p∫

t

χ(0,a)(s)
b1(σ(s1/p)p)p

ds (3.24)
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for every a ∈ (0, 1) with a multiplicative constant independent of a and t. We claim that

s

1∫

s

dτ

τb1(τ)p
�

σ−1(s1/p)p∫

s

dτ

b1(σ(τ1/p)p)p
for every s ∈ (0, 1). (3.25)

Before we set out to prove the claim, we will make three observations. First, since the function τ 
→
b1(τ)pb2(τ)−p, τ ∈ (0, 1), is decreasing, we have that

1∫

0

b1(τ)pb2(τ)−p dτ > lim
s→1−

b1(s)pb2(s)−p.

Second,

lim
s→0+

b1(s)p

1∫

s

dτ

τb1(τ)p
= ∞ and lim

s→0+

b1(s)
b2(s)

= ∞,

for

b1(s)p

b2(s)p
� b1(s)p

1∫

s

dτ

τb1(τ)p
≥

1∫

s

dτ

τ
for every s ∈ (0, 1).

Third, in order to prove (3.25), it is sufficient to prove that the inequality is valid near 0+ and near 1−

inasmuch as

sup
s∈[c,d]

s
∫ 1
s

dτ
τb1(τ)p

∫ σ−1(s1/p)p

s
dτ

b1(σ(τ1/p)p)p

< ∞ for every 0 < c < d < 1.

Set M = (
∫ 1
0 b1(τ)pb2(τ)−p dτ)−1. As for the validity near 1−, note that, for every s ∈ (0, 1),

s
∫ 1
s

dτ
τb1(τ)p

∫ σ−1(s1/p)p

s
dτ

b1(σ(τ1/p)p)p

�
(1−s)
b1(s)p

σ−1(s1/p)p−s
b1(s)p

= 1 − s

σ−1(s1/p)p − s

and that both numerator and denominator on the right-hand side go to 0 as s → 1−. Hence, owing to 
L’Hôpital’s rule,

lim
s→1−

1 − s

σ−1(s1/p)p − s
= lim

s→1−

−1
Mb1(s)pb2(s)−p − 1 = −1

M(lims→1− b1(s)pb2(s)−p) − 1 ∈ (0,∞).

As for the validity near 0+, we use L’Hôpital’s rule again to obtain that

lim
s→0+

s
∫ 1
s

dτ
τb1(τ)p

∫ σ−1(s1/p)p

s
dτ

b1(σ(τ1/p)p)p

= lim
s→0+

∫ 1
s

dτ
τb1(τ)p − 1

b1(s)p

Mb1(s)pb2(s)−p

b1(s)p − 1
b1(σ(s1/p)p)p

= lim
s→0+

b1(s)p
∫ 1
s

dτ
τb1(τ)p − 1

Mb1(s)pb2(s)−p − b1(s)p

b1(σ(s1/p)p)p
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= 1
M

⎛
⎝ lim

s→0+
b2(s)p

1∫

s

dτ

τb1(τ)p

⎞
⎠ ∈ (0,∞).

Therefore, (3.25) is valid. Having (3.25) at our disposal, it is now easy to prove (3.24). If a ≤ t, then (3.24)
plainly holds. If t < a ≤ σ−1(t1/p)p, then

t

1∫

t

χ(0,a)(s)
sb1(s)p

ds = t

a∫

t

ds

sb1(s)p
≤

a∫

t

ds

b1(s)p

≈
a∫

t

ds

b1(σ(s1/p)p)p
=

σ−1(t1/p)p∫

t

χ(0,a)(s)
b1(σ(s1/p)p)p

ds.

If a > σ−1(t1/p)p, then

t

1∫

t

χ(0,a)(s)
sb1(s)p

ds ≤ t

1∫

t

ds

sb1(s)p
�

σ−1(t1/p)p∫

t

ds

b1(σ(s1/p)p)p

=
σ−1(t1/p)p∫

t

χ(0,a)(s)
b1(σ(s1/p)p)p

ds,

in which the multiplicative constant is that from (3.25). Hence (3.24) is true, which completes the proof of 
(3.19).

Finally, let X(0, 1) be an r.i. quasi-Banach function space that is p-convex and assume that Ub1,b2,p :
X(0, 1) → Y (0, 1) is bounded. It follows from [9, Corollary 9.8] (cf. [26, Theorem 1]) that

∥∥∥∥∥∥

1∫

t

|f(s)|p
sb1(s)p

ds

∥∥∥∥∥∥
Y

1
p (0,1)

� ‖|f |p‖
X

1
p (0,1)

for every f ∈ M(0, 1)

if and only if
∥∥∥∥∥∥

1∫

t

f∗(s)p

sb1(s)p
ds

∥∥∥∥∥∥
Y

1
p (0,1)

� ‖|f |p‖
X

1
p (0,1)

for every f ∈ M(0, 1).

Owing to this equivalence, Sb1,p : X(0, 1) → Y (0, 1) is bounded if (and only if)

‖Sb1,p(f∗)‖Y (0,1) � ‖f‖X(0,1) for every f ∈ M(0, 1). (3.26)

Thanks to (3.19), we have that

‖Sb1,p(f∗)‖Y (0,1) � ‖Ub1,b2,pf‖Y (0,1) � ‖f‖X(0,1) for every f ∈ M(0, 1),

whence (3.26) follows. �
We shall finish by illustrating our results with a particular example. Recall that the function � : (0, 1) →

(0, ∞) is defined as �(t) = 1 − log(t), t ∈ (0, 1). Set b1 = �α, b2 = �−β . Let p ∈ (0, ∞). It is a matter of 
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straightforward computations to check that (b1, b2) ∈ Bp if and only if α, β ≥ 0 and either α + β ≥ 1
p and 

β > 0 or α > 1
p and β = 0. Moreover, if either 0 ≤ α < 1

p and α + β = 1
p or α > 1

p and β = 0, then the pair 
(b1, b2) also satisfies the assumptions of Theorem 3.12. Therefore, by combining Theorems 3.11 and 3.12, 
we obtain the following important particular example. If α > 1

p , then L∞,b2 = L∞, and so this case is not 
so interesting.

Theorem 3.13. Let p ∈ (0, ∞) and 0 ≤ α < 1
p . Set β = 1

p − α. Let X(R, μ) and Y (S, ν) be r.i. quasi-Banach 
function spaces that are p-convex. The following four statements are equivalent.

(i) Every (p, b1, b2)-gaussible operator T is bounded from X(R, μ) to Y (S, ν).
(ii) Every operator T defined on Lp(R, μ) having values in M(S, ν) that satisfies

K(Tf, t;Lp(log L)α, expL
1
β ) � K(f, t;Lp, L∞) for every f ∈ Lp(R,μ) and t ∈ (0, 1)

is bounded from X(R, μ) to Y (S, ν).
(iii) The operator U	α,	−β ,p is bounded from X(0, 1) to Y (0, 1).
(iv) The operator T	α,	−β ,p is bounded from 

(
Y

1
p
)′(0, 1) to 

(
X

1
p
)′(0, 1).
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Abstract
We improve the discretization technique for weighted Lorentz norms by eliminating
all “non-degeneracy” restrictions on the involved weights. We use the new method to
provide equivalent estimates on the optimal constant C such that the inequality

(∫ L

0
( f ∗(t))qw(t) dt

) 1
q

≤ C

(∫ L

0

(∫ t

0
u(s) ds

)−p (∫ t

0
f ∗(s)u(s) ds

)p

v(t) dt

) 1
p

holds for all relevant measurable functions, where L ∈ (0,∞], p, q ∈ (0,∞) and u,
v, w are locally integrable weights, u being strictly positive. In the case of weights
that would be otherwise excluded by the restrictions, it is shown that additional limit
terms naturally appear in the characterizations of the optimal C . A weak analogue for
p = ∞ is also presented.

Keywords Rearrangement-invariant spaces · Weights · Discretization · Lorentz
spaces · Embeddings

Mathematics Subject Classification 46E30 · 46E35

1 Introduction

Consider the problem of determining the optimal (i.e., least) constant C ∈ [0,∞]
such that the inequality
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(∫ L

0
( f ∗(t))qw(t) dt

) 1
q

≤ C

(∫ L

0

(
1

U (t)

∫ t

0
f ∗(s)u(s) ds

)p

v(t) dt

) 1
p

(1.1)

is satisfied for all functions f defined on an “appropriate” measure space, where f ∗
stands for the nonincreasing rearrangement of f and U (t) = ∫ t

0 u(s) ds. The values
of the other involved parameters are fixed, namely L ∈ (0,∞], p, q ∈ (0,∞), and u,
v, w are locally integrable, nonnegative weights on (0, L), u strictly positive.

In other words, this corresponds to the problem of characterizing the embedding
�

p
u (v) ↪→ �q(w) (all the involved notation is discussed in Sect. 2 below). This

problemhas been extensively studied and there are several possible approaches leading
to a solution. Let us briefly inspect what is at our disposal.

Gogatishvili and Pick provided in [7] what is currently the most cited solution to
the problem. It relies on a method of discretization, in which the integral expressions
in (1.1) are reformulated in terms of specific sequences. What was innovative in their
paper was the so-called “antidiscretization” part, where the discrete conditions were
transformed back into integral ones. The technique from [7] is our point of departure
and will be discussed in detail. We note that, in what follows, by “discretization” we
will actually refer to the whole process including the antidiscretization part.

Although [7] satisfied the demand for conditions in a form that may be easily
verified, there is a catch. Namely, only the case L = ∞ is covered and it is assumed
there that v is “non-degenerate” with respect to u in the sense that

∫ ∞

0

v(s) ds

U p(s) +U p(t)
< ∞ for all t ∈ (0,∞),

∫ 1

0

v(s) ds

U p(s)
=
∫ ∞

1
v(s) ds = ∞.

It turns out that the first of these conditions can be assumed without loss of generality
(see the beginning of the proof of Theorem 4.1); therefore, what rules out “degener-
ated” weights is the condition

∫ 1

0

v(s) ds

U p(s)
=
∫ ∞

1
v(s) ds = ∞. (1.2)

Unfortunately, this means that, besides leaving out some “degenerated” weights on
(0,∞), the result cannot be used in any direct way (e.g., using the obvious idea of
truncating v and w) in the case where L < ∞. A finite L appears naturally when the
considered weighted Lorentz spaces consist of functions defined on a finite measure
space. Such a setting is perfectly reasonable and it even becomes inevitable when
embeddings of weighted Sobolev-Lorentz spaces on domains into Lorentz �-spaces
and/or their compactness are studied, which is an application that we have in mind.
More details on this matter are given in Remark 4.6.

A completely different way of approaching the problem (1.1) was found indepen-
dently by Sinnamon in [11,12]. It is based on reformulating (1.1) as an inequality for
quasinconcave functions. His method is actually far simpler than discretization. How-
ever, the goal of [11] was to describe the Köthe dual of Lorentz �-spaces; therefore
only the case q = 1 and u ≡ 1 was considered there. It appears that there is no easy
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way to modify his proof technique to allow other values of q. Nevertheless, the result
obtained in [11] does not require any additional assumptions on weights and it gives
a hint on how the conditions characterizing (1.1) change in the general case. Namely,
there appear certain limit terms of the same nature as in other embeddings between
Lorentz � and �-spaces (cf. [2]). Another description of the Köthe dual of Lorentz
�-spaces was given by Gogatishvili and Kerman in [6]. Their method is not built on
discretization either, and so their result does not require any extra assumptions on
weights, but, again, it covers the problem (1.1) only for q = 1 and u ≡ 1.

In [5], the discretization technique was modified in order to encompass “degen-
erated” weights as well. Our goal in the present paper is to use this modification to
finally provide a complete characterization of the optimal constant C in (1.1) without
the restriction (1.2) on the weights u and v, and for all positive values of p and q,
including the “weak-type” modification for p = ∞ as well.

It should be noted that inequality (1.1) with a general u in fact follows from the case
u ≡ 1. Indeed, since u is locally integrable and positive a.e. in (0, L), the function
U is absolutely continuous and U ′ > 0 a.e. in (0, L); hence its inverse U−1 is also
absolutely continuous. Thus, performing the change of variables t 	→ U−1(t) and
considering that, since U−1 is strictly increasing, a function h is nonincreasing if and
only if h ◦ U−1 is nonincreasing, we observe that (1.1) holds for all f ∈ M(0, L) if
and only if

(∫ U (L)

0
(g∗(t))qw(U−1(t)) dU−1(t)

) 1
q

≤ C

(∫ U (L)

0

(
1

t

∫ t

0
g∗(s) ds

)p

v(U−1(t)) dU−1(t)

) 1
p

holds for all g ∈ M(0,U (L)) (in here, (0, L) may be, of course, replaced by any
nonatomic measure space of measure L). Hence, to tackle (1.1) it suffices to consider
u ≡ 1 and, at the end, perform the suggested change of variables to get the general
version. Nevertheless, in the proofs of themain results in Sect. 4, we use the discretiza-
tion technique directly with the general u. There would be little difference if we used
u ≡ 1, namely only in writing t instead of U (t) in the proofs. By using U (t) we also
avoid the need for performing the substitution to obtain the final result.

2 Preliminaries

Let us summarize the notation and auxiliary results that we shall use in this paper.
Throughout the paper, L ∈ (0,∞] is a fixed positive (possibly infinite) number.

Convention 2.1 We adhere to the following conventions:

(i) If f is a function on (0, L), then f (0) and f (L) stand for limt→0+ f (t) and
limt→L− f (t), respectively.
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(ii) All of the expressions 1
∞ , ∞

∞ , 00 and 0·∞ are to be interpreted as 0. The expression
1
0 is to be interpreted as ∞.

Let (X , μ) be a nonatomic, σ -finitemeasure space such thatμ(X) = L . ByMμ(X)

we denote the set of all μ-measurable (extended) real-valued functions defined on X .
The symbol M(0, L) denotes the set of all Lebesgue-measurable functions on (0, L),
and M+(0, L) denotes the set of all f ∈ M(0, L) such that f ≥ 0 a.e. on (0, L).

We say that a function v ∈ M+(0, L) is a weight on (0, L) if 0 < V (t) < ∞ for
every t ∈ (0, L), where

V (t) =
∫ t

0
v(s) ds, t ∈ [0, L].

Furthermore, we denote

V (a, b) =
∫ b

a
v(s) ds, 0 ≤ a < b ≤ L.

If f ∈ Mμ(X), the symbol f ∗ denotes the nonincreasing rearrangement of f , that
is,

f ∗(t) = inf{λ ∈ [0,∞) : μ({x ∈ X : | f (x)| > λ}) ≤ t}, t ∈ (0, L),

(for details see [1]). Let p ∈ (0,∞] and v be a weight on (0, L). We define the
following functionals:

‖ f ‖�p(v) =

⎧⎪⎨
⎪⎩
(∫ L

0
( f ∗(t))pv(t) dt

) 1
p

if p ∈ (0,∞),

ess supt∈(0,L) f ∗(t)v(t) if p = ∞.

Let u be an a.e. positive weight on (0, L). Let

f ∗∗
u (t) = 1

U (t)

∫ t

0
f ∗(s)u(s) ds, t ∈ (0, L),

be the nonincreasing maximal function of f with respect to u (cf. [7]). We define the
functional

‖ f ‖�
p
u (v) = ‖ f ∗∗

u ‖�p(v).

Accordingly, we denote

�p(v) = {
f ∈ Mμ(X) : ‖ f ‖�p(v) < ∞}

,

�
p
u (v) =

{
f ∈ Mμ(X) : ‖ f ‖�

p
u (v) < ∞

}
.
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These classes of functions are the usual weighted Lorentz � and �-spaces (cf. [2,7]).
A function � : (0, L) → (0,∞) is called admissible if it is positive, increasing and

continuous on (0, L). If � is admissible, we say that a function h : (0, L) → [0,∞)

is �-quasiconcave, and we write h ∈ Q�(0, L), if h is nondecreasing on (0, L) and
the function h

�
is nonincreasing on (0, L). Thanks to the monotonicity properties of

�-quasiconcave functions, it follows that h ≡ 0 on (0, L) if and only if h(t) = 0 for
each t ∈ (0, L). Throughout the paper, we implicitly assume that � is an admissible
function on (0, L).

If h ≡ 0 is a �-quasiconcave function, so is the function �
h . Furthermore, the

function h p is �p-quasiconcave for each p > 0. A nonnegative linear combination
of �-quasiconcave functions is also �-quasiconcave. If functions h1 and h2 are �1-
quasiconcave and �2-quasiconcave, respectively, then h1 ·h2 is (�1 ·�2)-quasiconcave.

Every h ∈ Q�(0, L) has an integral representation with limit terms (see [5, Theo-
rem 2.4.1]). Precisely, there is a nonnegative Borel measure ν on (0, L) such that

h(t) ≤ lim
s→0+ h(s) +

(
lim

s→L−
h(s)

�(s)

)
�(t)

+
∫

(0,L)

min{�(t), �(s)} dν(s) ≤ 4h(t) for each t ∈ (0, L). (2.1)

For more information on �-quasiconcave functions, see [5, Chapter 2].
The cornerstone of the discretization technique is the construction of a covering

sequence. The properties of such a sequence, as listed below, as well as their proofs
can be found in [5, Chapter 3]. For every h ∈ Q�(0, L), h ≡ 0, and each a > 1, there
are numbers K−, K+ ∈ {Z,±∞} with −∞ ≤ K− ≤ 0 ≤ K+ ≤ ∞, and a sequence
{xk}k∈K+− , where K+− = {k ∈ Z : K− ≤ k ≤ K+}, with the following properties:

• The sequence {xk}k∈K+− is increasing and xk ∈ (0, L) for every k ∈ Z such that

K− + 1 ≤ k ≤ K+ − 1.
• K+ = ∞ if and only if

lim
t→L− h(t) = ∞ and lim

t→L−
�(t)

h(t)
= ∞. (2.2)

If K+ = ∞, then limk→∞ xk = L . Otherwise, xK+ = L .
• K− = −∞ if and only if

lim
t→0+ h(t) = 0 and lim

t→0+
�(t)

h(t)
= 0. (2.3)

If K− = −∞, then limk→−∞ xk = 0. Otherwise, xK− = 0.
• For every k ∈ Z such that K− + 2 ≤ k ≤ K+ − 1, one has

ah(xk−1) ≤ h(xk) and a
�(xk−1)

h(xk−1)
≤ �(xk)

h(xk)
. (2.4)
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• For every k ∈ Z such that K− + 2 ≤ k ≤ K+ − 1, one has

1

a
h(xk) ≤ h(t) ≤ h(xk) for each t ∈ [xk−1, xk]

or

1

a

�(xk)

h(xk)
≤ �(t)

h(t)
≤ �(xk)

h(xk)
for each t ∈ [xk−1, xk].

• If K+ < ∞, then

h(xK+−1) ≤ h(t) ≤ ah(xK+−1) for each t ∈ [xK+−1, L)

or

�(xK+−1)

h(xK+−1)
≤ �(t)

h(t)
≤ a

�(xK+−1)

h(xK+−1)
for each t ∈ [xK+−1, L).

• If K− > −∞, then

1

a
h(xK−+1) ≤ h(t) ≤ h(xK−+1) for each t ∈ (0, xK−+1]

or

1

a

�(xK−+1)

h(xK−+1)
≤ �(t)

h(t)
≤ �(xK−+1)

h(xK−+1)
for each t ∈ (0, xK−+1].

If {xk}k∈K+− satisfies these conditions, it is called a covering sequence (with respect to
h, �, a).

The family of all covering sequences with respect to h, �, a is denoted by
CS(h, �, a) (we omit any reference to the interval (0, L) in this notation because
it will always be apparent what the underlying interval is). We also denote

K = {k ∈ Z : K− + 1 ≤ k ≤ K+ − 1},
K+ = {k ∈ Z : K− + 1 ≤ k ≤ K+}.

The properties of {xk}k∈K+− imply that

(0, L) ⊆
⋃

k∈K+
(xk−1, xk] ⊆ (0, L], (2.5)

where the first inclusion is strict if and only if K+ = ∞.
Furthermore, if {xk}k∈K+− ∈ CS(h, �, a), then there is a decomposition

K+ = Z1 ∪ Z2 and Z1 ∩ Z2 = ∅ (2.6)
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such that

h(t) ≈ h(xk) for every t ∈ [xk−1, xk] and each k ∈ Z1, (2.7)

and

�(t)

h(t)
≈ �(xk)

h(xk)
for every t ∈ [xk−1, xk] and each k ∈ Z2, (2.8)

where the equivalence constants depend only on a. Moreover, if {xk}k∈K+− ∈
CS(h, �, a), then {xk}k∈K+− ∈ CS(

�
h , �, a), and {xk}k∈K+− ∈ CS(h p, �p, a p) for every

p ∈ (0,∞).

3 Discretization of generalized Lorentz norms

This section contains technical lemmas necessary for implementing discretization
to solve our main problem. The results below extend their counterparts in [7] by
eliminating the “non-degeneracy” assumptions in there. Namely, Lemmas 3.3, 3.4 and
3.5 below correspond, in this sense, to Lemmas 3.7, 3.6 and 3.8 in [7], respectively.

We start with an auxiliary result that is frequently used when one deals with weighted
inequalities.

Lemma 3.1 Let L ∈ (0,∞] and let v be a weight on (0, L). Let 0 ≤ a < b ≤ L. If
γ > −1, then

V γ+1(a, b) = (γ + 1)
∫ b

a

(∫ t

a
v(s) ds

)γ

v(t) dt .

Proof Assume that b < L . Since v is a weight on (0, L), the functionψ(t) = V (a, t),
t ∈ [a, b], is absolutely continuous on [a, b]. Hence the claim follows from the change
of variables y = ψ in the integral on the right-hand side (e.g., [10, page 156]).

If b = L , the claim follows from the part already proved and the monotone con-
vergence theorem. ��

The following theorem generalizes [7, Corollary 2.13] by allowing degenerated
weights (cf. [5, Lemma 4.1.1]).

Theorem 3.2 Let p ∈ (0,∞) and h ∈ Q�(0, L). Assume that there exist C1, C2 ∈
(0,∞), α, β ∈ [0,∞) and a nonnegative Borel measure ν on (0, L) such that

C1h(t) ≤ α + β�(t) +
∫

(0,L)

min{�(t), �(s)} dν(s) ≤ C2h(t) for every t ∈ (0, L).

(3.1)
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If a > 0 is sufficiently large, {xk}k∈K+− ∈ CS(h, �, a) and f ∈ Q�p (0, L), then

∑
k∈K+−

f (xk)h p(xk)

�p(xk)
≈ α p lim

t→0+
f (t)

�p(t)
+ β p lim

t→L− f (t)

+
∫

(0,L)

f (t)�1−p(t)

(∫
(0,L)

min{�(t), �(s)} dν(s)

)p−1

dν(t). (3.2)

Precisely, it is sufficient if the parameter a satisfies

a p > 12 · 3
p+max{1,p}C p

2

min{1, p}C p
1

.

Moreover, the equivalence constants in (3.2) depend only on p, a,C1,C2.

Proof Without loss of generality, we may assume that h ≡ 0 and f ≡ 0. Since h and
f are in Q�(0, L) and Q�p (0, L), respectively, we have h = 0 and f = 0 on (0, L).
It can be easily shown that the limit terms on the left-hand side of (3.2) are well

defined if they are to appear (recall Convention 2.1(i)). This follows from the fact that
h ∈ Q�(0, L) and from the properties of {xk}k∈K+− (cf. [5, the proof of Lemma 4.1.1]).
Furthermore, the limit terms on the right-hand side of (3.2) are always well defined
thanks to f ∈ Q�p (0, L) and Convention 2.1(ii).

In order to simplify the notation, we set

ψ(t) = �1−p(t)

(∫
(0,L)

min{�(t), �(s)} dν(s)

)p−1

, t ∈ (0, L).

We begin the proof of (3.2) by showing that

∑
k∈K+−

f (xk)h p(xk)

�p(xk)
� α p lim

t→0+
f (t)

�p(t)
+ β p lim

t→L− f (t) +
∫

(0,L)

f (t)ψ(t) dν(t).

(3.3)

We first check that

α p lim
t→0+

f (t)

�p(t)
+ β p lim

t→L− f (t) �
∑
k∈K+−

f (xk)h p(xk)

�p(xk)
.

If α = β = 0, the inequality holds trivially. Assume that α > 0. We have
limt→0+ h(t) � α > 0 thanks to (3.1), and thus K− > −∞ by (2.3). Furthermore,
we have

α p lim
t→0+

f (t)

�p(t)
�
(

lim
t→0+ h p(t)

)(
lim
t→0+

f (t)

�p(t)

)
= lim

t→0+
f (t)h p(t)

�p(t)
=
(

f h p

�p

)
(xK−)
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≤
∑
k∈K+−

f (xk)h p(xk)

�p(xk)
.

Note that the first equality is indeed valid because both limits are positive. One can
similarly prove that β p limt→L− f (t) �

∑
k∈K+−

f (xk )h p(xk)
�p(xk )

owing to (2.2).
Hence, in order to prove (3.3) it remains to show

∫
(0,L)

f (t)ψ(t) dν(t) �
∑
k∈K+−

f (xk)h p(xk)

�p(xk)
. (3.4)

We have

C̃1h
p(t) ≤ α p + β p�p(t) +

∫
(0,L)

min{�p(t), �p(s)}ψ(s) dν(s)

≤ C̃2h
p(t) for every t ∈ (0, L), (3.5)

where C̃1 = C p
1

3p+max{p,1} and C̃2 = 6C p
2

min{1,p} , owing to [5, Theorem 2.4.3 and its proof].

Let K+ = Z1 ∪ Z2 be a decomposition of K+ from (2.6). Denote by ν̃ the extension
of ν to (0, L] by zero. Using (2.7), the fact that f ∈ Q�p (0, L), and (3.5), one has

∑
k∈Z1

∫
(xk−1,xk ]

f (t)ψ(t) d̃ν(t) =
∑
k∈Z1

∫
(xk−1,xk ]

f (t)

�p(t)
�p(t)ψ(t) d̃ν(t)

≤
∑
k∈Z1

f (xk−1)

�p(xk−1)

∫
(xk−1,xk ]

min{�p(xk), �
p(t)}ψ(t) d̃ν(t)

�
∑
k∈Z1

f (xk−1)

�p(xk−1)
h p(xk) ≈

∑
k∈Z1

f (xk−1)

�p(xk−1)
h p(xk−1)

≤
∑
k∈K+−

f (xk)h p(xk)

�p(xk)
.

Here and below, if xk−1 = 0 or xk = L , the corresponding terms are to be understood
as the corresponding limits. Hence

∑
k∈Z1

∫
(xk−1,xk ]

f (t)ψ(t) d̃ν(t) �
∑
k∈K+−

f (xk)h p(xk)

�p(xk)
. (3.6)

Furthermore, by (2.8), by the fact that h p ∈ Q�p (0, L), by the fact that f is nonde-
creasing, and by (3.5),

∑
k∈Z2

∫
(xk−1,xk ]

f (t)ψ(t) d̃ν(t) ≤
∑
k∈Z2

f (xk)
�p(xk−1)

�p(xk−1)

∫
(xk−1,xk ]

ψ(t) d̃ν(t)
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=
∑
k∈Z2

f (xk)
1

�p(xk−1)

∫
(xk−1,xk ]

min{�p(xk−1), �
p(t)}ψ(t) d̃ν(t)

�
∑
k∈Z2

f (xk)
h p(xk−1)

�p(xk−1)
≈

∑
k∈Z2

f (xk)
h p(xk)

�p(xk)
≤

∑
k∈K+−

f (xk)h p(xk)

�p(xk)
.

Hence

∑
k∈Z2

∫
(xk−1,xk ]

f (t)ψ(t) d̃ν(t) �
∑
k∈K+−

f (xk)h p(xk)

�p(xk)
. (3.7)

Desired inequality (3.4) now follows from (3.6), (3.7) and (2.5).
Our next goal is to prove the estimate

∑
k∈K+−

f (xk)h p(xk)

�p(xk)
� α p lim

t→0+
f (t)

�p(t)
+ β p lim

t→L− f (t) +
∫

(0,L)

f (t)ψ(t) dν(t).

(3.8)

We start by showing that

∫
(0,L)

f (t)ψ(t) dν(t) �
K+−2∑

k=K−+2

f (xk)h p(xk)

�p(xk)
. (3.9)

By (2.4), we have

h p(xk−1) ≤ 1

a p
h p(xk) for every k ∈ Z, K− + 2 ≤ k ≤ K+ − 1

and

�(xk)p

�(xk+1)p
h p(xk+1) ≤ 1

a p
h p(xk) for every k ∈ Z, K− + 1 ≤ k ≤ K+ − 2.

By combining these two inequalities we obtain

C̃1h
p(xk) − C̃2h

p(xk−1) − C̃2
�p(xk)

�p(xk+1)
h p(xk+1) ≥

(
C̃1 − 2C̃2

a p

)
h p(xk)

(3.10)
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for every k ∈ Z, K− + 2 ≤ k ≤ K+ − 2. Since f ∈ Q�p (0, L) and (2.5), we have
that

2
∫

(0,L)

f (t)ψ(t) dν(t) ≥
K+−2∑

k=K−+2

∫
(xk−1,xk+1]

f (t)ψ(t) dν(t)

≥
K+−2∑

k=K−+2

(
f (xk)

�p(xk)

∫
(xk−1,xk ]

�p(t)ψ(t) dν(t)

+ f (xk)

�p(xk)

∫
(xk ,xk+1]

�p(xk)ψ(t) dν(t)

)

=
K+−2∑

k=K−+2

f (xk)

�p(xk)

(∫
(xk−1,xk+1]

min{�p(xk), �
p(t)}ψ(t) dν(t)

)
.

(3.11)

Using (3.5) and (3.10), we have

∫
(xk−1,xk+1]

min{�p(xk), �
p(t)}ψ(t) dν(t)

= α p + β p�p(xk) +
∫

(0,L)

min{�p(xk), �
p(t)}ψ(t) dν(t)

−
(

α p +
∫

(0,xk−1]
min{�p(xk−1), �

p(t)}ψ(t) dν(t)

)

− �p(xk)

�p(xk+1)

(
β p�p(xk+1) +

∫
(xk+1,L)

min{�p(xk+1), �
p(t)}ψ(t) dν(t)

)

≥ C̃1h
p(xk) − C̃2h

p(xk−1) − �p(xk)

�p(xk+1)
C̃2h

p(xk+1) ≥
(
C̃1 − 2C̃2

a p

)
h p(xk)

for each k ∈ Z, K− + 2 ≤ k ≤ K+ − 2. Note that choosing a sufficiently large

parameter a assures that C̃1 − 2C̃2
a p > 0. Hence inequality (3.9) follows from the last

chain of inequalities and (3.11).
If K− = −∞ and K+ = ∞ (and so K− +2 = K− and K+ −2 = K+), inequality

(3.9) clearly implies inequality (3.8). Thus, the proof is finished when K− = −∞
and K+ = ∞. Now suppose that K− > −∞ or K+ < ∞. Since f ∈ Q�p (0, L), we
have

∫
(0,L)

f (t)ψ(t) dν(t) =
∫

(0,x]
f (t)ψ(t) dν(t) +

∫
(x,L)

f (t)ψ(t) dν(t)

≥ f (x)

�p(x)

∫
(0,x]

min{�p(x), �p(t)}ψ(t) dν(t)

+ f (x)

�p(x)

∫
(x,L)

min{�p(x), �p(t)}ψ(t) dν(t)

= f (x)

�p(x)

∫
(0,L)

min{�p(x), �p(t)}ψ(t) dν(t)
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for every x ∈ (0, L), whence

α p lim
t→0+

f (t)

�p(t)
+ β p lim

t→L− f (t) +
∫

(0,L)

f (t)ψ(t) dν(t)

≥ f (x)

�p(x)

(
α p + β p�p(x) +

∫
(0,L)

min{�p(x), �p(t)}ψ(t) dν(t)

)

≈ f (x)h p(x)

�p(x)
.

(3.12)

Assume, for example, K− > −∞ and K+ = ∞ (and so K+ − 2 = K+ and β = 0),
(3.12) together with (3.9) implies that

α p lim
t→0+

f (t)

�p(t)
+
∫

(0,L)

f (t)ψ(t) dν(t) � lim
t→0+

f (t)h p(t)

�p(t)
+ f (xK−+1)h p(xK−+1)

�p(xK−+1)

+
K+−2∑

k=K−+2

f (xk)h p(xk)

�p(xk)

=
∑
k∈K+−

f (xk)h p(xk)

�p(xk)
.

The other two cases can be handled similarly. ��
Lemma 3.3 Let p ∈ (0,∞) and h ∈ Q�(0, L). Assume that there exist C1, C2 ∈
(0,∞), α, β ∈ [0,∞) and a nonnegative Borel measure ν on (0, L) such that (3.1)
holds. Let a > 108C2

C1
and {xk}k∈K+− ∈ CS(h, �, a). Then for every f ∈ M+(0, L)

we have

∑
k∈K+

(
ess sup

t∈(xk−1,xk ]
h

1
p (t)

�
1
p (t)

f (t)

)p

≈
∑
k∈K+−

h(xk)

(
ess sup
t∈(0,L)

f (t)

�
1
p (xk) + �

1
p (t)

)p

≈ α

(
ess sup
t∈(0,L)

f (t)

�
1
p (t)

)p

+ β

(
ess sup
t∈(0,L)

f (t)

)p

+
∫

(0,L)

(
ess sup
τ∈(0,L)

�
1
p (t) f (τ )

�
1
p (t) + �

1
p (τ )

)p

dν(t).

(3.13)

Moreover, the equivalence constants in (3.13) depend only on p, a,C1,C2.

Proof We may clearly assume that h ≡ 0 on (0, L) (recall Convention 2.1(iii)), and

so h = 0 on (0, L). Note that h
1
p ∈ Q

�
1
p
(0, L) and {xk}k∈K+− ∈ CS(h

1
p , �

1
p , a

1
p ).

The first equivalence follows from [5, Theorem 4.2.7 and Remark 4.2.8].
As for the second equivalence, observe that the function t 	→(
ess supτ∈(0,L)

�
1
p (t) f (τ )

�
1
p (t)+�

1
p (τ )

)p

is in Q�(0, L) (we may assume that f is finite a.e. in
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(0, L), otherwise (3.13) holds plainly). Consider Theorem 3.2 with the setting p̃ = 1,

f̃ (t) =
(
ess sup
τ∈(0,L)

�
1
p (t) f (τ )

�
1
p (t)+�

1
p (τ )

)p

, and �̃ = �, where the symbols with tildes corre-

spond to those from the statement of the theorem. It implies

∑
k∈K+−

h(xk)

(
ess sup
t∈(0,L)

f (t)

�
1
p (xk) + �

1
p (t)

)p

≈ α lim
t→0+

(
ess sup
τ∈(0,L)

f (τ )

�
1
p (t) + �

1
p (τ )

)p

+ β lim
t→L−

(
ess sup
τ∈(0,L)

�
1
p (t) f (τ )

�
1
p (t) + �

1
p (τ )

)p

+
∫

(0,L)

(
ess sup
τ∈(0,L)

�
1
p (t) f (τ )

�
1
p (t) + �

1
p (τ )

)p

dν(t),

which is the second equivalence in (3.13) upon observing that

lim
t→0+

(
ess sup
τ∈(0,L)

f (τ )

�
1
p (t) + �

1
p (τ )

)p

≈
(
ess sup
τ∈(0,L)

f (τ )

�
1
p (τ )

)p

and

lim
t→L−

(
ess sup
τ∈(0,L)

�
1
p (t) f (τ )

�
1
p (t) + �

1
p (τ )

)p

≈
(
ess sup
τ∈(0,L)

f (τ )

)p

.

��
Lemma 3.4 Let p ∈ (0,∞) and h ∈ Q�(0, L). Assume that there exist C1, C2 ∈
(0,∞), α, β ∈ [0,∞) and a nonnegative Borel measure ν on (0, L) such that (3.1)
holds. Let a > 108C2

C1
and {xk}k∈K+− ∈ CS(h, �, a). Then for every f ∈ M+(0, L)

we have

∑
k∈K+

(∫ xk

xk−1

h
1
p (t)

�
1
p (t)

f (t) dt

)p

≈
∑
k∈K+−

h(xk)

(∫ L

0

f (t)

�
1
p (xk) + �

1
p (t)

dt

)p

≈ α

(∫ L

0

f (t)

�
1
p (t)

dt

)p

+ β

(∫ L

0
f (t) dt

)p

+
∫

(0,L)

(∫ L

0

�
1
p (t) f (s)

�
1
p (t) + �

1
p (s)

ds

)p

dν(t).

(3.14)

Moreover, the equivalence constants in (3.14) depend only on p, a,C1,C2.
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Proof We omit the proof because it is similar to the proof of Lemma 3.3. We just note
that the first equivalence in (3.14) follows from [5, Theorem 4.2.5 and Remark 4.2.6].

��
Lemma 3.5 Let p ∈ (0,∞), ϕ ∈ Q�(0, L) and {xk}k∈K+− ∈ CS(ϕ, �, a) with a > 1.
For every f ∈ M+(0, L) we have

sup
t∈(0,L)

ϕ(t)

(∫ L

0

f (s)

�
1
p (t) + �

1
p (s)

ds

)p

≈ sup
k∈K+−

ϕ(xk)

(∫ L

0

f (s)

�
1
p (xk) + �

1
p (s)

ds

)p

≈ sup
k∈K+

(∫ xk

xk−1

f (s)
ϕ

1
p (s)

�
1
p (s)

ds

)p

.

(3.15)

Moreover, the equivalence constants depend only on p and a.

Proof We may clearly assume that ϕ ≡ 0 on (0, L), and so ϕ = 0 on (0, L). The
second equivalence in (3.15) follows from [5, Theorem 4.2.5 and Remark 4.2.6] (note

that ϕ
1
p ∈ Q

�
1
p
(0, L) and {xk}k∈K+− ∈ CS(ϕ

1
p , �

1
p , a

1
p )) upon observing that

sup
k∈K+−

ϕ(xk)

(∫ L

0

f (s)

�
1
p (xk) + �

1
p (s)

ds

)p

=
⎛
⎝ sup

k∈K+−
ϕ

1
p (xk)

∫ L

0

f (s)

�
1
p (xk) + �

1
p (s)

ds

⎞
⎠

p

≈
⎛
⎝ sup

k∈K+−

ϕ
1
p (xk)

�
1
p (xk)

∫ L

0
min{� 1

p (xk), �
1
p (s)} dν(s)

⎞
⎠

p

,

where dν(s) = f (s)�− 1
p (s) ds.

We shall prove the first equivalence in (3.15). Using (2.7) and (2.8), we have

sup
t∈(0,L)

ϕ(t)

(∫ L

0

f (s)

�
1
p (t) + �

1
p (s)

ds

)p

= sup
k∈K+

sup
t∈(xk−1,xk ]

ϕ(t)

(∫ L

0

f (s)

�
1
p (t) + �

1
p (s)

ds

)p

≈ sup
k∈Z1

sup
t∈(xk−1,xk ]

ϕ(t)

(∫ L

0

f (s)

�
1
p (t) + �

1
p (s)

ds

)p

+ sup
k∈Z2

sup
t∈(xk−1,xk ]

ϕ(t)

(∫ L

0

f (s)

�
1
p (t) + �

1
p (s)

ds

)p

≈ sup
k∈Z1

ϕ(xk−1) sup
t∈(xk−1,xk ]

(∫ L

0

f (s)

�
1
p (t) + �

1
p (s)

ds

)p

+ sup
k∈Z2

ϕ(xk)

�(xk)
sup

t∈(xk−1,xk ]

(∫ L

0

�
1
p (t) f (s)

�
1
p (t) + �

1
p (s)

ds

)p

= sup
k∈Z1

ϕ(xk−1)

(∫ L

0

f (s)

�
1
p (xk−1) + �

1
p (s)

ds

)p

+ sup
k∈Z2

ϕ(xk)

(∫ L

0

f (s)

�
1
p (xk) + �

1
p (s)

ds

)p

,

(3.16)
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where K+ = Z1 ∪ Z2 is a decomposition of K+ from (2.6). Note that the second
equivalence in (3.16) is valid even when K− + 1 ∈ Z1 or K+ ∈ Z2. Indeed, if
K−+1 ∈ Z1 (and so K− > −∞), we have ϕ(xK−) = limt→0+ ϕ(t) ≈ ϕ(xK−+1) > 0
thanks to (2.7). Hence,

sup
t∈(0,xK−+1]

ϕ(t)

(∫ L

0

f (s)

�
1
p (t) + �

1
p (s)

ds

)p

≈
(

lim
t→0+ ϕ(t)

)(
sup

t∈(0,xK−+1]

(∫ L

0

f (s)

�
1
p (t) + �

1
p (s)

ds

)p)

= ϕ(xK−)

(
sup

t∈(0,xK−+1]

(∫ L

0

f (s)

�
1
p (t) + �

1
p (s)

ds

)p)
.

Analogously, one may show that, if K+ ∈ Z2, then

sup
t∈(xK+−1,L)

ϕ(t)

(∫ L

0

f (s)

�
1
p (t) + �

1
p (s)

ds

)p

≈ ϕ(xK+ ) sup
t∈(xK+−1,L)

(∫ L

0

f (s)

�
1
p (t) + �

1
p (s)

ds

)p

.

Next, one clearly has

sup
k∈Z1

ϕ(xk−1)

(∫ L

0

f (s)

�
1
p (xk−1) + �

1
p (s)

ds

)p

+ sup
k∈Z2

ϕ(xk)

(∫ L

0

f (s)

�
1
p (xk) + �

1
p (s)

ds

)p

� sup
k∈K+−

ϕ(xk)

(∫ L

0

f (s)

�
1
p (xk) + �

1
p (s)

ds

)p

. (3.17)

For any k ∈ Z1 we have

ϕ(xk)

(∫ L

0

f (s)

�
1
p (xk) + �

1
p (s)

ds

)p

≈ ϕ(xk−1)

(∫ L

0

f (s)

�
1
p (xk) + �

1
p (s)

ds

)p

≤ ϕ(xk−1)

(∫ L

0

f (s)

�
1
p (xk−1) + �

1
p (s)

ds

)p

.

Hence,

sup
k∈K+

ϕ(xk)

(∫ L

0

f (s)

�
1
p (xk) + �

1
p (s)

ds

)p

� sup
k∈Z1

ϕ(xk−1)

(∫ L

0

f (s)

�
1
p (xk−1) + �

1
p (s)

ds

)p

+ sup
k∈Z2

ϕ(xk)

(∫ L

0

f (s)

�
1
p (xk) + �

1
p (s)

ds

)p

.

(3.18)

If K− = −∞ (and so K+− = K+), we obtain
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sup
k∈Z1

ϕ(xk−1)

⎛
⎝∫ L

0

f (s)

�
1
p (xk−1) + �

1
p (s)

ds

⎞
⎠

p

+ sup
k∈Z2

ϕ(xk )

⎛
⎝∫ L

0

f (s)

�
1
p (xk ) + �

1
p (s)

ds

⎞
⎠

p

≈ sup
k∈K+−

ϕ(xk )

⎛
⎝∫ L

0

f (s)

�
1
p (xk ) + �

1
p (s)

ds

⎞
⎠

p

(3.19)

by combining (3.17) with (3.18).

Now suppose that K− > −∞. If K− + 1 ∈ Z2, then limt→0+ ϕ(t)
�(t) ≈ ϕ(xK−+1)

�(xK−+1)
∈

(0,∞) thanks to (2.8), and so

lim
t→0+ ϕ(t)

(∫ L

0

f (s)

�
1
p (t) + �

1
p (s)

ds

)p

≤
(

lim
t→0+

ϕ(t)

�(t)

)⎛
⎝ sup

t∈(0,xK−+1]

(∫ L

0

�
1
p (t) f (s)

�
1
p (t) + �

1
p (s)

ds

)p⎞
⎠

≈ ϕ(xK−+1)

�(xK−+1)

(∫ L

0

�
1
p (xK−+1) f (s)

�
1
p (xK−+1) + �

1
p (s)

ds

)p

≤ sup
k∈Z2

ϕ(xk)

(∫ L

0

f (s)

�
1
p (xk) + �

1
p (s)

ds

)p

.

If K− + 1 ∈ Z1, we plainly have

lim
t→0+ ϕ(t)

(∫ L

0

f (s)

�
1
p (t) + �

1
p (s)

ds

)p

≤ sup
k∈Z1

ϕ(xk−1)

(∫ L

0

f (s)

�
1
p (xk−1) + �

1
p (s)

ds

)p

.

Hence, whether K− + 1 ∈ Z1 or K− + 1 ∈ Z2, we obtain

lim
t→0+ ϕ(t)

(∫ L

0

f (s)

�
1
p (t) + �

1
p (s)

ds

)p

� sup
k∈Z1

ϕ(xk−1)

(∫ L

0

f (s)

�
1
p (xk−1) + �

1
p (s)

ds

)p

+ sup
k∈Z2

ϕ(xk)

(∫ L

0

f (s)

�
1
p (xk) + �

1
p (s)

ds

)p

.

Therefore, combining the last inequality with (3.17) and (3.18), we obtain equivalence
(3.19) even when K− > −∞.

Finally, the first equivalence in (3.15) follows by combining (3.16) with (3.19). ��
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4 Main results

We are finally ready to present our main results. The first one is the desired character-
ization of (1.1) when all the involved exponents are finite.

Theorem 4.1 Let p, q ∈ (0,∞). Let v,w be weights on (0, L) and u an a.e. positive
weight on (0, L). Set

C = sup
‖ f ‖

�
p
u (v)

≤1
‖ f ‖�q (w).

(i) If 1 ≤ q and p ≤ q < ∞, then C ≈ A1, where

A1 = sup
0<t<L

W
1
q (t)(

V (t) +U p(t)
∫ L
t v(s)U−p(s) ds

) 1
p

.

(ii) If 1 ≤ q < p < ∞, then C ≈ A2, where

A2 =
⎛
⎜⎝
∫ L

0

V (t)
∫ L
t v(s)U−p(s) ds U

pq
p−q +p−1

(t)u(t) supτ∈[t,L) U
− pq

p−q (τ )W
p

p−q (τ )(
V (t) +U p(t)

∫ L
t v(s)U−p(s) ds

) q
p−q +2

dt

⎞
⎟⎠

p−q
pq

+
(

lim
t→0+

U p(t)

V (t) +U p(t)
∫ L
t v(s)U−p(s) ds

) 1
p
(

sup
t∈(0,L)

W (t)

Uq (t)

) 1
q

+
(

lim
t→L−

1

V (t) +U p(t)
∫ L
t v(s)U−p(s) ds

) 1
p

W
1
q (L).

(iii) If p ≤ q < 1, then C ≈ A3, where

A3 = sup
0<t<L

W
1
q (t) +U (t)

(∫ L
t W

q
1−q (s)w(s)U− q

1−q (s) ds
) 1−q

q

(
V (t) +U p(t)

∫ L
t v(s)U−p(s) ds

) 1
p

.

(iv) If q < 1 and q < p < ∞, then C ≈ A4, where

A4 =
(

lim
t→0+

U p(t)

V (t) +U p(t)
∫ L
t v(s)U−p(s) ds

) 1
p (∫ L

0
W

q
1−q (t)w(t)U− q

1−q (t) dt

) 1−q
q

+
(

lim
t→L−

1

V (t) +U p(t)
∫ L
t v(s)U−p(s) ds

) 1
p (∫ L

0
W

q
1−q (t)w(t) dt

) 1−q
q

+

⎛
⎜⎜⎝
∫ L

0

(
W

1
1−q (t) +U

q
1−q (t)

∫ L
t W

q
1−q (s)w(s)U− q

1−q (s) ds
) p(1−q)

p−q

(
V (t) +U p(t)

∫ L
t v(s)U−p(s) ds

) q
p−q +2

× V (t)U p−1(t)u(t)
∫ L

t
v(s)U−p(s) ds dt

) p−q
pq

.
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632 M. Křepela et al.

The equivalence constants depend only on the parameters p and q. In particular, they
are independent of the weights u, v and w.

Proof First of all, note thatU is admissible. Furthermore, as a prelude to the proof, let
us make the following observation. Suppose that there exists a t0 ∈ (0, L) such that∫ L
t0

v(s)U−p(s) ds = ∞. Then the same holds, in fact, for all t ∈ (0, L) (if t > t0,

consider that v is locally integrable andU is admissible; thus
∫ L
t v(s)U−p(s) ds = ∞

must hold aswell). It follows that� p
u (v) = {0},where “0” is the zero-constant function.

Therefore, C = 0 and, by Convention 2.1 (ii), the quantities A1–A4 are also equal to
zero; hence the theorem holds trivially. Thanks to this observation, we may and will
assume in the proof that

∫ L

t

v(s)

U p(s)
ds < ∞ for every t ∈ (0, L). (4.1)

If p > q, set r = pq
p−q . For each f ∈ Mμ(X) there exists a sequence {hn}n∈N

of functions from M+(0, L) such that
∫ L
t hn(s) ds ↗ f ∗(t) for a.e. t ∈ (0, L)

as n → ∞. The proof of this statement is analogous to that of [12, Lemma 1.2].
Furthermore, for any t ∈ (0, L) and every h ∈ M+(0, L), we have

1

U (t)

∫ t

0
u(y)

∫ L

y
h(s) ds dy ≤ 2

∫ L

0

U (s)h(s)

U (s) +U (t)
ds ≤ 2

U (t)

∫ t

0
u(y)

∫ L

y
h(s) ds dy.

Hence, by the monotone convergence theorem, we get (Convention 2.1 (ii) is in use
here)

C ≈ sup
h∈M+(0,L)

(∫ L
0

(∫ L
t h(s) ds

)q
w(t) dt

) 1
q

(∫ L
0

(∫ L
0

U (s)h(s)
U (s)+U (t) ds

)p
v(t) dt

) 1
p

. (4.2)

Define

ϕ(t) =
∫ L

0
min{U (t)p,U (s)p} v(s)

U (s)p
ds, t ∈ (0, L).

Note that ϕ ∈ QU p (0, L) (in particular, ϕ is finite on (0, L) by assumption (4.1)).
Therefore, for everya > 1 there exists a covering sequence {xk}k∈K+− ∈ CS(ϕ,U p, a).
We fix a > 1 sufficiently large so that the lemmas and theorems that we are to use
below may be applied. An appropriate value of a may be determined by inspecting
the further course of the proof in each of the cases (i)–(iv). In any of them, however,
the sufficient size of the parameter a depends only on p and q.
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By Lemma 3.4 with p̃ = p, h̃ = ϕ, �̃ = U p, f̃ = Uh, α̃ = β̃ = 0, and
d̃ν(t) = v

U p(t) dt (the parameters with tildes are those from the lemma) we have

∫ L

0

(∫ L

0

U (s)h(s)

U (s) +U (t)
ds

)p

v(t) dt ≈
∑
k∈K+−

ϕ(xk)

(∫ L

0

U (t)h(t)

U (xk) +U (t)
dt

)p

≈
∑
k∈K+

(∫ xk

xk−1

ϕ
1
p (t)h(t) dt

)p

(4.3)

for each h ∈ M+(0, L). The equivalence constants depend only on p. Clearly,

∫ L

0

(∫ L

t
h(s) ds

)q

w(t) dt =
∑
k∈K+

∫ xk

xk−1

(∫ L

t
h(s) ds

)q

w(t) dt

≈
∑
k∈K+

∫ xk

xk−1

(∫ xk

t
h(s) ds

)q

w(t) dt +
∑
k∈K

(∫ L

xk
h(s) ds

)q ∫ xk

xk−1

w(t) dt

(4.4)

for each h ∈ M+(0, L), and the equivalence constants depend only on q.

Upper bounds. In this part, we shall prove the upper bounds on C . This is equivalent
to proving that the upper bounds are upper bounds on the supremum on the right-hand
side of (4.2). As for cases (i) and (ii), assume that 1 ≤ q < ∞. For every k ∈ K+, the
weighted Hardy inequality (e.g., [9] and references therein) yields

∫ xk

xk−1

(∫ xk

t
h(s) ds

)q

w(t) dt

�
(∫ xk

xk−1

ϕ
1
p (t)h(t) dt

)q

sup
t∈(xk−1,xk ]

ϕ
− q

p (t)
∫ t

xk−1

w(s) ds. (4.5)

Case (i). Assume that 1 ≤ q, p ≤ q and A1 < ∞. Then

∑
k∈K+

∫ xk

xk−1

(∫ xk

t
h(s) ds

)q

w(t) dt �
(

sup
t∈(0,L)

ϕ
− q

p (t)W (t)

) ∑
k∈K+

(∫ xk

xk−1

ϕ
1
p (t)h(t) dt

)q

≤ Aq
1

⎛
⎝ ∑

k∈K+

(∫ xk

xk−1

ϕ
1
p (t)h(t) dt

)p
⎞
⎠

q
p

≈ Aq
1

(∫ L

0

(∫ L

0

U (s)h(s)

U (s) +U (t)
ds

)p

v(t) dt

) q
p

. (4.6)

The first inequality in (4.6) follows from (4.5), the second inequality is valid since
p ≤ q, and the equivalence is valid thanks to (4.3). Furthermore, using p ≤ q, we get
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∑
k∈K

(∫ L

xk
h(s) ds

)q ∫ xk

xk−1

w(t) dt ≤
∑
k∈K

(∫ L

xk
h(s) ds

)q

ϕ
q
p (xk)ϕ

− q
p (xk)W (xk)

≤ sup
k∈K

(
ϕ

− q
p (xk)W (xk)

)(∑
k∈K

(∫ L

xk
h(s) ds

)p

ϕ(xk)

) q
p

� Aq
1

(∑
k∈K

(∫ L

xk

U (s)h(s)

U (xk) +U (s)
ds

)p

ϕ(xk)

) q
p

� Aq
1

(∫ L

0

(∫ L

0

U (s)h(s)

U (s) +U (t)
ds

)p

v(t) dt

) q
p

, (4.7)

where the last inequality follows from (4.3). Note that (4.7) is actually valid for any
q ∈ (0,∞) such that p ≤ q. By combining (4.4), (4.6), (4.7), and considering (4.2),
we obtain the estimate C � A1 in case (i).

Case (ii). Assume that 1 ≤ q < p < ∞ and A2 < ∞. Owing to the Hölder
inequality with exponents p

q and p
p−q , we obtain

∑
k∈K+

(∫ xk

xk−1

ϕ
1
p (t)h(t) dt

)q

sup
t∈(xk−1,xk ]

ϕ
− q

p (t)
∫ t

xk−1

w(s) ds

≤
⎛
⎝ ∑

k∈K+

(∫ xk

xk−1

ϕ
1
p (t)h(t) dt

)p
⎞
⎠

q
p
⎛
⎝ ∑

k∈K+
sup

t∈(xk−1,xk ]
ϕ

− r
p (t)

(∫ t

xk−1

w(s) ds

) r
q

⎞
⎠

p−q
p

≤
⎛
⎝ ∑

k∈K+

(∫ xk

xk−1

ϕ
1
p (t)h(t) dt

)p
⎞
⎠

q
p
⎛
⎝ ∑

k∈K+
sup

t∈(xk−1,xk ]

(
U p(t)

ϕ(t)

) r
p

U−r (t)W (t)
r
q

⎞
⎠

p−q
p

. (4.8)

By [5, Theorem 2.4.4], the equivalence

(
U p(t)

ϕ(t)

) r
p ≈

(
lim
s→0+

U p(s)

ϕ(s)

) r
p +

(
lim

s→L−
1

ϕ(s)

) r
p

Ur (t)

+
∫ L

0
min{Ur (t),Ur (s)}U

p−1(s)u(s)V (s)

ϕ
r
p +2

(s)

∫ L

s

v(τ)

U p(τ )
dτ ds

(4.9)

is valid for every t ∈ (0, L), and the equivalence constants depend only on p and q.
Note that (4.9) is actually valid for any q ∈ (0,∞) such that q < p. Lemma 3.3 with

the setting h̃ =
(
U p

ϕ

) r
p
, �̃ = Ur , p̃ = 1, f̃ = W

r
q , together with (4.9) gives

∑
k∈K+

sup
t∈(xk−1,xk ]

(
U p(t)

ϕ(t)

) r
p

U−r (t)W (t)
r
q ≈ Ar

2. (4.10)
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By using (4.8), (4.10) and (4.3) we obtain

∑
k∈K+

(∫ xk

xk−1

ϕ
1
p (t)h(t) dt

)q

sup
t∈(xk−1,xk ]

ϕ
− q

p (t)
∫ t

xk−1

w(s) ds

� Aq
2

(∫ L

0

(∫ L

0

U (s)h(s)

U (s) +U (t)
ds

)p

v(t) dt

) q
p

. (4.11)

Next, one has

∑
k∈K

(∫ L

xk
h(s) ds

)q ∫ xk

xk−1

w(t) dt

≤
∑
k∈K

(∫ L

xk
h(s) ds

)q

ϕ
q
p (xk)ϕ

− q
p (xk)W (xk)

≤
(∑
k∈K

(∫ L

xk
h(s) ds

)p

ϕ(xk)

) q
p
(∑
k∈K

ϕ
− r

p (xk)W
r
q (xk)

) q
r

=

⎛
⎜⎜⎝
∑
k∈K

⎛
⎜⎜⎝

∑
l∈Z

k≤l≤K+−1

∫ xl+1

xl
h(s) ds

⎞
⎟⎟⎠

p

ϕ(xk)

⎞
⎟⎟⎠

q
p (∑

k∈K
ϕ

− r
p (xk)W

r
q (xk)

) q
r

≈
(∑
k∈K

(∫ xk+1

xk
h(s) ds

)p

ϕ(xk)

) q
p
(∑
k∈K

ϕ
− r

p (xk)W
r
q (xk)

) q
r

≤
(∑
k∈K

(∫ xk+1

xk
ϕ

1
p (s)h(s) ds

)p
) q

p
(∑
k∈K

ϕ
− r

p (xk)W
r
q (xk)

) q
r

�
(∫ L

0

(∫ L

0

U (s)h(s)

U (s) +U (t)
ds

)p

v(t) dt

) q
p
(∑
k∈K

ϕ
− r

p (xk)W
r
q (xk)

) q
r

. (4.12)

Here, theHölder inequalitywas applied in the second step, the fourth step relies on (2.4)
and [5, Lemma 1.3.5], and the last step follows from (4.3). Note that (4.12) is actually
valid for all 0 < q < p < ∞, although we are currently assuming 1 ≤ q < p < ∞.
Since

W (xk) ≤ Uq(xk) sup
t∈(xk ,L)

U−q(t)W (t)
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holds for each k ∈ K, by (4.11) and (4.12) we get

∑
k∈K

(∫ L

xk
h(s) ds

)q ∫ xk

xk−1

w(t) dt � Aq
2

(∫ L

0

(∫ L

0

U (s)h(s)

U (s) +U (t)
ds

)p

v(t) dt

) q
p

.

(4.13)

Using (4.4), (4.5), (4.11), (4.13) and considering (4.2), we obtain the estimateC � A2
in case (ii).

As for cases (iii) and (iv), assume that 0 < q < 1. One can easily modify [13,
Theorem 3.3] to obtain

∫ xk

xk−1

(∫ xk

t
h(s) ds

)q

w(t) dt

�
(∫ xk

xk−1

h(t)ϕ
1
p (t) dt

)q
(∫ xk

xk−1

(∫ t

xk
w(s) ds

) q
1−q

w(t)ϕ− q
p(1−q) (t) dt

)1−q

≤
(∫ xk

xk−1

h(t)ϕ
1
p (t) dt

)q (∫ xk

xk−1

W
q

1−q (t)w(t)ϕ− q
p(1−q) (t) dt

)1−q

(4.14)

for every k ∈ K+, where the constant in “�” depends only on q. By Lemma 3.5 with

the setting ϕ̃ = Uqϕ
− q

p , f̃ = W
q

1−q w, p̃ = 1 − q, �̃ = Uq , and by Lemma 3.1 one
has

sup
k∈K+

(∫ xk

xk−1

W
q

1−q (t)w(t)ϕ− q
p(1−q) (t) dt

)1−q

≈ sup
t∈(0,L)

(∫ L
0 W

q
1−q (s)w(s)min

{
1,
(
U (t)
U (s)

) q
1−q

}
ds

)1−q

ϕ
q
p (t)

≈ Aq
3 . (4.15)

Case (iii). Assume that 0 < p ≤ q < 1 and A3 < ∞. Thanks to (4.3), (4.14) and
(4.15), we have

∑
k∈K+

∫ xk

xk−1

(∫ xk

t
h(s) ds

)q

w(t) dt

�

⎛
⎝ ∑

k∈K+

(∫ xk

xk−1

h(t)ϕ
1
p (t) dt

)q
⎞
⎠
(

sup
k∈K+

(∫ xk

xk−1

W
q

1−q (t)w(t)ϕ− q
p(1−q) (t) dt

)1−q
)

� Aq
3

(∫ L

0

(∫ L

0

U (s)h(s)

U (s) +U (t)
ds

)p

v(t) dt

) q
p

. (4.16)
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Since A1 ≤ A3, it follows from (4.7) that

∑
k∈K

(∫ L

xk
h(s) ds

)q ∫ xk

xk−1

w(t) dt � Aq
3

(∫ L

0

(∫ L

0

U (s)h(s)

U (s) +U (t)
ds

)p

v(t) dt

) q
p

.

(4.17)

Hence, starting with (4.2) and using (4.4), (4.16) and (4.17), we obtain C � A3 in
case (iii).

Case (iv). Assume that 0 < q < 1, 0 < q < p and A4 < ∞. Denote

ξ(t) =
∫ L

0
min

{
U

q
1−q (s),U

q
1−q (t)

}
W

q
1−q (s)w(s)U− q

1−q (s) ds, t ∈ (0, L).

(4.18)

By Lemma 3.1, we have

ξ(t) ≈ W
1

1−q (t) +U
q

1−q (t)
∫ L

t
W

q
1−q (s)w(s)U− q

1−q (s) ds for every t ∈ (0, L).

(4.19)

Thanks to (4.14), the Hölder inequality with exponents p
q and r

q , and (4.3), we obtain

∑
k∈K+

∫ xk

xk−1

(∫ xk

t
h(s) ds

)q

w(t) dt

≤
⎛
⎝ ∑

k∈K+

(∫ xk

xk−1

h(t)ϕ
1
p (t) dt

)p
⎞
⎠

q
p
⎛
⎝ ∑

k∈K+

(∫ xk

xk−1

W
q

1−q (t)w(t)ϕ− q
p(1−q) (t) dt

) r(1−q)
q

⎞
⎠

q
r

≈
(∫ L

0

(∫ L

0

U (s)h(s)

U (s) +U (t)
ds

)p

v(t) dt

) q
p
⎛
⎝ ∑

k∈K+

(∫ xk

xk−1

W
q

1−q (t)w(t)ϕ− q
p(1−q) (t) dt

) r(1−q)
q

⎞
⎠

q
r

.

(4.20)

Furthermore, Lemma 3.4 with h̃(t) = U (t)r

ϕ
r
p (t)

, �̃ = Ur , p̃ = r(1−q)
q and f̃ = W

q
1−q w

gives

⎛
⎝ ∑

k∈K+

(∫ xk

xk−1

W
q

1−q (t)w(t)ϕ− q
p(1−q) (t) dt

) r(1−q)
q

⎞
⎠

q
r

≈
⎛
⎜⎝ ∑

k∈K+−

ξ
r(1−q)

q (xk)

ϕ
r
p (xk)

⎞
⎟⎠

q
r

.

(4.21)
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Recall that (4.12) is valid for any 0 < q < p < ∞ and note that W
r
q (t) � ξ

r(1−q)
q (t)

for every t ∈ (0, L). Therefore, (4.4), (4.20), (4.21) and (4.12) yield

(∫ L

0

(∫ L

t
h(s) ds

)q

w(t) dt

) 1
q

�

⎛
⎜⎝ ∑

k∈K+−

ξ
r(1−q)

q (xk)

ϕ
r
p (xk)

⎞
⎟⎠

1
r

×
(∫ L

0

(∫ L

0

U (s)h(s)

U (s) +U (t)
ds

)p

v(t) dt

) 1
p

. (4.22)

Combining (4.9) and Lemma 3.4 with h̃ = Urϕ
− r

p , �̃ = Ur , p̃ = r(1−q)
q , f̃ =

W
q

1−q w, we obtain

⎛
⎜⎝ ∑

k∈K+−

ξ
r(1−q)

q (xk)

ϕ
r
p (xk)

⎞
⎟⎠

1
r

≈ A4. (4.23)

Hence, the desired upper bound C � A4 follows from (4.22), (4.23) and (4.2).

Lower bounds. Now we shall turn our attention to proving the lower bounds. Suppose
that C < ∞. Fix an arbitrary t ∈ (0, L) and choose any function f ∈ Mμ(X) such
that

f ∗ = χ[0,t)(
V (t) +U p(t)

∫ L
t v(s)U−p(s) ds

) 1
p

.

Such a function indeed exists, see [1, Corollary 7.8, p. 86]. Observe that ‖ f ‖�
p
u (v) = 1,

and so

W
1
q (t)(

V (t) +U p(t)
∫ L
t v(s)U−p(s) ds

) 1
p

≤ C

because the left-hand side is equal to ‖ f ‖�q (w). Since t was arbitrary, we get the
estimate A1 ≤ C by taking the supremum over t ∈ (0, L). Notice that no additional
assumptions on p or q were needed. Hence, not only does this complete case (i), but it
also shows that A1 ≤ C in all cases (i)–(iv). This is a common feature of inequalities
of this type.

Let us continue with the other cases. Thanks to (4.2), (4.4) and (4.3), we have

⎛
⎝ ∑

k∈K+

∫ xk

xk−1

(∫ xk

t
h(s) ds

)q

w(t) dt

⎞
⎠

1
q

� C

⎛
⎝ ∑

k∈K+

(∫ xk

xk−1

ϕ
1
p (t)h(t) dt

)p
⎞
⎠

1
p
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(4.24)

for every h ∈ M+(0, L).
Exploiting the saturation of the Hardy inequality (see [9, Lemma 5.4] and [13,

Theorem 3.3]) and (4.24), by the same argument as in [7, pages 340–344] we obtain
the following estimates:

• If 1 ≤ q < ∞, p > q, then

⎛
⎝ ∑

k∈K+

(
sup

t∈(xk−1,xk ]
ϕ

− q
p (t)

∫ t

xk−1

w(s) ds

) r
q
⎞
⎠

1
r

� C; (4.25)

• If 0 < q < 1, p ≤ q, then

sup
k∈K+

(∫ xk

xk−1

(∫ t

xk−1

w(s) ds

) q
1−q

w(t)ϕ− q
p(1−q) (t) dt

) 1−q
q

� C; (4.26)

• If 0 < q < 1, p > q, then

⎛
⎜⎝ ∑

k∈K+

(∫ xk

xk−1

(∫ t

xk−1

w(s) ds

) q
1−q

w(t)ϕ− q
p(1−q) (t) dt

) (1−q)r
q

⎞
⎟⎠

1
r

� C . (4.27)

Case (ii). Assume that 1 ≤ q < p < ∞. We have

A2 ≈
⎛
⎝ ∑

k∈K+
sup

t∈(xk−1,xk ]
W

r
q (t)

ϕ
r
p (t)

⎞
⎠

1
r

�

⎛
⎝ K+∑

k=K−+2

W
r
q (xk−1)

ϕ
r
p (xk−1)

⎞
⎠

1
r

+
⎛
⎜⎝ ∑

k∈K+
sup

t∈(xk−1,xk ]

(∫ t
xk−1

w(s) ds
) r

q

ϕ
r
p (t)

⎞
⎟⎠

1
r

=
⎛
⎜⎝∑

k∈K

(∑k
l=K−+1

∫ xl
xl−1

w(s) ds
) r

q

ϕ
r
p (xk)

⎞
⎟⎠

1
r

+
⎛
⎝ ∑

k∈K+

(
sup

t∈(xk−1,xk ]

∫ t
xk−1

w(s) ds

ϕ
q
p (t)

) r
q
⎞
⎠

1
r

≈
⎛
⎝∑

k∈K

(∫ xk
xk−1

w(s) ds

ϕ
q
p (xk)

) r
q
⎞
⎠

1
r

+
⎛
⎝ ∑

k∈K+

(
sup

t∈(xk−1,xk ]

∫ t
xk−1

w(s) ds

ϕ
q
p (t)

) r
q
⎞
⎠

1
r

� C .

Here, the first and last step are based on (4.10) and (4.25), respectively. The fourth
step follows from [5, Lemma 1.3.4] combined with (2.4).
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Case (iii). Let 0 < p ≤ q < 1. Owing to (4.15), we have

A3 ≈ sup
k∈K+

(∫ xk

xk−1

W
q

1−q (t)w(t)ϕ− q
p(1−q) (t) dt

) 1−q
q

≈ sup
K−+2≤k≤K+

k∈Z

W (xk−1)

(∫ xk

xk−1

w(t)ϕ− q
p(1−q) (t) dt

) 1−q
q

+ sup
k∈K+

(∫ xk

xk−1

(∫ t

xk−1

w(s) ds

) q
1−q

w(t)ϕ− q
p(1−q) (t) dt

) 1−q
q

. (4.28)

As for the first term, one may use exactly the same argument as in [7, page 343] to
obtain

sup
K−+2≤k≤K+

k∈Z

W (xk−1)

(∫ xk

xk−1

w(t)ϕ− q
p(1−q) (t) dt

) 1−q
q

� sup
k∈K

ϕ
− 1

p (xk)W
1
q (xk)

+ sup
K−+2≤k≤K+

k∈Z

(∫ xk

xk−1

(∫ t

xk−1

w(s) ds

) q
1−q

w(t)ϕ− q
p(1−q) (t) dt

) 1−q
q

. (4.29)

Moreover,

sup
k∈K

ϕ
− 1

p (xk)W
1
q (xk) ≈ sup

k∈K
ϕ

− 1
p (xk)

(∫ xk

xk−1

w(t) dt

) 1
q

≈ sup
k∈K

ϕ
− 1

p (xk)

(∫ xk

xk−1

(∫ t

xk−1

w(s) ds

) q
1−q

w(t) dt

) 1−q
q

≤ sup
k∈K

(∫ xk

xk−1

(∫ t

xk−1

w(s) ds

) q
1−q

w(t)ϕ− q
p(1−q) (t) dt

) 1−q
q

,

(4.30)

where the first equivalence is valid thanks to [5, Lemma 1.3.4] again, and the second
one follows from Lemma 3.1. Hence, combining (4.28), (4.29) and (4.30) with (4.26),
we get A3 � C .
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Case (iv). Let 0 < q < 1, 0 < q < p. Similarly to the previous case, it can be
shown (cf. [7, pages 344–346]) that

⎛
⎝ ∑

k∈K+

(∫ xk

xk−1

W
q

1−q (t)w(t)ϕ− q
p(1−q) (t) dt

) (1−q)r
q

⎞
⎠

1
r

≈
⎛
⎝ K+∑

k=K−+2

Wr (xk−1)

(∫ xk

xk−1

w(t)ϕ− q
p(1−q) (t) dt

) (1−q)r
q

⎞
⎠

1
r

+
⎛
⎜⎝ ∑

k∈K+

(∫ xk

xk−1

(∫ t

xk−1

w(s) ds

) q
1−q

w(t)ϕ− q
p(1−q) (t) dt

) (1−q)r
q

⎞
⎟⎠

1
r

≈
⎛
⎜⎝ ∑

k∈K+

(∫ xk

xk−1

(∫ t

xk−1

w(s) ds

) q
1−q

w(t)ϕ− q
p(1−q) (t) dt

) (1−q)r
q

⎞
⎟⎠

1
r

. (4.31)

Hence, the desired inequality A4 � C follows from (4.31), (4.21), (4.23) and (4.27).
��

Remark 4.2 Keeping the setting of Theorem 4.1, we make the following remark. If

∫ L

t
W

q
1−q (s)w(s)U− q

1−q (s) ds < ∞ for every t ∈ (0, L), (4.32)

then A4 (and so also C) is equivalent to A5, where

A5 =

⎛
⎜⎜⎝
∫ L

0

(
W

1
1−q (t) +U

q
1−q (t)

∫ L
t W

q
1−q (s)w(s)U− q

1−q (s) ds
) p(1−q)

p−q −1
W

q
1−q (t)w(t)

(
V (t) +U p(t)

∫ L
t v(s)U−p(s) ds

) q
p−q

dt

⎞
⎟⎟⎠

p−q
pq

.

We shall prove this assertion. Note that assumption (4.32) implies that the function
ξ defined by (4.18) is finite and, moreover, ξ ∈ Q

U
q

1−q
(0, L). Therefore, there is

a covering sequence {̃xk}k∈K̃+− ∈ CS(ξ,U
q

1−q , b) for each parameter b > 1. We find b
sufficiently large so that the assumptions of the theorems thatwe are to use are satisfied.
The sufficient size of b depends only on p and q. Combining Theorem 3.2 applied

to h̃ = ξ , �̃ = U
q

1−q , d̃ν(t) = W
q

1−q (t)w(t)U− q
1−q (t) dt , α̃ = β̃ = 0, p̃ = r(1−q)

q ,

f̃ = Urϕ
− r

p with (4.19), we obtain

∑
k∈K̃+−

ξ
r(1−q)

q (̃xk)

ϕ
r
p (̃xk)

≈ Ar
5. (4.33)
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Furthermore, since both functions ξ
r(1−q)

q andUrϕ
− r

p areUr -quasiconcave on (0, L),
we have

∑
k∈K+−

ξ
r(1−q)

q (xk)

ϕ
r
p (xk)

≈
∑
k∈K̃+−

ξ
r(1−q)

q (̃xk)

ϕ
r
p (̃xk)

(4.34)

thanks to [5, Lemma 4.2.9], where {xk}k∈K+− is the covering sequence from the proof
of Theorem 4.1. Hence the desired equivalence follows from (4.23) combined with
(4.33) and (4.34).

Without the additional assumption, A4 and A5 need not, however, be equivalent. In
order to see this, note that ξ ≡ ∞ if (4.32) is violated. If this is the case, then A4 = ∞
provided that (4.1) is true, but A5 = 0 provided that p(1−q)

p−q − 1 < 0 (which is the
case when 0 < q < 1 < p < ∞). It appears that this peculiar detail was overlooked
in [7, Theorem 4.2].

The final theorem, which generalizes [8, Theorem 1.8] by allowing degenerated
weights, deals with a variant of the main result in the setting p = ∞. It provides an
equivalent estimate on the optimal constant C in the inequality

(∫ L

0
( f ∗(t))qw(t) dt

) 1
q

≤ C ess sup
t∈(0,L)

(
1

U (t)

∫ t

0
f ∗(s)u(s) ds

)
v(t),

which is expressed by (4.35) below. We note that the representation (4.37) below is
always possible (see Remark 4.4).

Theorem 4.3 Let q ∈ (0,∞). Let v,w be weights on (0, L) and u an a.e. positive
weight on (0, L). Set

C = sup
‖ f ‖�∞

u (v)≤1
‖ f ‖�q (w), (4.35)

and

ϕ(t) = ess sup
τ∈(0,t)

U (τ ) ess sup
s∈(τ,L)

v(s)

U (s)
, t ∈ (0, L). (4.36)

Let B1, B2 ∈ (0,∞), γ, δ ∈ [0,∞) and ν a nonnegative Borel measure on (0, L)

such that

B1ϕ(t) ≤ γ + δU (t) +
∫

(0,L)

min{U (t),U (s)} dν(s)

≤ B2ϕ(t) for every t ∈ (0, L). (4.37)
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(i) If 1 ≤ q < ∞, then C ≈ A6, where

A6 =
(

lim
t→0+

U (t)

ϕ(t)

)(
sup

t∈(0,L)

W
1
q (t)

U (t)

)
+ lim

t→L−
1

ϕ(t)
W

1
q (L)

+
(∫ L

0
Uq(t)

(
sup

τ∈(t,L)

W (τ )

Uq(τ )

)
ϕ−(q+2)(t)u(t)

×
(

γ +
∫

(0,t]
U (s) dν(s)

)(
δ +

∫
[t,L)

dν(s)

)
dt

) 1
q

.

(ii) If 0 < q < 1, then C ≈ A7, where

A7 =
(

lim
t→0+

U (t)

ϕ(t)

)(∫ L

0
W

q
1−q (t)w(t)U− q

1−q (t) dt

) 1−q
q

+ lim
t→L−

1

ϕ(t)
W

1
q (L)

+
(∫ L

0
ξ(t)ϕ−(q+2)(t)u(t)

(
γ +

∫
(0,t]

U (s) dν(s)

)(
δ +

∫
[t,L)

dν(s)

)
dt

) 1
q

,

where

ξ(t) =
(∫ L

0
W

q
1−q (s)w(s)U− q

1−q (s)min{U q
1−q (t),U

q
1−q (s)} ds

)1−q

, t ∈ (0, L).

(4.38)

The equivalence constants depend only on the parameter q and the constants B1 and
B2. In particular, they are independent of the weights u, v and w.

Proof We start off with a few useful observations. Note that

ess sup
t∈(0,L)

1

U (t)

∫ t

0
f ∗(s)u(s) ds v(t) = ess sup

t∈(0,L)

1

U (t)

∫ t

0
f ∗(s)u(s) ds ϕ(t)

for every f ∈ Mμ(X) (see [8, Lemma 1.5]). Coupling this with an argument similar
to that leading to (4.2), we obtain

C ≈ sup
h∈M+(0,L)

(∫ L
0

(∫ L
t h(s) ds

)q
w(t) dt

) 1
q

supt∈(0,L) ϕ(t)
∫ L
0

U (s)h(s)
U (t)+U (s) ds

. (4.39)

Furthermore, without loss of generality, we may assume that

ϕ(t) < ∞ for every t ∈ (0, L), (4.40)

for, if this is not the case, then ϕ is actually identically equal to ∞ on (0, L), and so
it follows that C = A6 = A7 = 0 (Convention 2.1(ii) is used here once again).
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By interchanging the order of the suprema, we get the identity

ϕ(t) = ess sup
s∈(0,L)

v(s)min

{
1,

U (t)

U (s)

}
for every t ∈ (0, L).

Hence ϕ ∈ QU (0, L).
Since all key ideas were already presented in the proof of Theorem 4.1, we will

only outline the proof instead of going into all detail.
Since ϕ ∈ QU (0, L), there is a covering sequence {xk}k∈K+− ∈ CS(ϕ,U , a) for

each a > 1.We fix such a sequence for a > 1 sufficiently large so that the assumptions
of the theorems that we are to use are satisfied. An explicit estimate on a may be
obtained by careful examination of each step of the proof. What is important is that it
depends only on the parameter q and on the constants B1 and B2.

By Lemma 3.5 applied to p̃ = 1, ϕ̃ = ϕ, �̃ = U and f̃ = Uh, we have

sup
t∈(0,L)

ϕ(t)
∫ L

0

U (s)h(s)

U (t) +U (s)
ds ≈ sup

k∈K+−
ϕ(xk)

∫ L

0

U (s)h(s)

U (xk) +U (s)
ds

≈ sup
k∈K+

∫ xk

xk−1

h(s)ϕ(s) ds.

By discretizing the right-hand side of (4.39) as in (4.4) and arguing as in [8, the proof
of Theorem 1.8], one can show that

Cq ≈
∑
k∈K+

sup
t∈(xk−1,xk ]

W (t)

ϕq(t)
if 1 ≤ q < ∞ (4.41)

and

Cq ≈
∑
k∈K+−

ξ(xk)

ϕq(xk)
if 0 < q < 1. (4.42)

In order to obtain the desired results, we need to anti-discretize the right-hand sides
of (4.41) and (4.42).

Thanks to [5, Theorem 2.4.4], using the representation (4.37) of ϕ, we have, for
every t ∈ (0, L),

Uq(t)

ϕq(t)
≈
(

lim
s→0+

U (t)

ϕ(s)

)q

+
(

lim
s→L−

1

ϕ(s)

)p

Uq(t)

+
∫ L

0
min{Uq(t),Uq(s)}ϕ−(q+2)(s)u(s)

×
(

γ +
∫

(0,s]
U (τ ) dν(τ)

)(
δ +

∫
[s,L)

dν(τ)

)
ds.

(4.43)

The equivalence constants in (4.43) depend only on q, A1 and A2.
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If 1 ≤ q, the equivalence C ≈ A6 follows from (4.41), (4.43) and Lemma 3.3
applied to h̃ = Uqϕ−q , �̃ = Uq , q̃ = 1 and f̃ = W .

Assume now that 0 < q < 1. Observe that

ξ(t) ≈ W (t) +Uq(t)

(∫ L

t
W

q
1−q (s)w(s)U− q

1−q (s) ds

)1−q

≈ Uq(t)

(∫ L

0

W
q

1−q (s)w(s)

U
q

1−q (t) +U
q

1−q (s)
ds

)1−q (4.44)

for every t ∈ (0, L) thanks to Lemma 3.1. Furthermore, by the same reasoning it is
easy to see that

(∫ L

0
W

q
1−q (s)w(s) ds

)1−q

≈ W (L). (4.45)

The equivalence C ≈ A7 follows from (4.42), (4.44), (4.45) and Lemma 3.4 applied

to h̃ = Uqϕ−q , �̃ = Uq , q̃ = 1 − q, f̃ = W
q

1−q w and α̃, β̃, ν̃ given by (4.43). ��
Remark 4.4 Since the function ϕ defined by (4.36) is in QU (0, L), there is always a
nonnegative Borel measure ν on (0, L) that represents ϕ as in (4.37) with B1 = 1,
B2 = 4, γ = limt→0+ ϕ(t) and δ = limt→L− ϕ(t)

U (t) (recall (2.1)).

Whereas the fundamental function of �
p
u (v) has an integral form if p ∈ (0,∞),

the fundamental function of �∞
u (v) is given by a supremum. This is the reason why

the statement of Theorem 4.3 is somewhat more implicit than that of Theorem 4.1.
Nevertheless, under some extra assumptions, which are often satisfied in applications,
we can actually represent ϕ in the form of (4.37) quite explicitly.

For example, if v ∈ QU (0, L), v is differentiable on (0, L), and v′
u is nonincreas-

ing and locally absolutely continuous on (0, L), then ϕ = v and (4.37) holds with

B1 = B2 = 1, γ = lims→0+ v(s), δ = lims→L− v′(s)
u(s) , and dν(t) =

(
− v′

u

)′
(t) dt .

This can be proved by integrating by parts upon observing that lims→0+ U (s) v′(s)
u(s) = 0.

Moreover, under these extra assumptions, we can also take B1 = 1, B2 = 2,

γ = lims→0+ v(s), δ = lims→L− v(s)
U (s) , and dν(t) =

(
− v′

u

)′
(t) dt thanks to the fact

that lims→L− v(s)
U (s) ≥ lims→L− v′(s)

u(s) and lims→L− v(s)
U (s) ≤ v(t)

U (t) for every t ∈ (0, L).

Remark 4.5 In the setting of Theorem 4.3, if 0 < q < 1, there is an alternative,
equivalent expression for A7 under the extra assumption

ξ(t) < ∞ for every t ∈ (0, L), (4.46)

where ξ is defined by (4.38) (cf. Remark 4.2). Namely, A7 ≈ A8, where

A8 =
(∫ L

0
ϕ(t)−qξ(t)−

q
1−q W

q
1−q (t)w(t) dt

) 1
q

.
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Indeed, the additional assumption implies that ξ ∈ QUq (0, L), and the desired equiv-
alence then follows from (4.42) coupled with the fact that C ≈ A7, and Theorem 3.2

applied to h̃ = ξ
1

1−q , �̃ = U
q

1−q , α̃ = β̃ = 0, d̃ν(t) = W
q

1−q (t)w(t)U− q
1−q (t) dt ,

p̃ = 1 − q and f̃ = Uqϕ−q coupled with [5, Lemma 4.2.9].
The constants A7 and A8 need not, however, be equivalent if (4.46) is violated.

In order to see this, suppose that (4.40) holds but (4.46) does not. Then ξ ≡ ∞ on
(0, L), and thus A7 = ∞ but A8 = 0. This detail was probably overlooked in [8,
Theorem 1.8].

Remark 4.6 We conclude this paper by outlining a possible application of our results.
Let � ⊆ Rn , n ≥ 2, be a bounded Lipschitz domain, m ∈ N, m < n, and d ∈
(0, n − m). Let μ be a d-upper Ahlfors measure on �, that is, a finite Borel measure
on � such that

sup
x∈Rn

r>0

μ
(
B(x, r) ∩ �

)
rd

< ∞,

where B(x, r) is the open ball in Rn of radius r centered at x . Notable examples of
such measures are d-dimensional Hausdorff measures on d-dimensional sets. If X and
Y are rearrangement-invariant function spaces satisfying

∥∥∥∥
∫ 1

t
n
d
f ∗(s)s−1+m

n ds

∥∥∥∥
Y (0,1)

� ‖ f ‖X(0,1)

and∥∥∥∥ t− m
n−d

∫ n
d

0
f ∗(s)s−1+ m

n−d ds

∥∥∥∥
Y (0,1)

� ‖ f ‖X(0,1)

for every f ∈ M+(0, 1), then [4, Theorem 5.1] ensures boundedness of a linear
Sobolev trace operator

T : WmX(�) → Y 〈 n−d
m 〉(�,μ), (4.47)

where WmX(�) is a Sobolev-type space of mth order built upon X(�) and

Y 〈 n−d
m 〉(�,μ) is the rearrangement-invariant function space whose norm is defined

as

‖u‖
Y 〈 n−d

m 〉(�,μ)
=
∥∥∥∥((g

n−d
m

u
)∗∗) m

n−d

∥∥∥∥
Y (0,1)

, u ∈ Mμ(�),

where gu(t) = u∗(μ(�)t), t ∈ (0, 1).
Since a large number of customary rearrangement-invariant function spaces are

instances of Lorentz �-spaces, it is of interest to know how to apply this result of [4]
when Y is a Lorentz �-space. Note that despite this assumption the resulting target
space in (4.47) need not be equivalent to a �-space (see [14]).
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Supposing that Y = �p(v), one might ask if the target space in (4.47) may be

replaced by �q(w). The answer is positive if Y 〈 n−d
m 〉(�,μ) embeds in �q(w), that is,

if there is a constant C > 0 such that

(∫ L

0
( f ∗(t))qw(t) dt

) 1
q

≤ C

(∫ L

0

(
1

t

∫ t

0
( f ∗(s))

n−d
m ds

) pm
n−d

v(t) dt

) 1
p

holds for every f ∈ M+(0, L) with L = μ(�). This is where the main results of this
paper come into play because, by a standard rescaling argument, the optimal constant
C in the inequality above satisfies

C
n−d
m = sup

‖ f ‖
� p̃ (v)≤1

‖ f ‖�q̃ (w),

where p̃ = pm
n−d and q̃ = qm

n−d . Notably, the absence of the “non-degeneracy” restric-
tions is crucial because L < ∞.

Furthermore, the results obtained in this paper could also be used to improve some
of the compactness results for the Sobolev trace operator (4.47) obtained in [3, Theo-
rem 5.3].
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Abstract
We study a three-weight inequality for the superposition of the Hardy operator and
the Copson operator, namely

(∫ b

a

( ∫ b

t

(∫ s

a
f (τ )pv(τ) dτ

) q
p

u(s) ds

) r
q

w(t) dt

) 1
r ≤ C

∫ b

a
f (t) dt,

in which (a, b) is any nontrivial interval, q, r are positive real parameters and p ∈
(0, 1]. A simple change of variables can be used to obtain any weighted L p-norm
with p ≥ 1 on the right-hand side. Another simple change of variables can be used to
equivalently turn this inequality into the one in which the Hardy and Copson operators
swap their positions. We focus on characterizing those triples of weight functions
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(u, v, w) for which this inequality holds for all nonnegative measurable functions f
with a constant independent of f .Weuse a new typeof approachbasedon an innovative
method of discretization which enables us to avoid duality techniques and therefore
to remove various restrictions that appear in earlier work. This paper is dedicated to
Professor Stefan Samko on the occasion of his 80th birthday.

Keywords Weighted Hardy inequality · Superposition of operators · Copson
operator · Hardy operator

Mathematics Subject Classification 26D10

1 Introduction and theMain Result

The main purpose of this paper is to introduce a new line of argument which enables
one to obtain a previously unavailable characterization of the validity of certain specific
inequalities involving superposition of integral operators of Copson and Hardy type
and three weight functions.

More precisely, given a, b ∈ [−∞,∞], a < b, and parameters q, r ∈ (0,∞) and
p ∈ (0, 1], we characterize all triples (u, v, w) of weights (i.e. positive measurable
functions) on (a, b) such that there exists a constant C > 0 with which the inequality

(∫ b

a

( ∫ b

t

( ∫ s

a
f (τ )pv(τ) dτ

) q
p

u(s) ds

) r
q

w(t) dt

) 1
r ≤ C

∫ b

a
f (t) dt (1)

holds for every nonnegative measurable function f on (a, b). Let us note that the
restriction p ∈ (0, 1] is natural and does not cause anyweakness. Indeed, the inequality
is obviously impossible without it as, if p > 1, one can always easily construct a
function f that makes the integral on the left diverge while keeping the right-hand
side finite.

The inequality (1), as a certain “mother figure”, immediately paves the way tomany
other important inequalities. For instance, one can easily swap the order of the two
inner integral operators and obtain the inequality

( ∫ b

a

( ∫ t

a

( ∫ b

s
f (τ )pv(τ) dτ

) q
p

u(s) ds

) r
q

w(t) dt

) 1
r ≤ C

∫ b

a
f (t) dt (2)

instead of (1). This is achieved by a simple change of variables τ �→ −τ in the
innermost integral on the left side of (1) and following the forced changes from
thereafter. Similarly, one can turn (1) to the inequality

( ∫ b

a

(∫ b

t

( ∫ s

a
f (τ ) dτ

)q

u(s) ds

) r
q

w(t) dt

) 1
r ≤ C

(∫ b

a
f (t)pv(t) dt

) 1
p

(3)
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with p ≥ 1 by performing the replacements (in this order) f �→ f
1
p v

− 1
p , v �→ v−p,

q �→ qp, r �→ rp and, finally, p �→ 1
p , in (1). Our characterization of (1) thus

immediately yields necessary and sufficient conditions for (2), (3), and their various
combinations.

The key innovation is contained in methods of proofs which are based on new
discretization techniques that require neither duality methods nor nondegeneracy con-
ditions on weights.

In the theory of weighted inequalities, questions involving iterations of operators
have recently been constituting the cutting edge. The subject has been rather fashion-
able for some time, mainly because inequalities involving compositions of operators,
on the one hand, have an impressive array of important applications, while, on the
other hand, are quite difficult to handle.

There is plenty ofmotivation for studyingweighted inequalities for a composition of
operators, and it pours down from various sources, rather different in spirit. A notable
one is the theory of Sobolev-type embeddings where, during the last two decades,
various forms of the so-called reduction principles have flourished. The reduction
principle is a powerful method which establishes an, perhaps somewhat surprising,
equivalence between a difficult problem involving differential operators in several
variables, such as a Sobolev-type embedding, and a weighted inequality for an integral
operator acting on functions defined on an interval. For the first-order embedding, this
is usually achieved by an effective use of some sort of the Pólya–Szegő principle, and
the resulting operator is then always a weighted Copson operator.

For higher-order embeddings, however, the Pólya–Szegő principle does not work,
and one needs some new way of argumentation. Here, once again, approaches vary.
For Euclidean–Sobolev embeddings (in which functions are defined on a sufficiently
regular subdomain of the Euclidean ambient space Rn endowed with the Lebesgue
measure), an effective use of interpolation theory leads to satisfactory results [26].
However, when the underlying domain is not sufficiently regular, or, for instance,
when Rn is replaced by the Gauss space (Rn, γn), which is still Rn , but endowed with
the Gauss probability measure

γn(x) = (2π)−
n
2 e− |x |2

2 dx,

interpolation methods turn out to be ineffective and have to be replaced by something
else.An extremely efficient argument in thismatter, based on the isoperimetric inequal-
ity combinedwith an iteration technique, was developed in [8], and later applied again,
this time to higher-order trace embeddings, in [7].

Now here comes the interesting part. While for some specific weights (typically for
power weights that occur in reduction principles for Euclidean–Sobolev embeddings)
the iterated operator is pointwise equivalent to a suitable single Copson operator [26],
this is impossible in general (for example for Euclidean–Sobolev embeddings on
bad enough domains or for Gaussian–Sobolev embeddings this approach fails [6]).
In result, after performing the reduction principle, one has to grapple either with
a kernel operator, or with a superposition of two or more operators [8]. Specifically,
superposition of integral operators of different type (Hardy vs. Copson) is encountered
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for example when operators obtained from the reduction principle are applied to one
of many operator-induced function spaces. The simplest examples of these are spaces
whose norm involves the operation of the maximal nonincreasing rearrangement such
as weak spaces, Marcinkiewicz spaces, etc., but there are more sophisticated ones
which are also important.

Another variety of applications in a completely different direction can be found in
the theory of function spaces and interpolation theory. These shelter, among others,
questions concerning sharp embeddings between important structures [19, 33], Köthe
duals of function spaces [17, 20, 37], inequalities restricted to cones of functions
such as those of monotone or concave functions [15, 16, 24], or inequalities involving
bilinear and multilinear operators [3]. The blocking technique appearing in [24] was
also independently developed and applied for integral Hardy-type inequalities in [22].

Several results were obtained recently for iterations of operators of identical type,
however always under some rather unpleasant restrictions.

One of the earliest treatments of iteration of identical operators was most likely
carried out in [4]. The authors consider an n-dimensional problem and using radial
weights they reduce it to the iterated Hardy inequality and treat some particular cases
of parameters by discretization. Later in [13], inequalities involving Hardy–Hardy or
Hardy–Copson iteration were fully characterized. Owing to the fact that a reduction
technique was used, the characterization obtained is more complicated and nonstan-
dard. In [25] both cases of iterations (Hardy–Hardy and Hardy–Copson) involving
a kernel and using a different discretization are considered, in the simplest case of
parameters, and characterization is obtained. Recently, iteration of Copson operators
was treated in [27], restricted to nondegenerate weights.

Inequalities for superposition of the Copson and Hardy operators were studied in
[18]; however, the results obtained there were restricted to nondegenerate weights.
Next, in [31], a three-weight inequality was characterized, motivated by a specific
inequality in which a weighted norm of a mean value is compared to that of the
derivative of a given function. Techniques of proofs in that paper are related to [36]. The
result was later revisited several times, see e.g. [3, 32], where also further applications
to bilinear operators are pointed out. Particular cases and related topics had been
studied earlier, see for instance [11] or [12] for p = 1, or [16] for p = ∞, or [36]
and [17] for special cases of weights. The subject is also intimately related to the new
type of spaces governed by operator-induced norms that have been appearing recently
in connection with various other tasks, notably from embeddings of Sobolev spaces
endowed with slowly-decaying upper Ahlfors measures [9, 10, 37].

Let us recall that discretization techniques have been around for some time. In the
late 1980’s and early 1990’s they proved to be very useful for example in the theory
of one-sided operators and ergodic theory, see e.g. [29, 30, 34, 35] and all the huge
amount of subsequent work. In the early 2000’s, they were used in order to solve some
problems in the theory of classical Lorentz spaces that had been open for long time,
see [5, 14]. Later various authors spent considerable efforts in order to chip away
certain technical obstacles such as nondegeneracy assumptions with varying success,
consider e.g. [11] or [28] and the references therein. However, this research is far from
being complete.
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Let us note that the current paper is closely related to the project [21], in which
some of the new discretization methods presented here will be applied to a different
problem, namely to an inequality involving the Hardy operator on one side and the
Copson operator on the other, cf. [5].

We shall now present our principal result, that is, a complete characterization of (1).
We will formulate it in the form of a single theorem. We shall need the following
notation. For a, b ∈ [−∞,∞], a < b, and p ∈ (0, 1], let

Vp(a, b) :=
⎧⎨
⎩

( ∫ b
a v

1
1−p

) 1−p
p if 0 < p < 1,

ess sup
t∈(a,b)

v(t) if p = 1.

Our main result is:

Theorem A Let a, b ∈ [−∞,∞], a < b, q, r ∈ (0,∞), p ∈ (0, 1], and let u, v, w

be weights on (a, b). Then there exists a constant C > 0 such that the inequality (1)
holds for all nonnegative measurable functions f on (a, b) if and only if one of the
following conditions is satisfied:

(i) 1 ≤ r , 1 ≤ q,

C1 := sup
t∈(a,b)

( ∫ t

a
w(s) ds

) 1
r

ess sup
s∈(t,b)

(∫ b

s
u(τ ) dτ

) 1
q

Vp(a, s) < ∞

and

C2 := sup
t∈(a,b)

(∫ b

t
w(s)

(∫ b

s
u(τ ) dτ

) r
q

ds

) 1
r

Vp(a, t) < ∞;

(ii) 1 ≤ r , q < 1, C2 < ∞ and

C3 := sup
t∈(a,b)

( ∫ t

a
w(s) ds

) 1
r
( ∫ b

t

( ∫ b

s
u(τ ) dτ

) q
1−q

× u(s)Vp(a, s)
q

1−q ds

) 1−q
q

< ∞;

(iii) r < 1, 1 ≤ q,

C4 :=
( ∫ b

a

(∫ t

a
w(s) ds

) r
1−r

w(t) ess sup
s∈(t,b)

(∫ b

s
u(τ ) dτ

) r
q(1−r)

× Vp(a, s)
r

1−r dt

) 1−r
r

< ∞



   24 Page 6 of 24 Journal of Fourier Analysis and Applications            (2022) 28:24 

and

C5 :=
(∫ b

a

( ∫ b

t
w(s)

(∫ b

s
u(τ ) dτ

) r
q

ds

) r
1−r

w(t)

(∫ b

t
u(τ ) dτ

) r
q

Vp(a, t)
r

1−r dt

) 1−r
r

< ∞;

(iv) r < 1, q < 1, C5 < ∞ and

C6 :=
( ∫ b

a

(∫ t

a
w(s) ds

) r
1−r

w(t)

(∫ b

t

( ∫ b

s
u(τ ) dτ

) q
1−q

u(s)

× Vp(a, s)
q

1−q ds

) r(1−q)
q(1−r)

dt

) 1−r
r

< ∞.

Moreover, the best constant C in the inequality (1) satisfies

C ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C1 + C2 in the case (i),

C2 + C3 in the case (ii),

C4 + C5 in the case (iii),

C5 + C6 in the case (iv).

(4)

The proof is based on a new type of discretization which avoids the use of any kind
of duality principle, enabling us thereby to obtain the result in the required generality.

Theorem A is proved in Sect. 3, along with a side theorem which gives another
characterization of (1). Key ingredients of the proofs are collected in Sect. 2.

2 Background Discretization Results

In this section we shall establish the background discretization material that will be
needed in the proof of the main result. We first fix notation and conventions used
in this paper. We denote by LHS(∗) and RHS(∗) the left-hand side and right-hand
side of the inequality numbered by ∗, respectively. We adhere to the usual convention
that 1

∞ = 0 · ∞ = ∞
∞ = 0

0 = 0. We denote by M+(c, d) the set of all nonnegative
measurable functions on (c, d). By increasing wemean strictly increasing. Finally, the
small letters i and k are always integers, which are reserved for indices. In particular,
when we write N ≤ k ≤ M , in which N and M can be −∞ and ∞, respectively,
we mean k ∈ Z, N ≤ k ≤ M . This convention is accordingly modified for similar
inequalities and the index i in the obvious way.

Definition 1 Let N ∈ Z∪{−∞},M ∈ Z∪{+∞}, N < M , and {ak}Mk=N be a sequence
of positive numbers. We say that {ak}Mk=N is strongly increasing if

inf

{
ak+1

ak
, N ≤ k < M

}
> 1.
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Our approach is based on a fine discretization of the inequality in question. Before
we start doing that, we need some new information of a general kind from the discrete
world. The following lemma is contained in the manuscript [21], where it is also
proved. However, since the manuscript is not publicly available yet, we include its
proof here for the reader’s convenience.

Lemma 2 Let s > 0, M ∈ Z ∪ {+∞}. Assume that {ak}Mk=−∞ and {bk}Mk=−∞ are
sequences of nonnegative numbers such that {bk}Mk=−∞ is nondecreasing. Then

M∑
k=−∞

ak

( M∑
i=k

ai

)s

bk ≈
M∑

k=−∞
(bk −bk−1)

( M∑
i=k

ai

)s+1

+
( M∑

k=−∞
ak

)s+1

lim
k→−∞ bk,

(5)
in which the multiplicative constants depend only on s.

Proof First, assume that limk→−∞ bk > 0. Thanks to this assumption, we have that

lim
N→−∞

( M∑
k=N

ak

)s+1

bN =
( M∑

k=−∞
ak

)s+1

lim
k→−∞ bk,

whether the series converges or diverges. Let N ∈ Z, N < M . By virtue of Abel’s
lemma, we have that

M∑
k=N

ckbk =
M∑

k=N+1

(bk − bk−1)

M∑
i=k

ci +
( M∑

k=N

ck

)
bN (6)

for every sequence {ck}Mk=N of nonnegative numbers. Set ck = ak
( ∑M

i=k ai
)s for

k ∈ Z, N ≤ k ≤ M . Applying power rules (cf. e.g. [2, Lemmas 1 and 1′]), we get

M∑
k=N

ak

( M∑
i=k

ai

)s

bk =
M∑

k=N+1

(bk − bk−1)

M∑
i=k

ai
( M∑

j=i

a j
)s +

( M∑
k=N

ak
( M∑
i=k

ai
)s)

bN

≈
M∑

k=N+1

(bk − bk−1)

( M∑
i=k

ai

)s+1

+
( M∑

k=N

ak

)s+1

bN ,

in which the multiplicative constants depend only on s. By letting N go to −∞, we
obtain (5).

Second, assume that limk→−∞ bk = 0. It follows that bk = ∑k
i=−∞(bi − bi−1)

for every k ∈ Z, k ≤ M . Therefore, we have that

M∑
k=−∞

ckbk =
M∑

k=−∞
(bk − bk−1)

M∑
i=k

ci
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for every sequence {ck}Mk=−∞ of nonnegative numbers. By taking ck = ak
( ∑M

i=k ai
)s

for k ∈ Z, k ≤ M , and using the power rules as above, we obtain (5). �
The proof of the following lemma can be found in [23, Proposition 2.1] and [14,

Lemmas 3.2–3.4].

Lemma 3 Let N ∈ Z ∪ {−∞}, M ∈ Z ∪ {+∞}, N < M, β > 0, and let {ak}Mk=N and
{�k}Mk=N be sequences of positive numbers. If {�k}Mk=N is nondecreasing, then

sup
N≤k≤M

�k sup
k≤i≤M

ai = sup
N≤k≤M

�kak . (7)

If {�k}Mk=N is strongly increasing, then

M∑
k=N

�k

( M∑
i=k

ai

)β

≈
M∑

k=N

�ka
β
k , (8)

M∑
k=N

�k sup
k≤i≤M

ai ≈
M∑

k=N

�kak, (9)

and

sup
N≤k≤M

�k

( M∑
i=k

ai

)β

≈ sup
N≤k≤M

�ka
β
k . (10)

Moreover, the multiplicative constants depend only on inf
{�k+1

�k
, N ≤ k < M

}
and β.

We should note that in [14], (7) is formulated when {�k}Mk=N is a strongly increasing
sequence (and N = −∞); however, the result is a consequence of the interchanging
suprema and holds true even when {�k}Mk=N is just nondecreasing.

Definition 4 Let G be a positive continuous increasing function on (a, b) such that
limt→a+ G(t) = 0. Define

M = inf{k ∈ Z : G(t) ≤ 2k for every t ∈ (a, b)}

(if the set is empty, then M = ∞). An increasing sequence {xk}Mk=−∞ ⊂ (a, b] such
that (a, b) ⊂ ⋃M

k=−∞[xk−1, xk] is said to be the discretizing sequence of G if it
satisfies G(xk) = 2k for every k < M .

We note that if limt→b− G(t) < ∞, then M < ∞ and xM = b, while, if
limt→b− G(t) = ∞, thenM = ∞ and limk→∞ xk = b. Furthermore, ifM < ∞, then
2M−1 ≤ G(t) ≤ 2M for every t ∈ [xM−1, b). Note that the discretizing sequence (as
defined above) is unique, and so the definite article is justified. Finally, the Darboux
property of continuous functions implies that the discretizing sequence exists for every
G as above.
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For a locally integrable nonnegative function w on [a, b), we will use the notation

W (t) =
∫ t

a
w(s) ds, t ∈ [a, b].

Note that the discretizing sequence for W exists when w is such a function.
Recall that if M = ∞, then M − 1 is interpreted as ∞.

Lemma 5 Let α ≥ 0. Assume thatw is a weight on (a, b), {xk}Mk=−∞ is the discretizing
sequence of W and h is a nonnegative nonincreasing function on (a, b). Then

∫ b

a
W (t)αw(t)h(t) dt ≈

M−1∑
k=−∞

2k(α+1)h(xk) (11)

holds, in which the equivalence constants depend only on α.

Proof The monotonicity of h and properties of the discretizing sequence {xk}Mk=−∞
give

∫ b

a
h(t)W (t)αw(t) dt =

M−1∑
k=−∞

∫ xk+1

xk
h(t)W (t)αw(t) dt

�
M−1∑
k=−∞

h(xk)
∫ xk+1

xk
d
[
W (t)α+1]

≈
M−1∑
k=−∞

2k(α+1)h(xk),

and, conversely,

∫ b

a
h(t)W (t)αw(t) dt ≥

M−1∑
k=−∞

∫ xk

xk−1

h(t)W (t)αw(t) dt

�
M−1∑
k=−∞

h(xk)
∫ xk

xk−1

d
[
W (t)α+1]

≈
M−1∑
k=−∞

2k(α+1)h(xk).

Therefore, the statement follows. �
Having established necessary background material, we can now take the first step

towards an effective discretization of the inequality (1).
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Proposition 6 Let 0 < p ≤ 1, 0 < q, r < ∞ and let u, v, w be weights on (a, b).
Assume that {xk}Mk=−∞ is the discretizing sequence of W. Then there exists a positive
constant C such that the inequality (1) holds for all nonnegative measurable f on
(a, b) if and only if there exist positive constants C ′ and C ′′ such that

( M−1∑
k=−∞

2k
( ∫ xk+1

xk

( ∫ t

xk
f p(s)v(s) ds

) q
p

u(t) dt

) r
q
) 1

r ≤ C ′
M−1∑
k=−∞

∫ xk+1

xk
f (t) dt

(12)
and

( M−1∑
k=−∞

2k
( ∫ xk

a
f p(t)v(t) dt

) r
p
( ∫ b

xk
u(t) dt

) r
q
) 1

r ≤ C ′′
M−1∑
k=−∞

∫ xk+1

xk
f (t) dt

(13)
for all nonnegative measurable functions f on (a, b). Moreover, the best constants C,
C ′ and C ′′ in (1), (12) and (13), respectively, satisfy C ≈ C ′ + C ′′.

Proof Applying (11) with α = 0 and then using (8), we obtain

LHS(1) ≈
( M−1∑

k=−∞
2k

( ∫ xk+1

xk

( ∫ t

a
f pv

) q
p

u(t) dt

) r
q
) 1

r

≈
( M−1∑

k=−∞
2k

( ∫ xk+1

xk

( ∫ t

xk
f pv

) q
p

u(t) dt

) r
q
) 1

r

+
( M−1∑

k=−∞
2k

( ∫ xk

a
f pv

) r
p
(∫ xk+1

xk
u

) r
q
) 1

r

≈
( M−1∑

k=−∞
2k

( ∫ xk+1

xk

( ∫ t

xk
f pv

) q
p

u(t) dt

) r
q
) 1

r

+
( M−1∑

k=−∞
2k

( ∫ xk

a
f pv

) r
p
(∫ b

xk
u

) r
q
) 1

r

.

In the last equivalence we have used the fact that either
∫ xM−1
a f pv = 0, where xM−1

is to be interpreted as b if M = ∞, or there is N ∈ Z ∪ {−∞}, N ≤ M − 1, such that
∫ xk
a f pv = 0 for every k < N and

{
2k

( ∫ xk
a f pv

) r
p
}M−1

k=N
is a strongly increasing

sequence (unless N = M − 1 < ∞, which is a trivial case). The assertion follows. �
The next step is based on the saturation of Hardy inequalities and embeddings of

weighted Lebesgue spaces on the intervals determined by a discretizing sequence.

Proposition 7 Let 0 < p ≤ 1, 0 < q, r < ∞ and let u, v, w be weights on (a, b).
Assume that {xk}Mk=−∞ is the discretizing sequence of W. For every k ∈ Z, k ≤ M,
we denote
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Ak := sup
g∈M+(xk−1,xk )

( ∫ xk
xk−1

g(t)pv(t) dt

) 1
p

∫ xk
xk−1

g(t) dt
(14)

and

Bk := sup
h∈M+(xk−1,xk )

( ∫ xk
xk−1

(∫ t
xk−1

h(s)pv(s) ds

) q
p

u(t) dt

) 1
q

∫ xk
xk−1

h(t) dt
. (15)

Then there exists a positive constant C such that the inequality (1) holds for all non-
negative measurable functions f on (a, b) if and only if there exist positive constants
C ′,C ′′ such that the inequalities

( M−1∑
k=−∞

2kark B
r
k+1

) 1
r ≤ C ′

M−1∑
k=−∞

ak (16)

and ( M−1∑
k=−∞

2k
( ∫ b

xk
u(t) dt

) r
q
( k∑

j=−∞
a p
j A

p
j

) r
p
) 1

r ≤ C ′′
M−1∑
k=−∞

ak (17)

hold for every sequence {ak}M−1
k=−∞ of nonnegative numbers. Moreover, the best con-

stants C, C ′ and C ′′ in (1), (16) and (17), respectively, satisfy C ≈ C ′ + C ′′.

Proof Assume that (12) holds. By (15), there exist nonnegative measurable functions
hk , k ≤ M − 1, on (a, b) such that supp hk ⊂ [xk, xk+1],

∫ xk+1
xk

hk = 1, and

( ∫ xk+1

xk

(∫ t

xk
h p
k v

) q
p

u(t) dt

) 1
q

� Bk+1.

Thus, given {am}M−1
m=−∞ and inserting f = ∑M−1

m=−∞ amhm into (12), we get (16).
Conversely, (12) follows at once from (16) on setting ak = ∫ xk+1

xk
f for k ∈

(−∞, M − 1).
Similarly, by (14), there exist nonnegative measurable functions gk , k ≤ M − 1,

on (a, b) such that supp gk ⊂ [xk−1, xk],
∫ xk
xk−1

gk = 1, and

( ∫ xk

xk−1

gp
k v

) 1
p

� Ak .

Thus, given {am}M−1
m=−∞ and inserting f = ∑M−1

m=−∞ amgm into (13), (17) follows.
Conversely, inserting ak = ∫ xk

xk−1
f in (17) gives (13).

The assertion now directly follows from Proposition 6. �
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3 Proofs

We begin this section with a theorem of auxiliary nature, albeit interesting on its own,
which yields a discrete characterization of the inequality in question. We will then use
it as the last step towards the proof of Theorem A.

Theorem 8 Let 0 < p ≤ 1, 0 < q, r < ∞ and let u, v, w be weights on (a, b). Let
{xk}Mk=−∞ be the discretizing sequence of W. Then there exists a constant C > 0 such
that the inequality (1) holds for all nonnegative measurable functions f on (a, b) if
and only if one of the following conditions is satisfied:

(i) 1 ≤ r , 1 ≤ q,

A∗
1 := sup

k≤M−1
2

k
r ess sup
t∈(xk ,xk+1)

(∫ xk+1

t
u(s) ds

) 1
q

Vp(xk, t) < ∞

and

B∗
1 := sup

k≤M−1

( M−1∑
i=k

2i
( ∫ b

xi
u(t) dt

) r
q
) 1

r

Vp(a, xk) < ∞;

(ii) 1 ≤ r , q < 1, B∗
1 < ∞ and

A∗
2 := sup

k≤M−1
2

k
r

( ∫ xk+1

xk

( ∫ xk+1

t
u(s) ds

) q
1−q

u(t)Vp(xk, t)
q

1−q dt

) 1−q
q

< ∞;

(iii) r < 1, 1 ≤ q,

A∗
3 :=

( M−1∑
k=−∞

2
k

1−r ess sup
t∈(xk ,xk+1)

(∫ xk+1

t
u(s) ds

) r
q(1−r)

Vp(xk, t)
r

1−r

) 1−r
r

< ∞,

and

B∗
2 :=

( M−1∑
k=−∞

2k
( ∫ b

xk
u(t) dt

) r
q
( M−1∑

i=k

2i
( ∫ b

xi
u(t) dt

) r
q
) r

1−r

× Vp(a, xk)
r

1−r

) 1−r
r

< ∞;

(iv) r < 1, q < 1, B∗
2 < ∞ and
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A∗
4 :=

( M−1∑
k=−∞

2
k

1−r

( ∫ xk+1

xk

( ∫ xk+1

t
u(s) ds

) q
1−q

u(t)

×Vp(xk, t)
q

1−q dt

) r(1−q)
q(1−r)

) 1−r
r

< ∞.

Moreover, the best constant C in the inequality (1) satisfies

C ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A∗
1 + B∗

1 in the case (i),

A∗
2 + B∗

1 in the case (ii),

A∗
3 + B∗

2 in the case (iii),

A∗
4 + B∗

2 in the case (iv).

Proof It follows from Proposition 7 that the best constant C in (1) satisfies C ≈
C ′ + C ′′, where C ′ and C ′′ are the best constants in (16) and (17). Next, we obtain
an appropriate characterization of C ′ by combining a discrete version of the Landau
resonance theorem (cf. e.g. [14, Proposition 4.1]) with the classical Hardy inequality.
Finally, an appropriate two-sided estimate of C ′′ can be obtained by combining the
known characterization of a discrete Hardy inequality (cf. e.g. [1, Theorem 1] or
[24, Theorem 9.2])) with the classical duality expression of the norm in a weighted
Lebesgue space. �
Proof of Theorem A First of all, note that the optimal constant C in (1) is equal to ∞
if there is t0 ∈ (a, b) such that W (t0) = ∞, and so is RHS(4); hence the theorem is
trivially true in this pathological case. Therefore, we may assume that W (t) < ∞ for
every t ∈ (a, b). Let {xk}Mk=−∞, where M ∈ Z ∪ {∞}, be the discretizing sequence
of W .

(i) Let p ≤ 1 ≤ r , 1 ≤ q. We have from Theorem 8(i) that C ≈ A∗
1 + B∗

1 . Define

Ã1 := sup
k≤M−1

2
k
r ess sup
t∈(xk ,b)

(∫ b

t
u

) 1
q

Vp(a, t).

We will first show that A∗
1 + B∗

1 ≈ Ã1 + B∗
1 . Since obviously A∗

1 ≤ Ã1, it is enough
to prove that Ã1 � A∗

1 + B∗
1 . Using (7), we obtain

Ã1 = sup
k≤M−1

2
k
r sup
k≤i≤M−1

ess sup
t∈(xi ,xi+1)

( ∫ b

t
u

) 1
q

Vp(a, t)

= sup
k≤M−1

2
k
r ess sup
t∈(xk ,xk+1)

(∫ b

t
u

) 1
q

Vp(a, t)

≈ sup
k≤M−1

2
k
r ess sup
t∈(xk ,xk+1)

(∫ xk+1

t
u

) 1
q

Vp(a, t) + sup
k≤M−2

2
k
r

( ∫ b

xk+1

u

) 1
q

Vp(a, xk+1).
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Since
Vp(a, t) ≈ Vp(a, xk) + Vp(xk, t) for everyt ∈ (xk, xk+1), (18)

we in fact have

Ã1 ≈ A∗
1 + sup

k≤M−1
2

k
r

( ∫ xk+1

xk
u

) 1
q

Vp(a, xk) + sup
k≤M−2

2
k
r

(∫ b

xk+1

u

) 1
q

Vp(a, xk+1)

� A∗
1 + sup

k≤M−1
2

k
r

(∫ b

xk
u

) 1
q

Vp(a, xk) ≤ A∗
1 + B∗

1 ,

establishing the claim.
Next, we will show that C1 + C2 ≈ Ã1 + B∗

1 . Observe first that

C1 = sup
k≤M−1

sup
t∈(xk ,xk+1)

(∫ t

a
w

) 1
r

ess sup
s∈(t,b)

( ∫ b

s
u

) 1
q

Vp(a, s) ≈ Ã1.

On the other hand, fixing k ∈ Z, k < M , we have that

M−1∑
i=k

2i
( ∫ b

xi
u

) r
q = 2k

( ∫ b

xk
u

) r
q +

M−1∑
i=k+1

2i
( ∫ b

xi
u

) r
q

≈ 2k
( ∫ b

xk
u

) r
q +

M−1∑
i=k+1

( ∫ xi

xi−1

w

)(∫ b

xi
u

) r
q

≤ 2k
( ∫ b

xk
u

) r
q +

∫ b

xk
w(t)

(∫ b

t
u

) r
q

dt (19)

with equivalence constants independent of k. Hence, in view of (19), we have

B∗
1 � sup

k≤M−1

( ∫ b

xk
w(t)

(∫ b

t
u

) r
q

dt

) 1
r

Vp(a, xk) + sup
k≤M−1

2
k
r

( ∫ b

xk
u

) r
q

Vp(a, xk)

≤ sup
k≤M−1

ess sup
t∈(xk ,xk+1)

( ∫ b

t
w(s)

(∫ b

s
u

) r
q

ds

) 1
r

Vp(a, t) + Ã1

≈ C2 + C1. (20)

Thus, we have Ã1 + B∗
1 � C1 + C2.

Conversely,

∫ b

xk
w(t)

(∫ b

t
u

) r
q

dt =
M−1∑
i=k

∫ xi+1

xi
w(t)

(∫ b

t
u

) r
q

dt �
M−1∑
i=k

2i
( ∫ b

xi
u

) r
q

. (21)
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Consequently,

C2 ≈ sup
k≤M−1

ess sup
t∈(xk ,xk+1)

( ∫ xk+1

t
w(s)

(∫ b

s
u

) r
q

ds

) 1
r

Vp(a, t)

+ sup
k≤M−2

( ∫ b

xk+1

w(t)

(∫ b

t
u

) r
q

dt

) 1
r

Vp(a, xk+1).

Hence, in view of (21), (7) and the fact that {xk}Mk=−∞ is the discretizing sequence for
W , we obtain

C2 � sup
k≤M−1

2
k
r ess sup
t∈(xk ,xk+1)

( ∫ b

t
u

) 1
q

Vp(a, t)

+ sup
k≤M−2

( M−1∑
i=k+1

2i
( ∫ b

xi
u

) r
q
) 1

r

Vp(a, xk+1)

� Ã1 + B∗
1 . (22)

Consequently, we arrive at C ≈ C1 + C2.
(ii) Let p ≤ 1 ≤ r , q < 1. Using Theorem 8(ii), we have that C ≈ A∗

2 + B∗
1 . Let

us show that A∗
2 + B∗

1 ≈ Ã2 + B∗
1 , where

Ã2 := sup
k≤M−1

2
k
r

( ∫ b

xk

( ∫ b

t
u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) 1−q
q

.

It is easy to see that A∗
2 � Ã2. On the other hand, using (10), we have

Ã2 = sup
k≤M−1

2
k
r

( M−1∑
i=k

∫ xi+1

xi

( ∫ b

t
u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) 1−q
q

≈ sup
k≤M−1

2
k
r

( ∫ xk+1

xk

(∫ b

t
u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) 1−q
q

.

Furthermore, for each k ≤ M − 1, we have that

(∫ xk+1

xk

( ∫ b

t
u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) 1−q
q

�
( ∫ xk+1

xk

( ∫ b

t
u

) 1
1−q

d
[
Vp(a, t)

q
1−q

]) 1−q
q

+ lim
t→xk+

( ∫ b

t
u

) 1
q

Vp(a, t). (23)
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Indeed, by integrating by parts, it is clear that (23) holds for each k ∈ Z, k < M − 1,
whether M = ∞ or M < ∞. The remaining case when M < ∞ and k = M − 1
requires more explanation. We may assume that max{A∗

2, B
∗
1 } < ∞; consequently

( ∫ b

xM−1

( ∫ b

t
u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) 1−q
q

< ∞.

Thus, for each x ∈ (xM−1, b),

Vp(a, x)

( ∫ b

x
u

) 1
q

�
(∫ b

x

( ∫ b

t
u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) 1−q
q

holds, whence we conclude that

lim
x→b− Vp(a, x)

( ∫ b

x
u

) 1
q = 0.

Hence, (23) holds. Additionally, observe that

lim
t→xk+

( ∫ b

t
u

) 1
q

Vp(a, t) ≤ ess sup
t∈(xk ,xk+1)

( ∫ b

t
u

) 1
q

Vp(a, t). (24)

Then, in view of (23) and (24),

Ã2 � sup
k≤M−1

2
k
r

( ∫ xk+1

xk

( ∫ b

t
u

) 1
1−q

d
[
Vp(a, t)

q
1−q

]) 1−q
q

+ sup
k≤M−1

2
k
r ess sup
t∈(xk ,xk+1)

( ∫ b

t
u

) 1
q

Vp(a, t)

� sup
k≤M−1

2
k
r

( ∫ xk+1

xk

( ∫ xk+1

t
u

) 1
1−q

d
[
Vp(a, t)

q
1−q

]) 1−q
q

+ sup
k≤M−1

2
k
r ess sup
t∈(xk ,xk+1)

( ∫ xk+1

t
u

) 1
q

Vp(a, t)

+ sup
k≤M−2

2
k
r

(∫ b

xk+1

u

) 1
q

Vp(a, xk+1)

=: Ã2,1 + Ã2,2 + Ã2,3.
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We shall now establish appropriate upper estimates for Ã2,1, Ã2,2 and Ã2,3. Note that,
(18) yields that

sup
k≤M−1

2
k
r

( ∫ xk+1

xk

(∫ xk+1

t
u

) q
1−q

u(t) Vp(a, t)
q

1−q dt

) 1−q
q

≈ A∗
2 + sup

k≤M−1
2

k
r

(∫ xk+1

xk
u

) 1
q

Vp(a, xk)

≤ A∗
2 + B∗

1 .

(25)

Since integration by parts gives

Ã2,1 � sup
k≤M−1

2
k
r

( ∫ xk+1

xk

(∫ xk+1

t
u

) q
1−q

u(t) Vp(a, t)
q

1−q dt

) 1−q
q

,

it follows that Ã2,1 � A∗
2 + B∗

1 . Furthermore, note that

ess sup
t∈(x,y)

(∫ y

t
u

) 1
q

Vp(a, t) ≈ ess sup
t∈(x,y)

( ∫ y

t

( ∫ y

s
u

) q
1−q

u(s) ds

) 1−q
q

Vp(a, t)

≤
( ∫ y

x

( ∫ y

t
u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) 1−q
q

. (26)

Thus, applying (26) and (25), we obtain that

Ã2,2 � sup
k≤M−1

2
k
r

(∫ xk+1

xk

(∫ xk+1

t
u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) 1−q
q

� A∗
2 + B∗

1 .

Finally, it is clear that Ã2,3 � B∗
1 . Combining these estimates we arrive at C ≈

Ã2 + B∗
1 .

Next, we will prove that Ã2 + B∗
1 ≈ C2 + C3. We have from (20) that B∗

1 � C2.
Moreover,

C3 = sup
k≤M−1

sup
t∈(xk ,xk+1)

( ∫ t

a
w

) 1
r
( ∫ b

t

(∫ b

s
u

) q
1−q

u(s)Vp(a, s)
q

1−q ds

) 1−q
q ≈ Ã2.

Therefore, the proof will be complete once we show that C2 � Ã2 + B∗
1 .

Applying (26), we plainly have that Ã1 � Ã2. Finally, using (22), we obtain
C2 � Ã1 + B∗

1 � Ã2 + B∗
1 . Hence the proof is complete in this case.
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(iii) Let p ≤ 1, r < 1, 1 ≤ q, then we have from Theorem 8(iii) that C ≈ A∗
3 + B∗

2 .
First, we will show that C ≈ Ã3 + B∗

2 , where

Ã3 :=
( M−1∑

k=−∞
2

k
1−r ess sup

t∈(xk ,b)

( ∫ b

t
u

) r
q(1−r)

Vp(a, t)
r

1−r

) 1−r
r

.

It is clear that A∗
3 ≤ Ã3. Moreover, (9) together with (18) yields

Ã3 =
( M−1∑

k=−∞
2

k
1−r sup

k≤i≤M−1
ess sup

t∈(xi ,xi+1)

(∫ b

t
u

) r
q(1−r)

Vp(a, t)
r

1−r

) 1−r
r

≈
( M−1∑

k=−∞
2

k
1−r ess sup

t∈(xk ,xk+1)

( ∫ b

t
u

) r
q(1−r)

Vp(a, t)
r

1−r

) 1−r
r

≈
( M−1∑

k=−∞
2

k
1−r ess sup

t∈(xk ,xk+1)

( ∫ xk+1

t
u

) r
q(1−r)

Vp(a, t)
r

1−r

) 1−r
r

+
( M−2∑

k=−∞
2

k
1−r

( ∫ b

xk+1

u

) r
q(1−r)

Vp(a, xk+1)
r

1−r

) 1−r
r

� A∗
3 +

( M−1∑
k=−∞

2
k

1−r

( ∫ b

xk
u

) r
q(1−r)

Vp(a, xk)
r

1−r

) 1−r
r

≤ A∗
3 + B∗

2 .

Next, we will show that Ã3 + B∗
2 ≈ C4 +C5. We will find equivalent formulations

for B∗
2 . Using (5) for ak = 2k

( ∫ b
xk
u

) r
q

, bk = Vp(a, xk)
r

1−r and s = r
1−r , we get

B∗
2 ≈

( M−1∑
k=−∞

( M−1∑
i=k

2i
( ∫ b

xi
u

) r
q
) 1

1−r [
Vp(a, xk)

r
1−r − Vp(a, xk−1)

r
1−r

]) 1−r
r

+
( M−1∑

i=−∞
2i

( ∫ b

xi
u

) r
q
) 1

r

lim
k→−∞ Vp(a, xk).

Applying (19) and (11) with α = 0, we have that

B∗
2 �

( M−1∑
k=−∞

(∫ b

xk
w(t)

(∫ b

t
u

) r
q

dt

) 1
1−r [

Vp(a, xk)
r

1−r − Vp(a, xk−1)
r

1−r
]) 1−r

r

+
( M−1∑

k=−∞
2

k
1−r

(∫ b

xk
u

) r
q(1−r)

Vp(a, xk)
r

1−r

) 1−r
r
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+
( ∫ b

a
w(t)

(∫ b

t
u

) r
q

dt

) 1
r

lim
k→−∞ Vp(a, xk)

�
( M−1∑

k=−∞

∫ b

xk

(∫ b

t
w(s)

(∫ b

s
u

) r
q

ds

) r
1−r

w(t)

(∫ b

t
u

) r
q

dt

× [
Vp(a, xk)

r
1−r − Vp(a, xk−1)

r
1−r

]) 1−r
r

+
( M−1∑

k=−∞
2

k
1−r ess sup

t∈(xk ,xk+1)

( ∫ b

t
u

) r
q(1−r)

Vp(a, t)
r

1−r

) 1−r
r

+
( ∫ b

a

( ∫ b

t
w(s)

( ∫ b

s
u

) r
q

ds

) r
1−r

w(t)

(∫ b

t
u

) r
q

dt

) 1−r
r

× lim
k→−∞ Vp(a, xk).

Now, plugging bk = Vp(a, xk)
r

1−r and

ck =
∫ xk+1

xk

( ∫ b

t
w(s)

(∫ b

s
u

) r
q

ds

) r
1−r

w(t)

(∫ b

t
u

) r
q

dt

into (6), we obtain

B∗
2 �

( M−1∑
k=−∞

∫ xk+1

xk

( ∫ b

t
w(s)

(∫ b

s
u

) r
q

ds

) r
1−r

× w(t)

(∫ b

t
u

) r
q

dt Vp(a, xk)
r

1−r

) 1−r
r

+
( M−1∑

k=−∞
2

k
1−r ess sup

t∈(xk ,xk+1)

(∫ b

t
u

) r
q(1−r)

Vp(a, t)
r

1−r

) 1−r
r

≤
( M−1∑

k=−∞

∫ xk+1

xk

( ∫ b

t
w(s)

( ∫ b

s
u

) r
q

ds

) r
1−r

× w(t)

(∫ b

t
u

) r
q

Vp(a, t)
r

1−r dt

) 1−r
r + Ã3

≈ C5 + C4. (27)

In the last equivalence we use Ã3 ≈ C4, which easily follows from (11) with α = r
1−r .

Hence, we have Ã3 + B∗
2 � C4 + C5.
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Conversely, integration by parts gives

C5 =
( M−1∑

k=−∞

∫ xk+1

xk

(∫ b

t
w(s)

(∫ b

s
u

) r
q

ds

) r
1−r

w(t)

(∫ b

t
u

) r
q

Vp(a, t)
r

1−r dt

) 1−r
r

�
( M−1∑

k=−∞
Vp(a, xk)

r
1−r

[( ∫ b

xk
w(t)

(∫ b

t
u

) r
q

dt

) 1
1−r

−
(∫ b

xk+1

w(t)

(∫ b

t
u

) r
q

dt

) 1
1−r

]) 1−r
r

+
( M−1∑

k=−∞

∫ xk+1

xk

( ∫ b

t
w(s)

(∫ b

s
u

) r
q

ds

) 1
1−r

d
[
Vp(a, t)

r
1−r

]) 1−r
r

≈ B∗
2 +

( M−1∑
k=−∞

∫ xk+1

xk

( ∫ xk+1

t
w(s)

(∫ b

s
u

) r
q

ds

) 1
1−r

d
[
Vp(a, t)

r
1−r

]) 1−r
r

+
( M−2∑

k=−∞

( ∫ b

xk+1

w(t)

(∫ b

t
u

) r
q

dt

) 1
1−r

∫ xk+1

xk
d
[
Vp(a, t)

r
1−r

]) 1−r
r

� B∗
2 +

( M−1∑
k=−∞

∫ xk+1

xk

(∫ xk+1

t
w(s)

( ∫ b

s
u

) r
q

ds

) 1
1−r

d
[
Vp(a, t)

r
1−r

]) 1−r
r

.

By integrating by parts again, we obtain that

C5 � B∗
2 +

( M−1∑
k=−∞

∫ xk+1

xk

( ∫ xk+1

t
w(s)

(∫ b

s
u

) r
q

ds

) r
1−r

× w(t)

(∫ b

t
u

) r
q

Vp(a, t)
r

1−r dt

) 1−r
r

≤ B∗
2 +

( M−1∑
k=−∞

∫ xk+1

xk

( ∫ xk+1

t
w

) r
1−r

w(t)

(∫ b

t
u

) r
q(1−r)

Vp(a, t)
r

1−r dt

) 1−r
r

≤ B∗
2 +

( M−1∑
k=−∞

∫ xk+1

xk

( ∫ xk+1

t
w

) r
1−r

× w(t)

(
ess sup
s∈(t,b)

( ∫ b

s
u

) r
q(1−r)

Vp(a, s)
r

1−r

)
dt

) 1−r
r

� B∗
2 + Ã3. (28)

Consequently, we arrive at Ã3 + B∗
2 � C4 + C5 � Ã3 + B∗

2 .
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(iv) Let p ≤ 1, r < 1, q < 1. We know from Theorem 8(iv) that C ≈ A∗
4 + B∗

2 .
First we will prove that A∗

4 + B∗
2 ≈ Ã4 + B∗

2 , where

Ã4 :=
( M−1∑

k=−∞
2

k
1−r

(∫ b

xk

( ∫ b

t
u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) r(1−q)
q(1−r)

) 1−r
r

.

It is clear that A∗
4 ≤ Ã4. On the other hand, since max{A∗

4, B
∗
2 } < ∞ implies that

max{A∗
2, B

∗
1 } < ∞, by using the same argument we applied in case (ii), (23) holds.

Then, (8) combined with (23) and (24) yields that

Ã4 =
( M−1∑

k=−∞
2

k
1−r

( M−1∑
i=k

∫ xi+1

xi

(∫ b

t
u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) r(1−q)
q(1−r)

) 1−r
r

≈
( M−1∑

k=−∞
2

k
1−r

( ∫ xk+1

xk

( ∫ b

t
u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) r(1−q)
q(1−r)

) 1−r
r

�
( M−1∑

k=−∞
2

k
1−r

(∫ xk+1

xk

(∫ b

t
u

) 1
1−q

d
[
Vp(a, t)

q
1−q

]) r(1−q)
q(1−r)

) 1−r
r

+
( M−1∑

k=−∞
2

k
1−r ess sup

t∈(xk ,xk+1)

( ∫ b

t
u

) r
q(1−r)

Vp(a, t)
r

1−r

) 1−r
r

�
( M−1∑

k=−∞
2

k
1−r

(∫ xk+1

xk

(∫ xk+1

t
u

) 1
1−q

d
[
Vp(a, t)

q
1−q

]) r(1−q)
q(1−r)

) 1−r
r

+
( M−1∑

k=−∞
2

k
1−r ess sup

t∈(xk ,xk+1)

( ∫ xk+1

t
u

) r
q(1−r)

Vp(a, t)
r

1−r

) 1−r
r

+
( M−2∑

k=−∞
2

k
1−r

( ∫ b

xk+1

u

) r
q(1−r)

Vp(a, xk+1)
r

1−r

) 1−r
r

.

Integration by parts gives

Ã4 �
( M−1∑

k=−∞
2

k
1−r

( ∫ xk+1

xk

( ∫ xk+1

t
u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) r(1−q)
q(1−r)

) 1−r
r

+
( M−1∑

k=−∞
2

k
1−r ess sup

t∈(xk ,xk+1)

( ∫ xk+1

t
u

) r
q(1−r)

Vp(a, t)
r

1−r

) 1−r
r

+
( M−2∑

k=−∞
2

k
1−r

( ∫ b

xk+1

u

) r
q(1−r)

Vp(a, xk+1)
r

1−r

) 1−r
r

=: Ã4,1 + Ã4,2 + Ã4,3.
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It is easy to see that Ã4,3 � B∗
2 .On theother hand, observe that (26) yields Ã4,2 � Ã4,1.

Moreover, using (18), we have

Ã4,1 � A∗
4 +

( M−1∑
k=−∞

2
k

1−r

( ∫ xk+1

xk
u

) r
q(1−r)

Vp(a, xk)
r

1−r

) 1−r
r

� A∗
4 + B∗

2 .

Thus, we arrive at Ã4 � A∗
4 + B∗

2 .
We proceed by proving Ã4 + B∗

2 ≈ C5 +C4. It is clear by using (11) with α = r
1−r

that Ã4 ≈ C6. On the other hand, using (26), we conclude thatC4 � C6 and Ã3 � Ã4.
Thus, taking (27) into consideration, we have Ã3 + B∗

2 � Ã4 + B∗
2 � C5 + C4 �

C5 +C6. It remains to prove that C5 � Ã4 + B∗
2 . We have already proved in (28) that

C5 � Ã3+B∗
2 . Combining these estimateswe arrive at Ã4+B∗

2 � C5+C6 � Ã4+B∗
2 ,

and the proof is complete. �
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turcinova@karlin.mff.cuni.cz

1 Institute of Mathematics of the Czech Academy of Sciences, Žitná 25, 115 67 Praha 1, Czech
Republic

2 Department of Mathematics, Faculty of Electrical Engineering, Czech Technical University in
Prague, Technická 2, 166 27 Praha 6, Czech Republic

3 Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University,
Sokolovská 83, 186 75 Praha 8, Czech Republic

4 Faculty of Science and Arts, Kirikkale University, 71450 Yahsihan, Kirikkale, Turkey



Journal of Functional Analysis 284 (2023) 109880

Contents lists available at ScienceDirect

Journal of Functional Analysis

journal homepage: www.elsevier.com/locate/jfa

Full Length Article

Different degrees of non-compactness for optimal 
Sobolev embeddings ✩

Jan Lang a,b, Zdeněk Mihula c,∗

a Department of Mathematics, The Ohio State University, 231 West 18th Avenue, 
Columbus, OH 43210-1174, United States of America
b Charles University, Faculty of Mathematics and Physics, Department of 
Mathematical Analysis, Sokolovská 83, 186 75 Praha 8, Czech Republic
c Czech Technical University in Prague, Faculty of Electrical Engineering, 
Department of Mathematics, Technická 2, 166 27 Praha 6, Czech Republic

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 November 2022
Accepted 25 January 2023
Available online 14 February 2023
Communicated by Guido De 
Philippis

MSC:
46E35
47B06
46B50

Keywords:
Sobolev spaces
Compactness
Bernstein numbers
Singular operators

The structure of non-compactness of optimal Sobolev embed-
dings of m-th order into the class of Lebesgue spaces and 
into that of all rearrangement-invariant function spaces is 
quantitatively studied. Sharp two-sided estimates of Bern-
stein numbers of such embeddings are obtained. It is shown 
that, whereas the optimal Sobolev embedding within the class 
of Lebesgue spaces is finitely strictly singular, the optimal 
Sobolev embedding in the class of all rearrangement-invariant 
function spaces is not even strictly singular.

© 2023 Elsevier Inc. All rights reserved.

✩ This research was partly supported by the project OPVVV CAAS CZ.02.1.01/0.0/0.0/16_019/0000778 
of the Ministry of Education, Youth and Sports of the Czech Republic, and by the grant P201/21-01976S 
of the Czech Science Foundation.
* Corresponding author.

E-mail addresses: lang.162@osu.edu (J. Lang), mihulzde@fel.cvut.cz (Z. Mihula).

https://doi.org/10.1016/j.jfa.2023.109880
0022-1236/© 2023 Elsevier Inc. All rights reserved.



2 J. Lang, Z. Mihula / Journal of Functional Analysis 284 (2023) 109880

1. Introduction

Sobolev spaces and their embeddings into Lebesgue or Lorentz spaces (on an open set 
Ω ⊆ Rd) keep a prominent position in the theory of partial differential equations, and 
any information about structure of such embeddings is far-reaching.

There is a vast amount of literature devoted to study of conditions under which 
Sobolev embeddings are compact. Quality of compactness is often studied by the speed 
of decay of different s-numbers, which is connected to spectral theory of corresponding 
differential operators and provides estimates of the growth of their eigenvalues (see [11]). 
However, much less literature is devoted to study of the structure of non-compact Sobolev 
embeddings, which is related to the shape of essential spectrum (see [9]).

There are three common ways under which Sobolev embeddings can become non-
compact:

(i) when the underlying domain is unbounded (see [1], cf. [12]);
(ii) when the boundary ∂Ω of Ω is too irregular (see [16,17,24,25]);
(iii) when the target space is optimal or “almost optimal” (see [15,20] and references 

therein).

In this paper we will focus on the third case. We will obtain new information about 
the structure of non-compactness of two optimal Sobolev embeddings—namely

I : V m,p
0 (Ω) → Lp∗

(Ω) (1.1)

and

I : V m,p
0 (Ω) → Lp∗,p(Ω), (1.2)

where 1 ≤ m < d, p ∈ [1, d/m) and p∗ = dp/(d − mp). Here Ω is a bounded open set, 
and the subscript 0 means that the (ir)regularity of Ω is immaterial (see Section 2 for 
precise definitions). The target spaces in both embeddings are in a sense optimal. The 
Lebesgue space Lp∗(Ω) is well known to be the optimal target space in (1.1) among 
all Lebesgue spaces—that is, Lp∗(Ω) is the smallest Lebesgue space Lq(Ω) such that 
I : V m,p

0 (Ω) → Lq(Ω) is valid. However, it is also well known ([26]) that (1.1) can be 
improved to (1.2) if one allows not only Lebesgue spaces but also Lorentz spaces, which 
form a richer class of function spaces. Since Lp∗,p(Ω) � Lp∗(Ω), the latter is indeed an 
improvement. Furthermore, the Lorentz space Lp∗,p(Ω) is actually the optimal target 
space in (1.2) among all rearrangement-invariant function spaces (see [14])—that is, if 
Y (Ω) is a rearrangement-invariant function space (e.g., a Lebesgue space, a Lorentz 
space, or an Orlicz space, to name a few customary examples) such that I : V m,p

0 (Ω) →
Y (Ω) is valid, then Lp∗,p(Ω) ⊆ Y (Ω).

Not only are both embeddings (1.1) and (1.2) non-compact, but they are also in 
a sense “maximally non-compact” as their measures of non-compactness (in the sense 
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of [9, Definition 2.7]) are equal to their norms. This was proved in [5,13]. Moreover, 
even when Lp∗(Ω) is enlarged to the weak Lebesgue space Lp∗,∞(Ω), which satisfies 
Lp∗,p(Ω) � Lp∗(Ω) � Lp∗,∞(Ω), the resulting Sobolev embedding is still maximally non-
compact. This was proved in [19]. These results may suggest that the “quality” and the 
structure of these non-compact embeddings should be the same.

However, there are other possible points of view on the quality of non-compactness. 
One of them is the question of whether a non-compact Sobolev embedding is strictly 
singular or even finitely strictly singular. Strictly singular operators and finitely strictly 
singular ones are important classes of operators as spectral properties of such operators 
are very close to those of compact ones. In this regard, it follows from [6] that the Sobolev 
embedding I : V 1,1

0 (Ω) → Ld/(d−1)(Ω), which is a particular case of (1.1) with m = p = 1, 
is finitely strictly singular. Furthermore, it was also shown there that the almost optimal 
critical Sobolev embedding I : V d,1

0 ((0, 1)d) → L∞((0, 1)d) is finitely strictly singular, 
too. Finally, the same was proved in [18] for the optimal first-order Sobolev embedding 
into the space of continuous functions on a cube. These results suggest a hypothesis that 
non-compact Sobolev embeddings could be finitely strictly singular or at least strictly 
singular.

In this paper we will show that this hypothesis is correct for the “almost optimal” 
Sobolev embedding (1.1), but it is wrong for the “really optimal” Sobolev embedding 
(1.2). In other words, (1.2) is an example of a Sobolev embedding whose target space is 
optimal among all rearrangement-invariant function spaces that is not a singular map 
(i.e., there exists an infinite dimensional subspace on which the embedding is invertible), 
but if the target space is slightly enlarged to an “almost optimal” one (i.e., the target 
space is optimal only in the smaller class of Lebesgue spaces), then the resulting Sobolev 
embedding (1.1) is finitely strictly singular (i.e., its Bernstein numbers are decaying 
to zero). In the case of (1.1), we prove a two-sided estimate of the Bernstein numbers 
corresponding to the embedding—the estimate is sharp up to multiplicative constants. 
In the case of (1.2), we show that all its Bernstein numbers coincide with the norm of 
the embedding.

The paper is structured as follows. In the next section, we recall definitions and 
notation used in this paper, as well as some background results. In Section 3, we start 
with a couple of auxiliary results, which may be of independent interest, then we focus 
on the “almost optimal” embedding (Theorem 3.3), and finally on the “really optimal” 
one (Theorem 3.4).

2. Preliminaries

Here we establish the notation used in this paper, and recall some basic definitions 
and auxiliary results.

Any rule s : T → {sn(T )}∞
n=1 that assigns each bounded linear operator T from a Ba-

nach space X to a Banach space Y (we shall write T ∈ B(X, Y )) a sequence {sn(T )}∞
n=1

of nonnegative numbers having, for every n ∈ N, the following properties:
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(S1) ‖T‖ = s1(T ) ≥ s2(T ) ≥ · · · ≥ 0;
(S2) sn(S + T ) ≤ sn(S) + ‖T‖ for every S ∈ B(X, Y );
(S3) sn(BTA) ≤ ‖B‖sn(T )‖A‖ for every A ∈ B(W, X) and B ∈ B(Y, Z), where W, Z

are Banach spaces;
(S4) sn(I : E → E) = 1 for every Banach space E with dimE ≥ n;
(S5) sn(T ) = 0 if rankT < n;

is called a strict s-number. Notable examples of strict s-numbers are the approximation 
numbers an, the Bernstein numbers bn, the Gelfand numbers cn, the Kolmogorov numbers
dn, the isomorphism numbers in, or the Mityagin numbers mn. For their definitions and 
the difference between strict s-numbers and ‘non-strict’ s-numbers, we refer the reader to 
[10, Chapter 5] and references therein. We say that a (strict) s-number is injective if the 
values of sn(T ) do not depend on the codomain of T . More precisely, sn(JY

N ◦T ) = sn(T )
for every closed subspace N ⊆ Y and every T ∈ B(X, N), where JY

N : N → Y is the 
canonical embedding operator.

In this paper, we will only need the definition of the Bernstein numbers. The n-th 
Bernstein number bn(T ) of T ∈ B(X, Y ) is defined as

bn(T ) = sup
Xn⊆X

inf
x∈Xn

‖x‖X=1

‖Tx‖Y ,

where the supremum extends over all n-dimensional subspaces of X. The Bernstein 
numbers are the smallest injective strict s-numbers ([28, Theorem 4.6]), that is,

bn(T ) ≤ sn(T ) (2.1)

for every injective strict s-number s, for every T ∈ B(X, Y ), and for every n ∈ N.
An operator T ∈ B(X, Y ) is said to be strictly singular if there is no infinite dimen-

sional closed subspace Z of X such that the restriction T |Z of T to Z is an isomorphism 
of Z onto T (Z). Equivalently, for each infinite dimensional (closed) subspace Z of X,

inf {‖Tx‖Y : ‖x‖X = 1, x ∈ Z} = 0.

An operator T ∈ B(X, Y ) is said to be finitely strictly singular if it has the property 
that given any ε > 0 there exists N(ε) ∈ N such that if E is a subspace of X with 
dimE ≥ N(ε), then there exists x ∈ E, ‖x‖X = 1, such that ‖Tx‖Y ≤ ε. This can be 
expressed in terms of the Bernstein numbers of T . The operator T is finitely strictly 
singular if and only if

lim
n→∞

bn(T ) = 0.

The relations between these two notions and that of compactness of T are illustrated by 
the following diagram:
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T is compact =⇒ T is finitely strictly singular =⇒ T is strictly singular;

moreover, each reverse implication is false in general. For further details and general 
background information concerning these matters we refer the interested reader to [2], 
[21] and [29].

Throughout the rest of this section, X denotes a Banach space. The operator norm 
of the projection Q : L2([0, 1], X) → L2([0, 1], X) defined as

Qf(t) =
∞∑

j=1

⎛
⎝

1∫

0

f(s)rj(s) ds

⎞
⎠ rj(t), f ∈ L2([0, 1], X), (2.2)

is called the K-convexity constant of X. Here {rj}∞
j=1 are the Rademacher functions. 

The K-convexity constant of X is denoted by K(X). If dimX = n, then (e.g., see [3, 
Theorem 6.2.4])

K(X) ≤ c log(1 + d(X, �n
2 )). (2.3)

Here c is an absolute constant and d(X, �n
2 ) is the Banach–Mazur distance, that is,

d(X, �n
2 ) = inf{‖T‖‖T−1‖ : T is a linear isomorphism of X onto �n

2}.

We say that X is of cotype 2 if there is a constant γ such that

⎛
⎝

m∑

j=1
‖xj‖2

X

⎞
⎠

1/2

≤ γ

1∫

0

∥∥∥
m∑

j=1
xjrj(t)

∥∥∥
X

dt (2.4)

for every {xj}m
j=1 ⊆ X, m ∈ N. We denote the least such a γ by C2(X).

Let Y be a Banach space such that X ⊆ Y . We say that the inclusion is 2-absolutely 
summable if there is a constant γ such that

⎛
⎝

m∑

j=1
‖xj‖2

Y

⎞
⎠

1/2

≤ γ sup

⎧
⎪⎨
⎪⎩

⎛
⎝

m∑

j=1
|x∗(xj)|2

⎞
⎠

1/2

: ‖x∗‖X∗ ≤ 1

⎫
⎪⎬
⎪⎭

(2.5)

for every {xj}m
j=1 ⊆ X, m ∈ N. We denote the least such a γ by π2(X ↪→ Y ).

Let A, B be subsets of X. We denote the minimum number of points x1, . . . , xm ∈ X

such that

A ⊆
m⋃

j=1
(xj + B) (2.6)
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by E(A, B). In general, it may happen that E(A, B) = ∞, but in our case it will always 
be a finite number. Ē(A, B) denotes the minimum number of points x1, . . . , xm ∈ A such 
that (2.6) holds.

Let (R, μ) be a nonatomic measure space and p ∈ [1, ∞). As usual, Lp(R, μ) denotes 
the Lebesgue space endowed with the norm

‖f‖Lp(R,μ) =

⎛
⎝
∫

R

|f |p dμ

⎞
⎠

1
p

, f ∈ Lp(R,μ).

Let q ∈ [1, p]. The Lorentz space Lp,q(R, μ) is the Banach space of all μ-measurable 
functions f in R for which the functional

‖f‖Lp,q(R,μ) =

⎛
⎝

∞∫

0

t
q
p −1f∗(t)q dt

⎞
⎠

1
q

is finite—the norm on Lp,q(R, μ) is given by the functional. The function f∗ : (0, ∞) →
[0, ∞] is the (right-continuous) nonincreasing rearrangement of f , that is,

f∗(t) = inf{λ > 0: μ({x ∈ R : |f(x)| > λ}) ≤ t}, t ∈ (0,∞).

Note that f∗(t) = 0 for every t ∈ [μ(R), ∞). Furthermore, we have (see [4, Chapter 2, 
Proposition 1.8])

‖ · ‖Lp,p(R,μ) = ‖ · ‖Lp(R,μ).

When R ⊆ Rd and μ is the d-dimensional Lebesgue measure, we write Lp(R) and Lp,q(R)
instead of Lp(R, μ) and Lp,q(R, μ), respectively, and |R| instead of μ(R) for short. We 
refer the interested reader to [27, Chapter 8] for more information on Lorentz spaces. 
Assume that (R, μ) is probabilistic. We denote by Lψ2(R, μ) the Orlicz space generated 
by the Young function

ψ2(t) = exp(t2) − 1, t ∈ [0,∞).

The norm on Lψ2(R, μ) is given by

‖f‖Lψ2 (R,μ) = inf

⎧
⎨
⎩λ > 0:

∫

R

ψ2

( |f(x)|
λ

)
dμ(x) ≤ 1

⎫
⎬
⎭ .

We have (e.g., see [3, Lemma 3.5.5])

c sup
p∈[1,∞)

‖f‖Lp(R,μ)√
p

≤ ‖f‖Lψ2 (R,μ) ≤ c̃ sup
p∈[1,∞)

‖f‖Lp(R,μ)√
p

(2.7)
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for every f ∈ Lψ2(R, μ). Here c and c̃ are absolute constants. In particular, Lψ2(R, μ) is 
continuously embedded in Lp(R, μ) for every p ∈ [1, ∞).

Throughout the entire paper, we assume that d ∈ N, d ≥ 2. Let G ⊆ Rd be a nonempty 
bounded open set. For m ∈ N and p ∈ [1, ∞), V m,p(G) denotes the vector space of all 
m-times weakly differentiable functions in G whose m-th order weak derivatives belong 
to Lp(G). By V m,p

0 (G) we denote the Banach space of all functions from V m,p(G) whose 
continuation by 0 outside G is m-times weakly differentiable in Rd equipped with the 
norm ‖u‖V m,p

0 (G) = ‖|∇mu|�p
‖Lp(G). By ∇m we denote the vector of all m-th order weak 

derivatives. When G is regular enough (for example, Lipschitz), V m,p
0 (G) coincides with 

the usual Sobolev space Wm,p
0 (G), up to equivalent norms.

3. Different degrees of noncompactness

An important property of both optimal Sobolev embeddings (1.1) and (1.2), which 
we will exploit in both cases, is that their norms are homothetic invariant.

Proposition 3.1. Let Ω ⊆ Rd be a nonempty bounded open set, m ∈ N, 1 ≤ m < d, and 
p ∈ [1, d/m). Let p∗ = dp/(d − mp) and q ∈ [p, p∗]. Denote by I the identity operator 
I : V m,p

0 (Ω) → Lp∗,q(Ω). For every 0 < λ < ‖I‖ and every ε > 0, there exist a system 
of functions {uj}∞

j=1 ⊆ V m,p
0 (Ω) and a system of open balls {Brj

(xj)}∞
j=1 ⊆ Ω with the 

following properties.

(i) The balls {Brj
(xj)}∞

j=1 are pairwise disjoint.
(ii) ‖uj‖V m,p

0 (Ω) = 1 and ‖uj‖Lp∗,q(Ω) = λ for every j ∈ N.
(iii) suppuj ⊆ Brj

(xj) for every j ∈ N.
(iv) For every sequence {αj}∞

j=1 ⊆ R, we have

∥∥∥∥∥
∞∑

j=1
αjuj

∥∥∥∥∥
Lp∗,q(Ω)

≥ λ

(1 + ε)
1
q

( ∞∑

j=1
|αj |q

) 1
q

. (3.1)

Proof. It is known that

‖I‖ = ‖IG : V m,p
0 (G) → Lp∗,q(G)‖ for every open set ∅ �= G ⊆ Ω. (3.2)

Indeed, arguing as in the proof of [19, Proposition 3.1], we observe that the proof of (3.2)
amounts to showing that, if u ∈ V m,p

0 (Br(0)) and 0 < s < r, then

‖u(κ ·)‖Lp∗,q(Bs(0))

‖u(κ ·)‖V m,p
0 (Bs(0))

=
‖u‖Lp∗,q(Br(0))

‖u‖V m,p
0 (Br(0))

, (3.3)

where κ = r/s. It is a matter of simple straightforward computations to show that
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‖u(κ ·)‖Lp∗,q(Bs(0)) = κm− d
p ‖u‖Lp∗,q(Br(0))

and

‖∇(u(κ ·))‖Lp(Bs(0)) = κm− d
p ‖∇u‖Lp(Br(0)),

whence (3.3) immediately follows.
We now start with construction of the desired systems. We will use induction. First, 

using (3.2), we find a ball Br1(x1) ⊆ Br1(x1) ⊆ Ω and a function u1 ∈ V m,p
0 (Ω) such 

that suppu1 ⊆ Br1(x1), ‖u1‖Lp∗,q(Ω) = λ and ‖u1‖V m,p
0 (Ω) = 1. Set δ0 = |Br1(x1)|. By 

the monotone convergence theorem, there is 0 < δ1 < δ0 such that

(1 + ε)
δ0∫

δ1

(
t

1
p∗ − 1

q u∗
1(t)

)q

dt ≥
δ0∫

0

(
t

1
p∗ − 1

q u∗
1(t)

)q

dt = ‖u1‖q
Lp∗,q(Ω).

Next, assume that we have already found functions uj ∈ V m,p
0 (Ω), pairwise disjoint balls 

Brj
(xj) ⊆ Brj

(xj) ⊆ Ω, and 0 < δk < · · · < δ1 < δ0, j = 1, . . . , k, where k ∈ N, such 
that ‖uj‖V m,p

0 (Ω) = 1 and ‖uj‖Lp∗,q(Ω) = λ, suppuj ⊆ Brj
(xj), and

(1 + ε)
δj−1∫

δj

(
t

1
p∗ − 1

q u∗
j (t)

)q

dt ≥ ‖uj‖q

Lp∗,q(Ω). (3.4)

Take any ball Brk+1(xk+1) such that Brk+1(xk+1) ⊆ Brk+1(xk+1) ⊆ Ω \ ⋃k
j=1 Brj

(xj)
and |Brk+1(xk+1)| < δk. Thanks to (3.2), we find a function uk+1 ∈ V m,p

0 (Ω) such that 
suppuk+1 ⊆ Brk+1(xk+1), ‖uk+1‖Lp∗,q(Ω) = λ and ‖uk+1‖V m,p

0 (Ω) = 1. By the monotone 
convergence theorem again, there is 0 < δk+1 < δk such that

(1 + ε)
δk∫

δk+1

(
t

1
p∗ − 1

q u∗
k+1(t)

)q

dt ≥
δk∫

0

(
t

1
p∗ − 1

q u∗
k+1(t)

)q

dt = ‖uk+1‖q

Lp∗,q(Ω).

This finishes the inductive step.
Clearly, the constructed systems {uj}∞

j=1 ⊆ V m,p
0 (Ω) and {Brj

(xj)}∞
j=1 ⊆ Ω have the 

properties (i)–(iii), and (3.4) is valid for every j ∈ N. It remains to verify that (iv) is also 
valid. Let {αj}∞

j=1 ⊆ R. Since the functions {αjuj}∞
j=1 have pairwise disjoint supports, 

we have
∣∣∣∣∣∣

⎧
⎨
⎩x ∈ Ω:

∣∣∣∣∣
∞∑

j=1
αjuj(x)

∣∣∣∣∣ > γ

⎫
⎬
⎭

∣∣∣∣∣∣
=

∞∑

j=1
|{x ∈ Ω: |αjuj(x)| > γ}|

for every γ > 0. It follows that
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⎛
⎝

∞∑

j=1
αjuj

⎞
⎠

∗

≥
∞∑

j=1
|αj |u∗

jχ(δj ,δj−1). (3.5)

Indeed, suppose that there is t ∈ (0, |Ω|) such that

⎛
⎝

∞∑

j=1
αjuj

⎞
⎠

∗

(t) <
∞∑

j=1
|αj |u∗

j (t)χ(δj ,δj−1)(t).

Plainly, there is a unique index k such that t ∈ (δk, δk−1). By the definition of the 
nonincreasing rearrangement, there is γ > 0 such that

∣∣∣∣∣∣

⎧
⎨
⎩x ∈ Ω:

∣∣∣∣∣
∞∑

j=1
αjuj(x)

∣∣∣∣∣ > γ

⎫
⎬
⎭

∣∣∣∣∣∣
≤ t and γ < |αk|u∗

k(t).

Consequently, using the definition again, we have

|{x ∈ Ω: |αkuk(x)| > γ}| > t,

however. Thus we have reached a contradiction, and so (3.5) is proved.
Finally, using (3.4) and (3.5), we observe that

∥∥∥∥∥∥

∞∑

j=1
αjuj

∥∥∥∥∥∥

q

Lp∗,q(Ω)

=
∞∫

0

⎛
⎝t

1
p∗ − 1

q

⎛
⎝

∞∑

j=1
αjuj

⎞
⎠

∗

(t)

⎞
⎠

q

dt

≥
∞∫

0

⎛
⎝t

1
p∗ − 1

q

∞∑

j=1
|αj |u∗

j (t)χ(δj ,δj−1)(t)

⎞
⎠

q

dt

≥
∞∑

j=1
|αj |q

δj−1∫

δj

(
t

1
p∗ − 1

q u∗
j (t)

)q

dt

≥ 1
1 + ε

∞∑

j=1
|αj |q‖uj‖q

Lp∗,q(Ω)

= λq

1 + ε

∞∑

j=1
|αj |q. �

We start with the Lebesgue case. The following lemma of independent interest is a key 
ingredient for the proof of the fact that the embedding (1.1) is finitely strictly singular. 
Its proof is inspired by that of [6, Lemma 2.9].
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Lemma 3.2. Let (R, μ) be a probability measure space and p ∈ [1, ∞). Let Xn be a n-
dimensional subspace of Lp(R, μ). There is a positive μ-measurable function g on R and a 
linear isometry L : Lp(R, μ) → Lp(R, ν) defined as Lf = g−1/pf , where dν = g dμ, with 
the following properties. The measure ν is probabilistic, and in every subspace Y ⊆ Xn

with dimY ≥ n/2, there exists a function h ∈ Y such that

‖h‖Lp(R,μ) = 1

and

sup
q∈[1,∞)

‖Lh‖Lq(R,ν)√
q

≤ C.

Here C is an absolute constant depending only on min{p, 2}.

Proof. Let Xn be a n-dimensional subspace of Lp(R, μ). Thanks to [22] (cf. [31, Theo-
rem 2.1]), there exists a positive μ-measurable function g on R such that ‖g‖L1(R,μ) = 1
and the following is true: Upon setting dν = g dμ and defining Lf = g−1/pf , 
f ∈ Lp(R, μ), the subspace X̃n = LXn of Lp(R, ν) has a basis {ψ1, . . . , ψn} that is 
orthonormal in L2(R, ν) and satisfies

n∑

j=1
|ψj |2 ≡ n μ-a.e. on R. (3.6)

Note that, since X̃n has a basis consisting of functions from L2(R, ν), we have X̃n ⊆
L2(R, ν) even for p ∈ [1, 2).

Let Y be a subspace of Xn with dimY ≥ n/2. Set

Bp(Z) = {f ∈ Z : ‖f‖Lp(R,ν) ≤ 1}

and

Bexp(Z) = {f ∈ Z : ‖f‖Lψ2 (R,ν) ≤ 1},

in which Z is X̃n or Ỹ = LY . By [7, Lemma 9.2], we have

logE(B2(X̃n), tBexp(X̃n)) ≤ c1
1
t2

n for every t ≥ 1; (3.7)

here c1 is an absolute constant, which is independent of n and t. Since dim Ỹ ≥ n/2, we 
have

log E(Bp(Ỹ ), 1
4Bp(Ỹ )) ≥ n log 2 (3.8)
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by a standard volumetric argument (e.g., see [8, (1.1.10)]).
We start with the case p ∈ [2, ∞), which is simpler. Since Bp(Ỹ ) ⊆ B2(Ỹ ) ⊆ B2(X̃n), 

it follows from (3.7) that

logE(Bp(Ỹ ), tBexp(X̃n)) ≤ c1
1
t2

n for every t ≥ 1. (3.9)

Moreover, since E(Bp(Ỹ ), 2tBexp(Ỹ )) ≤ E(Bp(Ỹ ), tBexp(X̃n)) (e.g., see [3, Fact 4.1.9]), 
we actually have

log E(Bp(Ỹ ), 2tBexp(Ỹ )) ≤ c1
1
t2

n for every t ≥ 1.

Therefore, we can find t0 ≥ 1, not depending on n, so large that

logE(Bp(Ỹ ), 2t0Bexp(Ỹ )) ≤ n log 2
2 .

It follows that 2t0Bexp(Ỹ ) � 1
4Bp(Ỹ ). Indeed, if 2t0Bexp(Ỹ ) ⊆ 1

4Bp(Ỹ ), then

log E(Bp(Ỹ ), 1
4Bp(Ỹ )) ≤ logE(Bp(Ỹ ), 2t0Bexp(Ỹ )) ≤ n log 2

2 ,

which would contradict (3.8). Hence there is a function h0 ∈ Ỹ such that

‖h0‖Lψ2 (R,ν) ≤ 2t0 and ‖h0‖Lp(R,ν) >
1
4 .

Then h = L−1h0/‖h0‖Lp(R,ν) is the desired function thanks to (2.7).
We now turn our attention to the case p ∈ [1, 2). Assume for the moment that we 

know that

logE(Bp(X̃n), tB2(X̃n)) ≤ c2
log2(1 + t)

t2
n for every t ≥ 1. (3.10)

Here c2 is a constant depending only on p. Clearly

E(Bp(Ỹ ), tBexp(X̃n)) ≤ E(Bp(X̃n), tBexp(X̃n))

≤ E(Bp(X̃n), sB2(X̃n)) · E(sB2(X̃n), tBexp(X̃n))

= E(Bp(X̃n), sB2(X̃n)) · E(B2(X̃n), t

s
Bexp(X̃n)).

Consequently, using (3.7) and (3.10), we obtain

log E(Bp(Ỹ ), tBexp(X̃n)) ≤ c3

(
log2(1 + s)

s2 + s2

t2

)
n
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for every 1 ≤ s ≤ t. Here c3 is a constant depending only on p. Plugging s =
√

t into 
this inequality, we arrive at

log E(Bp(Ỹ ), tBexp(X̃n)) ≤ c3
1 + log2(1 +

√
t)

t
n for every t ≥ 1.

Since limt→∞
1+log2(1+

√
t)

t = 0, we can now proceed in the same way as in the case 
p ∈ [2, ∞), using this inequality instead of (3.9). Therefore, the proof will be complete 
once we prove (3.10)—to that end, we adapt the argument of [7, Proposition 9.6]. The 
proof of (3.10) is divided into several steps.

First, observe that

E(Bp(X̃n), tB2(X̃n)) (3.11)

≤ E(Bp(X̃n), 2Bp(X̃n) ∩ 2tB2(X̃n)) · E(Bp(X̃n) ∩ tB2(X̃n), t

2B2(X̃n)).

Since (X̃n, ‖ · ‖L2(R,ν)) is a Hilbert space, 2tB2(X̃n) is a multiple of its unit ball 
and Bp(X̃n) is a (nonempty) closed convex subset of (X̃n, ‖ · ‖L2(R,ν)), we have 
E(Bp(X̃n), 2tB2(X̃n)) = Ē(Bp(X̃n), 2tB2(X̃n)) (e.g., see [3, Fact 4.1.4]). Consequently, 
if Bp(X̃n) ⊆ ⋃m

k=1(uk + 2tB2(X̃n)), where uk ∈ Bp(X̃n), then Bp(X̃n) ⊆ ⋃m
k=1(uk +

2Bp(X̃n) ∩ 2tB2(X̃n)). Hence

E(Bp(X̃n), 2Bp(X̃n) ∩ 2tB2(X̃n)) ≤ E(Bp(X̃n), 2tB2(X̃n)). (3.12)

Combining (3.11) and (3.12), we obtain

log E(Bp(X̃n), tB2(X̃n))

≤ log E(Bp(X̃n), 2tB2(X̃n))

+ logE(Bp(X̃n) ∩ tB2(X̃n), t

2B2(X̃n)). (3.13)

Now, thanks to (3.6) and the fact that p < 2, we have

‖u‖2
L2(R,ν) =

∫

R

∣∣∣
n∑

j=1
αjψj

∣∣∣
2
dν =

∫

R

∣∣∣
n∑

j=1
αjψj

∣∣∣
2−p∣∣∣

n∑

j=1
αjψj

∣∣∣
p

dν

≤
( n∑

j=1
|αj |2

) 2−p
2
∫

R

( n∑

j=1
|ψj |2

) 2−p
2
∣∣∣

n∑

j=1
αjψj

∣∣∣
p

dν

= ‖u‖2−p
L2(R,ν)n

2−p
2 ‖u‖p

Lp(R,ν)

for every u =
∑n

j=1 αjψj ∈ X̃n, whence it follows that
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‖u‖L2(R,ν) ≤ n
2−p
2p ‖u‖Lp(R,ν) for every u ∈ X̃n.

Clearly, this implies that Bp(X̃n) ⊆ rB2(X̃n) for every r ≥ n
2−p
2p ; hence

logE(Bp(X̃n), 2ktB2(X̃n)) = 0

for every k ∈ N such that 2kt ≥ n
2−p
2p . Therefore, iterating (3.13) with t replaced by 2kt, 

k ∈ N, we arrive at

log E(Bp(X̃n), tB2(X̃n)) ≤
∞∑

k=0
logE(Bp(X̃n) ∩ 2ktB2(X̃n), 2k−1tB2(X̃n)). (3.14)

Second, we claim that

logE(Bp(X̃n) ∩ sB2(X̃n), s

2B2(X̃n)) ≤ c4
log2(1 + s)

s2 n (3.15)

for every s ≥ 1. Here c4 is a constant depending only on p. Fix s ≥ 1. Let Z denote X̃n

endowed with the norm

‖u‖Z = max
{

‖u‖Lp(R,ν),
1
s
‖u‖L2(R,ν)

}
.

Note that Bp(X̃n) ∩ sB2(X̃n) is the unit ball of Z. Owing to [3, (9.1.7) together with 
Lemma 9.1.3] combined with [7, Lemma 4.4], we have

logE(Bp(X̃n) ∩ sB2(X̃n), s

2B2(X̃n))

≤ c5K(Z)2C2(Z)2π2
2(Z ↪→ (X̃n, ‖ · ‖L2(R,ν)))

1
s2 . (3.16)

Here c5 is an absolute constant, and the quantities K(Z), C2(Z), π2(Z ↪→ (X̃n, ‖ ·
‖L2(R,ν))) are defined below (2.2), (2.4), (2.5), respectively.

As for K(Z), we have

K(Z) ≤ c6 log(1 + d(Z, �n
2 )) (3.17)

by (2.3). Here c6 is an absolute constant.
We claim that d(Z, �n

2 ) ≤ s. To this end, consider the linear isomorphism T : Z → �n
2

defined as

Tf = {αj}n
j=1, f =

n∑

j=1
αjψj ∈ Z.

Clearly, T is onto �n
2 , and we have
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‖Tf‖�n
2 = ‖f‖L2(R,ν) ≤ s‖f‖Z (3.18)

for every f ∈ Z. On the other hand, using (3.6) and the fact that p < 2, we obtain

‖T−1({αj}n
j=1)‖p

Lp(R,ν) =
∫

R

⎛
⎝

n∑

j=1
αjψj(t)

⎞
⎠

p

dν(t)

=
∫

R

⎛
⎝

n∑

j=1
αjψj(t)

⎞
⎠

p−2 ⎛
⎝

n∑

j=1
αjψj(t)

⎞
⎠

2

dν(t)

≤
∫

R

(
‖{αj}n

j=1‖�n
2

√
n
)p−2

⎛
⎝

n∑

j=1
αjψj(t)

⎞
⎠

2

dν(t)

≤ ‖{αj}n
j=1‖p−2

�n
2

∥∥∥
n∑

j=1
αjψj

∥∥∥
2

L2(R,ν)

= ‖{αj}n
j=1‖p

�n
2

for every {αj}n
j=1. Furthermore, we plainly have

1
s
‖T−1({αj}n

j=1)‖L2(R,ν) ≤ ‖T−1({αj}n
j=1)‖L2(R,ν) = ‖{αj}n

j=1‖�n
2 .

Therefore ‖T−1‖ ≤ 1. By combining this with (3.18), it follows that

d(Z, �n
2 ) ≤ s.

Plugging this into (3.17), we obtain

K(Z) ≤ c6 log(1 + s). (3.19)

As for C2(Z), we claim that

C2(Z) ≤ c7, (3.20)

where c7 is a constant depending only on p. To this end, recall that

max{C2(Lp(R, ν)), C2(L2(R, ν))} < ∞,

and that C2(Lp(R, ν)) depends only p (e.g., see [2, Theorem 6.2.14]). Now, since

⎛
⎝

m∑

j=1
‖fj‖2

Z

⎞
⎠

1/2

≤

⎛
⎝

m∑

j=1
‖fj‖2

Lp(R,ν)

⎞
⎠

1/2

+ 1
s

⎛
⎝

m∑

j=1
‖fj‖2

L2(R,ν)

⎞
⎠

1/2
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≤ 2 max
{
C2(Lp(R, ν)), C2(L2(R, ν))

} 1∫

0

∥∥∥
m∑

j=1
fjrj(t)

∥∥∥
Z

dt

for every {fj}m
j=1 ⊆ Z, m ∈ N, thanks to (2.4), the claim immediately follows.

As for π2(Z ↪→ (X̃n, ‖ · ‖L2(R,ν))), note that ‖f‖L1(R,ν) ≤ ‖f‖Lp(R,ν) ≤ ‖f‖Z for every 
f ∈ Z, and so the unit ball of (X̃n, ‖ · ‖L1(R,ν))∗ is contained in the unit ball of Z∗. It 
follows that

π2(Z ↪→ (X̃n, ‖ · ‖L2(R,ν))) ≤ π2((X̃n, ‖ · ‖L1(R,ν)) ↪→ (X̃n, ‖ · ‖L2(R,ν))).

By [7, Proof of Lemma 4.5], we have

π2((X̃n, ‖ · ‖L1(R,ν)) ↪→ (X̃n, ‖ · ‖L2(R,ν))) ≤ c8
√

n.

Here c8 is an absolute constant. Hence

π2(Z ↪→ (X̃n, ‖ · ‖L2(R,ν))) ≤ c8
√

n. (3.21)

The desired estimate (3.15) now follows by combining (3.19), (3.20) and (3.21) with 
(3.16).

Finally, now that we have (3.15) at our disposal, the rest is simple. Combining (3.15)
with (3.14), we obtain

log E(Bp(X̃n), tB2(X̃n)) ≤ c4

∞∑

k=0

log2(1 + 2kt)
4kt2

n

≤ 2c4

( ∞∑

k=0

k2 log2 2 + log2(1 + t)
4k

)
1
t2

n

≤ 2c4

( ∞∑

k=0

k2 + 1
4k

)
log2(1 + t)

t2
n.

This finishes the proof of (3.10). �
We are now in a position to prove the main result concerning the embedding (1.1).

Theorem 3.3. Let Ω ⊆ Rd be a nonempty bounded open set, m ∈ N, 1 ≤ m < d, and 
p ∈ [1, d/m). Denote by I the identity operator I : V m,p

0 (Ω) → Lp∗(Ω), where p∗ =
dp/(d − mp). There exists n0 ∈ N, depending only on d and m, such that

C1n
− m

d ≤ bn(I) ≤ C2n
− m

d for every n ≥ n0. (3.22)

Here C1 and C2 are constants depending only on d, m and p.
In particular, I is finitely strictly singular.
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Proof. First, we prove the upper bound on bn(I). Set l = dm. We may without loss of 
generality assume that |Ω| = 1/l; otherwise we replace dx with dx/(l|Ω|). We start with 
a few definitions. By G : V m,p

0 (Ω) → ⊕l
j=1 Lp(Ω) we denote the linear isometric operator 

defined as

Gu = ∇mu, u ∈ V m,p
0 (Ω).

Here 
⊕l

j=1 stands for the �p-direct sum, and the way in which the vector ∇mu is ordered 

is completely immaterial—we fix arbitrary order. Furthermore, let R =
⊕l

j=1 Ω(j) consist 
of l disjoint copies of Ω, each endowed with the Lebesgue measure. We denote the cor-
responding probabilistic measure space by (R, μ). Finally, S :

⊕l
j=1 Lp(Ω) → Lp(R, μ)

denotes the linear isometry defined as

S(f1, . . . , fl) =
l∑

j=1
fjχΩ(j) , (f1, . . . , fl) ∈

l⊕

j=1
Lp(Ω).

Let c1 be the Besicovitch constant in Rd. Recall that c1 depends only on d. Set 
c2 =

(
d+m−1

m−1
)
. Note that c2 is the dimension of the vector space of polynomials in Rd

of degree at most m − 1, which we will denote by Pm−1(Rd). Assume that n ≥ 2c1c2. 
Let Xn be a n-dimensional subspace of V m,p

0 (Ω), and X̃n ⊆ Lp(R, μ) its image under 
the linear isometric operator S ◦ G. Clearly, dim X̃n = n. Let L, g and ν be those from 
Lemma 3.2 applied to X̃n. Since Ω is bounded and ‖g‖L1(R,μ) = 1, for each x ∈ Ω we 
can find rx ∈ (0, diam Ω] such that

∫

⊕l
j=1 B

(j)
rx (x)

g dμ = 2c1c2
n

. (3.23)

Here B(j)
rx (x) are disjoint copies of Brx

(x) in Ω(j). Using the Besicovitch covering lemma, 
we find a countable subcollection {Brk

(xk)}M
k=1 such that

Ω ⊆
M⋃

k=1
B̄rk

(xk) (3.24)

and

M∑

k=1
χBrk

(xk) ≤ c1. (3.25)

We claim that

M ≤ n

2c2
. (3.26)
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Indeed, we have

M
2c1c2

n
=

M∑

k=1

∫

⊕l
j=1 B

(j)
rk

(xk)

g dμ

≤
∥∥∥

M∑

k=1
χ⊕l

j=1 B
(j)
rk

(xk)

∥∥∥
L∞(R,μ)

‖g‖L1(R,μ)

≤ c1.

Recall that, for every u ∈ V m,p(Brk
(xk)), k = 1, . . . , M , there is a polynomial Pu,k ∈

Pm−1(Rd), depending on u and Brk
(xk), such that

‖u − Pu,k‖Lp∗ (Brk
(xk)) ≤ c3‖∇mu‖Lp(Brk

(xk)); (3.27)

moreover, the dependence of Pu,k on u is linear. Here c3 depends only on d, m and p. 
This follows easily by iterating the classical Sobolev–Poincaré inequality on balls (e.g., 
see [23, Corollary 1.64]).

We claim that there is a subspace Y of Xn with dimY ≥ n/2 such that

‖u‖Lp∗ (Brk
(xk)) ≤ c3‖∇mu‖Lp(Brk

(xk)) for every u ∈ Y and k. (3.28)

Indeed, set Y0 = Xn, and let Y1 be the kernel of the linear operator Y0 � u �→ Pu,1 ∈
Pm−1(Rd). By the rank-nullity theorem, we have

dimY1 ≥ n − dim Pm−1(Rd) = n − c2.

Now, let Y2 be the kernel of the linear operator Y1 � u �→ Pu,2. It follows that 
dimY2 ≥ n − 2c2. Proceeding in the obvious way, we find a subspace Y = YM of Xn

with dimY ≥ n − Mc2 such that Pu,k ≡ 0 for every u ∈ Y and k = 1, . . . , M . The claim 
now immediately follows from (3.26) and (3.27).

Let Ỹ be the image of Y under the linear isometric operator S ◦ G. Thanks to 
Lemma 3.2, there is ũ ∈ Ỹ ⊆ X̃n such that

‖u‖V m,p
0 (Ω) = ‖ũ‖Lp(R,μ) = 1 (3.29)

and

sup
q∈[1,∞)

‖Lũ‖Lq(R,ν)√
q

≤ c4, (3.30)

where u = (SG)−1ũ ∈ V m,p
0 (Ω) and dν = g dμ. Here c4 is a constant depending only on 

p. By (3.24) and (3.28), we have
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‖u‖p∗

Lp∗ (Ω) ≤
M∑

k=1
‖u‖p∗

Lp∗ (Brk
(xk)) ≤ cp∗

3

M∑

k=1
‖∇mu‖p∗

Lp(Brk
(xk))

= cp∗

3

M∑

k=1
‖ũχ⊕l

j=1 B
(j)
rk

(xk)‖
p∗

Lp(R,μ)

= cp∗

3

M∑

k=1
‖(Lũ)χ⊕l

j=1 B
(j)
rk

(xk)g
1/p‖p∗

Lp(R,μ)

= cp∗

3

M∑

k=1
‖(Lũ)χ⊕l

j=1 B
(j)
rk

(xk)‖
p∗

Lp(R,ν). (3.31)

Furthermore, by the Hölder inequality combined with the identity 1/p∗ = 1/p − m/d, 
(3.23), (3.24) combined with (3.25), and (3.30), we have

M∑

k=1
‖(Lũ)χ⊕l

j=1 B
(j)
rk

(xk)‖
p∗

Lp(R,ν)

≤
M∑

k=1
‖(Lũ)χ⊕l

j=1 B
(j)
rk

(xk)‖
p∗

Lp∗ (R,ν)‖χ⊕l
j=1 B

(j)
rk

(xk)‖
p∗

L
d
m (R,ν)

=
M∑

k=1
‖(Lũ)χ⊕l

j=1 B
(j)
rk

(xk)‖
p∗

Lp∗ (R,ν)‖χ⊕l
j=1 B

(j)
rk

(xk)‖
mp

d−mp

L1(R,ν)

=
(

2c1c2
n

) mp
d−mp

M∑

k=1
‖(Lũ)χ⊕l

j=1 B
(j)
rk

(xk)‖
p∗

Lp∗ (R,ν)

≤ c1

(
2c1c2

n

) mp
d−mp

‖Lũ‖p∗

Lp∗ (R,ν)

≤ c1

(
2c1c2

n

) mp
d−mp

cp∗

4 (p∗)p
∗/2. (3.32)

Combining (3.31) and (3.32), we obtain

‖u‖p∗

Lp∗ (Ω) ≤ Cp∗

2 n− mp
d−mp . (3.33)

Here Cp∗

2 = c1(2c1c2)
mp

d−mp (c3c4
√

p∗)p∗ depends only on d, m and p. The desired upper 
bound in (3.22) now follows immediately from (3.29) and (3.33).

Finally, we turn our attention to the lower bound in (3.22), whose proof is simpler. 
To that end, recall that we have (e.g., see [30, Remark 7])

bn(�p → �p∗) = n
p−p∗
pp∗ = n− m

d for every n ∈ N. (3.34)
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Here we used the fact that 1 ≤ p < p∗. Let 0 < λ < ‖I‖ and ε > 0. By (3.34), there is a 
subspace En of �p with dimEn = n such that

inf
{αj}∞

j=1∈En

‖{αj}∞
j=1‖�p=1

‖{αj}∞
j=1‖�p∗ ≥ n− m

d − ε. (3.35)

Furthermore, let {uj}∞
j=1 and {Bj}∞

j=1 be systems whose existence is guaranteed by 
Proposition 3.1 with q = p∗. Note that the linear operator T : �p → V m,p

0 (Ω) defined as

T ({αj}∞
j=1) =

∞∑

j=1
αjuj , {αj}∞

j=1 ∈ �p,

is well defined and isometric. Indeed, since the functions uj have mutually disjoint sup-
ports and ‖uj‖V m,p

0 (Ω) = 1, we have

∥∥∥
∞∑

j=1
αjuj

∥∥∥
p

V m,p
0 (Ω)

=
∥∥∥

∞∑

j=1
αj∇uj

∥∥∥
p

Lp(Ω)
=

∞∑

j=1
|αj |p‖∇uj‖p

Lp(Ω) =
∞∑

j=1
|αj |p.

In particular, T is injective. Furthermore, we also have

∥∥∥
∞∑

j=1
αjuj

∥∥∥
Lp∗ (Ω)

= λ‖{αj}∞
j=1‖�p∗ for every {αj}∞

j=1 ∈ �p∗ (3.36)

since ‖uj‖Lp∗ (Ω) = λ for every j ∈ N. Set Xn = TEn. We have dimXn = dimEn = n. 
Combining (3.35) and (3.36) with the fact that T is isometric, we arrive at

bn(I) ≥ inf
u∈Xn

‖u‖V
m,p
0 (Ω)=1

‖u‖Lp∗ (Ω) = inf
{αj}∞

j=1∈En

‖{αj}∞
j=1‖�p=1

∥∥∥
∞∑

j=1
αjuj

∥∥∥
Lp∗ (Ω)

= λ inf
{αj}∞

j=1∈En

‖{αj}∞
j=1‖�p=1

‖{αj}∞
j=1‖�p∗ ≥ λ(n− m

d − ε).

Letting ε → 0+ and λ → ‖I‖−, we obtain

bn(I) ≥ ‖I‖n− m
d .

Note that this is actually the desired lower bound in (3.22) because we can take C1 = ‖I‖. 
Indeed, the norm of the embedding V m,p

0 (Ω) → Lp∗(Ω) depends only on d, m and p but 
not on Ω. This follows from the simple observation that

‖I : V m,p
0 (B) → Lp∗

(B)‖ ≤ ‖I : V m,p
0 (Ω) → Lp∗

(Ω)‖
≤ ‖I : V m,p

0 (B̃) → Lp∗
(B̃)‖,
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where B and B̃ are (any) open balls in Rd such that B ⊆ Ω ⊆ B̃, and from the fact that 
‖I : V m,p

0 (B) → Lp∗(B)‖ is constant for every open ball B ⊆ Rd and depends only on 
d, m and p—to that end, recall (3.2). �

We conclude with the Lorentz case. The following theorem tells us that the “really 
optimal” Sobolev embedding (1.2) is not strictly singular (let alone finitely strictly sin-
gular); moreover, all its Bernstein numbers coincide with its norm.

Theorem 3.4. Let Ω ⊆ Rd be a nonempty bounded open set, m ∈ N, 1 ≤ m < d, 
and p ∈ [1, d/m). Denote by I the identity operator I : V m,p

0 (Ω) → Lp∗,p(Ω), where 
p∗ = dp/(d − mp). We have

bn(I) = ‖I‖ for every n ∈ N, (3.37)

where ‖I‖ denotes the operator norm.
Furthermore, I is not strictly singular.

Proof. Thanks to the property (S1) of (strict) s-numbers, it is sufficient to show that

bn(I) ≥ ‖I‖ for every n ∈ N.

Let ε > 0 and 0 < λ < ‖I‖, and {uj}∞
j=1 ⊆ V m,p

0 (Ω) be a system of functions 
from Proposition 3.1 with q = p. Let Xn be the subspace of V m,p

0 (Ω) spanned by the 
functions {uj}n

j=1. Since the functions uj have mutually disjoint supports, it follows that 
dimXn = n, and that we have, for every u =

∑n
j=1 αjuj ∈ Xn,

‖u‖p
V m,p
0 (Ω) =

n∑

j=1
|αj |p.

Furthermore, thanks to (3.1),

‖u‖p

Lp∗,p(Ω) =
∥∥∥

n∑

j=1
αjuj

∥∥∥
p

Lp(Ω)
≥ λp

1 + ε

n∑

j=1
|αj |p.

Hence

bn(I) ≥ inf
u∈Xn\{0}

‖u‖Lp∗,p(Ω)

‖u‖V m,p
0 (Ω)

≥ λ

(1 + ε)
1
p

.

Since this holds for every ε > 0 and 0 < λ < ‖I‖, it follows that bn(I) ≥ ‖I‖.
Finally, to show that I is not strictly singular, it is sufficient to take any ε > 0 and 

0 < λ < ‖I‖ and consider the infinite dimensional subspace of V m,p
0 (Ω) spanned by the 

functions u1, u2, . . . Arguing as above, we immediately see that I is bounded from below 
on this infinite dimensional subspace. Therefore, I is not strictly singular. �
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Remark 3.5. In light of (2.1), (3.37) actually tells us that, in the case of the “really 
optimal” Sobolev embedding (1.2), we have

sn(I) = ‖I‖

for every n ∈ N and every injective strict s-number s.
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1. Introduction

Let T be a bounded linear map between Banach spaces X and Y . For each k ∈ N the kth
entropy number ek(T ) of T is defined by

ek(T ) = inf
{
ε > 0 : T (BX ) can be covered by 2k−1 balls in Y with radius ε

}
,

where BX is the closed unit ball in X . Since T is compact if and only if limk→∞ ek(T ) = 0,
this limit is called the measure of noncompactness of T ; we denote it by β(T ). Plainly
0 ≤ β(T ) ≤ ∥T ∥ ; if β(T ) = ∥T ∥ we say that T is maximally noncompact. The definition
of entropy numbers has its roots in the notion of the metric entropy of a set, introduced by
Kolmogorov in the 1930s and which, in its different variants, has proved useful in numerous
branches of mathematics and theoretical computer science. Sharp upper and lower estimates
of ek(T ) are known in many cases when T is compact: information of this type is useful
in connection with the estimation of eigenvalues and is especially complete when T is an
embedding of one function space into another (see, for example, [8]).

It is a different story when T is not compact. If T is an embedding map between function
spaces on an open subset Ω of Rn , possible reasons for noncompactness include
(i) Ω is unbounded;
(ii) some bad behavior of the boundary ∂Ω if Ω is bounded, or the norm on the domain or
target function space is too weak or too strong.

An example of (ii) was provided by Hencl [9], who considered the case in which k ∈ N, p ∈

[1, ∞), kp < n, 1/q = 1/p − k/n and, in standard notation, id : W k,p
0 (Ω) → Lq (Ω) is the

natural embedding. He showed that id is maximally noncompact, so that ek(id) = ∥id∥ for all
k ∈ N. Further work in this direction, involving Sobolev spaces based on Lorentz spaces and
maximally noncompact embeddings, is contained in [4] and [11].

Much less seems to be known in cases of type (i), even in quite basic situations (unless
Ω = Rn , in which case a lot is known, see e.g. [13,18,19] and references therein). For example,
suppose that n = 2, Ω = R×(0, π) and I : W 1,2

0 (Ω) → L2 (Ω) is the natural embedding. Then
it is known that I is not compact, so that β (I ) > 0, but although this example could hardly
be simpler, the exact value of β (I ) appears to be unknown up to this point. It was shown
in [9, Remark 3.8] that the embedding I is maximally noncompact, but the precise value of its
measure of noncompactness remained unknown. Here we settle this question by establishing a
more general result in which n ≥ 2, k ∈ {1, . . . , n − 1}, p ∈ (1, ∞), −∞ < q j < r j < ∞ for
each j ∈ {1, . . . , n − k}, and

D = Rk
×

n−k∏
j=1

(q j , r j );

the norm on W 1,p
0 (D) is defined by(

∥u∥
p
L p(D) +

 |∇u|ℓp

p
L p(D)

)1/p
.

We show that the natural embedding Ip : W 1,p
0 (D) → L p (D) is maximally noncompact and

β
(
Ip
)

=
Ip

 =

⎛⎝1 + (p − 1)

(
2π

p sin(π/p)

)p n−k∑
j=1

(
r j − q j

)−p

⎞⎠−1/p

.

2
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For the particularly elementary illustration involving I that was mentioned immediately above
this gives the attractive formula

β (I ) = ∥I∥ = 1/
√

2.

It is also shown that the strict s-numbers of Ip (that is, the approximation, isomorphism,
Gelfand, Bernstein, Kolmogorov and Mityagin numbers) exhibit the same behavior as the
entropy numbers: the kth such strict s-number coincides with

Ip
 for all k ∈ N. The proof

of these assertions relies on properties of the pseudo-p-Laplacian and the p-trigonometric
functions. Furthermore, we show that the embedding of the Sobolev-type space W 1

0 X (D) built
upon a general rearrangement-invariant space X (D) to a rearrangement-invariant space Y (D) is
always maximally noncompact provided that the space Y (D) has absolutely continuous norm.
Precise definitions are contained in the following section.

2. Background material

In this section, we fix the notation used throughout this paper and collect the fundamental
theoretical background needed later in Section 3. Let Ω ⊆ Rn be an open set (throughout this
paper, we assume that n ≥ 2).

We denote the set of all continuous functions that are compactly supported in Ω by Cc(Ω ).
The set of all smooth (i.e., infinitely differentiable) functions that are compactly supported in
Ω is denoted by C∞

0 (Ω ).
For p ∈ [1, ∞), W 1,p(Ω ) stands for the classical first-order Sobolev space on Ω endowed

with the norm

∥u∥W 1,p(Ω) =

(
∥u∥

p
L p(Ω) + ∥ |∇u|ℓp∥

p
L p(Ω)

) 1
p
, u ∈ W 1,p(Ω ),

where |∇u|ℓp is the ℓp-norm of the (weak) gradient of u, that is,

|∇u|ℓp =

⎛⎝ n∑
j=1

⏐⏐⏐⏐ ∂u
∂x j

⏐⏐⏐⏐p
⎞⎠ 1

p

.

We denote the closure of C∞

0 (Ω ) in W 1,p(Ω ) by W 1,p
0 (Ω ).

We shall also work with Sobolev-type spaces built upon function spaces more general than
the Lebesgue spaces. We say that a functional ϱ : M+(Ω ) → [0, ∞], where M+(Ω ) is the set
of all nonnegative measurable functions on Ω , is a rearrangement-invariant Banach function
norm if, for all f, g, f j ∈ M+(Ω ), j ∈ N, for all α ∈ [0, ∞), and for all measurable E ⊆ Ω ,
the following properties hold:

• ϱ( f ) = 0 if and only if f = 0 a.e., ϱ(α f ) = αϱ( f ), ϱ( f + g) ≤ ϱ( f ) + ϱ(g);
• if 0 ≤ g ≤ f a.e., then ϱ(g) ≤ ϱ( f );
• if 0 ≤ f j ↗ f a.e., then ϱ( f j ) ↗ ϱ( f );
• if |E | < ∞, then ϱ(χE ) < ∞;
• if |E | < ∞, then there is a constant CE , which may depend only on E and ϱ, such that∫

E f (x) dx ≤ CEϱ( f );
• ϱ( f ) = ϱ(g) whenever f and g are equimeasurable, that is, |{x ∈ Ω : f (x) > λ}| =

|{x ∈ Ω : g(x) > λ}| for every λ > 0.

3
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If ϱ is a rearrangement-invariant Banach function norm, then the set X (Ω ) = { f ∈

M(Ω ) : ϱ(| f |) < ∞}, where M(Ω ) is the set of all measurable functions on Ω , endowed
with the norm ∥ · ∥X (Ω) defined as

∥ f ∥X (Ω) = ϱ(| f |), f ∈ X (Ω ),

is called a rearrangement-invariant Banach function space. A rearrangement-invariant Banach
function space (we shall write just ‘a rearrangement-invariant space’) is a Banach space.
Textbook examples of rearrangement-invariant spaces are the Lebesgue spaces L p (p ∈

[1, ∞]), the (two-parametric) Lorentz spaces L p,q (for appropriate values of the parameters,
see, e.g., [3, pp. 218–220]) or the Orlicz spaces. We say that a function f ∈ X (Ω ) has
absolutely continuous norm in X (Ω ) if limk→∞ ∥ f χEk ∥X (Ω) = 0 for every sequence {Ek}

∞

k=1
of measurable sets Ek ⊆ Ω such that limk→∞ χEk (x) = 0 for a.e. x ∈ Ω . We say that X (Ω ) has
absolutely continuous norm if every f ∈ X (Ω ) has absolutely continuous norm in X (Ω ). For
example, the Lebesgue space L p(Ω ) has absolutely continuous norm if and only if p < ∞.

Comprehensive accounts of the theory of rearrangement-invariant spaces can be found,
e.g., in [3] or [15].

We denote the (first-order) Sobolev-type space built upon a rearrangement-invariant space
X (Ω ), that is, the set of all weakly differentiable functions from X (Ω ) whose gradients also
belong to X (Ω ), by W 1 X (Ω ). We equip W 1 X (Ω ) with the norm

∥u∥W 1 X (Ω) = ∥u∥X (Ω) + ∥ |∇u|ℓ1
∥X (Ω), u ∈ W 1 X (Ω ),

which turns W 1 X (Ω ) into a Banach space. Note that we have W 1,p(Ω ) = W 1L p(Ω ) in the
set-theoretical sense, but their norms are merely equivalent (unless p = 1). The closure of
C∞

0 (Ω ) in W 1 X (Ω ) is denoted by W 1
0 X (Ω ).

Any rule s : T → {sm(T )}∞m=1 that assigns to each bounded linear operator T from a
Banach space X to a Banach space Y (we shall write T ∈ B(X, Y )) a sequence {sm(T )}∞m=1 of
nonnegative numbers having, for every m ∈ N, the following properties:

(S1) ∥T ∥ = s1(T ) ≥ s2(T ) ≥ · · · ≥ 0;
(S2) sm(S + T ) ≤ sm(S) + ∥T ∥ for every S ∈ B(X, Y );
(S3) sm(BT A) ≤ ∥B∥sm(T )∥A∥ for every A ∈ B(W, X ) and B ∈ B(Y, Z ), where W, Z are

Banach spaces;
(S4) sm(id : E → E) = 1 for every Banach space E with dim E ≥ m;
(S5) sm(T ) = 0 if rank T < m;

is called a strict s-number. Notable examples of strict s-numbers are the approximation
numbers am , the isomorphism numbers im , the Gelfand numbers cm , the Bernstein numbers
bm , the Kolmogorov numbers dm or the Mityagin numbers mm . For their definitions and
the difference between strict s-numbers and ‘standard’ s-numbers, we refer the reader to
[7, Chapter 5]. In this paper, we will only need the definition of the isomorphism numbers.
The mth isomorphism number im(T ) of T ∈ B(X, Y ) is defined as

im(T ) = sup{∥A∥
−1

∥B∥
−1

} (2.1)

where the supremum is taken over all Banach spaces G with dim(G) ≥ m and all bounded
linear operators A : Y → G, B : G → X such that AT B is the identity on G. The isomorphism
numbers are the smallest strict s-numbers [16, Theorem 3.4], that is,

sm(T ) ≥ im(T ) (2.2)

for every strict s-number s, for every T ∈ B(X, Y ), and for every m ∈ N.

4
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If T ∈ B(X, Y ), then its mth entropy number em(T ), m ∈ N, already defined in the
introductory section, satisfies

em(T ) = inf

⎧⎨⎩ε > 0 : there are y1, . . . , y2m−1 ∈ Y such that T (BX )

⊆

2m−1⋃
j=1

(
y j + εBY

)⎫⎬⎭ ,

where BX and BY are the closed unit balls of X and Y , respectively. Note that entropy numbers
are not (strict) s-numbers (e.g., property (S4) is violated [6, Chapter 2, Proposition 1.3]) even
though they possess similar properties. Through entropy numbers, we define the measure of
noncompactness β(T ) of T ∈ B(X, Y ) as

β(T ) = lim
m→∞

em(T ).

Note that the limit always exists because the sequence {em(T )}∞m=1 is nonincreasing. Further-
more, we have 0 ≤ β(T ) ≤ ∥T ∥, and the operator T is compact if and only if β(T ) = 0. We
say that the operator T is maximally noncompact if β(T ) = ∥I∥. Thanks to the monotonicity
of {em(T )}∞m=1, the operator T is maximally noncompact if and only if em(T ) = ∥T ∥ for every
m ∈ N.

A great deal of information on (strict) s-numbers and entropy numbers can be found in the
pioneering work of Pietsch [16,17] as well as, e.g., in books [5,6] and references therein.

Lastly, let us briefly recall the generalized p-trigonometric functions. For p ∈ (1, ∞), sinp
is defined on [0,

πp
2 ] as the inverse function to the increasing function

[0, 1] ∋ t ↦→

∫ t

0

(
1 − s p)− 1

p ds,

where

πp = 2
∫ 1

0

(
1 − s p)− 1

p ds.

We extend sinp to [−πp, πp] by defining sinp(t) = sinp(πp − t), t ∈
[πp

2 , πp
]
, and sinp(t) =

− sinp(−t), t ∈ [−πp, 0]. Finally, we extend sinp to the whole real line in such a way that the
resulting function is 2πp-periodic. The function sinp is continuously differentiable on R, and
its derivative is denoted by cosp. Note that sin2 = sin, cos2 = cos and π2 = π . The interested
reader can find more information on properties of the generalized p-trigonometric functions as
well as their connection with the theory of the p-Laplacian, e.g., in [7,12,14].

3. Noncompactness

Although the following proposition concerning the density of smooth compactly supported
functions in rearrangement-invariant spaces having absolutely continuous norms on open sets
Ω ⊆ Rn is folklore, the only reference that we could find is [10, Lemma 2.10], which deals
with the particular case Ω = R. For the reader’s convenience, we sketch a proof of the assertion
in full generality.

Proposition 3.1. Let Ω ⊆ Rn be a (nonempty) open set and let X (Ω ) be a rearrangement-
invariant space on Ω . If X (Ω ) has absolutely continuous norm, then smooth compactly
supported functions on Ω are dense in X (Ω ).

5
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Proof. Let u ∈ X (Ω ) \ {0}. Since X (Ω ) has absolutely continuous norm, bounded functions
supported in sets of finite measure are dense in X (Ω ) (e.g. [3, Chapter 1, Proposition 3.10 and
Theorem 3.13]). Therefore, we may assume, without loss of generality, that u is bounded on
Ω . Let ε > 0 be given. Set Ωk = Ω ∩ {x ∈ Rn

: |x | < k} for k ∈ N. Clearly, χΩ\Ωk → 0 as
k → ∞. Hence, since u has absolutely continuous norm in X (Ω ), there is k ∈ N such that

∥uχΩ\Ωk ∥X (Ω) <
ε

3
. (3.1)

Moreover, we may assume that Ωk ̸= ∅. Furthermore, since X (Ω ) has absolutely continuous
norm, there is δ > 0 such that

∥χE∥X (Ω) <
ε

6∥u∥L∞(Ω)
(3.2)

for every measurable E ⊆ Ω such that |E | < δ.
Thanks to Luzin’s theorem (recall that Ωk is bounded and locally compact and that u is a

bounded measurable function), there is a compact set F ⊆ Ωk and a continuous, compactly
supported function f ∈ Cc(Ωk) such that

u = f on F, (3.3)

sup
x∈Ωk

| f (x)| ≤ sup
x∈Ωk

|u(x)|, (3.4)

|Ωk \ F | < δ. (3.5)

Note that (3.5) together with (3.2) implies that

∥χΩk\F∥X (Ω) <
ε

6∥u∥L∞(Ω)
. (3.6)

Furthermore, since f is continuous and compactly supported in the open set Ωk , we can employ
a standard mollification argument to find a smooth compactly supported function g ∈ C∞

0 (Ωk)
such that

sup
x∈Ωk

| f (x) − g(x)| <
ε

3∥χΩk ∥X (Ω)
(3.7)

(note that 0 < ∥χΩk ∥X (Ω) < ∞ because Ωk has finite positive measure).
Finally, combining (3.1), (3.3), (3.4), (3.6) and (3.7), we arrive at

∥u − g∥X (Ω) ≤ ∥uχΩ\Ωk ∥X (Ω) + ∥uχΩk − f ∥X (Ω) + ∥ f − g∥X (Ω)

<
ε

3
+

2∥u∥L∞(Ωk )

6∥u∥L∞(Ω)
ε +

ε

3
≤ ε. □

Remark 3.2. Since the rearrangement invariance of X (Ω ) was not used at all, Proposition 3.1
is actually valid even when X (Ω ) is just a Banach function space, a function space defined
through a functional ϱ : M+(Ω ) → [0, ∞] that has all properties of a rearrangement-invariant
Banach function norm but the last one.

The following theorem shows that the Sobolev embedding W 1
0 X (D) ↪→ Y (D) on a strip-like

domain D is always maximally noncompact whatever the rearrangement-invariant spaces X (D)
and Y (D) are provided that the target space Y (D) has absolutely continuous norm.

Theorem 3.3. Let k ∈ {1, . . . , n − 1} and −∞ < q j < r j < ∞, j = 1, . . . , n − k. Set
D = Rk

×
∏n−k

j=1(q j , r j ) ⊆ Rn . Let X (D), Y (D) be rearrangement-invariant spaces on D.

6
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Assume that W 1
0 X (D) ↪→ Y (D). If Y (D) has absolutely continuous norm, then

em(W 1
0 X (D) ↪→ Y (D)) = ∥W 1

0 X (D) ↪→ Y (D)∥ for every m ∈ N,

that is, the embedding W 1
0 X (D) ↪→ Y (D) is maximally noncompact.

Proof. Throughout this proof, we denote the identity operator governing the embedding
W 1

0 X (D) ↪→ Y (D) by I . Suppose that there is m ∈ N such that em(I ) < ∥I∥. Let r, r̃ > 0 be
such that em(I ) < r < r̃ < ∥I∥. As r > em(I ), there are functions g j ∈ Y (D), j = 1, . . . , 2m−1,
such that

∀u ∈ W 1
0 X (D), ∥u∥W 1 X (D) ≤ 1, ∃ j ∈ {1, . . . , 2m−1

} : ∥u − g j∥Y (D) ≤ r. (3.8)

Furthermore, since (smooth) compactly supported functions are dense in Y (D) by Proposi-
tion 3.1, there are functions g̃ j ∈ C∞

0 (D) such that

∥g j − g̃ j∥Y (D) < r̃ − r for every j ∈ {1, . . . , 2m−1
}. (3.9)

For every l > 0, set Dl = (−l, l)k
×
∏n−k

j=1(q j , r j ). Since

∥I∥ = lim
l→∞

sup
u∈C∞

0 (Dl )
u ̸=0

∥u∥Y (D)

∥u∥W 1 X (D)

and the functions g̃ j are compactly supported in D, there is l > 0 such that

sup
u∈C∞

0 (Dl )
u ̸=0

∥u∥Y (D)

∥u∥W 1 X (D)
> r̃ (3.10)

and
2m−1⋃
j=1

spt g̃ j ⊆ Dl , (3.11)

where spt g̃ j denotes the support of g̃ j , that is, the closure of the set {x ∈ D : g̃ j (x) ̸= 0}.
Combining (3.10) with the translation invariance of the Y (D) and W 1 X (D) norms in the

first k-directions, which follows immediately from the rearrangement invariance of the X (D)
and Y (D) norms, we see that there is a function u ∈ C∞

0 (D̃l) where D̃l = (l, 3l)k
×
∏n−k

j=1(q j , r j )
such that ∥u∥W 1 X (D) = 1 and

∥u∥Y (D) > r̃ . (3.12)

Furthermore, since g̃ j are compactly supported in Dl owing to (3.11) and Dl ∩ D̃l = ∅, we
have g̃ j ≡ 0 on D̃l for every j = 1, . . . , 2m−1; consequently

∥
(
u − g̃ j

)
χD̃l

∥Y (D) = ∥uχD̃l
∥Y (D) = ∥u∥Y (D) > r̃ for every j = 1, . . . , 2m−1, (3.13)

in which we also used (3.12) and the fact that u is (compactly) supported in D̃l .
Finally, using (3.9) and (3.13), we see that

∥u − g j∥Y (D) ≥ ∥u − g̃ j∥Y (D) − ∥g̃ j − g j∥Y (D)

≥ ∥
(
u − g̃ j

)
χD̃l

∥Y (D) − ∥g̃ j − g j∥Y (D)

> r̃ − (r̃ − r ) = r

for every j = 1, . . . , 2m−1, which contradicts (3.8) (recall that ∥u∥W 1 X (D) = 1). Hence
em(I ) ≥ ∥I∥, and so em(I ) = ∥I∥. □

7
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Remark 3.4. Note that our choice of the norm on W 1 X (D) is immaterial in Theorem 3.3
and the theorem remains valid even when W 1 X (D) is endowed with any equivalent norm.
In particular, the assertion of the theorem is also true for the standard Sobolev embeddings
W 1,p

0 (D) ↪→ Lq (D) with either p ∈ [1, n) and q ∈
[

p,
np

n−p

]
or p ∈ [n, ∞) and q ∈ [p, ∞)

(cf. [1, Theorem 4.12]).

In the case when both domain and target space are the Lebesgue space L p, not only do we
know that the corresponding Sobolev embedding is maximally noncompact, but we also know
the exact value of the norm of the embedding.

Proposition 3.5. Let p ∈ (1, ∞). Let k ∈ {0, 1, . . . , n − 1} and −∞ < q j < r j < ∞,
j = 1, . . . , n − k. Set D = Rk

×
∏n−k

j=1(q j , r j ) ⊆ Rn . The norm of the embedding W 1,p
0 (D) ↪→

L p(D) satisfies

∥W 1,p
0 (D) ↪→ L p(D)∥ =

⎛⎝1 + π p
p (p − 1)

n−k∑
j=1

1
(r j − q j )p

⎞⎠−
1
p

. (3.14)

Proof. Since

∥W 1,p
0 (D) ↪→ L p(D)∥p

= sup
u∈W 1,p

0 (D)
u ̸=0

∥u∥
p
L p(D)

∥u∥
p
L p(D) + ∥ |∇u|ℓp∥

p
L p(D)

= sup
u∈W 1,p

0 (D)
u ̸=0

1

1 +
∥ |∇u|ℓp ∥

p
L p (D)

∥u∥
p
L p (D)

,

we clearly have that

∥W 1,p
0 (D) ↪→ L p(D)∥ =

⎛⎜⎝1 + inf
u∈W 1,p

0 (D)
u ̸=0

∥ |∇u|ℓp∥
p
L p(D)

∥u∥
p
L p(D)

⎞⎟⎠
−

1
p

. (3.15)

Let λ denote the infimum in (3.15). We shall show that

λ = π p
p (p − 1)

n−k∑
j=1

1
(r j − q j )p

. (3.16)

Assume that k > 0. For each l > 0, we set Dl = (−l, l)k
×
∏n−k

j=1(q j , r j ) and define the
function ul as

ul(x, y) =

⎛⎝ k∏
j=1

sinp

(πpx j

l

)⎞⎠⎛⎝n−k∏
j=1

sinp

(
πp(y j − q j )

r j − q j

)⎞⎠
for every (x, y) = (x1, . . . , xk, y1, . . . , yn−k) ∈ Dl , and extend it outside the rectangle Dl by
zero. Since ul ∈ W 1,p

0 (Dl), we have that ul ∈ W 1,p
0 (D). It follows from basic properties of the

p-trigonometric functions ([12], also [7, Chapter 2, (2.22), (2.23)]) and Fubini’s theorem that

∥ul∥
p
L p(D) =

(
2l
p

)k n−k∏
j=1

r j − q j

p
and

8
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∥ |∇ul |ℓp∥
p
L p(D) =

π
p
p

p′ pn−k−1

(
2l
p

)k
⎛⎝n−k∏

j=1

(r j − q j )

⎞⎠⎛⎝ k
l p

+

n−k∑
j=1

1
(r j − q j )p

⎞⎠ ,

whence

λ ≤ π p
p (p − 1)

⎛⎝ k
l p

+

n−k∑
j=1

1
(r j − q j )p

⎞⎠ .

Hence, since l > 0 was arbitrary, we obtain that

λ ≤ π p
p (p − 1)

n−k∑
j=1

1
(r j − q j )p

. (3.17)

Next, it is well known ([14, page 28], also [7, Theorem 3.3]) that

inf
v∈W 1,p

0 ((a,b))
v ̸=0

∥v′
∥

p
L p((a,b))

∥v∥
p
L p((a,b))

= π p
p

p − 1
(b − a)p

for every −∞ < a < b < ∞. (3.18)

Since smooth compactly supported functions are dense in W 1,p
0 (D), we have that

λ = inf
u∈C∞

0 (D)
u ̸=0

∥ |∇u|ℓp∥
p
L p(D)

∥u∥
p
L p(D)

.

Let u ∈ C∞

0 (D). Since the function (q j , r j ) ∋ t ↦→ u(x, y1, . . . , y j−1, t, y j+1, . . . , yn−k)
is in C∞

0 ((q j , r j )) for each j ∈ {1, . . . , n − k} and every fixed x ∈ Rk , yi ∈ (qi , ri ),
i ∈ {1, . . . , n − k} \ { j}, it follows from (3.18) that∫ r j

q j

⏐⏐⏐⏐∂u
∂t

(x, y1, . . . , y j−1, t, y j+1, . . . , yn−k)
⏐⏐⏐⏐p

dt

≥ π p
p

p − 1
(r j − q j )p

∫ r j

q j

⏐⏐u(x, y1, . . . , y j−1, t, y j+1, . . . , yn−k)
⏐⏐p dt.

Hence, thanks to Fubini’s theorem, ∥
∂u
∂y j

∥
p
L p(D) ≥ π

p
p

p−1
(r j −q j )p ∥u∥

p
L p(D) for every j ∈ {1, . . . , n−

k}. Therefore,

λ ≥ inf
u∈C∞

0 (D)
u ̸=0

(∑n−k
j=1

⏐⏐⏐ ∂u
∂y j

⏐⏐⏐p) 1
p


p

L p(D)

∥u∥
p
L p(D)

= inf
u∈C∞

0 (D)
u ̸=0

∑n−k
j=1 ∥

∂u
∂y j

∥
p
L p(D)

∥u∥
p
L p(D)

≥ π p
p (p − 1)

n−k∑
j=1

1
(r j − q j )p

,

which combined with (3.17) implies (3.16).
Finally, Eq. (3.14) follows from Eqs. (3.15) and (3.16).
The case where k = 0 is actually simpler and can be proved along the same lines, and so

we omit its proof. □
9
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Remark 3.6. By using the identity πp =
2π

p sin
(

π
p

) (e.g. [7, (2.7)]), the norm of the embedding

W 1,p
0 (D) ↪→ L p(D) can be expressed by means of the standard trigonometric functions as

∥W 1,p
0 (D) ↪→ L p(D)∥ =

(
1 + (p − 1)

(
2π

p sin
(

π
p

))p n−k∑
j=1

1
(r j − q j )p

)−
1
p

.

Corollary 3.7. Let p ∈ (1, ∞) and R =
∏n

j=1(q j , r j ) where −∞ < q j < r j < ∞. The norm
of the embedding W 1,p

0 (R) ↪→ L p(R) is equal to(
1 + (p − 1)

(
2π

p sin
(

π
p

))p n∑
j=1

1
(r j − q j )p

)−
1
p

and is attained by the function u defined as

u(x) =

n∏
j=1

sinp

(
πp(x j − q j )

r j − q j

)
, x ∈ R. (3.19)

Moreover, u is the unique positive maximizer up to a positive multiplicative constant.

Proof. The norm of the embedding is given by (3.14) with k = 0. Since a function u ∈ W 1,p
0 (R)

maximizes sup
u∈W 1,p

0 (R)
u ̸=0

∥u∥
p
L p (R)

∥u∥
p
L p (R)+∥ |∇u|ℓp ∥

p
L p (R)

if and only if it minimizes inf
u∈W 1,p

0 (R)
u ̸=0

∥ |∇u|ℓp ∥
p
L p (R)

∥u∥
p
L p (R)

,

the fact that the function defined by (3.19) is a positive maximizer follows immediately from
the proof of Proposition 3.5. The uniqueness (up to a positive multiplicative constant) of the
positive minimizer of the Rayleigh quotient

inf
u∈W 1,p

0 (D)
u ̸=0

∥ |∇u|ℓp∥
p
L p(R)

∥u∥
p
L p(R)

was proved in [2, Lemma 2.1]. □

Remark 3.8. It can routinely be shown that the extreme function for the Rayleigh quo-

tient inf
u∈W 1,p

0 (D)
u ̸=0

∥ |∇u|ℓp ∥
p
L p (R)

∥u∥
p
L p (R)

is the first eigenvalue of the pseudo-p-Laplacian operator with

Dirichlet boundary conditions, i.e.:

∆̃pu = λ̃p|u|
p−2u, with u = 0 on ∂ R, (3.20)

where

∆̃pu =

n∑
i=1

∂

∂xi

(⏐⏐⏐⏐ ∂u
∂xi

⏐⏐⏐⏐p−2
∂u
∂xi

)
.

Then it follows from Corollary 3.7 that the first eigenfunction for the Dirichlet problem (3.20)
for the pseudo-p-Laplacian operator on the domain R is the function defined by (3.19). The
corresponding first eigenvalue for the Dirichlet problem (3.20) is equal to

π p
p (p − 1)

n∑
j=1

1
(r j − q j )p

=

(
2π

p sin
(

π
p

))p

(p − 1)
n∑

j=1

1
(r j − q j )p

10
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(see (3.16) with k = 0). In the case where R is a cube, this was already observed in [2,
Example 2.4].

This coincides well with the classical result for p = 2. However, whether all eigenfunctions
for (3.20) on the domain R are of the form

n∏
j=1

sinp

(
πpk j (x j − q j )

r j − q j

)
, (x1, . . . , xn) ∈ R, for some k j ∈ N,

remains an open question if p ̸= 2.

Not only is the embedding W 1,p
0 (D) ↪→ L p(D) maximally noncompact, but also all its strict

s-numbers coincide with the norm of the embedding.

Theorem 3.9. Let p ∈ (1, ∞). Let k ∈ {1, . . . , n − 1} and −∞ < q j < r j < ∞,
j = 1, . . . , n − k. Set D = Rk

×
∏n−k

j=1(q j , r j ) ⊆ Rn . We have that

am(I ) = bm(I ) = cm(I ) = dm(I ) = im(I ) = mm(I )

= em(I ) = ∥I∥ =

⎛⎝1 + π p
p (p − 1)

n−k∑
j=1

1
(r j − q j )p

⎞⎠−
1
p (3.21)

for every m ∈ N, where I stands for the identity operator governing the embedding
W 1,p

0 (D) ↪→ L p(D).
In particular,

sm(I ) = ∥I∥ =

⎛⎝1 + π p
p (p − 1)

n−k∑
j=1

1
(r j − q j )p

⎞⎠−
1
p

for each strict s-number s and every m ∈ N, and the embedding W 1,p
0 (D) ↪→ L p(D) is

maximally noncompact.

Proof. The last two equalities in (3.21) were already proved in Theorem 3.3 and Proposi-
tion 3.5, respectively. As for the other equalities, it suffices to show that im(I ) ≥ ∥I∥ for all
m ∈ N, where im(I ) is the mth isomorphism number of I defined by (2.1), thanks to the fact
that the isomorphism numbers are the smallest strict s-numbers (see (2.2)) and property (S1).

Let ε > 0 be given. Since smooth compactly supported functions are dense in W 1,p
0 (D),

there are l > 0 and a function u ∈ C∞

0 (Dl) such that

∥u∥L p(D) > ∥I∥ − ε and ∥u∥W 1,p(D) = 1 (3.22)

where Dl = (−l, l)k
×
∏n−k

j=1(q j , r j ). For i = 1, 2, . . . , m, we define

Di
l = ((2i − 3)l, (2i − 1)l)k

×

n−k∏
j=1

(q j , r j )

and

ui (x, y) = u(x1 − 2(i − 1)l, . . . , xk − 2(i − 1)l, y), (x, y) ∈ Di
l ⊆ Rk

×Rn−k .

Clearly, for every i = 1, 2, . . . , m,

the rectangles Di
l are mutually disjoint and ui ∈ C∞

0 (Di
l ), (3.23)

11
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∥ |∇ui |ℓp∥L p(D) = ∥ |∇u|ℓp∥L p(D) and ∥ui∥L p(D) = ∥u∥L p(D). (3.24)

Now, we define B : ℓp(Rm) → W 1,p
0 (D) by

B({α j }
m
j=1) =

m∑
j=1

α j u j .

The operator B is a well-defined linear operator and ∥B∥ = 1. Indeed,
∑m

j=1 α j u j ∈ W 1,p
0 (D)

and

∥B({α j }
m
j=1)∥p

W 1,p(D)
=


m∑

j=1

α j u j


p

W 1,p(D)

=

m∑
i=1

|α j |
p
∥u j∥

p
W 1,p(D)

=

m∑
j=1

|α j |
p (3.25)

owing to (3.22), (3.23) and (3.24).
Next, note that the functions ui , i = 1, . . . , m, are linearly independent in L p(D) because

they have mutually disjoint supports. Hence, for each i ∈ {1, . . . , m}, the linear functionals
γ̃i : span{u1, . . . , um} → R defined as

γ̃i

⎛⎝ m∑
j=1

β j u j

⎞⎠ = βi

are well defined. Moreover,⏐⏐⏐⏐⏐⏐γ̃i

⎛⎝ m∑
j=1

β j u j

⎞⎠⏐⏐⏐⏐⏐⏐ = |βi | =
|βi |∥ui∥L p(D)

∥u∥L p(D)
≤

1
∥u∥L p(D)


m∑

j=1

β j u j


L p(D)

thanks to (3.23) and (3.24). Therefore, by virtue of the Hahn–Banach theorem, there are
functionals γi : L p(D) → R, i = 1, . . . , m, such that γi = γ̃i on span{u1, . . . , um} and

∥γi∥ ≤
1

∥u∥L p(D)
. (3.26)

We define A : L p(D) → ℓp(Rm) as

Av =

(
γ1

(
vχD1

l

)
, . . . , γm

(
vχDm

l

))
.

The operator A is clearly linear, for the functionals γi are linear. Furthermore

∥A∥ ≤
1

∥u∥L p(D)
. (3.27)

Indeed,

∥Av∥
p
ℓp(Rm ) =

m∑
i=1

⏐⏐⏐γi

(
vχDi

l

)⏐⏐⏐p
≤

1
∥u∥

p
L p(D)

m∑
i=1

∥vχDi
l
∥

p
L p(D) ≤

1
∥u∥

p
L p(D)

∥v∥
p
L p(D)

in view of (3.26) and (3.23).
Finally, upon observing that AI B is the identity on ℓp(Rm) because uiχDi

l
= ui for every

i ∈ {1, . . . , m} thanks to (3.23), we see that

im(I ) ≥ ∥A∥
−1

∥B∥
−1

≥ ∥u∥L p(D) > ∥I∥ − ε

owing to (3.25), (3.27) and (3.22), whence im(I ) ≥ ∥I∥ since ε > 0 may be chosen arbitrarily
small. □
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