
Minimizing the weighted number of tardy jobs on a single machine:
strongly correlated instances

Lukáš Hejla,b, Přemysl Šůchaa,∗, Antonín Nováka,b, Zdeněk Hanzáleka

a Czech Technical University in Prague
Czech Institute of Informatics, Robotics, and Cybernetics

Jugoslávských partyzánů 1580/3, 160 00, Prague, Czech Republic
b Czech Technical University in Prague

Faculty of Electrical Engineering
Technická 2, 166 27, Prague, Czech Republic

Abstract

This paper addresses a single machine scheduling problem minimizing the weighted number of tardy

jobs, where each job is characterized by processing time, due date, deadline, and weight. It is known

from the existing literature that so-called strongly correlated instances, i.e., instances where each

job has the weight equal to its processing time plus a constant, are significantly harder to solve

compared to instances without this relation. In this work, we extend an exact algorithm proposed by

Baptiste et al. [2] with the aim of solving the strongly correlated instances significantly faster. The

main improvement is the new integer linear programming model for strongly correlated instances

utilizing a decomposition according to the number of tardy jobs. Other proposed improvements are

tighter lower and upper bounds which can be applied to all types of instances. The best-known

algorithm proposed by Baptiste et al. [2] cannot solve all instances with 250 jobs to the optimum

within an hour. On the same hardware, our relatively simple improvements implemented into the

algorithm proposed by Baptiste et al. enable solving all examined strongly correlated instances to the

optimum within an hour for up to 5, 000 jobs and reduce the computational time on other instances

as well.

Keywords: scheduling, single machine, weighted number of tardy jobs, strongly correlated instances

∗Corresponding author
Email addresses: hejl.lukas@gmail.com (Lukáš Hejl), suchap@cvut.cz (Přemysl Šůcha), antonin.novak@cvut.cz

(Antonín Novák), zdenek.hanzalek@cvut.cz (Zdeněk Hanzálek)

Preprint submitted to Elsevier December 7, 2023

1. Introduction

In this paper, we deal with a particular case of instances of the scheduling problem which is

formally defined by a set of n jobs N = {1, . . . , n}. Each job j ∈ N is defined using four non-negative

integer parameters: processing time pj , weight wj , due date dj , and deadline d̃j , dj ≤ d̃j . A solution

to the problem is a schedule, i.e., assignment of the jobs to the start times such that the jobs do

not overlap while the completion of each job is not greater than its deadline d̃j . In addition, jobs

are scheduled without preemption. The goal is to find a feasible schedule minimizing
∑

wjUj where

Uj = 1 if the job is tardy, i.e., the completion time of the job is greater than its due date, and Uj = 0

otherwise. In Graham’s scheduling notation, the problem is denoted as 1|d̃j |
∑

wjUj and is known to

be NP-hard [11].

Potts and Van Wassenhove [19] have shown that certain classes of instances of 1||
∑

wjUj and

1|d̃j |
∑

wjUj are significantly harder to solve. The authors defined three classes of instances for

1||
∑

wjUj regarding the relationship between the weights and processing times as (i) strongly

correlated, (ii) weakly correlated, and (iii) uncorrelated. Strongly correlated instances are those where

wj = pj + C for some constant C ∈ N. The typical choice in the literature is C = 20 [19], and its

value is related to the distribution of processing times and due dates. Nevertheless, similar difficulty

of strongly correlated instances is observed for different values of C as well, which will be shown

later in this paper. For weakly correlated instances, an integer weight wj is drawn from the uniform

distribution wj ∼ [pj , pj + C], while uncorrelated instances do not have any specific relation between

pj and wj .

A real-world situation where one can often find a correlation between the weights and processing

times is the production. It is quite frequent that more complex orders have a longer duration and a

higher cost. The higher cost automatically implicates a higher penalty for late delivery. Another more

specific example is bandwidth sharing and scan scheduling in passive surveillance systems used to

detect, locate, and track air, ground, and naval targets. Such a system repetitively scans different

frequency bands in order to identify or track a target. The more important target, the more data

the system needs to acquire. Therefore, a frequency scanning (corresponding to a job) has a longer

duration for targets having higher priority and thus a more important due date, i.e., larger weight.

The hardness of strongly correlated instances of problem 1|d̃j |
∑

wjUj and 1||
∑

wjUj can be

illustrated on the state-of-the-art algorithm by Baptiste et al. [2]. Their algorithm is a very efficient

depth-first branch and bound procedure formulated such that it maximizes the weighted number of

early jobs which is equivalent to minimization of
∑

wjUj . The algorithm exploits a memory-efficient

method of solving the problem relaxation, i.e, the upper bound to the optimal solution, and a heuristic

solution based on an Integer Linear Programming (ILP) model, i.e. the lower bound. The results

in [2] show that this exact algorithm can solve uncorrelated instances with up to 30, 000 jobs with

deadlines and 50, 000 jobs in case of deadline-free variant. In contrast, the same algorithm is not able

to solve all strongly correlated instances with only 250 jobs to the optimum (3% of instances were not

solved to optimum within one hour). The same phenomenon was observed with strongly correlated

2

instance of Knapsack Problem [15, 18] as well.

Based on our experiments and observations, the limiting factor for solving uncorrelated and

correlated instances by the algorithm published in [2] is not the same. The principal limiting factor in

the case of uncorrelated instances is the memory limit. It is caused by the ILP model, whose size

grows quadratically with n. On the other hand, for strongly correlated instances, the CPU time of the

algorithm grows much faster with the size of the instance. In case of strongly correlated instances, the

algorithm requires much more CPU time even for smaller instances and eventually time outs, before

the memory becomes the limiting factor. Therefore, the algorithm is not capable of solving as large

instances as in the previous case, thus the size of memory is not limiting. Based on our analysis, there

are three reasons why the algorithm published in [2] cannot solve larger strongly correlated instances.

The principal reason of the algorithm’s relatively low performance is caused by job’s dominance

property (see Theorem 1 in Section 3). The property states that if certain conditions for a pair of jobs

are met, then the two jobs are either both early or both tardy. Thus, the property can significantly

reduce the number of jobs in the lower bound calculation, depending on how many pairs of jobs satisfy

the conditions. However, for the case of strongly correlated instances, the conditions of the job’s

dominance property translate into the requirement that the jobs have to have identical processing times

and weights, which is far more restrictive than in the case of uncorrelated instances. For this reason,

it is not possible to significantly reduce the number of jobs involved in the lower bound calculation,

and, hence, the ILP model used inside the algorithm tends to be larger (in terms of variables as well

as constraints). Therefore, even smaller instances remain intractable for the algorithm.

The second reason is similar to the previous one. The algorithm uses a variable-fixing technique

from the Integer Linear Programming domain to a priori decide whether some job is early or tardy [13].

The technique requires the knowledge of upper and lower bounds on the objective function. Even

though the gap between the bounds is mostly narrow, the variable-fixing technique does reduce far

fewer jobs than in the case of uncorrelated instances. Specifically, the number of jobs without a

decision in the root node before branching is on average four times higher in the case of correlated

instances and 1.5 times higher in the case of weakly correlated both w.r.t. uncorrelated instances.

Lastly, the higher complexity of strongly correlated instances can also be confirmed experimentally.

The same ILP model employed inside the algorithm from [2] used just alone with a state-of-the-art

solver can handle uncorrelated instances up to size 5, 000 jobs, whereas for the strongly correlated it

is less than 150 jobs (see our experiment in Section 5.2).

In this paper, we suggest several improvements to the state-of-the-art algorithm proposed by

Baptiste et al. [2] for problems 1||
∑

wjUj and 1|d̃j |
∑

wjUj . The suggested improvements are

relatively simple, but, as the experimental results show, their impact on the algorithm performance

is surprising. In this work, we focus particularly on the strongly correlated instances; however, the

results demonstrate appreciable improvement concerning the other two instance classes as well. We

present four main contributions:

1. We reformulate the ILP model from [2] to a model more suitable for strongly correlated instances.

3

The reformulated model, together with our problem decomposition, allows transforming an

instance having wj = pj + C (C is a non-negative constant) to several instances with wj = pj

for which empirical evidence suggests that they are much easier to solve (Section 4.1).

2. We provide improved lower and upper bounds to the problem. The new bounds allow to reduce

up to 20% more decision variables, depending on the instance parameters, using variable-fixing

techniques, and thus the algorithm is less memory demanding.

3. Our experimental results provide a detailed analysis of strongly correlated instances w.r.t.

parameter C which is fundamental for understanding the efficiency of the proposed algorithm.

In addition, we compare our implementation of the algorithm suggested in [2] with and without

the improvements suggested in this paper.

4. The proposed improvements led to a more efficient algorithm capable of solving more than 20 times

larger problem instances than ever before. In addition, the source code of our algorithm is freely

available at GitHub https://github.com/CTU-IIG/SingleMachine-NumberOfTardyJobs.

The paper is structured as follows. The next section provides an overview of existing work

addressing problems 1||
∑

wjUj and 1|d̃j |
∑

wjUj . Section 3 summarizes the essential parts of the

algorithm proposed by Baptiste et al. [2]. The core of the paper, i.e., the improvements of the

algorithm, are described in Section 4, while their assessments can be found in Section 5. The last

section concludes the work.

2. Literature review

The problem of minimizing the weighted number of tardy jobs on a single machine has been studied

for many years. For the deadline-free variant, i.e., 1||
∑

wjUj , Karp [9] proved that the problem is

NP-hard even if all jobs have a common due date. On the other hand, Hermelin et al. [8] showed

that if the job’s processing times or weights are equal to a constant, then the problem can be solved

in polynomial time. However, problem 1|d̃j |
∑

wjUj remains NP-hard even if all jobs have the same

weight, e.g., wj = 1 [11].

The deadline-free variant of the problem is studied in more papers. Lawler [12], Moore [16], and

Sanhi [20] propose dynamic programming-based algorithms with pseudopolynomial time complexity.

The subsequent papers use branch-and-bound based algorithms to find the exact solution. The first

paper based on this approach was published by Villarreal et al. [22]. The authors reduce the size of

the problem instances by the application of a dominance theorem, which enabled solving instances

having up to 50 jobs. Tang [21] introduces a new job’s dominance rules that allow the algorithm to

solve instances of up to 85 jobs. The first work that allowed to solve larger instances was published

by Potts and Van Wassenhove [19]. They describe an algorithm for solving a linear relaxation of

1||
∑

wjUj with time complexity O(n · log n) as a sequence of n fractional problems where k-th problem

considers first k − 1 due dates of jobs in the earliest due date order with the constraint for k-th job

being modified based on the solution of the previous problem. The lower bound obtained from the

4

relaxation is used inside a branch-and-bound algorithm which is able to solve instances with 1, 000

jobs. M’Hallah and Bulfin [17] show an algorithm that solves instances having up to 2, 500 jobs. It

uses Knapsack problem to compute a lower bound on the objective function of 1||
∑

wjUj .

Only a few papers study exact algorithms for the problem 1|d̃j |
∑

wjUj . One of the first exact

algorithms for this problem is introduced in [7]. The algorithm is based on the branch-and-bound

with dynamic programming for computing bounds and can solve instances having up to 300 jobs.

The state-of-the-art algorithm is introduced by Baptiste et al. [2]. The algorithm is a very efficient

branch-and-bound method formulated as a maximization problem (i.e., the weighted number of

early jobs). It uses variable-fixing techniques to reduce the problem size, and the authors also

introduce methods for computing very tight lower and upper bound. The upper bound is based on a

transformation to the maximum profit flow problem (a relaxation allowing preemption); the lower

bound computation uses a dominance theorem for reducing jobs set and an ILP model. The algorithm

solves uncorrelated instances for both problems 1|d̃j |
∑

wjUj and 1||
∑

wjUj assuming up to 30, 000

and 50, 000, respectively, but only 200 jobs in the case of correlated instances.

Recent research papers addressing the single machine total number of (weighted) tardy jobs

problem concentrate on more specific variants of this problem with the additional job’s characteristics.

Liu et al. [14] focus on a periodic maintenance (PM) problem denoted as 1|PM |
∑

Uj . For this

problem, they present an exact algorithm based on an improved branch-and-bound method with

effective lower bound and several dominance properties. They also show that this problem is

NP-hard in the strong sense. Wang et al. [23] developed two heuristic algorithms for the problem

1|pj,r = (1 + p[1] + p[2] + . . . + p[r−1])
a|
∑

Uj , denoting a single machine scheduling problem with time-

dependent learning effect. Both heuristics are capable of finding near-optimal solutions. The authors

also show an exact branch-and-bound algorithm for which they present lower bound and two dominance

properties. Paper [1] focuses on two problems 1|cos, prec|
∑

wjUj and Qm|cos, p = 1|
∑

wjUj , where

cos means common operation scheduling, i.e., the situation when jobs share operations. They formulate

both problems as the set covering problem with an exponential number of constraints and use the

branch-and-cut method to solve these formulations. Zhao and Yuan [24] present an improved algorithm

with time complexity O(n · log n) for a problem dealing with a trade-off between the number of tardy

jobs and the start time of a machine, denoted as 1||#(
∑

Uj , A). They also present a new algorithm

for solving problem 1||
∑

Uj , with time complexity O(n · log n).

For problem 1|rj |
∑

Uj , Briand and Ourari [5] developed an ILP model that assumes only a set

of dominant job sequences. The model does not guarantee the solution’s optimality, but it can be

used for computing tight upper and lower bounds. Laalaoui and M’Hallah [10] address a single

machine scheduling problem with machine unavailability periods and a common due date denoted

as 1, hm−1|nr − a, dj = d|
∑

wjUj . They use binary multiple knapsack problem to formulate the

problem, and show that some large instances can be easily solved with an off-the-shelf solver for binary

multiple knapsack problem. They also developed a heuristic based on the variable neighborhood

search technique for instances that are difficult for the solver.

5

3. Preliminaries

In this section, we summarize the fundamental properties of the scheduling problem and outline

the basic ideas of the state-of-the-art algorithm proposed by Baptiste et al. [2]. The authors propose

the algorithm which maximizes
∑

i∈N wi(1− Ui) =
∑

i∈N wi −
∑

i∈N wiUi, which is identical to the

minimization of the original objective
∑

i∈N wiUi.

An important property of problem 1|d̃j |
∑

wjUj is that its solution (i.e., a schedule) can be

expressed by a set of early jobs E ⊆ N with the meaning that each i ∈ E is completed before due

date di, i.e., Ui = 0 ⇐⇒ i ∈ E. If job i exceeds the due date in the solution, then i ∈ N \E and the

job is called a tardy job. The set E defines for each job its maximum completion time Di as

Di =

di if i ∈ E,

d̃i if i ∈ N \ E.

Therefore, for a given E, the problem 1|d̃j |
∑

wjUj reduces to 1|d̃j = Dj |−, which can be solved in a

polynomial time by sequencing jobs N in a non-decreasing order of their maximum completion times

Di.

The algorithm proposed in [2] is based on three essential components, which are an ILP model of

the problem, and two algorithms computing the upper and lower bound to the objective function.

The upper bound is based on a problem relaxation, and a heuristic algorithm computes the lower

bound. Additionally, their algorithm exploits two fundamental theorems capturing the structure of

1|d̃j |
∑

wjUj problem. The first theorem is a dominance theorem. It states that in an optimal schedule,

a job must be early (or tardy) if another job is early (or tardy) provided that certain conditions hold:

Theorem 1 ([2]). Let pi ≤ pj, di ≥ dj, d̃i ≤ d̃j and wi ≥ wj, and at least one inequality is strict.

Then,

• if job i is tardy, then job j must be tardy too,

• if job j is early, then job i must be early too.

The second theorem is the reduction theorem [19, 2], which is essential for reducing the size of an

instance. When the algorithm decides that job i is early or tardy, it implies that Di = di for early

jobs and Di = d̃i for tardy jobs. Then, the theorem defines a reduced problem represented by set

N ′ = N \ {i} as

p′j = pj , w
′
j = wj , j ∈ N ′

d′j =

min{dj , Di − pi} if dj ≤ Di,

dj − pi if dj > Di

j ∈ N ′,

6

d̃′j =

min{d̃j , Di − pi} if d̃j ≤ Di,

d̃j − pi if d̃j > Di

j ∈ N ′.

The theorem allows removing job i from N and solving the reduced problem, without losing the

optimal solution.

Theorem 2 ([2]). There exists a feasible schedule with early set E if and only if there exists a feasible

schedule with early set E′ = E \ {i} for the reduced problem.

Therefore, a job that is identified as early or tardy in the algorithm is excluded from N by

Theorem 2. Proofs of both theorems can be found in [2].

The algorithm proposed in [2] is a branch-and-bound algorithm with very efficient solution space

pruning. Assuming the objective maximizing
∑

i∈N wi(1− Ui), every partial solution of the branch-

and-bound algorithm is processed in the following way:

1. (Upper bound z̄). The algorithm solves the LP (Linear Programming) relaxation of the problem

using a transformation to maximum profit flow problem. The flow problem is called a relaxed

problem, and its solution defines the upper bound on the objective function of the original

problem denoted by z̄.

2. (Lower bound z). The heuristic computing z uses the dominance theorem (Theorem 1) to

transform the relaxed solution (obtained in the previous step) to a feasible solution. The jobs

that are not decided by Theorem 1 are resolved by the ILP formulation described in Section 3.1.

3. (Fixing of decisions). Subsequently, the algorithm uses variable fixing techniques from [13] to

decide whether i ∈ E or i ∈ N \ E. The efficiency of this technique depends on the tightness of

bounds z̄ and z.

4. (Branching). The algorithm selects job i for which it cannot decide whether it is early or tardy

and recursively branches with i ∈ E and i ∈ N \ E.

In the following two subsections, we summarize the key parts of the algorithm proposed in [2], i.e.,

the ILP problem formulation, and the algorithm computing the upper bound. Both parts are essential

for understanding our improvements described in Section 4.

3.1. ILP model

The ILP model solving problem 1|d̃j |
∑

wjUj described in paper [2] decides whether job i is in E

or N \E; therefore, it introduces a binary variable xi which equals to one if i ∈ E and zero otherwise.

The ILP formulation is

max
x

∑
i∈N

wixi, (1)

7

subject to

∑
i∈At

pi +
∑
i∈Bt

pixi ≤ t, t ∈ T, (2)

xi ∈ {0, 1}, i ∈ N. (3)

Instead of minimizing the weighted number of tardy jobs, the objective (1) maximizes the weighted

number of early jobs. To ensure that all jobs are completed before their deadlines and the jobs

belonging to set E are completed before their due dates, the ILP model contains constraints (2). The

constraints are defined over a set of time points T =
{
t : t = di ∨ t = d̃i, ∀i ∈ N

}
. For each t ∈ T ,

the constraint defines two sets of jobs At =
{
i ∈ N : d̃i ≤ t

}
and Bt =

{
i ∈ N : di ≤ t ∧ d̃i > t

}
, i.e.,

the set of jobs that must be completed before t and the set of jobs that will be early if they are

scheduled before t, respectively. The term
∑

i∈At
pi in (2) represents the sum of processing times of

jobs that must be completed within time t. Conversely,
∑

i∈Bt
pixi represents the sum of processing

times of jobs that can be completed within time t, i.e., before their due dates. All these jobs may not

be completed within time t because their deadlines are after t ∈ T .

As it is pointed out by authors in [2], and our experiments also confirm that, the issue with this

ILP formulation is that it is significantly memory-demanding for larger instances. For example, Gurobi

ILP solver consumes approximately 8 GB of memory for an instance containing 5, 000 jobs. This

is because the constraints (2) in the matrix form contain a large number of non-zero coefficients,

where the number of coefficients increases with O(n2). The size of the ILP model affects all kinds of

instances, but especially for strongly correlated instances, its computational complexity becomes a

significant problem. For example, Gurobi is unable to solve some of the instances with 150 jobs to the

optimum in a time limit of 1 hour.

3.2. Upper bound

The upper bound to the objective function (1) is a crucial part of the algorithm presented in [2],

where it is used across the whole algorithm. It is used in the branch-and-bound for cutting off

unfavorable solutions, in the variable-fixing technique reducing the number of jobs, and the solution

of the relaxed problem is also used in the heuristic which computes the lower bound.

The easiest way to obtain the upper bound would be to compute the LP relaxation of the ILP

formulation (1) – (3). However, such LP relaxation suffers from the same issue with the model size as

the ILP model. Therefore, the authors of [2] presented a compact linear relaxation formulated as the

maximum profit flow problem. The main advantage of this formulation is memory complexity, which

is O(n) compared to O(n2) of the LP relaxation. This formulation allowed solving the relaxation even

for instances with 50, 000 jobs, which would not be possible with the LP model.

The maximum profit flow problem is defined on a directed graph having two types of nodes, i.e.,

nodes that represent every job i ∈ N and nodes that represent every time point t ∈ T . Each node

corresponding to job i ∈ N is a source node injecting pi units of flow into the network. This flow can

8

be divided between two edges from node i to nodes corresponding to time points di and d̃i. Thus,

principal decision variables in this formulation are yi,di
and yi,d̃i

representing the portion of job i

which is executed before the due date and after the due date, respectively. The rest of the graph

models the capacity of the machine. For more details, we refer readers to paper [2]. The profit of

the edges associated with flow yi,di
is wi

pi
, while the profit gained from all other edges is 0. Then

the relaxed problem maximizes maxy

∑
i∈N

wi

pi
yi,di

, which is an upper bound to the objective (1) of

the ILP formulation. Since the algorithm proposed by Baptiste et al. does not use only the upper

bound but also the solution of the relaxed problem, in the rest of the paper, we use ŷi,di to denote the

optimal value of flow yi,di
.

4. Improved algorithm

We introduce three enhancements of the algorithm outlined in the previous section. The most

significant one is a modified ILP formulation, which admits a decomposition by the number of early

jobs, and we show a method for its efficient solution. The other two improvements relate to the

computation of lower bound z and upper bound z̄ on the objective. The first improvement can be

used for strongly correlated instances only while the other two can be applied to any class of instances.

4.1. Improved ILP model

We have performed extensive experiments with ILP formulation (1) – (3) to investigate whether

the C value affects the computational difficulty of an instance. Our experiments revealed an exception

that occurs for C = 0. Instances where C = 0 (i.e., wi = pi) are significantly easier than instances

that have C > 0, such as the widely used C = 20 (i.e., wi = pi + 20). Notice that when C = 0,

the problem becomes a generalized subset sum problem (for the common due date dj = D it is the

ordinary subset sum problem). The experiments described in Section 5.2 show that the time needed

for solving instances with C = 0 is similar to the time to solve uncorrelated instances. With this

observation, we propose a simple but yet powerful reformulation of the original model.

The new ILP model uses constraints (2) and (3) from the original ILP model. In addition, we

introduce variable e, which specifies the number of early jobs via constraint (6). Using variable e, one

can reformulate the original objective function for strongly correlated instances as maxx

∑
i∈N wixi =

maxx

∑
i∈N (pi + C)xi = maxx

(
C · e +

∑
i∈N pixi

)
. Then, the new formulation is stated as

max
e∈{0,...,n}

max
x

(
C · e +

∑
i∈N

pixi

)
, (4)

9

subject to

∑
i∈At

pi +
∑
i∈Bt

pixi ≤ t, t ∈ T, (5)

∑
i∈N

xi = e, (6)

xi ∈ {0, 1}, i ∈ N. (7)

The reformulated ILP model allows decomposition according to variable e. If we select some

specific value of variable e, then the objective function can be written as maxx

(∑
i∈N pixi + C · e

)
.

The expression C ·e is a constant, and therefore only maxx

∑
i∈N pixi can be considered. The constant

expression C · e is added after the solution is found. Thus, for each value of e and C > 0, we have an

ILP model essentially identical to the one with C = 0. The decomposed ILP model, called sub-problem,

differs in that it contains one extra constraint (6) to limit the number of early jobs.

One of the reasons why solving several sub-problems with objective max
∑

i∈N pixi is faster than

solving the original ILP model (1) – (3) follows from Theorem 1. Each sub-problem can be seen as

a problem instance where wi = pi ∀i ∈ N . Thus, the condition defined in Theorem 1 reduces to

di ≥ dj and d̃i ≤ d̃j . The reduced condition is typically satisfied for many more pairs of jobs. This

property, together with condition
∑

i∈N xi = e, makes the branching inside the ILP solver much

stronger on the sub-problems compared to the original formulation. Therefore, the optimal solution

can be found much faster.

4.2. Problem decomposition

When decomposing the new ILP model according to variable e, up to n + 1 sub-problems with

different numbers of early jobs may emerge. Then in the worst case, the algorithm needs to solve all

of them to ensure that the optimal solution for the original model is found. To reduce this number,

we define exact lower and upper bounds of the number of early jobs denoted e and ē, respectively.

Lower bound e is computed by solving problem 1|d̃j , w′j = pj |
∑

w′jUj with modified weights w′j .

Even though this problem is still NP-hard, it is computationally significantly less demanding than

the original problem (see Section 5.2).

Proposition 1. Let E= be the set of early jobs obtained by solving problem 1|d̃j , w′j = pj |
∑

w′jUj

and let E be the set of early jobs obtained by solving original problem 1|d̃j , wj = pj + C|
∑

wjUj.

Then, we have e = |E=| ≤ |E|.

Proof. To prove the proposition by contradiction, we assume |E=| > |E|. Since any solution of the

problem where w′j = pj is feasible for the original problem and vice versa, for the objective of the

original problem, we can write that

C|E|+
∑
i∈E

pixi ≥ C|E=|+
∑
i∈E=

pixi,

10

C(|E| − |E=|) ≥
∑
i∈E=

pixi −
∑
i∈E

pixi.

Using the assumption, we can see that the left-hand side of the equation is negative. On the other

hand, expression
∑

i∈E= pixi on the right-hand side is the optimal value of the objective function

assuming w′j = pj , and thus
∑

i∈E= pixi ≥
∑

i∈E pixi. Therefore the right side of the equation is

greater or equal to zero, which leads to a contradiction.

To strengthen the lower bound, problem 1|d̃j , w′j = pj |
∑

w′jUj is solved with a secondary objective

maximizing |E=| =
∑

i∈N xi. The secondary objective is not in contradiction with Proposition 1 since

it holds for any optimal solution of the problem with w′j = pj . An advantage of the lower bound e is

that it also provides a solution to the sub-problem for e = e, hence it is not necessary to solve this

sub-problem in the decomposition again.

Lower bound e can be further strengthened by imposing constraint
∑

i∈N w′ixi ≥ z, where z is

a lower bound on the optimal objective value (see Section 3 and Section 4.3). However, we have

observed that it significantly increases the computational time, and thus the improved algorithm does

not use it.

Upper bound ē is computed similarly. We use problem 1|d̃j |
∑

Uj , which is a relaxation of

the original problem. We denote the set of early jobs in its optimal solution as E1. As in the

case of the lower bound, this problem is still NP-hard, but it is computationally even easier than

1|d̃j , w′j = pj |
∑

w′jUj which is used to find e. Since the original problem and the relaxed problem

consider the same solution space and the relaxed problem maximizes the number of early jobs, its

solution E1 defines the upper bound as ē = |E1|. Both bounds are formulated and solved as an ILP.

With the values e and ē, we define a set K = {e, e+ 1, . . . , ē} of candidates for the number of early

jobs |E| in an optimal solution. Subsequently, for each e ∈ K, we solve the sub-problem with the

constraint
∑

i∈N xi = e. The optimal solution is then obtained as the maximum over all the optimal

solutions of the sub-problems with a fixed value of e ∈ K. The natural question is how large K can

occur. Unluckily, some instances yield |K| = n− 1. For example, consider an instance with a single

long job with processing time p1 = k and additional n− 1 short jobs with unit processing times, where

k > n− 1. If all due dates are set to k, then it can be seen that using the bounds on the number of

early jobs described above, we have that e = 1 and e = n− 1. However, we note that the bounds are

very tight in practice, thus the size of K is typically very small.

The efficiency of the decomposition algorithm is further improved by using the maximum value of

the objective function of sub-problems solved with previous values of e ∈ K as the cut off parameter,

i.e., the solver is told to search only for solutions with objectives better than the cut-off value. Hence,

the solver often searches significantly smaller solution space as many solutions are quickly cut off by a

previously found solution.

11

4.3. Improved lower bound z

The tightness of the lower bound z (and upper bound z̄ as well) has a crucial impact on the size

of the job set the branch-and-bound algorithm must handle. Both bounds are used in the variable

fixing technique, where together with the reduction theorem (Theorem 2) allow reducing the size of

N significantly. When it comes to solving strongly correlated instances of large sizes, the original

algorithm from [2] fixes significantly fewer variables than in the case of uncorrelated instances. The

smaller number of fixed variables results in extensive branching in the branch-and-bound method and

the explosion of run time. Hence, the goal is to improve the lower bound in order to fix more variables

and to prevent extensive branching.

The heuristic computing lower bound z proposed in [2] is based on the solution of the relaxed

problem outlined in Section 3.2. The heuristic does not use the objective of the relaxed solution z̄,

but it uses its solution ŷi,t. According to the solution, the set of jobs N is split into a set of jobs L

that will be optimally scheduled by (1) – (3), and the other jobs N \ L are scheduled heuristically

using the information from the solution of the relaxed problem. The quality of the heuristics depends

on the jobs selected into set L. In [2], they propose that all jobs with 0 < ŷj,d < pj are inserted into

set L. Furthermore, they include all jobs j that are tardy (i.e., ŷj,d = 0) for which there is no job i

dominating the job j by the dominance Theorem 1. Similarly, their set L includes all jobs j that are

early (i.e., ŷj,d = pj) for which there is no job i that is dominated by job j according to the same

theorem.

Our approach uses the same structure but has three main differences. The first one is that the jobs

in set L are scheduled by the decomposed ILP model from Section 4.1. The second one is a different

definition of L. We have carried out several experiments to investigate which jobs must be in L in

order to find a tighter lower bound. The results showed that the heuristic provides a much tighter

bound if the rule for adding early jobs to set L is modified to the following: set L includes all jobs

j that are early (i.e., ŷj,d = pj) for which there is no job i dominating the job j by the dominance

theorem. In other words, the condition was reversed. Set L also includes all jobs j that are tardy

(i.e., ŷj,d = 0) for which there is no job i dominating the job j by the dominance theorem and all jobs

with 0 < ŷj,d < pj , which is the same with the original heuristic. The last difference is that we do

not use the additional local search used in the original algorithm. In the original heuristics, the local

neighborhood is defined by expression
∑

i∈N |x̄i − x̃i| = 2, where x̄i represents an original solution,

and x̃i represents a new solution. This neighborhood allows swapping only pairs of jobs, where one

of them is early, and the other is tardy. In our improved heuristic, this local search rarely led to an

improvement regardless of the class of instances.

These adjustments resulted in a better lower bound heuristic providing a significantly tighter

bound than the original heuristic. Modifying this rule increases the size of set L by approximately

13%. The increase of the CPU time introduced by the larger job set L is compensated by leaving out

the additional local search.

12

4.4. Improved upper bound z̄

Another way to reduce the number of jobs with Theorem 2 and the variable fixing technique is to

improve the upper bound. In paper [2], the authors use continuous relaxation of the ILP model as the

upper bound. This relaxation is calculated using the formulation as the maximum profit flow problem.

Although this upper bound is relatively tight, we present its improvement by a limited branching

procedure.

In our approach, we first solve the problem relaxation (see Section 3.2). Then we tighten up

the obtained upper bound by branching on a selected job. In every node of this branch-and-bound

procedure, we select job i = argi′∈N min{d̃i′ : 0 < ŷi′,d < pi′}, i.e., a job with the smallest deadline

that is partly scheduled before the due date and partly after the due date in the relaxation. In case

of instances without deadlines, deadlines are substituted by due dates. For this job we assume two

cases: (i) the job is early (ŷi,di
= pi), and (ii) is tardy (ŷi,di

= 0). For each case, we solve the relaxed

problem while fixing flow yi,di
accordingly, and apply the branching procedure for each branch again.

The branching is repeated up to a small fixed depth of the branching tree. Finally, from all solutions

in the leaves of the limited branching tree, the algorithm selects the one with the highest objective

value. This solution is then used as a new upper bound z̄.

The limited branch-and-bound procedure selects jobs with the smallest deadline or due date (for

instances without deadlines) for two reasons. First, it is a computationally cheap rule, and second,

one can expect that the job with the earliest deadline (resp. the earliest due date) can have the most

significant impact on the objective function. Even though this method has increased the computational

complexity over solving just a single relaxation, overall, it pays off. The main reason is the same as in

the lower bound computation. The tighter lower and upper bounds we provide to the variable fixing

technique, the fewer nodes it is necessary to explore in the main branch-and-bound method. This is

advantageous, especially for strongly correlated instances, where a large number of explored nodes

often leads to time outs.

5. Experiments

This section’s principal aim is to compare the algorithm presented in this paper, further denoted

as decomp-sc, with the algorithm published in [2]. Moreover, the experiments documented below

illustrate the key properties of strongly correlated instances essential for the design of decomp-sc.

All experiments are performed on a computer containing two Intel Xeon E5-2690 v4 CPUs with

512 GB RAM running CentOS Linux 7. The algorithm of Baptiste et al. [2] was reimplemented

and executed on the same computer in order to obtain a comparison not affected by hardware

and solvers improvements. Our algorithm decomp-sc and algorithm from [2] are implemented in

C++, and both use Gurobi 8.1.1 ILP solver. For solving the minimum cost flow problem (maximum

profit flow problem), we use a dual ascent method RelaxIV [3], specifically its implementation

in the MCFClass project [6], which proved to be the most suitable for implementation of both

13

algorithms. The source code of our algorithm is freely available at GitHub https://github.com/

CTU-IIG/SingleMachine-NumberOfTardyJobs.

The algorithm was tested with the following parameters. The maximum depth of the branch-and-

bound tree in the improved procedure computing the upper bound was set to 8. The threshold for

solving instances directly by the ILP solver was 1.4 · 107 non-zero elements in the constraints matrix,

which is the same as used by [2], and it corresponds to instances with approximately 4, 000 jobs.

All the experiments described below assume time limit 3,600 seconds to solve a problem instance.

The ILP solver is allowed to use only a single physical CPU core. The reason why we limit the number

of CPU cores is that in paper [2] the algorithm was benchmarked on a computer with a single core as

well.

This section consists of five parts. First, we describe the way we generate benchmark instances.

Then, we analyze the computational complexity of strongly correlated instances, and we benchmark

ILP formulations, i.e., ILP formulation from [2] and the decomposed formulation from Section 4.1. Our

decomp-sc is compared with our implementation of the algorithm [2] in Section 5.3, and individual

improvements used in decomp-sc are benchmarked in the subsequent section. The last section

presents the experimental results on the heaviest problem instances defined in [2].

5.1. Instances generation

To compare the outcomes of our experiments with the paper [2], we generate instances using the

same method. The default value of C is 20, but some experiments use other values. For each job i,

the processing time pi is an integer randomly drawn from the interval [1, 100]. The weight for each

job is generated based on the instance type as follows:

• In the case of uncorrelated instances, for each job i, the weight wi is an integer randomly drawn

from interval [1, 100];

• In the case of weakly correlated instances with C = 20, for each job i, the weight wi is an integer

randomly drawn from interval [pi, pi + 20];

• In the case of strongly correlated instances with parameters C, each job i has its weight

wi = pi + C. If it is not stated otherwise, C = 20. This value is chosen for the comparability of

results with paper [2].

Furthermore, we define a set of parameters D = {0.1, 0.3, 0.5, 0.7, 0.9} which is used to create pairs

(u, v) ∈ D×D that meet condition u < v, which are used for generating due dates. Then, for each job

i, and the selected pair (u, v), its due date di is an integer randomly drawn from interval [P · u, P · v]

where P =
∑

i∈N pi. For instances in which jobs contain deadlines, deadline d̃i is an integer randomly

drawn from interval [di, P · 1.1].

The benchmark instances are created such that for the given n, there are always 20 randomly

generated instances for each pair (u, v), i.e., 200 instances for the given n. All generated instances

14

are guaranteed to be feasible. Feasibility of each generated instance assuming deadlines is tested by

omitting the objective function and solving the feasibility problem by the earliest deadline first rule.

Hence, infeasible instances are disregarded as in paper [2].

5.2. Performance of ILP models and the impact of parameter C

In this section, we analyze the performance of the original ILP model (1) – (3) and the decomposed

ILP model (4) – (7) proposed in this paper. The test are carried out on uncorrelated instances and

correlated instances with various C and the results are compared.

5.2.1. Performance of the original ILP model on uncorrelated and correlated instances

The experiments presented in this section analyze the run time required to solve the original

ILP model depending on the size of the instance and its type. We focus on three different types of

instances, which are uncorrelated instances, strongly correlated instances with a constant C = 20, and

strongly correlated instances with a constant C = 0. We present only results on instances without

deadlines since results on instances with deadlines are very similar.

CPU time unsolved
n avg [s] max [s] max† [s] out of 200 [-]

50 0.02 0.12 0.12 0
100 0.04 0.16 0.16 0
150 0.07 0.22 0.22 0
200 0.11 0.31 0.31 0
250 0.16 0.37 0.37 0
500 0.61 1.29 1.29 0
1000 2.84 5.90 5.90 0
2000 11.70 23.84 23.84 0
3000 27.04 61.93 61.93 0
4000 48.63 126.78 126.78 0
5000 77.62 206.10 206.10 0

(a) Uncorrelated instances.

CPU time unsolved
n avg [s] max [s] max† [s] out of 200 [-]

50 0.03 0.31 0.31 0
100 1.42 221.72 221.72 0
150 32.18 3600.00 915.59 1
200 174.81 3600.00 2905.94 6
250 444.72 3600.00 3254.45 22
500 579.14 3600.00 2485.67 30
1000 1153.90 3600.00 2323.80 63
2000 1123.90 3600.00 2853.58 61
3000 1328.78 3600.00 2914.73 72
4000 1642.63 3600.00 458.25 90
5000 1586.28 3600.00 211.35 86

(b) Strongly correlated instances with C = 20.

CPU time unsolved
n avg [s] max [s] max† [s] out of 200 [-]

50 0.01 0.09 0.09 0
100 0.03 0.13 0.13 0
150 0.05 0.16 0.16 0
200 0.09 0.23 0.23 0
250 0.13 0.33 0.33 0
500 0.42 1.21 1.21 0
1000 1.87 5.19 5.19 0
2000 7.45 12.68 12.68 0
3000 16.19 28.39 28.39 0
4000 28.97 74.33 74.33 0
5000 45.55 76.11 76.11 0

(c) Strongly correlated instances with C = 0.

Table 1: Results of the original ILP model solved with Gurobi 8.1.1.

The results related to the original ILP model are summarized in tables 1a – 1c. This data is

primarily used to demonstrate striking difficulty of strongly correlated instances with C = 20 compared

to uncorrelated instances. In each table, the unsolved column indicates the number of instances

15

where the solver did not prove the optimality of the solution within the time limit. Columns CPU

time avg and max indicate the average and maximum run time required to solve an instance to the

optimum. These columns include instances not solved to the optimum; therefore, column CPU time

max† represents the maximum run time over the optimally solved instances only.

Table 1a contains the measured results for uncorrelated instances. The results concerning strongly

correlated instances with C = 20 and C = 0 are shown in tables 1b and 1c, respectively. We can

observe a significant difference between the run time required to solve strongly correlated instances

with C = 20 in Table 1b and uncorrelated instances in Table 1a. One can also notice that for

uncorrelated instances, all instances up to 5, 000 jobs, are solved within the time limit. In contrast, for

strongly correlated instances with C = 20 with 150 jobs and more, we start to observe some instances

not being solved within the time limit. Conversely, if we compare the results in tables 1b and 1c, we

can observe that strongly correlated instances with C = 0 are easier to solve than both uncorrelated

and the strongly correlated instances with C > 0.

5.2.2. Impact of C on the performance of ILP models

To further analyze the influence of parameter C on the CPU time, we have performed an additional

experiment. We generated several sets of strongly correlated instances differing in the value of C

having 250 jobs with the distribution of processing times and due dates following the scheme given

in Section 5.1. Each set has 400 instances that were solved by the original ILP model and new

decomposed ILP model.

0.1

1

10

C
P

U
ti

m
e

[s
]

original ILP model
decomposed ILP model

100 101 102 103

390

395

400

C

so
lv

ed
[-
]

Figure 1: Average CPU time of the solved instances with respect to C value on strongly correlated instances with
n = 250.

The results are illustrated in Figure 1, showing the relation between C and the mean CPU time

over the solved instances. The number of solved instances for each value of C is depicted below. The

results related to the original ILP are depicted in blue, and results related to the decomposed ILP

are red. Due to the logarithmic scale on the x axis, the graph does not show the result for C = 0.

16

Nevertheless, results for C = 0 and C = 1 are very similar while the case with C = 0 is slightly faster.

An important observation one can make is that the CPU time starts sharply growing at C = 2 for the

original model. For example, the scenario with C = 5 requires 379 times more CPU time to solve the

instances compared to the scenario with C = 0. Also, note that the mean time tends to fluctuate,

as the mean is taken over the solved instances, thus it is susceptible to sudden deviations caused by

different number of solved instances. On the other hand, the decomposed ILP model shows consistent

runtimes across all tested C values, as expected. In addition, the decomposed ILP model has solved

all instances for any value of C.

To summarize, the performance of the ILP model illustrated in Table 1c and Figure 1 was the key

factor for the design of the decomposed ILP model, which is analyzed in the following subsection.

5.2.3. Comparison of ILP models

The last subsection compares the performance of the original ILP model with the new decomposed

one. The experiment demonstrates the capabilities of the decomposed ILP model exploiting the

decomposition without using other parts of the algorithm. This experiment was performed on strongly

correlated instances with C = 20, which are the same as the instances used to measure the results

for the original ILP model in Table 1b. The results of this experiment are displayed in Table 2. The

table shows that our decomposed ILP model can solve all these instances to optimum within 3, 600

seconds. On the contrary, the original ILP model does not solve all these instances to the optimum

within the time limit, even for the instances with 150 jobs. When we compare the ILP models’ results,

one can also notice that the run times are significantly shorter for our ILP model.

original ILP model [2] our ILP model
CPU time unsolved CPU time unsolved

n avg [s] max [s] out of 200 [-] avg [s] max [s] out of 200 [-]

50 0.03 0.31 0 0.10 0.40 0
100 1.42 221.72 0 0.17 1.17 0
150 32.18 3600.00 1 0.28 1.42 0
200 174.81 3600.00 6 0.37 3.00 0
250 444.72 3600.00 22 0.48 1.80 0
500 579.14 3600.00 30 1.82 11.65 0
1000 1153.90 3600.00 63 9.01 64.01 0
2000 1123.90 3600.00 61 46.79 423.79 0
3000 1328.78 3600.00 72 153.44 1173.26 0
4000 1642.63 3600.00 90 285.79 2567.63 0
5000 1586.28 3600.00 86 432.04 3022.05 0

Table 2: Strongly correlated instances with C = 20 solved using ILP models.

5.3. Comparison of complete algorithms

The next set of experiments focuses on comparing the original algorithm to our improved algorithm

decomp-sc. The experiments are primarily focused on strongly correlated instances with C = 20

with and without deadlines. Nevertheless, we also provide experimental results on weakly correlated

and uncorrelated instances.

17

In each table presented in this section, column Nodes indicates the number of visited nodes in the

branch-and-bound method. Column CPU time indicates the run time required to solve an instance.

Column Root gap indicates the relative difference between the objectives of the upper bound and

lower bound algorithms in the root node denoted zroot and zroot respectively. The value is computed

as zroot−zroot

zroot
· 100. The average (avg) and maximum values (max) of this indicator are in percentages.

Column unsolved indicates the number of instances that are not solved to the optimum within the

time limit of 3, 600 seconds. Finally, in tables 4a and 4b column Red. prob. size indicates the size of

the reduced instance, i.e., the number of jobs after the application of the reduction theorem in the

root node. This quantity is computed only over solved instances.

5.3.1. Strongly correlated instances with deadlines

The first part of the experiments is focused on strongly correlated instances with deadlines. Tables

3a and 3b summarize the results of experiments focused on the relationship between the size of the

instance and the time required to find the optimal value for both algorithms.

From the results in tables 3a and 3b, it can be seen that the original algorithm has difficulties to

solve to optimality all strongly correlated instances with 250 jobs. On the other hand, decomp-sc can

solve to optimality all instances having up to 5, 000 jobs and most of the instances with 6, 000 jobs.

For the larger instances, decomp-sc algorithm solves significantly more instances than the original

algorithm.

Comparing the results in tables 4a and 4b, it is apparent that instances with parameters (0.1, 0.3)

and (0.1, 0.5) are the most difficult ones. Hence, most of the unresolved instances come from these

two pairs of parameters. This behavior is in line with the result of [2], where this phenomenon was

observed for uncorrelated and weakly correlated instances as well. On those instances, decomp-sc has

significantly fewer unsolved instances compared to the original one, and its CPU time is considerably

lower. In some cases, Red. prob. size is larger for decomp-sc than for the original algorithm. This is

caused by a different number of solved instances for each algorithm.

The difficult instances with parameters (0.1, 0.3) and (0.1, 0.5) also have their root gap larger than

the other pairs, and as a consequence of this, there is little ability to reduce the instance size by the

variable fixing technique. The larger number of unfixed variables also leads to a large number of nodes

being visited in the branch-and-bound method because the instances cannot be reduced to the size,

which can be solved directly by the ILP solver.

5.3.2. Strongly correlated instances without deadlines

The experiments with strongly correlated instances with deadlines are provided in the Online Ap-

pendix. The absence of deadlines makes the ILP model smaller than in the case with deadlines,

which leads to a smaller number of instances unsolved within the time limit. The results show that

decomp-sc algorithm solved all instances of up to 6, 000 jobs and also reduced the average solving

time for them. In contrast, the original algorithm did not solve all the instances with 2, 000 jobs.

18

unsolved CPU time Nodes Root gap
n out of 200 [-] avg [s] max [s] avg [-] max [-] avg [%] max [%]

150 0 1.18 98.79 1.00 1.00 0.1901 0.8330
200 0 3.56 353.49 1.00 1.00 0.1528 0.6929
250 6 131.15 3600.00 1.00 1.00 0.1243 0.4853
300 4 74.67 3600.00 1.00 1.00 0.0938 0.4895
350 6 126.28 3600.00 1.00 1.00 0.0820 0.3251
400 5 111.18 3600.00 1.00 1.00 0.0687 0.4350
450 5 119.28 3600.00 1.00 1.00 0.0655 0.3495
500 9 176.88 3600.00 1.00 1.00 0.0579 0.2826
600 14 261.42 3600.00 1.00 1.00 0.0484 0.2559
700 16 294.11 3600.00 1.00 1.00 0.0425 0.1868
800 17 321.06 3600.00 1.00 1.00 0.0347 0.1489
900 18 364.62 3600.00 1.00 1.00 0.0310 0.1348
1000 18 330.91 3600.00 1.00 1.00 0.0284 0.1196
2000 29 558.35 3600.00 1.00 1.00 0.0140 0.0789
3000 47 867.64 3600.00 1.00 1.00 0.0092 0.0345
4000 44 849.17 3600.00 1.00 1.00 0.0066 0.0299
5000 47 875.12 3600.00 1.06 7.00 0.0053 0.0239
6000 49 918.11 3600.00 5.96 477.00 0.0044 0.0150
7000 68 1249.09 3600.00 42.23 2236.00 0.0038 0.0215
8000 71 1318.14 3600.00 60.98 1921.00 0.0033 0.0132
9000 97 1775.35 3600.00 114.42 1987.00 0.0031 0.0135
10000 103 1870.18 3600.00 141.26 2696.00 0.0027 0.0103

(a) Results of the original algorithm.

unsolved CPU time Nodes Root gap
n out of 200 [-] avg [s] max [s] avg [-] max [-] avg [%] max [%]

1000 0 1.57 16.15 1.00 1.00 0.0255 0.1087
2000 0 3.93 46.52 1.00 1.00 0.0133 0.0604
3000 0 7.38 48.37 1.00 1.00 0.0090 0.0357
4000 0 14.33 332.31 1.00 1.00 0.0067 0.0297
5000 0 17.53 94.21 1.05 5.00 0.0053 0.0239
6000 10 218.03 3600.00 20.84 1165.00 0.0045 0.0176
7000 32 598.27 3600.00 55.66 1540.00 0.0038 0.0148
8000 38 733.45 3600.00 89.36 1128.00 0.0033 0.0172
9000 64 1189.44 3600.00 140.18 1444.00 0.0030 0.0122
10000 68 1255.93 3600.00 164.66 2007.00 0.0027 0.0103

(b) Results of decomp-sc.

Table 3: Strongly correlated instances with C = 20 and deadlines.

19

unsolved Red. prob. size CPU time Nodes Root gap
u v out of 200 [-] avg [-] max [-] avg [s] max [s] avg [-] max [-] avg [%] max [%]

0.1 0.3 8 3498.28 5241 1487.76 3600.00 7.75 98.00 0.0115 0.0150
0.1 0.5 16 2675.45 4257 2893.31 3600.00 1.10 3.00 0.0057 0.0088
0.1 0.7 16 1916.33 3056 2990.03 3600.00 1.00 1.00 0.0040 0.0083
0.1 0.9 4 1256.39 2222 743.56 3600.00 1.00 1.00 0.0024 0.0052
0.3 0.5 1 2994.40 5213 224.44 3600.00 25.90 477.00 0.0049 0.0097
0.3 0.7 2 2753.11 4256 377.63 3600.00 1.15 4.00 0.0038 0.0070
0.3 0.9 0 1405.53 2757 7.64 16.61 1.00 1.00 0.0025 0.0053
0.5 0.7 1 2710.90 4811 247.01 3600.00 18.70 353.00 0.0034 0.0062
0.5 0.9 0 2034.05 3054 9.49 16.52 1.00 1.00 0.0029 0.0048
0.7 0.9 1 3035.85 4168 200.28 3600.00 1.00 1.00 0.0037 0.0052

(a) Results of the original algorithm.

unsolved Red. prob. size CPU time Nodes Root gap
u v out of 200 [-] avg [-] max [-] avg [s] max [s] avg [-] max [-] avg [%] max [%]

0.1 0.3 4 3376.85 5392 844.67 3600.00 96.75 1165.00 0.0113 0.0176
0.1 0.5 4 3416.40 4707 808.24 3600.00 68.75 464.00 0.0066 0.0107
0.1 0.7 0 2460.90 3666 42.55 308.54 1.00 1.00 0.0042 0.0077
0.1 0.9 0 1298.21 2363 9.24 16.27 1.00 1.00 0.0024 0.0052
0.3 0.5 1 2940.85 5213 221.73 3600.00 22.15 406.00 0.0045 0.0087
0.3 0.7 0 2698.16 4115 18.99 36.62 1.00 1.00 0.0034 0.0063
0.3 0.9 0 1490.44 2757 8.53 20.14 1.00 1.00 0.0024 0.0051
0.5 0.7 1 2617.60 4811 196.16 3600.00 14.70 275.00 0.0032 0.0062
0.5 0.9 0 2034.05 3054 11.49 18.50 1.00 1.00 0.0029 0.0048
0.7 0.9 0 3027.05 4168 18.70 31.28 1.00 1.00 0.0037 0.0052

(b) Results of decomp-sc.

Table 4: Strongly correlated instances with C = 20 and deadlines with 6000 jobs.

Instances above 6, 000 jobs are equally hard for both algorithms in terms of the number of solved

instances and the average solving time.

5.3.3. Weakly correlated and uncorrelated instances with deadlines

A detailed comparison of the original algorithm and decomp-sc on weakly correlated and un-

correlated instances with deadlines is provided in the Online Appendix. This section only provides

conclusions following from the results. Both algorithms solved all weakly correlated instances up to

the size of 15, 000 jobs, while decomp-sc needs about a half of the CPU time on average. Concerning

uncorrelated instances, both algorithms can solve instances with up to 30, 000 jobs. Algorithm

decomp-sc reduced the needed CPU time by about 19%.

When one compares the results for uncorrelated, weakly correlated, and strongly correlated

instances, there are significant differences in the difficulty of solving these instances that are dependant

on the type of the instance. Differences in difficulty between types of instances are mainly due to

the reduction of the size of instances by variable-fixing techniques. For strongly correlated instances,

fewer jobs can be reduced than for uncorrelated and weakly correlated instances.

20

unsolved CPU time Nodes Root gap
n out of 200 [-] avg [s] max [s] avg [-] max [-] avg [%] max [%]

1000 0 1.57 16.15 1.00 1.00 0.0255 0.1087
2000 0 3.93 46.52 1.00 1.00 0.0133 0.0604
3000 0 7.38 48.37 1.00 1.00 0.0090 0.0357
4000 0 14.33 332.31 1.00 1.00 0.0067 0.0297
5000 0 17.53 94.21 1.05 5.00 0.0053 0.0239
6000 10 218.03 3600.00 20.84 1165.00 0.0045 0.0176
7000 32 598.27 3600.00 55.66 1540.00 0.0038 0.0148
8000 38 733.45 3600.00 89.36 1128.00 0.0033 0.0172
9000 64 1189.44 3600.00 140.18 1444.00 0.0030 0.0122
10000 68 1255.93 3600.00 164.66 2007.00 0.0027 0.0103

(a) Results of decomp-sc with all improvements.

unsolved CPU time Nodes Root gap
n out of 200 [-] avg [s] max [s] avg [-] max [-] avg [%] max [%]

1000 0 2.16 27.70 1.00 1.00 0.0290 0.1196
2000 0 5.14 38.66 1.00 1.00 0.0144 0.0789
3000 0 9.51 71.71 1.00 1.00 0.0096 0.0357
4000 0 18.22 396.51 1.00 1.00 0.0072 0.0309
5000 0 21.50 135.03 1.06 7.00 0.0056 0.0246
6000 10 225.18 3600.00 19.46 847.00 0.0047 0.0176
7000 34 645.68 3600.00 70.31 2019.00 0.0041 0.0215
8000 40 786.65 3600.00 108.10 1839.00 0.0036 0.0172
9000 68 1252.85 3600.00 151.71 1842.00 0.0033 0.0135
10000 72 1337.61 3600.00 184.90 2553.00 0.0029 0.0115

(b) Results of decomp-sc only with the decomposed ILP solver.

unsolved CPU time Nodes Root gap
n out of 200 [-] avg [s] max [s] avg [-] max [-] avg [%] max [%]

1000 0 2.35 26.72 1.00 1.00 0.0258 0.1087
2000 0 5.22 46.95 1.00 1.00 0.0133 0.0604
3000 0 9.09 53.50 1.00 1.00 0.0091 0.0357
4000 0 18.10 397.19 1.00 1.00 0.0069 0.0307
5000 0 21.99 137.00 1.05 5.00 0.0054 0.0246
6000 10 224.09 3600.00 16.95 636.00 0.0045 0.0176
7000 33 619.98 3600.00 55.72 1288.00 0.0039 0.0148
8000 38 742.92 3600.00 69.95 792.00 0.0034 0.0172
9000 64 1197.32 3600.00 116.41 1165.00 0.0031 0.0127
10000 69 1287.62 3600.00 136.38 1605.00 0.0028 0.0115

(c) Results of decomp-sc only with the improved upper bound and decomposed ILP model.

unsolved CPU time Nodes Root gap
n out of 200 [-] avg [s] max [s] avg [-] max [-] avg [%] max [%]

1000 0 1.72 16.98 1.00 1.00 0.0288 0.1196
2000 0 3.86 38.87 1.00 1.00 0.0143 0.0789
3000 0 7.37 68.66 1.00 1.00 0.0095 0.0357
4000 0 13.96 332.87 1.00 1.00 0.0070 0.0299
5000 0 16.79 92.25 1.06 7.00 0.0055 0.0239
6000 10 216.26 3600.00 26.48 1997.00 0.0047 0.0176
7000 33 618.86 3600.00 77.28 3196.00 0.0040 0.0215
8000 40 773.41 3600.00 150.09 2461.00 0.0035 0.0172
9000 67 1246.16 3600.00 204.26 2614.00 0.0032 0.0135
10000 71 1309.17 3600.00 248.40 3557.00 0.0028 0.0103

(d) Results of decomp-sc with improved lower bound and decomposed ILP model.

Table 5: Individual improvements in decomp-sc on the strongly correlated instances with C = 20 and deadlines.

21

5.4. Comparison of individual improvements

Experiments in subsequent sections focus on comparing each improvement of decomp-sc with

the original algorithm on strongly correlated instances with C = 20. The same instances with

deadlines used in the previous section are utilized for the experiments described below. Comparison

of the algorithm with all improvements (Table 5a) and the algorithm using only the decomposed ILP

model (Table 5b) shows that the decomposed ILP model has a major impact on the performance of

decomp-sc. Both variants are able to solve all instances with 5, 000 jobs, while a significant difference

is noticeable only on larger instances.

The impact of the improved upper bound on decomp-sc algorithm is illustrated in Table 5c.

When we compare results of decomp-sc with and without the improved upper bound in tables 5c

and 5b, it can be observed that tighter upper bound leads to a significant reduction of the average

number of visited nodes. This behavior is caused by a smaller root gap, which leads to a reduction

of more jobs in the instance and also to sooner termination of the branch-and-bound method. It is

also possible to see that the average time needed to solve an instance is reduced, even though the

improved upper bound’s computation requires more time than the original upper bound computation.

The other consequence of the improved upper bound is a few extra solved instances.

When we compare the performance of the algorithm with the decomposed ILP and the algorithm

that also uses the improved lower bound (tables 5b and 5d respectively), it can be observed that the

improved lower bound has a smaller root gap compared to the case without this improvement. As a

result of smaller root gap, the average time required to solve the instance is smaller than without this

improvement, and also, the number of solved instances is slightly higher than without this improvement.

Since the original lower bound is relatively tight, our improved one results in just a relatively small

improvement in the number of solved instances. The increased number of nodes visited is due to the

improved lower bound computation omitting the local search, which in some cases reduces the time

required to calculate the bound. Secondly, it is also because the improved lower bound results in a

different set of jobs to be solved by the ILP solver than the original lower bound.

In summary, when we compare results in tables 5a, 5b, 5c and 5d, it can be seen that the most

notable improvement is the decomposed ILP model, which allows instances up to 5, 000 jobs to be

solved to the optimality. The next important improvement is the upper bound heuristic, which also

enables solving more instances. For a detailed analysis of the improved lower and upper bounds, see

the Online Appendix.

5.5. The heaviest strongly correlated instances

The authors of the paper [2] pointed out a special type of strongly correlated instances (wi = pi+20)

that have only two different due date values for all the jobs. They refer to them as to the heaviest

strongly correlated instances, and according to their results, these instances prove to be the most

difficult ones among the strongly correlated ones. They also give an example of such instance with

200 jobs, that none of the ILP solvers was able to solve within 3, 600 seconds by that time. However,

22

the current solvers are much more efficient, and, e.g., ILP solver Gurobi 8.1.1 can solve their example

instance in less than 7 seconds (even with their original model).

CPU time unsolved
n avg [s] max [s] out of 200 [-]

50 0.01 0.13 0
100 0.14 24.18 0
150 26.71 3600.00 1
200 36.33 3600.00 2
250 54.05 3600.00 3
500 36.04 3600.00 2
1000 234.09 3600.00 13
2000 283.02 3600.00 15
3000 216.05 3600.00 12
4000 198.25 3600.00 11
5000 198.10 3600.00 11

(a) Original ILP model.

CPU time unsolved
n avg [s] max [s] out of 200 [-]

50 0.06 0.11 0
100 0.06 0.13 0
150 0.07 0.17 0
200 0.05 0.11 0
250 0.06 0.10 0
500 0.06 0.10 0
1000 0.08 0.25 0
2000 0.09 0.21 0
3000 0.11 0.57 0
4000 0.14 0.84 0
5000 0.15 0.30 0

(b) Decomposed ILP model.

Table 6: Results for the strongly correlated instances with C = 20 with two due dates values.

Based on this observation, we performed an additional experiment comprising also larger instances

than 200 jobs with two due date values. In this experiment, we compared the original ILP model

with our decomposed ILP model on these heaviest strongly correlated instances. The results are

summarized in tables 6a and 6b. From the results, it can be seen that the original model cannot solve

all instances within the time limit of 3, 600 seconds, even for instances with just 150 jobs. On the

other hand, our decomposed ILP model has no difficulties solving all instances with 5, 000 jobs within

the same time limit. Moreover, it can also be observed that our decomposed ILP model has relatively

small differences between average and maximum CPU time, indicating consistent run time for the

heaviest correlated instances compared to the original ILP model.

6. Conclusion

This paper studies problem 1|d̃j |
∑

wjUj with the focus on a class of instances known as strongly

correlated. The main feature of these instances is that they restrict the relation between processing

times of jobs and their weights as wj = pj + C with C > 0. It was a well-documented fact that these

represent the most difficult instances to solve with the existing approaches. The results presented in

this paper are founded on an empirical observation related to the strongly correlated instances with

C = 0. The results showed that this particular type of instances could be solved even faster than

uncorrelated instances using a contemporary ILP solver. Based on this observation, we proposed an

original ILP model based on a decomposition according to the number of early jobs. Essentially, the

solution of a single instance with C > 0 is transformed into a sequence of problems with C = 0. The

decomposed model was used in the algorithm proposed in [2], and together with improved lower and

upper bounds, also described in our work, we were able to solve radically larger strongly correlated

instances, and we reduced the computational time on other classes of instances as well.

23

Future research should address other scheduling problems, such as 1||
∑

wjTj , and investigate

whether there are also classes of instances that are much harder to solve. The study of such classes may

point out weaknesses of the state-of-the-art approaches and push the present limits further. Moreover,

our experiments indicate the current bottleneck of our algorithm lies in the computation of the lower

bound. Hence, the design a new heuristic, such as parallel tabu search algorithm [4], producing results

with the same quality but in less time might unlock the solution for even larger instances.

Acknowledgements

This work was supported by the European Regional Development Fund under the project

AI&Reasoning (Reg. No. CZ.02.1.01/0.0/0.0/15_003/0000466).

References

[1] Arbib, C., Felici, G., and Servilio, M. Common operation scheduling with general processing

times: A branch-and-cut algorithm to minimize the weighted number of tardy jobs. Omega 84

(2019), 18–30.

[2] Baptiste, P., Della Croce, F., Grosso, A., and T’kindt, V. Sequencing a single machine

with due dates and deadlines: an ILP-based approach to solve very large instances. Journal of

Scheduling 13, 1 (2010), 39–47.

[3] Bertsekas, D. P., and Tseng, P. Relax-iv: A faster version of the relax code for solving min-

imum cost flow problems. In Research report. Massachusetts Institute of Technology, Laboratory

for Information and and Decision Systems, 1994, pp. 1–18.

[4] Bożejko, W., Gnatowski, A., Pempera, J., and Wodecki, M. Parallel tabu search for the

cyclic job shop scheduling problem. Computers & Industrial Engineering 113 (2017), 512–524.

[5] Briand, C., and Ourari, S. Minimizing the number of tardy jobs for the single machine

scheduling problem: Mip-based lower and upper bounds. RAIRO-Operations Research-Recherche

Opérationnelle 47, 1 (2013), 33–46.

[6] Frangioni, A., and Gentile, C. The MCFClass project.

http://www.di.unipi.it/optimize/Software/MCF.html. Accessed: 09 January 2020 (2001).

[7] Hariri, A., and Potts, C. Single machine scheduling with deadlines to minimize the weighted

number of tardy jobs. Management Science 40, 12 (1994), 1712–1719.

[8] Hermelin, D., Karhi, S., Pinedo, M., and Shabtay, D. New algorithms for minimizing the

weighted number of tardy jobs on a single machine. Annals of Operations Research (2018), 1–17.

[9] Karp, R. M. Reducibility among combinatorial problems. In Complexity of computer computa-

tions. Springer, 1972, pp. 85–103.

24

[10] Laalaoui, Y., and M’Hallah, R. A binary multiple knapsack model for single machine

scheduling with machine unavailability. Computers & Operations Research 72 (2016), 71–82.

[11] Lawler, E. L. Scheduling a single machine to minimize the number of late jobs. Tech. Rep.

UCB/CSD-83-139, EECS Department, University of California, Berkeley, Oct 1983.

[12] Lawler, E. L., and Moore, J. M. A functional equation and its application to resource

allocation and sequencing problems. Management Science 16, 1 (1969), 77–84.

[13] Linderoth, J. T., and Savelsbergh, M. W. P. A computational study of search strategies

for mixed integer programming. INFORMS Journal on Computing 11, 2 (1999), 173–187.

[14] Liu, M., Wang, S., Chu, C., and Chu, F. An improved exact algorithm for single-machine

scheduling to minimise the number of tardy jobs with periodic maintenance. International Journal

of Production Research 54, 12 (2016), 3591–3602.

[15] Martello, S., and Toth, P. Knapsack Problems: Algorithms and Computer Implementations.

John Wiley & Sons, Inc., New York, NY, USA, 1990.

[16] Moore, J. M. An n job, one machine sequencing algorithm for minimizing the number of late

jobs. Management science 15, 1 (1968), 102–109.

[17] M’Hallah, R., and Bulfin, R. Minimizing the weighted number of tardy jobs on a single

machine. European Journal of Operational Research 145, 1 (2003), 45–56.

[18] Pisinger, D. Where are the hard knapsack problems? Computers & Operations Research 32, 9

(2005), 2271 – 2284.

[19] Potts, C. N., and Van Wassenhove, L. Algorithms for scheduling a single machine to

minimize the weighted number of late jobs. Management Science 34, 7 (1988), 843–858.

[20] Sahni, S. K. Algorithms for scheduling independent tasks. Journal of the ACM (JACM) 23, 1

(1976), 116–127.

[21] Tang, G. A new branch and bound algorithm for minimizing the weighted number of tardy jobs.

Annals of Operations Research 24, 1 (1990), 225–232.

[22] Villarreal, F. J., and Bulfin, R. L. Scheduling a single machine to minimize the weighted

number of tardy jobs. IIE Transactions 15, 4 (1983), 337–343.

[23] Wang, Z., Wei, C.-M., and Sun, L. Solution algorithms for the number of tardy jobs

minimisation scheduling with a time-dependent learning effect. International Journal of Production

Research 55, 11 (2017), 3141–3148.

[24] Zhao, Q., and Yuan, J. A note on single-machine scheduling to tradeoff between the number

of tardy jobs and the start time of machine. Operations Research Letters 47, 6 (2019), 607–610.

25

