
Optimization of circular conveyor belt systems with multi-commodity
network flows

Antonin Novak1, Matous Pikous1,2 and Zdenek Hanzalek1

1Czech Institute of Informatics, Robotics and Cybernetics,
Czech Technical University in Prague, Czech Republic

2Faculty of Electrical Engineering,
Czech Technical University in Prague, Czech Republic

Keywords:
circular conveyor belts, manufacturing, multi-commodity network flow, mixed-integer linear
programming

Abstract:
Modern industrial production with alternative process plans and the use of complex machine equip-
ment increases requirements for its intralogistics operations in terms of efficiency, resilience, and
flexibility. One of the most common solutions for transporting workpieces between the manufac-
turing stations is a system of conveyor belts where each conveyor rotates in a fixed direction at a
constant speed. The movement of the individual workpieces can be controlled only indirectly via
a set of gates connecting different carousels. In this paper, we aim to increase the flexibility of
conveyor belt systems by carefully scheduling the gates to route the workpieces efficiently along
the production line according to their process plans. The key component of our solution is the
discretization of both the time and positions on the belts to represent the system by a directed
graph with circular components. To find the routing of workpieces that minimizes the total flow
time, we have reduced the problem to the integer multi-commodity flow on the time-expanded
network with an extension for the vertex precedences. Despite the simplicity of the formulation,
the results suggest that off-the-shelf solvers can find optimized routing for instances with tens of
workpieces and more than hundreds of belt positions within a few minutes.

1 INTRODUCTION

One of the core concepts in Industry 4.0 is a
highly flexible and customized production. To
keep up with the rising demand for many vari-
ants of products, deployment of more complex
machine equipment such as reconfigurable manu-
facturing systems (RMS) (Fatemi-Anaraki et al.,
2022) and intelligent internal logistics systems
are required. Due to the fact that products
are highly customized, they no longer follow
the identical production process plan, but rather
different product variants need to visit differ-
ent manufacturing stations. Therefore, the sta-
tions are interconnected with a transport sys-
tem that moves workpieces over the shop floor.
The transport and routing can be realized with,

e.g., autonomous ground vehicles (AGV) (Qiu
et al., 2002) or monorail systems such as Mon-
trac, which use an individual transport platform
to handle the movement of each workpiece sep-

Figure 1: Conveyor belt in Testbed for Industry 4.0
at CIIRC CTU.

arately. Although these systems are very flexi-
ble, they share certain disadvantages, such as low
throughput and high cost.

Another option is conveyor belt systems, such
as the one shown in Figure 1. Here the difference
is that the system consists of several individual
circular conveyor belts interconnected with con-
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Figure 2: System model with five clockwise-rotating carousels, four gates, and two workpieces, each with three
stations to visit.

trollable gates. Each individual belt has its inde-
pendent asynchronous electric motor that rotates
the belt at a constant speed. Therefore, all pieces
sharing the same belt are moved simultaneously
in the direction defined by the drive movement.
If a piece needs to be transported to a machine
located at a different belt, the piece needs to stay
on the belt before reaching a specific gate which is
switched at the right moment to transfer the piece
to a different belt. The advantage of conveyor
belt systems is that they are cheaper to operate
and offer higher capacity. However, they are less
flexible as the individual piece movement is con-
trolled only indirectly by the gate switches. More-
over, the individual conveyor belts are shared re-
sources in the system; thus, one needs to carefully
schedule access to them, e.g., to prevent collisions
of pieces when switching the belts.

In this work, we aim to improve the flexibil-
ity of conveyor belt systems by careful schedul-
ing of operations. The inspiration was taken
from the Testbed for Industry 4.0 located at the
Czech Technical University in Prague (Novák and
Vyskočil, 2022), where a set of machine tools and
robots is interconnected with a system of con-
veyor belts with controllable gates (see Figure 1).
Our main idea is to discretize time and positions
on the belts and model the system with a graph
consisting of circular components, as depicted in
Figure 2. Then, we employ an extended integer
multi-commodity flow problem formulation for a
time-expanded system graph to find optimal rout-
ing for the set of workpieces while visiting all re-
quested stations without collisions. The proposed
formalism easily allows for the minimization of
different criteria expressed as a function of the
completion times of pieces, such as the makespan
or the total flow time. The experiments demon-
strate that even though the resulting optimiza-
tion models are quite large, the underlying net-
work flow structure of the problem allows mixed-
integer linear programming solvers to retain im-
pressive scaling capability. Specifically, the main
contributions of this paper are:
(i) proposing a discretized model of a circular

conveyor belt system and the optimization
problem of workpiece routing with a sequence
of stations to visit,

(ii) a formulation of the problem via integer multi-
commodity flow problem on a time-expanded
network with the extension for vertex prece-
dences,

(iii) the experimental evaluation of the proposed
mixed-integer linear programming model.

2 RELATED WORK

One of the most frequently appearing applica-
tions of the conveyor belt systems can be seen in
various package sorting tasks, e.g., in fulfillment
centers. For example, in (Chen et al., 2021), a
simulation-optimization approach is proposed to
improve the processing capacity of a circular con-
veyor belt in a parcel sorting system by design-
ing skip connections to improve the processing
capacity. However, the conveyor belt layout is of-
ten fixed and is not subject to optimization. In
these cases, the scheduling of operations can be
applied to improve the utilization of the system.
For example, (Bock and Bruhn, 2021) study the
problem of mould injection for product casting
with a circular conveyor belt. In their problem,
they also consider a circular conveyor belt with
several robotic stations which perform activities
on the workpieces traveling on the belt.

From the perspective of the underlying op-
timization problem, our problem is closely re-
lated to the multi-agent path-finding problem
(MAPF) (Barták et al., 2018). The MAPF is
among the classical problems in the literature, be-
ing studied under many different settings (Stern
et al., 2019). The classical version of MAPF as-
sumes that a set of agents need to find paths on
an undirected graph from their sources to the des-
tinations such that they avoid conflicts at all ver-
tices. However, such a setting does not apply to
our problem since our agents (i.e., workpieces)
operate on a directed graph, they cannot wait at



an arbitrary vertex to avoid collisions, they need
to visit multiple locations in a specific order, and
they do disappear at target (Stern et al., 2019).

Another related, but more general, optimiza-
tion problem is the resource-constrained shortest
path problem (RCSPP) (Pugliese and Guerriero,
2013). RCSPP at its most general setting spec-
ifies a set of resources and so-called resource ex-
tension functions (REFs) which adjust the values
of resources along the found s-t path in the given
graph. However, the majority of the existing effi-
cient algorithms for RCSPP consider specific sub-
sets of the problem, such as non-decreasing REFs,
rather than the general case. What is more,
when k workpieces are present, we need to find k
vertex-disjoint paths, which further complicates
the modeling as an RCSPP.

Although the studied problem displays com-
mon characteristics with the existing problems,
such as MAPF or RCSPP, we are not aware of
any existing problem or an algorithm that would
efficiently encapsulate the problem addressed in
this work.

3 SYSTEM MODEL

3.1 Model description

In this section, we describe the assumptions be-
hind the used system model, and we formally de-
fine the problem statement. Similarly as (Bock
and Bruhn, 2021), we assume that positions on
the belt and time instants are discretized, mean-
ing that each belt can transport at any moment
only a finite number of pieces. Indeed, this is a
reasonable assumption because the pieces on the
belt are spaced out by sufficient margins to avoid
problems. Thus, we assume that each belt has
a fixed sense of rotation with the speed of one
position per time unit.

A conveyor belt system consists of several in-
dependent carousels interconnected by control-
lable gates that can, at the specified moment,
transfer a workpiece from one belt to another.
The workpiece appears at its inbound location at
its release time and is offloaded to the belt at the
time defined by the schedule. After the work-
piece is offloaded to the belt, it needs to visit
a sequence of the required positions and is re-
moved from the system as soon as it reaches its
outbound location. For the specific example, see
Figure 2. The displayed graph represents the for-
malization of a system with two workpieces and

five carousels interconnected by four gates (de-
picted in blue). The workpiece A has to visit
stations 0 −→ 37 −→ 21 while workpiece B visits
11 −→ 30 −→ 14. The inbound and outbound lo-
cations for A are connected to locations 0 and to
21, respectively. For B, the inbound location is
connected to 11, and the outbound to 14.

3.2 Problem statement

The input to the problem consists of a directed
graph G = (V,E), which describes the system of
conveyor belts. It is assumed that G consists of a
finite number of strongly connected components,
where a component is the cycle graph Cn repre-
senting a carousel with n positions. Next, we are
given a set of gates S ⊂ E, which represents con-
trollable gates in the system transporting work-
pieces between carousels.

The workload is represented by a set of k work-
pieces M = {1, . . . ,k}. Each workpiece m ∈ M is
associated with the release time r(m) ∈ N0, de-
noting its earliest possible time when the work-
piece can be loaded on the belt. Before the work-
piece is loaded on the belt, it stays at its inbound
location I(m) ∈ V . Furthermore, the workpiece
m ∈ M specifies the sequence of vertices (stations)
π(m) =

(
π
(m)
1 , . . . ,π

(m)
nm

)
, π

(m)
i ∈V which have to be

visited by m. After position π
(m)
nm is reached by m,

it is moved to its outbound location O(m) ∈V and
is effectively removed from the system since it no
longer occupies any belt position.

The solution to the problem is represented by
a schedule y(m)

t ∈ V , which for each workpiece m
specifies the position it occupies at time t. Fur-
thermore, it defines for each gate (u,v) ∈ S a bi-
nary value zt(u,v) ∈ {0,1} which is set to 1 if and
only if the gate (u,v) is activated at time t.

We say that the schedule is feasible if work-
pieces satisfy their release times and for any
ma,mb ∈ M, ma 6= mb: ∀t : y(ma)

t 6= y(mb)
t , i.e., at any

moment, no two workpieces occupy the same po-
sition. Furthermore, a workpiece m which at time
t occupies y(m)

t subsequently occupies its neighbor-
ing position of y(m)

t at time t+1. The neighboring
position of vertex v ∈ V at time t is either u ∈ V
such that (v,u)∈E (i.e., u is the successor position
of the v on the same carousel) or w∈V if (v,w)∈ S
and zt(v,w) = 1, i.e., the workpiece is transported
to a different carousel with (v,w) gate. The ob-
jective is to minimize the total flow time, i.e., the
sum of differences between the time reaching the
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(a) Infeasible solution: conflict in vertex 12 at time 3.
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(b) Feasible solution: conflict is avoided by postponing the transfer of B to the other belt by one rotation.
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(c) Feasible solution: conflict avoided by a delayed release of A to the belt.
Figure 3: Examples of different solutions.

outbound location and the release time over every
workpiece.

3.3 Example

To demonstrate the defined quantities and con-
straints of the problem, please see an example
in Figure 3. There, we depict three different so-
lutions for the problem with two workpieces A
and B. We assume that the release times of both
workpieces are equal to zero, i.e., r(A) = r(B) = 0
and the sequences of stations to visit are π(A) =
(0,15) and π(B) = (9,15).

In Figure 3a, both workpieces are loaded to
the carousel at time t = 0, thus y(A)0 = 0 and
y(B)0 = 9. At the time t = 1, workpieces are moved
to their neighboring location. In this solution,
the gate (9,18) was activated at time t = 0, i.e.,
z0(9,18) = 1. In subsequent time instant, both
workpieces are again moved to their neighboring
positions; therefore, y(A)1 = 1 and y(B)1 = 18. Af-
ter one additional move, the gate (2,12) is acti-
vated at time 2 (i.e., z2(2,12) = 1), thus, we have
y(A)3 = 12. However, this violates the feasibility

condition since y(B)3 = 12 as well, and the solu-
tion (a) is infeasible.

A different solution is shown in Figure 3b.
In this case, the gate (9,18) is not activated at
time t = 0. Therefore, the workpiece B is forced
to perform one additional rotation with its ini-
tial carousel before it is (eventually) transferred.
Thus, the conflict at position 12 is avoided at the
expense of increased flow time of B by 6 time
units.

Finally, the third solution is displayed in Fig-
ure 3c. Here, the workpiece B is unloaded onto
the carousel immediately at time t = 0, whereas
workpiece A waits at its inbound location until
time t = 1. Since A is released 1 time unit later
than in solution (a), it also avoids the conflict at
position 12, but the total flow time is smaller than
in solution (b).

The above examples show some important
considerations to be made when solving the
problem—both the timings of the gates as well
the times when the workpieces are loaded to the
carousels affect the quality of the solution. Thus,
they need to be considered simultaneously, which
represents an interesting optimization problem.



4 TIME-EXPANDED INTEGER
MULTI-COMMODITY FLOW

First, we explain the concept of a time-expanded
network for the conveyor belt scheduling problem.
Then, we give a mixed-integer linear program-
ming (MILP) formulation of the problem, which
resembles an ordinary integer multi-commodity
network flow problem with one additional con-
straint.

4.1 Time-expanded network

The main difficulty of using network flow formal-
ism for problems with time-related constraints
(e.g., release times and vertex ordering) is that
a flow in the network does not capture the no-
tion of time. One of the possible options how
to accommodate these constraints is the so-called
time expansion of the network, which is used, e.g.,
for dynamic network flow problems (Ahuja et al.,
1988).

0 1

23

54

67

A B

A B

Figure 4: An example of a system G.

The core idea of the time expansion is to con-
struct copies of the original graph, where each
copy represents the network at a specific time
instant. The copies of the original network are
connected in a way that represents possible state
transitions between the past and future time in-
stants. In our case, the time-expanded network
G = (V ,E) of the conveyor belt system G = (V,E)
is constructed as follows. First, the value of time
horizon H ∈ N needs to be chosen such that all
workpieces m ∈ M can visit their stations π(m) and
reach the outbound location O(m) within H time
steps.

Next, for each time instant within the horizon
H, one copy of the network, except for inbound
and outbound locations, is created as a so-called
layer. At each layer, all edges that exist in the
original graph G, i.e., the representation of belt
rotations and the positions of the gates, are re-
moved. Instead, an edge between vertex v in layer
t and vertex u in layer t +1 is introduced, if and
only if u is possible neighboring vertex of v at
time t in G, i.e., either u is a successor position
on the conveyor or (v,u) ∈ S is a gate. Finally, for
each inbound I(m) and outbound location O(m) a
corresponding vertex is added to V .

Note that the edges E in time-expanded net-
work G can be uniquely associated with a specific
time instant. Indeed, each outgoing edge from
any vertex i ∈V can be assigned to a time instant
t corresponding to in which layer t the vertex i is
contained. Additionally, an edge leaving inbound
location I(m) can be associated with time instant
t −1 if it enters a vertex v in layer t. In this way,
every edge e ∈ E in a time-expanded network can
be described with a triplet (t, i, j) ∈ E. To model
the release time constraint for a workpiece m ∈M,
we introduce a single vertex representing inbound
location I(m) and connect it with the position π

(m)
1

in every layer t ≥ r(m). Similarly, π
(m)
nm location at

every layer t ≥ r(m) is connected to a single out-
bound location O(m).

To demonstrate the structure of the time-
expanded network, let us consider a system de-
scribed by the graph G in Figure 4 with the pa-
rameters of workpieces given in Table 1. The
resulting time-expanded network G with horizon
H = 4 (i.e., in total five layers including the time
instant t = 0) can be seen in Figure 5.

workpiece m stations π(m) release time r(m)

A 3 −→ 7 1
B 5 −→ 6 2

Table 1: Example parameters of workpieces.

4.2 Integer multi-commodity flows with
vertex precedences

Having the time expansion of the network, the
movements of the workpieces can be modeled as
flows transported from their inbound to the out-
bound locations. To consider the individual iden-
tities of the flows, they need to be modeled as
different commodities to prevent that, e.g., the
workpiece A would reach outbound location O(B)

instead of O(A). The integer multi-commodity
flow problem specifies the set of k commodities
to be transported over a directed network G and
a k-dimensional balance vector b(v) for each ver-
tex v ∈ G. In our case, we set b(m)(I(m)) = 1,
b(m)(O(m)) =−1, ∀m ∈ M and for all other vertices
v we set b(m)(v) = 0,∀m ∈ M. The objective func-
tion is the sum of costs for all edges times the
amount of flow transported over the edge. The
cost of all edges e ∈ E is equal to zero except the
edges (v,O(m)) that have cost t − r(m) if v is a ver-
tex in layer t. In this way, we model minimizing
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Figure 5: Example of a time-expanded network G.

the total flow time of workpieces m ∈ M.
As a next constraint, we need to ensure that,

at most, one unit of a flow can enter any ver-
tex to avoid situations such as the one depicted
in Figure 3a at time t = 3. This constraint can
be easily accommodated into multi-commodity
network flow formalism by the vertex expan-
sion (Ahuja et al., 1988). Furthermore, the so-
lution needs to enforce that if for some work-
piece m ∈ M and its station sequence π(m) =(

π
(m)
1 , . . . ,π

(m)
i , . . . ,π

(m)
j , . . . ,π

(m)
nm

)
the π

(m)
i is vis-

ited at time ti, and π
(m)
j is visited at time t j, then

ti < t j. However, from the perspective of a solu-
tion, it is important to distinguish whether the
workpiece m ∈ M visits the station π

(m)
i in a sense

as it is given by the problem statement (i.e., op-
erating on the workpiece), or whether it transits
through the position to reach a different destina-
tion. Although this seems obvious, it introduces
surprising difficulties when modeling the prob-
lem with an ordinary multi-commodity network
flow. Therefore, we introduce an extension of
unit-capacity integer multi-commodity flows that
we call vertex precedences. A vertex precedence
for commodity m∈M is given in the form of i−→ j,
where i, j ∈V are vertices in the original graph G.
The constraint requires that the resulting flow of
the commodity m in the time-expanded network
G transits through the vertex i in layer ti and the
vertex j in layer t j, such that ti < t j.

An inconvenient property of this extension is
that it disqualifies the use of the existing al-
gorithms for the multi-commodity network flow
problem. However, we note that the original in-
teger multi-commodity network flow problem is

NP-hard already for two commodities even when
restricted to networks with unit capacities (Garey
and Johnson, 1979). Therefore, even if there
would be an efficient way of accommodating ver-
tex precedences into the ordinary integer multi-
commodity flow problem, a substantial complex-
ity is already introduced by the formalism it-
self. Nevertheless, the practical experience with
mixed-integer linear programming (MILP) for-
mulations of the integer multi-commodity flow
problem indicates that even large instances can
be solved in a reasonable time.

4.3 MILP model

Let T = {0,1, . . . ,H − 1} be a set of all time in-
stants within the horizon H. The main deci-
sion variable is f (m)

t (i, j) ∈ {0,1} with the mean-
ing whether the commodity m is transported
along the edge (t, i, j) ∈ E in time-expanded net-
work G. Furthermore, we use a binary indicator
x(m)

t,i , which enforces that the commodity m leaves
vertex i at layer t. This variable is used to en-
force the vertex precedence constraints. With the
above, we state the full model as:

min ∑
t∈T

∑
m∈M

∑
i∈V

(t − r(m)) · f (m)
t (i,O(m)) (4.1)

subject to

∑
(t,v, j)∈E

f (m)
t (v, j)− ∑

(t−1,i,v)∈E

f (m)
t−1(i,v) = b(m)(v)

∀v ∈V ,∀m ∈ M (4.2)

∑
m∈M

∑
(t,i,v)∈E

f (m)
t (i,v)≤ 1 ∀v ∈V (4.3)



∑
j∈V

f (m)
t (i, j)≥ x(m)

t,i ∀t ∈ T,∀i ∈ π
(m) (4.4)

∑
t∈T

x(m)
t,i = 1 ∀m ∈ M,∀i ∈ π

(m) (4.5)

∑
t∈T

x(m)
t,i · t +1 ≤ ∑

t∈T
x(m)

t, j · t ∀m ∈ M,∀(i −→ j) ∈ π
(m)

(4.6)

f (m)
t (i, j) ∈ {0,1} ∀m ∈ M,∀(t, i, j) ∈ E (4.7)

x(m)
t,i ∈ {0,1} ∀m ∈ M,∀t ∈ T,∀i ∈ π

(m). (4.8)

The objective (4.1) represents the minimization of
the total flow time. Flow conservation constraint
is expressed by (4.2). Since the value of b(m)(v)
is set as described in Section 4.2, the constraint
(4.2) also enforces that workpiece m appears at
inbound location I(m) and eventually reaches its
outbound O(m). The constraint (4.3) models ver-
tex capacities to enforce that, at most, one work-
piece occupies a belt position at any time.

Finally, the constraints (4.4)–(4.6) are used to
model vertex precedence constraints. If variable
x(m)

t,i is set to 1, then we interpret it such that an
operation is performed on the workpiece m at time
t. Therefore, we require that such the operation
i ∈ π(m) is performed exactly once by constraint
(4.5), and the corresponding commodity must en-
ter (and leave) the specific vertex at the required
time by constraint (4.4). The correct ordering
of vertices in π(m) is enforced by (4.6). For any
two consecutive elements of the station sequence
(i−→ j)∈ π(m) the model computes the times when
the operations are performed by terms ∑t∈T x(m)

t,i ·t
and ∑t∈T x(m)

t, j ·t. Then, it is enforced that the time
of the operation in the vertex i is smaller than in j.

5 EXPERIMENTS

The performance of the proposed multi-
commodity flow model has been assessed by the
following set of experiments. The key parameters
that influence the complexity of a problem in-
stance are (i) the number of workpieces, (ii) the
number of stations to visit, (iii) the number of
belts and their total length, and (iv) the length
of the time horizon. The specific range of the
values used for these parameters is described in
each experiment. The instances were generated
such that the resulting system of conveyor belts
is a strongly connected graph.

The time expansion of the graph was per-
formed in Python 3. The resulting MILP for-

(a) Instances with two stations.

(b) Instances with three stations.

(c) Instances with four stations.
Figure 6: Effect of the number of required stations on
computational time.

mulation was solved with the Gurobi 9.1.1 solver
utilizing at most eight threads of Intel Xeon E5-
2690 CPU. The measured CPU times reflect both
the time spent by time expansion as well as the
computation time of the solver.

5.1 Effect of the number of stations

To assess how the computational time scales with
respect to the number of required stations, we
have performed the following set of experiments
with the varying numbers of stations required.
In total, we have generated 3360 instances with
|M| ∈ {3, . . . ,7} workpieces, total belt length was
generated in interval [20,120] and the number of
required stations by all workpieces m ∈ M was
|π(m)| ∈ {2,3,4}. The length of time horizon H
was set to 180.

The results are displayed in Figure 6. Each
graph displays mean computational times with
standard deviations grouped by the total belt
length and the number of workpieces M. As ex-
pected, the complexity of an instance depends



largely on the number of required stations as it
introduces additional variables (4.8) and deteri-
orates the structure of the problem further from
the ordinary multi-commodity flow. The main
challenges for the model appear with instances
with four stations. There, we can see that the
computational times start to fluctuate under the
presence of outliers represented by the occasional
long running time of the solver. The practical
experience with the solver behavior has revealed
that the optimal solution is often attained soon
after the root node is solved. However, this fol-
lows after quite a long preprocessing step, which
greatly reduces the size of the model. Therefore,
it seems that improvements in the optimization
model are possible.

5.2 Effect of the horizon length

The experiments in Section 5.1 were run with the
fixed length of the time horizon H. To test its
influence on the computation time, we have fixed
the number of stations to 3 and generated a total
of 1120 instances varying in the total belt length
that was set to be contained within [20,120]. This
set of instances was solved with time horizon
lengths H ∈ {120,140, . . . ,220}. The results are
displayed in Figure 7.

Figure 7: Scaling with respect to the length of the
horizon H.

As suggested by our preliminary experiments,
the length of the time horizon has only a moder-
ate effect on the overall computation time.

6 CONCLUSION

We studied the problem of optimal routing for the
set of workpieces in a system of circular conveyor
belts where the movement of workpieces cannot
be directly affected, but they can be controlled
indirectly via the set of gates connecting different
carousels. Our main idea used in the solution is
to discretize the time and positions on the belts

and to model the system with a graph consist-
ing of circular components. Then we formulate it
as an integer multi-commodity flow problem for
a time-expanded system graph with the vertex
precedence constraint.

For future work, we suggest considering the
energy consumed by the system. At certain mo-
ments, the belts might be switched to a power-
saving mode, e.g., by reducing the speed of the
movement or shutting down completely.
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