
Car Racing Line Optimization with Genetic Algorithm using
Approximate Homeomorphism

Jaroslav Klapálek∗, Antonı́n Novák∗, Michal Sojka and Zdeněk Hanzálek

Abstract— In every timed car race, the goal is to drive
through the racing track as fast as possible. The total time
depends on selection of the racing line. Following a better
racing line often decides who wins. In this paper, we solve
the optimal racing line problem using a genetic algorithm. We
propose a novel racing line encoding based on a homeomorphic
transformation called Matryoshka mapping. We evaluate the
fitness of racing lines by lap time estimation using a vehicle
model suitable for F1/10 autonomous racing competition. By
comparing to the former state-of-the-art, we show that our
method is able to find racing lines with lower lap times.
Specifically, on one of the testing tracks, we achieve 2.5%
improvement.

I. INTRODUCTION

The optimal racing line problem is of a common interest
in an automotive racing environment. It resides in finding
a trajectory, which allows the vehicle to drive through the
track in the minimum possible time. Lap time minimization
is a basic prerequisite for winning an F1/10 Autonomous
Racing Competition [1], [2], an international event organized
by the University of Pennsylvania. This competition is held
at least twice a year, collocated with major conferences. The
name comes from the vehicles used within the competition –
1:10 scaled-down car models, built from predefined hardware
components, as shown in Fig. 1.

Our team won the F1/10 competition in Porto (2018) with
a relatively simple reactive algorithm called Follow the Gap
(FTG) [3], with our implementation publicly available at [4].
After that the FTG algorithm became quite popular, as it
was used and adapted by many other teams [5], [6]. On the
other hand, FTG suffers from a few limitations, namely it
fails in complicated turns and dead ends, since it does not
take advantage from the knowledge of the racing track map,
despite it being known before the race. The objective of this
paper is to propose and evaluate an innovative racing line
planning algorithm, that benefits from the knowledge of the
track.

Two common approaches to finding an optimal racing line
are [7]: (i) minimize the path length so that the distance to be
traveled is shorter; or (ii) find a path that minimizes the path
curvature so that the speed allowed by the surface friction
limits at any point is maximized. However, as noted in [8],

∗The authors are with Faculty of Electrical Engineering, Department
of Control Engineering, Czech Technical University in Prague, Technická
1902/2, 166 27 Prague, Czech Republic

All authors are with Czech Institute of Informatics, Robotics
and Cybernetics (CIIRC), Czech Technical University in Prague,
Jugoslávských partyzánů 1580/3, 160 00 Prague, Czech Republic (email:
klapajar@fel.cvut.cz, antonin.novak@cvut.cz,
michal.sojka@cvut.cz, zdenek.hanzalek@cvut.cz)

Fig. 1: Our F1/10 model car.

[9], even the combination of these two approaches may not
lead to the optimal racing line. Other approaches for finding
an optimal racing line use, e.g., Euler spirals [10], Model
Predictive Control [11], or genetic algorithms (GA) [7]. In
this paper, we solve the optimal racing line problem using a
genetic algorithm. Even though we focus mainly on scaled-
down model racing, the proposed approach can be used for
full-sized autonomous racing cars as well.

The main contributions of this paper are (i) reformulation
of lap time minimization as an unconstrained problem via
coordinate transformation by using proposed homeomorphic
mapping, also called Matryoshka mapping algorithm, and
(ii) reduction of lap time compared to the former state-of-
the-art [7].

The paper is organized as follows: in Section II we survey
previous research in the area of racing line optimization
using genetic algorithms, in Section III we define terms
and notation used within this paper. Section IV introduces
our novel algorithm based on the Matryoshka coordinate
transformation, in Section V we describe the evaluation
procedure and discuss the results, and finally, we conclude
this paper in Section VI.

II. RELATED WORK

Braghin et al. [7] describe the racing track by its dis-
cretization into n equidistantly spaced segments. Points Pi,
i ∈ {1, 2, . . . , n} of the racing line are located at the
boundaries of these segments (see magenta lines in Fig. 8).
Their location is given by the index of the segment, and the
position relative to the track borders. The resulting racing
line is obtained by interpolating these points with a closed
cubic spline. Authors try to find an optimal racing line as



a combination of the shortest path (SP) and the minimum
curvature path (MCP) that minimizes the lap time. For the
lap time estimation, they use a 14 DoFs vehicle model [12].

Cardamone et al. [13] extend the previous work [7] by
finding a locally optimal combination of SP and MCP instead
of one global solution as in the original work. Each point
Pi of the racing line is described by its lateral distance
from a track border and also by a distance from the track’s
starting line, which is computed along the track centerline.
When looking for an optimal racing line, SP and MCP are
found first. Intersections of SP and MCP are used for track
segmentation. Since each point is described by its distance
from the start, for each point in the SP, a corresponding
point in the MCP can be found. Points of the racing line
are then found as a combination of SP and MCP using
the segment’s combination parameter. The authors find the
best parameters by several methods, one of them being a
genetic algorithm. The quality of the racing line is obtained
by running a simulation in The Open Racing Car Simulator
(TORCS) [14] and measuring lap time there.

In follow-up work, Botta et al. [15] use the same approach
as Braghin [7]. They segment the track into segments.
However, in contrast to the work by Cardamone at al. [13],
the segment size varies according to the track curvature.
Points located on the segments’ ends represent control points
of connected Bézier curves. A genetic algorithm is used to
minimize the lap time by moving the control points along
the segment edge. The quality of the racing line is calculated
by two approaches: (i) by simulating vehicle in TORCS (as
in [13]), or (ii) by a lap time estimator.

Vesel [8] builds upon the previous approach. Racing line
points Pi are described using radial coordinates from track
origin. The racing line is obtained by calculating a periodic
smoothing spline. This type of spline ensures a smooth
transition between the lines’ start and endpoints. A genetic
algorithm is used to minimize lap time by moving the points
in their vicinity. The lap time of the racing line is estimated
by calculating its speed profile, similarly to [7].

Research done in lap time optimization using genetic
algorithms is concentrated on improving the representation
of the racing line, track segmentation being the main point
of interest. At first, equidistant segmentation was proposed
in [7], followed by its adjustment based on track curvature
in [15]. However, [15] showed curvature-based segmentation
only with Bézier curves and achieved worse results than
the work by Cardamone at el. [13], which focused only
on finding the optimal solution as a combination of SP and
MCP. In addition, calculating the track curvature might be
difficult for a F1/10 competition track, as it is not as smooth
as tracks from TORCS. Both tracks are shown in Fig. 5.
Since Vesel’s [8] approach leads to many invalid positions
of the racing line points (by design), we have selected the
approach by Braghin et al. [7] as a reference approach against
which we compare our results.

III. PRELIMINARIES

In this section, we define terms and notation used within
this paper. We also define the problem solved in this paper.

A. Definitions

Racing track T is a connected subset of R2, i.e., T ⊆
R2. We assume the racing track to be shaped like a typical
automotive racing track such as those depicted in Fig. 5.
Specifically, there are no crossroads and obstacles on the
road. In addition, to compensate for the size of the vehicle
driving on the track, we assume that T is shrunk such that the
vehicle does not collide with the track border when vehicle’s
center point is contained in T .

Racing line L is a curve in R2, i.e., L : [0, 1] → R2.
Note that we parameterize the line by normalized length p,
0 ≤ p ≤ 1, p ∈ R. Racing line L is said to be feasible if it
lies completely within the track, i.e., ∀p ∈ [0, 1] : L(p) ∈ T .
For our application, we assume L to be a closed curve, i.e.,
L(0) = L(1).

We define racing line waypoints as a sequence P =
(P1, . . . , Pk) of k points Pi = L(pi), i = 1, . . . , k, such that
p1 = 0, pk = 1, and ∀i ∈ {1, . . . , k−1} : pi < pi+1. Due to
closed line assumption Pk = P1 and the racing line can be
described by just n = k − 1 waypoints. The racing line can
be obtained from waypoints by interpolation function I such
that L = I(P ). In this paper, we use periodic cubic splines
as the interpolation function I since it guarantees that the
resulting L is a smooth closed curve.

The quality of racing line L is given by lap time, which
is calculated by function

F : (L, A)→ R+, (1)

where L is a set of all feasible racing lines and A are
the parameters of the vehicle following the L. Typically, A
consists of the initial velocity, maximum velocity, maximum
longitudinal acceleration, maximum braking deceleration,
maximum lateral acceleration, and maximum turning radius.
The maximum turning radius of the vehicle is reflected by
the function F . We describe the function F used for our
evaluation in Section IV-D.

Optimal racing line L∗ is a feasible racing line minimizing
the lap time for the given vehicle parameters A:

L∗ = argmin
L∈L

F (L,A). (2)

B. Problem Statement

We solve the optimal racing line problem for a given
track T and vehicle parameters A: initial velocity, maximum
velocity, maximum forward acceleration, maximum braking
deceleration, maximum lateral acceleration (related to track
curvature and tire-road friction to avoid side slip, specifically,
we use friction circle) , and maximum turning radius.

C. Genetic algorithm

Genetic Algorithm (GA) [16] is a biologically-inspired
population-based metaheuristic. GA works with the so-called



population, which is a set of candidate solutions, sometimes
also called individuals.

In general, every GA works as follows: (i) initial set of
candidates is constructed, (ii) each candidate is evaluated
by a fitness value, (iii) a subset of candidates is selected
based on their fitness value, and (iv) genetic operators (e.g.,
recombination and mutation) are applied to the selected
candidates. The whole procedure repeats from step (ii)
until some candidate satisfies minimum criteria or allocated
time/iteration budget is exhausted.

IV. RACING LINE OPTIMIZATION

In this section, we describe the GA-based algorithm to
solve the optimal racing line problem (2). The algorithm
consists of several steps and transformations which are
described in the following subsections.

A. Track segmentation

The first step of our racing line optimization algorithm
consists of partitioning the track into n segments as illus-
trated in Fig. 2. The segments Si cover the whole track, i.e.,
T =

⋃n
i=1 Si and do not overlap, i.e., Si ∩ Sj = ∅, i 6= j.

To segment the track, we first find its centerline and place
n seed points equidistantly along with it. Then we apply the
flood fill algorithm (also known as tint fill [17]) to create the
segments from the seed points. The order of segments is the
same as the order of seed points along the centerline.

Note that our definition of segments differs from the one
proposed in [7], [13], where they consider the segments to be
1D lines cutting the track, whereas we consider the segments
to be 2D shapes.

The number of segments n can be chosen manually,
depending on the complexity of the track (e.g., 2 segments
per turn and 1 segment per straight section), or can even be
treated as another optimization variable. In Section V, we
show that our approach allows choosing lower values than
previous approaches, leading to better solutions within the
given optimization budgets.

B. Racing line encoding

To encode the racing line for the genetic algorithm, we
represent it with n waypoints Pi, i ∈ {1, . . . , n} such that
Pi ∈ Si. The sequence P of these waypoints forms a
candidate solution for the genetic algorithm. The racing line
is obtained from P by interpolating it with a cubic spline
denoted as L = I(P ). We use Cubic splines because their
curvature is smooth [8], as opposed to, e.g., Bézier curves.
We use the lap time (1) as the fitness value f of candidate
P , i.e., f = F (I(P ), A).

With this encoding, one would need to solve the following
constrained optimization problem:

min
Pi∈R2

F (I(P1, . . . , Pn), A), (O1)

subject to: Pi ∈ Si, ∀i ∈ {1, . . . , n}. (O2)

However, the constraints (O2) would be difficult to represent
in a form suitable for the genetic algorithm. If the constraints
are not represented accurately, the genetic algorithm will

Fig. 2: Example of track segmentation.

produce a lot of infeasible candidates, leading to inefficient
operation. To avoid these difficulties, we introduce mapping
Hi : [0, 1]2 → Si, i ∈ {1, . . . , n} that maps a unit square
to the individual segments. By using the mapping H in the
problem (O1)–(O2), we get the problem (Q) with simple box
constraints:

min
P ′

i∈[0,1]2
F (I(H1(P

′
1), . . . ,Hn(P

′
n)), A), (Q)

which is a more suitable formulation to be solved with a
genetic algorithm under the conditions discussed below.

In order to make the problem (Q) equivalent to (O1)–
(O2), the mapping Hi must be bijective so that all points
of Si are represented in [0, 1]2 and vice versa. Moreover,
if the mapping is smooth, it helps with the convergence of
the genetic algorithm. Note that smooth bijection is called
homeomorphism [18].

C. Matryoshka mapping

Defining homeomorphism Hi for arbitrarily shaped seg-
ments would be difficult. Therefore, we propose to approxi-
mate it with Matryoshka mapping, denoted as Ĥi : [0, 1]

2 →
Si. The mapping is constructed as shown in Algorithm 2:
We cover both the track segment and the unit square with
R points formed in so-called rings such that each ring point
uj = (u

(x)
j , u

(y)
j ), j ∈ {1, . . . , R}, in the unit square has a

corresponding ring point sj = (s
(x)
j , s

(y)
j ) in the segment, as

illustrated in Fig. 3. The border of the mapped area represents
the outermost ring. Inner rings are constructed by scaling the
outermost ring around its center. Then, we create a smooth
approximation of the mapping that maps points uj to sj . We
find such a mapping by approximating it with two B-spline
surfaces fx and fy found by BISPLREP function from SCIPY
Python module. In other words, Matryoshka mapping for the
segment Si is defined ∀u(x), u(y) ∈ [0, 1] as

Ĥi(u
(x), u(y)) =

(
fx(u

(x), u(y)), fy(u
(x), u(y))

)
, (3)

where fx and fy are defined as:

fx = BISPLREP({(u(x)
j , u

(y)
j , s

(x)
j ) | j ∈ {1, ..., R}}), (4)

fy = BISPLREP({(u(x)
j , u

(y)
j , s

(y)
j ) | j ∈ {1, ..., R}}). (5)

Matryoshka approximation Ĥ does not fulfill all properties
of homeomorphism H , specifically: (i) target range of Ĥi

is not exactly Si due to its approximate character, and (ii)



(a)

→

(b)

Fig. 3: Identifying corresponding pairs between (a) unit
square and (b) segment during construction of the Ma-
tryoshka mapping (three rings with R = 30 points in total).

(a)

→

(b) (c)

Fig. 4: Example of Matryoshka mapping Ĥ: 400 evenly
spaced blue points from (a) unit square are mapped by Ĥ
constructed from: (b) 1 ring (only part is shown), and (c) 5
rings.

Ĥi may not be surjection, i.e., two distinct points from
[0, 1]2 may map to the same point in Si. These properties
decrease the efficiency of the genetic algorithm. However,
we limit the effect of both (i) and (ii) by using multiple
rings during the Ĥi construction. This is shown in Fig. 4.
In practice, Matryoshka mapping worked the best among
the evaluated approximations of Hi. Other approaches, e.g.,
using morphological operators for the construction of the
rings, led to worse results.

In summary, to solve the problem (Q), we introduce the 2D
Matryoshka mapping algorithm (denoted as 2D-MM), which
is defined in Algorithm 1 and its subroutine in Algorithm 2.

D. Speed profile calculation

We estimated the lap time of a given racing line using
a two-pass iterative algorithm introduced by Kapania et
al. [19]. A similar approach was used in [7], [8].

This two-pass iterative algorithm calculates a speed profile
of the racing line, given parameters of the vehicle A. For
modeling the vehicle, we use a single-track model [20], as
it is able to describe an F1/10 car.

The algorithm works as follows. Its input is a racing line
and vehicle parameters. First, the algorithm processes the
racing line in a backward direction from the end to the start,
calculating maximum permissible vehicle speed (according
to the racing line curvature), limiting it by friction and
backward acceleration limit. Second, the algorithm goes in a
forward direction from the start to the end of the racing line,
lowering the vehicle speed even more to obey the vehicle’s
maximum forward acceleration.

Note that the F1/10 competition ranks the cars based on

Algorithm 1 2D-MM
Input: T , n, A, ringCount, ringLength, budget
Output: L∗

S ← segmentateTrack(T , n)
for i = 1 to n do
Ĥi ← constructMatryoshka(Si, ringCount, ringLength)

end for
L∗ ← ∅, f∗ ← +∞
P ← initializeCandidate()
repeat
L← I(Ĥ1(P1), . . . , Ĥn(Pn))
if ∀s ∈ [0, 1] : L(s) ∈ T then

v ← calculateSpeedProfile(L, A)
f ← getLapTime(v)

else
f ← 100× countInfeasiblePoints(L, T )

end if
if f < f∗ then

L∗ ← L, f∗ ← f
end if
P ← applyGeneticOperators(P , f )

until budget exhausted

Algorithm 2 constructMatryoshka
Input: Si, ringCount, ringLength
Output: Ĥi mapping

Bseq ← border(Si)
Busq ← border([0, 1]2)
pairs ← ∅
for j = 0 to ringCount− 1 do

ringScale ← 1− (j/ringCount)
BsegScaled ← scale(Bseg, ringScale)
BusqScaled ← scale(Busq, ringScale)
Pseg ← sample(BsegScaled, ringLength)
Pusq ← sample(BusqScaled, ringLength)
pairs ← pairs ∪ (Pseg, Pusq)

end for
Ĥi ← findSurfaceRepresentation(pairs)

the shortest lap time and the number of completed laps
during the fixed time slot. Therefore, we are interested in
minimizing the “steady state” lap time, rather than the lap
time of the first lap. Since the speed profile calculated by
this two-pass iterative algorithm depends on the initial speed,
we concatenate three identical racing lines (i.e., three laps)
together, calculate the speed profile of the concatenated line,
and use only the speed profile of the middle part. This way,
the effect of the initial speed is suppressed.

E. Implementation

We have implemented the 2D-MM algorithm from Sec-
tion IV in Python 3. Path interpolation I was implemented
with CubicSpline function from SCIPY module.

The genetic algorithm is implemented using Never-
grad [21], a toolbox for performing gradient-free optimiza-



(a) (b)

Fig. 5: Tracks used for evaluation: (a) Ruudskogen track, and
(b) Torino track.

20 25 30 35 40 45 50

27

28

29

30

num. of segments [-]

la
p

tim
e

[s
]

2D-MM
1D-BR [7]

Fig. 6: Results on the Ruudskogen track (mean, min/max).

tion. Specifically, we use its DoubleFastGADiscreteOnePlu-
sOne optimizer, which is a Discrete One Plus One genetic
optimizer [22] with heavy-tailed mutation operator [23].

V. EXPERIMENTAL EVALUATION

We compare our 2D-MM algorithm with Braghin’s [7]
approach denoted as 1D-BR. We run a set of experiments
on two tracks depicted in Fig. 5. The track in Fig. 5a is
the same as the track used for comparison in [7]. The track
from Fig. 5b is a race track built during F1/10 Autonomous
Racing Competition in Torino, Italy, 2018.

The reference 1D-BR approach [7] works as follows. First,
n lines (called cuts) perpendicular to the centerline are placed
equidistantly along the track (see magenta lines in Fig. 8).
Note that the imperfect perpendicularity of the cuts is caused
by low resolution of the map used for centerline generation.
These cuts are defined by their two endpoints, and each
waypoint Pi is thus defined by its position between those
endpoints, represented as a number between 0 and 1. Hence,
1D name stands in its name.

We run both 2D-MM and 1D-BR algorithms on both
tracks, varying only the number of segments. The number
of segments starts at the lowest number for which one of
the approaches was able to find a feasible racing line and
was determined experimentally. The budget parameter of the
genetic algorithm was set to 4000 iterations. Each run of
the genetic algorithm for a given number of segments was
repeated 10 times.

A. Results

The results in Figs. 6 and 7 show an average lap time as
well as minimum and maximum from 10 runs. Situations in
which the algorithm was not able to find a feasible racing

8 10 12 14 16 18 20 22

15

16

17

18

num. of segments [-]

la
p

tim
e

[s
]

2D-MM
1D-BR [7]

Fig. 7: Results on the Torino track (mean, min/max).

line in all 10 runs are marked by an empty marker. If the
algorithm did not find any solution in 10 runs, no marker is
shown at all.

For the Ruudskogen track (Fig. 6), our 2D-MM algorithm
was able to find a solution for any number of segments.
The 1D-BR algorithm did not find a single solution for
17, 18, 19, 20, 22, 23, 24, 25 segments. With 35 segments or
more, both algorithms tend to produce solutions with larger
lap time as the provided budget is not sufficient for finding
a better one. Indeed, the choice of the number of segments
leads to interesting trade-offs between the solution quality
and the computational difficulty. Introducing more segments
increases the dimensionality of the problem, thus it gets more
computationally difficult. At the same time, as it gets more
degrees of freedom, it also may lead to a solution of better
quality. However, when the budget for the optimization is
not large enough, the resulting solution with more segments
may be actually worse.

Fig. 6 also shows that our 2D-MM was also able to find a
solution with a lower lap time than the 1D-BR algorithm. The
difference between the best solutions (2D-MM with n = 28
and 1D-BR with n = 32) was 0.671 s (2.5%). The most
notable difference for the same number of segments was
1.259 s between the best solutions with 28 segments, and
1.093 s between the averages with 29 segments.

On the Torino track (Fig. 7), our 2D-MM was able to
find a solution in all runs, whereas 1D-BR did not find
any solution for 10 segments. Similar to the previous track,
our 2D-MM found a solution with a lower lap time. The
difference between the best solutions (2D-MM with n = 11
and 1D-BR with n = 13) was 0.118 s. When looking at
the differences per number of segments, both the largest
differences between best solutions and the average lap time
are for 9 segments, 1.327 s and 1.276 s, consecutively.

B. Discussion

As notable from the results, our 2D-MM algorithm is
able to find a racing line with a lower lap time than the
1D-BR algorithm. Moreover, our 2D-MM algorithm is more
successful at finding feasible solutions for a low number of
segments, whereas the 1D-BR algorithm sometimes fails to
do so. The reason can be seen in Fig. 8, where we show the
solution space for the 1D-BR algorithm with 20 cuts. The



Fig. 8: Problematic part of the 1D-BR solution space on
Ruudskogen track (gray) with 20 segments (magenta lines).
The set of the possible solutions is show with green lines
(all of them infeasible). For comparison, a feasible solution
found by 2D-MM is shown in blue.

algorithm did not find any feasible racing line because the
positions of the cuts (magenta lines in the figure) always lead
to infeasible interpolations (green).

An example of how the 2D segmentation can help in
finding a racing line, especially in turns, is shown in Fig-
ures 9a and 9b, where the blue points produced by 2D-MM
lie further away from the cuts of 1D-BR. This is most visible
in the bottom S-shaped section of the track.

VI. CONCLUSION

We introduced and implemented a racing line optimization
algorithm 2D-MM that represents the racing line using a
homeomorphic transformation. Using the genetic algorithm,
we showed that the algorithm is able to overcome the
prior 1D-BR algorithm [7] by (i) finding a racing line with
lower lap time by 0.671 s resp. 0.118 s on the tested tracks,
(ii) finding a feasible racing line with a lower number of
segments (17 vs. 21 segments on the Ruudskogen track), (iii)
being less prone to the placement of segments (e.g., 1D-BR
is unable to find a feasible racing line for 22 segments on
Ruudskogen track).

While the lap time difference might seem small, in the
F1/10 Competition even a difference like 0.07 s can decide
between two places in the ranking.

In future work, we will explore the possibilities of au-
tomatically estimating the number of segments, as starting
with a properly selected number of segments speeds up the
optimization process.

Also, we will enhance the segmentation to exploit the
track layout, similarly to [15]. While increasing the number
of segments increases the average lap time, moving the
segments into the turns should: (i) increase the ratio of
candidates that form a feasible racing line (when focused on
the turns), (ii) generally decrease the lap time given iteration
budget.

ACKNOWLEDGEMENT

Research leading to these results has received funding
from the EU ECSEL Joint Undertaking and the Ministry
of Education of the Czech Republic under grant agreement
826452 and 8A19011 (project Arrowhead Tools).

REFERENCES

[1] F1TENTH Foundation, “F1tenth.” https://f1tenth.org. Ac-
cessed on: March 5, 2021.

[2] A. Agnihotri, M. O’Kelly, R. Mangharam, and H. Abbas, “Teaching
Autonomous Systems at 1/10th-scale: Design of the F1/10 Racecar,
Simulators and Curriculum,” in Proceedings of the 51st ACM Technical
Symposium on Computer Science Education, SIGCSE ’20, (New York,
NY, USA), pp. 657–663, Association for Computing Machinery, Feb.
2020.

[3] V. Sezer and M. Gokasan, “A novel obstacle avoidance algorithm:
“Follow the Gap Method”,” Robotics and Autonomous Systems,
vol. 60, pp. 1123–1134, Sept. 2012.

[4] A. S. Pedersen and J. Klapálek, “Follow The Gap.” https://
github.com/CTU-IIG/f1t-ftg, 2020. Accessed on: March 5,
2021.

[5] M. O’Kelly, V. Sukhil, H. Abbas, J. Harkins, C. Kao, Y. V. Pant,
R. Mangharam, D. Agarwal, M. Behl, P. Burgio, and M. Bertogna,
“F1/10: An Open-Source Autonomous Cyber-Physical Platform,”
arXiv:1901.08567 [cs], Jan. 2019. arXiv: 1901.08567.

[6] V. S. Babu and M. Behl, “f1tenth.dev - An Open-source ROS based
F1/10 Autonomous Racing Simulator,” in 2020 IEEE 16th Interna-
tional Conference on Automation Science and Engineering (CASE),
pp. 1614–1620, Aug. 2020. ISSN: 2161-8089.

[7] F. Braghin, F. Cheli, S. Melzi, and E. Sabbioni, “Race driver model,”
Computers & Structures, vol. 86, pp. 1503–1516, July 2008.

[8] R. Vesel, “Racing line optimization @ race optimal,” SIGEVOlution,
vol. 7, pp. 12–20, Aug. 2015.

[9] N. R. Kapania, Trajectory planning and control for an autonomous
race vehicle. PhD Thesis, Standford University, Department of
Mechanical Engineering, 2016.

[10] Y. Xiong, “Racing Line Optimization,” Master’s thesis, Massachusetts
Institute of Technology, Sept. 2010.

[11] R. Verschueren, S. Bruyne, M. Zanon, J. Frasch, and M. Diehl,
“Towards Time-Optimal Race Car Driving Using Nonlinear MPC
in Real-Time,” in 53rd IEEE Conference on Decision and Control,
vol. 2015, Dec. 2014.

[12] F. Cheli, E. Leo, F. Mancosu, and S. Melzi, “A 14 dof Model
for the Evaluation of Vehicle’s Dynamics, Numerical-Experimental
Comparison,” Meccanica, vol. 41, pp. 35–43, Jan. 2006.

[13] L. Cardamone, D. Loiacono, P. L. Lanzi, and A. P. Bardelli, “Searching
for the optimal racing line using genetic algorithms,” in Proceedings of
the 2010 IEEE Conference on Computational Intelligence and Games,
pp. 388–394, Aug. 2010. ISSN: 2325-4289.

[14] B. Wymann, E. Espié, C. Guionneau, C. Dimitrakakis, R. Coulom,
and A. Sumner, “TORCS, The Open Racing Car Simulator.” http:
//www.torcs.org, 2014. Accessed on: March 5, 2021.

[15] M. Botta, V. Gautieri, D. Loiacono, and P. L. Lanzi, “Evolving
the optimal racing line in a high-end racing game,” in 2012 IEEE
Conference on Computational Intelligence and Games (CIG), pp. 108–
115, Sept. 2012. ISSN: 2325-4289.

[16] A. Meyer-Baese and V. Schmid, “Chapter 5 - Genetic Algorithms,” in
Pattern Recognition and Signal Analysis in Medical Imaging (Second
Edition) (A. Meyer-Baese and V. Schmid, eds.), pp. 135–149, Oxford:
Academic Press, Jan. 2014.

[17] A. Smith, “Tint fill,” ACM SIGGRAPH Computer Graphics, vol. 13,
pp. 276–283, Aug. 1979.

[18] T. W. Gamelin and R. E. Greene, Introduction to topology. Courier
Corporation, 1999. ISBN: 978-0486406800.

[19] N. R. Kapania, J. Subosits, and J. Christian Gerdes, “A Sequential
Two-Step Algorithm for Fast Generation of Vehicle Racing Tra-
jectories,” Journal of Dynamic Systems, Measurement, and Control,
vol. 138, p. 091005, Sept. 2016.

[20] R. Rajamani, Vehicle Dynamics and Control. Mechanical Engineering
Series, Springer US, 2 ed., 2012.

[21] J. Rapin and O. Teytaud, “Nevergrad - A gradient-free optimiza-
tion platform.” https://GitHub.com/FacebookResearch/
Nevergrad, 2018. Accessed on: March 5, 2021.

[22] M. Schumer and K. Steiglitz, “Adaptive step size random search,”
IEEE Transactions on Automatic Control, vol. 13, no. 3, pp. 270–276,
1968.

[23] B. Doerr, H. P. Le, R. Makhmara, and T. D. Nguyen, “Fast genetic
algorithms,” in Proceedings of the Genetic and Evolutionary Compu-
tation Conference, pp. 777–784, ACM, 2017.

https://f1tenth.org
https://github.com/CTU-IIG/f1t-ftg
https://github.com/CTU-IIG/f1t-ftg
http://www.torcs.org
http://www.torcs.org
https://GitHub.com/FacebookResearch/Nevergrad
https://GitHub.com/FacebookResearch/Nevergrad


(a) Ruudskogen track, 21 segments. Lap times: 26.94 s vs. 27.70 s. (b) Ruudskogen track, 28 segments. lap times: 26.68 s vs. 27.94 s.

(c) Torino track, 9 segments. Lap times: 15.00 s vs. 16.33 s. (d) Torino track, 13 segments. lap times: 14.96 s vs. 14.98 s.

Fig. 9: Comparison of solutions of both approaches with the lowest lap time for a various number of segments on both
tracks. The best racing line of 2D-MM is plot in blue color, best racing line of 1D-BR is depicted with red color. Note that
we have placed the centers of our 2D segments (their borders are shown using gray color) at the centers of 1D segments
for 1D-BR (magenta lines). Also, we tried to avoid intersecting of 1D-BR segments on track (d) by cropping them to the
corresponding 2D-MM segments, but this led to longer lap times.


	INTRODUCTION
	Related work
	Preliminaries
	Definitions
	Problem Statement
	Genetic algorithm

	Racing line optimization
	Track segmentation
	Racing line encoding
	Matryoshka mapping
	Speed profile calculation
	Implementation

	Experimental evaluation
	Results
	Discussion

	Conclusion
	References

