
Noname manuscript No.
(will be inserted by the editor)

Computing the Execution Probability of Jobs with
Replication in Mixed-Criticality Schedules

Antonin Novak · Zdenek Hanzalek

Received: date / Accepted: date

Abstract Mixed-criticality scheduling addresses the problem of sharing com-
mon resources among jobs of different degrees of criticality and uncertain pro-
cessing times. The processing time of jobs is observed during the online execu-
tion of the schedule with the prolongations of critical jobs being compensated
by the rejection of less critical ones. One of the central questions in the field of
mixed-criticality scheduling is ensuring the high reliability of the system with
as few resources as possible.

In this paper, we study the computation of the execution probability of jobs
with uncertain processing times in a static mixed-criticality schedule. The aim
is to compute the execution probability of jobs (i.e., the objective function of a
schedule), which is a problem solvable by a closed-form formula when the jobs
are not replicated. We introduce the job replication, i.e., scheduling a single job
multiple times, as a new mechanism for increasing the execution probability of
jobs. We show that the general problem with job replication becomes #P-hard,
which is proven by the reduction from the counting variant of 3-sat problem.
To compute the execution probability, we propose an algorithm utilizing the
framework of Bayesian networks. Furthermore, we show that cases of practical
interest admit a polynomial-time algorithm and are efficiently solvable. The
proposed methodology demonstrates an interesting connection between sched-
ules with uncertain execution and probabilistic graphical models and opens a
new approach to the analysis of mixed-criticality schedules.

Antonin Novak
Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in
Prague, CZ and Faculty of Electrical Engineering of Czech Technical University in Prague,
CZ
E-mail: antonin.novak@cvut.cz
https://orcid.org/0000-0003-2203-4554

Zdenek Hanzalek
Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in
Prague, CZ

https://orcid.org/0000-0003-2203-4554

2 Antonin Novak, Zdenek Hanzalek

Keywords mixed-criticality · job replication · scheduling · Bayesian
networks · computational complexity · uncertain processing time

1 Introduction

This paper addresses the problem of computing the execution probability of
jobs in mixed-criticality schedules. Mixed-criticality systems [41,8,9,29] share
resources among jobs with a given degree of importance, i.e., a criticality
represented by a positive integer number. Although this paradigm reduces the
costs of the system, it introduces new challenges, such as undesired interactions
(causing delays or deadline misses) between jobs with uncertain processing
times.

The traditional systems typically consider the allocation of critical jobs
to a dependable resource (e.g., a dedicated communication line for critical
messages) to achieve isolation of critical jobs, and thus, higher reliability of
the system; however, the efficiency of such systems becomes an issue. Hence,
the key challenge of mixed-criticality systems is to isolate jobs such that low-
critical jobs (e.g., J2,1, J3,1 and J3,2 in Figure 1a) do not influence any high-
critical job (e.g., J4,1 in Figure 1a) without the use of additional resources.
Typically, the isolation of critical jobs with uncertain duration is achieved with
the two aspects: (i) static scheduling of jobs [38,5,29] and (ii) online rejection
of low-critical jobs to compensate for processing delays of more critical ones [8,
37,2]. Although the static scheduling increases the predictability of the system
(i.e., its behavior is given by a static schedule which can be analyzed offline),
flawless execution of critical jobs may require occasionally to reject less critical
jobs during online execution (e.g., J2,1 and J3,1 in Figure 1b). Thus, careful
scheduling of jobs should be used [5,37] to mitigate the degradation of the
execution probability of non-critical jobs without affecting the requirements
of critical jobs. To optimize the execution probability of jobs in a schedule, a
scheduling algorithm needs to assess the quality (i.e., the objective function) of
the current schedule in order to drive the search towards a good solution [20].
Hence, the computation of the objective function of a schedule is the central
component of any algorithm that produces high-quality schedules.

In this paper, we introduce the concept of job replication to mixed-criticality
schedules. The job replication is a mechanism that utilizes unused time slots
in a static schedule for additional jobs’ execution attempts if the previous
attempts have failed. This elegant mechanism increases the execution prob-
ability of jobs and does not require additional system resources. In fact, job
replication acts as a natural generalization of the mixed-criticality model used,
e.g., by Vestal [41] or Seddik et al. [37], but it introduces additional complexity
to the computation of the objective function of a schedule. Currently known
methods (such as [37]) that are used for the computation of the execution prob-
ability in mixed-criticality schedules do no longer work when the replication
is introduced. Therefore, in this paper, we study the complexity of computing
the execution probability of jobs in mixed-criticality schedules with replication

Comp. the Exec. Probability of Jobs with Replication in MC Schedules 3

(i.e., an objective function of a schedule related to reliability of the system),
and we propose an algorithm to compute it that utilizes the theoretical frame-
work of Bayesian networks.

tt

cr
it

ic
al

it
y

le
ve

l
cr

it
ic

al
it
y

le
ve

l

22

33

11

J1,1J1,1

J2,1J2,1 J3,1J3,1

J4,1J4,1

J3,2J3,2

J5,1J5,1

22 55

0.80.8

0.20.2

(a) Mixed-criticality schedule with replication with five jobs where J3 has two
replicas.

tt

J1,1J1,1 J4,1J4,1 J3,2J3,2 J5,1J5,1

(b) An execution scenario.

Fig. 1: Mixed-criticality schedule with three criticality levels with one of the
possible execution scenarios.

1.1 Contribution and outline

In this paper, we study the job replication, which is a mechanism for increasing
the execution probability of jobs in mixed-criticality schedules. Specifically, the
main contributions are:

– We introduce the concept of replication to mixed-criticality schedules as a
mechanism for increasing the execution probability of jobs.

– We show that the general problem of computing execution probability for a
job in a mixed-criticality schedule with replication is #P-hard, in contrast
to the known polynomial-time algorithm for the case without replication.
The proof shows that the problem remains hard even if one of the numbers
of criticality levels or the maximum number of replicas is equal to a certain
constant while the other is bounded by a polynomial in the number of jobs.

– We solve the problem by a reduction to the probabilistic inference in a
suitably defined Bayesian network.

– Finally, we show that the cases of reasonable interests can be solved in
polynomial time in the number of jobs, which enables practical usage of
the job replication.

4 Antonin Novak, Zdenek Hanzalek

The rest of the paper is structured as follows. In the subsequent section, we
first describe the functionality and an application example of mixed-criticality
systems with replicated jobs. Then, we demonstrate the effect of job replication
on the execution probability, and we rigorously define the problem statement
and survey the related work in this area.

In Section 2, we study the complexity of the general problem. Section 3
deals with the actual algorithm for the computation of execution probability.
In Section 3.1, we show the reduction to the probabilistic inference in Bayesian
networks, and in Section 3.2, it is shown that a practical case of the problem
admits an efficient computation algorithm. Finally, conclusions are drawn in
Section 4.

1.2 Mixed-criticality systems with job replication

In this section, we describe an application example to illustrate the main
concepts of mixed-criticality systems with job replication. Then, we show how
the execution probability can be computed in the case without replication and
how the job replication increases it.

Application example Consider a message scheduling problem on a shared com-
munication bus in modern cars. Safety-related standards such as ASIL (Au-
tomotive Safety Integrity Levels) [6] introduce the existence of messages with
several levels of criticality:

– messages of high criticality (criticality 3) are used for safety-related func-
tionalities (their failure may result in death or severe injury to people),
such as steering;

– messages of medium criticality (criticality 2) are used for mission-related
functionalities (their failure may prevent activity from being successfully
completed), such as parking assist;

– messages of low criticality (criticality 1) are typically used for infotainment
functionalities, such as automotive navigation system.

The messages are transmitted via the bus at the moments defined by
the static time-triggered schedule [25] which improves determinism and pre-
dictability. The goal is to compute objective function reflecting statistical prop-
erties of a given static schedule that accounts for disruption of the communica-
tion according to the message criticality. In real-life environments, the execu-
tion of jobs is affected by various sources of uncertainty, causing, e.g., transmis-
sion delays. In the above example, the criticality expresses the commitment
to the transmission when the original transmission is prolonged. Therefore,
several transmission attempts are awarded to messages with a high criticality,
whereas for low-criticality messages, it might be just a single one.

Vestal’s [41] widely adopted model of mixed-criticality considers jobs with
the criticality given by an integer number and set of different processing times
associated with criticality levels. Let us demonstrate the main concepts with

Comp. the Exec. Probability of Jobs with Replication in MC Schedules 5

J3J3

J4J4

J1J1

J2J2

55 88
tt

0.50.5

0.30.3

0.20.2

0.60.6

0.40.4

22

11

22

33

cr
it

ic
al

it
y

le
ve

l
cr

it
ic

al
it
y

le
ve

l

(a) Schedule without replication.

J1,1J1,1

J3,1J3,1

J4,1J4,1

J2,3J2,3J2,2J2,2J2,1J2,10.20.2

0.30.3

0.50.5

0.60.6

0.40.4

tt
22 77 1313

11

22

33

cr
it

ic
al

it
y

le
ve

l
cr

it
ic

al
it
y

le
ve

l

(b) Schedule with three replicas of job J2.

Fig. 2: Effect of job replication to the execution probability.

an example before providing a formal definition in Section 1.3. Figure 1a shows
an example of a mixed-criticality static schedule with six job replicas. Each
job has a given integer criticality as it is seen on the vertical axis. For exam-
ple, job J4,1 has criticality of three, job J1,1 has criticality of two while J2,1
has criticality of one. Notice that J3,1 and J3,2 are two replicas of the same
job, hence, they have the same parameters but different start times. Job J1,1
has the considered processing time 2 time units with probability 0.8, and 5
time units with probability 0.2. The considered values of processing times are
derived from the (empirical) cumulative distribution function with respect to
the selected probability thresholds [41,29].

Mixed-criticality schedules contain several alternative execution scenarios,
with the one being selected based upon the realized processing times of jobs
that occur during the runtime execution. To compensate for unexpected pro-
longations of critical jobs observed at the runtime, some of the less critical
ones might not be executed under the specific realization of processing times.
This can be seen in Figure 1b, where jobs J2,1 and J3,1 are rejected if realized
processing time of J1,1 is equal to 5, happening with probability 0.2. However,
the second replica J3,2 was executed later on. Finally, we note that, e.g., J1,1
is never rejected since it does not share its execution time with any other job
with higher criticality.

The formal definition of the policy that guides the execution of the schedule
will be given in Section 1.3. Next, let us illustrate how the execution probability
can be computed and optimized in the case without replication and we show
how does the job replication improve it.

6 Antonin Novak, Zdenek Hanzalek

Execution probability and job replication The first method for the optimization
of the execution probability in mixed-criticality schedules was proposed by [37].
Given a schedule with jobs subject to deadlines, the start times of mixed-
criticality jobs are shifted in the schedule, such that low-critical jobs do not
share execution time with high-critical ones as long as the deadlines are not
violated. We illustrate the shifting of start time with the following example.
Consider the schedule in Figure 2a. There, job J3 has execution probability
equal to 0.2 since with probability 0.3 + 0.5 = 0.8 job J1 will take longer
than 2 time units to process which would reject J3. If we would shift the start
time of J3 to time 5, then its execution probability would be increased to
0.2 + 0.3 = 0.5. For more details, we refer the reader to [37].

The disadvantage of this approach, i.e., the shifting the start times, is that
the resulting schedule might be too sparse, which results in low utilization of
the resource (e.g., CPU in an embedded system). This is an undesired property
when the resource is statically scheduled and no jobs are arriving dynamically
(since it leads to more empty CPU cycles). Compare the utilization of schedules
in Figure 2a (i.e., a lower) and Figure 2b (i.e., a higher).

The main idea in this paper is to utilize unused time slots in the sched-
ule by replicating some of the scheduled jobs which increases their execution
probability. First, let us introduce the formal definition of mixed-criticality
jobs used thorough the paper. We use a standard mixed-criticality model [41,
37]:

Definition 1 (Mixed-criticality job) Let Ji = (πi,µi,Xi) be a mixed-criticality

job, where Xi ∈ N is a positive integer criticality, πi =
(
π
(1)
i , . . . , π

(Xi)
i

)
∈ NXi

is a vector of processing times of job Ji such that π(1)
i < . . . < π

(Xi)
i and

µi =
(
µ
(1)
i , . . . , µ

(Xi)
i

)
∈ [0, 1]

Xi is a conditional probability distribution over

πi given that Ji is executed.

See the example in Figure 2a. There, we can see, e.g., job J1 has π1 = (2, 5, 8),
µ1 = (0.2, 0.3, 0.5) and X1 = 3. Let us denote q-th replica of job Ji as Ji,q,
i.e., all replicas of the same job Ji have the same parameters Xi, πi, and µi,
but different start times.

Next, we demonstrate how the replication leads to an increased execution
probability over the schedules without replication. For example, consider Fig-
ure 2b, where job replica J2,2 can be executed at time 7 if J2,1 is not executed
at time 2. When the execution at time 7 fails as well, J2,3 can be still exe-
cuted at time 13. More generally, the replication of jobs allows us to achieve
higher execution probabilities, since the replication may be seen as a form of
relaxation, where we relax on the scheduling constraint ”each job is scheduled
exactly once” to ”each job is scheduled at least once”.

In this paper, we deal with the problem of computing execution probabil-
ities of jobs with replication for the given fixed schedule. It is assumed that
the schedule is a solution to the scheduling problem denoted in three-field
scheduling notation [17] as 1|mc = L, rep = R|∑Pi. The first field stands for
a single resource, mc = L stands for mixed-criticality jobs with an unspecified

Comp. the Exec. Probability of Jobs with Replication in MC Schedules 7

number of criticality levels, [21] and rep = R for the replication considering
an unspecified number of replicas per job. The last field

∑
Pi indicates that

the objective function is the sum of execution probabilities [37]. Note that
without loss of generality, we can restrict ourselves to schedules with a sin-
gle resource only. Indeed, as the schedule is fixed, then each resource can be
treated separately.

In the following section, we define the problem statement of computing
objective function

∑
Pi for the given schedule of problem 1|mc = L, rep =

R|∑Pi, and potentially other constraints. Therefore, we assume that the
start times of the jobs are provided, and the goal is to compute the execution
probabilities of jobs.

1.3 Problem statement

First, we define an instance of the problem given by a set of mixed-criticality
jobs and their schedule.

Definition 2 (Mixed-criticality instance) Let IMC = {J1, . . . , Jn} be a
set of independent mixed-critical jobs. Let us denote the maximal criticality
as L = maxi Xi. Let R > 1 be the maximal number of replicas of any job in a
feasible schedule for IMC.

Further in the text, we will refer to the original job Ji in the instance IMC
as a ”job”, whereas their individual occurrences Ji,q in the schedule as ”(job)
replicas”. Therefore, each job has at least one replica in the schedule, and each
replica corresponds to exactly one job. We assume that we are provided with
a feasible schedule containing up to R replicas per job with criticality up to
L:

Definition 3 (Schedule with replication) Let us denote the schedule for
a set of jobs IMC as s = (s1,1, . . . , s1,n1

, s2,1, . . . , s2,n2
, . . . , sn,1, . . . , sn,nn

),
where nk ≤ R is the number of replicas of the job Jk in schedule s. Let
si,q ∈ N0 be the start time of replica Ji,q. Furthermore, we say that schedule
s is feasible if and only if ∀Ji, Jj ∈ IMC ,∀q ≤ ni, r ≤ nj:(

si,q + π
(min{Xi,Xj})
i ≤ sj,r

)
∨
(
sj,r + π

(min{Xi,Xj})
j ≤ si,q

)
,

i.e., replicas do not overlap on any criticality level.

Furthermore, we will assume without loss of generality that the start times of
the first replicas are ordered s1,1 ≤ s2,1 ≤ . . . ≤ sn,1 and replicas of each job
Ji ∈ IMC are ordered as si,1 ≤ si,2 ≤ . . . ≤ si,ni

.
The above definition of a feasible schedule comes from the strict require-

ment that the processing of a job cannot be affected by delays of jobs with less
or equal criticality. The motivation for it comes from the modular system de-
sign principles, where it is desired to achieve so-called error containment [30]
which is the property of the system that guarantees that the malfunction of

8 Antonin Novak, Zdenek Hanzalek

tt
cr

it
ic

al
it
y

le
ve

l
cr

it
ic

al
it
y

le
ve

l

22

33

11

J1,1J1,1 J2,1J2,1

J1,1J1,1 J2,1J2,1

Fig. 3: Example of an infeasible schedule. All realizations are not feasible.

a single component of the system does not arbitrarily propagate through the
system. This in turn facilitates modular certification [30], which is yet another
desirable design principle. To demonstrate the meaning of the definition of the
feasibility, consider the example in Figure 3, where we see a schedule with two
jobs with two criticality levels and one of the possible execution scenarios of
the schedule. If job replica J1,1 is executed at the second level, it may corre-
spond to an abnormal state and can be seen as an error. If any two jobs would
overlap at the second criticality level (as it is shown in the figure), then this
error would disrupt job replica J2,1 with equal criticality, which is not desir-
able, especially if this job implements functionality that has been certified in
the isolation. Thus, its certification would not be longer valid when deployed
together with the functionality implemented by J1,1. Therefore, for the above
reasons, it is useful to require that in all execution scenarios, a job cannot be
affected by delays of less or equally critical jobs.

On the other hand, the definition allows that more critical jobs can affect
the execution of less critical jobs. Indeed, each schedule contains so-called cov-
erage sets which specify which replicas might be rejected during the execution
of the schedule.

Definition 4 (Coverage set) We say that replica Ji,q is covered by replica
Jj,r at level `, Xj ≥ ` > 1 in schedule s, denoted by Ji,q ∈ cov` (Jj,r), if and
only if

sj,r + π
(`−1)
j,r ≤ si,q < sj,r + π

(`)
j,r .

For example, in Figure 4a we have J2,2 ∈ cov3 (J1,1). For simplicity, we use
the notation Ji,q ∈ cov(Jj,r) to denote that there exists a level ` ∈ {2, . . . ,Xk}
such that Ji,q ∈ cov` (Jj,r). Note that the notation omits the dependence on
schedule s as well, as it is clear from the context.

Since the processing times of jobs are uncertain, each job replica can have
a different realized processing time, which is revealed during the execution of
the schedule.

Definition 5 (Execution level of a replica) We say that the execution level
of replica Ji,q is `, denoted as Ji,q ∼ `, if and only if its realized processing time

Comp. the Exec. Probability of Jobs with Replication in MC Schedules 9

J1,1J1,1

J2,1J2,1
J2,2J2,2 J2,3J2,3J3,1J3,1

J4,1J4,1

tt

J1,1J1,1 J2,1J2,1 J3,1J3,1 J4,1J4,1

cr
it

ic
a
li
ty

le
ve

l
cr

it
ic

a
li
ty

le
ve

l
22

33

11

(a) The first replica of J2 is executed, hence, the others are rejected.

tt

J1,1J1,1

J2,1J2,1 J2,2J2,2 J2,3J2,3J3,1J3,1

J4,1J4,1

J1,1J1,1 J2,2J2,2 J4,1J4,1

cr
it

ic
a
li
ty

le
ve

l
cr

it
ic

a
li
ty

le
ve

l

22

33

11

(b) The second replica of J2 is executed, hence, the last is rejected.

Fig. 4: Schedule of mixed-criticality jobs with replication under different sce-
narios.

πi,q is equal to the processing time of the job Ji at `-th level, i.e., πi,q = π
(`)
i

if and only if Ji,q ∼ `.
See the example in Figure 4. In the scenario depicted in Figure 4a, the realized
processing time of replica J1,1 was π1,1 = π

(1)
1 , hence J1,1 ∼ 1. On the other

hand, in the scenario in Figure 4b, we have that J1,1 ∼ 2, thus π1,1 = π
(2)
1 .

Next, we describe how the mixed-criticality schedules with replicated jobs
are executed. To execute replicas in a schedule with respect to their criticali-
ties, the runtime execution of the schedule s is guided by the policy given in
Algorithm 1. The design of the execution policy is driven by the implementa-
tion aspects of real-life embedded systems. It uses the following rules:

– the replica is started at its start time if no other replica is executed at the
moment (line 3: h(t) = 0),

– when a replica is started, then it is completed on one of its criticality levels
(lines 6–9, e← e ∪ {Ji,q ∼ `}),

– when a replica is completed, then all of the following replicas of the job are
rejected (line 3: 6 ∃q′, ` : (Ji,q′ ∼ `) ∈ e).
The role of function h(t) is to keep track of the current execution level

of the schedule. See an example of the h(t) function in Figure 4 where it is
depicted on the y-axis with solid and dashed lines. The value h(t) = 0 denotes

10 Antonin Novak, Zdenek Hanzalek

that the resource is available, and a replica can be executed at its start time.
During the replica’s execution, its realized processing time is observed, and
the execution level of the schedule h(t) is appropriately updated while the
execution Ji,q ∼ ` of the job replica is stored to the list of observed realizations
e. When the replica is completed, the execution matches up with the base value
(i.e., h(t) = 0), signaling that the next job replica in the order can be executed.

Algorithm 1 Execution policy of mixed-criticality schedules.
Input: a schedule s and online observations of realized processing times
Output: the sequence of decisions which replicas to execute and to reject

1: t← 0, h(0)← 0, e← ∅
2: while t < max s do
3: if h(t) = 0 and ∃si,q ∈ s : si,q = t and 6 ∃q′, ` : (Ji,q′ ∼ `) ∈ e then
4: πi,q ← execute Ji,q at time si,q . observe realized processing time
5: e← e ∪ {Ji,q ∼ `} . exec. level of q-th replica of job Ji is `
6: for k ← 1 to ` do . update exec. level of schedule h(t)

7: h(t+ t′)← k ∀t′ ∈
[
0, π

(k)
i

]
8: t← t+ π

(k)
i

9: end for
10: else
11: t← t+ 1
12: end if
13: h(t)← 0 . the execution matches-up with the base value
14: end while

Note that the execution policy in Algorithm 1 distinguishes only two states
of h(t) function, i.e., h(t) = 0 and h(t) > 0. Indeed, for the decision, which jobs
to execute given the observed realizations of processing times, it is sufficient
to observe whether the resource is available (h(t) = 0) at the time t if t
equals to the start time of a job replica. Within the scope of this paper, we
use h(t) execution function only inside the execution policy in Algorithm 1
and to define an execution scenario. Essentially, any admissible execution of
the schedule, i.e., the evolution of h(t) function, forms an execution scenario.
We define an execution scenario as a sequence of outcomes (i.e., the list of
observations e) that is admissible under the execution policy in Algorithm 1.

We note that additional functionalities of the system such as recovery poli-
cies (e.g., graceful degradation) may require fine-grained access to the specific
execution level of the schedule h(t) rather than whether the resource is busy
at time t or not. These are beyond the scope of this paper but motivates us
to introduce h(t) function in its more general form.

Definition 6 (Execution scenario) The execution scenario e is a sequence
of replicas’ execution levels Ji,q ∼ `, i.e., specific realization of processing

Comp. the Exec. Probability of Jobs with Replication in MC Schedules 11

times, which can be realized under the execution policy given by Algorithm 1.
We denote the set of all possible execution scenarios in schedule s by Es.

For example, the scenario corresponding to Figure 4b is ē = (J1,1 ∼ 2, J2,2 ∼
1, J4,1 ∼ 1). Furthermore, notice that the execution policy ensures that at most
one replica of each job is executed under any scenario. Consider an example in
Figure 4, where the schedule is executed under two different scenarios. There,
the solid line displays the current execution level of the schedule h(t) while
being dashed when it is 0. In the scenario in Figure 4b, J1,1 is executed at its
second level, which leads to rejection of replicas J2,1 and J3,1. Then, the second
replica J2,2 was executed; thus, the last replica J2,3 is rejected. A different
scenario is depicted in Figure 4a, where the first replica J2,1 is executed; thus,
the second (i.e., J2,2) and the third (i.e., J2,3) replicas are rejected.

J1,1J1,1

J2,1J2,1 J2,2J2,2 J2,3J2,3J3,1J3,1

J4,1J4,1

0.20.2 0.60.6

0.40.40.30.3

0.50.5

22 55 88
tt

(a) Schedule of mixed-criticality jobs with replication.

0.2⇥ 1⇥ 1⇥ 0.6 = 0.120.2⇥ 1⇥ 1⇥ 0.6 = 0.12

0.2⇥ 1⇥ 1⇥ 0.4 = 0.080.2⇥ 1⇥ 1⇥ 0.4 = 0.08

0.3⇥ 1⇥ 0.6 = 0.180.3⇥ 1⇥ 0.6 = 0.18

0.3⇥ 1⇥ 0.4 = 0.120.3⇥ 1⇥ 0.4 = 0.12

0.5⇥⇥0.6⇥ 1 = 0.30.5⇥⇥0.6⇥ 1 = 0.3

0.5⇥ 0.4 = 0.20.5⇥ 0.4 = 0.2

e1e1 J1,1J1,1

J1,1J1,1

J1,1J1,1

J1,1J1,1

J1,1J1,1

J1,1J1,1

J2,1J2,1 J3,1J3,1 J4,1J4,1

J2,2J2,2 J4,1J4,1

J4,1J4,1 J2,3J2,3

J4,1J4,1

J2,1J2,1 J3,1J3,1 J4,1J4,1

J2,2J2,2 J4,1J4,1

e2e2

e3e3

e4e4

e5e5

e6e6

0.2×1.0×1.0× 0.6 = 0.12

0.2×1.0×1.0× 0.4 = 0.08

0.3× 1.0×0.6 = 0.18

0.3× 1.0×0.4 = 0.12

0.5× 0.6×1.0 = 0.3

0.5× 0.4 = 0.2

∑
= 1

(b) All possible execution scenarios and their probabilities.

Fig. 5: Example schedule and all of its possible execution scenarios.

Finally, we define the execution probability of a job as follows:

Definition 7 (Execution probability of a job) The execution probability
Pi of job Ji in schedule s is given as

Pi =
∑

∀e∈{e′∈Es: ∃q,`:(Ji,q∼`)∈e′}

∏
∀(Jk,r∼`)∈e

µ
(`)
k . (1.1)

In other terms, the execution probability of a job is the sum of probabilities of
scenarios where a replica of that job was executed. See the example in Figure 5.

12 Antonin Novak, Zdenek Hanzalek

There, all six possible scenarios and their probabilities, are depicted. Note that
the lowest critical job replicas (i.e., J2,1, J2,2, J2,3, and J3,1 in Figure 5a) have
the probability 1.0 of being completed at the first level given that they are
started (see Definition 1). For example, the execution probability of replica J3,1
in this schedule is P3 = 0.12 + 0.08 = 0.2. This can be seen as well as from the
fact that J3,1 has probability 0.3+0.5 = 0.8 of being rejected by J1,1. Similarly,
the execution probability of J2 is P2 = (0.12+0.08)+(0.18+0.12)+(0.3) = 0.8.

The aim of this paper is to compute the sum of execution probabilities for
all jobs in the schedule.

Definition 8 (Problem statement) The problem is to compute
∑
Pi of the

given schedule s with replication, where Pi is the execution probability of job
Ji ∈ IMC.

We assume that the provided schedule is not trivial in the sense that at
least one replica is covered; otherwise, every job would be executed with a
probability of one. Indeed, it is realistic to assume that the jobs in the pro-
vided feasible schedule are constrained by deadlines and other constraints,
which likely leds to non-empty coverage sets. Finally, as a remark, let us note
that the definition of a mixed-criticality job assumes that µi is a probability
distribution, i.e., it sums to one. This assumption might not hold in cases
where, e.g., the worst-case execution time cannot be bounded. On the other
hand, one can always select finite values of processing times πi such that
the selected approximation is arbitrary close to the reality [1]. Therefore, this
assumption is not crucial, but it simplifies the presentation of the main ideas.

Remark 1 Note that in this paper, we deal with the computation of the ob-
jective function for a given schedule, but we do not touch the question of how
to decide which jobs to replicate and which start times to assign them. There
are many possibilities to do that, e.g., in a greedy fashion, by a metaheuristic
algorithm [42,16] or by some exact method, but these require a method pro-
viding objective value for the current solution. However, the above question
goes well beyond the scope of this paper.

One source of difficulty of computing the execution probability from Def-
inition 7 comes from the fact that the set Es of all scenarios in schedule s
may contain an exponential number of scenarios, i.e., |Es| ∈ O

(
LnR), where

n = |IMC |. Indeed, we will show that the job replication fundamentally changes
(as opposed to the case without replication) the computational complexity of
the problem and requires a new algorithm for the computation. Even though
we will show that the exact computation of the execution probability is hard
in general, we propose an efficient method for a tractable class of schedules.

1.4 Related work

The study of mixed-criticality systems originates from the real-time scheduling
community due to its practical applications. The most widely adopted mixed-
criticality scheduling model was proposed by Vestal in his seminal paper [41].

Comp. the Exec. Probability of Jobs with Replication in MC Schedules 13

Table 1: Contributions of this paper.

replication complexity result algorithm

Seddik et al. [37] no
finding start times of jobs with a fixed order to DP for mc = 2,
maximize

∑
wiPi is weakly NP-hard MIP for mc = L

This work yes
computing

∑
Pi is #P-hard, inference in

fixed-parameter tractable with respect to max{L,R} Bayesian networks

There, he proposes a model of mixed-criticality jobs that assumes that each job
has an integer criticality with each criticality level associated with processing
time for that level of assurance. This understanding of mixed-criticality was
later adopted by the majority of follow-up works, e.g., Baruah [3], Burns [9],
and Davis [14]. This line of research mostly deals with response time analysis of
various scheduling policies considering preemptive jobs [24] in so-called event-
triggered environment [25]. For a comprehensive review of mixed-criticality
scheduling literature, we refer the reader to [8].

A known challenge for complex event-triggered systems is the difficulty of
certification for safety-critical applications [2,15]. Therefore, a new stream has
emerged and turned the attention toward static scheduling in mixed-criticality
systems [29,38,4] that simplifies the certification. A problem with preemptive
jobs with two criticality levels was addressed in [5]. The authors proposed
a heuristic algorithm that constructs a static schedule for multiple resources
while considering precedence constraints. Novak et al. [29] dealt with non-
preemptive mixed-criticality jobs up to three criticality levels to minimize
the length of the schedule, i.e., the makespan. They proposed an approxima-
tion algorithm and a branch-and-price decomposition to solve the problem.
Seddik [37] noted that makespan minimization with mixed-criticality jobs de-
creases the probability of the execution. Thus, instead of minimizing the length
of the schedule, they proposed a non-regular scheduling criterion that maxi-
mizes the execution probability of jobs — spreading them as much as possible
under the deadline constraints. They derived a closed-form formula for the
computation of the execution probability of jobs, given that the start times
are fixed. Furthermore, they gave proof that finding optimal start times with
the fixed permutation remainsNP-hard, and they proposed (i) a dynamic pro-
gramming (DP) for the case of two criticality levels and (ii) a mixed-integer
linear programming (MIP) model for the general problem. To find an opti-
mal permutation, they developed a branch-and-bound algorithm. However,
the used criterion may lead to schedules with low utilization of resources, as
they did not consider the job replication.

The problem in this paper is related to stochastic scheduling due to the
uncertainty of processing times [22]. There are a plethora of works focusing
on processing time uncertainty, often assuming a uniform distribution, normal
distribution, an uncertainty set [19,33], or they are distributionally robust [10].
Many of these problems can be formulated as β-robust problems [13] with the
goal of, e.g., maximizing the probability that all jobs are completed before the
given due date. To the best of our knowledge, the existing approaches in the

14 Antonin Novak, Zdenek Hanzalek

literature addressing stochastic and robust scheduling cannot be used to solve
this problem.

The concept of job replication in scheduling is studied in works concerning
parallel algorithms and communication delays [7,31]. The idea is that repli-
cation of a job to another processor avoids extra communication and reduces
system overhead. Hence, they observe that job replication can decrease the
makespan of a schedule when multiple processing units are considered [23].
This is similar to our case, where we allow to consume resource time (that
would not be utilized in any way) to improve the objective value by schedul-
ing the same job more than once.

Best to our knowledge, the effect of job replication in static mixed-criticality
systems has not been studied before, although it arises as a natural general-
ization of former mixed-criticality models, such as [41,37]. We summarize the
main contributions of this paper with respect to the most similar work [37]
highlighted in Table 1.

In the following section, we prove the main complexity result of this paper
concerning the computation of the execution probability in a mixed-criticality
schedule with replication.

2 Time complexity of the problem

We show that the general problem where either the maximum number of crit-
icality levels L or the maximum number of replicas per job R is bounded
by a polynomial in the number of jobs and the other is equal to some cho-
sen constant, remains #P-hard. We remind that #P is a class of counting
problems, i.e., a set of problems that count the number of accepting paths in
a polynomial-time non-deterministic Turing machine [39]. An example of a
problem contained in #P is the following: What is the number of spanning
trees in the given connected simple graph? A problem is said to be #P-hard,
if for every problem in #P, there exists a polynomial-time counting reduction
to it [11].

First, we show that to decide whether a job has a non-zero probability of
being executed is as hard as determining whether a CNF (conjunctive normal
form) formula is satisfiable.

Proposition 1 There exists a finite number of maximum replicas per job R
such that deciding whether Pi > 0 for some job Ji is NP-complete.

Proof First of all, it can be seen that the problem is contained in NP. Indeed,
having an execution scenario, we verify in polynomial time in the length of
the input (number of all replicas and criticality levels) whether the given job
Ji is executed (e.g., similarly as in Algorithm 1).

Next, we will show a polynomial reduction from 3-sat to our problem.
Consider a 3-CNF propositional formula T =

∧m
k=1 ck =

∧m
k=1

(
uk1 ∨ uk2 ∨ uk3

)
with m clauses and n variables uj , j ∈ {1, . . . , n}, where ukq denotes q-th literal
of k-th clause. For such a formula, we construct the schedule in the following

Comp. the Exec. Probability of Jobs with Replication in MC Schedules 15

way. We use five sets of jobs. We have a set U = {U1, . . . , Un} that denotes jobs
corresponding to variables u1, . . . , un and a set C = {C1, . . . , Cm} that corre-
sponds to clauses c1, . . . , cm. Next, we have jobs denoted as A = {A1, . . . , An}
that serve as an apriori setting of the execution of jobs U , i.e., they generate
execution scenarios corresponding to all possible variable assignments of the
formula T . Furthermore, we have a set of jobs D = {D1, . . . , Dn} where Dj is
present if the variable uj acts as a positive literal in some clause. Finally, we
have a single job Y , whose execution probability is used to decide whether T
is satisfiable or not. Hence, we have that IMC = U ∪C ∪A ∪D ∪ {Y }. Job Y
takes the role of job Ji, i.e., the job for which we investigate whether it will
be executed with a non-zero probability.

0.50.5

1.01.0

1.01.0

1.01.0

1.01.0

1.01.0

A2,1A2,1
U2,1U2,1

D2,1D2,1

C2,2C2,2

C1,2C1,2

C3,1C3,1

0.50.5

(a) Gadget for variable u2.

1.01.0

1.01.0

1.01.0
C1,4C1,4

C2,4C2,4
C3,4C3,4 YY

(b) Gadget for and gate.

Fig. 6: Basic gadgets used in the reduction utilizing a constant number R of
maximum replicas count.

Now, we will describe the parameters of the jobs. The jobs Ck have crit-
icality XCk

= m + 2 − k, jobs Uj have criticality XUj
= m + 3, Aj have

criticality XAj
= m+ 4, jobs Dj have criticality XDj

= m+ 2 and job Y has
criticality XY = 1. All jobs from sets U , D, and C have a Dirac distribution of
probability over processing times — the probability of the execution at their
top level is 1, i.e., µ = (0, . . . , 0, 1). Jobs Aj have probability distribution
µj = (0, . . . , 0, 0.5, 0.5). Furthermore, we have that jobs in A, U , D, and job
Y have a single replica while jobs in C have exactly four replicas; see Figure 7
where all gadgets are shown in one schedule.

The schedule consists of n copies of the gadget shown in Figure 6a. For
each variable uj we have one gadget containing a replica of all jobs Ck,{1,2,3} ∈
cov(Uj,1) for clauses ck where uj is a negative literal and Ck,{1,2,3} ∈ cov(Dj,1)
for clauses where uj is a positive literal. The indices {1, . . . , 3} of replicas
Ck,{1,2,3} are given according to appearance of variables uj , j ∈ {1, . . . , n} in
clauses ck, k ∈ {1, . . . ,m}. The purpose of jobs Aj,1 is to ensure that for each
variable uj , job replica Uj,1 will be executed with probability 0.5. If Uj,1 is
rejected, then replicas Ck, where that uj acts as a negative literal in clause
ck will be executed. If Uj,1 is executed, then Dj,1 is rejected; thus, all Ck in
its coverage are executed since those correspond to clauses where uj acts as
a positive literal. Please note that it is crucial that jobs both in cov(Uj,1)
and cov(Dj,1) do not overlap in each. The schedule is concluded with the
gadget shown in Figure 6b, which implements and gate, ensuring that job Y

16 Antonin Novak, Zdenek Hanzalek

is executed if only if for each k ∈ {1, . . . ,m} a replica Ck,{1,2,3} was executed
in the schedule before and gate.

Consider an example formula T = c1 ∧ c2 ∧ c3 = (u1 ∨ u2 ∨ u3) ∧ (¬u1 ∨
¬u2 ∨u3)∧ (u2 ∨¬u3 ∨u4). The resulting schedule derived from the reduction
can be seen in Figure 7. The resulting schedule has O(n+m) replicas with at
most O(m) criticality levels and the maximum replica count per job R = 4.

u1u1 u2u2 u3u3 andandu4u4

c1c1c2c2 c3c3c1c1c2c2 c3c3 c1c1 c3c3c2c2

Fig. 7: Example schedule of the reduction from T = c1 ∧ c2 ∧ c3 = (u1 ∨ u2 ∨
u3) ∧ (¬u1 ∨ ¬u2 ∨ u3) ∧ (u2 ∨ ¬u3 ∨ u4).

Next, we need to show that in such a schedule PY > 0 if and only if T is
satisfiable.
sat =⇒ PY > 0. Let φ be an assignment of formula T that is true. We

will show that the probability of the execution of job Y is greater than zero,
i.e., there is an execution scenario e with a non-zero probability that includes
Y . Let us define the execution scenario e such that Uj,1 is executed if and only
if φ(uj) = >. This scenario occurs with probability 2−n, which follows from
the choice of the probability distribution of jobs A. We will show that under
scenario e, the job Y is executed.

If φ is a true assignment of T , then ∀ck ∈ T there exists a literal uj that
makes clause ck satisfied. Let uj be such literal for clause ck:

– If uj acts as a positive literal in ck, then φ(uj) = >. Thus, Uj,1 is executed,
therefore Dj,1 is rejected, since from the schedule construction follows that
Ck ∈ cov(Dj,1). Hence, a replica Ck,{1,2,3} is executed.

– If uj acts as a negative literal in ck, then φ(uj) = ⊥. From the definition of
scenario e follows that Uj,1 is rejected; thus, a Ck,{1,2,3} is executed since
Ck ∈ cov(Uj,1), which follows from the construction of the schedule.

Since for all jobs Ck, one replica is executed before and gate, then the last
replica of each Ck is rejected; therefore, Y is executed. Hence, job Y is executed
in at least one scenario, thus PY > 0.

PY > 0 =⇒ sat. If job Y has a non-zero probability of execution,
then there is an execution scenario e such that for every Ck, one replica is
executed before and gate, otherwise Y would be rejected. We will show, that
this scenario defines an assignment of formula T that is true.

Let us define the assignment φ such that φ(uj) = > if and only if Uj,1 is
executed under scenario e. We will show that φ is a model of T . Let Ck,{1,2,3} be
a job replica that is executed in scenario e in the schedule gadget corresponding
to variable uj . Then,

Comp. the Exec. Probability of Jobs with Replication in MC Schedules 17

– If Ck ∈ cov(Dj,1), then job replica Uj,1 was executed, therefore φ(uj) = >.
From the construction of the schedule, uj acts as the positive literal in ck;
therefore, clause ck is satisfied.

– If Ck ∈ cov(Uj,1), then Uj,1 was rejected, therefore φ(uj) = ⊥. From the
construction of the schedule it holds that uj acts as the negative literal in
ck; therefore, clause ck is satisfied.

Since φ is true in all clauses, it is a model of T , and, thus T is satisfiable. To
illustrate how assignments of the formula are mapped to execution scenarios,
consider the following two examples. Let us have an assignment φ, such that
φ(u1) = >, φ(u2) = ⊥, φ(u3) = ⊥ and φ(u4) = >. The execution scenario
corresponding to assignment φ is given as e = (A1,1 ∼ 6, U1,1 ∼ 6, C1,1 ∼
4, A2,1 ∼ 7, C2,2 ∼ 3, D2,1 ∼ 5, A3,1 ∼ 7, C3,2 ∼ 2, D3,1 ∼ 5, A4,1 ∼ 6, U4,1 ∼
6, Y ∼ 1). An another assignment φ′ for which φ′(u1) = >, φ′(u2) = >,
φ′(u3) = ⊥ and φ′(u4) = ⊥ translates into the scenario e′ = (A1,1 ∼ 6, U1,1 ∼
6, C1,1 ∼ 4, A2,1 ∼ 6, U2,1 ∼ 6, C3,1 ∼ 2, A3,1 ∼ 7, D3,1 ∼ 5, A4,1 ∼ 7, D4,1 ∼
5, C2,4 ∼ 3). ut

The reduction suggests that the problem remains hard even for a constant
number of the maximum job replicas, i.e., R = 4. Moreover, we will show that
a non-constant number of criticality levels is not the only source of hardness.
Indeed, the problem remains hard, assuming a constant number of criticality
levels when the maximum number of replicas is not fixed to a constant.

Proposition 2 There exists a finite number of criticality levels L such that
determining whether Pi > 0 for some job Ji is NP-complete.

Proof The reduction uses a similar idea as the one described in Proposition 1,
where the main difference lies in the construction of and gate. The result-
ing schedule again consists of two parts. The first part represents variables
u1, . . . , un and uses L = 8 criticality levels. A replica of job Ck (representing
clause ck) is executed when clause ck contains a literal ukq that makes the clause
satisfied. The difference from the structure shown in Figure 6a is that here all
Ck’s have criticality XCk

= 5, and thus XDj = 6, XUj = 7, and XAj = 8. See
the example gadget corresponding to variable u1 from formula T in Figure 8a.

The other difference lies in the second part of the schedule, i.e., and gate,
which has to be redesigned to have a constant number of criticality levels. This
can be done using R ∈ O(m) maximum replicas per job in a way shown in
Figure 8b. The structure of the new and gate introduces three additional job
types: K, N and Y . Job K has m+ 1 replicas in the schedule, and the job Y
a single one. Furthermore, jobs N = {N1, N2, . . . , Nm} have a single replica in
the schedule for each of them. Jobs in N , K, and Y have Dirac distribution
of processing times with the probability of one at their top level. The purpose
of jobs Nk is to ensure that at least one of the first m replicas of job K is
executed if no replica of each Ck, k ∈ {1, . . . ,m} is executed before and gate.
If this happens, then we need to reject Y , which is done by executing the last
replica K1,m+1. The job replica Y ensures that Y is executed if and only if
K1,m+1 is executed.

18 Antonin Novak, Zdenek Hanzalek

Next, we show that job replica Y is executed if and only if a replica for
every job Ck was executed in the schedule before and gate.

C2,1C2,1 C1,1C1,1

D1,1D1,1

A1,1A1,1
U1,1U1,1

1.01.0

1.01.0

1.01.0

1.01.0

0.50.5

0.50.5

(a) Gadget for variable u1 that uses L = 8 criticality levels.

N2,1N2,1
C1,4C1,4 C3,4C3,4

YY

N3,1N3,1
K1,4K1,4

YY

N1,1N1,1
C2,4C2,4

K1,3K1,3K1,2K1,2K1,1K1,1

1.01.0

1.01.0

1.01.0

1.01.0

1.01.0

1.01.0

1.01.0

1.01.0

1.01.0 1.01.0

1.01.0

(b) Gadget for and gate that uses L = 5 criticality levels.

Fig. 8: Basic gadgets used in the reduction utilizing a constant number of
criticality levels L.

– Let us assume that for every scenario e ∈ Es there is a job Ck with no
replica executed before and gate. Therefore, the last replica Ck,4 is exe-
cuted in and gate. Then Nk,1 is rejected and, hence, the replica K1,k is
executed. Therefore, in the last section of and gate, the last replica K1,m+1

is rejected; thus, Y is executed, which leads to rejection of Y . Furthermore,
if for all scenarios e ∈ Es hold that there is a Ck with no replica executed
before and gate, then PY = 0.

– Next, let us assume that there is a scenario such that all Ck’s are executed
before and gate. Hence, Ck,4, k ∈ {1, . . . ,m} are rejected, and the corre-
sponding Nk,1 are executed. Therefore, all replicas of job K are rejected
except the last one (i.e., K1,m+1). Thus Y is rejected, and then, finally, Y
is executed; therefore, PY > 0 follows. ut

Remark 2 Notice that jobs in sets U , C, D, N , and K in the reductions above
have assumed a Dirac distribution, hence their processing times are, in fact,
deterministic, which might feel a bit unnatural. However, it implies several in-
teresting consequences. Namely, if there would be a polynomial-time algorithm
that would decide whether a job can be executed, then such an algorithm ei-
ther has to exploit the fact that distributions of processing times are not Dirac
or it would not be sound under P 6= NP assumption. Nevertheless, the usage
of Dirac distribution for some of the jobs is not the crucial idea in the reduc-
tion. One could use a distribution that is almost Dirac except for some small
positive ε. The value of ε would be set such that for an unsatisfiable formula
the probability of execution of job Y would be non-zero, but arbitrarily small

Comp. the Exec. Probability of Jobs with Replication in MC Schedules 19

(e.g., � 2−O(poly(nm))) while a satisfiable formula would admit the execution
of Y with probability at least 2−n − f(ε) where f(ε) is an arbitrarily small
non-negative value that incorporates the sum of probabilities of false-negative
scenarios (i.e., scenarios corresponding to true valuations of the formula but
do not execute Y).

Finally, it can be seen that an algorithm computing the exact value of PY

could be used to solve #3-sat problem [32] (i.e., the number of satisfiable
assignments for the given 3-sat formula) as it preserves the number of yes
certificates in each problem. Indeed, under the considered reduction, each true
assignment of the formula T with n variables increases the execution proba-
bility of job Y by 2−n while a false assignment does not increase it and vice
versa. Since it is known that #3-sat is #P-complete, we have the following
corollary:

Corollary 1 Computing Pi remains #P-hard when L or R is bounded by a
polynomial in the number of jobs while the other is equal to a sufficiently large
constant.

Remark 3 Note that it is known that #2-sat is #P-complete as well [40],
although the decision problem of 2-sat is polynomially solvable. This suggests
that the exact computation of execution probability is hard already for R = 3
maximum replicas, which follows from the reduction introduced in the proof
of Proposition 1. On the other hand, for the case R = 1, a polynomial-time
solution is known [37]. Hence, the complexity of the case R = 2 stays as an
open problem. For the number of criticality levels L we know that L = 8
already leads to intractability if R is not a constant.

In the next section, we show that the general problem (with arbitrary L
and R) of computing the execution probability can be reduced to probabilistic
inference in Bayesian networks, which gives us an algorithm for the compu-
tation. The inference in the resulting network has complexity parametrized
by the number of criticality levels L and by the number of maximum replicas
R. Furthermore, we show that the problem becomes tractable, when both L
and R are bounded by a constant, which is often a realistic case for real-life
applications.

3 Algorithm for computation of the execution probability

In this section, we show how the statistical properties of mixed-criticality
schedules with replication can be described with Bayesian networks. A Bayesian
network G = (V,A) is a probabilistic directed acyclic graphical model that
represents the joint distribution over the set V of random variables using con-
ditional dependencies defined by edges A. Since the processing time of jobs
is uncertain, we can view the job replicas as random variables. Then, the
execution policy (i.e., Algorithm 1) defines a joint probability distribution
Pr {J1,1, . . . , Jn,ni

} over the given schedule that assigns a probability to each

20 Antonin Novak, Zdenek Hanzalek

execution scenario. However, the representation of the full joint distribution
is costly as it has O(LnR) parameters. To overcome this, we use Bayesian
networks (BN) [34], which can be seen as an efficient way of representing joint
distributions.

We show that any schedule for scheduling problem 1|mc = L, rep =
R|∑Pi defines a Bayesian network. We use this network for the computation
of the execution probability of jobs using the existing inference algorithms for
BNs. Moreover, we utilize the theoretical framework of Bayesian networks to
analyze which case of the problem admits an efficient algorithm for probability
computation.

3.1 Reduction to Bayesian networks

Under the considered mixed-criticality model, replica Ji,q with Xi criticality
levels can be either: (i) executed at one of its levels (i.e., Xi outcomes), (ii) re-
jected by some other job replica, or (iii) rejected due to successfully completed
previous replica of the same job. The probabilities of its outcomes are given by
the start times of other replicas in the schedule. If the replica is executed, then
its outcomes have probabilities given by the job specification, i.e., µi distribu-
tion. When the replica is rejected, then all these outcomes have a probability
of zero. However, the probability of being executed or rejected depends on the
preceding jobs replicas in the schedule and their coverage.

J1,1J1,1

J6,1J6,1

J2,1J2,1

J3,1J3,1

J4,1J4,1

J5,1J5,1

J2,2J2,2

J5,2J5,2 J3,2J3,2 J3,3J3,3

J7,1J7,1

tt

0.50.5

0.30.3

0.20.2

0.30.3

0.20.2

0.50.5

0.40.4

0.60.6

0.40.4

0.60.6

(a) Example schedule s.

J1,1J1,1

J2,1J2,1 J2,2J2,2

J3,1J3,1 J3,2J3,2 J3,3J3,3

J4,1J4,1

J5,2J5,2 J6,1J6,1J5,1J5,1

J7,1J7,1

(b) Corresponding Bayesian network G(s).

Fig. 9: Representation of a schedule by a Bayesian network.

Network structure The structure of Bayesian network G(s) = (Vs, As) cor-
responding to a schedule s is defined in the following way. We assume that

Comp. the Exec. Probability of Jobs with Replication in MC Schedules 21

each job replica in the schedule corresponds to a single discrete random vari-
able. Hence, the set of vertices Vs is equal to the set of job replicas in sched-
ule s. A random variable (i.e., a vertex) corresponding to job replica Ji,q
has outcome space given as {†, ?, 1, . . . ,Xi} with the total ordering defined as
† ≺ ? ≺ 1 ≺ . . . ≺ Xi. The outcomes ` � 1 coincide with the execution levels
of the job. That is, Ji,q has the outcome `, i.e., Ji,q ∼ ` for Xi � ` � 1 if and
only if its execution level is `. The outcome ` = ? denotes that the job replica
was rejected by a preceding replica of a different job with higher criticality
(i.e., it was covered by it). Finally, the outcome ` = † denotes that a preceding
replica of the same job was completed in the schedule before. Note that we
use two different outcomes for the rejection of a job replica, i.e., ? and †. This
distinction is necessary to model the fact that the execution policy of mixed-
criticality schedules executes at most one replica of each job (see Algorithm 1).
Next, as an example, let us demonstrate how the outcomes of random variables
relate to possible execution scenarios in the schedule. Consider the execution
scenario e3 displayed in Figure 5b. The sequence of outcomes corresponding
to this scenario e3 is (2, ?, ?, 1, 1, †).

Next, we describe how vertices in the network are connected. Vertex Jk,r
is connected to Ji,q (i.e., Jk,r → Ji,q ∈ As) if and only if

Ji,q ∈ cov(Jk,r) or (i = k ∧ q = r + 1) . (3.1)

In other words, for each vertex, its parent is a vertex covering it in the
schedule or its immediate preceding replica. The intuition behind connections
defined like that is that a job replica needs to be connected to all other job
replicas that influence its execution. See an example schedule in Figure 9a
and the corresponding BN displayed in Figure 9b. Let us note that we may
assume that the network G(s) is connected; otherwise, one could deal with
each component separately.

Conditional distributions The other parameters of BNs are conditional prob-
ability tables (CPTs). For each random variable, CPT defines a distribution
of outcomes conditioned by the outcomes of all its parents (i.e., the evidence).
In our case, CPTs are defined as follows. If vertex Ji,q has no parent, then
its CPT is simply the distribution over its criticality levels {1, . . . ,Xi} with
the outcomes ? and † having zero probability. If Ji,q is the first replica of a
job (i.e., q = 1), then for the outcomes of its parents that reject Ji,q, its CPT
assigns the probability of 1 for ? outcome. For the outcomes of its parents that
permit its execution, the probabilities of outcomes {1, . . . ,Xi} are given by µi

distribution.
Consider the schedule in Figure 9a with the parameters of distributions for

job J1 and J4 are µ1 = µ4 = (0.5, 0.3, 0.2), for job J2 and J7 are µ2 = µ7 =
(0.6, 0.4), and for J3, J5 and J6 are µ3 = µ5 = µ6 = (1.0). If J1,1 is executed
at criticality level 3, then J2,1 will be rejected, and, given that J1,1 ∼ 3, the
probability of J2,1 being rejected is 1. On the other hand, when J1,1 ≺ 3, then
the probability of J2,1 being rejected is zero. More precisely, the conditional

22 Antonin Novak, Zdenek Hanzalek

probabilities for replica Ji,q are given as

Pr

Ji,q ∼ `
∣∣∣∣∣∣∣∣

∧
(j,r,k):

Ji,q∈covk(Jj,r)

(Jj,r ≺ k) ∧ (Ji,q−1 ∼ ?)

 = µ
(`)
i ,

Pr

Ji,q ∼ ?
∣∣∣∣∣∣∣∣
 ∨

(j,r,k):
Ji,q∈covk(Jj,r)

(Jj,r � k)

 ∧ (Ji,q−1 ∼ ?)

 = 1,

Pr {Ji,q ∼ † | Ji,q−1 � ? ∨ Ji,q−1 ∼ †} = 1,

where without loss of generality, we assume that Ji,0 ∼ ?.

Example CPTs for some of the replicas for the schedule in Figure 9a can be
seen in Table 2. The replicas J1,1, J4,1, and J7,1 do not have any evidences (i.e.,
the outcomes of all its parents) since their sets of parents are empty. Similarly,
the blank evidence, e.g., the first row for J2,2 in Table 2f, is used to denote
that an arbitrary outcome (i.e., †, ?, 1, . . .) of its parents applies. Note that
we have used a compact representation of conditional probabilities instead of
full CPTs, which can be in fact exponential in L. Therefore, BNs admit also
different representations of conditional distributions (e.g., decision trees) that
lead to more concise representation in some cases.

Marginalization To compute the probability of execution of jobs, one needs
to perform marginal inference in the constructed network. There are known
algorithms that can perform such inference and their implementations are
widely available. For the exact inference in BNs, multiple algorithms exist [18],
such as variable elimination or junctions trees. One can also trade the precision
for the computational time and use approximate inference methods [28], such
as Markov Chain Monte Carlo or Gibbs sampling. To compute the execution
probability of replica Ji,q, we utilize the property of Bayesian networks [27,34]
that states

Pr {Ji,q} =
∑

∀sj,r∈s\{si,q}

n∏
i′=1

ni′∏
q′=1

Pr {Ji′,q′ | parents(Ji′,q′)} , (3.2)

where parents(Ji′,q′) denotes the set of all immediate predecessors of Ji′,q′
in BN G(s). The equation (3.2) suggests that the probability distribution
Pr {Ji,q} can be computed with the marginalization over all variables except
Ji,q of the joint distribution Pr {J1,1, . . . , Jn,nn

}. The joint distribution is fac-
torized using the conditional independence relations defined by the network.
The complexity of the computation is hidden in the marginalization step where
we need to perform the summation over all combinations of replicas’ outcomes
and multiply their probabilities altogether. However, one can notice that ver-
tices that are not ancestors of Ji,q in G(s) do not influence the distribution

Comp. the Exec. Probability of Jobs with Replication in MC Schedules 23

Table 2: CPTs for the example schedule s.

outcome evidence
† ? 1 2 3

0.0 0.0 0.5 0.3 0.2 ∅
(a) Replicas J1,1 and J4,1.

outcome evidence
† ? 1 2

0.0 0.0 0.6 0.4 ∅
(b) Replica J7,1.

outcome evidence
† ? 1 2 J1,1

0.0 0.0 0.6 0.4 † ∨ ? ∨ 1 ∨ 2
0.0 1.0 0.0 0.0 3

(c) Replica J2,1.

outcome evidence
† ? 1 2 J2,1

1.0 0.0 0.0 0.0 † ∨ 1 ∨ 2
0.0 0.0 0.6 0.4 ?

(d) Replica J2,2.

outcome evidence
† ? 1 J2,1

0.0 0.0 1.0 † ∨ ? ∨ 1
0.0 1.0 0.0 2

(e) Replica J3,1.

outcome evidence
† ? 1 J3,1 J2,2

1.0 0.0 0.0 † ∨ 1
0.0 0.0 1.0 ? † ∨ ? ∨ 1
0.0 1.0 0.0 ? 2

(f) Replica J3,2.

outcome evidence
† ? 1 J3,2 J7,1

1.0 0.0 0.0 † ∨ 1
0.0 0.0 1.0 ? ? ∨ 1
0.0 1.0 0.0 ? 2

(g) Replica J3,3.

outcome evidence
† ? 1 J4,1

0.0 0.0 1.0 † ∨ ? ∨ 1
0.0 1.0 0.0 2 ∨ 3

(h) Replica J5,1.

outcome evidence
† ? 1 J5,1 J2,2

1.0 0.0 0.0 † ∨ 1
0.0 0.0 1.0 ? † ∨ ? ∨ 1
0.0 1.0 0.0 ? 2

(i) Replica J5,2.

outcome evidence
† ? 1 J4,1

0.0 0.0 1.0 † ∨ ? ∨ 1
0.0 1.0 0.0 2 ∨ 3

(j) Replica J6,1.

Table 3: Execution probabilities of individual replicas in schedule s.

J1,1 J2,1 J2,2 J3,1 J3,2 J3,3 J4,1 J5,1 J5,2 J6,1 J7,1

Pr {Ji,q � 1} 1.0 0.8 0.2 0.68 0.32 0.0 1.0 0.5 0.46 0.5 1.0

Pr {Ji,q} as they are marginalized out during the computation of (3.2). Hence,
for each job in the schedule, we can define a smaller Bayesian network contain-
ing only its ancestor vertices. In fact, this is a concept related to the question of
relevant nodes in Bayesian inference for a query with the given set of evidence
nodes.

24 Antonin Novak, Zdenek Hanzalek

Definition 9 (Bayesian network with respect to a job replica) Bayesian
network with respect to job replica Ji,q, denoted by G′i,q, is a subgraph of G(s)
induced by the set of vertices reachable from Ji,q with the reversed orientation
of edges in G(s).

For example, in Figure 9b, the Bayesian network with respect to J3,2 has ver-
tices V (G′3,2) = {J1,1, J2,1, J2,2, J3,1, J3,2} and edges incident with V (G′3,2).
The inference is then performed in the network G′i,q for all replicas Ji,q inde-
pendently. Note that in specific cases, the Bayesian network with respect to
some job replica might be as large as the original network G(s). Indeed, for
the schedule used in hardness reduction in Figure 7, the network with respect
to job Y is identical to the whole network, i.e., G′Y,1 = G(s). However, in the
next section, we show that under realistic assumptions, the restricted networks
are much smaller.

The complete algorithm that computes
∑
Pi is given in Algorithm 2. The

Algorithm 2 Computation of
∑
Pi in schedule s.

Input: a schedule s
Output: the sum of execution probabilities of jobs

∑
Pi

1: for Ji ∈ IMC do
2: for q = 1 to ni do
3: G′i,q ← BN with respect to Ji,q in s
4: Pi,q ← Pr {Ji,q � 1} in G′i,q . inference in G′i,q
5: end for
6: Pi ←

∑
q Pi,q

7: end for
8: return

∑
Pi

computed execution probabilities for the example in Figure 9a can be seen in
Table 3.

Remark 4 Note that there are three aspects that affect the particular values
of the computed probabilities. Namely, it is the probability distribution of
processing times of the jobs involved, the maximum number of replicas R,
and their actual schedule. For example, with R = 2, it would be possible
to achieve exactly the same execution probabilities as presented in Table 3
since the presence of J3,3 replica does not increase the execution probability of
job J3 any further. However, with the identical set of jobs but with a different
schedule, the result might be different. Therefore, it is a complex question with
what value of R the schedules should be constructed. Another related question
is whether with the increasing value of R, the marginal improvements in the
execution probability are non-increasing and if yes, how quickly the marginal
improvements become negligible to the point where it is effectively meaningless
to increase it further. However, in practice, the number of maximum replicas is
often treated as a design parameter, not a variable to be optimized. Thus, the

Comp. the Exec. Probability of Jobs with Replication in MC Schedules 25

cases of the practical interest contain problems where R is fixed to a particular
constant.

3.2 Tractable case

In this section, we show that when both L and R are bounded by a constant
independent from the input length, the computation becomes tractable. We
note that this case is arguably the most practical one concerning real-world
applications. Additionally, this case is also tight in the sense that when one of
the L or R is not fixed, then the problem becomes intractable, as shown by
Propositions 1 and 2.

The main idea is to realize that computationally the most intensive step
in Algorithm 2 is the inference in BN G′i,q. However, it can be shown that the
size of the restricted network is limited by parameters L and R. When both
L and R are bounded by a constant, then the number of vertices V (G′i,q) is
independent of the number of all replicas in the schedule (i.e., does not depend
on n = |IMC |, but only on R and L).

Proposition 3 Let G′i,q be a Bayesian network with respect to arbitrary Ji,q.
Then it holds that ∣∣V (G′i,q)

∣∣ ∈ O ((RL)L
)
.

Proof The general idea is to follow the definition of how the networks are built
in order to construct the largest possible network with the given fixed values
of R and L. Then, we bound the number of vertices in the resulting graph.

Let us consider a BN with respect to some job Ji,q for the problem with L
criticality levels, and R maximum replicas. Without loss of generality, let us
assume that Xi = 1. Let us organize G′i,q into levels, where level L` ⊆ V (G′i,q)
contains all job replicas Jk,r with criticality Xk = `, such that V (G′i,q) =⋃L

`=1 L`. Assuming we have at most R replicas per job, we have that |L1| ≤ R.
By (3.1), we have that every vertex has in-degree at most (L − 1) + 1 =
L. Hence, the upper bound on the number of vertices in the second level
is |L2| ≤ R2 × L. For level `, we have that |L`| ≤ R` × L`−1. Since we
have L criticality levels, graph G′i,q contains at most

∣∣V (G′i,q)
∣∣ ≤∑L`=1 |L`| =

R+R2×L+. . .+RL×LL−1 = R× (RL)L−1
RL−1 vertices. Therefore, the cardinality

of the vertex set is a function of R and L only. ut

Remark 5 Note that the upper bound suggested by Proposition 3 is overly
pessimistic since we have assumed that each job replica Ji,q is covered by
L − 1 different job replicas of criticality Xi + 1, which cannot occur. Hence,
with more detailed analysis the upper bound could be reduced.

Next, we discuss what is the size of CPTs in G′i,q. Since in-degree of each
vertex is at most L by (3.1), then its CPT has size at most O((L + 2)L),

26 Antonin Novak, Zdenek Hanzalek

even under a trivial encoding given by a full CPT. Hence, the total size of
the representation of BN G′i,q is independent of the number of jobs n. The
total time complexity of Algorithm 2 is O(n · R · f(L,R)), where f(L,R) is
complexity of the used inference algorithm in BN G′i,q.

Finally, let us discuss inference complexity term f(L,R) in BN G′i,q. The
efficiency of exact inference algorithms is limited by the properties of condi-
tional distributions as well as by the structure of networks. It is known that
networks satisfying local variance bound (LVB), i.e., a requirement that for-
bids extreme conditional distributions, admit a subexponential deterministic
inference algorithm [12]. Unfortunately, in our case, conditional distributions
do not satisfy LVB due to the execution policy (a replica is rejected with
the probability of one when the previous replica is executed). Concerning the
structural properties of the network, it is known that they are mostly related
to the treewidth of a graph. Informally, the treewidth of a graph is a quantity
related to its connectivity. For example, the treewidth of the least possible
connected graph (i.e., a tree) is equal to 1 whereas the complete graph with
n vertices has treewidth equal to n− 1. The result of [26] suggests that under
reasonable assumptions, no polynomial algorithm exists for networks with un-
bounded treewidth. A similar idea to avoid intractability was applied in [36],
where they focus on tree networks. In our case, the networks have bounded
treewidth by a function of L and R which avoids the dependence on the total
number of jobs n. Thus, its complexity does not depend on the number of jobs
n. What is more, the practical experience suggests that, in an average case
of mixed-criticality schedules, the treewidth of our networks achieves much
smaller values.

Finally, we note that the current implementations of Bayesian network
solvers easily handle computations in networks with hundreds to thousands of
vertices (i.e., replicas) within seconds [35]. Hence, we see the proposed method
as a computationally efficient way of solving the problem.

4 Conclusion

In this work, we have introduced the replication of jobs as a mechanism for
increasing the execution probability in mixed-criticality schedules. We have
studied the complexity of the computation of execution probability in the given
static schedule. Our main result shows that there are two primary parameters
that influence the complexity — the maximum number of replicas per job
R and the number of criticality levels L. We have shown that although the
replication significantly improves the execution probability in mixed-criticality
schedules, it introduces additional complexity to the problem and the exact
computation becomes #P-hard. In fact, the problem remains hard if either
the maximum number of replicas R ≥ 3 or the number of criticality levels
L ≥ 8 is fixed while the other quantity is bounded by a polynomial in the
number of jobs.

Comp. the Exec. Probability of Jobs with Replication in MC Schedules 27

To solve the problem, we have proposed a reduction to probabilistic infer-
ence in Bayesian networks, showing an interesting connection between sched-
ules with uncertain execution and probabilistic graphical models. The analysis
of the resulting networks shows that for the practical case when both R and
L are bounded by a constant, the computation becomes tractable. Consider-
ing available implementations of exact and approximate inference algorithms
for Bayesian networks, the problem can be efficiently solved in practice as
well, offering a viable choice for improving the efficiency of static schedules for
mixed-criticality systems.

Acknowledgment

This work was supported by the EU and the Ministry of Industry and Trade of
the Czech Republic under the Project OP PIK CZ.01.1.02/0.0/0.0/20 321/0024399,
and by the European Regional Development Fund under the project AI&Reasoning
(reg. no. CZ.02.1.01/0.0/0.0/15 003/0000466). Next, we want to thank Daniel
Slunecko for his early work on the problem and inspiring discussions.

References

1. Agirre, I., Cazorla, F.J., Abella, J., Hernandez, C., Mezzetti, E., Azkarate-askatsua,
M., Vardanega, T.: Fitting software execution-time exceedance into a residual random
fault in ISO-26262. IEEE Transactions on Reliability 67(3), 1314–1327 (2018). DOI
10.1109/TR.2018.2828222

2. Baruah, S.: Predictability Issues in Mixed-Criticality Real-Time Systems, pp. 77–87.
Springer International Publishing, Cham (2018). DOI 10.1007/978-3-319-95246-8˙5.
URL https://doi.org/10.1007/978-3-319-95246-8_5

3. Baruah, S., Bonifaci, V., D’angelo, G., Li, H., Marchetti-Spaccamela, A., Van Der Ster,
S., Stougie, L.: Preemptive uniprocessor scheduling of mixed-criticality sporadic task
systems. Journal of the ACM (JACM) 62(2), 14 (2015)

4. Baruah, S., Fohler, G.: Certification-cognizant time-triggered scheduling of mixed-
criticality systems. In: Real-Time Systems Symposium (RTSS), 2011 IEEE 32nd, pp.
3–12. IEEE (2011)

5. Behera, L., Bhaduri, P.: Time-triggered scheduling for multiprocessor mixed-criticality
systems. In: Distributed Computing and Internet Technology, pp. 135–151. Springer
International Publishing, Cham (2018)

6. Bell, R.: Introduction to IEC 61508. In: Proceedings of the 10th Australian workshop on
Safety critical systems and software-Volume 55, pp. 3–12. Australian Computer Society,
Inc. (2006)

7. Blazewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Weglarz, J.: Handbook on scheduling:
from theory to applications. Springer Science & Business Media (2007)

8. Burns, A., Davis, R.I.: A survey of research into mixed criticality systems. ACM Com-
put. Surv. 50(6), 82:1–82:37 (2017). DOI 10.1145/3131347. URL http://doi.acm.org/
10.1145/3131347

9. Burns, A., Davis, R.I., Baruah, S., Bate, I.: Robust mixed-criticality systems. IEEE
Transactions on Computers 67(10), 1478–1491 (2018)

10. Chang, Z., Ding, J.Y., Song, S.: Distributionally robust scheduling on parallel ma-
chines under moment uncertainty. European Journal of Operational Research 272(3),
832 – 846 (2019). DOI https://doi.org/10.1016/j.ejor.2018.07.007. URL http://www.
sciencedirect.com/science/article/pii/S037722171830612X

https://doi.org/10.1007/978-3-319-95246-8_5
http://doi.acm.org/10.1145/3131347
http://doi.acm.org/10.1145/3131347
http://www.sciencedirect.com/science/article/pii/S037722171830612X
http://www.sciencedirect.com/science/article/pii/S037722171830612X

28 Antonin Novak, Zdenek Hanzalek

11. Creignou, N., Hermann, M.: On P completeness of some counting problems. Ph.D.
thesis, INRIA (1993)

12. Dagum, P., Luby, M.: An optimal approximation algorithm for Bayesian inference.
Artificial Intelligence 93(1-2), 1–27 (1997)

13. Daniels, R.L., Carrillo, J.E.: β-robust scheduling for single-machine systems with un-
certain processing times. IIE transactions 29(11), 977–985 (1997)

14. Davis, R.I., Altmeyer, S., Burns, A.: Mixed criticality systems with varying context
switch costs. In: 2018 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pp. 140–151 (2018). DOI 10.1109/RTAS.2018.00024

15. Draskovic, S., Huang, P., Thiele, L.: On the safety of mixed-criticality scheduling. In:
Proceedings of the 4th International Workshop on Mixed Criticality Systems, RTSS,
pp. 19 – 24. IEEE, Porto, Portugal (2016)

16. El-Hajj, R., Guibadj, R.N., Moukrim, A., Serairi, M.: A PSO based algorithm with an
efficient optimal split procedure for the multiperiod vehicle routing problem with profit.
Annals of Operations Research pp. 1–36 (2020)

17. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.R.: Optimization and approximation
in deterministic sequencing and scheduling: a survey. Annals of discrete mathematics
5, 287–326 (1979)

18. Guo, H., Hsu, W.: A survey of algorithms for real-time Bayesian network inference. In:
Join Workshop on Real Time Decision Support and Diagnosis Systems (2002)

19. Hamaz, I., Houssin, L., Cafieri, S.: A branch-and-bound procedure for the robust cyclic
job shop problem. In: International Symposium on Combinatorial Optimization, pp.
228–240. Springer (2018)

20. Hanzalek, Z., Sucha, P.: Time symmetry of resource constrained project scheduling with
general temporal constraints and take-give resources. Annals of Operations Research
248(1-2), 209–237 (2017)

21. Hanzalek, Z., Tunys, T., Sucha, P.: An analysis of the non-preemptive mixed-criticality
match-up scheduling problem. Journal of Scheduling 19(5), 601–607 (2016). DOI
10.1007/s10951-016-0468-y. URL https://doi.org/10.1007/s10951-016-0468-y

22. Herroelen, W., Leus, R.: Project scheduling under uncertainty: Survey and research
potentials. European Journal of Operational Research 165(2), 289 – 306 (2005).
DOI https://doi.org/10.1016/j.ejor.2004.04.002. URL http://www.sciencedirect.com/
science/article/pii/S0377221704002401. Project Management and Scheduling

23. Ishfaq Ahmad, Yu-Kwong Kwok: On exploiting task duplication in parallel program
scheduling. IEEE Transactions on Parallel and Distributed Systems 9(9), 872–892
(1998). DOI 10.1109/71.722221

24. Jaramillo, F., Keles, B., Erkoc, M.: Modeling single machine preemptive scheduling
problems for computational efficiency. Annals of Operations Research 285(1), 197–222
(2020)

25. Kopetz, H.: Event-triggered versus time-triggered real-time systems, pp. 86–101.
Springer Berlin Heidelberg, Berlin, Heidelberg (1991). DOI 10.1007/BFb0024530. URL
https://doi.org/10.1007/BFb0024530

26. Kwisthout, J., Bodlaender, H.L., van der Gaag, L.C.: The necessity of bounded
treewidth for efficient inference in Bayesian networks. In: ECAI, vol. 215, pp. 237–
242 (2010)

27. Li, Y.F., Huang, H.Z., Mi, J., Peng, W., Han, X.: Reliability analysis of multi-state
systems with common cause failures based on Bayesian network and fuzzy probability.
Annals of Operations Research pp. 1–15 (2019)

28. Murphy, K.P., Weiss, Y., Jordan, M.I.: Loopy belief propagation for approximate infer-
ence: An empirical study. In: Proceedings of the Fifteenth conference on Uncertainty
in artificial intelligence, pp. 467–475. Morgan Kaufmann Publishers Inc. (1999)

29. Novak, A., Sucha, P., Hanzalek, Z.: Scheduling with uncertain processing times in mixed-
criticality systems. European Journal of Operational Research 279(3), 687 – 703 (2019).
DOI https://doi.org/10.1016/j.ejor.2019.05.038. URL http://www.sciencedirect.com/
science/article/pii/S0377221719304680

30. Obermaisser, R., Kopetz, H., El Salloum, C., Huber, B.: Error containment in the
time-triggered system-on-a-chip architecture. In: Embedded System Design: Topics,
Techniques and Trends, pp. 339–352. Springer (2007)

https://doi.org/10.1007/s10951-016-0468-y
http://www.sciencedirect.com/science/article/pii/S0377221704002401
http://www.sciencedirect.com/science/article/pii/S0377221704002401
https://doi.org/10.1007/BFb0024530
http://www.sciencedirect.com/science/article/pii/S0377221719304680
http://www.sciencedirect.com/science/article/pii/S0377221719304680

Comp. the Exec. Probability of Jobs with Replication in MC Schedules 29

31. Papadimitriou, C.H., Yannakakis, M.: Towards an architecture-independent analysis of
parallel algorithms. SIAM journal on computing 19(2), 322–328 (1990)

32. Paredes, R., Dueñas-Osorio, L., Meel, K., Vardi, M.: Principled network reliabil-
ity approximation: A counting-based approach. Reliability Engineering & System
Safety 191, 106472 (2019). DOI https://doi.org/10.1016/j.ress.2019.04.025. URL
http://www.sciencedirect.com/science/article/pii/S0951832018305209

33. Ranjbar, M., Davari, M., Leus, R.: Two branch-and-bound algorithms for the ro-
bust parallel machine scheduling problem. Computers & Operations Research 39(7),
1652 – 1660 (2012). DOI https://doi.org/10.1016/j.cor.2011.09.019. URL http:
//www.sciencedirect.com/science/article/pii/S0305054811002802

34. Russell, S.J., Norvig, P.: Artificial intelligence: a modern approach. Malaysia; Pearson
Education Limited, (2016)

35. Sang, T., Bearne, P., Kautz, H.: Performing bayesian inference by weighted model count-
ing. In: Proceedings of the 20th National Conference on Artificial Intelligence - Volume
1, AAAI’05, pp. 475–481. AAAI Press (2005). URL http://dl.acm.org/citation.cfm?
id=1619332.1619409

36. Santiváñez, J.A., Melachrinoudis, E.: Reliable maximin–maxisum locations for maxi-
mum service availability on tree networks vulnerable to disruptions. Annals of Opera-
tions Research 286(1), 669–701 (2020)

37. Seddik, Y., Hanzalek, Z.: Match-up scheduling of mixed-criticality jobs: Maximizing
the probability of jobs execution. European Journal of Operational Research 262(1),
46 – 59 (2017). DOI http://dx.doi.org/10.1016/j.ejor.2017.03.054. URL http://www.
sciencedirect.com/science/article/pii/S037722171730276X

38. Theis, J., Fohler, G., Baruah, S.: Schedule table generation for time-triggered mixed
criticality systems. Proceedings of the 1st International Workshop on Mixed Criticality
Systems, RTSS pp. 79–84 (2013)

39. Valiant, L.: The complexity of computing the permanent. Theoretical Computer Science
8(2), 189 – 201 (1979). DOI https://doi.org/10.1016/0304-3975(79)90044-6. URL http:
//www.sciencedirect.com/science/article/pii/0304397579900446

40. Valiant, L.: The complexity of enumeration and reliability problems. SIAM Journal on
Computing 8(3), 410–421 (1979). DOI 10.1137/0208032. URL https://doi.org/10.
1137/0208032

41. Vestal, S.: Preemptive scheduling of multi-criticality systems with varying degrees of
execution time assurance. In: Real-Time Systems Symposium, 2007. RTSS 2007. 28th
IEEE International, pp. 239–243. IEEE (2007)

42. Yeh, C.T.: Binary-state line assignment optimization to maximize the reliability of an
information network under time and budget constraints. Annals of Operations Research
287(1), 439–463 (2020)

http://www.sciencedirect.com/science/article/pii/S0951832018305209
http://www.sciencedirect.com/science/article/pii/S0305054811002802
http://www.sciencedirect.com/science/article/pii/S0305054811002802
http://dl.acm.org/citation.cfm?id=1619332.1619409
http://dl.acm.org/citation.cfm?id=1619332.1619409
http://www.sciencedirect.com/science/article/pii/S037722171730276X
http://www.sciencedirect.com/science/article/pii/S037722171730276X
http://www.sciencedirect.com/science/article/pii/0304397579900446
http://www.sciencedirect.com/science/article/pii/0304397579900446
https://doi.org/10.1137/0208032
https://doi.org/10.1137/0208032

	Introduction
	Time complexity of the problem
	Algorithm for computation of the execution probability
	Conclusion

