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Abstract 

This thesis aimed to harness the capabilities of machine learning in generating air quality datasets 

using various data sources including satellite remote sensing, meteorological inputs, land cover, 

topography, observations from ground monitors, among others. The research was focused on two 

key pollutants: aerosol optical depth and PM2.5 due to high risks they cause to human health. The 

research resulted in three datasets: two datasets covered entire Europe providing insights into 

aerosol optical depth and PM2.5 concentrations, while the third dataset focused only on PM2.5 over 

the Czech Republic. To accomplish this, the research employed a combination of GIS techniques, 

image processing, statistics, data analysis, visualizations, and comprehensive machine learning 

methods. The research processed big data and used open-source software to develop the 

spatiotemporal machine learning models which were employed to generate the datasets. To 

ensure the accuracy of findings, the results were validated using different approaches then 

compared with relevant studies. The datasets created over Europe were the first with full 

coverage of 1 km spatial resolution, they were made publicly available and have since been used 

by fellow researchers to enhance their understanding of air quality across different regions in 

Europe. 

Keywords 

Air quality, machine learning, GIS, remote sensing, aerosol optical depth, PM2.5 

 

Abstrakt 

Cílem této disertační práce bylo využít možnosti strojového učení při tvorbě datových sad kvality 

ovzduší s použitím různých zdrojů dat včetně vstupních dat družicového dálkového průzkumu 

Země  a meteorologických dat, pokrytí území, topografie a měření z pozemních stanic aj. Výzkum 

byl zaměřen na dvě klíčová znečištění: optickou hloubku aerosolů a PM2.5 kvůli jejich vysokému 

riziku pro lidské zdraví, které s tím souvisí. Výsledkem výzkumu jsou tři datové soubory: dva 

datové soubory pokrývají celou Evropu a ukazují optickou hloubku aerosolů a koncentraci PM2.5, 

zatímco třetí datový soubor je zaměřen pouze na PM2.5 v  České republice.  Aby toho bylo 

dosaženo,  byla použita kombinace nástrojů GIS, zpracování obrazu, statistická a datová analýza, 

vizualizace a obsáhlé metody strojového učení.  Pro vývoj časoprostorových modelů byla 

zpracována "velká data" za  použití open-source software. Tyto modely sloužily pro vytvoření 

těchto datových sad. Výsledky byly pro zajištění přesnosti výstupů validovány různými způsoby 

a poté byly porovnány s významnými studiemi. Soubory dat vytvořené nad Evropou byly první 

s plným pokrytím 1km prostorového rozlišení, byly veřejně dostupné a od té doby je používají 

kolegové výzkumníci k lepšímu pochopení kvality ovzduší v různých regionech Evropy. 

Klíčová slova 

Kvalita ovzduší, strojové učení, GIS, dálkový průzkum Země, optická tloušťka aerosolů, PM2.5 
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1. Introduction 

Air pollution is one of the most serious problems facing humans nowadays. Many factors 

contribute and augment this problem, including population inflation and rapid industrial 

revolution. Air pollution affects the health of humankind and other forms of life. Long term 

exposure to fine particles produced by combustion is highly correlated with lung cancer [1]. 

In 2016 around 7.5% of deaths were related to air pollution worldwide [2]. Aerosols are 

diminutive particles that are regarded as atmospheric contaminants [3]. Aerosol Optical 

Depth (AOD) is a measure of the columnar atmospheric aerosol content, these particles could 

absorb or scatter the sunlight preventing it reaching the ground [4]. These small solid or liquid 

particles are suspended in the atmosphere, and they differ in size, shape, and chemical 

properties [5]. High levels of AOD have a negative impact on all living things by affecting the 

respiratory system beside reducing naked eye visibility [6]. The effect of these particles on 

human health varies according to their size and chemical composition; particle matter (PM) 

with a diameter of less or equal 10 μm (PM10) can infiltrate the tracheobronchial and such 

particles become more dangerous as the diameter gets smaller. For example, PM2.5 particles 

are very harmful as they not only cause severe respiratory problems but also reach the 

systemic circulation [7], further discussed in the text below. Humans are not the main cause 

of aerosols since they come from many resources like fires, volcanoes, burning of fossil fuels, 

dust storms and sea drizzles. AOD causes both direct and indirect effects on climate systems 

according to the lightness or darkness of these particles, in addition to affecting the 

atmospheric radiation energy balance [8]. Better understanding of aerosol distribution and 

characteristics is essential for climate change studies [9]. 
 

2. Motivation and problem statement 

It is not possible to solely rely on ground observations to study AOD or small particles like 

PM2.5 on a large scale due to the considerable number of required monitoring stations and 

substantial costs and efforts associated to establishing and maintaining them. For this reason, 

air quality researchers had to find alternative methods to measure these particles. 

The rapid development of remote sensing techniques and accurate satellite observations 

provided solutions to study air quality on regional and global levels. AOD products can be 

obtained from many satellite sensors. The MOderate Resolution Imaging Spectroradiometer 

(MODIS) which was focused on in this research, is considered the first satellite plan that 

provides accurate information of aerosol optical characteristics. Both the Terra and the Aqua 
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satellite platforms are carrying MODIS instrumentations in a sun-synchronous, near-polar 

orbits, since 1999 and 2002, respectively [10]. These two satellites can record the earth’s surface 

with 2330 km viewing swath width every 1 to 2 days [11]. MODIS measures 36 spectral bands 

between 0.4 and 14.4 μm wavelengths at many different spatial resolutions which provides a 

great opportunity to study the thickness of aerosols and their size characteristics from space 

with good accuracy, covering the entire world [12,13]. This information helps researchers to 

estimate AOD loads caused by human-being activities and distinguish it from natural causes 

[14]. 

MODIS data has been used to provide useful information on climate changes. Yet, there are 

many limitations facing satellite aerosol retrieval, including the radiometric calibration, cloud 

screening, surface reflectance estimation, and aerosol model presumption [15,16]. Several 

algorithms have been developed by researchers to harness the observed radiances from 

MODIS in order to derive numerous crucial aerosol products, aiming for improved results. 

The main purpose of developing and modifying these algorithms is to comply better with the 

observing instrument specification, properties of aerosols, and nature of clouds [9]. In recently 

updated products, Quality Assurance (QA) dataset was added, which serves as a check point 

for certain conditions that are to be met during the retrieval process [17]. 

Ground measurements are used to validate the results obtained from MODIS sensors. Based 

on such comparison, MODIS retrieving algorithms could be further improved to reach a 

satisfactory outcome [18,19]. NASA co-sponsors a global network of ground sensors called 

the Aerosols Robotic Network (AERONET), which is considered one of the most common and 

reliable aerosol networks [20]. This network is used to validate satellite retrievals. 

While satellite remote sensing can be a valuable source for studying AOD, these data have a 

great number of gaps due to cloud cover, snow reflectance, and instrument limitations. An 

analysis of the spatial and temporal distribution of clouds retrieved by MODIS over 12 years 

of continuous observations from the Terra satellite and over 9 years from the Aqua satellite 

showed that clouds cover ~67% of the earth’s surface worldwide and ~55% over land [21]. 

Even though many algorithms were designed to remove clouds from satellites-based 

observations, the AOD retrievals of these clouds have many uncertainties [22] and hence the 

available daily retrievals are used to calculate the average AOD at annual, seasonal, and 

monthly time scales. Other methods were used to overcome the low spatial coverage in 

satellite based AOD products, by simply combining multiple products together or using more 

advanced methods like artificial intelligence algorithms. 
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The latter methods resulted in developing various models that fill the gaps either by removing 

the clouds [23], applying spatiotemporal interpolation [24], or merging different sources of 

data to predict gaps-free images [25]. These techniques aided air quality researchers in 

exploring more detrimental pollutants through the analysis of satellite data, such as fine 

Particulate Matter (PM) with diameters less than 10 micrometers (PM10) or less than 2.5 

micrometers (PM2.5). PM2.5 can penetrate deep into the lungs and may reach the blood 

circulation causing dangerous diseases such as cardiovascular problems, diabetes, prenatal 

disorder and even mortality [26–29]. Numerous techniques were used to increase PM2.5 spatial 

coverage provided by ground-based monitors, in other words, to estimate the pollutant 

concentrations in the areas where no monitors do exist. Examples of that are interpolation 

techniques that count only on the ground stations [30, 31]. 

The accuracy of these interpolations is highly related to the spatial distribution of the stations; 

although they can have good estimations in the areas that are surrounded by the network 

stations, they will probably fail to have good estimations where there is a lack of the stations 

[30]. A positive correlation between satellite based AOD and surface particulate matter was 

found [32, 33]. In the last few decades, artificial intelligence models have been applied to 

estimate PM2.5 and were found to give a better description of the complex non-linear 

relationship between  PM2.5, AOD and other independent variables [34], based on the usage 

of machine learning algorithms [25, 35, 36], or deep neural networks [37, 38]. These algorithms 

utilize satellite observations, various modelled meteorological variables like planetary 

boundary layer height (PBLH), wind speed (WS), relative humidity (RH), and temperature 

(T), in addition to other data like population, land use, land cover, etc. to estimate PM2.5. The 

importance of the inputs differs from one area to another but generally, they can enhance the 

AOD-PM correlation and provide better estimations since counting solely on AOD to estimate 

near-surface particulate matter values is not sufficient [39]. AOD without other variables was 

not enough to provide good PM2.5 estimations over Europe [40]. 

Considering the aforementioned points, the objective of this research was to enhance the 

current state-of-the-art methods for estimating AOD and PM2.5 levels across Europe with the 

ultimate aim of creating a reliable mapping of these pollutants. 

 

3. Goals of the Thesis: Objectives and Milestones 

The author aimed in this research to achieve the following goals: 

• The first goal was to acquire a deeper understanding of MODIS algorithms, including 

their strengths and limitations when applied to AOD products. 
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• Increase the spatial coverage of MODIS AOD products. 

• Establish the first AOD dataset with full coverage of 1 km spatial resolution over Europe. 

• Analyze the effects of the COVID-19 lockdowns on AOD levels over Europe. 

• Establish the first PM2.5 dataset with full coverage of 1 km spatial resolution over Europe. 

• Analyze the effects of the COVID-19 lockdowns on PM2.5 levels over Europe. 

• Include the spatial autocorrelation of the ground based PM2.5 observations while 

developing the machine learning model. 

• Compare the performance of two machine learning models: one trained on data from all 

of Europe, and the other trained exclusively on data from the Czech Republic. 
 

4. Research methods used 

The integration of the following tools contributed to a comprehensive and robust 

methodology, enabling a thorough investigation of the research objectives. We used open-

source software and open data in our research. 

4.1. Data sources 

• Remote sensing data: utilized to retrieve spatial information and satellite observations. 

We used various MODIS data to extract AOD and NDVI and Visible Infrared Imaging 

Radiometer Suite (VIIRS) to extract population data. 

• Ground-based observations: employed to gather real-time, on-site measurements for 

training the models, validation, and comparison. Two parameters were used, AOD from 

AERONET stations and PM2.5 from various monitors across Europe. 

• Modelled data: integrated to enhance predictive capabilities and provide comprehensive 

insights. To overcome the low spatial coverage provided by satellite data for AOD, we 

used Copernicus Atmosphere Monitoring Service (CAMS) modelled AOD with high 

temporal resolution as inputs in the machine learning model we developed to generate 

full coverage AOD dataset. Moreover, we used the modelled meteorological variables 

provided by the European Centre for Medium-Range Weather Forecasts reanalysis 

(ECMWF) as auxiliary data while developing the predictive models for PM2.5 and for other 

analysis. 

• Land cover and topography data: land cover data were extracted from the 2018 CORINE 

Land Cover (CLC) and the Japan Aerospace Exploration Agency (JAXA) digital surface 

model was used as auxiliary data while developing the machine learning models. 
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4.2. Data management and analysis 

• Spatial database: employed to efficiently store, manage, and analyze geospatial data. This 

allowed for streamlined querying, filtering, and manipulation of spatial information, 

enhancing the accuracy and depth of our analysis. 

4.3. Geospatial analysis 

We used two open-source software, QGIS and GRASS GIS for geospatial visualization, 

manipulation, and interpretation. Both software are user-friendly, providing many tools 

and plugins besides the possibility of scripting for customization. 

4.4. Quantitative Analysis 

• Statistics: utilized in data preprocessing and cleaning especially when we had to deal with 

big data while developing the AOD models, identifying the outliers that significantly 

deviate from the open data we used to develop the PM2.5 predictive model, and to derive 

meaningful insights supporting the formulation of conclusions and recommendations. 

4.5. Programming languages 

• Python: leveraged for data processing, analysis, visualization, and implementing machine 

learning algorithms. 

• SQL: construct queries to extract specific subsets of data from spatial databases, 

optimizing data retrieval and analysis. 

• Bash scripts: developed to automate routine processes especially while processing 

NETCDF and HDF files, ensuring efficiency and consistency. 
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5. Outputs of the dissertation thesis 

In this section we will present the outcome of our research. Basically, the publications and the 

datasets we have released and made publicly available. 

5.1. Publications 

We have published four papers focusing on air quality remote sensing, GIS, and machine 

learning. In this section we will present the publications as they were published in the mentioned 

journals. 

 

5.1.1. Statistical Study of MODIS Algorithms in Estimating Aerosol Optical Depth over the 

Czech Republic 

Abstract 

As a result of the rapid development of remote sensing techniques and accurate satellite 

observations, it has become customary to use these technologies in ecological and aerosols studies 

on a regional and global level. In this paper, we analyse the performance of three Moderate 

Resolution Imaging Spectroradiometer (MODIS) algorithms in estimating Aerosol Optical Depth 

(AOD) in the Czech Republic to gain knowledge about their accuracy and uncertainty. The Dark 

Target (DT), the Deep Blue (DB), and the merged algorithm (DTB) of the MODIS latest collection 

6.1 Level 2 aerosol products (MOD04_L2) were tested by comparing its results with the 

measurements of Aerosol Robotic Network (AERONET) Level 3 Version 2.0 ground station at 

Brno airport. The DT algorithm is compatible the best with AERONET observations with a 

correlation coefficient (R = 0.823), retrievals falling within the EE envelope (EE% = 82.67%), root 

mean square error (RMSE = 0.059), and mean absolute error (MAE = 0.044). The DTB algorithm 

provided close results of the DT algorithm but with less accuracy, on the other hand the DB 

algorithm has the lowest accuracy between all, but this algorithm was able to provide a bigger 

sample size than the other two algorithms. 

 

Keywords: AERONET, AOD, DB, DT, DTB, MODIS, Remote sensing 

 

1. INTRODUCTION 

Aerosol Optical Depth (AOD) is a measure of the columnar atmospheric aerosol content, these 

particles could absorb or scatter the sunlight and prevent it reaching the ground [1]. These small 

solid or liquid particles are suspended in the atmosphere, and they differ  in size, shape, and 
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chemical adaptation [2]. Studying of AOD is obtaining more interest day by day, due to its 

negative impact on all living things by affecting the respiratory system beside reducing naked 

eye visibility [3]. Humans are not the main cause of aerosols. Aerosols come from many resources 

like fires, volcanoes, burning of fossil fuels, dust storms and sea drizzles. AOD causes both direct 

and indirect effects on climate systems according to the lightness or darkness of these particles, 

in addition to affect the atmospheric radiation energy balance [4]. Deeper and better 

understanding of aerosol distribution and characteristics is essential for climate change studies 

[5]. It is not possible to solely rely only on ground observations in estimating AOD, since this 

process requires a great number of such stations in order to cover all areas, which requires high 

costs and efforts. For this reason, researches focused on climate changes had to find alternative 

methods to measure AOD. One of these effective techniques is the Moderate Resolution Imaging 

Spectroradiometer (MODIS), which is considered the first satellite plan that can provide accurate 

information of aerosol optical characteristics. Both the Terra and Aqua satellite platforms are 

carrying MODIS instrumentations in a sun-synchronous polar orbits, since the year 1999 and 

2002, respectively [6]. They are able to record earth’s surface with 2330 km viewing swath width 

every 1 to 2 days [7]. MODIS measures 36 spectral bands between 0.4 and 14.4 μm wavelengths 

at many different spatial resolutions that provides a great opportunity to study aerosols thickness 

and parameters characterizing aerosol size from space with good accuracy and on a world-wide 

scale [8,9], this information helps researchers to estimate AOD loads caused by human-being 

activities and distinguish it from natural causes [10]. MODIS data has been used to provide useful 

information on climate changes. Yet, there are many limitations facing satellite aerosol retrieval, 

including the radiometric calibration, cloud screening, surface reflectance estimation, and aerosol 

model presumption [11,12]. To get better results from MODIS, several algorithms were designed 

and developed to use the observed radiances for deriving many important aerosol products. The 

main purpose of modifying these algorithms is to comply better with the observing instrument 

specification, properties of aerosols, and nature of clouds [6]. Updated versions of operational 

aerosol products have been made available over the years, and because of the improvements of 

these products, we have new datasets collections continuously, starting with collection 4 (C4) to 

C5, C6, and the latest collection (C6.1) which was released in July 2017. 

MODIS Characterization Support Team (MCST) has produced the C6.1 aerosol products, based 

on the new updated Level 1B calibrated radiance products [13]. Additionally, NASA Ocean 

Biology Processing Group (OBPG) developed more calibration corrections, and these 

improvements were applied to the MCST top of atmosphere (TOA) products starting with C5 
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[14,15]. MODIS C6.1 aerosol products have major improvements in both radiometric calibration 

and all aerosol retrieval algorithms. 

MODIS products include many scientific data sets (SDS). In recent updated products, Quality 

Assurance (QA) dataset is added, which serves as a check point for certain conditions that are to 

be met during the retrieval process [16]. At the end of the process, QA dataset will provide 

confidence level; 0 = no retrieval, 1 = poor quality, 2 = moderate quality and 3 = good quality [17]. 

Since the launch of Terra and Aqua satellites, the Dark Target (DT) algorithm which was proposed 

by [2] has been applied to the MODIS data.  There are two distinct DT algorithms for retrieving 

AOD, one for retrieving AOD over ocean and the second for retrieving AOD over land. Many 

improvements were applied to the latest algorithm especially of estimating the model for main 

urban surfaces [18]. The most common used SDS for the DT algorithm is “Optical-Depth-Land-

And-Ocean” it contains only filtered values of AOD retrievals which meet the quality assurance 

(QA ≥ 1 over ocean and QA = 3 over land) to provide beneficial retrievals over dark areas [19]. By 

contrast, this algorithm has disadvantages over bright surfaces. For this reason, another algorithm 

called the Deep Blue (DB) was developed in order to retrieve AOD over bright surfaces like 

deserts and arid areas [20,21]. Since the releasing of C6, DB has been improved to work affectively 

over vegetated land surfaces, brighter deserts and urban areas [15]. In the latest C 6.1 DB 

algorithm was developed from collection 6. It has the following advantages over land, the ability 

to detect thick smoke, efficient modeling for terrains, and many bug fixes, among others 

mentioned elsewhere [13]. Beside DB and DT products, there is a merged dataset consisting of 

both DT and DB algorithms (DTB). This merged algorithm works based on the Normalized 

Difference Vegetation Index (NDVI). According to this methodology, if NDVI > 0.3 then the DT 

algorithm will be applied on the retrievals, if NDVI < 0.2 then the DB algorithm will be applied, 

and if NDVI value is between 0.2 and 0.3 then the combined algorithm of both DT and DB will be 

applied. DTB dataset offers better spatial coverage especially for low vegetated areas [19]. 

To validate the results obtained from MODIS or other satellite sensors, data is usually compared 

with the measured aerosol parameters of ground-AERONET. A similar regional study by 

Zawadzka and Markowicz compared the Spinning Enhanced Visible Infrared Radiometer 

(SEVIRI) data with AERONET observations in Poland and their study showed a good correlation 

with a root mean square error (RMSE) equals to 0.05 [22]. Based on such comparison, MODIS 

retrieving algorithms could be further improved to reach a satisfactory outcome [23,24]. 
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2. Data description 

2.1. MODIS Data 

Two worldwide products are included in the MODIS level-2 daily swath, MxD04-L2 at 10 km 

resolution and MxD04-3k at 3 km resolution, whereas: x = O for Terra, and x = Y for Aqua. In this 

study we use the level-2 daily product at 10 km resolution MOD04_L2 of the TERRA satellite, 

during the period of 18 months (Jun 2017- Dec 2018) over the Czech Republic. Three AOD subset 

products; DT, DB, and the merged DTB at 550 μm, are generated from the MODIS latest collection 

C 6.1. All data are publicly available and were downloaded from 

https://ladsweb.modaps.eosdis.nasa.gov/. 

Table. 1: Scientific dataset of MODIS used in this study. 

Product (SDS) name Contents 
Spatial 

resolution 

MOD04-L2 

C6.1 

Optical-Depth-Land-And-

Ocean 
DT over land (QA=3) 

10 Km 
Deep-Blue-Aerosol-Optical-

Depth-Land-Best-Estimate 
DB over land (QA ≥2) 

AOD-550-Dark-Target-

Deep-Blue-Combined 
DTB over land and ocean 

2.2. AERONET Data 

NASA co-sponsors a global network of ground sensors called the Aerosols Robotic Network 

(AERONET), which is considered one of the most common and reliable aerosol networks [25]. It 

is a multi-channel instrument that takes automatic measurements for both direct solar irradiance 

and sky radiance at the Earth’s surface. AERONET takes observations of the solar radiation at 

seven wavelengths (380, 440, 500, 675, 870, 936 and 1020 nm) around every 15 minutes with low 

uncertainty ranging between (0.01-0.02) under cloud-free conditions [26]. The AOD is retrieved 

from these channels to provide high accuracy and quick results. The latest version of AERONET 

is version three (V3) level two (L2.0) which is computed for three data quality levels: Level 1.0 

(unscreened), Level 1.5 (cloud-screened and quality controlled), and Level 2.0 (quality-assured). 

Inversions, precipitable water, and other AOD-dependent products are derived from these levels 

[27]. In the Czech Republic there is only one AERONET station. This AERONET CIMEL 

instrument has approximately 1.2º full angle field of view (FOV) and it is installed on the roof of 

the administrative building in Brno Airport (Fig. 1) at the following coordinates: latitude 

49.15647º N, longitude 16.68333º E, and with an elevation of 238 m above sea level, this station 

https://ladsweb.modaps.eosdis.nasa.gov/


11 
 

can observe and process the data automatically, and it is calibrated yearly to provide the best 

results, and to avoid offsets occurrence in the radiance measurements [28]. 

In this study, we present data from level 2.0 of the data quality assurance. AERONET AOD 

measurements at 440 μm and 675 μm from Brno Airport station during the period (June 2017 – 

December 2018).  These observations were interpolated to 550 nm, in order to compare it with 

MODIS retrievals, using the Angstrom exponents (440 – 675 μm) provided in the AERONET 

datasets according to the Angstrom’s turbidity equation [29] represented in Equation (1). 

τa(λ) =  𝛽λ−α                              (1) 

the AOD values at two different wavelength values λ1, λ2 are related by Eq (2). 

τa(𝜆1) =  τa(𝜆2) ∗ (
𝜆1

𝜆2
)

−𝛼
           (2) 

where τa(λ) is the AOD at a wavelength λ in microns, α is the Angstrom wavelength exponent, 

and β is the Angstrom’s turbidity coefficient. 

 

Fig. 1 – Geographical boundaries of the area of study. The red dot represents the location of the 

AERONET station. 

3. Methodology 

The comparison takes place between the average of Brno AERONET observations in the period 

(± 30 minutes) of the Terra satellite passing over this station (approximately 10:30 am), and the 

mean value of AOD retrievals at 550 μm of nine-pixel sample centered on this AERONET station, 

at least three pixels should be available and have the required quality assurance, QA=2,3 for DB, 

and QA=3 for DT and DTB. Considering that AODAERONET represents the true value [30]. To 

determine the uncertainty of retrieving algorithms with a sample size (N) versus AERONET 
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measurements, we calculate the Pearson product-moment correlation coefficient (R), RMSE, 

shown in Equation (3), and the Mean Absolute Error (MAE) as presented in Equation (4), to find 

which algorithm is compatible the best with the ground observations. Moreover, we will use the 

Expected Error (EE) equation for retrieving AOD over land at the 10 km spatial resolution [31] to 

determine the quality of retrievals, the EE equation is represented in Equation (5). Retrievals 

falling within the EE envelopes must meet Equation (6). 

RMSE = √
1

𝑁
 ∑(𝐴𝑂𝐷𝐴𝐸𝑅𝑂𝑁𝐸𝑇 − 𝐴𝑂𝐷𝑀𝑂𝐷𝐼𝑆)2                                               (3) 

MAE = 
1

𝑁
 ∑ | 𝐴𝑂𝐷𝐴𝐸𝑅𝑂𝑁𝐸𝑇 − 𝐴𝑂𝐷𝑀𝑂𝐷𝐼𝑆 |                                                             (4) 

EE = ± (0.05 + 0.15 × AODAERONET)                                              (5) 

AODAERONET - |EE| ≤ AODMODIS ≤ AODAERONET + |EE|                (6) 

4. RESULTS AND DISCUSSION OF VALIDATION AND COMPARISON WITH AERONET 

OBSERVATIONS 

After downloading and processing MODIS data, only data satisfying QA requirements 

corresponding to each algorithm in question were used during the study analysis. 

Fig 2 shows the validations of Terra C6.1 DB, DT, and DTB retrievals compared with AERONET 

AOD measurements at the Brno Airport site from June 2017 to December 2018 (18 months). 

During the retrieval process, we noticed that the least number of retrievals were obtained from 

winter months due to thick clouds and snow coverage. According to data analysis, the C6.1 DT 

AOD retrievals agrees the best with AERONET AOD measurements (R = 0.823), and the 

percentage of retrievals falling within the EE envelope is remarkably high (82.67%), with an 

average Mean Absolute Error (MAE = 0.044) and the smallest root mean square error compared 

to the other algorithms (RMSE = 0.059). DB has the lowest correlation coefficient (R = 0.765), also 

the error was noticeably high with (RMSE = 0.069 and MAE = 0.052). On the other hand, the DB 

has a slightly better percentage of data samples that fell within the EE envelope than the DTB 

retrievals with EE (80.85%) and (80%) respectively. Moreover, DTB retrievals show better results 

than DB retrievals (R = 0.819), and the error is slightly higher than that of DT retrievals (MAE = 

0.047 and RMSE = 0.063). Figure 3 shows the linear regression between each MODIS algorithm 

retrievals and AERONET observations, it also shows the real error (τMODIS – τAERONET) for each pair 

of AOD. According to Fig 3, we found that the errors of all three algorithms have normal 

distribution on both sides of the 1:1 line with close proportions. Besides that, almost all retrievals 

of the three algorithms with low values of AOD (AOD < 0.1) have small errors. Based on obtained 

results, we found that the DTB (Fig 3c) was more influenced by the DT (Fig 3b) than DB (Fig 3a). 
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Besides, the sample size for both algorithms was the same (N = 75) since the required QA value 

for both the DT and DTB algorithms is 3. DT algorithm alone gave good results. This is of no 

surprise as the DT algorithm is known to be suitable for highly vegetated areas, such as the Czech 

Republic. According to Wie et al, the DT is more suitable for highly vegetated and low AOD 

loading areas in all Europe, which is consistent with our findings [13]. However, one drawback 

for this algorithm might be the sample size as larger sample size and probably larger coverage 

area can be obtained by the DB algorithm due to lower QA requirement (QA = 2 or 3). One 

challenge that faced us during this study is the fact that there is only one AERONET station in 

the Czech Republic located in Brno. Even this station was under calibration and data from three 

months (June – August 2018) were missing. However, by merging the data from the years 2017 

and 2018 we were able to have MODIS AOD retrievals from the four seasons and increase the 

reliability of the validation. 

 

Fig. 2 – Scatter plots of Terra MODIS C6.1 DB (a), DT (b) and DTB (c) AOD retrievals against AERONET 

AOD observations from June 2017 to December 2018. The solid line indicates the 1:1 line, and the dashed 

lines indicate the envelopes of the expected error (EE). The sample size (N), correlation coefficient (R), 

mean absolute error (MAE), and root-mean-square error (RMSE) are also given. EE represents the 

percentages (%) of retrievals falling within the EE envelopes. 
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Fig. 3 – The linear regression between MODIS C6.1 DB (a), DT (b), and DTB (c) AOD retrievals against 

AERONET AOD observations. The X axis represents MODIS retrievals, and the Y axis represents 

AERONET observations. The solid line indicates the 1:1 line. Each circle represents one pair of 

MODIS/AERONET AOD, and its size is based on the value of the real error. The blue circles represent 

the pairs of AOD when (τMODIS > τAERONET) and white circles represent the pairs when (τAERONET > τMODIS). 

5. Summary and conclusion 

Three AOD products; DB, DT, and DTB, generated from MODIS C6.1, were compared and 

validated over land at Brno AERONET station (version 3 Level 2) in the Czech Republic during 

the period (June 2017 till the end of 2018). We investigated the accuracy and uncertainty of the 

three algorithms in order to draw recommendations. Based on our results, the DT algorithm gave 

the closest estimations to the real AOD values observed at Brno AERONET station, with a 

correlation coefficient (R = 0.823), root mean square error (RMSE = 0.059), and with a high 

percentage of retrievals falling within the EE envelope (EE = 82.67%). The combined algorithm, 

DTB, failed to bring better estimations than the DT algorithm alone, yet it was found to be more 

suitable than the use of the DB algorithm solely. The accuracy of the DB was lower than the other 

two algorithms, yet still acceptable for estimating AOD as 80.85% of retrievals fell within the 

expected error envelope. We also found that the MODIS coverage is highly affected by NDVI, 
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among other factors like snow surfaces and cloud density, and thus we recommend testing the 

coverage of the three MODIS algorithms above all the Czech Republic first and then use the 

results of the current study to reach an optimal methodology to estimate the AOD over the whole 

country. Another recommendation would be using the AERONET data of 2019 when it is fully 

available to investigate whether a longer period influences the results of the current statistics 

study. 
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5.1.2. Space-Time Machine Learning Models to Analyze COVID-19 Pandemic 

Lockdown Effects on Aerosol Optical Depth over Europe 

Abstract 

The recent COVID-19 pandemic affected various aspects of life. Several studies established the 

consequences of pandemic lockdown on air quality using satellite remote sensing. However, such 

studies have limitations, including low spatial resolution or incomplete spatial coverage. 

Therefore, in this paper we propose a machine learning-based scheme to solve the pre-mentioned 

limitations by training an optimized space-time extra trees model for each year of the study 

period. The results have shown that our trained models reach a prediction accuracy up to 95% 

when predicting the missing values in the MODIS MCD19A2 Aerosol Optical Depth (AOD) 

product. The outcome of the mentioned scheme was a geo-harmonized atmospheric dataset for 

aerosol optical depth at 550 nm with 1km spatial resolution and full coverage over Europe. As an 

application, we used the proposed machine learning based prediction approach in AOD levels 

analysis. We compared the mean AOD levels between the lockdown period from March to June 

in 2020 and the mean AOD values of the same period for the past 5 years. We found that AOD 

levels dropped over most European countries in 2020, while increased in several eastern and 

western countries. The Netherlands had the most significant average decrease in AOD levels 

(19%), while Spain had the highest average increase (10%). Moreover, we analyzed the 

relationship between relative percentage difference of AOD and four meteorological variables. 

We found a positive correlation between AOD and relative humidity and a negative correlation 

between AOD and wind speed. The value of the proposed prediction scheme is further 

emphasized by taking into consideration that the reconstructed dataset can be used for future air 

quality studies concerning Europe. 

 

Keywords 

Aerosol Optical Depth; CAMS; COVID-19; Machine Learning; MODIS 

 

1. Introduction 

The Severe Acute Respiratory Syndrome-COronaVIrus Diseases 2019 (SARS-COVID-19) 

pandemic made humanity reconsider how to adapt daily activities. By late June 2020, the EU 

average infection rate was around 160 per million inhabitants [1]. In general, most European 

countries started applying restrictions in March 2020. These restrictions included lockdown, 
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contain, various kinds of curfew, mandatory face masks, etc. By the 18th of March 2020, more than 

250 million people in Europe were in lockdown [2].  

Despite the unfortunate losses in human lives and economy, there could be a bright side to this 

pandemic when it comes to air quality. Some studies showed that air quality has improved under 

the applied restrictions. For example, only two weeks of lockdown have reduced urban air 

pollution in Spain, with essential differences among pollutants. The most considerable reduction 

was predestined for black carbon and Nitrogen Dioxide (NO2) by 45%−51% [3]. 

According to data released in 2019−2020 by the National Aeronautics and Space Administration 

(NASA) and the European Space Agency (ESA), NO2 was reduced up to 30% in some regions that 

were highly affected by COVID-19 lockdowns such as Wuhan in China, Italy, Spain, and USA 

[4]. Similar results were found in Poland when comparing air quality observations for the year of 

2020 in five major cities with the same periods in the previous two years. In addition, AOD 

concentrations were reduced in April and May of 2020 by nearly 23% and 18% as compared to 

2018–2019 [5]. 

During the lockdown in China, a significant drop in NO2 (-37%), SO2 (-64%) and AOD (-8%) for 

the year 2020 when compared with 11 years mean (2009–2019) [6]. Another study of the Eastern 

part of China, where AOD levels are usually high (AOD > 0.7), showed that the emission of 

pollutants in the first three months of 2020, has decreased when compared to the same period of 

the previous year [7]. Over India, the AOD level was greatly decreased (~45%) during the COVID-

19 lockdown periods as compared to the mean AOD level in the previous 20 years [8]. Similarly, 

significant reductions in black carbon concentration (~8.4%) and AOD (10.8%) were observed in 

southern India during the first lockdown period (25th March to 14th April 2020) when compared 

to the pre-lockdown period (1st to 24th March 2020) over the selected measuring location [9]. 

In this study, we will focus on AOD, which is defined as a measure of the columnar atmospheric 

aerosol content. High AOD concentrations have a negative impact on all living things by affecting 

the respiratory system and reducing naked eye visibility. AOD is measured either from ground-

based stations or retrieved by satellites measurements. AOD satellite-based products provide a 

vast spatial coverage when compared to the limited number of ground stations [10]. 

Due to the correlation between AOD and particulate matter (PM), AOD satellite products are 

commonly used to retrieve surface PM [11–13]. This justifies the increasing interest in AOD 

satellite products. Many sensors retrieve AOD at different spatial and temporal resolution [14], 

such as the Total Ozone Mapping Spectrometer (TOMS) [15], the Ozone Monitoring Instrument 

(OMI) [16], the Seaviewing Wide Field-of-view Sensor (SEAWIFS) [17], the Geostationary 
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Operational Environmental Satellite (GOES) [18], the Advanced Himawari Imager (AHI) [19], the 

Multiangle Imaging SpectroRadiometer (MISR) [20], and the widely used Moderate Resolution 

Imaging Spectroradiometer (MODIS) which we used in our study. 

MODIS instrumentations have been carried on both the Terra and Aqua satellites in sun-

synchronous polar orbits, since 1999 and 2002, respectively. They can record earth’s surface 

reflectance and emittance with 2330km swath every one to two days [21]. MODIS measures 36 

spectral bands between 0.4 and 14.4 μm wavelengths at many different spatial resolutions that 

provide a great opportunity to study the aerosol thickness and parameters characterizing aerosol 

size from space with good accuracy and on a worldwide scale. 

MODIS provides various AOD products based on different aerosol retrieval algorithms, the most 

common algorithms are the Dark Target (DT) [22,23], the Deep Blue (DB) [24,25], and the Multi-

Angle Implementation of Atmospheric Correction for MODIS (MAIAC) [26] which is the 

algorithm used to generate the MODIS MCD19A2 product with 1km spatial resolution. 

However, AOD satellite-based products have a great number of gaps due to cloud cover and 

snow reflectance. An analysis of the spatial and temporal distribution of clouds retrieved by 

MODIS over 12 years of continuous observations from the Terra satellite and over 9 years from 

the Aqua satellite showed that clouds cover ~67% of the Earth’s surface worldwide and ~55% 

over land [27]. To solve this issue, it has become common to use machine learning and deep 

learning algorithms in developing models that fill the gaps in satellite-based products either by 

removing the clouds [28], applying spatiotemporal interpolation [29], or merging different 

sources of data to predict gaps-free images [30]. Therefore, in this study we propose a machine 

learning-based scheme to fill the gaps in MODIS MAIAC AOD retrievals and to generate daily 

full coverage, high resolution AOD maps over Europe. Such maps will minimize time series 

analysis bias and uncertainty while investigating the influence of COVID-19 lockdown on AOD 

levels. 

2. Material and Data 

2.1. Study Area and Period 

The study area is shown in Fig.1. It includes the “Continental EU” hence EEA (European 

Economic Area) and the United Kingdom, Switzerland, Serbia, Bosnia and Herzegovina, 

Montenegro, Kosovo, North Macedonia and Albania [31]. In this paper we refer to the area of 

study as “Europe” located inside this coordinates box 26˚ W, 72˚ N, 42˚ E, and 36˚ S. The total 

study area covers 13,391,504 of 1km grid cells; 5,450,009 of the total cell number are located over 

land. The study period covers the months of March–June from the years 2015–2020. 
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Figure 1. The study area with AERONET stations shown as black dots. 

2.2. Data 

In this section we summarize different data used throughout our study. 

2.2.1. MODIS data 

MCD19A2 daily product from MODIS collection 6 was released and made publicly available 

on 30 May 2018. It is generated from both the Aqua and Terra satellites and delivered in 

Hierarchical Data Format [26]. MCD19A2 has 1km spatial resolution and uses the MAIAC 

algorithm that utilizes time series (TMS) analysis, a set of image-based, and pixel processing to 

enhance the precision of cloud recognition, AOD, and other atmospheric rectification [32,33]. 

Daily MODIS MCD19A2 data were downloaded, and two science datasets (SDS) were extracted; 

AOD green band (at 550 nm) and AOD quality assurance layer (AOD_QA) which will be used to 

retrieve only pixels with the best quality. We created daily mosaics that cover the study area. 

2.2.2. Copernicus Atmosphere Monitoring Service (CAMS) data 

In this study, modelled AOD at 550 nm data with 80km spatial resolution that is produced 

by the European center for medium-range weather forecasts Atmospheric Composition 

Reanalysis 4 (EAC4) was used to fill the gaps in the MODIS MCD19A2 product. Reanalysis 

merges model data with worldwide observations into a compatible dataset generated by an 

atmospheric model that uses the laws of physics and chemistry. EAC4 estimates modelled AOD 

every 3 hours using the 4D-Var assimilation method [34]. 

2.2.3. Digital elevation model 
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The elevation of the grid cells was added as a land predictor in our study. The Japan 

Aerospace Exploration Agency (JAXA) provides a worldwide digital surface model for scientific 

research and other geospatial services. It provides a horizontal resolution (~30 m) by the 

Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM), which was carried on the 

Advanced Land Observing Satellite "ALOS" [35]. Data can be accessed from 

(https://www.eorc.jaxa.jp/ALOS/). 

2.2.4. Ground-based AOD data 

NASA’s Aerosols Robotic Network (AERONET) is considered one of the most reliable 

aerosol networks [36]. AERONET measures direct solar and sky radiance in various channels 

every 15 minutes at the local point to compute columnar AOD at intervals from 350 to 1020 nm 

with low expected uncertainties ranging between 0.01 to 0.02 under cloud-free conditions [37]. 

There are several categories of AERONET data: level 1.0 (unscreened), level 1.5 (cloud screened), 

and level 2.0 (cloud screened and quality assured).  

In this study, AERONET level 2.0 quality assurance observations were used from 57 stations 

over Europe as shown in Fig.1. Since AERONET stations do not measure AOD at 550 nm, 

available measurements at the nearest two wavelengths to 550 nm (440 or 500 nm as λ1 and 675 

nm as λ2) for each station were interpolated to 550 nm using the Ångström's turbidity equation 

represented in Equation (1) [21,38]. 

𝜏𝑎(𝜆) =  𝛽𝜆−𝛼   (1) 

Where 𝜏𝑎(λ) is the AOD at λ wavelength in micrometers, β is the Angstrom’s turbidity 

coefficient, and α is the band index represented in Equation (2). 

𝛼 =  − 
ln (𝜏𝑎(𝜆1)/𝜏𝑎(𝜆2))

ln (𝜆1/𝜆2)
  (2) 

AOD values at two different wavelengths λ1, λ2 are related by Equation (3). 

               τa(λ1) =  τa(λ2) ∗ (
λ1

λ2
)

−α

             (3) 

2.2.5. European Centre for Medium-Range Weather Forecasts reanalysis (ECMWF) 

ERA-5 is the fifth generation of ECMWF reanalysis for the global climate and weather. 

Hourly data between 10 a.m. and 2 p.m. of u and v wind components, total precipitation, 2m 

surface temperature for the months March–June of the years 2015–2020 with 0.1˚ spatial 

resolution were extracted from the ERA-5 land hourly data. Relative humidity data between 10 

a.m. and 2 p.m. at 0.25˚ spatial resolution was extracted from the ERA-5 monthly averaged data. 

https://www.eorc.jaxa.jp/ALOS/
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All used data were reprojected to the European Terrestrial Reference System 1989 

(EPSG:3035), using 1km grid cell with bilinear interpolation method for CAMSAOD and ECMWF 

data and the cubic convolution for the ALOS elevation model. All values of MODISAOD, CAMSAOD 

and elevations were assigned to the closest grid cell. 

Table 1. Summary of data used in this study. 

 

 

 

 

 

 

 

 

3. Methodology 

In this study, we have created a Geo-Harmonized Atmospheric Dataset for Aerosol optical depth 

(GHADA) that covers the study area. Three stages were applied to generate GHADA: First, we 

merged the Terra and Aqua datasets of the MODIS MCD19A2 product by applying a simple 

average for all pixels that passed the quality assurance criteria (QACloudMask = Clear and  

QAAdjacencyMask = Clear) of this product. Second, we created a machine learning model for every 

year of the study period to predict AOD values over the study area. MCD19A2 high-quality 

retrievals were used as the dependent variable, and since the Terra satellite is passing locally 

around 10:30 a.m. and the Aqua satellite passes around 1:30 p.m., we used the modelled AOD 

from CAMS at the closest three times per day to the satellites passing (9 a.m., 12 p.m., and 3 p.m.). 

In addition, the spatiotemporal information for the grid cells were used as independent variables. 

Finally, we filled MODIS MCD19A2 gaps with the predicted AOD by merging the outputs from 

stages one and two. We validated the daily maps of GHADA with ground-based observation and 

then we utilized this dataset to analyze how the COVID-19 lockdown has affected AOD levels 

over Europe during the period of March–June 2020, by comparing AOD levels for this period 

with the average AOD levels in the last 5 years (2015–2019) for the same months. 

 

Product 
Spatial 

resolution 

Temporal 

resolution 
Layer 

MODIS 

MCD19A2 
1km Daily 

AOD-055 

Quality Assurance (QA) 

CAMS 80km 3 h 
Total aerosol optical depth at 

550 nm 

ALOS 

DSM 
30m - Elevations 

AERONET - ~ 15 min Level 2.0 

ECMWF 

ERA-5 
0.1˚ Hourly 

Wind U and V components 

Total precipitation 

2m surface temperature 

ECMWF 

ERA-5 
0.25˚ Monthly Relative humidity 
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4. Space-time models 

In this section, we propose a novel approach based on the Extremely Randomized Trees (ET) to 

predict the missing AOD values in the MODIS MCD19A2 product. first, we illustrate the 

principles of the ETs and discuss their suitability for the AOD prediction problem. Second, we 

describe in detail the proposed  ET training and parameters setting for AOD prediction. 

4.1. Extra trees algorithm 

ET is a tree-based ensemble learning method used in our study to deal with the supervised 

regression and create prediction models for AOD. The idea behind ET is to strongly randomize 

the selection of both attribute and cut point while splitting a tree node. Unlike the widely used 

random forest algorithm that chooses the optimum split, ET chooses it randomly which further 

reduces bias and variance. When needed, the latter algorithm creates independent randomized 

trees of learning sample output values[38]. 

The number of attributes that are randomly selected at each node (K) and the minimum sample 

size for splitting a node (nmin) are the two main parameters in ET splitting process. This procedure 

is applied several times with the whole learning dataset to create an ensemble model that 

aggregates the predictions of the decision trees to obtain the final estimation, by majority vote in 

classification problems and arithmetic average in regression problems. In addition to accuracy, 

ET has high computational efficiency [39], which is required when dealing with big data 

problems. 

4.2. Improved spatiotemporal information 

To determine the spatial and temporal correlation between MAIACAOD and CAMSAOD, we 

included the following independent variables. For space, we used both the elevations of the grid 

cells and the great circle distance (D) between each grid cell and a reference point on a sphere 

identified by their latitudes and longitudes using the haversine approach (Equations (4)–(6)). For 

time, we used the day of the year (DOY) to calculate the radian time (Rt) for the grid cells on 

different days in a year to improve model handling of the seasonal cycle, Equation (7) [40]. 

ϴ  = ƒ(λi,t , φi,t) = haversin(φ1− φ2)+cos(φ1)∗cos(φ2)∗haversin(λ1− λ2)  (4) 

haversin(ϴ)=sin2(
ϴ

2
) = 

1−cos(ϴ)

2
 (5) 

Di,t  = r∗archaversin(ϴ) = 2∗r∗arcsin(√ϴ  ) (6) 

Rti,t = cos(2π∗ 
DOYi,t  

T
) (7) 
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Where ϴ  is the central angle between two points in space, φ1 and φ2 denote the geographical 

latitudes in radians of two points in space, λ1 and λ2 denote the geographical longitudes in radians 

of two points in space, r denotes the Earth’s radius in km, DOY represents the day of the year, T 

represents the total number of days in the year, for every grid cell (i) on day (t). 

For each year between 2015–2020, the model was built using Equation (8). 

AODi,t = ƒ(CAMS-9i,t , CAMS-12i,t , CAMS-15i,t ,  Di,t , Hi,t , Rti,t)                                           (8) 

Where for each grid cell (i) on day (t): AODi,t is the target AOD value, CAMS-x represents the 

AOD value extracted from CAMS at hour x, Di,t represents the great circle distance, Hi,t 

represents the elevation, Rti,t  represents the temporal information identified by the radian time. 

5. Results 

In this section we present the results of the space-time ET models when predicting the 

MAIAC AOD values. Then we utilize these models to generate AOD maps over the study area. 

Validation process is also stated below. Finally, these maps were used to analyze the effects of 

COVID-19 lockdowns on AOD levels as discussed in section 5.4. 

5.1. Models 

Due to the great number of MODISAOD - CAMSAOD pairs over land of the study area (on average 

380 million pairs per year), representative subsets consisting of ~10% of the whole population (all 

MODISAOD - CAMSAOD pairs per year) were chosen using the Kolmogorov–Smirnov test to be used 

as learning dataset for a space-time model for each year. Then for each learning dataset, we used 

the k-fold cross validation (where k=5) to train and validate each model, in this method, the 

learning dataset is divided into 5 folds, which means 80% of the pairs in the learning dataset are 

used as training set for the model and the remaining 20% are used for validation, this procedure 

is repeated 5 times to test the model on each fold. Based on learning curve results, we found that 

increasing the learning dataset size to 15% will only increase the accuracy of the models by less 

than 1% and the curve reaches plateau beyond this percentage. Therefore, to decrease the 

computational complexity, we used ~10% of the whole population as learning dataset. In other 

words, a learning dataset size of 10% is enough to reach satisfactory accuracy for each year of the 

study period. The optimized models (number of trees = 30, maximum depth of the tree = 50) were 

tested on the remaining ~90% (approximately 340 million pairs) of the population. 

The results of the trained models for each year are summarized in Table.2. All models achieved 

high accuracies when predicting MAIAC AOD with a correlation of determination (R2 ) ranging 

between 92.5% to 95% and root mean squared errors from 0.016 to 0.02. These high achieved 
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accuracies with the relatively small errors show the efficiency of our space-time models in 

predicting the missing AOD values and emphasize the appropriateness of exploitation modelled 

AOD with improved spatiotemporal information in improving satellite AOD data. 

Table 2. Results of the space-time extremely randomized models used to predict the missing 

AOD in the MODIS MCD19A2 product for each year of the study period. 

          Year R-squared (%) RMSE MAE 

          2015 95 0.017 0.011 

          2016 94.3 0.018 0.011 

          2017 93.8 0.018 0.011 

          2018 92.5 0.02 0.012 

          2019 92.9 0.019 0.012 

          2020 94.1 0.016 0.010 

Feature importance was calculated based on the reduction in sum of squared errors whenever a 

variable is chosen to split. Mean importance scores were calculated for all selected input variables 

of the models (see Fig.2.). CAMSAOD at 12:00 p.m. is the most influential variable accounting for 

~33% of MODISAOD estimates. The other two modelled AOD at 9:00 a.m. and 15:00 contributed by 

18% and 24%, respectively. The radian time and the great circle distance had almost the same 

influence (10–10.4%). Finally, the elevation had the lowest influence with ~5% on MODISAOD 

estimates. 

 
Figure 2. Mean importance scores (%) of independent variables to AOD estimates for the space-time 

extremely randomized models. 
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5.2. AOD Maps 

We used the optimized space-time models to predict the missing values in the daily MCD19A2 

data of the study period. Then we used these predictions to fill the gaps in this product. The 

outputs of the previous processes were a daily AOD maps with 1km spatial resolution and full 

coverage over Europe for the period of March–June in the years 2015–2020. To analyze the 

COVID-19 lockdown effects on AOD levels, we calculated the average AOD levels for the months 

March-June of the years 2015–2019 and compared these levels with the same period of the year 

2020 (see Fig.3.). Moreover, we generated daily AOD maps for the period of January 2018–June 

2020 to validate GHADA through all seasons and not solely during the chosen lockdown months. 

  

(a) (b) 

Figure 3. The average AOD values for the months March–June of (a) the years 2015–2019 and (b) of 

the year 2020 during the chosen lockdown period. 

 

5.3. Validation with AERONET 

With the assumption that the aerosol column is relatively uniform within a certain time-space 

boundary [41], the validation of satellite-based AOD products is usually performed between 

AOD retrievals within the spatiotemporal window and the corresponding AERONET 

observations [42]. An acceptable accuracy of AOD products can be achieved when 66% of 

retrievals fall within expected error envelopes (EE) [23,43]. We used for validation the average 

AERONET level 2.0 quality assurance observations between 10 a.m. and 2 p.m. from 57 stations 

across Europe during the period of January 2018–June 2020. We chose two spatial diameters 20km 

and 50km with AERONET stations in the center for validation and statistical analysis that 

extensively uses root-mean-square error (RMSE), mean absolute error (MAE), expected error (EE) 
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envelopes, and the fraction of AOD  retrievals of the total number (N) falling within EE envelope 

(Equations (9)–(13)). 

RMSE = √
1

𝑁
 ∑(𝐴𝑂𝐷𝐺𝐻𝐴𝐷𝐴 − 𝐴𝑂𝐷𝐴𝐸𝑅𝑂𝑁𝐸𝑇)2 (9) 

MAE = 
1

𝑁
 ∑ | 𝐴𝑂𝐷𝐺𝐻𝐴𝐷𝐴 − 𝐴𝑂𝐷𝐴𝐸𝑅𝑂𝑁𝐸𝑇  | (10) 

Bias = 
1

𝑁
∑(𝐴𝑂𝐷𝐺𝐻𝐴𝐷𝐴 − 𝐴𝑂𝐷𝐴𝐸𝑅𝑂𝑁𝐸𝑇) (11) 

EE = ± (0.05 + 0.15 ∗ AODAERONET) (12) 

AODAERONET - |EE| ≤ AODGHADA ≤ AODAERONET + |EE| (13) 

The statistical analysis between daily GHADA maps and AERONET observations has shown 

similar validation results for the two chosen spatial diameters with ~84% of the samples falling 

within the EE, good correlations R~76–77% and relatively small RMSE ~ 0.066–0.067, refer to 

Table.3.  

Fig.4 represents the density scatter plots for the validation of AOD at 550 nm from GHADA with 

the AERONET stations at the two chosen spatial diameters. 

Table 3. Validation results of GHADA with AERONET at two spatial diameters, where N is the 

total number of sample points. 

D (Km) N R MAE RMSE Bias EE(%) 

20 10916 0.762 0.043 0.067 -0.014 83.7 

50 12212 0.767 0.043 0.066 -0.014 83.7 
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Figure 4. Density scatter plots of validation AOD at 550 nm from GHADA with 57 AERONET 

stations between 10 a.m. and 2 p.m. at two spatial diameters of 20km and 50km. The colored scale 

bar stands for the frequency of occurrence. 

5.4. AOD Relative Percentage Difference 

The variations in AOD levels were calculated for each grid cell using the Relative Percentage 

Difference (RPD) Equation (14). 

RPD = 
𝐴𝑂𝐷2020−𝐴𝑂𝐷2015−2019

𝐴𝑂𝐷2015−2019
∗ 100 (14) 

Where AOD2020 is the mean AOD value in the study period of 2020 and AOD2015–2019 is the mean 

AOD value for the study period covering 2015–2019. The changes are presented in Fig.5. 
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Figure 5. Relative percentage difference of AOD over Europe for the months March–June of the year 2020 

and the same months of the previous 5 years. 

6. Discussion 

In this study, a machine learning-based scheme was used to overcome the limitations in time 

series analysis concerning AOD. A new dataset for AOD at 550 nm with full coverage over Europe 

and with 1km spatial resolution (GHADA) was built. We trained an extra trees model for each 

year (2015–2020) using the MODIS MCD19A2 as the target variable, and CAMS modelled AOD 

with improved spatiotemporal information as the independent variables. Results showed that 

the trained models had high accuracies ranging between 92.5–95% when estimating the missing 

MAIACAOD retrievals. We compared the AOD550 from GHADA and surface observations at 57 

AERONET sites over Europe, with two spatial diameters around these AERONET stations within 

the period of January 2018–June 2020. The overall comparison with ground-based measurements 

showed a good correlation, with bias as low as 0.014 and R ~0.76. Then we used GHADA to study 

the influence of COVID-19 pandemic lockdown on AOD levels over Europe in the months 

March–June by comparing it to AOD levels in the same months for the past five years (2015–

2019). The most important advantage of our study when compared to similar work is that we 

used daily full coverage AOD maps with high spatial resolution when calculating the average 

AOD values before and after the lockdown. Such complete coverage reduces bias and uncertainty 

in such time series analysis. As shown above in Fig.5, we have found that AOD levels decreased 
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by 10–30% over most countries of the study area in 2020, mainly the countries located at the center 

of the analyzed area. While AOD levels increased over the countries that are located on the 

boundaries of the study area. In the west, AOD increased over Spain and Portugal, in the east, 

AOD increased over Romania, Bulgaria, Moldova, and Kosovo; in the north, the level slightly 

increased over Iceland. The decrease in AOD levels was the greatest in the Netherlands with an 

average decrease of 20%, while Spain had the highest average increase in AOD levels by 10%. It 

must be noted that the five AERONET stations in Spain included in this study did not reflect the 

average increase  in AOD over the whole country, due to their limited spatial coverage. 

As an attempt to justify the findings in areas of increased AOD, we investigated the relationship 

between the RPD in AOD for the months March–June of the year 2020 and the previous five years 

and the RPD for four meteorological variables (relative humidity, wind speed, surface 

temperature, and total precipitation) calculated for the times of MODIS satellites overpassing (10 

a.m. to 2 p.m.). We found a close trend between relative humidity and AOD. Spain, Portugal, 

northern Norway, eastern Belarus, and southern Bulgaria had higher RPD in both AOD and 

relative humidity. Spain and Portugal had the highest increase of 10–23% in relative humidity. In 

agreement, areas of decreased humidity had lower RPD of AOD, however such correlation is to 

a lower extent than the effect of increased humidity. An exception to this finding is Romania 

where RPD in humidity was decreased however AOD was increased. Regarding wind speed, 

RPD  has decreased by ~18% in Spain and Portugal where AOD had significant increase. Also, 

the northern part of Italy and the western part of Austria had a clear inverse trend between AOD 

and wind speed. Tha average relative humidity over Spain was 65% during the lockdown period 

of the year 2020. High relative humidity combined with low average wind speed of less than ~3 

m/s play an important role in increasing AOD. Our findings are consistent with [44], where they 

associated higher humidity and lower wind speed with higher AOD. We found no direct 

relationship between RPD of neither surface temperature nor total precipitation and RPD of 

AOD, all of which strengthen the argument that lowering AOD is a consequence of the lockdown. 

Although we proved that AOD levels increased over Spain, other pollutants such as NO2 were 

decreased which is attributed to the difference in the source of these pollutants as discussed 

elsewhere [44]. Fig.6. shows the RPD of relative humidity and RPD of wind speed between the 

lockdown months of the year 2020 and the same period of the previous 5 years. 
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(a) 

 

(b) 

Figure 6. Relative percentage difference of (a) relative humidity and (b) wind speed over Europe between 

10 a.m. and 2 p.m. for the months March–June of the year 2020 and the same months of the previous 5 

years. 

Nevertheless, it must be noted that the average AOD levels over Europe are relatively low (AOD 

< 0.3) compared to other more polluted regions, where more prominent differences in AOD levels 

can be observed, for example as published in [8] where AOD levels over India were investigated. 

In addition, the extent of restrictions imposed and the adherence to them may contribute to the 

significance of the change in AOD levels.  

7. Conclusion 

The advancement of machine learning algorithms provides solutions for AOD satellite-based 

data drawbacks such as low spatial resolution and gaps caused by persistent clouds, cloud 

contamination, and high surface reflectance, and opens new horizons for studies that shall 

influence decision making. A machine learning-based scheme was used to enhance time series 

analysis of AOD over the study period. Space-time extremely randomized trees models were built 

to fill the gaps in the MCD19A2 product of the moderate imaging spectroradiometer (MODIS). 

The output was a geo-harmonized atmospheric dataset for aerosol optical depth (GHADA) with 

complete coverage of 1km spatial resolution over Europe. Up to our knowledge, GHADA is the 

first dataset with this coverage and resolution for Europe, and we are the first to analyze how the 

COVID-19 affected AOD levels over Europe with gaps-free AOD maps at high spatial resolution. 

We compared AOD levels during the chosen lockdown period to the mean AOD values during 

the same period in the previous 5 years. We found a general decrease trend in the countries 

located at the center of the study area with the Netherlands scoring the highest average decrease. 

In contrast, AOD levels increased in the eastern and western European countries as it is distinctly 

visible in Kosovo and Spain, respectively. We found a correlation between high humidity and 
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low wind speed with AOD increase, which justifies such increase in countries like Spain and 

Portugal. We excluded surface temperature and total precipitation as contributing factors to the 

detected changes in AOD levels, which in return makes COVID-19 lockdown the major cause for 

the decrease in AOD levels.  

Once GHADA is made publicly accessible, it can be used to investigate air quality over Europe 

with 1km spatial resolution and improve time series analysis, overcoming the gaps encountered 

during such studies. The lockdown that happened due to the pandemic generally lowered AOD 

levels; however, such lockdown is not the ultimate solution to control AOD levels. Cleaner 

sources of energy and road transport are needed to maintain lower levels of AOD and good air 

quality. Based on our obtained results, we recommend utilizing machine learning to solve time 

series analysis limitations, to conduct various applications concerning air quality. 
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5.1.3. Machine Learning Based Approach Using Open Data to Estimate PM2.5 over Europe 

 

Abstract 

Air pollution is currently considered one of the most serious problems facing humans. Fine 

particulate matter with a diameter smaller than 2.5 micrometres (PM2.5) is a very harmful air 

pollutant that is linked with many diseases. In this study, we created a machine learning based 

scheme to estimate PM2.5 using various open data such as satellite remote sensing, meteorological 

data, and land variables to increase the limited spatial coverage provided by ground-monitors. A 

space-time extremely randomised trees model was used to estimate PM2.5 concentrations over 

Europe, this model achieved good results with an out-of-sample cross-validated R2 of 0.69, RMSE 

of 5 μg/m3, and MAE of 3.3 μg/m3. The outcome of this study is a daily full coverage PM2.5 dataset 

with 1 km spatial resolution for the three-year period of 2018–2020. We found that air quality 

improved throughout the study period over all countries in Europe. In addition, we compared 

PM2.5 levels during the COVID-19 lockdown during the months March–June with the average of 

the previous 4 months and the following 4 months. We found that this lockdown had a positive 

effect on air quality in most parts of the study area except for the United Kingdom, Ireland, north 

of France, and south of Italy. This is the first study that depends only on open data and covers 

the whole of Europe with high spatial and temporal resolutions. The reconstructed dataset will 

be published under free and open license and can be used in future air quality studies. 

 

Keywords 

PM2.5, AOD, Machine learning, Europe, Open data 

 

1. Introduction 

Air quality monitoring is one of the most important fields when it comes to the 

individual’s health due to the high risks related to its low quality. Fine particulate matter is an air 

pollutant that consists of liquid and solid molecules such as acid condensates, sulphates, and 

nitrates that have negative effects on human health [1]. The harmful effects of these particles vary 

depending on the concentrations, time exposure, and the particulate diameter. Risks are higher 

when the diameter gets smaller; PM2.5 can penetrate deep into the lungs and may reach the blood 

circulation causing dangerous diseases such as cardiovascular problems, diabetes, prenatal 

disorder, and even mortality [2–5]. The effects are more notable in urban areas, where higher 
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population density can be found, and more exposure will occur [6]. The form of the urban area 

plays an important role in the concentration of PM2.5 [7]. 

The U.S. Environmental Protection Agency (EPA) has set an annual average standard of 

12 μg/m3 and a daily (24 h) of 35 μg/m3 for PM2.5 and when the amounts of these pollutants in the 

ambient air exceed these limits that could cause serious health issues [8]. The revised Directive 

2008/50/EC of the European Parliament (EP) and of the Council on ambient air quality and cleaner 

air for Europe set limit values of annual PM2.5 to 25 μg/m3 since 1 January 2015 and not to exceed 

20 μg/m3 since 1 January 2020. PM2.5 ground-based monitors are used to measure PM2.5 with high 

accuracy. These stations are considered the backbone in almost all analyses related to these 

particles. However, the high cost of establishing these monitors limits the overall spatial coverage 

and the researchers who are focusing on air quality were seeking new methodologies to increase 

the spatial coverage, so they have a better understanding on larger geographical scales. 

Numerous techniques were used to increase PM2.5 spatial coverage, in other words, to estimate 

the pollutant concentrations in the areas where no monitors exist. Examples of that are 

interpolation techniques that count only on the ground stations [9,10]. The accuracy of these 

interpolations is highly related to the spatial distribution of the stations; although they can have 

good estimations in the areas that are surrounded by the network stations, they will probably fail 

to have good estimations where there is a lack of the stations [9]. Land use regression (LUR) 

models were also used to analyse pollution, particularly in densely populated areas [11,12]. 

Satellite remote sensing provides wide spatial coverage compared to the spatial coverage 

obtained from ground monitors. Aerosol optical depth (AOD) is an air quality indicator that can 

be observed from satellite remote sensing, and it is defined as the measure of the columnar 

atmospheric aerosol content. Numerous studies have found a positive correlation between 

satellite-based AOD and surface particulate matter [13,14]. Researchers have utilised satellite 

AOD to estimate PM2.5 by developing different types of models such as physical models that were 

built based on the physical relationship between AOD and surface PM2.5 [15]. Statistical methods 

which train the relationship between AOD and PM2.5 using different statistical models [16,17] are 

suitable for the regions with a sufficient number of ground stations since they require a large 

amount of training data [18]. The generalised additive model (GAM) empowers the AOD–PM 

relationship by adding meteorological and land use information [19]. In the last few decades, 

artificial intelligence models have been applied to estimate PM2.5 and were found to give a better 

description of the complex non-linear relationship between PM2.5, AOD, and other independent 

variables than the previously mentioned methods [18] based on the usage of machine learning 

algorithms [20–22] or deep neural networks [23,24]. These algorithms utilise satellite 
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observations, various modelled meteorological variables, population, land use, land cover, etc., 

to estimate PM2.5. The importance of the inputs differs from one area to another, but generally, 

they can enhance PM2.5 estimations since counting solely on AOD to estimate near-surface 

particulate matter values is not sufficient [25]. AOD without other variables was not enough to 

provide good PM2.5 estimations over Europe [26]. In Great Britain, AOD was not among the 15 

most important variables when predicting PM2.5 levels [20]. Satellite AOD are more correlated 

with surface PM when the aerosols are well mixed within the planetary boundary layer height 

(PBLH) [9]. A global study found that 69% of the total AOD are within the PBLH [27], other 

studies have shown that temperature plays an important role in capturing AOD and 

understanding its vertical distribution that improves PM analysis [28]. Moreover, a higher 

humidity atmosphere is likely to have higher AOD without affecting the levels of PM2.5 [9]. Other 

meteorological variables that affect PM2.5 are the precipitation that showed a negative correlation 

in some areas [29] and a positive correlation in other parts of the world [30], and wind speed (WS) 

that also has different effects from one area to another [30,31]. 

In this study, we report the modelling of spatiotemporal heterogeneity of PM2.5 using 

machine learning to generate daily estimations of PM2.5 over the European Union member states, 

together with the United Kingdom, Iceland, Liechtenstein, Norway, Switzerland, Albania, Bosnia 

and Herzegovina, Kosovo, Montenegro, North Macedonia, and Serbia [32]. 

We will refer to the area of study as “Europe” located inside the coordinates box 26˚̊  W, 72 ̊ N, 42 ̊ 

E, and 36 ̊ S. The total study area covers 13,391,504 of 1 km grid cells; 5,450,009 of the total cell 

number are located over land. The study period covers the years 2018–2020 with full coverage of 

1 km spatial resolution using various open data. In the following sections, we will introduce the 

study area and period and present the preliminary data that were tested while building the 

predicting model. 

2. Primary Data 

In this section, we will introduce the primary data we investigated while building the 

model. Not all these data were utilised while building the model. The chosen data can be found 

in Section 3.3. 

2.1. PM2.5 measurements 

 PM2.5 observations were collected from 848 stations across Europe represented in Figure 

1. Data was downloaded from OpenAQ which is a non-profit organisation that collects air quality 

data from different governmental and research institutions and provides it to the users [33]. 
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Figure 1. The location of PM2.5 ground stations with the number of valid measurements used in this 

study. 

For each station, data between 10 a.m. and 2 p.m. local time were averaged where there are at 

least 2 available observations to be consistent with MODIS satellites overpassing. 

We identified a skewed distribution for PM2.5 as shown in Figure 2, we calculated the 25th 

percentile (Q1), the 75th percentile (Q2) of the dataset, and the inter-quartile range (IQR = Q3 − 

Q1). All PM2.5 values that are higher than 2 × (Q3 + 3 × IQR which is refer as outer fence [34]) were 

removed, which counted less than 1% of the total data. The number of valid PM2.5 observations 

was 123,248 in 2018, 143,048 in 2019, and 158,964 in 2020 totalling 425,260 observations 

throughout the study period. 
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Figure 2. The distribution of the measured PM2.5 used in this study 

2.2. AOD data 

AOD data were downloaded from GHADA, which is a Geo-Harmonized Atmospheric Dataset 

for Aerosol optical depth at 550 nm [35]. It contains daily estimations of AOD550 over Europe with 

1 km spatial resolution. GHADA was built based on the MODIS MCD19A2 product [36] and 

modelled AOD data from Copernicus Atmosphere Monitoring Service (CAMS) [37] that were 

used to overcome the high percentage of gaps found in the MCD19A2 product. This dataset 

showed good results when validated with NASA’s Aerosols Robotic Network (AERONET). 

2.3. Meteorological data 

Meteorological data of the following variables wind component u, wind component v, 

PBLH, total column water vapour, total perception, evaporation, surface pressure, and 

temperature at 2 m (T2m) were collected from ERA5-Land which is a reanalysis dataset offering 

a consistent view of the development of land parameters over several decades with a spatial 

resolution of ~9 km. ERA5-Land was produced by replaying the land component of the European 

Centre for Medium-Range Weather Forecasts ERA5 climate reanalysis [38]. Relative humidity 

was collected from ERA5 with 0.25 × 0.25 horizontal resolution. 

2.4 Digital elevation model 

The Japan Aerospace Exploration Agency (JAXA) provides a worldwide digital surface model 

with a horizontal resolution of ~30 m by the Panchromatic Remote-sensing Instrument for Stereo 

Mapping (PRISM), which was carried on the Advanced Land Observing Satellite “ALOS” [39]. 

Data were accessed on the 8 March 2021 from https: //www.eorc.jaxa.jp/ALOS/. 
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2.5. Normalised difference vegetation index 

MODIS Terra satellite provides a monthly normalised difference vegetation index (NDVI) 

product called MOD13A3 [40]. It has 1 km spatial resolution, and it quantifies vegetation presence 

with values ranging between −1 and 1. NDVI is commonly expressed as shown in Equation (1): 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
   (1) 

Where NIR and Red are spectral reflectance values in the near-infrared and red wavelengths. 

2.6. Land cover  

Land cover data were extracted from the 2018 CORINE Land Cover (CLC) inventory that 

was built based on ortho-rectified satellite images having a spatial resolution ranging from 5 m 

to 60 m and were aggregated into 100 m. We grouped the original 44 CLC classes into seven level 

1 classes defined as: agricultural areas, artificial areas, continues urban areas, discontinues urban 

areas, forests, industrial areas, and water surfaces. Then, we calculated the percentage of each 

class in every 1 × 1 km2 grid cell. 

2.7. Population data 

Population data was extracted from the Visible Infrared Imaging Radiometer Suite 

(VIIRS) night-time lights (NTL) data by averaging the monthly data of the year 2019. 

3. Methodology 

3.1 Data pre-processing 

All data were reprojected to the European Terrestrial Reference System 1989 (EPSG:3035) 

that uses metres as measuring units. This system is used for statistical mapping and other 

purposes which requires a true area representation, using a 1 km grid cell with bilinear 

interpolation method for ECMWF data and the cubic convolution for the ALOS elevation model. 

In addition, we calculated WS based on the two wind u and v components. 

A spatio-temporal dataset was created by extracting the information from all input data 

at the locations of PM2.5 stations. The Julian day, month, and year were added as the temporal 

information; longitude and latitude were added as the spatial information. The generated dataset 

was used to train and test the model.  

3.2. Model Development 

We first analysed the linear relationship between the primary independent variables and PM2.5 

values. PBLH was negatively correlated to PM2.5 with Pearson correlation of r = −0.24. Most of the 
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meteorological variables were also negatively related to PM2.5 with r = −0.2 for WS, r = −0.15 for 

T2m, r = −0.13 for RH, and r = −0.1 for TP. AOD and evaporation had the highest positive 

correlation with PM2.5 r = 0.14. Based on this initial data exploratory analysis, we excluded some 

primary inputs that had high correlation with other inputs such as skin temperature, which was 

correlated to T2m with r = 0.93. We tested linear models to estimate PM2.5. These models suffered 

from underfitting issues and failed to describe the relationship between the independent variables 

and PM2.5. Therefore, we used a more complex algorithm called Extremely Randomised Trees 

(ET). 

ET is a very similar decision tree-based ensemble method to the widely used Random 

Forest (RF). Both algorithms are composed of large number of trees, where the final decision is 

obtained from the prediction of every tree by majority vote in classification problems and 

arithmetic average in regression problems. Both algorithms have the same growing tree 

procedure and selecting the partition of each node. Additionally, both algorithms randomly 

choose a subset of input features. 

ET, on the other hand, strongly randomises the selection of both attribute and cut point 

while splitting a tree node using the whole learning sample to grow the trees which adds 

randomisation, making it a more robust algorithm against overfitting. From computational point 

of view, the complexity of the tree growing procedure is on the order of N log N with respect to 

learning sample size [41]. The main parameters in the ET splitting process are the number of 

attributes that are randomly selected at each node and the minimum sample size for splitting a 

node. For further information on how the ET algorithm operates refer to Table 1 in [41]. In 

addition to accuracy, the ET algorithm has higher computational efficiency than the RF algorithm 

since it chooses the splits randomly and does not look for the optimum split as the latter one [41]. 

The number of estimators (number of trees in the forest), the maximum depth of the trees, the 

number of samples required to split an internal node, and the minimum number of samples 

required to be at a leaf node were the main parameters while tuning our model. 

Table 1. The chosen independent variables used to build the ET model. 

Name of the variable Unit Minimum Maximum Mean STD 

PM2.5 µg/m3 2 80 11.81 9.26 

Aerosol optical depth - 0.01 3.12 0.13 0.08 

PBLH m 73.90 3420.17 933.39 463.59 

WS m/sec 0.23 18.12 3.88 2.13 

T2m K 249.86 314.15 287.03 8.17 

Relative Humidity % 0.04 110.82 68.53 22.93 
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Total precipitation mm 0 8 0.1 0.3 

Total Column Water 

Vapour 
Kg/m2 0.95 50.61 16.76 7.88 

NDVI - -0.3 0.73 0.25 0.12 

Evaporation mm -0.744 0.065 -0.164 0.109 

Elevation m -3.88 914.26 151.66 156.01 

To reduce model complexity due to the large number of independent variables we excluded the 

input variables based on the feature importance in the ET algorithm. Besides the spatio-

temporal information, we used PM2.5 with the independent variables that are shown in Table 1 

to develop our model. 

3.3. Model Validation 

3.3.1. Sample based cross validation 

Cross validation (CV) is a common method to analyse the model performance and detect 

potential overfitting problems where the model achieves high accuracy on the training set and 

performs badly on new data or the test set. We applied a 10-fold CV where all samples in the 

training dataset were randomly divided into 10 equal subsets. Then, in each round, 9 subsets were 

used to fit the model, and the remaining subset was used for testing the model performance [42]. 

This approach is used widely in PM studies [20,21,43–45]. 

3.3.2. Spatial and temporal 10-fold cross validation 

 In this validation, we divided the samples based on two factors. For the spatial 10-fold 

cross validation we splatted the data based on the location of the stations, the stations were 

divided randomly into 10 folds. In each fold, the model was trained on the samples from 90% of 

the stations and the samples from the remaining 10% for testing. For the temporal 10-fold cross 

validation, we divided the samples into 10 folds based on the Julian day and applied the cross 

validation in a similar way to the previously mentioned one. 

4. Results 

The results of sample-based, spatial, and temporal 10-fold cross validation are shown in Table 2. 

The density scatter plot for the sample-based cross validation is shown in Figure 3. 

Table 2. R2, RMSE and MAE of the sample-based 10-CV, spatial 10-CV, and the temporal 10-CV.  

10-CV R2 RMSE MAE 

Sampl-based 0.69 5.0 3.3 

Spatial 0.69 4.9 3.2 

Temporal 0.53 6.1 4.1 
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Figure 3. Density scatter plot of the sample based 10-CV results of the model. 

It must be noted that PM2.5 levels in general are low in Europe when compared to more 

polluted areas and this is reflected by the low RMSE we obtained in our study when compared 

to some studies outside Europe with higher R2 values [44,45]. Our model proved its efficiency in 

predicting PM2.5 when our results (out-of-sample R2 = 0.69, RMSE = 5 μg/m3) were comparable 

with results obtained from a recent study over a smaller geographic area in Europe (Great Britain; 

out-of-sample R2 = 0.77, RMSE = 4 μg/m3) [20]. It is also noted that the model underestimates high 

PM2.5 values (>40 μg/m3) since such values are not abundant over our study area. 

To justify the difference in the model performance spatially and temporally, we applied site-

based cross validation where we used samples from one station as the test set, and the samples 

from all remaining stations were used to train the model. We applied this method to analyse the 

model performance spatially, since the standard 10-CV may not be able to detect potential spatial 

overfitting [18]. 

The results are shown in Figure 4. The model performs well in most of the locations in 

Central Europe with an average R2~0.7. A total of 63% of all stations in Europe have R2 > 0.6. The 

accuracy of the model is lower in the northern and southern parts of Europe. However, the RMSE 

and MAE are relatively small even in the northern and southern parts. 
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Figure 4. Spatial distribution of the site-based cross validation of coefficient of determination, the root 

mean square error, and the mean absolute error. 
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5. Creating PM2.5 maps 

Daily PM2.5 maps during MODIS satellite overpassing were created for the period 2018–

2020 over Europe. Figure 5 shows the average PM2.5 for the year 2018, 2019, and 2020. 

 

 

 

Figure 5. The average PM2.5 for the years 2018, 2019, and 2020 over Europe. 
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A significant decline in PM2.5 levels has occurred over Europe throughout the study 

period. Poland had the highest PM2.5 average level in the year 2018 with an average level ~ 19.5 

μg/m3, in 2019 Romania had the highest average ~ 16.5 μg/m3 whereas Serbia had the highest 

average in 2020 with an average ~ 15.8 μg/m3. Finland had the lowest PM2.5 average level in all 

three years with 7.1 in 2018, 6.3 in 2019, and 5.8 in 2020. Comparing the results of the average 

PM2.5 levels for the years 2018, 2019, and 2020 were highly compatible with the reports of the 

European Environment Agency (EEA). According to EEA the highest PM2.5 concentrations were 

found in central and eastern Europe and northern Italy. For the central and western parts, the 

main reason of high PM2.5 is the usage of solid fuels with older vehicle compared to other parts 

of Europe [46], besides using the solid fuels for heating as was found in Poland [47]. For the 

northern part of Italy, the high levels of PM2.5 are due to the combination of a high density of 

anthropogenic emissions and meteorological conditions [46, 48]. Furthermore, Milan, the largest 

city in the north of Italy previously reported levels of PM2.5 exceeding the safety limit set by the 

EU [49]. 

As an application, we used the proposed machine learning based prediction approach in PM2.5 

levels analysis to study the effect of the COVID-19 lockdown (March to June of the year 2020) on 

air quality over Europe. As an attempt to verify the influence of the lockdown on air quality, we 

compared the average PM2.5 of the previous 4 months (November to December in 2019 and 

January to February 2020) and the following 4 months (July to October 2020) to the 4 months of 

the lockdown by calculating the relative percentage difference (RPD). By doing so we masked the 

general improvement trend in air quality over Europe. RPD calculated using Equation 2. 

RPD = 
PM2.5 (lockdown) − PM2.5 avg(before lockdown,after lockdown)

PM2.5 avg(before lockdown,after lockdown)
 *100               (2) 

We found a significant improvement in air quality over Europe except for UK, Ireland, 

north of France, and south of Italy as shown in Figure 6. Our results are in agreement with another 

study over Poland (Eastern Europe), where the air quality represented by PM2.5 has significantly 

improved in the months of March to April in 2020 when the authors compared to the same 

months from the previous two years [50]. Interestingly, the unusual increase in PM2.5 levels in the 

UK was consistent with what was reported in [51] as the authors justified such increase by 

unusual meteorological conditions. The latter conditions may also justify the increase in PM2.5 

over northern France. In Italy, where people were spending most of their time at home, the 

increased house heating during the lockdown period limited the decrease in PM2.5 levels besides 

the effects of the agriculture sector that kept performing during the lockdown [52]. 
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Figure 6. Relative percentage difference of PM2.5 for the lock down period of the year 2020 with 

the average of the previous 4 months and the following 4 months. 

In this study, we proposed the first machine learning-based scheme to estimate PM2.5 

levels over Europe with high spatial resolution of 1 km. We trained an extra trees model using 

observed PM2.5 from 848 stations as the target variable. AOD, different meteorological variables, 

land variables and NDVI as the independent variables. 

The sample based 10-fold CV showed that our model underestimates high PM2.5 values (> 40 

μg/m3) which may limit the model ability to detect hazard situations. This underestimation 

occurred since high PM2.5 values were not common over our study area as shown in Figure 2. The 

spatial cross validation showed that the model estimates PM2.5 with a higher R2 in the areas with 

high ground stations density the compared to the areas with a lower density. The occurred spatial 

overfitting is expected to happen due to spatially unbalanced data. 

In the Central Europe (Czech Republic, Poland, Slovakia, and surrounding areas) the 

model performed with a higher R2 compared to the Northern and Southern parts of Europe. 

However, the RMSE in the Central Europe was comparably higher than the ones in the 

prementioned parts. This is due to the fact that the average PM2.5 values in the Central Europe is 

higher and have more variations than the Northern and Southern parts. The highest RMSE in the 

Central Europe can be found in three stations in the Czech Republic. These stations are located 

near mining areas were higher PM2.5 values compared to other stations that are mostly located in 
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urban areas. This issue can be potentially solved by including a detailed land cover data with an 

appropriate classification for each station which is usually difficult to achieve on a large scale 

such as in our study. 

Having unbalanced spatial-temporal data made the modelling more complex than other 

studies which focused on smaller areas with well-balanced data and with similar instruments in 

measuring PM2.5 values. However, by tuning the parameters in the model we were able to achieve 

acceptable results for most parts of our study area. The effect of the chosen independent variables 

in estimating PM2.5 differs across the study area. We analysed the spatial potential relationships 

of the independent variables in estimating PM2.5 by calculating features importance in four parts 

of Europe. North-West (latitude > 50 and longitude < 10), North-East (latitude > 50 and longitude 

> 10), South-West (latitude < 50 and longitude < 10) and South-East (latitude < 50 and longitude > 

10). AOD and PBLH had the most feature importance in all parts of Europe with an average of 

10.4% and 14.1% respectively. WS and temperature had more effect in estimating PM2.5 in the 

south of Europe compared to the north. Rh had more importance in estimating PM2.5 in the 

western part of Europe compared to the Eastern part. 

Table 3. Shows the effects of AOD and the most important meteorological variables on PM2.5 

estimates. We tried to train multiple models based on the area. However, this approach did not 

improve the overall performance over the whole study area. 

Table 3. The effects (%) of AOD and the most important meteorological variables on PM2.5 

estimations in the four chosen parts of our study area. 

Independent variable North-West North-East South-West South-East 

AOD 13.25 8.81 10.43 9.11 

BLH 15.89 15.22 14.98 10.41 

T2m 8.62 6.25 10.13 10.71 

Rh 6.41 3.99 5.82 4.71 

E 3.58 5.99 3.44 7.96 

WS 5.18 4.25 7.32 5.82 

TCWV 4.469 3.63 4.55 4.07 

6. Conclusion 

In this study we developed a spatio-temporal machine learning model to estimate daily 

PM2.5 levels for the years 2018–2020 with 1 km spatial resolution over Europe using open data 

from multiple sources like remote sensing satellite-based products, meteorological reanalysis 

datasets, and other land variables. 
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The developed model was used to estimate PM2.5 values over 5,450,009 land cells (1 km2) 

for a 3-year period (1096 days) totalling more than 5.973 billion estimations with a good sample-

based CV coefficient of 0.69, RMSE of 5 μg/m3, and MAE of 3.3 μg/m3. 

We calculated the yearly average of PM2.5 levels and we found that PM2.5 values have 

dropped in almost all parts of Europe during the study period.  

The full coverage dataset of PM2.5 that we produced can be used to investigate air quality 

over Europe with higher spatial resolution compared to the available products which may 

provide better understanding in time series analysis in this field. 
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5.1.4.  PM2.5 Estimation in the Czech Republic using Extremely Randomized Trees: A 

Comprehensive Data Analysis 

 

Abstract 

The accuracy of artificial intelligence techniques in estimating air quality is contingent upon a 

multitude of influencing factors. Unlike our previous study that examined PM2.5 over whole 

Europe using unbalanced spatial-temporal data, the focus of this study was on estimating PM2.5 

specifically over the Czech Republic using more balanced dataset to train and evaluate the model. 

Moreover, the spatial autocorrelation between PM2.5 measurements was taken into consideration 

while building the model. The feature importance while developing the Extra Trees model 

revealed that spatial autocorrelation had greater significance in comparison to commonly used 

inputs such as elevation and NDVI. We found that R2 of the 10-CV for the new model was 16% 

higher than the previous one. Where R2 reached 0.85 with RMSE=5.42 μg/m3, MAE=3.41 μg/m3, 

and bias=-0.03 μg/m3. The developed spatiotemporal model was employed to generate 

comprehensive daily maps covering the entire study area throughout the 2018–2020 years. The 

temporal analysis showed that the levels of PM2.5 exceeded recommended limits during the year 

2018 in many regions. The eastern part of the country suffered from the highest concentrations 

especially over Zlín and Moravian-Silesian Regions. Air quality improved during the next two 

years in all regions reaching promising levels in 2020. The generated dataset will be available for 

other future air quality studies. 

 

Keywords: Air quality; PM2.5; Artificial intelligence; Spatial autocorrelation; Czech Republic 

 

1. Introduction 

Atmospheric Particulate Matter (PM) with a diameter smaller than or equal to 2.5 microns (PM2.5) is small 

enough to be inhaled deeply in the lungs and are able to reach the bloodstream and reduce the immune 

system's capacities [1]. The exposure of high PM2.5 levels could cause serious health problems especially in 

densely populated areas that produce enormous amounts of pollution into the atmosphere due to increased 

combustion sources and human activities [2]. PM has an effect on mortality even at concentrations that are 

in compliance with the European annual regulation [3]. In Europe, around 300,000 premature deaths are 

caused by PM annually and more than 330 billion Euros of economic cost, that encouraged the Directive 

2008/50/EC to limit the yearly average of PM2.5 to 20 μg/m3 since the first of January 2020 [4]. 
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In this study, we focused on the Czech Republic (CZ). Based on previous studies, CZ suffered from low air 

quality in some regions throughout last decades. The estimated additional social costs resulting from the 

poor air quality in Ostrava city for children aged 0-15 amounted to approximately 20 million Euros per 

year [5]. In 2012 winter, the mean value of PM2.5 over Ostrava was 159 μg/which caused a smog episode [6]. 

When studying causes of air pollution in Teplice within the framework of the Teplice Program, initiated 

around 1970, researchers found that around 70% of PM2.5 fine particles came from local heating sources that 

used brown coal with a high SO2 content [7]. As a result of this discovery, the Czech government supported 

a transition from coal to natural gas for local heating in mining districts in 1994 [7]. The northeastern part 

of CZ that shares borders with Poland, which is highly polluted due to its long history of coal mining, 

heavy industry, traffic infrastructure and the dense population [8]. In 2018, around 1.2% of the CZ's total 

area, which is home to roughly 6.1% of the population, exceeded 25 μg/m3 [9]. Approximately 20% of 

households in CZ use individual heating systems that burn solid fuels [10]. During 2013 winter in the 

residential district of Mladá Boleslav, wood burning was found to be the primary source of PM10 mass, with 

coal combustion following as the second most significant source [11]. Coal remains a key energy source in 

CZ, accounting for one-third of the country's total energy supply in 2019 [12]. Coal also accounted for 46% 

of the country's electricity generation and more than 25% of residential heating [12]. The Czech government 

is currently exploring strategies for removing coal from its energy mix, including potential timelines for 

this transition. To support this effort, the government established a Coal Commission in 2019, which 

presented its recommendations in December 2020. The Commission advised that coal should be phased 

out no later than 2038 [12]. The data from April 2018 to March 2019 collected in the Moravian-Silesian 

Region has verified that during the winter season, the inflow of PM cross-border pollution from Poland is 

a key factor contributing to air pollution levels [13]. 

In recent decades, numerous studies have utilized the capabilities of artificial intelligence (AI) in estimating 

PM2.5 concentrations. These studies have focused on developing various types of models to increase the 

limited spatial coverage that is provided by PM2.5 ground monitors. Covering more auxiliary data as inputs 

helped to improve the performance of the models when compared to the typical interpolation methods 

which rely solely on the observations from the monitors [14]. The auxiliary inputs for the models usually 

include a combination of satellite data, meteorological modeled data, topography, and land cover data. 

Satellite-based Aerosol Optical Depth (AOD) is a valuable indicator of aerosol levels in the Earth's 

atmosphere and since PM2.5 is a type of aerosol, there is generally a positive correlation that made AOD a 

crucial factor in predicting PM2.5 levels [15,16]. Meteorological data such as the planetary boundary layer 

height (PBLH) that is the vertical extent of the lowest part of the Earth’s atmosphere, Relative Humidity 

(RH) which represents the total amount of water vapor that exists in the atmosphere relative to the 

maximum amount water vapor that air can hold at particular temperature, the Total Column Water Vapor 

(TCWV) that is the measurement of the total amount of water vapor present in the vertical column of the 

Earth’s atmosphere, Wind Speed (WS), Temperature (T), Total Precipitation (TP), and Evaporation (E) have 

shown that significance varies depending on the region when PM2.5 is estimated [14,17,18]. Moreover, a few 

studies considered the Spatial Autocorrelation (SA) of PM2.5 when developing predictive models. Inspired 
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by the first law of geography which proposes that all features present on a geographic surface have a 

connection with each other, and that geographic entities have a stronger association with nearby entities as 

compared to those that are located far away [19].  In a study spanning from 1999 to 2016, the yearly average 

PM2.5 levels in Chinese cities exhibited a typical autocorrelation [20]. In another study, including SA 

improved the performance of the Random Forest (RF) model and decreased the Root Mean Square Error 

(RMSE) by ~18% when estimating PM2.5 over Sichuan Basin in 2019 [21]. Adding the spatial lag variable 

(SLV) as a virtual input in the neural network model for estimating the yearly PM2.5 concentrations 

increased the coefficient of determination (R2) by ~9% [22]. 

In this study, we aimed to estimate the concentrations of PM2.5 over the CZ during the years 2018, 2019, and 

2020. CZ is a landlocked country that covers an area of 78870 square kilometers located in central Europe 

bordering Germany, Poland, Slovakia, and Austria. 

2. Materials and methods 

2.1. Dependent variable and primary independent variables 

Daily PM2.5 concentrations for 2018, 2019, and 2020 were collected from the Czech Hydrometeorological 

Institute (CHMI). The total number of stations and observations after removing the outlier values were 54 

and 54,495 respectively. The number of observations per year is 18330 in 2018, 18022 in 2019, and 18144 in 

2020. 

 
Fig 1. Study area with ground stations. The red dots represent the stations that were used to test the model and the 

green  dots represent the stations that were used to train the model. 

We explored the following data as primary inputs in our study, AOD data over CZ was collected 

from the Geo-Harmonized Atmospheric Dataset for Aerosols (GHADA) which is a full coverage 

dataset over Europe with 1 km spatial resolution that was built based on the MCD19A2 MODIS 

product [23] and modelled AOD from Copernicus Atmosphere Monitoring Service (CAMS) [24]. 

This dataset showed good results when validated with NASA’s Aerosol Robotic Network 

(AERONET) observations [25]. Meteorological data like PBLH, WS calculated based on the u and 
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v wind components, temperature at 2m (T2m), TP, E, TCWV, and RH were collected from the 

European Centre for Medium-Range Weather Forecasts ERA5 climate reanalysis [26], and then 

reprojected to the grid using the bilinear interpolation; monthly NDVI from the MODIS 

MOD13A3 product [27]; the percentage of artificial surfaces and air pollution resources for each 

1km2 cell were calculated from the CORINE Land Cover (CLC) of 2018 which was built based on 

ortho-rectified satellite images with a spatial resolution ranging from 5-60 m, and were 

aggregated to 100 m; Open Street Map (OSM) data was processed to calculate the total road 

lengths (RL) within each cell of the grid; elevation (H) was extracted from the Japan Aerospace 

Exploration Agency (JAXA) digital surface model [28], and population data was estimated from 

the monthly Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime lights of 2019 [29]. The 

linear analysis between the primary inputs and PM2.5 showed that PBLH and T2m were the most 

negatively correlated variables to PM2.5 with Pearson correlation of -0.25 and -0.22 respectively. 

NDVI, TCWV, WS, RH, H, and TP also had negative correlations with PM2.5. Whereas,  E, AOD, 

NL, and RL had positive correlations with PM2.5. The following table shows the primary data that 

were used in our study. All primary data was reprojected to the European Terrestrial Reference 

System 1989 (EPSG:3035) with a grid of 1 km2 that covers the study area using bilinear 

interpolation for meteorological data and the cubic convolution for the elevation model. 

Table 1. The primary inputs that were explored in this study. 

Name Variable Unit 
Spatial 

resolution 
Source 

Aerosol optical depth AOD - 1 km GHADA 

Meteorological 

Planetary 

boundary layer 

height 

PBLH m 

0.1˚×0.1˚ ERA5-Land 

Wind speed WS m/s 

Temperature at 2m T2m K 

Total precipitation TP mm 

Evaporation E mm 

Total column 

water vapor 
TCWV Kg/m2 

Relative humidity RH % 0.25˚×0.25˚ ERA5 

Land cover 

Normalized 

Difference 

Vegetation Index 

NDVI - 1 km 
MODIS 

MOD13A3 

CORINE Land 

Cover 
CLC - 100 m Corine LC 2018 

Road length RL m ~10 m Open street maps 

Topography H m ~30 m JAXA 

Population NL nW/cm2/sr 500 m VIIRS 
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2.2. Model development 

A machine learning algorithm was used  with feature engineering techniques that were applied 

to train the PM2.5 predictive model.  

We used the Extra Trees (ET) algorithm which is an ensemble learning method that combines the 

predictions of several decision trees to make the final prediction [30]. It is an extension of the 

widely used RF algorithm where in both, the final prediction is the majority of predictions in 

classification problems and the arithmetic average in regression problems. ET reduces overfitting 

by introducing additional randomness during the construction of the trees and it uses the entire 

dataset while training without performing any pruning which decreases the required time for 

training compared to the RF that applies pruning techniques. A deeper explanation of this 

algorithm was provided in our previous work [25,31]. 

 

2.3. Feature engineering and model training 

The temporal inputs were represented by the radian day and the year. The radian day will help 

the model to understand the cyclic nature of time and enables it to capture the seasonal patterns 

in the data. Whereas, adding the year will capture long-term trends that occur over the years of 

the study period. The spatial inputs were represented by longitude, latitude, and elevation. 

Adding the spatial inputs will allow the model to capture the inherent spatial heterogeneity in 

the data. In addition to the mentioned inputs, SA of the dependent variable was calculated based 

on the training set. We used the Local Moran Index (LMI) that was based on the foundation of 

the Moran’s I statistic [32]. LMI is a spatial autocorrelation statistic used in geography and other 

disciplines to identify local clusters or spatial patterns of similar or dissimilar values in a dataset 

[33]. Positive values for LMI indicate that the observation at the station is a part of a cluster of 

similar observations from surrounding stations and vice versa, the magnitude of the LMI value 

represents the strength of SA [34]. For each day of the study period, LMI was calculated for each 

station considering the closest three neighboring stations using the K-nearest neighbors (KNN) 

weight matrix with k=3. 

𝐿𝑀𝐼𝑖 =  
𝑧𝑖−�̅�

𝜎2  ∑ [𝑤𝑖𝑗(𝑧𝑗 − 𝑧̅)]𝑛
𝑗=1,𝑖≠𝑗   (1) 

Where, Zi is the value of the observation at the location i; 𝑧̅ is the average value of z with the 

sample number of n; zj is the value of the observation at all other stations where i≠j; σ2 is the 

variance of the observation z; and wij is the weight matrix for the locations i and j. 

The whole dataset was split into a training set (80% of the dataset) and a test set (20% of the 

dataset), Fig. 1 represents the distribution of the stations. LMI was calculated based on the 

training set only to assure that the test set remains unseen for the model. The feature importance 
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for each input was calculated and based on that some features were removed to generalize the 

model and to reduce complexity. CLC, OSM, and population had low importance because these 

inputs are not real time data. Fig. 2 shows feature importance of the primary inputs in the training 

set. 

 

 

Fig 2.  Feature importance calculated based on the training data. 

The widely used grid search technique with 10-fold Cross Validation (10-CV) was used for 

hyperparameters tuning. In this process, the training data was split into 10 equal-sized folds, 

where each fold was used as a validation set while training the model on the remaining 9 folds. 

We employed R2, the RMSE, and the Mean Squared Error (MAE) as evaluation matrices. R2 

measures the proportion of variance in PM2.5 that can be explained by the model. RMSE quantifies 

the average difference between the predicted and observed PM2.5 values. MAE measures the 

average absolute difference between the predicted and observed PM2.5 values. Utilizing these 

three metrices together is commonly used in regression problems to provide a comprehensive 

evaluation of the model. The maximum depth of the trees, the minimum number of samples 

required to split an internal node and the minimum number of samples required at a leaf node 

were the main parameters to fine-tune the model. While applying the 10-CV on the training data, 

we tested how the performance will drop when excluding some inputs. We found that NDVI did 

not noticeably affect the performance of the model and it was excluded as well. 

2.4. Model validation 

This section was dedicated to the validation process to assess the reliability and accuracy of our 

findings. 
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2.4.1. Validation on the test set 

We tested the model on the test set that was taken from the stations in unseen locations for the 

model. This validation showed the model ability to predict values in new locations that were not 

used to generate the LMI. The model showed good results when estimating PM2.5 in the new 

locations with R2 = 0.86, RMSE=5.61 μg/m3, and MAE=3.37 μg/m3. 

2.4.2. Validation on all data 

It is a common approach in PM2.5 studies to apply 10-CV of the whole dataset [35–37]. In order to 

do this validation, we generated LMI based on the data from all stations, then we applied a 

sample based 10-CV. The model showed similar results compared to the validation on the test set 

with R2=0.85, RMSE=5.42 μg/m3, MAE=3.41 μg/m3 and, bias=-0.03 μg/m3. Fig. 3 shows the results 

of the sample based 10-CV.  

A negative bias indicates that, on average, the model tends to underpredict PM2.5 values. 

However, a value of -0.03 appears to align reasonably well with the characteristics of the data 

where the values range between 2 and 200 with an average of 17 μg/m3. 

R2 values indicate that the model explains around 86% and 85% of the variance in PM2.5 values, 

which suggests that the model is performing well and generalizing reasonably to unseen data. 

 

Fig 3. Density scatter plot for the 10-CV applied on all data. 

3. Results 

3.1. Model deployment 

We utilized the model to generate daily full coverage PM2.5 maps over CZ. To validate the 

deployment of the model we extracted values of the estimated PM2.5 at station locations and 



64 
 

compared their temporal profiles with observed values. Fig. 4 represents the temporal profile for 

three stations with high, normal, and low PM2.5 levels. 
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Fig 4. PM2.5 temporal profile over three stations: Kamenny Ujezd station, Praha 2-Legerova station, and Ostrava-

Zabreh station. 

The results in all stations show nearly perfect overlap, which confirms not only high general 

accuracy of the model but also temporal clarity of the predictions. They also show slight bias of 

the model in the peaks’ predictions, small underestimation in high values and slight 

underestimation in down-peaks.. It can be noticed that PM2.5 values are higher during winter 

compared to other seasons in the three chosen stations. 

3.2. Temporal and regional analysis 

We calculated the average PM2.5 levels for each year during the study period. In Fig. 5 we show the yearly 

average levels. PM2.5 decreased gradually throughout the study period. The eastern part of CZ had the 

highest PM2.5 levels. The Moravia-Silesian Region was the most polluted region with an average PM2.5 level 

of 25.2 µg/m3 in 2018, 18 µg/m3 in 2019 and 15.8 µg/m3 in 2020. Karlovy Vary Region had the lowest PM2.5 

values with 16.4 µg/m3 in 2018, 11.1 µg/m3 in 2019, and 10.2 µg/m3 in 2020. Besides, the Moravia-Silesian 

Region, PM2.5 values exceeded 20 µg/m3 in Zlín and Olomouc Regions with average values of 22.7 µg/m3 

and 22.2 µg/m3 respectively during 2018. Good PM2.5 levels <= 12 µg/m3 were found in six regions in 2020, 

these regions are Plzeň, Karlovy Vary, Southern Bohemia, Vysočina, Central Bohemia, and Liberec. 
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Fig 5. The average PM2.5 levels over the Czech Republic in the years 2018, 2019, and 2020. 
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3.3. Seasonal analysis 

In this analysis, we delved into the seasonal patterns of PM2.5 concentrations of 2018 ̶ 2020. By 

examining the fluctuations across different seasons and analyzing the variations in PM2.5 levels 

over time, we aimed to gain valuable insights into the underlying factors influencing pollution 

levels during specific seasons of the study period. Winter was represented by January, February, 

and December; summer encompasses June, July, and August; spring spans from March through 

May; and autumn extends from September to November. We calculated the average PM2.5 levels 

for each region in CZ in the different seasons. Fig. 6 shows the results we conducted. 

The average PM2.5 levels in summer are relatively consistent for each year across the entire 

country. PM2.5 concentrations exhibit significant variations during winter seasons. In winter, the 

average PM2.5 was the highest in all regions except two in 2018 where Prague had the highest 

values during autumn and Karlovy Vary had the highest levels during spring. The eastern part 

of CZ was highly polluted during 2018 winter with average values of 30 μg/m3 over Olomouc 

Region,  31 μg/m3 over Zlín Region, and 35 μg/m3 over the Moravian-Silesian Region. Pardubice, 

Karlovy Vary, and South Moravian Regions also had average concentrations higher than 25 μg/m3 

during this season. In 2019, only the eastern part of CZ had an average concentration higher than 

25 μg/m3.  Air quality improved throughout the study period; the Moravian-Silesian Region 

recorded the highest average value of 20 μg/m3 in 2020 winter. 

   

Fig 6. PM2.5 seasonal analysis over the Czech Republic in 2018, 2019, and 2020. 

4. Discussion 

In this study, we used a tree-based machine learning algorithm called the Extra Trees to estimate 

PM2.5 over CZ with a high spatial resolution of 1 km during 2018 ̶ 2020. In contrast to our prior 



68 
 

study, which concentrated on the entire Europe [31], we discovered that incorporating more 

balanced data in terms of spatial and temporal distribution enhances the overall accuracy of the 

model and simplifies the modeling approach. The R2 obtained from the 10-fold cross-validation 

of the model developed specifically for CZ was 0.85, whereas the corresponding R2 for the model 

developed for the entire European region was 0.69 [31]. Dividing the data according to stations, 

ensured that the model can accurately forecast the absent PM2.5 values in new locations, achieving 

a high R2 of 0.86 and a low RMSE of 5.61 μg/m3. 

The spatial autocorrelation we calculated based on the Local Moran Index had higher feature 

importance than other spatial independent variables like elevation. Calculating the Local Moran 

Index can give different results due to factors like the K value and the data's distribution, which 

are important to consider when using it in machine learning models. It should be noted that the 

spatial autocorrelation must be generated from the training data only without including the test 

data, so the test set remains totally unseen to the model to evaluate its performance in an unbiased 

way. 

Confirming the findings from our earlier study, the independent variables which exhibit a high 

degree of invariance over the duration of the study, like land cover data or the length of the roads 

in every 1 km of the grid, will have a lower importance on the model. Unlike other studies that 

included all input features regardless to their importance in generating the model [38], we 

showed that excluding these inputs will better generalize the model leading to improved 

estimations. We believe that the inclusion of temporally varying data will enhance the training 

process of the model, resulting in increased accuracy. For instance, including road traffic intensity 

yields more refined estimations compared to relying solely on static factors such as the length of 

roads. For each year during the study period, the yearly averages were computed by taking a 

simple average of all the available values per pixel.  

The results showed that PM2.5 levels were above the recommended limits in many regions of CZ 

in 2018. The eastern part suffered from the highest values especially during the winter season 

where the concentrations reached unhealthy levels with values higher than 30 μg/m3. The part 

located on the Czech-Polish border is characterized as a significant industrial zone with abundant 

coal deposits and a long-standing presence of factories involved in power generation and 

manufacturing of coal specifically used for steel-making purposes. PM2.5 levels found to exceed 

the limits over Polish cities in winter seasons [39], airborne transport facilitate the inflow of 

particulate matter from Poland across borders, making it a crucial factor in contributing to 

elevated air pollution levels in the eastern part of CZ. The average concentrations of PM2.5 during 

summer season were almost consistent for all regions each year and lower than average 

concentrations during winter, which indicates high effects of heating on PM2.5 levels of especially 
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over the regions that count on burning coal as the main heating source. The measures that were 

taken by the government to reduce the usage of coal played an important role in improving air 

quality in recent years. Moreover, the COVID-19 lockdown had a positive effect on PM2.5 levels 

in the year 2020 due to decreased industrial activities and reduced transportation emissions [31]. 

The concentrations of PM2.5 in 2020 were less than 20 μg/m3 in all regions except the Moravian-

Silesian Region during winter months. The yearly average PM2.5 concentrations calculated over 

CZ during 2018 ̶ 2020 in this study align well with our previous findings [31], this serves as 

validation for the reliability of the dataset we generated using open PM2.5 data for conducting air 

quality studies throughout Europe. Even though the western part of the country had low 

concentrations of PM2.5, we recommend augmenting the number of ground monitors in this part 

to establish a more extensive network that can be utilized for subsequent analysis. We strongly 

encourage the ongoing reduction of coal usage for local heating, acknowledging the progress that 

has already been made in this regard. Besides using green energy especially in the eastern part of 

the country where the highest concentrations were found. 

 

5. Conclusion 

In this study, we estimated daily PM2.5 concentration over the Czech Republic with a high spatial 

resolution of 1 km throughout 2018-2020. A comprehensive data analysis was applied to tune and 

generalize the spatiotemporal PM2.5 predictive model. The model achieved high accuracy in 

estimating missing PM2.5 values with R2 of 0.85, RMSE of 5.42 μg/m3, MAE of 3.41 μg/m3, and bias 

of -0.03 μg/m3. Leveraging machine learning techniques and incorporating auxiliary data in 

model construction can enhance our comprehension of both the temporal and spatial fluctuations 

in PM2.5 concentrations. Based on our findings, the eastern part of the country suffered from the 

highest concentrations especially over Zlín and Moravian-Silesian Regions where the values for 

2018 winter, reached risky average concentrations of 30 μg/m3 and 35 μg/m3 respectively. In 

contrast to 2018, PM2.5 levels dropped over the whole Czech Republic during the next two years 

reaching acceptable levels that are less than 20 μg/m3 in almost all regions during the year 2020. 

The COVID-19 lockdown played a role in improving air quality due to reduced human activities. 

The generated dataset can be used to obtain a better understanding of the regional and seasonal 

PM2.5 concentrations throughout the study period. 
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5.2. Accessing published datasets 

Three datasets were published based on our research. These datasets were made publicly 

available so other researchers may utilize them in their studies. 

5.2.1. Geo-Harmonized Atmospheric Dataset for AOD over Europe 

This dataset contains daily estimations of AOD550 over Europe with 1 km spatial resolution. It was 

built using machine learning where the MODIS MCD19A2 product with 1km spatial resolution 

was used as the target variable and modelled AOD data from Copernicus Atmosphere Monitoring 

Service (CAMS) with 80km spatial resolution and auxiliary data were used as independent 

variables. 

Three stages were applied to generate this dataset: first, we applied a simple average for all 

available pixels that passed the quality assurance criteria (QACloudMask = Clear, and QAAdjacencyMask = 

Clear) of the MCD19A2 product. Second, we created an Extra-trees machine learning model for 

every year between 2018-2020 to predict the missing AOD values in the MCD19A2 using 

modelled AOD with enhanced spatiotemporal information. Finally, we filled MODIS MCD19A2 

gaps with the predicted AOD by merging the outputs from stages one and two. Daily AOD data 

for each year between 2018 – 2020 during the MODIS satellite overpassing (10:30 a.m. – 1:30 p.m.) 

are included in this dataset. 

The AOD dataset was validated using AERONET observations and showed a good result with 

~84% of the samples falling within the expected error envelopes defined for AOD products. 

Data can be accessed: 10.5281/zenodo.5675427. 

 

5.2.2. Geo-Harmonized PM2.5 Dataset over Europe 

A space-time extremely randomized trees model was used to estimate daily (between 10 a.m. and 

2 p.m.) PM2.5 concentrations with 1 km spatial resolution for a three-year period 2018–2020 over 

Europe. Satellite remote sensing, meteorological data, and land variables were used as the 

independent variables, PM2.5 ground-observations were used as the dependent variable while 

building the model. 

Data can be accessed: 10.5281/zenodo.6798975. 
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6. Discussion 

The accuracy of artificial intelligence techniques in estimating air quality is contingent upon a 

multitude of influencing factors. This research examined AOD and PM2.5 over the whole of 

Europe. The models that were developed to estimate AOD reached high R2 ranging between 93-

95%. These models were utilized to generate daily estimations to fill the gaps in the MCD19A2 

MODIS product resulting a full coverage dataset for AOD with 1 km spatial resolution over 

Europe. This dataset was validated with AERONET observations and showed good results which 

made it a reliable source for AOD that can be utilized in other air quality studies. In the second 

part of this research, we used the full coverage AOD dataset, various auxiliary data, and 

unbalanced spatial-temporal PM2.5 dataset to construct a machine learning model aimed at 

predicting PM2.5 concentrations across Europe. The intricacies associated with handling the 

imbalanced dataset introduced complexities into the modeling procedure. Nevertheless, the 

model demonstrated commendable performance, particularly given the expansive geographical 

scope of the study. The results from this part of the study have raised questions that need more 

investigation. 

• Can the utilization of openly available unbalanced PM2.5 data be considered a dependable 

approach for obtaining results? 

• If a model is developed specifically for a smaller region within Europe, can the results be 

deemed compatible when compared to a model designed for the entire continent? 

• To enhance validation, is there room for further investigation into alternative methods, 

particularly those involving entirely unseen data? 

• How significant is the influence of spatial autocorrelation (SA) on the outcomes of the 

study? 

• Was the deployment of the model executed effectively and in a manner conducive to 

reliable results? 

In addressing these inquiries, the author conducted a comparable PM2.5 analysis within a more 

confined region, utilizing a well-balanced PM2.5 dataset. Additionally, considerations were given 

to spatial autocorrelation and diverse validation methods. Furthermore, temporal profiles were 

generated to assess the deployment of the models. 

A machine learning model was developed specifically for the Czech Republic. Daily PM2.5 

measurements for 2018, 2019, and 2020 were collected from the Czech Hydrometeorological 

Institute (CHMI). Moreover, the spatial autocorrelation between the ground-based station was 

taken into consideration while building the model. Different validation methods were used to 

evaluate the performance of the model, the test set was generated based on totally unseen location 
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for the model. The model reached R2 = 0.86 while predicting values in new locations. Finally, the 

model deployment used in this research was examined and showed nearly perfect overlap while 

creating the temporal profiles between the estimated and observed PM2.5 values. We compared 

the results obtained for the Cech Republic from both models and they were highly compatible. 

 

7. Results 

In this section, the results of this research with the goals mentioned in section 3 are presented. 

• Acquire a deeper understanding of MODIS algorithms: 

In the first publication, the performance of three MODIS algorithms over the Czech Republic was 

analyzed. During this work the author got familiar with the data model and structure of MODIS 

and how to validate the data with AERONET observations. The products that were tested had a 

low spatial resolution of 10 km and they suffered from a great number of gaps, these findings 

prompted the author to explore alternative options. 

Another MODIS product called MCD19A2 that was obtained separately from both the Terra and 

Aqua satellites was used in the second publication. MCD19A2  has a high spatial resolution of 1 

km when compared to the previous products which were tested. 

• Increase the spatial coverage of MODIS AOD products: 

To increase the spatial coverage of AOD obtained from the MCD19A2 product, data from both 

the Terra and Aqua satellites were merged and an image processing workflow was applied to 

extract only the retrievals with high quality assurance utilizing the QA sub dataset that is 

included in the MCD19A2 product.  Merging the data of both satellites increased the spatial 

coverage. However, many gaps still existed. To overcome this issue, various machine learning 

algorithms were explored starting with the simple linear algorithm till more complex ones. A 

machine learning approach was developed based on an ensemble method called the Extra Trees 

to estimate AOD values and fill the gaps in the MCD19A2 MODIS product. Modelled AOD and 

auxiliary data were used as inputs to the AOD predictive model. Different statistical methods 

were applied to deal with the large datasets of AOD over Europe. 

• Establish the first AOD dataset with full coverage of 1 km spatial resolution over Europe 

: 

A Geo-Harmonized Atmospheric Dataset for AOD was generated with a full coverage of 1 km 

spatial resolution over Europe. This dataset was validated with AERONET observations, and 

good results were achieved, making this dataset the first verified dataset with full coverage of 1 

km spatial resolution over Europe. 

• Analyze the effects of the COVID-19 lockdowns on AOD levels over Europe: 
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After generating the daily AOD maps over Europe, the effects of the COVID-19 lockdowns on 

AOD levels were analyzed taking into consideration the relationship between AOD and other 

meteorological variables. 

• Establish the first PM2.5 dataset with full coverage of 1 km spatial resolution over Europe: 

In the third publication, the full coverage AOD dataset and various inputs with open PM2.5 data 

collected by ground-based monitors were utilized to estimate PM2.5 over Europe. The main issue 

was dealing with unbalanced spatial-temporal data of PM2.5 over the study area. Many statistical 

methods were applied to overcome the limitations this data suffered. The outcome of the third 

publications was the first full coverage PM2.5 dataset with 1 km spatial resolution over the whole 

of Europe. 

• Analyze the effects of the COVID-19 lockdowns on PM2.5 levels over Europe: 

In the third publication, the effects of the COVID-19 lockdowns on PM2.5 concentrations over the 

study area were analyzed. 

• Include the spatial autocorrelation of the ground based PM2.5 observations while 

developing the machine learning model: 

In the fourth paper, the spatial autocorrelation of the ground based PM2.5 observations was 

calculated based on the Local Moran Index and included while developing the machine learning 

model to estimate PM2.5 over the Czech Republic.  

• Compare the results of PM2.5 obtained for whole Europe with the results from the model 

developed for the Czech Republic: 

The final part in this research was to compare the results obtained for the whole Europe using 

open unbalanced PM2.5 data with a smaller landlocked area like the Czech Republic that has more 

spatial-temporal balanced data. Higher overall accuracy of the model developed for the Czech 

Republic was achieved. However, the results obtained for the Czech Republic based on the last 

model were compatible with the results obtained from the model designed for the whole Europe. 

8. Conclusion 

In this research, the author aimed to generate comprehensive and high-resolution air quality 

datasets to overcome the limited spatial coverage provided by ground-based monitors. We tested 

various machine learning methods, starting with basic ones like linear models and progressively 

advanced to more intricate techniques including ensemble methods. We found that by harnessing 

satellite remote sensing data, meteorological variables, auxiliary information in conjunction with 

machine learning techniques has allowed us to successfully transcend the limitations inherent 

within each individual dataset. We generated the first full coverage datasets with fine spatial 
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resolution of 1 km for both AOD and PM2.5 over the entire Europe. This has enabled a more 

detailed understanding of air pollution dynamics obviating the necessity for additional ground 

stations and thereby yielding cost reduction. By employing a combination of GIS techniques and 

advanced statistical analyses, the study has provided valuable insights into air pollution patterns 

and trends across the whole of Europe. We were able to identify pollution hotspots, this 

information is critical for policymaking to reduce the harmful impacts of poor air quality on 

public health and the environment. The analysis of the generated datasets showed seasonal and 

temporal variations in air pollution concentrations. These insights can help decision makers 

understand the underlying factors that affect air quality in order to implement appropriate 

strategies for air pollution management. The validation techniques we followed ensured the 

reliability of the machine learning model which we utilized to generate the datasets. This will 

increase confidence and strengthen the potential for future use in environmental studies. Our 

work conclusively established the adequacy of open data and open-source software in creating 

these air quality datasets. We also actively supported the open data policy, promoting 

transparency and collaboration. 

9. Future work 

The methodology we applied while developing the machine learning models can be applied in 

similar air quality studies to estimate other pollutants such as O3, NO2, SO2, CO. Generating a full 

coverage AOD datasets with the availability of ground monitors are the main factors to apply our 

methodology. Different auxiliary data can be tested and as we found in this research, including 

dynamic variables that vary temporally throughout the study period will enrich the machine 

learning models and improve their accuracy. Delving deeper into spatial autocorrelation when 

studying PM2.5 at large scales, exploring additional factors, and employing advanced spatial 

analysis techniques could yield richer insights into the distribution dynamics. 
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