
Aims 
‣ Process: physical adsorption on solid adsorbents. 
‣ Application: PCC in fossil fuel-fired emission sources. 

WHY? 
Methodology 
1. In-depth literature review: process configuration & application. 
2. Mathematical modelling: adsorption phenomena & 4-step VSA. 
3. Process design: VSA PCC process downstream from the CHP. 
4. Economic assessment: individual PCC chain processes.

Introduction

‣Accomplished objectives 
(1) Development of a simplified mathematical model of adsorption phenomena, with subsequent analysis of the numerical approach and balance equations 

supported by experimental data to verify model robustness and reliability, and its application for process design. 
(2) Development of a complex non-linear dynamic mathematical model of 4-step VSA process, enabling simulation of various scenarios for different process 

parameters and configurations, and its application to experimental and theoretical studies. 
(3) Design of adsorption PCC system integrated into an urban-scale energy system, including general economic assessment.

Conclusions & Outlook
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OBJECTIVE. This thesis investigated the viability of low-temperature adsorption process for post-combustion CO2 capture (PCC) using process simulation. First, a 
literature review was made to identify process configuration and potential applications. Then, a simplified MATLAB-based model was created for breakthrough 
experiments prediction and initial process design, and later modified to assess the performance and economy of a 4-step vacuum-swing adsorption (VSA) with zeolite 13X 
for district-scale cogeneration and heat plant (CHP). Consequently, a flue gas cleaning process downstream from the CHP was proposed and economically evaluated.
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‣ Findings: process: basic 4-step VSA, adsorbent: zeolite 13X, 
approach: theoretical via mathematical modelling (MATLAB). 

‣ Research gaps: adsorption for PCC in a small-scale power plants 
with CO2-lean emission (e.g. natural gas).

Literature review

Adsorption phenomena modelling
Breakthrough experiments 
‣ Approach: model verification, parameter fitting, sensitivity analysis.

4-step VSA modelling
Mathematical model (non-linear & dynamic, FVM) 
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) VSA 
‣ System size: 5 columns 

in 3 trains (16.8t of 13X) 

‣ Configuration: 360 s per 
cycle, evacuation and 
intermediate pressures 
of 0.081 and 0.061 bara 

‣ Performance: CO2 purity 
and recovery:  
90.4 %, 15.6 %

PCC process design (ready-to-operate)

Economic assessment (PCC process chain)

Core systems 
‣ SCR-deNOX 

‣ two-step dehydration 
❖ 1° condenser 
❖ 2° TSA (zeolite 5A) 

‣ 4-step VSA for PCC 
 
Auxiliary components  
‣ fans  
‣ heat-exchangers 
‣ pumps 

CHP 
‣ 4.3 MW, 9000 m3.h-1, 

6.4 % CO2 (+ NOX, CO) 
Calculations 
‣ MATLAB 
‣ Aspen Plus 
‣ Empirical design
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‣ Results: PCC is the 
most expensive 
process:  70 % of 
the total process 
chain direct 
purchase costs.

∼

‣Outlook: model: experimental validation, VSA steps and gas species addition, process optimiser implementation, and neural network exploration.

Initial VSA process design 
‣ Results: column size:  2 × 1 m (8 columns);  

pressure range: 1 - 0.13 bara; interstitial velocity: 1.9 m.s-1.

(1) smooth transition to renewables is not immediate. 
(2) alternatives to amine-absorption are critically needed.


