
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

FAKULTA BIOMEDICÍNSKÉHO INŽENÝRSTVÍ

Katedra informačních a komunikačních technologií v lékařství

Segmentace ultrazvukových obrazů
aterosklerotických plátů s využitím

neuronových sítí

Segmentation of ultrasound images
containing atherosclerotic plaques using

neural networks

Bakalářská práce

Studijní program:

Studijní obor:
Autor práce:
Vedoucí práce:

Informatika a kybernetika ve zdravotnictví

Biomedicínská informatika
David Pilný
Ing. Michal Reimer

Kladno 2023

I. OSOBNÍ A STUDIJNÍ ÚDAJE

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Název bakalářské práce anglicky:

Pokyny pro vypracování:

Seznam doporučené literatury:

Jméno a příjmení vedoucí(ho) bakalářské práce:

Jméno a příjmení konzultanta(ky) bakalářské práce:

Datum zadání bakalářské práce: 06.01.2023

Platnost zadání bakalářské práce: 18.09.2024

.. ..

doc. Ing. Karel Hána, Ph.D.
podpis vedoucí(ho) katedry

prof. MUDr. Jozef Rosina, Ph.D., MBA
podpis děkana(ky)

Příjmení:

Fakulta:

Garantující katedra:

Studijní program:

Studijní obor:

 Jméno: David Osobní číslo: 499967

Segmentace ultrazvukových obrazů aterosklerotických plátů s využitím neuronových sítí

Segmentation of ultrasound images containing atherosclerotic plaques using neural networks

The aim of the bachelor thesis is the segmentation of ultrasound images of atherosclerotic plaques using neural networks.

As part of your bachelor's thesis, learn about currently used deep learning methods and their use for the segmentation of

medical images. Subsequently, propose a procedure for segmentation of defined objects in provided images of

atherosclerotic plaques. Focus also on the analysis of the provided dataset and suggest possibilities of augmentation of

the images to achieve better results. To verify the functionality of both the correctly chosen architecture and the dataset

augmentation, perform testing using expertly annotated images. Finally, evaluate the accuracy of the segmentation and

possibly suggest options for modifying the model you used in order to increase the accuracy of the segmentation.

[1] [1] Norouzi, A., Rahim, M. S., Altameem, A., Saba, T., Rad, A. E., Rehman, A., & Uddin, M. (2014). Medical image
segmentation methods, algorithms, and applications. IETE Technical Review, 31(3), 199–213.

[2] [2] Wang, R., Lei, T., Cui, R., Zhang, B., Meng, H., & Nandi, A. K. (2022). Medical image segmentation using Deep
Learning: A Survey. IET Image Processing.
[3] Shorten, C., Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J Big Data 6, 60 (2019).

Ing. Michal Reimer

doc. Mgr. Radim Krupička, Ph.D.

Prohlášení

Prohlašuji, že jsem práci s názvem Segmentace ultrazvukových obrazů aterosklerotick-
ých plátů s využitím neuronových sítí vypracoval samostatně a použil k tomu úplný
výčet citací použitých pramenů, které uvádím v seznamu přiloženém k práci. Nemám
závažný důvod proti užití tohoto školního díla ve smyslu §60 Zákona č.121/2000 Sb.,
o právu autorském, o právech souvisejících s právem autorským a o změně některých
zákonů (autorský zákon).

V Kladně 18.5.2023
David Pilný

2

Poděkování

Rád bych poděkoval svojí mamince, díky které jsem mohl strávit celý týden psaním
bakalářské práce v malebné vesničce Žichovice na prahu Šumavy, kde jsem měl klid
a přístup k přírodě pro čerpání můzy, a která mě celý týden krmila všelijakým
výborným jídlem a zásobovala litry a litry cold brew pro lepší soustředění.

Také bych rád poděkoval mé přítelkyni, která je mi obecně velkou oporou a která
se navíc zrovna v týden nejintezivnějšího psaní této práce rozhodla odjet na Ukrajinu
a nerozptylovat mě tak svojí bezmeznou krásou.

Na závěr bych chtěl poděkovat především svému vedoucímu panu Ing. Michalu
Reimerovi za odborné vedení práce a cenné rady, které mi pomohly tento výplod
zkompletovat.

3

Abstrakt

Segmentace ultrazvukových obrazů
aterosklerotických plátů s využitím neuronových sítí

Tato bakalářská práce se zaměřuje na využití konvolučních neuronových sítí pro seg-
mentaci aterosklerotických plátů. Společně s využitím pro autonomní řízení vozidel,
detekci objektů a vyhodnocováním medicínských obrazů, tvoří segmentace snímků
významnou část oboru počítačového vidění. Práce srovnává vliv na výkon jed-
notlivých architektur a trénovacích parametrů a zkoumá, jak dobře jsou konvoluční
sítě schopné provádět medicínskou segmentaci.

Přehled současného stavu segmentace postavené na konvolučních sítích, včetně
přehledu relevantní literatury a existujících modelů, je prezentován na začátku této
práce. Následně bylo navrženo 12 modelů, které se lišily strukturou architektury a
zvolenými trénovacími parametry. Tyto modely byly testovány na různých testo-
vacích datasetech (vygenerovaných augumentací původního testovacího datasetu)
pro otestování variability modelu. Dodatečně jsou podrobněji zkoumány také metody
jako augmentace dat nebo dolaďování (fine-tuning).

Výsledky experimentů ukazují, že konvoluční neuronové sítě jsou schopné při
segmentaci aterosklerotických plátů dosáhnout velmi vysoké přesnosti. Nejlépe na-
trénovaný model, aplikující architekturu U-net a trénovaný na augmentovancýh dat-
ech, dosahuje průměrné hodnoty IOU 0,9575 při segmentaci pozadí, 0,8272 při seg-
mentaci plátů, 0,726 při segmentaci průsvitů a 0,8384 při segmentaci artefaktů, na
testovacích datech. Tyto poznatky demonstrují efektivitu použití konvolučních sítí
při segmentačních úlohách a indikují potenciální rozsah praktického využití.

Tato práce celkově poskytuje podrobnou analýzu využití konvolučních sítí pro
segmentaci medicínských obrazů, včetně shrnutí použitých architektur a trénovacích
metod. Výsledky ukazují, jak dobře si konvoluční sítě vedou na této úloze a indikují,
že konvoluční neuronové sítě mohou dále nacházet využití napříč různými sférami.
Zjištěné poznatky navíc dále naznačují možnost aplikace ostatních metod optimal-
izace, které však v této práci nebyly podrobněji zkoumány.

Klíčová slova

U-net, konvoluční sítě, augmentace dat, ateroskleróza, segmentace

4

Abstract

Ultrasound atherosclerotic plaque segmentation
using neural networks

This bachelor thesis explores the use of convolutional neural networks (CNNs) for
atherosclerotic plaque segmentation tasks. With applications in autonomous vehi-
cles, object detection, and medical imaging, image segmentation is a significant area
of computer vision. This thesis compares the performance of various architectures
and training parameters in order to investigate how well CNNs perform medical
segmentation.

An overview of the current state of CNN-based image segmentation, including a
review of pertinent literature and existing models, is presented at the outset of the
thesis. Subsequently, 12 models were designed which slightly differed in architecture
structure and training parameters. These models were then tested on various testing
datasets (generated by augmentation of the original dataset) to examine model’s
variability. Additionally, various training methods like data augmentation and fine-
tuning are investigated.

The experiments’ findings demonstrate that CNNs are very efficient at segmenting
atherosclerotic plaques, achieving high accuracy and performing well on the test set.
The model that performs the best averages with IOU of 0.9575 in the background
segmentation, 0.8272 in the plaque segmentation, 0.726 in the lumen segmentation,
and 0.8384 in the artifacts segmentation on the test sets using a U-Net architec-
ture with data augmentation. These findings show how effective CNNs can be at
performing image segmentation tasks and indicate a wide range of practical uses.

Overall, this thesis offers a thorough analysis of CNNs’ use for medical image
segmentation, including an assessment of various architectures and training meth-
ods. The outcomes show how well CNNs perform for this task and indicate that
they could find widespread use across a variety of sectors and domains. Also, more
methods to further optimize the performance were suggested.

Key words

U-net, convolutional networks, data augmentation, atherosclerosis, segmentation

5

Acronyms

Acronym Meaning
ANN Artificial Neural Network
CNN Convolutional Neural Network
FCN Fully Convolutional Network
VGG Visual Geometry Group
ELU Exponential Linear Unit
NAS Neural Architecture Search
LDL Low-density lipoprotein
API Application Programming Interface
PNG Portable Network Graphics
ReLU Rectified Linear Unit

6

Contents

1 Introduction 12
1.1 Motivation . 12
1.2 What is atherosclerosis? . 13

2 Objectives 14
2.1 Research . 14
2.2 Dataset Analysis . 14
2.3 Data Augmentation . 14
2.4 Network Design . 15
2.5 Results’ Evaluation . 15

3 Theory Behind Neural Networks 16
3.1 Perceptron . 16
3.2 Activation function . 17
3.3 ANN architecture . 18

3.3.1 Dense layers . 18
3.4 Convolution . 18
3.5 Convolutional Neural Networks . 20

3.5.1 Pooling layer . 20
3.5.2 Dropout . 21

4 Current State 22
4.1 History of Medical Segmentation Using CNNs 22
4.2 U-Net and V-Net . 23
4.3 Data Augmentation . 24

5 Methodology 25
5.1 Tech Stack . 25

5.1.1 Python frameworks . 25
5.1.2 Keras . 27
5.1.3 NumPy . 27
5.1.4 OpenCV . 28
5.1.5 scikit-learn . 28
5.1.6 Matplotlib . 29
5.1.7 Editors and Training . 29

5.2 Dataset . 30

7

CONTENTS 8

5.3 Data Preprocessing . 30
5.4 Network Architecture . 33
5.5 Data Augmentation . 33
5.6 Testing . 35

6 Results 36
6.1 Testing dataset with 10 degrees rotation range 37
6.2 Testing dataset with 280 degrees rotation range 39
6.3 Testing dataset with vertical flip . 41
6.4 Testing dataset with image enlargement 43
6.5 Testing dataset with image enlargement and shear mapping 45

7 Discussion 47
7.1 Testing Results Discussion . 47

7.1.1 Testing dataset with 10 degrees rotation range 47
7.1.2 Testing dataset with 280 degrees rotation range 47
7.1.3 Testing dataset with vertical flip 48
7.1.4 Testing dataset with image enlargement 48

7.2 Strengths and Limitations . 48
7.3 Possible methods for further optimization 49

8 Conclusion 50

A Attachments 51
A.1 Source Code . 51
A.2 U-net architectures . 51
A.3 Trained Models . 54
A.4 First Glance Overview . 54
A.5 Image augmentation examples . 57

B References 58

List of Figures

1.1 Normal artery and an artery with plaque buildup, from [5] 13

3.1 Model of node with m weighted inputs, from [9] 17
3.2 ANN with 4 layers, from [11] . 18
3.3 Depiction of the convolution layer, from [15] 19
3.4 Feature extraction with different convolutional kernels 19
3.5 CNN for number classification, from [16] 20
3.6 Neurons with and without dropout, from [19] 21

5.1 Dataset Example . 30
5.2 Loading Dataset . 31
5.3 Expanding dimensions and dataset split 32
5.4 Converting label to "categorical" format 32
5.5 Example of data augmentation arguments 33
5.6 Data generators fitting . 34
5.7 Zipping the image and labels generators 34

6.1 Testing on 10 degrees rotation range - accuracy and IOUs 37
6.2 Testing on 10 degrees rotation range - confusion matrix 38
6.3 Testing on 280 degrees rotation range - accuracy and IOUs 39
6.4 Testing on 280 degrees rotation range - confusion matrix 40
6.5 Testing on vertical flip - accuracy and IOUs 41
6.6 Testing on vertical flip - confusion matrix 42
6.7 Testing on image enlargement - accuracy and IOUs 43
6.8 Testing on image enlargement - confusion matrix 44
6.9 Testing on image enlargement and shear mapping - accuracy and IOUs 45
6.10 Testing on image enlargement and shear mapping - confusion matrix 46

7.1 Gabor filter application . 49

A.2 U-Net with 9 layers . 52
A.3 U-Net with 11 layers . 53
A.5 Original-dataset-like image . 54
A.6 Rotated image testing . 55
A.7 Upside down image . 55
A.8 Image without artifacts - small plaque 56
A.9 Image without artifacts - larger plaque 56

9

LIST OF FIGURES 10

A.10 Image without artifacts - large plaque 57
A.11 Examples of image augmentation, from [46] 57

List of Tables

6.1 Trained models overview . 36
6.2 Testing with 10 degree range rotation augmentation 37
6.3 Testing with 280 degree range rotation augmentation 39
6.4 Testing with vertical flip augmentation 41
6.5 Testing with image enlargement augmentation 43
6.6 Testing dataset with image enlargement and shear mapping 45

11

Chapter 1

Introduction

Convolutional neural networks (CNNs) have revolutionized the field of image recog-
nition, classification and segmentation, especially in the last decade. CNNs have
proven to be a useful tool for a variety of applications, from identifying faces in
photographs to spotting tumors in medical images.

This thesis examines the capabilities and constraints of convolutional neural net-
works for the segmentation of atherosclerosis-related medical images. Specifically, I
will investigate how various training parameters, data augmentation and architec-
tures affect the performance of convolutional neural network, and how these models
can be fine-tuned to improve accuracy.

Along with the empirical analysis, I will also provide a brief overview of the fun-
damental theory and ideas behind CNNs - convolutional layers, pooling layers, and
fully connected layers, as well as more sophisticated methods like transfer learning
and data augmentation, will be explained as the basic building blocks of a CNN.

Overall, this thesis aims to provide a thorough description of methods for training
CNN for specific tasks and analysis of individual models’ performance.

1.1 Motivation

This thesis relates to my previous semestral projects, which were focused on the
theory behind CNNs, designing the first convolutional model and creating a web
interface for the trained model, so a person with a minimal technical background is
able to use the model, too. My motivation for choosing this topic was the desire to
understand, how this interesting technology works and what is the "magic" behind
it. Since I already gained some knowledge while working on my semestral projects,
I decided to continue in my work within the frame of my bachelor thesis and provide
more thorough description of the process.

12

CHAPTER 1. INTRODUCTION 13

1.2 What is atherosclerosis?

A common condition known as atherosclerosis is characterized by the accumulation
of fatty plaques, cholesterol, and other substances on the inner walls of arteries.
Over time, this condition can cause the arteries to narrow and harden. The Greek
words "athero" (meaning gruel or paste) and "sclerosis" (meaning hardness) are
where the word "atherosclerosis" originates. [1, 2]

The damage to the endothelium, the inner lining of the arteries, which is typi-
cally the first sign of atherosclerosis, can be brought on by conditions like high blood
pressure, smoking, high cholesterol, diabetes, or inflammation. Low-density lipopro-
tein (LDL) cholesterol and other particles may be able to enter the artery wall and
accumulate there when the endothelium is damaged. These substances have the
potential to accumulate into a fatty plaque over time, thickening and stiffening the
artery wall. [1, 3]

Since atherosclerosis is a progressive condition that frequently takes years to de-
velop, symptoms might not appear until the disease is far along. Tobacco cessation,
a healthy diet, regular exercise, controlling blood pressure and cholesterol levels,
and taking medications as directed by a doctor are just a few lifestyle changes and
medical procedures that can help to slow or reverse the progression of the disease.
[3, 4]

Figure 1.1: Normal artery and an artery with plaque buildup, from [5]

Chapter 2

Objectives

The objective of my thesis is to design optimal methods for atherosclerosis plaque
segmentation using convolutional neural networks. The process can be divided into
several phases.

2.1 Research

In this part the prime objective is to get familiar with the current state of application
of convolutional neural networks in the analysis of medical image data and with
methods of desgining such networks.

2.2 Dataset Analysis

Before the training part itself, data must be preprocessed so they are compatible
with the network’s input layer. Here I will analyse the dataset, design methods of
loading the dataset a transform the dataset so it can be "fed" into the network.

2.3 Data Augmentation

To heighten accuracy, a bigger dataset may be needed. It might also happen the
provided dataset will be too monolithic and the model will not be prepared for
all possible situations that might arise in production. For that reason one of the
objectives is to augment the existing data to generate new ones and thus broaden
networks "learning material". Augmentation might include image rotation, zoom-
ing, shearing, flipping, shifting and other modifications

14

CHAPTER 2. OBJECTIVES 15

2.4 Network Design

This part’s objective is to select an optimal architecture for the image segmentation
and design its layers so the result is the most optimal one. This part can be further
divided into research part, where I will gather existing data about various methods,
and the practical part, where I will apply different architectures and experiment
with them.

2.5 Results’ Evaluation

Once the networks output results, they need to be evaluated so the model can
be eventually redesigned or the training parameters adjusted. Result evaluation
consists from simple "first-glance" analysis to elaborate statistical analysis.

Chapter 3

Theory Behind Neural
Networks

Artificial neural networks proved they can be a useful tool in a plenty of prediction
and classification tasks. They were especially effective solving complex problem
where traditional algorithms with simpler logic fail. Without artificial neural net-
works (ANN), there could not have been such progress in area of pattern recognition
in healthcare or in protein structure prediction, as we have seen in the recent years.
[6, 7]

A neural network is a type of machine learning algorithm that is modeled after the
structure and function of the human brain. In this chapter, I will explain necessary
basics of how the ANNs work. [6]

3.1 Perceptron

The reason ANNs are called the way they are called, is because they model structure
of human neural network. Both networks process an input that leads to a specific
output. The human brain is made of dendrite connected neurons, which serve as
an input, and axons, that emit some output. The biological neuron transmits the
signal only after the signal reach a specific threshold. Similarly , the artificial neural
networks are made of connected artificial neurons, sometimes called nodes. [6]

One or more input nodes that receive input signals and one output node that
generates output signals make up the fundamental building blocks of a perceptron.
The strength of the input signal is determined by the weighted connection, that
connects each input node to the output node. The weighted input signals are added
together to calculate the perceptron’s output, which is then processed through a
step or sigmoid activation function to make it nonlinear. [6, 8]

The perceptron algorithm is an example of supervised learning, so in order to
learn how to make predictions, it needs labeled training data. In order to reduce
the discrepancy between the predicted output and the actual output, the weights of
the connections between the input nodes and the output node are changed during
training. This process continues until the perceptron reaches a certain level of
accuracy on the training data. [6, 8, 10]

16

CHAPTER 3. THEORY BEHIND NEURAL NETWORKS 17

Figure 3.1: Model of node with m weighted inputs, from [9]

When trying to predict which of two classes an input belongs to, perceptrons
are frequently used in binary classification problems. Additionally, they can be
applied to regression issues where the objective is to forecast a continuous output
value. Despite being relatively straightforward compared to other neural network
architectures, perceptrons have been used in a number of applications, including
image and speech recognition as well as natural language processing. [6, 10]

3.2 Activation function

An activation function is used to affect a neuron’s output in a neural network. Based
on the inputs it receives, it acts as a kind of "filter" to decide whether the neuron
should be activated or not.

Each neuron in a neural network receives input signals from other neurons and
bases its output signal on the weighted sum of these input signals. To decide whether
a neuron should "fire" or activate and send its signal to the following layer of the
network, the activation function is applied to the output signal.

The effectiveness and precision of a neural network can be significantly impacted
by the choice of activation function. Activation procedures frequently used include:

ReLU (Rectified Linear Unit) A function that, if the input is positive, returns
the value and, if it is negative, returns 0. It has been demonstrated that
using this function will enhance the performance of neural networks, and it is
frequently used in deep learning models.

Sigmoid A function that converts any value entered into a number between 0 and
1. When the objective is to predict a binary output (such as yes or no), this
function is frequently used in binary classification problems.

Softmax A function that converts a list of real numbers into a probability distri-
bution, with the result that the probability sum is 1. When trying to predict
the likelihood of each potential class in multiclass classification problems, this
function is frequently used.

CHAPTER 3. THEORY BEHIND NEURAL NETWORKS 18

3.3 ANN architecture

Typical ANN can be divided into input layer, hidden layers and output layer. Data
are accepted by the input layer, hidden layer(s) (there is no limit on number of
hidden layers) analyzes and process data, and the result is given by the output
layer. They are called hidden layers because just like in human vision they covertly
process the digitalized object into a form of input signal. For instance, when we
see four lines connected as a square, we know immediately it is a square. We do
not detect four independent lines that do not have any relationship to one another.
Our brain is aware of the information as an input layer and not as hidden layers.
By adding hidden layers we increase ability of the network to analyze complex
patterns. Therefore, training an ANN with numerous hidden layers is also know as
"deep learning". [6]

Figure 3.2: ANN with 4 layers, from [11]

3.3.1 Dense layers

A dense layer, also referred to as a fully connected layer, is a type of layer in a
neural network where every neuron in the layer is connected to every neuron in the
layer before it. As a result, each neuron in the layer receives a weighted sum of its
predecessor’s neurons’ outputs as input. [12]

Using an optimization algorithm like gradient descent, the weights in a dense
layer are learned during training in order to reduce the discrepancy between the
predicted output and the actual output. [12]

3.4 Convolution

Many disciplines, including deep learning, image processing, and signal processing,
use the mathematical operation of convolution. It entails applying a sliding window,
referred to as a kernel or filter, to a signal or image, multiplying the window’s values
by the corresponding values in the signal or image, and adding the results to create
a new signal or image. [13]

CHAPTER 3. THEORY BEHIND NEURAL NETWORKS 19

Convolution is a technique used in signal processing to filter a signal by removing
noise or unwanted frequencies. A filter kernel that emphasizes or de-emphasizes
particular frequencies is convolved with the input signal to create a new, filtered
signal. [13, 14]

Figure 3.3: Depiction of the convolution layer, from [15]

Convolution is also used in image processing to extract features from an image.
A new pixel value is created in the output image at each location where the filter
kernel is moved across the image by summing the product of the kernel values and
the corresponding image pixel values. To identify various features in the image, such
as edges, corners, and textures, this procedure can be repeated with various kernels.
[13, 14]

As for example, let us say we have 2 convolutional kernels:

(1)

 0.25 0.5 0.25

0.0 0.0 0.0

−0.25 −0.5 −0.25

 (2)

0.25 0.0 −0.25

0.5 0.0 −0.5

0.25 0.0 −0.2


When we apply these two kernels on an image, we get these results:

Figure 3.4: Feature extraction with different convolutional kernels

As shown in the figure above, by applying different kernels, different feature can
be extracted. In this example, horizontal edges were extracted by kernel 1, vertical
edges were extracted by kernel 2. 1

1Testing image taken from DeviantArt - https://www.deviantart.com/nimowerytheking

CHAPTER 3. THEORY BEHIND NEURAL NETWORKS 20

3.5 Convolutional Neural Networks

Convolution in CNNs entails applying a filter or kernel to an input image or feature
map to create a fresh feature map as the result. A single output value is produced
for each location in the output feature map by sliding the filter over the input,
multiplying each value in the filter by its corresponding value in the input, and
summing the results. The size of the input, the size of the filter, and the stride of
the filter all affect the size of the output feature map. [13]

By identifying patterns and edges, convolutional operations in CNNs are used to
extract features from input data, such as images. Backpropagation is a technique
used to teach the weights of the filters so that the network can learn to recognize
particular features in the input data. This makes CNNs very good at tasks involving
working with image data, such as object detection and image recognition. [13]

Figure 3.5: CNN for number classification, from [16]

3.5.1 Pooling layer

The convolved feature’s spatial size is decreased thanks to the Pooling layer. A
significant reduction in the dimensions of the data has resulted in a decrease in
the amount of computing power needed to process it. Typically, a Pooling Layer is
applied following a Convolutional Layer. The main objective of this layer is to reduce
the size of the convolved feature map in order to save on computational costs, which
is achieved by reduction of connections between layers and working independently on
each feature. Reducing the connections between layers and working independently
on each feature map achieves this. Depending on the mechanism used, there are
various types of pooling operations. [17]

The Max Pooling feature map is used to determine the largest element. Using
average pooling, the elements within an image segment of a specific size are averaged.
The total sum of the elements in the predefined section is calculated using sum
pooling. Connecting the Convolutional Layer and the FC Layer is frequently done
using the Pooling Layer. [17]

CHAPTER 3. THEORY BEHIND NEURAL NETWORKS 21

3.5.2 Dropout

A dropout layer is used in CNNs, in which a few neurons are removed from the neural
network during the training phase, resulting in a smaller model, to avoid overfitting.
2 The dropout layer acts as a mask, eliminating some neurons’ contributions to
the subsequent layer while maintaining the functionality of all other neurons. If we
apply a dropout layer to the input vector, some of its characteristics are eliminated;
however, if we apply it to a hidden layer, some hidden neurons are eliminated. [17,
18]

Because they avoid overfitting on the training data, dropout layers are crucial
in the training of CNNs. If they are absent, the first set of training samples has a
disproportionately large impact on learning. As a result, traits that only show in
subsequent samples or batches would not be learned. [18]

Figure 3.6: Neurons with and without dropout, from [19]

2when a model performs well on training data but not on new data

Chapter 4

Current State

4.1 History of Medical Segmentation Using CNNs

In order to connect with current CNN architectures for segmentation, it is necessary
to establish a historical connection with image classification. Many innovations in
image classification came first, and only then were they applied to segmentation.
Because a CNN for voxel-wise classification can be used directly for image classifica-
tion and vice versa, this is possible. Voxel-wise classification is a technique in image
analysis that involves assigning a label or class to each voxel, or 3D pixel, in an
image. This method is frequently applied in medical imaging, where the objective
is frequently to recognize and separate various bodily structures or tissues. [20, 21]

Voxel-wise classification was explicitly used in the first CNN-based segmentation
technique. A more effective implementation, which obtained the effects of pooling
using sparse convolutions, was introduced in 2014. The voxel-wise learning paradigm
could now support output patch sizes greater than 1, without altering anything. One
drawback of this implementation was the increased requirement for memory. This
computational advancement was not possible if the explicit voxel-wise implementa-
tion consumed all memory. Contrary to parallel observations in image classification,
such as the emergence of deeper VGG-nets, it was actually only possible to reap the
computational benefits by shrinking the CNN (e.g., reducing the depth, width, or
RF). [21, 22, 23]

Fully-convolutional networks (FCNs), as they are known, saved the day in 2015.
They kept the original pooling implementation in conjunction with a fresh and
teachable upsampling operation, i.e., transposed convolution, as opposed to using
sparse convolutions. The FCN-32s, the simplest variant, learned a 32-times upsam-
pling directly from the outcome prediction. By first upsampling the most coarse
prediction to and combining it with the prediction on an intermediate resolution,
this was further improved. Only then was the original image resolution (i.e., the
FCN-16s and FCN-8s) upsampled. As a result, skip connections were added as a
side effect in segmentation, much like the development of residual connections in
image classification discussed above. [21, 24]

From the FCN, it took only a small step to reach U-Net and DeepMedic, the
flag ships of medical imaging. Instead of upsampling (intermediate) predictions,

22

CHAPTER 4. CURRENT STATE 23

(intermediate) feature maps are now upsampled directly and followed by a number
of dense layers in both U-Net and DeepMedic. [21, 25, 26]

4.2 U-Net and V-Net

DeconvNet, a completely symmetric architecture with deconvolution and unpooling
layers, was proposed in 2015. It was used to compare the performance of integrating
with Exponential Linear Unit (ELU) and Maxout in order to solve the "dying ReLU"
problem when segmenting the cervical muscle using ultrasound. [27, 28, 29]

In the same year, Olaf Ronneberger, Philipp Fischer, and Thomas Brox proposed
U-net with cropped feature maps concatenated from encoder to decoder for localizing
each pixel and increased channel number in decoder for propagation of context
feature in higher resolution layers. Ran Zhou, Aaron Fenster, Yujiao Xia, and
others proposed a dynamic convolution neural network for media-adventitia and
lumen-intima segmentation in ultrasound, by introducing short connections into the
encoder part of the U-net, to prevent overfitting and dynamically fine tune in specific
test task. Slice-by-slice nipple segmentation and localization on breast ultrasound
was proposed by Zhemin Zhuang and his team as Grouped-Resaunet (GRA U-net).
An architecture called GRA U-net is based on the U-net and uses attention gates to
concentrate on pertinent input areas, group convolution for computational efficiency,
and residual blocks to solve vanishing gradient problems. For the segmentation of
coronary arteries in intravascular ultrasound images, Sekeun Kim, Yeonggul Jang,
Byunghwan Jeon, Youngtaek Hong, Hackjoon Shim, and Hyukjae Chang proposed a
network with the multi-scale input and hybrid multi-label loss function. On the basis
of the U-net network’s structure and using a dataset of nerve ultrasound images,
Neural Architecture Search (NAS) was applied to a semantic segmentation network.
[27, 30, 31]

U-net was first applied to 3D architecture for volumetric segmentation with 3D
convolution following its success in 2D medical image segmentation. The same
year, V-net integration with 3D convolution and residual blocks was proposed for
volumetric segmentation. Then, a multi-directional deeply supervised V-net was
presented, and it was used for ultrasound prostate segmentation. The network
uses stage-wise hybrid loss function to shorten convergence time, predicts different
resolution segmentation from each decoder part stage, and fuses segmentation using
multi-directional contour refinement processing. [27, 32]

CHAPTER 4. CURRENT STATE 24

4.3 Data Augmentation

Large-scale datasets, which are often scarce in medical segmentation tasks, are highly
sought-after for the efficient use of deep learning techniques. In cases of insufficiently
large dataset, the existing dataset’s size can be effectively increased by subjecting the
original data to transformations like flipping, rotation, translation, and deformation.
This is referred to as data augmentation and is frequently used in machine learning.
By adding random variations to the original data, data augmentation increases the
size of training examples and decreases overfitting. The data augmentation has been
cited as being extremely helpful in numerous studies. [33]

Chapter 5

Methodology

5.1 Tech Stack

Code is written in Python programming language. Besides Python, MatLab was
considered as an option for the training, however, after careful consideration, Python
was chosen as a better solution for several reasons:

Python is open source MatLab is paid software package, which can be used for
free for academic purposes only (that might also vary depending on the uni-
versity). For interoperability and usefulness of gained knowledge and skills,
Python appears to be the better option.

Larger community As one of the most popular programming languages, Python
has a larger community than MatLab, especially concerning machine learning.
As a result, Python generally offers more features than MatLab.

Better documentation For its larger developer community Python offers gener-
ally better, more extensive documentation.

Despite the fact Python was chosen for the purpose of training, there are some
advantages to using MatLab that should be mentioned:

Setup Since MatLab is paid, ready-to-use software, one can be sure everything will
work as expected out of the box once the new feature is added to the MatLabs’s
functionality. On the other hand, while setting up the environment in Python,
one can often encounter conflicts with different versions of various libraries,
there may be issues with different Python interpreters etc. None of that is
expected to happen using MatLab.

Graphical Interface For the purpose of designing the network’s architecture, a
graphical interface is available, which is, for some developers, more comfortable.

5.1.1 Python frameworks

There are two principal frameworks in Python for the purpose of deep learning:
Tensorflow from Google and PyTorch from Meta.

25

CHAPTER 5. METHODOLOGY 26

PyTorch is one of the latest deep learning frameworks and was developed by
the team at Facebook and open sourced on GitHub in 2017. PyTorch is gaining
popularity for its simplicity, ease of use, dynamic computational graph and efficient
memory usage. [34]

PyTorch Advantages

• Python-like coding

• Dynamic graph

• Easy and quick editing

• Good documentation and community support

• Open source

• Plenty of projects out there using PyTorch

PyTorch Disadvantages

• Third-party needed for visualization

• API server needed for production

TensorFlow is an open-source deep learning framework created by developers at
Google and released in 2015. The official research is published in the paper “Ten-
sorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems.”
TensorFlow is now widely used by companies, startups, and business firms to auto-
mate things and develop new systems. It draws its reputation from its distributed
training support, scalable production and deployment options, and support for var-
ious devices like Android. [34]

Tensorflow Advantages

• Simple built-in high-level API

• Visualizing training with Tensorboard

• Production-ready thanks to TensorFlow serving

• Easy mobile support

• Open source

• Good documentation and community support

CHAPTER 5. METHODOLOGY 27

Tensorflow Disadvantages

• Static graph

• Debugging method

• Hard to make quick changes

Despite the fact Tensorflow offers in-built visualization tools, it remains to be an
irrelevant advantage since I prefer to use Matplotlib library for all the visualizations
in my projects (including the objective of this thesis).

When starting with the field of deep learning, I decided to learn to work in
Tensorflow because it offers better visualization tools (I thought it would be much
more important advantage, however, as described above, my preference became us-
ing Matplotlib), has much more pleasant documentation and it is easier to deploy
the trained models with it. Because of the skills I have already had in Tensorflow,
I decided to use it for the objective of this thesis. There is also a library called
Keras, a subset of the Tensorflow framework, which makes working with the frame-
work’s features easier and was used for the objective of this thesis together with the
Tensorflow framework.

5.1.2 Keras

Keras is an open-source high-level Neural Network library, which is written in
Python is capable enough to run on Theano, TensorFlow, or CNTK. It was de-
veloped by one of the Google engineers, Francois Chollet. To enable quicker ex-
perimentation with deep neural networks, it is made user-friendly, extensible, and
modular. It supports both Convolutional and Recurrent Networks separately as well
as in combination. It uses the Backend library to resolve low-level computations be-
cause it is unable to handle them. As a high-level API wrapper for the low-level
API, the backend library enables it to run on TensorFlow, CNTK, or Theano. [35]

By providing high-level building blocks, Keras, a model-level library, aids in the
creation of deep learning models. Instead of being handled by Keras itself, all of
the low-level computations, including convolutions and products of tensors, rely on
a specialized tensor manipulation library that has been carefully optimized to act
as a backend engine. As a result, Keras offers the ability to plug in various backend
engines, rather than incorporating a single tensor library and carrying out operations
specific to that library. [35]

5.1.3 NumPy

For the dataset preprocessing, NumPy library was used extensively, espically for
array operations. NumPy is the fundamental package for scientific computing in
Python. A multidimensional array object, various derived objects (like masked ar-
rays and matrices), and a variety of routines for quick operations on arrays are
provided by this Python library. These operations include discrete Fourier trans-
forms, basic linear algebra, basic statistical operations, random simulation, and

CHAPTER 5. METHODOLOGY 28

much more. The ndarray object is the nucleus of the NumPy package. This con-
tains homogeneous n-dimensional arrays of data types, with many operations carried
out in compiled code for speed. [36]

5.1.4 OpenCV

OpenCV (Open Source Computer Vision Library) is an open source computer vision
and machine learning software library. OpenCV was built to provide a common
infrastructure for computer vision applications and to accelerate the use of ma-
chine perception in the commercial products. Being an Apache 2 licensed product,
OpenCV makes it easy for businesses to utilize and modify the code. [37]

More than 2500 optimized algorithms are available in the library, including a wide
range of both traditional and cutting-edge computer vision and machine learning
algorithms. These algorithms can be used to find similar images from an image
database, remove red eyes from flash-taken photos, follow eye movements, recognize
scenery, and establish markers to overlay. They can also be used to detect and
recognize faces, identify objects, classify human actions in videos, track camera
movements, track moving objects, extract 3D models of objects, produce 3D point
clouds from stereo cameras, stitch images together to produce high-resolution images
of entire scenes, extract 3D models of objects from stereo cameras, and extract 3D
models of objects Windows, Linux, Android, and Mac OS are all supported by
OpenCV, which has interfaces in C++, Python, Java, and MATLAB. [37]

OpenCV was used for loading the images and saving output of the trained mod-
els. In the early stages of the project, OpenCV was used extensively for the code
prototyping, however, later, OpenCV was replaced by Matplotlib library, scikit-learn
library and in-built Tensorflow functionalities since they were more comfortable to
work with. In summary, Matplotlib was used for data visualization, for array ma-
nipulation that included reshaping and normalazing the array, mainly the NumPy
library was used. Personally, for color manipulation however, which was also inter-
mittently used (especially for experimentig with various methods), OpenCV remains
irreplaceable.

5.1.5 scikit-learn

scikit-learn (formerly scikits.learn and also known as sklearn) is a free software ma-
chine learning library for the Python programming language. It features various clas-
sification, regression and clustering algorithms including support-vector machines,
random forests, gradient boosting, k-means and DBSCAN, and is designed to in-
teroperate with the Python numerical and scientific libraries NumPy and SciPy.
Scikit-learn is a NumFOCUS fiscally sponsored project. [38, 39]

scikit-learn is largely written in Python, and uses NumPy extensively for high-
performance linear algebra and array operations. scikit-learn integrates well with
many other Python libraries, such as Matplotlib and Plotly for plotting, NumPy for
array vectorization, Pandas dataframes, SciPy, and many more.

scikit-learn library was used for splitting the data into training and testing subsets
and for estimating a class weight.

CHAPTER 5. METHODOLOGY 29

5.1.6 Matplotlib

Matplotlib is a plotting library for the Python programming language and its nu-
merical mathematics extension NumPy. It provides an object-oriented API for em-
bedding plots into applications using general-purpose GUI toolkits like Tkinter, wx-
Python, Qt, or GTK. There is also a procedural "pylab" interface based on a state
machine (like OpenGL), designed to closely resemble that of MATLAB, though its
use is discouraged. [40]

Pyplot is a Matplotlib module that provides a MATLAB-like interface. Mat-
plotlib is designed to be as usable as MATLAB, with the ability to use Python, and
the advantage of being free and open-source. This module was used for data visu-
alization, e.g. plotting the training accuracy and loss, viewing the segmentations
results etc.

5.1.7 Editors and Training

For the code prototyping and data visualisation, Jupyter Notebook was used. Jupyter
Notebook (formerly known as IPython notebook) is an interactive web application
for creating and sharing computational documents. The project was first named
IPython and later renamed Jupyter in 2014. It is a fully open-source product, and
users can use every functionality available for free. It supports more than 40 lan-
guages including Python, R, and Scala. [41]

After the code was written and debugged in Jupyter Notebook locally, Python
script was generated based on the notebooks and executed on the Metacentrum’s in-
frastracuture. MetaCentrum Virtual Organization (MetaVO) operates and manages
distributed computing infrastructure consisting of computing and storage resources
owned by CESNET as well as those of co-operative academic centers within the
Czech Republic. [42]

CHAPTER 5. METHODOLOGY 30

5.2 Dataset

For the purpose of the training, a dataset of 870 PNG images of atherosclerotic
plaque and their corresponding labels was provided. Dimensions of both images
and their labels are 544 x 544 pixels. Example of the image and the corresponding
label are shown in the figure below:

Figure 5.1: Dataset Example

As shown in the label, there are four classes to be segmented:

1. Background - Black

2. Plaque - Dark Gray

3. Lumen - Light Gray

4. Artifacts - White

As shown in the image, slices of plaques are captured on ultrasound. Because
the dataset comes from a collection of histological sections, part of a slide tray is
captured together with the artery as well. Therefore, the neural network needs to
learn to differentiate between the body of the artery and artifacts such as the slide
tray.

5.3 Data Preprocessing

Before the training itself, images and labels were loaded into two separate arrays
(train_images and train_labels) by iterating over their respective directories.
Each image was loaded as an 544 x 544 array with the OpenCV library. Loaded
image was then appended to train_images or train_labels array depending,
whether it was the image itself or the label.

After the two series of iterations, both arrays were converted into NumPy arrays.
The reason for conversion is that while a normal array is a basic data structure
that stores a collection of elements of the same data type in contiguous memory
locations, NumPy arrays are a powerful extension of the normal array that are
optimized for numerical computations and operations, memory usage and efficiency.

CHAPTER 5. METHODOLOGY 31

They store data in contiguous blocks of memory, which means that they can be
accessed and manipulated much more quickly than normal arrays. Also, a growing
plethora of scientific and mathematical Python-based packages are using NumPy
arrays. Though they typically support Python-sequence input, they convert such
input to NumPy arrays prior to processing, and they often output NumPy arrays.
Since several libraries and functions that were used for data preprocessing work with
NumPy arrays, they were converted in advance. [36]

Figure 5.2: Loading Dataset

After the dataset was loaded, dimensions of both arrays were expanded. Original
shape of the arrays was (869, 544, 544) - every image is 544 x 544 pixels and the
array contains 870 images. After the expansion it became (869, 544, 544, 1), so
every individual pixel was represented by an array with a single value. It was done
because the Tensorflow models are designed to take arrays as an input so in order
to segment every single pixel, they have to be represented by an array.

Original array Expanded array

[[[0, 0, 0, ..., 0]]] [[[[0], [0], [0], ..., [0]]]]

scikit-learn package includes a method called train_test_split, which splits the
dataset into training and testing subsets. This method was used to split train_images
and train_labels arrays into X_train, X_test, y_train and y_test arrays, where
X represents training images and y represents labels. As shown in the figure below,
test_size argument is set to 0.10, which means 10% of the original dataset is used
for validation.

Also, as shown in the figure 4.3, train_images array was normalized before
the dataset split. Tensorflow normalize is the method available in the Tensorflow
library that helps to bring out the normalization process for tensors in neural net-
works. The main purpose of this process is to bring the transformation so that
all the features work on the same or similar level of scale. Normalization plays a
vital role in boosting the training stability as well as the performance of the model.

CHAPTER 5. METHODOLOGY 32

The method will shift and scale inputs into a distribution centered around 0 with
standard deviation 1. It accomplishes this by precomputing the mean and variance
of the data, and calling (input - mean) / sqrt(var) at runtime. Before the nor-
malization, the mean value of pixels was 18.65, after the normalization, the mean
value of pixels became 0.017. [43, 44]

Figure 5.3: Expanding dimensions and dataset split

The next step was to convert image labels to "categorical" format by using
to_categorical function. The to_categorical function is a utility function pro-
vided by the Keras API in TensorFlow, which is used for converting a class vector
(integer labels) into a binary class matrix. This function is typically used in multi-
class classification problems where the target variable contains categorical data that
needs to be converted to a one-hot encoded format. Converting integer labels to
categorical arrays or one-hot encoded vectors is often necessary for deep learning
models built using TensorFlow, as many deep learning models require the target
variable to be represented in this way.

Figure 5.4: Converting label to "categorical" format

As shown in the figure above, n_classes variable is set to 4 (see figure 4.1 showing
4 classes in the label). The n_classes variable together with the label array are
passed as arguments to the to_categorical function. Before the conversion, the
labels contained 4 individual pixel values - 0, 1, 2 and 3, each representing different
class to be segmented. In the table below are shown new values of each pixel:

Original value New value

0 [1., 0., 0., 0.]
1 [0., 1., 0., 0.]
2 [0., 0., 1., 0.]
3 [0., 0., 0., 1.]

CHAPTER 5. METHODOLOGY 33

Converting data to categorical format was the last step of the data preprocessing
and data could be finally used for model fitting.

5.4 Network Architecture

Based on the research part of this thesis (Chapter 4 Current State) and sheer amount
of articles about U-net segmentation, I decided to start experimenting with U-net
architecture.

First architecture I designed was U-net with 5 bottleneck contraction blocks and
4 expansive residual blocks. After that, the U-net with 6 bottleneck contraction
blocks and 5 expansive residual blocks was designed to be able to better extract fea-
tures from the images. Variations of these two architectures together with different
training parameters were used throughout the course of working on the objectives.
Because these two architectures yielded very satisfactory results and with each train-
ing there was usually a visible progress, I continued to refine these two architectures.
Because of the limited time and some complications during the training in Meta-
center, I have unfortunately not managed to develop and test other viable options,
such as V-net or VGG.

The designed U-nets schemes are shown in the Appendix A.2.

5.5 Data Augmentation

In order to yield better results, data augmentation was used during the train-
ing. Data were generated dynamically during the training. For this purpose,
ImageDataGenerator function from the Tensorflow library was used. Before each
training, arguments for the data augmentation were specified1 as shown in the figure
below:

Figure 5.5: Example of data augmentation arguments

fill_mode is set to "reflect" because otherwise the function may during image
transformations fill in random pixels, which of course makes a successful training
impossible.

Next, image_data_generator and mask_data_generator were initialized with
ImageDataGenerator function, to which arguments for the augmentation were passed.
The image_data_generator and mask_data_generator where then fit on the data

1Examples of how some augmentations look like is available in the Appendix A.5

CHAPTER 5. METHODOLOGY 34

from the provided dataset. ImageDataGenerator’s flow method then creates a data
generator, which generates batches of augmented data, ready-to-use for the training.

Figure 5.6: Data generators fitting

The figure shows 4 data generators were created:

1. image_generator - generates training images

2. valid_img_generator - generates validation images

3. mask_generator - generates training labels

4. valid_mask_generator - generates validation labels

Also, it is crucial to use the same seed as an argument to fit and flow functions
so the same transformations are applied to both images and labels. Otherwise, the
augmentation will produce incompatible data and the training will fail.

The last step is to "zip" the image and labels generators into train_generator
and val_generator, and the generators are ready to be used in the training. The
zip() method returns a zip object, which is an iterator of tuples where the first and
second items in each provided iterator are coupled together etc. [45]

Figure 5.7: Zipping the image and labels generators

CHAPTER 5. METHODOLOGY 35

5.6 Testing

Methods used for testing were Pixel Accuracy, Intersection Over Union and Mean
Intersection Over Union.

Pixel Accuracy Pixel accuracy is a ratio between the number of correctly classified
pixels and the total number of pixels. This metric can be often very misleading,
especially if the image classes are not balanced (e.g. most of the image is
background). It such cases it is possible to reach accuracy of 95 % even when
the model is not able to segment a minority class at all. Therefore, using IOU
and Mean IOU is far more descriptive option. [27]

PA =

∑k
i=0 Pii∑k

i=0

∑k
j=0 Pij

Intersection Over Union Intersection over union, also known as Jaccard index,
is the percent overlap between the target mask and the prediction output. [27]

IOU =

∑k
i=0 Pii∑k

i=0

∑k
j=0 Pij −

∑k
j=0 Pjj

Mean Intersection Over Union Pixel accuracy is a ratio between the number of
correctly classified pixels and the total number of pixels. [27]

MIOU =
1

k + 1

Pii∑k
j=0 Pij +

∑k
j=0 Pji − Pii

Chapter 6

Results

In the course of working on this thesis, altogether 12 U-net models were trained.
Overview of them is shown in the table below:

Model Num. of blocks Epochs Data Augmentation Pretrained

20221030 9 50 No -
20221031 11 50 No -
20230325 9 20 Yes -
20230326 11 20 Yes -
20230329 9 20 Yes -
20230330 9 30 Yes -
20230331 9 50 Yes -
20230421 9 15 Yes 20221030
20230422 9 30 Yes 20221030
20230423 9 100 Yes 20221030
20230501 11 30 Yes 20230326
20230505 11 100 Yes 20230326

Table 6.1: Trained models overview

As shown in the table above, I was testing two U-net architectures - one with
9 blocks, and other with 11. Depending on the results of each training, training
parameters - number of epochs, number of layers and augmentation parameters -
were adjusted for the next training. In the training phase, I was making assumptions
about the parameters for the next training mainly by looking at the results of the
specific cases of segmentation (shown in the Appendix A.4 First Glance Overview).
Except for the first two models (20221030 and 20221031), all models were trained
on augmented data. "Pretrained" column shows, whether (and if so, which one) a
pretrained model was used for the training (fine-tuning).

36

CHAPTER 6. RESULTS 37

6.1 Testing dataset with 10 degrees rotation range

When looking at the tables like the table below, columns Mean, Background, Plaque,
Lumen and Artifacts show IOU values.

Model Accuracy Mean Backg. Plaque Lumen Artifacts

20221031 0.96814 0.86494 0.96469 0.87944 0.73492 0.88073
20221031 0.96827 0.86327 0.9659 0.87862 0.72695 0.88162
20230325 0.97267 0.88133 0.97006 0.8919 0.7633 0.90005
20230326 0.97356 0.88595 0.97111 0.89441 0.77516 0.9031
20230329 0.96526 0.8497 0.96567 0.84807 0.71325 0.87182
20230330 0.96266 0.84365 0.9629 0.83956 0.71214 0.86001
20230331 0.96923 0.86764 0.96673 0.87479 0.74119 0.88787
20230421 0.96551 0.85292 0.96483 0.85282 0.72285 0.87121
20230422 0.96276 0.84328 0.9663 0.81995 0.72884 0.85803
20230423 0.972 0.87734 0.97034 0.88421 0.75703 0.89778
20230501 0.96848 0.86895 0.96631 0.87665 0.75302 0.87982
20230505 0.97251 0.88097 0.97006 0.88972 0.76441 0.89969

Table 6.2: Testing with 10 degree range rotation augmentation

Figure 6.1: Testing on 10 degrees rotation range - accuracy and IOUs

CHAPTER 6. RESULTS 38

Figure 6.2: Testing on 10 degrees rotation range - confusion matrix

CHAPTER 6. RESULTS 39

6.2 Testing dataset with 280 degrees rotation
range

Model Accuracy Mean Backg. Plaque Lumen Artifacts

20221030 0.8301 0.4925 0.9225 0.3751 0.4179 0.2545
20221031 0.8227 0.4749 0.8999 0.3875 0.2714 0.3408
20230325 0.9129 0.7026 0.9443 0.581 0.6502 0.6351
20230326 0.92 0.7328 0.9485 0.6009 0.7226 0.659
20230329 0.9409 0.7862 0.9434 0.7521 0.6727 0.7768
20230330 0.9378 0.7815 0.94 0.7472 0.6753 0.7633
20230331 0.9512 0.8186 0.9486 0.8097 0.7011 0.8148
20230421 0.9422 0.7902 0.9444 0.756 0.682 0.7783
20230422 0.938 0.7724 0.9485 0.7017 0.6721 0.7673
20230423 0.9552 0.8312 0.9542 0.8224 0.7216 0.8265
20230501 0.9426 0.8023 0.9419 0.7762 0.7114 0.7797
20230505 0.9552 0.833 0.9512 0.8375 0.7148 0.8287

Table 6.3: Testing with 280 degree range rotation augmentation

Figure 6.3: Testing on 280 degrees rotation range - accuracy and IOUs

CHAPTER 6. RESULTS 40

Figure 6.4: Testing on 280 degrees rotation range - confusion matrix

CHAPTER 6. RESULTS 41

6.3 Testing dataset with vertical flip

Model Accuracy Mean Backg. Plaque Lumen Artifacts

20221030 0.951 0.8099 0.9583 0.758 0.7287 0.7944
20221031 0.9436 0.7642 0.9526 0.7322 0.5812 0.7907
20230325 0.9755 0.9113 0.9715 0.9138 0.8583 0.9016
20230326 0.9761 0.9148 0.9719 0.9155 0.8674 0.9043
20230329 0.9664 0.8733 0.9646 0.8647 0.7969 0.8672
20230330 0.9644 0.8678 0.9625 0.857 0.7926 0.859
20230331 0.9724 0.8984 0.9681 0.9002 0.8339 0.8914
20230421 0.9673 0.8779 0.9647 0.8734 0.805 0.8683
20230422 0.9649 0.8698 0.9659 0.8394 0.8148 0.8592
20230423 0.9746 0.9065 0.9706 0.9077 0.8479 0.9
20230501 0.9715 0.8988 0.9677 0.8979 0.8463 0.8834
20230505 0.9751 0.9106 0.9708 0.9117 0.8591 0.9009

Table 6.4: Testing with vertical flip augmentation

Figure 6.5: Testing on vertical flip - accuracy and IOUs

CHAPTER 6. RESULTS 42

Figure 6.6: Testing on vertical flip - confusion matrix

CHAPTER 6. RESULTS 43

6.4 Testing dataset with image enlargement

Model Accuracy Mean Backg. Plaque Lumen Artifacts

20221030 0.9223 0.6861 0.9332 0.6845 0.3842 0.7427
20221031 0.9256 0.7144 0.9366 0.7016 0.4708 0.7485
20230325 0.9269 0.7147 0.9381 0.6828 0.4791 0.7591
20230326 0.9316 0.7303 0.9424 0.7025 0.5061 0.7701
20230329 0.9269 0.7336 0.9403 0.6901 0.553 0.7512
20230330 0.9312 0.7414 0.9398 0.7259 0.5329 0.767
20230331 0.9418 0.7762 0.9467 0.7595 0.5962 0.8023
20230421 0.9372 0.7561 0.9422 0.7532 0.539 0.7899
20230422 0.937 0.7687 0.9469 0.7406 0.6068 0.7805
20230423 0.9548 0.8261 0.9542 0.8313 0.671 0.848
20230501 0.9502 0.8172 0.9506 0.8125 0.6806 0.8253
20230505 0.9569 0.8422 0.9566 0.8315 0.7307 0.8497

Table 6.5: Testing with image enlargement augmentation

Figure 6.7: Testing on image enlargement - accuracy and IOUs

CHAPTER 6. RESULTS 44

Figure 6.8: Testing on image enlargement - confusion matrix

CHAPTER 6. RESULTS 45

6.5 Testing dataset with image enlargement and
shear mapping

Model Accuracy Mean Backg. Plaque Lumen Artifacts

20221030 0.8912 0.6015 0.9158 0.5825 0.2498 0.6578
20221031 0.8927 0.6241 0.9173 0.5942 0.3225 0.6626
20230325 0.8891 0.6119 0.9167 0.5396 0.3313 0.6599
20230326 0.8927 0.6147 0.9205 0.5534 0.3161 0.6687
20230329 0.8894 0.6351 0.9228 0.5502 0.4282 0.6391
20230330 0.8962 0.6467 0.9233 0.5983 0.4077 0.6575
20230331 0.9033 0.6578 0.9287 0.6016 0.4213 0.6798
20230421 0.9039 0.6602 0.925 0.6303 0.4011 0.6845
20230422 0.9099 0.6944 0.9316 0.6588 0.4952 0.6921
20230423 0.9237 0.7271 0.9384 0.7078 0.5247 0.7376
20230501 0.9184 0.715 0.9331 0.6899 0.514 0.7229
20230505 0.9187 0.7207 0.9392 0.6658 0.5645 0.7133

Table 6.6: Testing dataset with image enlargement and shear mapping

Figure 6.9: Testing on image enlargement and shear mapping - accuracy and IOUs

CHAPTER 6. RESULTS 46

Figure 6.10: Testing on image enlargement and shear mapping - confusion matrix

Chapter 7

Discussion

In this chapter I will discuss each aspect of the assignment and its results.

7.1 Testing Results Discussion

7.1.1 Testing dataset with 10 degrees rotation range

With only 10 degree-range rotation augmentation, the testing dataset was supposed
to be closely resembling the original dataset. It is clear from the results that in the
case of only minimal changes the majority of the models performed quite satisfyingly,
with the exception of the 20230330, 20230421, 20230422, and 20230501 models.
Probably, the unsatisfactory results are caused by small amount of training epochs
and low "depth" of the architecture.

The two best performing models were the 20230326 and the 20230505 model. The
20230326 model was used as a pretrained model for the 20230505 model training.
As shown in the Results, the performance of these models was almost identical, with
the 20230326 even performing slightly better than the other. The results indicate
additional training will probably have no or only limited effect on the original dataset
segmentation.

Since both of the best performing models have 11 blocks, we can assume "deeper"
U-net is more suitable for feature extraction.

7.1.2 Testing dataset with 280 degrees rotation range

The next testing case was the dataset with the rotation range of 280 degrees. We
can clearly see the models trained without data augmentation failed drastically,
with mean IOU being only around 50 %. We can see the 20221031 model with
11 blocks performed slightly worse that the 20221030 model, which contains only
9 blocks. Based on other graphs in the Results and on the example in the Figure
A.6, where the model 20221031 tried to find lumen between the artifacts, we can
assume training a deeper U-net on the limited dataset leads to overfitting and the
model performs poorly on the data that it has not "seen" yet. This proves that in
this case, data variability has higher impact on training process than architecture
complexity.

47

CHAPTER 7. DISCUSSION 48

7.1.3 Testing dataset with vertical flip

This testing dataset contained vertically flipped images. Just like in the previous
example, it is clear training with the augmentation leads to far better results than
without it. Also, we can observe the same overfitting of the 20221031 model, with
the lumen segmentation accuracy plummeting.

What is also in my opinion interesting is that the models 20230423 and 20230501
generally yield similar results. The difference between them is that the 20230423
model is the 9 block U-net trained with 100 epochs while the 20230501 model is the
11 block U-net trained with 30 epochs.

7.1.4 Testing dataset with image enlargement

Once we start testing with warping transformations, it becomes clear that especially
amount of training epochs leads to better results (the two best models were both
trained with 100 epochs). The 11 block U-net (20230505), however, reaches slightly
better results, with the most significant improvement in the lumen segmentation.
This is also the first testing case where the 20221031 model does not worsen in
comparison to the 20221030 model, which is personally quite surprising.

I suspect the 11 block U-net’s ability to extract features is less affected by image
warping then by image rotating because it has learnt to extract features in a specific
orientation. Since with this augmentation there are no rotation augmentations, we
did not observe such dramatic worsening as we did in the previous cases.

7.2 Strengths and Limitations

Overall, the trained models achieved decent level of accuracy, however, there are
aspects in which the models perform better than in others. In the results it is clear
the models learnt to differentiate the artifacts in the images quite well. Especially
the last model (20230505) is able to recognize where is the border between the
plaque and the artifacts decently. This was the issue throughout the course of the
trainings and as shown in the examples in the Appendix A.4, often plaques and
artifacts "blended together".

As a limitation I consider the ability of the models to segment the lumen. We
can see in all graphs in the Results that there is a gap between the lumen IOU
and the other classes’ IOUs. It seems it is a problematic task for the model to
learn, which "hole" should count as lumen and which should not. We can see in
the examples that often the model does not count the whole lumen as lumen and
some parts of it segments as a background or on the contrary considers most of the
openings as lumen and even segments some parts of the artifacts around the openings
as plaque. Improper lumen segmentation could also be explained by irregularities
in training and testing dataset. In some cases, plaque tissue was ruptured during
operation, which leads to images, where lumen is not fully encapsulated by plaque,
and in other cases, lumen was not present at all. These irregularities could lead to
misinterpretation in lumen segmentation. I assume the solution for this issue is to

CHAPTER 7. DISCUSSION 49

fine-tune the best performing models on even more data, so the models learns to
recognize patterns properly.

7.3 Possible methods for further optimization

One of the interesting methods for further optimization I considered was to apply
a Gabor filter on the input data to enhance its features. There was, however,
a drawback to this method - the labels for the data would have to be manually
adjusted before the training. As shown in the figure below, the Gabor filter highlights
details that were not visible before (or were hardly visible), therefore, they are
not even marked in the original labels. This method was not implemented due to
time limitations, however, I do believe this method would increase the accuracy
dramatically if tried.

Figure 7.1: Gabor filter application

Chapter 8

Conclusion

In conclusion, this bachelor thesis has investigated the training methods for the
CNNs in atherosclerosis segmentation tasks. Through a comprehensive examina-
tion of data, CNN architecture, data augmentation and results I have successfully
achieved the stated objectives of this thesis. While neural networks proved to be
an efficient instrument for medical image segmentation task, problematics of limited
dataset proved to have a significant impact on the results, especially in datasets
with higher variability. The findings of this thesis have provided me with valuable
insights into medical segmentation topic.

50

Appendix A

Attachments

A.1 Source Code

All the source code for the thesis’ objectives, together with the documentation,
is available on GitHub. The repository might be subject to changes even after
the thesis submission, however, the changes will for the code optimization only.
Functionality of the code will not be affected

Source code is available in the link below:

Figure A.1: Source Code Repository

https://github.com/david-pilny/bachelor-thesis

A.2 U-net architectures

Schemes of used architectures for the training. The U-net architectures were de-
signed - one with 9 layers and other with 11.

51

APPENDIX A. ATTACHMENTS 52

Figure A.2: U-Net with 9 layers

APPENDIX A. ATTACHMENTS 53

Figure A.3: U-Net with 11 layers

APPENDIX A. ATTACHMENTS 54

A.3 Trained Models

All the trained models mentioned in this thesis are availible on Google Drive in the
link below:

Figure A.4: Google Drive with trained models

https://drive.google.com/drive/folders/1I9BIEL_nJYIU_yoD-zGbWxn2U8
cgBE-k?usp=sharing

A.4 First Glance Overview

This attachment shows the general visual overview of the trained models’ segmenta-
tion capabilities. By analyzing these specific cases in-between the training sessions,
I was then able to make better assumptions about which parameters should be mod-
ified for the next training. It also offers and intuitive representation of how each
model handles different kind of input.

Figure A.5: Original-dataset-like image

APPENDIX A. ATTACHMENTS 55

Figure A.6: Rotated image testing

Figure A.7: Upside down image

APPENDIX A. ATTACHMENTS 56

Figure A.8: Image without artifacts - small plaque

Figure A.9: Image without artifacts - larger plaque

APPENDIX A. ATTACHMENTS 57

Figure A.10: Image without artifacts - large plaque

A.5 Image augmentation examples

The "translate" augmentation in the figure is the same as width_shift and height_shift
in the Tensorflow ImageDataGenerator.

Figure A.11: Examples of image augmentation, from [46]

Appendix B

References

1. What Is Atherosclerosis? [online]. National Heart, Lung, and Blood Institute,
2022-03-24 [visited on 2023-05-10]. Available from: https://www.nhlbi.nih.
gov/health/atherosclerosis.

2. Atherosclerosis [online]. Medical News | Medical Articles, 2019-05-29 [visited
on 2023-05-10]. Available from: https://www.news-medical.net/health/
Atherosclerosis.aspx.

3. Overview [online]. Mayo Clinic, 2023 [visited on 2023-05-10]. Available from:
https://www.mayoclinic.org/diseases-conditions/arteriosclerosis-
atherosclerosis/symptoms-causes/syc-20350569.

4. Prevention [online]. National Heart, Lung, and Blood Institute, 2022-03-24 [vis-
ited on 2023-05-10]. Available from: https://www.nhlbi.nih.gov/health/
atherosclerosis/prevention.

5. NATIONAL HEART, Lung; INSTITUTE, Blood. Normal artery and an artery
with plaque buildup. 2022. Available also from: https://www.nhlbi.nih.gov/
sites/default/files/inline-images/Atherosclerosis%5C%20diagram.
gif. [Online; accessed May 10, 2023].

6. JAN, Hendl. Big data: Věda o datech - základy a aplikace. Grada Publishing
a.s., 2021. isbn 978-80-271-3031-3.

7. HOLLEY, L. H.; KARPLUS, M. Protein secondary structure prediction with
a neural network. Proceedings of the National Academy of Sciences [online].
1989, vol. 86, pp. 152–156 [visited on 2023-05-11]. Available from doi: 10.
1073/pnas.86.1.152.

8. CALUDE, Cristian S; HEIDARI, Shahrokh; SIFAKIS, Joseph. What percep-
tron neural networks are (not) good for? Information Sciences. 2023, vol. 621,
pp. 844–857.

9. PLATFORM, Simplilearn | Online Courses - Bootcamp Certification. Model of
node with 4 inputs. 2023. Available also from: https://www.simplilearn.com/
ice9/free_resources_article_thumb/Perceptron/general-diagram-of-
perceptron-for-supervised-learning_4.jpg. [Online; accessed May 11,
2023].

58

APPENDIX B. REFERENCES 59

10. BANOULA, Mayank (comp.). What is Perceptron: A Beginners Guide for
Perceptron [online]. Simplilearn | Online Courses - Bootcamp Certification
Platform, 2023-05-10 [visited on 2023-05-11]. Available from: https://www.
simplilearn.com/tutorials/deep-learning-tutorial/perceptron.

11. TECHNOLOGY, O’Reilly Media -; TRAINING, Business. ANN with 4 layers.
2023. Available also from: https : / / www . oreilly . com / api / v2 / epubs /
9781838642709/files/assets/61bc8450-f3ac-4d81-b405-3d748e30d04a.
png. [Online; accessed May 11, 2023].

12. CHOLLET, François; PECINOVSKÝ, Rudolf. Deep learning v jazyku Python
: knihovny Keras, Tensorflow. Grada Publishing, 2019.

13. SAHA, Sumit (comp.). A Comprehensive Guide to Convolutional Neural Net-
works — the ELI5 way [online]. Saturn Cloud | Your data science cloud environ-
ment, 2018-12-15 [visited on 2023-05-14]. Available from: https://saturncloud.
io/blog/a-comprehensive-guide-to-convolutional-neural-networks-
the-eli5-way/.

14. SMITH, Steven W. The scientist and engineer’s guide to digital signal process-
ing. California Technical Pub, 1999. Available also from: https://www.analog.
com/media/en/technical-documentation/dsp-book/dsp_book_ch6.pdf.

15. KIMURA, Nobuaki. Depiction of the convolution layer with a filter in con-
volutional neural network (CNN). 2023. Available also from: https://www.
researchgate.net/publication/338190342/figure/fig3/AS:840701663268864@
1577450304039/Depiction-of-the-convolution-layer-with-a-filter-
in-convolutional-neural-network-CNN_W640.jpg. [Online; accessed May
12, 2023].

16. VIDHYA.COM, Analytics. CNN Schema. 2023. Available also from: https:
//editor.analyticsvidhya.com/uploads/94787Convolutional-Neural-
Network.jpeg. [Online; accessed May 12, 2023].

17. SHARMA, Pranshu (comp.). Basic Introduction to Convolutional Neural Net-
work in Deep Learning [online]. Analytics Vidhya | Learn everything about
Data Science, 2022-03-01 [visited on 2023-05-12]. Available from: https://
www . analyticsvidhya . com / blog / 2022 / 03 / basic - introduction - to -
convolutional-neural-network-in-deep-learning/.

18. How ReLU and Dropout Layers Work in CNNs [online]. Baeldung, 2023-04-14
[visited on 2023-05-14]. Available from: https://www.baeldung.com/cs/ml-
relu-dropout-layers.

19. BAELDUNG. Dropout. 2023. Available also from: https://www.baeldung.
com/wp-content/uploads/sites/4/2020/05/2-1-2048x745-1.jpg. [Online;
accessed May 14, 2023].

20. MESSINA, Domenico; BORRELLI, Pasquale; RUSSO, Paolo; SALVATORE,
Marco; AIELLO, Marco. Voxel-Wise Feature Selection Method for CNN Binary
Classification of Neuroimaging Data. Frontiers in Neuroscience. 2021, vol. 15.
issn 1662-453X. Available from doi: 10.3389/fnins.2021.630747.

APPENDIX B. REFERENCES 60

21. BERTELS, Jeroen; ROBBEN, David; LEMMENS, Robin; VANDERMEULEN,
Dirk. Convolutional neural networks for medical image segmentation. 2022.
Available from arXiv: 2211.09562 [cs.CV].

22. CIRESAN, Dan; GIUSTI, Alessandro; GAMBARDELLA, Luca; SCHMIDHU-
BER, Jürgen. Deep Neural Networks Segment Neuronal Membranes in Electron
Microscopy Images. 2012, vol. 25. Available also from: https://proceedings.
neurips.cc/paper_files/paper/2012/file/459a4ddcb586f24efd9395aa7662bc7c-
Paper.pdf.

23. LI, Hongsheng; ZHAO, Rui; WANG, Xiaogang. Highly Efficient Forward and
Backward Propagation of Convolutional Neural Networks for Pixelwise Classi-
fication. 2014. Available from arXiv: 1412.4526 [cs.CV].

24. SHELHAMER, Evan; LONG, Jonathan; DARRELL, Trevor. Fully convolu-
tional networks for semantic segmentation. IEEE transactions on pattern anal-
ysis and machine intelligence. 2017, vol. 39, no. 4, pp. 640–651.

25. RONNEBERGER, Olaf; FISCHER, Philipp; BROX, Thomas. U-net: Convo-
lutional networks for biomedical image segmentation. In: Medical Image Com-
puting and Computer-Assisted Intervention–MICCAI 2015: 18th International
Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18.
Springer, 2015, pp. 234–241.

26. KAMNITSAS, Konstantinos; LEDIG, Christian; NEWCOMBE, Virginia FJ;
SIMPSON, Joanna P; KANE, Andrew D; MENON, David K; RUECKERT,
Daniel; GLOCKER, Ben. Efficient multi-scale 3D CNN with fully connected
CRF for accurate brain lesion segmentation. Medical image analysis. 2017,
vol. 36, pp. 61–78.

27. WANG, Ziyang. Deep Learning in Medical Ultrasound Image Segmentation: a
Review. 2021. Available from arXiv: 2002.07703 [eess.IV].

28. NOH, Hyeonwoo; HONG, Seunghoon; HAN, Bohyung. Proceedings of the IEEE
International Conference on Computer Vision (ICCV). Learning Deconvolution
Network for Semantic Segmentation. 2015.

29. CUNNINGHAM, Ryan; SÁNCHEZ, Maria B; LORAM, Ian D. Ultrasound seg-
mentation of cervical muscle during head motion: A dataset and a benchmark
using deconvolutional neural networks. 2019.

30. KIM, Sekeun; JANG, Yeonggul; JEON, Byunghwan; HONG, Youngtaek; SHIM,
Hackjoon; CHANG, Hyukjae. Fully automatic segmentation of coronary ar-
teries based on deep neural network in intravascular ultrasound images. In:
Intravascular Imaging and Computer Assisted Stenting and Large-Scale Anno-
tation of Biomedical Data and Expert Label Synthesis: 7th Joint International
Workshop, CVII-STENT 2018 and Third International Workshop, LABELS
2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16,
2018, Proceedings 3. Springer, 2018, pp. 161–168.

31. RONNEBERGER, Olaf; FISCHER, Philipp; BROX, Thomas. U-Net: Convo-
lutional Networks for Biomedical Image Segmentation. 2015. Available from
arXiv: 1505.04597 [cs.CV].

APPENDIX B. REFERENCES 61

32. LEI, Yang; TIAN, Sibo; HE, Xiuxiu; WANG, Tonghe; WANG, Bo; PATEL,
Pretesh; JANI, Ashesh B; MAO, Hui; CURRAN, Walter J; LIU, Tian, et al.
Ultrasound prostate segmentation based on multidirectional deeply supervised
V-Net. Medical physics. 2019, vol. 46, no. 7, pp. 3194–3206.

33. AKKUS, Zeynettin; GALIMZIANOVA, Alfiia; HOOGI, Assaf; RUBIN, Daniel
L; ERICKSON, Bradley J. Deep learning for brain MRI segmentation: state of
the art and future directions. Journal of digital imaging. 2017, vol. 30, pp. 449–
459.

34. KURAMA, Vihar (comp.). PyTorch vs. TensorFlow: Key Differences to Know
for Deep Learning [online]. Built In: National Tech Startups, 2022-06-10 [vis-
ited on 2023-05-07]. Available from: https://builtin.com/data-science/
pytorch-vs-tensorflow.

35. Keras Tutorial [online]. Javatpoint, 2022-06-10 [visited on 2023-05-07]. Avail-
able from: https://www.javatpoint.com/keras.

36. What is NumPy? [online]. NumPy, 2022 [visited on 2023-05-08]. Available from:
https://numpy.org/doc/stable/user/whatisnumpy.html.

37. TEAM, OpenCV (comp.). About [online]. OpenCV, 2023 [visited on 2023-05-
08]. Available from: https://opencv.org/about/.

38. PEDREGOSA, Fabian; VAROQUAUX, Gaël; GRAMFORT, Alexandre; MICHEL,
Vincent; THIRION, Bertrand; GRISEL, Olivier; BLONDEL, Mathieu; PRET-
TENHOFER, Peter; WEISS, Ron; DUBOURG, Vincent; VANDERPLAS, Jake;
PASSOS, Alexandre; COURNAPEAU, David; BRUCHER, Matthieu; PER-
ROT, Matthieu; DUCHESNAY, Édouard. Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research. 2011, vol. 12, no. 85, pp. 2825–
2830. Available also from: http://jmlr.org/papers/v12/pedregosa11a.
html.

39. Sponsored Projects [online]. Austin: NumFOCUS, 2023 [visited on 2023-05-08].
Available from: https://numfocus.org/sponsored-projects.

40. API Reference [online]. Matplotlib - Visualization with Python, 2023 [visited on
2023-05-08]. Available from: https://matplotlib.org/stable/api/index.
html#module-pylab.

41. Jupyter Notebook: What is Jupyter Notebook? [online]. San Francisco: Domino
Data Lab, Inc., 2023 [visited on 2023-04-11]. Available from: https://www.
dominodatalab.com/data-science-dictionary/jupyter-notebook.

42. About MetaCentrum [online]. Prague: MetaCentrum (MetaVO) - virtuální or-
ganizace pro celou akademickou obec, 2021-12-23 [visited on 2023-04-11]. Avail-
able from: https://metavo.metacentrum.cz/en/about/index.html.

43. TensorFlow normalize [online]. EDUCBA | Best Online Training Video Courses
Certification, 2023 [visited on 2023-05-09]. Available from: https : / / www .
educba.com/tensorflow-normalize/.

44. tf.keras.layers.Normalization [online]. TensorFlow, 2023-03-23 [visited on 2023-
05-09]. Available from: https://www.tensorflow.org/api_docs/python/tf/
keras/layers/Normalization.

APPENDIX B. REFERENCES 62

45. Python zip() Function [online]. W3Schools Online Web Tutorials, 2023 [visited
on 2023-05-12]. Available from: https://www.w3schools.com/python/ref_
func_zip.asp.

46. WIKIDOCS. Examples of Image Augmentation. 2023. Available also from: https:
//wikidocs.net/images/page/164364/Augmentationpng.png. [Online; ac-
cessed May 17, 2023].

