

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF BIOMEDICAL ENGINEERING

Department of Biomedical Technology

Kladno 2023

A tool for RNAseq data processing in patients with leukemia

Master thesis

Study programme: Biomedical and Clinical Informatics

Specialization: Software Technologies

Supervisor of the master thesis: Ing. Ondřej Klempíř, Ph.D.

Consultant of the master thesis: Mgr. Pavla Suchánková

Bc. Michaela Součková

DECLARATION

I hereby declare that I have completed this thesis with the topic “A tool for RNAseq data

processing in patients with leukemia” independently, and that I have attached an

exhaustive list of citations of the employed sources.

I do not have a compelling reason against the use of the thesis within the meaning of

Section 60 of the Act No. 121/2000 Sb., on copyright, rights related to copyright and

amending some laws (Copyright Act).

In Kladno 18.5.2023 Bc. Michaela Součková

ACKNOWLEDGEMENTS

This endeavour would not have been possible without my supervisor, Ing. Ondřej

Klempíř, Ph.D., and my consultant, Mgr. Pavla Suchánková, to whom I am grateful for

their patience and feedback.

Special thanks to The Institute of Hematology and Blood Transfusion for an

invaluable internship opportunity.

Computational resources were provided by the e-INFRA CZ project (ID:90254),

supported by the Ministry of Education, Youth and Sports of the Czech Republic. Thanks

should also go to their inestimable user support.

ABSTRACT

A tool for RNAseq data processing in patients with leukemia:

The aim is to develop a bioinformatic Nextflow pipeline that would analyse RNAseq data

of leukemic patients with the emphasis on fusion gene detection. Since gene fusions are

believed to be associated with tumour phenotype, they have been of significant

importance for clinical purposes, as well as for understanding tumorigenesis.

With mapping current trends in RNAseq data processing and fusion detection, we provide

a modular workflow consisting of processes that leverage suitable bioinformatic tools and

manage fusion gene detection along with pre-processing and validation. The detected

fusion candidates are preprepared as a formatted summary table for subsequent expert

analysis.

Keywords

RNAseq, fusion gene, Nextflow

7

Table of Contents

List of symbols and abbreviations ... 9

1 Introduction.. 10

2 Biological background and clinical motivation ... 11

2.1 Fusion Mechanism ... 11

2.1.1 DNA and RNA ... 11

2.1.2 End-to-End directionality ... 12

2.1.3 Genome and genes .. 12

2.1.4 Gene expression and transcriptome .. 13

2.1.5 Gene fusions ... 14

2.2 Clinical practice .. 15

2.2.1 Chronic myeloid leukemia ... 16

3 Overview of the current state of the art ... 18

3.1 Next-Generation Sequencing ... 18

3.1.1 Sequencing ... 18

3.1.2 Generations ... 18

3.1.3 Terminology ... 19

3.1.4 NGS workflow.. 19

3.2 NGS data processing .. 20

3.2.1 Primary analysis ... 21

3.2.2 Secondary analysis ... 21

3.2.3 Tertiary analysis ... 23

3.3 Fusion gene detection ... 24

3.3.1 Mapping-first approach .. 25

3.3.2 Fusion expression levels and fusion allelic ratios 27

4 Aims of thesis .. 29

5 Methods .. 30

5.1 Nextflow ... 30

5.2 MetaCentrum .. 31

5.3 Docker .. 32

5.4 Kubernetes .. 33

5.5 Data processing tools ... 33

8

5.5.1 Fastp ... 36

5.5.2 STAR .. 36

5.5.3 Samtools ... 37

5.5.4 JAFFA .. 37

5.5.5 FusionCatcher ... 39

5.5.6 Arriba .. 39

5.5.7 STAR-Fusion .. 40

5.5.8 Cicero ... 41

5.5.9 FusionInspector .. 41

6 Design and implementation .. 43

6.1 Workflow ... 43

6.2 Dockerization ... 46

6.3 Input files .. 47

6.4 Nextflow implementation ... 47

6.4.1 Input parameters ... 48

6.4.2 Nextflow workflows and modules.. 48

6.4.3 Processes and channels ... 49

6.4.4 Configuration .. 51

6.5 Output files ... 52

6.5.1 Naming convention .. 52

6.5.2 Directory tree .. 53

6.5.3 Final_result_table.xlsx.. 53

6.5.4 Visualisation ... 57

7 Results ... 58

7.1 Testing data .. 58

7.2 Real data running example ... 58

7.2.1 Execution time and resource management ... 59

7.2.2 Output files ... 62

7.2.3 Detected Fusion Gene Candidates .. 68

8 Discussion ... 69

9 Conclusions ... 70

List of Literature ... 71

9

List of symbols and abbreviations

List of abbreviations

Abbreviation Meaning

bp Base pairs

cDNA Complementary DNA

CML Chronic myeloid leukemia

CPU Central Processing Unit

DNA Deoxy nucleic acid

FAR Fusion allelic ratio

FFPM Fusion fragment per million

HTML Hypertext Markup Language

ITD Internal tandem duplication

JSON JavaScript Object Notation

JVM Java Virtual Machine

MR Molecular response

mRNA Messenger ribonucleic acid

NGS Next-Generation Sequencing

OS Operating system

PCR Polymerase chain reaction

RAM Random access memory

RNA Ribonucleic acid

RNAseq RNA Sequencing

10

1 Introduction

Transcriptome sequencing (RNAseq) is a method that rapidly emerged

with the advent of Next-Generation Sequencing (NGS). By the virtue of these quickly

developing technologies, we could witness an extensive research on human genomic

aberrations that are believed to be cause factors of variety of illnesses. Among

these variations, gene fusions have been of great interest due to their associations

with cancer [1].

Gene fusions are hybrid genes formed from two previously separate genes and can

occur as a result of a translocation, deletion, or chromosomal inversion [2]. Their analysis

from RNAseq data is now almost a routine task in cancer research and oncological clinical

practice, since they are ideal for diagnostic purposes, enable the subclassification

of disease entities and affect sensitivity to relevant drugs [1]. A canonical example is

BCR::ABL1 that is believed to be necessary for chronic myeloid leukemia initiation

and maintenance and is found in ~95% of patients [3].

The analysis of RNAseq data, such as gene fusion detection, is not straightforward,

as it requires a series of distinct steps that are often computationally demanding [4] and

each has its own set of inputs and outputs, which may or may not be shared between them.

These sequential steps collectively form a bioinformatics pipeline, which can

be orchestrated using a Bash script. However, this approach comes with various

downsides, including issues with portability, difficulty in incorporating additional steps,

and optimizing resources and performance. Furthermore, documenting pipelines written

in this manner is demanding and problematic, requiring extensive technical knowledge.

In response to these challenges, contemporary trends in bioinformatics pipeline

development use Nextflow [5], an open-source framework for bioinformatics workflow

management, which utilises parallelisation and distributed computing.

The aim of this thesis is to create a fusion gene detection pipeline leveraging

the abilities of Nextflow along with Docker technologies that will process data from RNA

sequencing of leukemia patients and provide a summary of fusion gene candidates

preprepared for expert analysis.

11

2 Biological background and clinical motivation

2.1 Fusion Mechanism

2.1.1 DNA and RNA

Genetic instructions, which are required for the development, function,

and reproduction of all known living organisms, are carried in nucleic acids - deoxy

nucleic acid (DNA) and ribonucleic acid (RNA) [6]. "These macromolecules contain

the information for determining the amino acid sequence, and hence the structure

and function of all the proteins of a cell, are part of the cellular structures that select

and align amino acids in the correct order as a polypeptide chain is being synthesised

and catalyse a number of fundamental chemical reactions in cells, including formation

of peptide bonds between amino acids during protein synthesis." [7]

The nucleic acids are chemically similar. The linear structures of both are linear

polymers composed of monomers called nucleotides, all of which have a common

structure. A phosphate group is linked by a phosphoester bond to pentose (ribose for RNA

and deoxyribose for DNA) that in turn is linked to a nitrogen- and carbon-containing ring

structure commonly referred to as a base. [2] There are five bases: purines, adenine

and guanine, and pyrimidines, cytosine, thymine, and uracil. The bases are often referred

to by their first letter, A, G, C, T, and U. Sometimes, these single-letter abbreviations

are also commonly used to denote the entire nucleotides. In DNA we can find only A, G,

C and T, and in RNA thymine is replaced by uracil [6].

Figure 2.1: DNA and RNA [8]

As seen in Figure 2.1, DNA is made of two strands of polynucleotide chains coiled

around each other in a double-helix structure and can be as long as several hundred

million nucleotides [7]. The sugar and phosphate groups lie outside the molecule, and

the purines and pyrimidines lie inside the molecule. A always pairs with T, and G always

12

pairs with C, creating the so-called base pairs (bp) [9]. On the other hand, RNA is

a single-stranded molecule of less than 100 to many thousands of nucleotides [7].

2.1.2 End-to-End directionality

A nucleic acid strand has an end-to-end chemical orientation: the 5' end has

a hydroxyl or phosphate group on the 5' carbon of its terminal sugar; the 3' end usually

has a hydroxyl group on the 3' carbon of its terminal sugar. [7] The two chains of DNA

are said to be antiparallel because they lie in the opposite orientation with respect to one

another, with the 3'-hydroxyl terminus of one strand opposite the 5'-phosphate terminus

of the second strand. [9]

Few conventional terms are used to refer to each strand and its directionality.

- DNA is double-stranded. By convention, for a reference chromosome, one whole

strand is called the forward strand (+) and the other the reverse strand (-).

- Sequences are conventionally written and read in the 5'->3' direction, since

the synthesis proceeds in that direction.

- The mRNA sequence of a gene corresponds to the DNA sequence as read from

the gene's coding strand. Therefore, the mRNA sequence always corresponds

to the 5-3 coding sequence of a gene.

- If a sequence is considered in reverse, then it is formed by reversing the order

of the letters. If a sequence is considered as a complement, then it is formed

by swapping each base for the other one in its base pair. [9]

2.1.3 Genome and genes

A genome is all of an organism’s DNA sequence [6]. Humans have 46 DNA

molecules in each somatic cell, each of which forms one chromosome. We inherit 23

chromosomes from each parent, where each set of 23 chromosomes encodes a complete

copy of our genome and is made up of 6 × 109 nucleotides [9].

The genome of cellular organisms has regions that contain the instructions

for making proteins, so-called coding regions, but it may also have regions used

to produce molecules other than proteins or regions that regulate the rates by which other

processes take place.

A gene is considered the fundamental unit of inheritance. It is a segment of DNA

that specifies the structure of proteins that are responsible for the phenotype (observable

traits of an organism) associated with a particular gene. The estimated number of genes

in human DNA ranges from 30 000 to 120 000 genes. [10]

13

All genes are in almost every cell, however, only some of the genes are used in any

particular cell at any given time. When and in what tissue a gene is expressed is controlled

by a specific region of a gene, called promoter. The structure of a gene's protein

is specified by the gene's coding region. [10]

These coding regions of most genes are not continuous, as seen in Figure 2.2.

The areas that are transcribed into mRNA are called exons. However, exons can

be interrupted by areas that do not appear in mature mRNA, called introns. The purpose

of these parts is not yet fully known. [10]

Figure 2.2: The process of transcription from DNA to mRNA [8]

2.1.4 Gene expression and transcriptome

The process of going from DNA to a functional product (e.g., protein) is known as

gene expression. The 'central dogma' of molecular biology states that DNA-encoded

genetic information is transcribed to mRNA and then translated to protein [11].

The transcription process involves creating an RNA copy of the gene using the DNA of

the gene as a template. The translation of mRNA into protein is a process of decoding

the structural message in mRNA and synthesis of a given protein. [10]

The identity of each gene expressed in a particular cell at a given time and its level

of expression is defined as the transcriptome [10]. The transcriptome is the complete set

of coding and noncoding RNAs that are transcribed at a specific developmental stage

and/or are present under various physiological conditions within a cell type or tissue [12].

14

2.1.5 Gene fusions

Gene fusion refers to the formation of a new chimeric transcript or gene structure as

a result of joining complete or partial sequences of two or more exons of different genes

that have the potential to encode new proteins with new functions [4]. Gene fusions are

formed by chromosomal rearrangement, including translocation, inversion, deletion, or

tandem duplication [2]. These formations can be observed in all domains of life and are

a constant source of new genes, which can be beneficial, but may also lead to abnormal

cell proliferation and cancer [4].

Taking into account their prevalence and common characteristics in diverse types of

human cancer, gene fusions are always regarded a distinct class of mutations [13],

and have been used successfully as diagnostic tools [2].

For the terminology clarification, gene fusion refers to DNA-level fusion events,

and chimeric RNA refers to any transcript composed of exons from different parental

genes, including gene fusion transcripts. Chimeric RNA can be a product of gene fusion,

but can also be generated by trans-splicing of two separate precursor mRNAs

and alternative splicing of a readthrough transcript (in these cases it cannot be detected

by DNA-based assays, as they are produced in the absence of chromosomal

rearrangement, and therefore RNA-based analysis should be used). [2]

Both gene fusions and chimeric RNAs have strong associations with cancer and have

major impacts on cancer diagnosis and treatment; however, detection of either is not

necessarily indicative of cancer. [2] An example of a gene fusion is BCR::ABL1, which

is significant for chronic myeloid leukemia, as described below.

As shown in the Figure 2.3.a, “gene fusions may originate through balanced

and unbalanced chromosome rearrangements. Balanced changes comprise

translocations (the transfer of chromosome segments between chromosomes), insertions

(a chromosome segment in a new interstitial position in the same or another

chromosome) and inversions (a rotation of a chromosome segment by 180 degrees).” [1]

Both balanced and unbalanced aberrations may lead to the deregulation of either gene A

or gene B in one of the breakpoints by the juxtaposition of the coding sequences with

the regulatory sequences of the gene in the other breakpoint, or by the creation of

a chimeric gene through the fusion of parts of the two genes, one in each breakpoint [1],

as seen in the Figure 2.3.b.

15

Figure 2.3: The chromosomal basis of gene fusions. a: Balanced and unbalanced

rearrangements. Small grey arrows indicate breakpoints, and the large arrows indicate

the resulting rearranged chromosomes. A and B signify affected genes. b: Possible outcomes of

rearrangements. Small grey arrows indicate breakpoints. [1]

2.2 Clinical practice

Gene fusions are a prototypical example of a pathognomonic mutation, in a sense

they are characteristic for a particular disease, and the detection and characterisation of

gene fusions have been of great importance for clinical purposes, as well as for

understanding tumorigenesis [1]. Thousands of fusion genes have been identified in

cancer patients, but the functional consequences and therapeutic implications of most of

these remain largely unknown. [14, 15]

Gene fusions have now been identified in several common carcinomas, including

those of the prostate, lung, breast, head and neck, brain, skin, gastrointestinal tract,

and kidney, which, along with widely documented gene fusions in thyroid and salivary

gland tumours, support the notion that gene fusions are integral to the genomic landscape

of most cancers. [16]

The close association between the type of gene fusion and the tumour phenotype

makes gene fusions ideal for diagnostic purposes, enabling the subclassification of

otherwise seemingly identical disease entities [1]. Some fusions were identified to

markedly affect sensitivity to relevant drugs [14]. In addition, many gene fusions add

important information for risk stratification, and increasing numbers of chimeric proteins

16

encoded by the gene fusions serves as specific targets for treatment, resulting in

dramatically improved patient outcomes. [1, 17]

For example, gene fusions that involve oncogenes such as ERG, ETV1, TFE3, NUT,

POU5F1, NFIB, PLAG1 and PAX8 are diagnostically useful. Tumours with fusions

involving therapeutically targetable genes such as ALK, RET, BRAF, RAF1, FGFR1–4,

and NOTCH1–3 have immediate implications for precision medicine across tissue types

[16].

Gene fusions are also frequently seen in leukemia and several of the recurrent gene

fusions are required for subgrouping of leukemia and prognostication [18].

Characterisation of oncogenic fusion BCR::ABL1 at t(9,22) translocation loci in chronic

myeloid leukemia, the first gene fusion described in cancer, culminated in

the development of a molecularly targeted therapy, provides a compelling paradigm of

'bench-to-bedside' for cancers [16, 19].

2.2.1 Chronic myeloid leukemia

Chronic myeloid leukemia (CML) is a myeloproliferative disorder. It is

characterised by a biphasic or triphasic clinical course in which a terminal blastic phase

follows a chronic phase of variable duration. [20] CML is a rare disease with an incidence

of 1 or 2 cases per 100 000 people every year, and is most common in older people,

with a median age at diagnosis of around 65 years, where men are affected more

frequently than are women [21].

Figure 2.4: Structure of the BCR::ABL1 oncogene. Schematic representation of the t(9;22)

(q34;q11) translocation triggering the Philadelphia chromosome. [22]

17

CML was the first neoplastic disease for which knowledge of the genotype led to

rationally designed therapy [21]. On a molecular level, most patients demonstrate

BCR::ABL1 fusion genes, which are the result of a translocation between chromosomes

9 and 22, see Figure 2.4. This translocation leads to a shortened chromosome 22, called

the Philadelphia chromosome [2, 18, 20, 21], and its chimeric transcript encodes a

fusion protein that is an altered constitutively active ABL1 kinase [2]. Only in about 5%

of cases the Philadelphia chromosome cannot be detected [3], and confirmation of

diagnosis is dependent on finding the BCR::ABL1 transcript [21].

18

3 Overview of the current state of the art

3.1 Next-Generation Sequencing

3.1.1 Sequencing

Sequencing is a process to determine the order of bases in DNA/RNA [6]. In this

thesis, the focus is mainly on RNA sequencing (RNAseq or transcriptome sequencing),

a tool used to study the transcriptome, the total RNA molecules present in one or

a collection of cells, providing the knowledge of gene regulation and protein content

information. RNAseq provides insight into differential expression of genes, differently

spliced transcripts, gene alleles, noncoding and small RNAs, alternative splicing, or also

gene fusions. RNA sequencing has also been used to discover novel gene sequences in

transcriptomes. [4, 23]

3.1.2 Generations

The term "generation" refers to the chemistry and technology used by the sequencing

process. First-generation sequencing denotes Sanger sequencing. Frederic Sanger stood

at the very beginning of DNA sequencing in 1972. He came with a method for "DNA

sequencing with chain-terminating inhibitors", which became popular and led to many

biological successes including the first sequence of human genome in 2001. However,

the method did not observe rapid changes for the next three decades. [23]

Around 2005, Next-Generation Sequencing (NGS) was introduced [3] and is

termed second generation sequencing. This method has been able to parallelise

the sequencing reactions in a massive manner, and therefore generate a huge amount of

data very rapidly at a modest cost. [23]

And that is the main difference between Sanger (traditional) sequencing and NGS.

“Sequencers based on Sanger sequencing produce a read length (the length of DNA

fragment that can be sequenced at a time) of 800-1000 bp. Because only one read can be

sequenced in one capillary of the sequencer at a time, the total output of the run is equal

to the read length. However, sequencers with multiple capillaries allow us to sequence

multiple samples at a time, for example 8, 16, 48, or 96. On the other hand,

next-generation sequencers work on the principle of sequencing millions of DNA

fragments simultaneously in a massively parallel mode and produce sequence data in

megabases, gigabases, and now terrabases. The whole genome or transcriptome of

an organism is fragmented into millions of small pieces and sequenced independently in

parallel.” [23]

19

The third-generation sequencing (also next-NGS) refers to technologies which were

developed to make sequencing cheaper than second-generation sequencing. This method

interrogates molecules of DNA without amplifying them through PCR. [23, 24]

The invention of NGS enabled researchers and clinicians to study biological systems

at a level and resolution never before possible. The enormous information produced by

NGS helps to understand genomic variations, disease mechanisms, and resistance,

helping to develop better diagnostics, therapies, and better breeds. [23]

3.1.3 Terminology

The terms important for the understanding of NGS are described below:

- The template is a DNA/RNA sequence part of which is sequenced on

a sequencing machine or assembled from raw sequences [25].

- In NGS, a library is defined as a collection of RNA fragments that represents

either the entire transcriptome or a target region. Each NGS platform has its

specificities, but, in simple terms, the preparation of an NGS library starts with

the fragmentation of the starting material; then sequence adaptors are connected

to fragments to allow the enrichment of those fragments. [24]. In other words,

library is a set of nucleic acid fragments which has undergone all processing steps

and is ready for actual sequencing.

- A read is a raw sequence that comes from a sequencing machine. The read may

consist of multiple segments. For sequencing data, reads are indexed by the order

in which they are sequenced [25].

- Single-end sequencing refers to reading a fragment where the fragment is read

from one end only during sequencing. On the other hand, paired-end sequencing

allows to sequence both ends of a fragment, producing twice the number of reads

for the same time and effort in library preparation and providing more accurate

read alignment and the ability to detect insertion-deletion variants, which is not

possible with single-read data [26]. An additional advantage of paired-end

RNAseq is the opportunity to detect chimeric transcripts resulting from gene

fusion events when sequencing cancer transcriptomes [4].

3.1.4 NGS workflow

NGS platforms, depending on the technology used, differ from each other in terms

of read length, data produced, and data quality. NGS can also be used in a number of

ways depending on the application, which can be classified into whole genome

sequencing, whole exome sequencing, whole transcriptome sequencing and can also be

applied to a subset of genes (targeted sequencing) [27]. However, in every type of

20

sequencing, the major changes occur in the sample processing and library preparation

steps. Once the library is prepared, a particular sequencing platform can use the same

chemistry to sequence the fragments. [23]

The next-generation RNA sequencing workflow itself is divided into four main steps.

1. First, before preparing an RNA library itself, some preparations may need to be

made first. For RNA sequencing, total RNA is isolated from a sample of interest,

which, depending on the type of RNA to be profiled, may be purified to enrich

for mRNAs, microRNAs, lincRNAs, etc.

2. Second, library preparation, which may involve steps such as reverse

transcription to cDNA (complementary DNA), PCR amplification, and may or

may not preserve strandedness information [4].

3. The third step generates the actual sequence via the chemistries for each

technology [28]. Sequencing can produce one read in a single-end sequencing

reaction, or two ends separated by an unsequenced fragment in paired-end

reactions [4].

4. And last but not least, when the signal is converted to data, the data need to be

converted to interpretable information, and the information into actionable

knowledge, all as part of downstream data processing [23], on which we focus

more in Section 3.2 NGS data processing.

When NGS was introduced, the main challenges started to shift from sequencing

itself to downstream bioinformatics. Technological advances make it continually faster

and cheaper to produce genomic sequence data than to store, manage, and analyse them

[29], leading to a "data deluge" problem. For example “the compressed single-end

sequencing data from one flow cell of an Illumina HiSeq 2500 might be 20 GB and twice

as large once uncompressed to allow for processing and manipulation.” [4]

3.2 NGS data processing

Downstream data analysis of RNA sequencing data consists of quality control,

trimming of sequencing adapters, and removal of reads with poor quality scores, followed

by mapping reads, differential expression analysis, identification of novel transcripts,

and pathway analysis [4].

In general, the NGS data processing workflow can be broken down into three main

components: primary, secondary, and tertiary analyses [24].

21

3.2.1 Primary analysis

Primary analysis consists of the detection and analysis of raw data (signal analysis),

targeting the generation of legible sequencing reads (base calling) and scoring base

quality [24], resulting in, for example, FASTQ files. However, this whole process takes

place primarily on board the NGS instrument [23]. Primary analysis also includes

the pre-processing of NGS reads to ensure that only high-quality reads of the optimal

length are used for downstream analysis.

Pre-processing prepares sequences for read alignment and can include read filtering,

demultiplexing, and trimming [4]:

- Filtering is a process in which reads are filtered out of the data based on base call

quality (Phred score) and the length of the read. Poor confidence-base calls can

lead to the detection of false-positive variants, so they need to be removed. Reads

that are too short are likely to align with multiple regions in the genome and cause

poor mapping metrics.

- Multiplexing in NGS refers to multiple samples being sequenced simultaneously

on the same instrument. Thus, demultiplexing is needed and refers to

the separation of sequencing reads into separate files according to the barcode

index used for each sample.

- Trimming removes adaptor sequences ligated to the ends of libraries during

the library preparation process, as they can interfere with mapping and assembly.

The reads are also trimmed to remove poor quality bases from the ends of

the reads. [30]

3.2.2 Secondary analysis

Making sense of RNAseq data is very dependent on the question of interest.

However, the main steps are common for most applications: read mapping, quantifying

the expression levels of genes, transcripts, and exons, and then differential analysis of

gene expression. [31]

After direct sequencing of the cDNA fragments, it is not known which reads came

from which transcripts. Therefore, transcripts need to be reconstructed by mapping short

RNAseq reads [32].

There are two main strategies (see Figure 3.1):

- The de novo assembly approach is used when working on an organism without

a reference genome [33]. Reads are first assembled into longer contigs, and these

contigs can then be considered as the expressed transcriptome to which reads are

remapped for quantification [34].

22

- The second approach is aligning the reads to a reference genome or reference

transcripts [33]. This approach allows the discovery of new, unannotated

transcripts [34].

Figure 3.1: Strategies for reconstructing transcripts from RNAseq reads [32]

After read mapping, the following step is read counting and quantification of

expression levels of genes, transcripts, and exons [31], where gene expression is

measured by the number of reads mapped to a gene [35]. Obtaining the transcriptome

expression profile requires genomic elements (i.e. genes, transcripts, or exons) to be

defined in the context of the genome. There are many aspects that affect gene

quantification, from the choice of genome annotation [36] to taking into account

alternative RNA splicing [37] and isoforms [36]. Gene quantification algorithms can be

divided into two categories: transcript‐based approaches and union‐exon‐based

approaches [31].

The next important step is normalisation. The aim is to remove systematic technical

effects that occur in the data [38]. The easiest way to normalise the difference in the sizes

of the sequencing library is to rescale the total read counts, but this approach is too simple,

because the RNA sequencing counts inherently represent the relative abundances of genes

23

in a sample. The number of reads mapped to a gene is not only dependent on

the expression level and length of the gene, but also on the composition of the RNA

population that is being sampled [31].

The main aim of most RNA‐seq studies is differential analysis to identify

differentially expressed genes between distinct sample groups [31]. “Differential

expression analysis means taking the normalised read count data and performing

statistical analysis to discover quantitative changes in expression levels between

experimental groups. For example, we use statistical testing to decide whether, for

a given gene, an observed difference in read counts is significant, that is, whether it is

greater than what would be expected just due to natural random variation.” [34]

Methods for differential gene expression analysis can be grouped into two

subsets [39]:

1. Parametric methods capture all information about the data within

the parameters. Each expression value for a given gene is mapped into

a particular distribution, such as the Poisson or negative binomial.

2. Non-parametric methods can capture more details about the data distribution,

i.e., not imposing a rigid model to be fitted. It is possible because non-parametric

models take into consideration that data distribution cannot be defined from

a finite set of parameters, thus the amount of information about the data can

increase with its volume. [39]

There is no consensus about which methodology is most appropriate or which

approach is better in terms of robustness, accuracy, and reproducibility. The results of

differential gene expression analysis are influenced by many factors at almost every step

of the RNAseq analysis, from library preparation and structure of the experiment [39], to

normalisation [31].

Gene fusion detection, which is part of the secondary analysis, is described in more

detail in Section 3.3 Fusion gene detection.

3.2.3 Tertiary analysis

Last but not least, the relevance of the data produced is evaluated from a biological

context [39] as the final step of the entire bioinformatic analysis pipeline. To cite Sean

Scott from QIAGEN in Tanya Samazan's article [40] “The core of tertiary analysis is

what we refer to as ‘interpretation.’ Interpretation involves the biological classification

of observed variants, determination of the clinical relevance of these variants, the deemed

action-ability of these variants in terms of treatment options and extends to the ordering

physician in terms of how clinically helpful the results or recommendations are.”

24

And he also continues “When a cancer patient has progressed to a late-stage cancer,

they’ve moved through the initial steps of standard care practices and they’re looking for

alternative treatment and/or investigational drug options. Interpretation can involve not

just the molecular and genomic profiling of a patient, but the assessment of how

the diagnostic, theranostic, resistance or prognostic data enables a medical oncologist

to identify and select the right targeted therapies or combination of therapies for their

patient, based upon the evidence indicating that the treatment(s) may be efficacious for

a patient-specific cancer type and genomic molecular profile and likely improve

the patient’s outcome.”

3.3 Fusion gene detection

A number of new software tools have quickly emerged to identify structural variants,

as well as gene fusions resulting from these variants [27]. Implementations of the various

prediction methods vary in the read alignment tools employed, the genome

database and gene set resources used, and criteria for reporting candidate fusion

transcripts and for filtering out likely false positives [3]. Available fusion predictors vary

in prediction accuracy [19], installation complexity, execution time, robustness,

and hardware requirements [3].

Fusion genes in cancer samples can be detected by finding novel transcripts in

RNAseq data [41]. In RNAseq datasets (as well as in DNAseq), gene fusion detection is

based on unmapped and discordant read fragments. In RNAseq, fusion detection is further

complicated by intron–exon boundaries [19]. Based on computational strategies for

fusion gene detection, the methods can be grouped into two categories [27, 42]

(see Figure 3.2):

1. Mapping-first approaches that align RNAseq reads to genes and genomes to

identify discordantly mapping reads that are suggestive of rearrangements [3].

The mapping-first approach is faster and more commonly used, than

the assembly-first approach [27] and therefore discussed in more detail below.

2. Assembly-first approaches that directly assemble reads into longer transcript

sequences followed by identification of chimeric transcripts consistent with

chromosomal rearrangements. [3]. For an assembly algorithm, if it assembles

short reads directly without mapping them to the references, then it is called

de novo assembly. The exclusive advantage of de novo assembly is that it does

not need a reference genome/transcriptome for fusion detection, however, it can

be too time-consuming and too error prone. [27]

The fusion gene detection methods overall follow the same three steps: mapping and

filtering, fusion junction detection, and assembly and selection of the fusion gene. [27]

25

Figure 3.2: Methods for fusion transcript prediction and accuracy evaluation. [3]

Evidence supporting predicted fusions is typically measured by the number of

RNAseq fragments found as chimeric (split or junction) reads that directly overlap

the fusion transcript chimeric junction, or as discordant read pairs (bridging read pairs or

fusion spanning reads) where each pair of reads maps to opposite sides of the chimeric

junction without directly overlapping the chimeric junction itself. [3]

3.3.1 Mapping-first approach

As illstrated in Figure 3.3, the initial step is mapping (among the known and widly

used mapping tools are for example Bowtie, STAR or BLAT) followed by evaluation of

each aligned read (pair) [27, 42]. The reads unrelated to fusions are removed from further

26

consideration. The methods that are based primarily on ‘split reads’ filter out all mapped

reads. However, for methods that exploit ‘spanning reads’, all discordantly mapped pairs

are preserved. In addition to discordantly mapped reads, the unmapped reads (potentially

‘split reads’) are also kept, in order to assist in the selection of fusion candidates [27],

[43].

To further discard reads that are less likely to harbor fusions, most fusion gene

detection tools developed an additional filtering techniques [27, 44, 45]. An example of

a commonly used filter relates to intra-chromosomal fusion. A fusion candidate is

discarded if the distance between its fusion partner genes is smaller than D (a defined

threshold), suggesting that it is a read-through transcription and not an intra-chromosomal

fusion. [27, 44]

Figure 3.3: A procedure to detect gene fusions through the mapping-first

approach [27]

27

Next step is the detection of fusion junctions through either ‘split read’ or ‘spanning

read’ mapping [27, 45]. Spanning reads contain one read located in different genes, while

split reads indicates a single read overlapping on two different genes [45].

1. When leveraging the ‘split reads’, the unmapped reads are cut into multiple

pieces. The first and last segments of each ‘split read’ are then mapped against

the reference sequences independently. If the two end segments of a ‘split read’

are mapped to two different chromosomes or genes, then the read is potentially

from a fusion gene. Once this alignment pattern is detected, the precise location

of the fusion junction can then be found by adjusting the boundaries of

the original fragments and performing realignment. [27]

2. A different strategy to detect fusion junctions is to infer fusion breakpoints from

‘spanning reads’ and then select those predictions that are likely to be real using

‘split reads’ [27, 42]. Discordant alignments are first grouped into clusters, each

consisting of a maximal set of reads that share the same pair of breakpoints. Then,

the boundary region of each candidate fusion junction is identified from its

cluster. Next, fusion junction loci are inferred and putative fusion transcripts are

predicted. Finally, unmapped reads are aligned to the predicted fusion transcripts.

The predictions, to which the highest number of unmapped reads is aligned, are

nominated as candidate fusion genes. [27]

After identifying fusion junctions, the sequence of each candidate fusion gene can be

derived by joining the two partner genes together. Previously unmapped reads are then

aligned to the candidate fusions. Reads mapped in this step (called ‘supporting reads’)

provide an additional layer of confidence to the fusion candidates [42].

Many existing methods require the presence of supporting reads as a prerequisite to

nominate a fusion. The requirement for more supporting reads removes more inauthentic

candidates, however, by risking discarding true fusion genes of low transcription level or

coverage. [27]

To help distinguish true fusions from candidates expressed at low transcription

levels, it is common to include scoring functions to rank fusion candidates [42].

The candidates with the maximum likelihood to be real fusions are selected as final

outputs. These scoring functions are mostly based on features including mapping quality

[27, 43], number of supporting reads and read depths. [27]

3.3.2 Fusion expression levels and fusion allelic ratios

After predicting the fusion candidates, it is a good practise to provide a reasoning

about the quality of evidence supporting the fusion genes, since they can be biologically

relevant or derived from an experimental or bioinformatic artifact. Here we present two

28

characteristics of relevance, fusion fragment per million and fusion allelic ratios, as we

include them in the output file. These values are used in a so called COSMIC like fusion

prediction. [46]

Fusion fragment per million (FFPM) is a normalized measure of the quantity of

RNAseq fragments supporting the fusion event, in a sense it represents the fusion

fragments per million total reads and can be used as an approximation for fusion

expression level [46, 47].

Fusion allelic ratios (FAR) is computed as a pragmatic way of estimating

the relative expression of the fusion transcript as compared to the alternative non-fused

allele of the gene. FAR “is computed separately for each of the fused genes and reflects

the proportion of evidence supporting the fused-allele as compared to the number of

reads supporting the non-fused allele and overlapping the fusion transcript breakpoint.

While this is not a highly accurate measurement of the ratio of fused vs. non-fused

transcripts, it's a useful metric to serve as a proxy for this information.” [46]

29

4 Aims of thesis

The aim of this thesis is to develop a bioinformatic pipeline that will process data

from RNAseq analyses of leukemia patients with the objective of finding the fusion gene

candidates. The input to this pipeline will be the raw sequencer data in FASTQ format

and the output will be the analysis of fusion genes in individual patients preprepared for

expert analysis.

The sub-objectives are:

- Describe the capabilities of the NextFlow tool for the execution of bioinformatic

pipelines, including deployment.

- Create a functional bioinformatic pipeline for processing fusion gene analysis of

patient samples.

- Creation of a summary output adapted for expert analysis.

- Creation of documentation and user manuals for the installation and use of

the pipeline.

30

5 Methods

The aim of this thesis was to build a pipeline that would effectively detect fusion

genes in the given samples. For the individual tasks, including data pre-processing, fusion

genes detection, results validation, or visualisations, we chose open-source tools with

available maintained repositories based on certain criteria. To keep reproducibility and

maintenance simple, each tool was “dockerized” and the images were made available

through the Docker hub.

To connect these steps together and to create the pipeline itself, we leveraged

Nextflow, a bioinformatics framework which not only makes integrating the processes

very easy, but also simplifies the deployment on cloud or cluster and offers the resources

management.

Since the amount of data processed in such analysis is large as well as

the computational resources required by the tools, it is not always possible to run

the pipeline on commonly used personal devices. Therefore, we developed the pipeline

leveraging the grid and cloud services offered by MetaCentrum, a virtual organisation

which not only gives access to immense computational resources, but also supports

Kubernetes deployment and Nextflow module.

5.1 Nextflow

NextFlow is free open-source software for bioinformatics workflow managing,

which responds to the increasing need of analytical tools for big data, which are often

inadequate or require knowledge of complex low-level tools. The framework is, in other

words, pipeline orchestrator and a programming domain specific language, which utilises

parallelisation and distributed computing to facilitate the writing of data-intensive

computational pipelines.

Among NextFlow features are enabling workflows portability and reproducibility,

simplifying parallelization and large-scale deployment, and easing integration of existing

tools, systems, and industry standards.

NextFlow is JVM (Java Virtual Machine) application and can be used on any POSIX

compatible system (e.g., Linux, OS X, Solaris), requiring BASH and Java 8 or higher to

be installed.

The NextFlow pipeline script is made by joining together different processes, where

each process can be written in any scripting language that can be executed by the Linux

platform (Bash, Perl, Ruby, Python, etc.) and is independent and isolated from another.

NextFlow also makes it very easy to change the target system, where processes are

31

executed without any other modifications, thus providing an abstraction between

the functional logic of the pipeline and the underlying execution system. [48]

5.2 MetaCentrum

The data analysis requires certain amount of computing and storage

capacity – executing locally is very useful for development and testing, but for real world

computational pipelines high performance computing or cloud is often required.

This need is met by MetaCentrum VO, CESNET’s regional virtual organisation of

the Czech National Grid Organisation MetaCentrum (NGI), which offers software and

hardware infrastructure for academic and research purposes. Registered users get access

to grid services including consistent and dependable computational resources (which

exceed possibilities of individual supercomputing centres), along with various application

software and qualified user support. In addition, they provide cloud services and an

open-source framework for distributed storage and processing of large amounts of data

[49]. All that is relevant in terms of RNAseq data analysis, since manipulating RNAseq

data is computationally intensive and typically requires access to a powerful resource [4].

MetaCentrum is also used by many great Czech academic or research teams from

a wide range of specialisations, from biochemistry, nuclear or medical research to

bibliography or social research.

Grid services

Grid computing is a distributed computing model that provides a network of widely

distributed computer resources working together to perform a task. Compared to other

approaches, rather than achieving high performance computational needs by having large

clusters of similar computing resources or a single high performance system, such as

a supercomputer, grid computing attempts to harness the computational resources of

a large number of dissimilar devices [50]. In addition, another difference between grids

and cluster computing is that the resources are not limited to physical computing

resources but may include application-specific resources such as files and databases [51].

For the end users or applications of the grid, the grid looks like a virtual machine

with powerful capabilities with a single point of access for performing tasks [52, 53]. The

essence of grid computing is to manage heterogeneous and loosely coupled resources in

an efficient way in this distributed system and to coordinate these resources through a task

scheduler so they can complete specific cooperative computing tasks. [52]

Grid computing typically leverages the spare CPU cycles of devices that are not

currently needed for a system’s own needs, and then focusses them on the particular goal

of the grid computing resources [50].

32

Cloud services

Cloud computing is a method of sharing resources via the Internet. The main features

of cloud computing are:

- Virtualisation, where cloud computing platforms and applications are built based

mostly on resource virtualisation technology, which plays an important role in

improving resource efficiency and increasing service reliability and security.

- Flexibility, where cloud resource platforms can dynamically expand or reduce in

size depending on user needs, which reduces the investment risk for the user and

meets the needs of different users.

- Cloud computing offers on-demand service, meaning that services can be

provided according to the actual needs of users.

- Cloud computing platforms use dynamic network management systems to

monitor the status and efficiency of each resource node, to dynamically migrate

nodes that have low efficiency or failure, and to ensure that overall system

performance is not affected, resulting in high reliability.

- Cloud rental resources must be highly customisable. Infrastructure as a service

allows users to deploy specialised and virtual appliances. [52]

MetaCentrum Cloud is the Infrastructure as a Service cloud on top of open-source

OpenStack project. Their most important cloud resources are virtual machines, virtual

networking, private and/or public IP addresses, storage, and cloud load balancers. [54]

5.3 Docker

Docker is an open-source platform that runs applications and makes the process

easier to develop and distribute. It allows developers to package their applications and all

their dependencies into a standard called containers, where the applications are

virtualized and executed. Containers provide a lightweight, isolated environment that

ensures consistent behaviour across different operating systems and infrastructure,

meaning that they provide an extra layer of abstraction. [55]

Every Docker container is built on what is called an image, which includes all

the necessary libraries, dependencies, and configuration files needed to run

the application [56]. Images can be easily shared and deployed on any machine that has

Docker installed. The foundation of every image is a base image, which can be

an operating system image (e.g. Ubuntu) or any other accessible one. [55]

One of multiple methods to build an image, which we use in this thesis, is to create

a docker file. A Dockerfile is a text document in which the user defines the build steps

for the application. The Dockerfile is written in a domain-specific language called

33

the Dockerfile syntax. When the command 'docker build' is run from the bash terminal, it

follows all the instructions given in the docker file and builds an image. [55]

One of Docker's features is the ability to find, download, and start container images

that were created by other developers quickly. The place where images are stored is called

a registry [57] (e.g. Docker Hub).

5.4 Kubernetes

Kubernetes is an open-source container orchestration system. It controls

containerized applications across multiple hosts and handles deploying, monitoring, and

scaling containers [58], reducing repetitive manual processes involved in container

deployment and management [59].

Kubernetes has at its core a shared persistent store, with components monitoring

changes to relevant objects [60]. The smallest deployable unit in Kubernetes is a pod

which consists of one or more containers. For performance isolation, Kubernetes offers

the resource management technique for users to define the computing resources

(e.g., CPU and memory) for the pods. [58]

5.5 Data processing tools

In the pipeline, we include multiple open-source tools, where each covers a different

step of the analysis. For pre-processing we used Fastp, for alignment and indexing STAR

and Samtools, for fusion genes detection then JAFFA, FusionCatcher, Arriba,

STAR-Fusion, and Cicero and for validation FusionInspector. The following tables Table

5.1.a and Table 5.1.b introduce each of them, their key role in this thesis, parameters,

and requirements.

We chose various fusion genes detection tools, since each can report a different set

of fusions based on their algorithm. Therefore, our analysis can offer a wider range of

results and a higher probability of finding the relevant gene fusions. For the selection of

the tools, we used the following criteria:

- The ability to detect gene fusions relevant for the leukemia diagnosis

- Active maintenance and availability, preferably not more than 2 years from

the last update

- Support of the hg38/GRC38 reference

- Preferably available Dockerfile

34

Table 5.1 a: Overview of the utilized bioinformatic tools

Tool Role in the pipeline GitHub repository
Sou

rce

Minimal

RAM (GB)

Fastp Data pre-processing https://github.com/OpenGene/fastp [61] 4

STAR Transcripts alignment to a

reference

https://github.com/alexdobin/STAR [62] 16 – 32

Samtools BAM file sorting and

indexing

https://github.com/samtools/samtools [63] Unknown

JAFFA (Direct

mode)

Fusion genes detection https://github.com/Oshlack/JAFFA [64] 10 – 75

FusionCatcher Fusion genes detection https://github.com/ndaniel/fusioncatcher [65] 24

Arriba Fusion genes detection https://arriba.readthedocs.io/en/latest/ [17] 10

STAR-Fusion Fusion genes detection https://github.com/STAR-Fusion/STAR-

Fusion/wiki

[3] < 16

Cicero Fusion genes detection https://github.com/stjude/CICERO [66] 24

FusionInspector Results validation https://github.com/FusionInspector/Fusion

Inspector

[46] > 40

35

Table 5.1 b: Overview of the utilized fusion genes detection tools

Tool
Supported

reference

Source of

reference files* Input files Approach Aligner

JAFFA (Direct

mode)

hg38, hg19,

mm10

Provided Reads as FASTQ files Mapping-first Bowtie2,

BLAST, BLAT

FusionCatcher hg38, hg19 Provided Reads as FASTQ files, Mapping-first Bowtie, BLAT,

STAR, Bowtie2

Arriba hg19, hg38,

mm10

Provided Aligned reads as BAM file

or reads as FASTQ files

Mapping-first STAR

STAR-Fusion hg19, hg38 Provided JUNCTION file from

STAR

Mapping-first STAR

Cicero hg19, hg38 Provided Reads as FASTQ files or

aligned reads as BAM file

with BAI index

Assembly-first BLAT

* The tools require additional files, which can, depending on the tool, include reference files, indexes, files built from Ensembl database, blacklists, etc.

36

The fusion callers that we did not include due to their unavailability are Comrad,

FusionAnalyser, ShortFuse, and FusionQ. FusionMap officially announced the end of

maintenance. We also did not include Bellerophones, BreakFusion, Chimerascan, nFuse,

FusionHunter, FusionMap, MapSplice, TopHat Fusion, InFusion, FusionSeq,

FusionScan, Ericscript, Gfusion and Pizzly due to their inactivity in maintenance,

and FuSeq and SOAPfuse due to their lack of support of containerisation.

5.5.1 Fastp

Fastp is an open-source tool developed in C/C++ providing all the necessary

pre-processing operations for FASTQ files. It can perform quality profiling, adapter

trimming, read filtering, deduplication, and base correction with a single scan of the data.

It supports both single-end and paired-end short read data and also provides basic support

for long-read data. One of the advantages is the multi-threading support, which is useful

for our pipeline. In addition to the pre-processed data, a report in both HTML and JSON

format can be generated, which allows for direct comparison of quality statistics altered

by pre-processing. [61]

Method

Among the steps computed by Fastp are:

1. Trimming – Fastp includes two methods. First there is adapter trimming, which

is based on computing k-mer and on a tree-based algorithm. The second method

is polyG and polyX tail trimming, which focusses on fixing issues observed in

Illumina NextSeq and NovaSeq series.

2. Base correction – Fastp corrects mismatches in an overlap of pair reads, since if

the reads are of high quality, they are usually completely reverse-complemented.

However, the correction is performed only if the base pairs have an imbalanced

quality score and the total mismatch is below a given threshold.

3. Sliding window quality pruning – To improve read quality, the method marks

the bases in the window as discarded if the average quality is lower than a given

threshold. [61]

4. Deduplication – Fastp removes duplicate reads, which reduces potential false

positive results and bias in results affected by PCR duplicates in the subsequent

analysis and reduces the size of the files.

5.5.2 STAR

STAR (Spliced Transcripts Alignment to a Reference) is a C++ tool for aligning

RNA sequencing reads to a reference genome and detection of novel splice junctions [62].

37

Method

STAR was designed to align the non-contiguous sequences directly to the reference

genome where the algorithm consists of two major steps: seed searching step and

clustering/stitching/scoring step.

1. For every read that STAR aligns, STAR will search for the longest sequence that

exactly matches one or more locations on the reference genome. These longest

matching sequences are called the Maximal Mappable Prefixes. The different

parts of the read that are mapped separately are called 'seeds'. STAR will then

search again for only the unmapped portion of the read to find the next longest

sequence that exactly matches the reference genome. This sequential searching

of only the unmapped portions of the reads underlies the efficiency of the STAR

algorithm. STAR uses an uncompressed suffix array to efficiently search for

the Maximal Mappable Prefixes, this allows for quick searching against even

the largest reference genomes.

If STAR does not find an exact matching sequence for each part of the read due

to mismatches or indels, the previous Maximal Mappable Prefixes will be

extended. If extension does not give a good alignment, then the poor-quality

adapter sequence will be soft-clipped.

2. Separate seeds are stitched together to create a complete read by first clustering

the seeds together based on proximity to a set of ‘anchor’ seeds, or seeds that are

not multi-mapping. Then the seeds are stitched together based on the best

alignment for the read (scoring based on mismatches, indels, gaps, etc.). [62]

5.5.3 Samtools

SAMtools is a C or Java package providing utilities for post-processing alignments

in the SAM/BAM format, including converting formats, indexing, sorting, or merging

alignments. SAMtools was developed by the creators of the SAM format, and both

together offer a generic and modular approach that separates the alignment step from

downstream analyses. [63, 67]

5.5.4 JAFFA

JAFFA is a multi-step pipeline for gene fusions detection built using the Bpipe

platform. They introduce a new method that can be applied to any read length (reads from

100 bp up to full-length transcripts), single- or paired-end.

38

JAFFA can be run in three modes, depending on the reads length:

- Direct mode is recommended for 100bp reads or longer and uses the mapping-

first approach.

- Long mode is recommended for high-error long reads.

- The hybrid mode is recommended for low error rate sequencing of 70-95bp and

uses both mapping and assembly approach.

- The assembly mode is recommended for low error rate short reads of <70bp and

uses the assembly-first approach.

Method

Unlike the usual approach used by the majority of other tools, JAFFA compares

a tumour transcriptome with the reference transcriptome instead of the reference genome.

Such approach brings multiple advantages including the avoidance of error-prone splice

site alignment and therefore simplified identification of fusion transcripts. Another

advantage is that the reference transcriptome consists of less sequence than the reference

genome, allowing slower, but more accurate alignment algorithms to be used. That allows

JAFFA to analyse even longer reads.

The pipeline consists of 6 steps.

1. RNAseq reads are first filtered to remove intronic and intergenic reads. 50 bp

reads would then be assembled into contigs using Oases. For longer reads, this

step is not necessary.

2. The resulting tumour sequences are then aligned to the reference transcriptome

and those that align to multiple genes are selected. These contigs make up a set

of initial candidate fusions.

3. Next, the pipeline counts the number of reads and read pairs that span

the breakpoint.

4. The candidates are then aligned to the human genome. Genomic coordinates of

the breakpoint are determined.

5. Further selection and candidate classification is carried out using quantities such

as genomic gap size, supporting reads, and alignment of breakpoints to exon-

exon boundaries.

6. A final list of candidates is reported along with their sequence. [64]

39

5.5.5 FusionCatcher

FusionCatcher is a software tool for finding fusion genes in paired-end RNAseq data.

Method

FusionCatcher includes both aligning the sequencing reads on transcript and mapping

on genome. The method consists of multiple steps. First, preprocessing and filtering of

RNA sequencing data are performed, including quality control. Second, FusionCatcher

uses an ensemble approach consisting of four different methods and four different

aligners for identifying the fusion junctions. Each method corresponds to one aligner

where the aligners are Bowtie, BLAT, STAR, and Bowtie2.

The Bowtie method uses information regarding the exon/intron positions (i.e.

genome annotation). It serves as a filter: the unmapped reads, which are the reads which

passed the quality filtering and do not map on the transcriptome and the genome, are kept

for further analyses. Therefore, the number of unmapped reads given as input to the next

three methods (which are more computationally demanding) is reduced.

Reads mapping on the transcriptome are used further to build a preliminary list of

candidate fusion genes by searching for pairs of genes. The pairs in the list are then

filtered and removed, using known and novel criteria that make biological sense.

The unmapped reads, which still remain unmapped after aligning during the Bowtie

method, together with the reads, which support the candidate fusion genes, are further

aligned using the BLAT aligner, the STAR aligner, and the Bowtie2 aligner. Only

candidates who pass multiple criteria will make it to the final list of fusion genes. [65]

5.5.6 Arriba

Arriba is the winner of the DREAM SMC-RNA Challenge, an international

competition organised by ICGC, TCGA, IBM and Sage Bionetworks in 2018.

Their method builds on the output of STAR, which is by default included in the Arriba

workflow but can be run separately.

Arriba also provides an R script for visualisation of detected fusion genes, which is

capable of taking output files from either Arriba or STAR-fusion/FusionInspector.

Method

Conceptually, Arriba is nothing more than a collection of filters. The generation of

fusion candidates is entirely handled by STAR, which collects all evidence about

potential gene fusions in the chimeric alignment file. Most of the candidates in these files

are alignment artifacts, in vitro-generated artifacts, or transcript variants that are also

observed in healthy tissue. Arriba applies a set of filters which try to detect artifacts based

40

on various features that are characteristic for artifacts. The filters are either read-level,

which assess candidates based on information contained in a single read (pair), or event-

level, which integrate information from multiple reads. The complete list with

descriptions can be found in the Arriba documentation. [17]

5.5.7 STAR-Fusion

STAR-Fusion is a component of the Trinity Cancer Transcriptome Analysis Toolkit

(CTAT) implemented in Perl. As with Arriba, STAR-Fusion analyses the output of

STAR.

Method

STAR-Fusion uses chimeric read alignments reported by STAR in its

Chimeric.out.junction file to identify candidate fusions. It maps the reads to exons of

reference gene structure annotations based on coordinate overlaps. STAR-Fusion

primarily focuses on filtering the alignment evidence and preliminary fusion predictions

to remove likely artifacts and likely false-positive predictions.

The method involves multiple steps:

1. Read alignments between pairs of genes that are localized to sequence similar

regions between those genes are excluded.

2. A database of all-vs-all blastn matches between all reference cDNA sequences is

queried to identify regions of sequence similarity between candidate fusion

genes.

3. If chimeric read alignment evidence overlaps sequence similar regions,

the alignment is discarded. Duplicate paired-end read alignments are removed,

and the remaining alignments are assigned to preliminary fusion gene pair

candidates.

4. STAR-Fusion selects those candidate gene pairs for which the fusion-supporting

evidence indicates a sense-sense orientation between the fusion pairs and

scores them according to the number of split reads supporting the fusion

breakpoint and the number of paired-end fragments that span the breakpoint.

5. These preliminary fusion gene candidates are filtered in two stages: a basic

filtering stage that requires mini- mum fusion evidence support and an advanced

filtering stage that examines characteristics of the genes involved

in the candidate fused gene pairs. [3]

41

5.5.8 Cicero

Cicero is a local assembly-based algorithm for fusion gene detection written in Perl.

It aims to overcome the limitations of existing RNAseq analysis methods, which compare

gene fusions detected by RNAseq with structural variations discovered by whole-genome

sequencing. The local assembly takes advantage of the longer RNAseq read length

(≥ 75 bp) generated by NGS and therefore allowing the detection of non-canonical

fusions and ITDs.

Method

Cicero integrates RNAseq read support with extensive annotation for candidate

ranking. The algorithm is implemented through the three key steps.

1. Fusion detection by de novo local assembly at candidate breakpoints (which

consists of identification of candidate fusion breakpoints marked by soft-clipped

reads, assembly of the fusion contig, and mapping of the fusion contig for

discovery of the partner locus breakpoint) and analysis of splice junction reads

(for fusion transcripts lacking soft-clipped reads).

2. Fusion annotation including a reading frame check for the fusion partner genes.

3. Ranking of candidate fusions based on the supporting evidence in RNAseq and

matches to known fusions (the ranking is based on fusion allele frequency,

matching length, repetitive mapping, and frame-check results with a quality

status determined by matches to known fusion events or artifacts). [66]

5.5.9 FusionInspector

FusionInspector, which serves as a level of validation in our pipeline, is a component

of the Trinity Cancer Transcriptome Analysis Toolkit (CTAT) and assists in fusion

transcript discovery by performing a supervised analysis of fusion predictions, attempting

to recover and re-score evidence for such predictions. Through reports, interactive

visualisations, and classification, FusionInspector assists researchers in reasoning about

the quantity and quality of the evidence supporting predicted fusions, to differentiate

likely artifacts from fusions with characteristics similar to biologically relevant fusions

known to occur in tumours and normal tissues. [46]

FusionInspector uses the set of genomic resources in the genome library identical to

that used with STAR-Fusion, including the human reference genome, annotations to

the gene structure, and the STAR genome index.

42

Method

As input, FusionInspector takes a list of candidate fusion genes found by fusion

transcript prediction tools. Then “extracts the genomic regions for the fusion partners and

constructs mini-fusion-contigs containing the pairs of genes in their proposed fused

orientation. The original reads are aligned to these candidate fusion contigs;

fusion-supporting reads that would normally align as discordant pairs or split reads

should align as concordant 'normal' reads in this fusion-gene context. Those reads

supporting each fusion (spanning fragments and fusion-breakpoint-containing reads) are

identified, reported, and scored accordingly.” [68] An illustration of the method can be

seen in Figure 5.1.

The evidence for fusions as evaluated by FusionInspector is easily viewed and

navigated via html-based fusion reports included as output.

Figure 5.1: An overview of the FusionInspector process [68]

43

6 Design and implementation

6.1 Workflow

The main aim of the pipeline was to find gene fusions candidates in raw FASTQ data

and return them in a table together with a visualisation of the results. As mentioned above,

such an analysis can be complex, but there are four main steps (see Figure 6.1):

1. Data pre-processing takes the input data in compressed FASTQ format and

processes them as described in Section 3.2.1 Primary analysis. Some of the tools

used in the subsequent steps also perform their own pre-processing, however, we

aimed to ensure that each of them receives the data pre-processed in the same

manner.

2. Fusion genes detection takes the pre-processed data and returns a list of gene

fusion candidates with their parameters. In this step we include multiple tools,

where each comes with their own algorithm; nevertheless, they all perform

alignment to the reference genome or transcriptome at some stage and these files

need to be provided.

3. Result validation provides a level of validation for the evidence of predictions.

It takes a list of gene fusions predicted in the previous step and aims to discover

them in the reference genome.

4. Results post-processing collects the results and unites them into one table

provided in the output. In addition, we utilise multiple tools that include

functionality for visualisation.

Figure 6.1: Simple workflow of the proposed solution

Below, we illustrate the integration of each tool in the workflow (see Figure 6.2):

1. The pre-processing step includes Fastp, which takes the input compressed

FASTQ data and outputs them pre-processed to the subsequent processes in

the same format. Furthermore, it returns an HTML report with visualisation of

the result.

2. Fusion genes detection includes multiple tools: STAR-Fusion, Arriba, Cicero,

FusionCatcher, and JAFFA, where each needs to be provided with its own

44

reference files. Some of them use the same aligner (STAR in this case) and also

provide the option to skip the alignment stage and take already aligned data as

input. We take advantage of that option and run STAR only once, instead of

multiple times. Therefore:

- STAR-Fusion and Arriba take output from STAR, skipping their in-built

aligning phase,

- Cicero offers to take already aligned data; however, it is required to be

sorted and indexed, which is managed by Samtools,

- FusionCatcher and JAFFA do not provide the option to separate

the alignment, thus they take the pre-processed data directly from Fastp.

Each fusion genes detection tool outputs a file in either TSV, CSV, or TXT

format, containing a list of fusion genes candidates and their attributes.

These files are collected and taken by both the validation and post-processing

step.

3. The validation stage incorporates FusionInspector, which requires predicted

fusion gene names that are to be analysed, along with the FASTQ data (from

Fastp) and its reference. Apart from a HTML report containing a visual

representation of the result, it provides a TSV file with assessed fusion genes

candidates in a similar format as previous fusion gene callers. This file is added

to the collection from the previous step and passed to the post-processing step.

4. The post-processing stage includes two steps. First, the outputs of all the tools

from the fusion genes detection and the result of FusionInspector are collected

and combined into one comprehensive table. Second, the result of the validation

step is passed to Arriba, which provides a useful script for visualising

the predicted fusion genes and is customised to take a file formed by

FusionInspector.

45

Figure 6.2: Bioinformatic tools and their integration in the workflow. The dashed boxes represent the steps from previous simple workflow,

white boxes are tools, the functionality of which is utilised for the given processes (all the included tools were described in detail in Section

5.5 Data processing tools), and blue boxes show the output generating processes.

46

6.2 Dockerization

We created Docker images for all the tools mentioned above, including Fastp, STAR,

Samtools, JAFFA, FusionCatcher, Arriba, STAR-Fusion, Cicero and FusionInspector.

All the images were built based on the original Dockerfiles or Images provided by

the developers, with few following exceptions:

- The Dockerfile for Arriba was adjusted to replace the run_arriba.sh script with

our modified one, which skips the STAR step and takes a BAM file on the input,

instead of FASTQ files. The modified script can be found in the project under

‘docker/arriba/run_arriba.sh’.

- Fastp does not offer a Dockerfile, hence we created it ourselves.

- The Cicero image was built from their official image with overwritten

ENTRYPOINT as the only change.

For Docker to be set to enable in the Nextflow configuration file, a Docker image

is expected for every process of the Nextflow pipeline. Therefore, we also created other

images for the rest of the processes which do not include mentioned tools - e.g. an image

with Python and required packages to run a process containing only a Python script.

Each of the used Dockerfiles is available in the project in the docker directory.

The list of images made available through Docker Hub is shown in Table 6.1.

Table 6.1: A list of Docker images available through the Docker Hub

Docker image Content Nextflow process

souckmi2/fastp:1.0 Fastp 0.23.2 fastp

souckmi2/star:1.0 STAR 2.7.10b star

souckmi2/samtools:1.0 Samtools 1.17 samtools

souckmi2/jaffa:1.0 JAFFA 2.3 jaffa

souckmi2/fusioncatcher:1.0 FusionCatcher v1.30 fusioncatcher

souckmi2/arriba:1.0 Arriba v2.4.0 arriba, draw_fusions

souckmi2/starfusion:1.0 STAR-Fusion 1.11.1 starfusion

souckmi2/fusioninspector:1.0 FusionInspector 2.8.0 fusioninspector

souckmi2/cicero:1.0 Cicero v1.9.5 cicero

souckmi2/py-numpy-pandas:1.0
Python 3.9 with numpy,

pandas and xlsxwriter

merge_input_files,

fusion_tables, final_result_table

47

6.3 Input files

To run the pipeline, a user needs to provide multiple files listed below:

1. Reads files, containing the paired end sequencing data to be analysed, where

the only supported extension is .fastq.gz. File naming is required to match one of

the following patterns:

- If there are only two files (read 1 and read 2) per sample, they need to

match the pattern ‘*_R1,_R2.fastq.gz’, for example, ‘p1_R1.fastq.gz’.

- In case there are multiple files from different lanes per one sample,

the files are expected to have the typical Illumina naming convention

matching the regular expression ‘^(.+_S[0-9]+)+(_.+)*_R([1-2])_’, for

example ‘p4_S4_L001_R1_001.fastq.gz’

It is possible to provide reads for multiple samples and the analysis will be

conducted on each of them parallelly, exporting results to separate directories for

each sample.

2. Reference files for each of the tools that request them. We provide an already

prepared directory containing all the required files (available at

https://owncloud.cesnet.cz/index.php/s/XVovHksT8m1hIMa), however, it is

possible to provide a custom directory as long as it follows the same directory

structure.

6.4 Nextflow implementation

In practise, a Nextflow pipeline script is made by joining together different

processes. Each process can be written in any scripting language that can be executed by

the Linux platform. Processes communicate with each other via queues called channels,

where any process can define one or more channels as input and output.

We developed the pipeline using DSL2, which provides a syntax extension that

allows the definition of module libraries and sub-workflows. Module files are scripts

that can be included and shared across workflow pipelines.

The configuration file (nextflow.config) contains the settings that are read when

the pipeline is launched. The file provides the ability to separate the workflow

implementation from the configuration setting required by the underlying execution

platform. This enables portable deployment without the need to modify the application

code.

48

6.4.1 Input parameters

There are several parameters, which the user is required to provide when running

the pipeline:

- readsdir (required) – A path to the directory containing the FASTQ files to be

analysed, which need to file certain naming conventions as mentioned in

Section 6.3 Input files.

- mergeInputFiles (default False) – If the reads files are from different lines and

need to be merged (as described in Section 6.2 Input files), this parameter must

be set to True.

- reference (required) – A path to the directory containing the reference files

requested by the tools used in the pipeline.

- outdir (required) – A path where the result output of the analysis should be stored.

- runId (required) – A run id which will be added to the name of output files.

If the ‘metacentrum’ profile is used (see Section 6.4.4 Configuration), additional

configuration parameters need to be provided (for more details, see GitLab README):

- k8s_namespace (required) – Kubernetes namespace.

- k8s_storageclaimname (required) – Storage claim name.

- k8s_storagemountpath (required) – Storage mount path.

- k8s_launchdir (required) – Path to a launch directory.

- k8s_workdir (required) – Path to a work directory.

6.4.2 Nextflow workflows and modules

We leverage the ability of Nextflow to create sub-workflows and modules, which

makes the implementation of complex pipelines easier and clearer.

There are two modules added to the implementation. The Fusions Module contains

the processes and a sub-workflow specific to fusion gene detection. The Helpers Module

then includes processes that are to be reused by any part of the pipeline in any stage

(see Table 6.2). The main workflow in the main.nf script is then able to include

the modules, and we can construct the complete workflow of the whole analysis.

With this modular approach, we leave space for an eventual extension of the pipeline

with other distinct steps of the analysis. For example, if the detection of fusion genes was

not the only goal, but we wanted to add RNAseq differential expression analysis

conducted on the same data, we could easily add another module, keeping the structure

of the project intact.

49

Table 6.2: Nextflow modules

Module Processes Workflow

Fusions Module fastp, star, samtools, jaffa,

fusioncatcher, arriba, starfusion,

cicero, fusion_tables, fusioninspector,

draw_fusions, final_result_table

fusion_detection

Helpers Module merge_input_files -

6.4.3 Processes and channels

Each step of the analysis is represented by a process, a basic processing primitive to

execute a script. Each process includes a definition block for input, output, and a process

script. The process script can be written in any language that can be executed on

the Linux platform. We included scripts in Bash to run the bioinformatic tools and Python

for managing the files content if needed.

Figure 6.3 visualises a direct acyclic graph (DAG) of the out pipeline generated by

Nextflow. The vertices of the graph represent the pipeline processes and operators, while

the edges represent the data connections (i.e. channels) between them. Arrows pointing

to small dots picture the files produced by the process that are copied to the output

directory.

There are 13 processes defined. Each of the 10 bioinformatic tools mentioned above

has one process that handles only the task for which the tool is included in the analysis.

In addition, there is a second process with Arriba, draw_fusions, which calls the R script

provided by Arriba for fusion gene visualisation. The remaining three processes,

described below, include Python scripts.

Merge_input_files process

Given a list of FASTQ files, it merges, for each sample, all files from different lanes,

so that on the output there is only one R1 and R2 file per sample. The Python script is

based on a script from the SciLifeLab GitHub repository [69]. This process is executed

only if the ‘--mergeInputFiles’ parameter is set to true and the provided FASTQ files

follow the naming convention described in Section 6.3 Input files.

Fusions_table process

FusionInspector expects the input to be a text file (or files) with a list of fusion

candidates, with each formatted as geneA--geneB. Therefore, this process takes

the results from the fusion callers and transforms them to suit the requirements.

50

Final_result_table process

This process handles the generation of the final result table. It collects the results of

the fusion gene detection tools along with the output of FusionInspector and unites them

into one comprehensive table, which is exported as a CSV file and a formatted XLXS

file. The table columns and formatting as well as the relations between the final table and

callers results are described in Section 6.5.3 Final_result_table.xlsx.

Figure 6.3: DAG visualisation of the pipeline generated by Nextflow

51

6.4.4 Configuration

The configuration file allows to manage the settings of various scopes, from

the pipeline input parameters to docker configurations or deployment settings.

Profiles

One of the Nextflow features is the config profile. A profile is a set of configuration

attributes that can be selected during pipeline execution by using the ‘-profile’ command

line option, providing an option to switch between executors and change deployment

parameters without the need to edit any files. We provide two profiles (separated into two

files in the config_profiles directory):

1. The ‘standard’ profile is a default profile that is selected if no profile is defined

by the user. The 'executor' is set to 'local', that is, it runs the pipeline processes on

the computer where Nextflow is launched.

2. The ‘metacentrum’ profile is designed to configure pipeline execution on a

Metacentrum Kubernetes server. Unlike the standard profile, the ‘executor’ is set

to ‘k8s’, and the configuration includes the k8s scope. If this profile is selected,

the user needs to provide additional parameters (see Section 6.4.1 Input

parameters).

Resources Management

Nextflow provides an option to set the resources (CPU and memory) to be

reserved for each pipeline process. We set slightly different values for each profile, see

Table 6.3. If the 'metacentrum' profile is selected, at least 20 CPU and 100 GB of RAM

are expected, ideally around 40 CPU and 180 GB of RAM to allow processes to run

parallel. For the 'standard' profile, 1 CPU and 45 GB of RAM are required, ideally then

at least 65 GB of RAM.

Table 6.3: Resources allocated for each process

 Standard profile Metacentrum profile

Process CPU RAM (GB) CPU RAM (GB)

fastp 1 16 10 20

star 1 45 10 80

samtools 1 2 5 10

jaffa 1 8 10 32

fusioncatcher 1 10 20 100

arriba 1 8 10 20

starfusion 1 8 5 16

cicero 1 8 20 70

fusioninspector 1 45 20 80

52

6.5 Output files

The main aim of our project was to build a pipeline which outputs a file with a table

of detected fusion genes candidates, along with visualisation of the results. However, we

also include most of the files produced by the bioinformatic tools.

6.5.1 Naming convention

Every file produced by a process is renamed so that it follows the pattern

‘<sample_name>_<run_id>_<reference_version>_<caller>_<original_file_name>’.

Therefore, for example, if the input FASTQ file carries the name

‘p1_S4_L001_R1_001.fastq.gz’ and the run id provided by the user is ‘RUN1’, a file

produced by Arriba originally named ‘fusions.tsv’ would be named

‘p1_S4_RUN1_hg38_arriba_fusions.tsv’.

Figure 6.4: Output directory tree with key result files

53

6.5.2 Directory tree

The output directory with the path defined by the user has the following directory

tree (Figure 6.4), showing the files that are the key result of the pipeline: final result table,

visualisations, result tables for fusion callers, and processed data files for Fastp and

STAR. There are three folders:

- Sample folder – The folder is named after the name of the sample according to

the input FASTQ files. There are two files, in CSV and XLSX format, that

provide the final result of the analysis together with one directory for each

bioinformatic tool. These directories contain all the files produced by the tools.

- Merged_input_files folder – If the ‘--mergeInputFiles’ parameter is set to true,

this folder contains the merged FASTQ files, otherwise it is not created.

- Nextflow_reports folder – The folder contains the Nextflow generated reports

describing the pipeline execution.

6.5.3 Final_result_table.xlsx

This file is the main result of the analysis. It contains a list of detected fusion genes

candidates and is intended to be forwarded to a clinical expert. The excel table unites

the results of all the fusion genes callers and FusionInspector, as shown in Table 6.7.

The columns of the result table are briefly described below in Table 6.4 (we grouped

the values that are comparable, but the exact definitions can differ depending on the

caller, therefore, for more information, see the documentation of the callers output files).

The cells are formatted according to the rules in Table 6.5, with the relevance to

cancer specified in Table 6.6.

54

Table 6.4: Description of the columns of the final result table

Column Description

caller The bioinformatic tool whose results are shown in the row

gene1 Gene symbol of the 5' end

gene2 Gene symbol of the 3' end

chrom1/position1 Chromosomal position of the breakpoint in gene1

chrom2/position2 Chromosomal position of the breakpoint in gene2

spanning_reads The number of reads which cover the breakpoint

spanning_pairs The number of read-pairs, where each read in the pair aligns entirely on either side of the breakpoint

coverage1/coverage2 The coverage near the breakpoint in gene1 and gene2

annotation A simplified annotation for fusion transcript, depending on the caller. It mostly contains database(s) in which

the fusion was found

confidence Suggests the credibility of predictions

prediction_effect Provides information on the location of the breakpoints. It indicates whether the proposed breakpoint occurs at

reference exon junctions

anchor Indicates whether there are split reads that provide 'long' alignments on both sides of the putative breakpoint

FAR_left Left fusion allelic ratio (only for FusionInspector)

FAR_right Right fusion allelic ratio (only for FusionInspector)

FFPM Normalised measure of the quantity of RNAseq fragments supporting the fusion event as: fusion fragments per

total million RNAseq fragments (only for FusionInspector)

55

Table 6.5: Formatting rules of the final result table

Rule Format

The spanning reads value is less than 5 Red cell

The coverage1 is greater than 50 Red cell

The coverage2 is greater than 50 Red cell

The value in column chrom1 and chrom2 are equal Both cells yellow

The confidence column suggests low confidence (i.e.

contains ‘LowConfidence’, ‘LQ’ or ‘low’)

Red row

The prediction effect contains ‘intragenic’, ‘intron’, ‘out-of-

frame’ or ‘INCL_NON_REF_SPLICE’

Red row

The annotation column includes one of the sources that

suggest that the fusion is relevant to cancer biology*

Green row

The annotation column includes one of the sources that

suggest that the fusion pair may not be relevant to cancer,

and be potential false positive*

Red row

* The sources are named in Table 6.6

Table 6.6: Resources in annotation column of the final result table and their relevance. They

were selected based on CTAT_HumanFusionLib [70].

Relevance to cancer Sources

Relevant to cancer biology Mitelman, chimerdb_omim, chimerdb_pubmed,

ChimerKB, ChimerPub, ChimerSeq, Cosmic,

YOSHIHARA_TCGA, Klijn_CellLines,

Larsson_TCGA, CCLE, HaasMedCancer,

GUO2018CR_TCGA, TumorFusionsNAR2018,

TCGA_StarF2019, CCLE_StarF2019,

DEEPEST2019, ‘Yes’ (represents Mitelman

database, according to Jaffa)

May not be relevant to cancer,

and be potential false positive
GTEx_recurrent_StarF2019, BodyMap,

DGD_PARALOGS, HGNC_GENEFAM,

Greger_Normal, Babiceanu_Normal, ConjoinG

56

Table 6.7: The relation between the columns of the new final result table and the columns of callers output files

Result table Arriba STAR-Fusion Jaffa FusionCatcher Cicero FusionInspector

gene1 gene1

FusionName fusion genes

Gene_1_symbol

(5end_fusion_partner)
geneA

FusionName

gene2 gene2
Gene_2_symbol

(3end_fusion_partner)
geneB

chrom1
breakpoint1 LeftBreakpoint

chrom1 Fusion_point_for_gene_1

(5end_fusion_partner)

chrA
LeftBreakpoint

position1 base1 posA

chrom2
breakpoint2 RightBreakpoint

chrom2 Fusion_point_for_gene_2

(3end_fusion_partner)

chrB
RightBreakpoint

position2 base2 posB

spanning_reads
split_reads1,

split_reads2
SpanningFragCount

spanning

reads
 -

readsA,

readsB
SpanningFragCount

spanning_pairs discordant_mates JunctionReadCount
spanning

pairs
Spanning_unique_reads

matchA,

matchB
JunctionReadCount

coverage1 coverage1 - - - coverageA -

coverage2 coverage2 - - - coverageB -

annotation tags annots known Fusion_description - annots

confidence confidence - classification - rating -

prediction_effect site1, site2 SpliceType
Inframe,

aligns
Predicted_effect

featureA,

featureB
SpliceType

anchor - LargeAnchorSupport - - - LargeAnchorSupport

FAR_left - - - - - FAR_left

FAR_right - - - - - FAR_right

FFPM - - - - - FFPM

57

6.5.4 Visualisation

In the output directory there are four files providing html or pdf-based reports – one

summarising the pre-processing phase, two for fusion genes detection results and

a Nextflow workflow execution report.

Pre-processing report

Fastp offers to visualise quality control and filtering results on a single HTML page.

The file can be found in the output directory with path ‘<output path>/<sample

name>/fastp/* fastp_report.html’.

The report includes a summary table, the sequence distribution of trimmed adapters,

insert size distribution plot, and plots displaying quality/base content/KMER counting

before and after filtering for both reads separately.

Fusion Genes Visualisation

We offer two reports visualizing the results of FusionInspector. FusionInspector

offers to generate an HTML summary file, which can be found at ‘<ouput path>/<sample

name>/fusioninspector/*fusion_inspector_web.html’. In the initial view, it provides

a table of fusions and attributes. After selecting a fusion, it creates a tab that shows

the evidence for the visualisation in a web-based igv view.

The second report is created by Arriba, which provides a script that renders

visualisations of the transcripts involved in predicted fusions and is capable of taking

the FusionInspector result file as input. It generates a PDF file with one page for each

predicted fusion. Each page depicts the fusion partners, their orientation, the retained

exons in the fusion transcript, and statistics about the number of supporting reads. The file

is found at ‘<output path>/<sample name>/fusioninspector/visualization/*fusions.pdf’.

Nextflow execution report

Nextflow can create an HTML execution report, a single document that includes

many metrics about a workflow execution. The report is organised into three main

sections: summary, resources, and tasks.

The summary section reports the execution status, the launch command, overall

execution time, and other workflow metadata. The resources section plots the distribution

of resource usage for each workflow process, including CPU, memory, job duration, and

disk I/O. The Tasks section lists all executed tasks, reporting for each of them the status,

the actual command script, and other metrics.

58

7 Results

The Nextflow pipeline is available at GitLab as a public repository at

https://gitlab.com/souckmi/gene-fusion-pipeline, thus it can be run on any device with the

internet connection and Nextflow installed, as briefly described below or as explained in

the GitLab repository README.

To run the analysis, the reference files for each caller must be downloaded from

https://owncloud.cesnet.cz/index.php/s/XVovHksT8m1hIMa. For testing purposes, we

also included a small dataset provided by FusionCatcher, which is available in the GitLab

repository in the test/data directory. In the next sections, we represent a real data running

example.

7.1 Testing data

Our solution was tested with two anonymised datasets, which were provided by

The Institute of Hematology and Blood Transfusion with the patients' written informed

consent for research. Additionally, we include a smaller dataset provided by

FusionCatcher, that can be found in GitLab repository. The dataset are described in Table

7.1.

Table 7.1: Real testing data

Sample name Multiple lines Size Description

p1_S4 Yes 1,49 GB A male patient diagnosed at 25 years of age,

diagnostical sample, ph+ ALL, 0,1%

BCR::ABL1 MR

p2_S10 Yes 3,91 GB A male patient diagnosed with CML at 74

years of age, sample taken 7 months after

diagnoses, 4% BCR::ABL1 in IS

test_data No 1,50 MB Minimalistic testing samples provided by

FusionCatcher

7.2 Real data running example

As mentioned above, the pipeline can be run either locally or with Metacentrum.

Here, we provide an example of running the analysis with the ‘metacentrum’ profile,

i.e. with Kubernetes executor (more detailed documentation is available for both profiles

in GitLab README).

https://gitlab.com/souckmi/gene-fusion-pipeline
https://owncloud.cesnet.cz/index.php/s/XVovHksT8m1hIMa

59

With Nextflow installed and reference files prepared, the pipeline is executed with

an example command in Code7.1. It is possible to replace the double dashed parameters

with a parameter “-params-file” and path to a JSON or YAML file that contains them.

nextflow kuberun https://gitlab.com/souckmi/gene-fusion-pipeline \

 -r <revision> \

 -profile metacentrum

 -pod-image 'cerit.io/nextflow/nextflow:22.06.1'\

 -v <storage claim name>:/mnt\

 --readsdir /path/to/data/directory \

 --runId <run id>

 --mergeInputFiles true \

 --reference /path/to/reference/directory \

 --outdir /path/to/output/directory \

 --k8s_namespace <k8s name space> \

 --k8s_storageclaimname <storage claim name> \

 --k8s_storagemountpath /mnt \

 --k8s_launchdir /mnt/path/to/launchdir \

 --k8s_workdir /mnt/path/to/workDir \

Code 7.1: Example command line command to run the pipeline with MetaCentrum

7.2.1 Execution time and resource management

The duration of the execution is dependent on the size and content of the input data

and the computational resources provided – if only the minimal required resources are

available, the processes cannot run parallelly, and the analysis runs longer.

Table 7.2: Time duration of execution for different input files

Sample p1_S4 p2_S10 p3_S4 + p2_S10

Duration 2h 2m 52s 3h 39m 52s 4h 24m 53s

https://gitlab.com/souckmi/gene-fusion-pipeline

60

We tested the pipeline with 252 GB of RAM and 48 CPUs available. Below we show

the percentage of usage of allocated resources for samples p2_S10, see Figure 7.2.

The Figure 7.1 illustrates the timeline and time duration for executing the pipeline for

samples p1_S4 and p2_S10 separately, Figure 7.3 then with both samples p1_S4 and

p2_S10 on the input. The comparison of execution duration for samples of varied sizes

can be seen in Table 7.2.

Figure 7.1: Execution timeline with wall time and memory usage for each process. a:

Sample p1_S4. b: Sample p2_S10.

61

Figure 7.2: Percentage of requested RAM and CPU compared to the allocated values

0
10
20
30
40
50
60
70
80
90

100
%

 A
LL

O
C

A
TE

D
 C

P
U

S
U

SE
D

% Requested CPU Used

0

10

20

30

40

50

60

%
 M

EM
O

R
Y

% Requested Physical Memory Used

62

Figure 7.3: Execution timeline for analysis with both testing samples on the input. A grey

segment of a bar represents submitted state, colourful then running state of a process.

7.2.2 Output files

Below we present the four main output files, where all the following figures are

results of the p1_S4 sample analysis. As mentioned, the pipeline generates an XLSX file

containing a formatted table of fusion gene candidates for each caller; an example can be

seen in Figure 7.4, where the columns ‘anot’, ‘FAR_right’, ‘FAR_left’, and ‘FFPM’ are

omitted.

Figures 7.5 and 7.6 show the FusionInspector visualisation,

fusion_inspector_web.htm, and Figure 7.7 shows an example of a FusionInspector gene

fusion candidate visualised by Arriba in fusions.pdf. Two plots from the summary report

generated by Fastp can be seen in Figure 7.8.

63

Figure 7.4: The XLSX final result table with the detected BCR::ABL1 fusion gene (sample p1_S4)

64

Figure 7.5: The FusionInspector HTML summary visualisation (sample p1_S4). The initial view.

65

Figure 7.6: The FusionInspector HTML summary visualisation (sample p1_S4). IGV view of the BCR::ABL1 fusion gene.

66

Figure 7.7: The Arriba PDF visualisation of the BCR::ABL1 fusion gene detected by FusionInspector (sample p1_S4)

67

Figure 7.8: Example of Fastp HTML visualisation of quality control and filtering results (sample p1_S4). Reads quality before and after filtering.

68

7.2.3 Detected Fusion Gene Candidates

As the result of our solution is intended to be a summary of predicted fusion

candidates for expert analysis, here we provide merely an aggregation of the analysis

outcome for the two of the testing datasets, see Table 7.3.

Table 7.3: Summary of testing analysis results

 Number of fusions reported Detected BCR::ABL1

Caller Sample p1_S4 Sample p2_S10 Sample p1_S4 Sample p2_S10

JAFFA 275 272 Yes Yes

FusionCatcher 71 82 Yes Yes

Arriba 7 13 Yes Yes

STAR-Fusion 13 7 Yes Yes

Cicero 120 172 Yes Yes

FusionInspector 245 240 Yes Yes

69

8 Discussion

The aim was to build a bioinformatics pipeline for RNAseq data analysis of leukemia

patients with the emphasis on fusion gene detection. We mapped currently available

fusion gene detection tools and their methodology and selected five callers, JAFFA,

Arriba, STAR-Fusion, Cicero, and FusionCatcher, that matched our criteria.

Since fusion callers generally vary in their approaches, they differ in sensitivity to

different gene fusions. Thus, using multiple tools leads to a wider range of results and

higher probability of reporting the relevant fusions for the given sample. Although we

provide a level of validation by including FusionInspector, our solution serves as a tool

that delivers a preprepared summary of fusion gene candidates and their visualisation that

are intended to be further analysed by an expert.

As one of the main motivations for this thesis was the need of a tool that overcomes

the issues with portability and resource management that come with such a complex

bioinformatics analysis, we followed current trends and leveraged Nextflow as the

programming framework.

The pipeline comes with prepared options to execute the processes locally or with

Kubernetes executor without any need to modify the code. To provide enough flexibility,

changing the target system for execution can be easily achieved through a configuration

file.

Testing the solution on two real datasets demonstrated that building a pipeline with

Nextflow not only automated the analysis, but also provided efficient resource

management and parallelization of distinct tasks of both single sample and multiple

samples analysis.

As far as we can interpret the detected fusion candidates in the testing datasets

without an expert analysis, the fusion gene BCR::ABL1 was reported in both samples as

expected based on the patients diagnosis.

We provide a tool that was developed in a modular approach. It is structured in such

a way that including another module for different analysis (e.g. RNAseq differential

expression analysis) on the same data can be easily achieved in the future.

70

9 Conclusions

In this thesis we focused on leveraging the features of Nextflow to overcome

the issues that come along with developing a complex bioinformatic pipeline for

RNAseq analysis. The aim was to provide a tool for fusion gene detection that is

portable, easily deployed and well documented.

To reach that, we mapped current trends in methodology of RNAseq data

processing and fusion gene detection and came with a workflow with a summary table

of fusion candidates for subsequent expert analysis on the output.

We provide our solution along with documentation in a form of GitLab project that

can be run locally from any machine with Linux and Nextflow, without any additional

installation steps required.

71

List of Literature

[1] F. Mertens, B. Johansson, T. Fioretos, and F. Mitelman, ‘The emerging complexity
of gene fusions in cancer’, Nat Rev Cancer, vol. 15, no. 6, pp. 371–381, Jun. 2015,
doi: 10.1038/nrc3947.

[2] H. Wu, X. Li, and H. Li, ‘Gene fusions and chimeric RNAs, and their implications
in cancer’, Genes & Diseases, vol. 6, no. 4, pp. 385–390, Dec. 2019, doi:
10.1016/j.gendis.2019.08.002.

[3] B. J. Haas, A. Dobin, B. Li, N. Stransky, N. Pochet, and A. Regev, ‘Accuracy
assessment of fusion transcript detection via read-mapping and de novo fusion
transcript assembly-based methods’, Genome Biol, vol. 20, no. 1, p. 213, Dec. 2019,
doi: 10.1186/s13059-019-1842-9.

[4] D. C. Corney, ‘RNA-seq Using Next Generation Sequencing’, MATER METHODS,
vol. 3, Aug. 2013, doi: 10.13070/mm.en.3.203.

[5] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, E. Palumbo, and C.
Notredame, ‘Nextflow enables reproducible computational workflows’, Nat
Biotechnol, vol. 35, no. 4, pp. 316–319, Apr. 2017, doi: 10.1038/nbt.3820.

[6] Istvan Albert, The Biostar Handbook, 2nd Edition. Biostar Genomics, 2021.
[Online]. Available: https://www.biostarhandbook.com/index.html

[7] H. F. Lodish, Ed., Molecular cell biology, 5th ed. New York: W.H. Freeman, 2003.
[8] ‘Talking Glossary of Genomic and Genetic Terms’, National Human Genome

Research Institute. https://www.genome.gov/genetics-glossary
[9] S. R. Bolsover, Ed., Cell biology: a short course, 2nd ed. Hoboken, N.J: Wiley-Liss,

2004.
[10] Polyak K. and Meyerson M., ‘Overview: Gene Structure’, in Holland-Frei Cancer

Medicine, 6th ed.Hamilton (ON): BC Decker, 2003. Accessed: Jan. 26, 2022.
[Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK12983/

[11] G.-W. Li and X. S. Xie, ‘Central dogma at the single-molecule level in living cells’,
Nature, vol. 475, no. 7356, pp. 308–315, Jul. 2011, doi: 10.1038/nature10315.

[12] S. Gunes and A. M. Mahmutoglu, ‘Transcriptomics and Oxidative Stress in Male
Infertility’, in Oxidants, Antioxidants and Impact of the Oxidative Status in Male
Reproduction, Elsevier, 2019, pp. 249–260. doi: 10.1016/B978-0-12-812501-
4.00023-7.

[13] Y. Wang, N. Wu, J. Liu, Z. Wu, and D. Dong, ‘FusionCancer: a database of cancer
fusion genes derived from RNA-seq data’, Diagn Pathol, vol. 10, no. 1, p. 131, Dec.
2015, doi: 10.1186/s13000-015-0310-4.

[14] J. Li et al., ‘A functional genomic approach to actionable gene fusions for precision
oncology’, Sci. Adv., vol. 8, no. 6, p. eabm2382, Feb. 2022, doi:
10.1126/sciadv.abm2382.

[15] G. Picco et al., ‘Functional linkage of gene fusions to cancer cell fitness assessed by
pharmacological and CRISPR-Cas9 screening’, Nat Commun, vol. 10, no. 1, p.
2198, May 2019, doi: 10.1038/s41467-019-09940-1.

[16] C. Kumar-Sinha, S. Kalyana-Sundaram, and A. M. Chinnaiyan, ‘Landscape of gene
fusions in epithelial cancers: seq and ye shall find’, Genome Med, vol. 7, no. 1, p.
129, Dec. 2015, doi: 10.1186/s13073-015-0252-1.

[17] S. Uhrig et al., ‘Accurate and efficient detection of gene fusions from RNA
sequencing data’, Genome Res., vol. 31, no. 3, pp. 448–460, Mar. 2021, doi:
10.1101/gr.257246.119.

[18] M. Engvall, N. Cahill, B.-I. Jonsson, M. Höglund, H. Hallböök, and L. Cavelier,
‘Detection of leukemia gene fusions by targeted RNA-sequencing in routine
diagnostics’, BMC Med Genomics, vol. 13, no. 1, p. 106, Dec. 2020, doi:
10.1186/s12920-020-00739-4.

72

[19] J. Schröder, A. Kumar, and S. Q. Wong, ‘Overview of Fusion Detection Strategies
Using Next-Generation Sequencing’, in Tumor Profiling, S. S. Murray, Ed., New
York, NY: Springer New York, 2019, pp. 125–138. doi: 10.1007/978-1-4939-9004-
7_9.

[20] S. Faderl, M. Talpaz, Z. Estrov, and H. M. Kantarjian, ‘Chronic Myelogenous
Leukemia: Biology and Therapy’, Ann Intern Med, vol. 131, no. 3, p. 207, Aug.
1999, doi: 10.7326/0003-4819-131-3-199908030-00008.

[21] R. Hehlmann, A. Hochhaus, and M. Baccarani, ‘Chronic myeloid leukaemia’, The
Lancet, vol. 370, no. 9584, pp. 342–350, Jul. 2007, doi: 10.1016/S0140-
6736(07)61165-9.

[22] E. Vuelta, I. García-Tuñón, P. Hernández-Carabias, L. Méndez, and M. Sánchez-
Martín, ‘Future Approaches for Treating Chronic Myeloid Leukemia: CRISPR
Therapy’, Biology, vol. 10, no. 2, p. 118, Feb. 2021, doi: 10.3390/biology10020118.

[23] A. K. Gupta and U. Gupta, ‘Next generation sequencing and its applications’, in
Animal Biotechnology, Elsevier, 2020, pp. 395–421. doi: 10.1016/B978-0-12-
811710-1.00018-5.

[24] R. Pereira, J. Oliveira, and M. Sousa, ‘Bioinformatics and Computational Tools for
Next-Generation Sequencing Analysis in Clinical Genetics’, JCM, vol. 9, no. 1, p.
132, Jan. 2020, doi: 10.3390/jcm9010132.

[25] The SAM/BAM Format Specification Working Group, ‘Sequence Alignment/Map
Format Specification’, samtools, Mar. 06, 2021. https://github.com/samtools/hts-
specs/blob/master/SAMv1.pdf (accessed Nov. 22, 2021).

[26] Illumina, Inc., ‘Advantages of paired-end and single-read sequencing’, Illumina.
https://www.illumina.com/science/technology/next-generation-sequencing/plan-
experiments/paired-end-vs-single-read.html (accessed Jan. 26, 2022).

[27] Q. Wang, J. Xia, P. Jia, W. Pao, and Z. Zhao, ‘Application of next generation
sequencing to human gene fusion detection: computational tools, features and
perspectives’, Briefings in Bioinformatics, vol. 14, no. 4, pp. 506–519, Jul. 2013,
doi: 10.1093/bib/bbs044.

[28] S. R. Head et al., ‘Library construction for next-generation sequencing: Overviews
and challenges’, BioTechniques, vol. 56, no. 2, pp. 61–77, Feb. 2014, doi:
10.2144/000114133.

[29] M. Sagoff, ‘Data deluge and the human microbiome project’, vol. 28, pp. 71–78,
Jun. 2012.

[30] R. McFadyen, ‘Intro to NGS Data Analysis Workflow’, Diagnostech, Aug. 03,
2020. https://diagnostech.co.za/intro-to-ngs-data-analysis-workflow/ (accessed Jan.
16, 2022).

[31] S. Zhao et al., ‘Bioinformatics for RNA‐Seq Data Analysis’, in Bioinformatics -
Updated Features and Applications, I. Y. Abdurakhmonov, Ed., InTech, 2016. doi:
10.5772/63267.

[32] B. J. Haas and M. C. Zody, ‘Advancing RNA-Seq analysis’, Nat Biotechnol, vol.
28, no. 5, pp. 421–423, May 2010, doi: 10.1038/nbt0510-421.

[33] Z. Wang, M. Gerstein, and M. Snyder, ‘RNA-Seq: a revolutionary tool for
transcriptomics’, Nat Rev Genet, vol. 10, no. 1, pp. 57–63, Jan. 2009, doi:
10.1038/nrg2484.

[34] ‘Functional genomics (II): Common technologies and data analysis methods’. 2016.
Accessed: Jan. 28, 2022. [Online]. Available:
https://www.ebi.ac.uk/training/online/courses/functional-genomics-ii-common-
technologies-and-data-analysis-methods/

[35] V. M. Kvam, P. Liu, and Y. Si, ‘A comparison of statistical methods for detecting
differentially expressed genes from RNA‐seq data’, American Journal of Botany,
vol. 99, no. 2, pp. 248–256, Feb. 2012, doi: 10.3732/ajb.1100340.

[36] S. Zhao, L. Xi, and B. Zhang, ‘Union Exon Based Approach for RNA-Seq Gene
Quantification: To Be or Not to Be?’, PLoS ONE, vol. 10, no. 11, p. e0141910, Nov.
2015, doi: 10.1371/journal.pone.0141910.

73

[37] M. Zhang et al., ‘Quantification of gene expression while taking into account RNA
alternative splicing’, Genomics, vol. 111, no. 6, pp. 1517–1528, Dec. 2019, doi:
10.1016/j.ygeno.2018.10.009.

[38] M. D. Robinson and A. Oshlack, ‘A scaling normalization method for differential
expression analysis of RNA-seq data’, Genome Biol, vol. 11, no. 3, p. R25, 2010,
doi: 10.1186/gb-2010-11-3-r25.

[39] J. Costa-Silva, D. Domingues, and F. M. Lopes, ‘RNA-Seq differential expression
analysis: An extended review and a software tool’, PLoS ONE, vol. 12, no. 12, p.
e0190152, Dec. 2017, doi: 10.1371/journal.pone.0190152.

[40] T. Samazan, ‘Next Generation Sequencing Data: Tertiary Analysis’, Bioinformatics
- Blog, Sep. 07, 2017. https://bioinfoinc.com/blog/next-generation-sequencing-data-
tertiary-analysis/ (accessed Feb. 02, 2022).

[41] A. Oshlack, M. D. Robinson, and M. D. Young, ‘From RNA-seq reads to differential
expression results’, Genome Biol, vol. 11, no. 12, p. 220, 2010, doi: 10.1186/gb-
2010-11-12-220.

[42] S. Kumar, S. K. Razzaq, A. D. Vo, M. Gautam, and H. Li, ‘Identifying fusion
transcripts using next generation sequencing’, WIREs RNA, vol. 7, no. 6, pp. 811–
823, Nov. 2016, doi: 10.1002/wrna.1382.

[43] Y. W. Asmann et al., ‘A novel bioinformatics pipeline for identification and
characterization of fusion transcripts in breast cancer and normal cell lines’, Nucleic
Acids Research, vol. 39, no. 15, pp. e100–e100, Aug. 2011, doi:
10.1093/nar/gkr362.

[44] G. R. Oliver et al., ‘A tailored approach to fusion transcript identification increases
diagnosis of rare inherited disease’, PLoS ONE, vol. 14, no. 10, p. e0223337, Oct.
2019, doi: 10.1371/journal.pone.0223337.

[45] T. N. Vu, W. Deng, Q. T. Trac, S. Calza, W. Hwang, and Y. Pawitan, ‘A fast
detection of fusion genes from paired-end RNA-seq data’, BMC Genomics, vol. 19,
no. 1, p. 786, Dec. 2018, doi: 10.1186/s12864-018-5156-1.

[46] B. J. Haas et al., ‘Targeted in silico characterization of fusion transcripts in tumor
and normal tissues via FusionInspector’, Bioinformatics, preprint, Aug. 2021. doi:
10.1101/2021.08.02.454639.

[47] W. Hu et al., ‘Development and validation of an RNA sequencing panel for gene
fusions in soft tissue sarcoma’, Cancer Science, vol. 113, no. 5, pp. 1843–1854, May
2022, doi: 10.1111/cas.15317.

[48] Seqera Labs, ‘Nextflow training’, 2. Introduction, 2020. https://seqera.io/training/
(accessed Feb. 02, 2022).

[49] CESNET, z. s. p. o, ‘MetaCentrum VO’, MetaCentrum VO, Nov. 13, 2019.
https://www.metacentrum.cz/en/VO/metavo/ (accessed Nov. 21, 2021).

[50] E. Conrad, S. Misenar, and J. Feldman, ‘Domain 3: Security Engineering
(Engineering and Management of Security)’, in CISSP Study Guide, Elsevier, 2016,
pp. 103–217. doi: 10.1016/B978-0-12-802437-9.00004-7.

[51] R. J. Anthony, ‘The Architecture View’, in Systems Programming, Elsevier, 2016,
pp. 277–382. doi: 10.1016/B978-0-12-800729-7.00005-4.

[52] W. Tian and Y. Zhao, ‘An Introduction to Cloud Computing’, in Optimized Cloud
Resource Management and Scheduling, Elsevier, 2015, pp. 1–15. doi:
10.1016/B978-0-12-801476-9.00001-X.

[53] J. McGovern, S. Tyagi, M. E. Stevens, and S. Mathew, ‘Practical Considerations’,
in Java Web Services Architecture, Elsevier, 2003, pp. 689–726. doi: 10.1016/B978-
155860900-6/50021-X.

[54] ‘Introduction’, Metacentrum Cloud Documentation. https://docs.cloud.muni.cz/
(accessed Feb. 02, 2022).

[55] Bashari Rad, Babak, Bhatti, Harrison, and Ahmadi, Mohammad, ‘An Introduction
to Docker and Analysis of its Performance’, IJCSNS International Journal of
Computer Science and Network Security, vol. 173, p. 8, Mar. 2017.

74

[56] C. Anderson, ‘Docker [Software engineering]’, IEEE Softw., vol. 32, no. 3, pp. 102-
c3, May 2015, doi: 10.1109/MS.2015.62.

[57] Merkel, Dirk, ‘Docker: lightweight linux containers for consistent development and
deployment’, Linux journal, vol. 2014, no. 239, p. 2, 2014.

[58] E. Kim, K. Lee, and C. Yoo, ‘On the Resource Management of Kubernetes’, in 2021
International Conference on Information Networking (ICOIN), Jeju Island, Korea
(South): IEEE, Jan. 2021, pp. 154–158. doi: 10.1109/ICOIN50884.2021.9333977.

[59] Md. S. Islam Shamim, F. Ahamed Bhuiyan, and A. Rahman, ‘XI Commandments
of Kubernetes Security: A Systematization of Knowledge Related to Kubernetes
Security Practices’, in 2020 IEEE Secure Development (SecDev), Atlanta, GA,
USA: IEEE, Sep. 2020, pp. 58–64. doi: 10.1109/SecDev45635.2020.00025.

[60] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, ‘Borg, Omega, and
Kubernetes: Lessons learned from three container-management systems over a
decade’, Queue, vol. 14, no. 1, pp. 70–93, Jan. 2016, doi:
10.1145/2898442.2898444.

[61] S. Chen, Y. Zhou, Y. Chen, and J. Gu, ‘fastp: an ultra-fast all-in-one FASTQ
preprocessor’, Bioinformatics, vol. 34, no. 17, pp. i884–i890, Sep. 2018, doi:
10.1093/bioinformatics/bty560.

[62] A. Dobin et al., ‘STAR: ultrafast universal RNA-seq aligner’, Bioinformatics, vol.
29, no. 1, pp. 15–21, Jan. 2013, doi: 10.1093/bioinformatics/bts635.

[63] H. Li et al., ‘The Sequence Alignment/Map format and SAMtools’, Bioinformatics,
vol. 25, no. 16, pp. 2078–2079, Aug. 2009, doi: 10.1093/bioinformatics/btp352.

[64] N. M. Davidson, I. J. Majewski, and A. Oshlack, ‘JAFFA: High sensitivity
transcriptome-focused fusion gene detection’, Genome Med, vol. 7, no. 1, p. 43, Dec.
2015, doi: 10.1186/s13073-015-0167-x.

[65] D. Nicorici et al., ‘FusionCatcher - a tool for finding somatic fusion genes in paired-
end RNA-sequencing data’, Bioinformatics, preprint, Nov. 2014. doi:
10.1101/011650.

[66] L. Tian et al., ‘CICERO: a versatile method for detecting complex and diverse driver
fusions using cancer RNA sequencing data’, Genome Biol, vol. 21, no. 1, p. 126,
Dec. 2020, doi: 10.1186/s13059-020-02043-x.

[67] P. Danecek et al., ‘Twelve years of SAMtools and BCFtools’, GigaScience, vol. 10,
no. 2, p. giab008, Jan. 2021, doi: 10.1093/gigascience/giab008.

[68] Brian Haas and Alex Dobin, ‘FusionInspector: In silico Validation of Fusion
Transcript Predictions’, FusionInspector: In silico Validation of Fusion Transcript
Predictions. https://github.com/FusionInspector/FusionInspector/wiki

[69] SciLifeLab, ‘standalone_scripts’, GitHub.
https://github.com/SciLifeLab/standalone_scripts

[70] Brian Haas, ‘CTAT_HumanFusionLib’, GitHub, Dec. 30, 2022.
https://github.com/FusionAnnotator/CTAT_HumanFusionLib/wiki

