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ABSTRACT 

 

A tool for RNAseq data processing in patients with leukemia:  

The aim is to develop a bioinformatic Nextflow pipeline that would analyse RNAseq data 

of leukemic patients with the emphasis on fusion gene detection. Since gene fusions are 

believed to be associated with tumour phenotype, they have been of significant 

importance for clinical purposes, as well as for understanding tumorigenesis. 

With mapping current trends in RNAseq data processing and fusion detection, we provide 

a modular workflow consisting of processes that leverage suitable bioinformatic tools and 

manage fusion gene detection along with pre-processing and validation. The detected 

fusion candidates are preprepared as a formatted summary table for subsequent expert 

analysis. 
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1 Introduction 

Transcriptome sequencing (RNAseq) is a method that rapidly emerged 

with the advent of Next-Generation Sequencing (NGS). By the virtue of these quickly 

developing technologies, we could witness an extensive research on human genomic 

aberrations that are believed to be cause factors of variety of illnesses. Among 

these variations, gene fusions have been of great interest due to their associations 

with cancer [1]. 

Gene fusions are hybrid genes formed from two previously separate genes and can 

occur as a result of a translocation, deletion, or chromosomal inversion [2]. Their analysis 

from RNAseq data is now almost a routine task in cancer research and oncological clinical 

practice, since they are ideal for diagnostic purposes, enable the subclassification 

of disease entities and affect sensitivity to relevant drugs [1]. A canonical example is 

BCR::ABL1 that is believed to be necessary for chronic myeloid leukemia initiation 

and maintenance and is found in ~95% of patients [3]. 

The analysis of RNAseq data, such as gene fusion detection, is not straightforward, 

as it requires a series of distinct steps that are often computationally demanding [4] and 

each has its own set of inputs and outputs, which may or may not be shared between them. 

These sequential steps collectively form a bioinformatics pipeline, which can 

be orchestrated using a Bash script. However, this approach comes with various 

downsides, including issues with portability, difficulty in incorporating additional steps, 

and optimizing resources and performance. Furthermore, documenting pipelines written 

in this manner is demanding and problematic, requiring extensive technical knowledge. 

In response to these challenges, contemporary trends in bioinformatics pipeline 

development use Nextflow [5], an open-source framework for bioinformatics workflow 

management, which utilises parallelisation and distributed computing.  

The aim of this thesis is to create a fusion gene detection pipeline leveraging 

the abilities of Nextflow along with Docker technologies that will process data from RNA 

sequencing of leukemia patients and provide a summary of fusion gene candidates 

preprepared for expert analysis.   
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2 Biological background and clinical motivation 

2.1 Fusion Mechanism 

2.1.1 DNA and RNA 

Genetic instructions, which are required for the development, function, 

and reproduction of all known living organisms, are carried in nucleic acids - deoxy 

nucleic acid (DNA) and ribonucleic acid (RNA) [6]. "These macromolecules contain 

the information for determining the amino acid sequence, and hence the structure 

and function of all the proteins of a cell, are part of the cellular structures that select 

and align amino acids in the correct order as a polypeptide chain is being synthesised 

and catalyse a number of fundamental chemical reactions in cells, including formation 

of peptide bonds between amino acids during protein synthesis." [7] 

The nucleic acids are chemically similar. The linear structures of both are linear 

polymers composed of monomers called nucleotides, all of which have a common 

structure. A phosphate group is linked by a phosphoester bond to pentose (ribose for RNA 

and deoxyribose for DNA) that in turn is linked to a nitrogen- and carbon-containing ring 

structure commonly referred to as a base. [2] There are five bases: purines, adenine 

and guanine, and pyrimidines, cytosine, thymine, and uracil. The bases are often referred 

to by their first letter, A, G, C, T, and U. Sometimes, these single-letter abbreviations 

are also commonly used to denote the entire nucleotides. In DNA we can find only A, G, 

C and T, and in RNA thymine is replaced by uracil [6]. 

Figure 2.1: DNA and RNA [8] 

As seen in Figure 2.1, DNA is made of two strands of polynucleotide chains coiled 

around each other in a double-helix structure and can be as long as several hundred 

million nucleotides [7]. The sugar and phosphate groups lie outside the molecule, and 

the purines and pyrimidines lie inside the molecule. A always pairs with T, and G always 
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pairs with C, creating the so-called base pairs (bp) [9]. On the other hand, RNA is 

a single-stranded molecule of less than 100 to many thousands of nucleotides [7]. 

2.1.2 End-to-End directionality 

A nucleic acid strand has an end-to-end chemical orientation: the 5' end has 

a hydroxyl or phosphate group on the 5' carbon of its terminal sugar; the 3' end usually 

has a hydroxyl group on the 3' carbon of its terminal sugar. [7] The two chains of DNA 

are said to be antiparallel because they lie in the opposite orientation with respect to one 

another, with the 3'-hydroxyl terminus of one strand opposite the 5'-phosphate terminus 

of the second strand. [9] 

Few conventional terms are used to refer to each strand and its directionality. 

- DNA is double-stranded. By convention, for a reference chromosome, one whole 

strand is called the forward strand (+) and the other the reverse strand (-). 

- Sequences are conventionally written and read in the 5'->3' direction, since 

the synthesis proceeds in that direction. 

- The mRNA sequence of a gene corresponds to the DNA sequence as read from 

the gene's coding strand. Therefore, the mRNA sequence always corresponds 

to the 5-3 coding sequence of a gene. 

- If a sequence is considered in reverse, then it is formed by reversing the order 

of the letters. If a sequence is considered as a complement, then it is formed 

by swapping each base for the other one in its base pair. [9] 

2.1.3 Genome and genes 

A genome is all of an organism’s DNA sequence [6]. Humans have 46 DNA 

molecules in each somatic cell, each of which forms one chromosome. We inherit 23 

chromosomes from each parent, where each set of 23 chromosomes encodes a complete 

copy of our genome and is made up of 6 × 109 nucleotides [9]. 

The genome of cellular organisms has regions that contain the instructions 

for making proteins, so-called coding regions, but it may also have regions used 

to produce molecules other than proteins or regions that regulate the rates by which other 

processes take place. 

A gene is considered the fundamental unit of inheritance. It is a segment of DNA 

that specifies the structure of proteins that are responsible for the phenotype (observable 

traits of an organism) associated with a particular gene. The estimated number of genes 

in human DNA ranges from 30 000 to 120 000 genes. [10] 
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All genes are in almost every cell, however, only some of the genes are used in any 

particular cell at any given time. When and in what tissue a gene is expressed is controlled 

by a specific region of a gene, called promoter. The structure of a gene's protein 

is specified by the gene's coding region. [10] 

These coding regions of most genes are not continuous, as seen in Figure 2.2. 

The areas that are transcribed into mRNA are called exons. However, exons can 

be interrupted by areas that do not appear in mature mRNA, called introns. The purpose 

of these parts is not yet fully known. [10] 

Figure 2.2: The process of transcription from DNA to mRNA [8] 

2.1.4 Gene expression and transcriptome 

The process of going from DNA to a functional product (e.g., protein) is known as 

gene expression. The 'central dogma' of molecular biology states that DNA-encoded 

genetic information is transcribed to mRNA and then translated to protein [11]. 

The transcription process involves creating an RNA copy of the gene using the DNA of 

the gene as a template. The translation of mRNA into protein is a process of decoding 

the structural message in mRNA and synthesis of a given protein. [10] 

The identity of each gene expressed in a particular cell at a given time and its level 

of expression is defined as the transcriptome [10]. The transcriptome is the complete set 

of coding and noncoding RNAs that are transcribed at a specific developmental stage 

and/or are present under various physiological conditions within a cell type or tissue [12]. 
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2.1.5 Gene fusions 

Gene fusion refers to the formation of a new chimeric transcript or gene structure as 

a result of joining complete or partial sequences of two or more exons of different genes 

that have the potential to encode new proteins with new functions [4]. Gene fusions are 

formed by chromosomal rearrangement, including translocation, inversion, deletion, or 

tandem duplication [2]. These formations can be observed in all domains of life and are 

a constant source of new genes, which can be beneficial, but may also lead to abnormal 

cell proliferation and cancer [4]. 

Taking into account their prevalence and common characteristics in diverse types of 

human cancer, gene fusions are always regarded a distinct class of mutations [13], 

and have been used successfully as diagnostic tools [2].  

For the terminology clarification, gene fusion refers to DNA-level fusion events, 

and chimeric RNA refers to any transcript composed of exons from different parental 

genes, including gene fusion transcripts. Chimeric RNA can be a product of gene fusion, 

but can also be generated by trans-splicing of two separate precursor mRNAs 

and alternative splicing of a readthrough transcript (in these cases it cannot be detected 

by DNA-based assays, as they are produced in the absence of chromosomal 

rearrangement, and therefore RNA-based analysis should be used). [2] 

Both gene fusions and chimeric RNAs have strong associations with cancer and have 

major impacts on cancer diagnosis and treatment; however, detection of either is not 

necessarily indicative of cancer. [2] An example of a gene fusion is BCR::ABL1, which 

is significant for chronic myeloid leukemia, as described below. 

As shown in the Figure 2.3.a, “gene fusions may originate through balanced 

and unbalanced chromosome rearrangements. Balanced changes comprise 

translocations (the transfer of chromosome segments between chromosomes), insertions 

(a chromosome segment in a new interstitial position in the same or another 

chromosome) and inversions (a rotation of a chromosome segment by 180 degrees).” [1] 

Both balanced and unbalanced aberrations may lead to the deregulation of either gene A 

or gene B in one of the breakpoints by the juxtaposition of the coding sequences with 

the regulatory sequences of the gene in the other breakpoint, or by the creation of 

a chimeric gene through the fusion of parts of the two genes, one in each breakpoint [1], 

as seen in the Figure 2.3.b. 
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Figure 2.3: The chromosomal basis of gene fusions. a: Balanced and unbalanced 

rearrangements. Small grey arrows indicate breakpoints, and the large arrows indicate 

the resulting rearranged chromosomes. A and B signify affected genes. b: Possible outcomes of 

rearrangements. Small grey arrows indicate breakpoints. [1] 

2.2 Clinical practice 

Gene fusions are a prototypical example of a pathognomonic mutation,  in a sense 

they are characteristic for a particular disease, and the detection and characterisation of 

gene fusions have been of great importance for clinical purposes, as well as for 

understanding tumorigenesis [1]. Thousands of fusion genes have been identified in 

cancer patients, but the functional consequences and therapeutic implications of most of 

these remain largely unknown. [14, 15] 

Gene fusions have now been identified in several common carcinomas, including 

those of the prostate, lung, breast, head and neck, brain, skin, gastrointestinal tract, 

and kidney, which, along with widely documented gene fusions in thyroid and salivary 

gland tumours, support the notion that gene fusions are integral to the genomic landscape 

of most cancers. [16] 

The close association between the type of gene fusion and the tumour phenotype 

makes gene fusions ideal for diagnostic purposes, enabling the subclassification of 

otherwise seemingly identical disease entities [1]. Some fusions were identified to 

markedly affect sensitivity to relevant drugs [14]. In addition, many gene fusions add 

important information for risk stratification, and increasing numbers of chimeric proteins 
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encoded by the gene fusions serves as specific targets for treatment, resulting in 

dramatically improved patient outcomes. [1, 17] 

For example, gene fusions that involve oncogenes such as ERG, ETV1, TFE3, NUT, 

POU5F1, NFIB, PLAG1 and PAX8 are diagnostically useful. Tumours with fusions 

involving therapeutically targetable genes such as ALK, RET, BRAF, RAF1, FGFR1–4, 

and NOTCH1–3 have immediate implications for precision medicine across tissue types 

[16].  

Gene fusions are also frequently seen in leukemia and several of the recurrent gene 

fusions are required for subgrouping of leukemia and prognostication [18]. 

Characterisation of oncogenic fusion BCR::ABL1 at t(9,22) translocation loci in chronic 

myeloid leukemia, the first gene fusion described in cancer, culminated in 

the development of a molecularly targeted therapy, provides a compelling paradigm of 

'bench-to-bedside' for cancers [16, 19]. 

2.2.1 Chronic myeloid leukemia 

Chronic myeloid leukemia (CML) is a myeloproliferative disorder. It is 

characterised by a biphasic or triphasic clinical course in which a terminal blastic phase 

follows a chronic phase of variable duration. [20] CML is a rare disease with an incidence 

of 1 or 2 cases per 100 000 people every year, and is most common in older people, 

with a median age at diagnosis of around 65 years, where men are affected more 

frequently than are women [21]. 

Figure 2.4: Structure of the BCR::ABL1 oncogene. Schematic representation of the t(9;22) 

(q34;q11) translocation triggering the Philadelphia chromosome. [22] 
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CML was the first neoplastic disease for which knowledge of the genotype led to 

rationally designed therapy [21]. On a molecular level, most patients demonstrate 

BCR::ABL1 fusion genes, which are the result of a translocation between chromosomes 

9 and 22, see Figure 2.4. This translocation leads to a shortened chromosome 22, called 

the Philadelphia chromosome [2, 18, 20, 21], and its chimeric transcript encodes a 

fusion protein that is an altered constitutively active ABL1 kinase [2].  Only in about 5% 

of cases the Philadelphia chromosome cannot be detected [3], and confirmation of 

diagnosis is dependent on finding the BCR::ABL1 transcript [21]. 
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3 Overview of the current state of the art 

3.1 Next-Generation Sequencing 

3.1.1 Sequencing 

Sequencing is a process to determine the order of bases in DNA/RNA [6]. In this 

thesis, the focus is mainly on RNA sequencing (RNAseq or transcriptome sequencing), 

a tool used to study the transcriptome, the total RNA molecules present in one or 

a collection of cells, providing the knowledge of gene regulation and protein content 

information. RNAseq provides insight into differential expression of genes, differently 

spliced transcripts, gene alleles, noncoding and small RNAs, alternative splicing, or also 

gene fusions. RNA sequencing has also been used to discover novel gene sequences in 

transcriptomes. [4, 23] 

3.1.2 Generations 

The term "generation" refers to the chemistry and technology used by the sequencing 

process. First-generation sequencing denotes Sanger sequencing. Frederic Sanger stood 

at the very beginning of DNA sequencing in 1972. He came with a method for "DNA 

sequencing with chain-terminating inhibitors", which became popular and led to many 

biological successes including the first sequence of human genome in 2001. However, 

the method did not observe rapid changes for the next three decades. [23] 

Around 2005, Next-Generation Sequencing (NGS) was introduced [3] and is 

termed second generation sequencing. This method has been able to parallelise 

the sequencing reactions in a massive manner, and therefore generate a huge amount of 

data very rapidly at a modest cost. [23] 

And that is the main difference between Sanger (traditional) sequencing and NGS. 

“Sequencers based on Sanger sequencing produce a read length (the length of DNA 

fragment that can be sequenced at a time) of 800-1000 bp. Because only one read can be 

sequenced in one capillary of the sequencer at a time, the total output of the run is equal 

to the read length. However, sequencers with multiple capillaries allow us to sequence 

multiple samples at a time, for example 8, 16, 48, or 96. On the other hand, 

next-generation sequencers work on the principle of sequencing millions of DNA 

fragments simultaneously in a massively parallel mode and produce sequence data in 

megabases, gigabases, and now terrabases. The whole genome or transcriptome of 

an organism is fragmented into millions of small pieces and sequenced independently in 

parallel.” [23] 
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The third-generation sequencing (also next-NGS) refers to technologies which were 

developed to make sequencing cheaper than second-generation sequencing. This method 

interrogates molecules of DNA without amplifying them through PCR. [23, 24] 

The invention of NGS enabled researchers and clinicians to study biological systems 

at a level and resolution never before possible. The enormous information produced by 

NGS helps to understand genomic variations, disease mechanisms, and resistance, 

helping to develop better diagnostics, therapies, and better breeds. [23] 

3.1.3 Terminology 

The terms important for the understanding of NGS are described below: 

- The template is a DNA/RNA sequence part of which is sequenced on 

a sequencing machine or assembled from raw sequences [25]. 

- In NGS, a library is defined as a collection of RNA fragments that represents 

either the entire transcriptome or a target region. Each NGS platform has its 

specificities, but, in simple terms, the preparation of an NGS library starts with 

the fragmentation of the starting material; then sequence adaptors are connected 

to fragments to allow the enrichment of those fragments. [24]. In other words, 

library is a set of nucleic acid fragments which has undergone all processing steps 

and is ready for actual sequencing. 

- A read is a raw sequence that comes from a sequencing machine. The read may 

consist of multiple segments. For sequencing data, reads are indexed by the order 

in which they are sequenced [25]. 

- Single-end sequencing refers to reading a fragment where the fragment is read 

from one end only during sequencing. On the other hand, paired-end sequencing 

allows to sequence both ends of a fragment, producing twice the number of reads 

for the same time and effort in library preparation and providing more accurate 

read alignment and the ability to detect insertion-deletion variants, which is not 

possible with single-read data [26]. An additional advantage of paired-end 

RNAseq is the opportunity to detect chimeric transcripts resulting from gene 

fusion events when sequencing cancer transcriptomes [4]. 

3.1.4 NGS workflow 

NGS platforms, depending on the technology used, differ from each other in terms 

of read length, data produced, and data quality. NGS can also be used in a number of 

ways depending on the application, which can be classified into whole genome 

sequencing, whole exome sequencing, whole transcriptome sequencing and can also be 

applied to a subset of genes (targeted sequencing) [27]. However, in every type of 
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sequencing, the major changes occur in the sample processing and library preparation 

steps. Once the library is prepared, a particular sequencing platform can use the same 

chemistry to sequence the fragments. [23] 

The next-generation RNA sequencing workflow itself is divided into four main steps. 

1. First, before preparing an RNA library itself, some preparations may need to be 

made first. For RNA sequencing, total RNA is isolated from a sample of interest, 

which, depending on the type of RNA to be profiled, may be purified to enrich 

for mRNAs, microRNAs, lincRNAs, etc. 

2. Second, library preparation, which may involve steps such as reverse 

transcription to cDNA (complementary DNA), PCR amplification, and may or 

may not preserve strandedness information [4]. 

3. The third step generates the actual sequence via the chemistries for each 

technology [28]. Sequencing can produce one read in a single-end sequencing 

reaction, or two ends separated by an unsequenced fragment in paired-end 

reactions [4]. 

4. And last but not least, when the signal is converted to data, the data need to be 

converted to interpretable information, and the information into actionable 

knowledge, all as part of downstream data processing [23], on which we focus 

more in Section 3.2 NGS data processing. 

When NGS was introduced, the main challenges started to shift from sequencing 

itself to downstream bioinformatics. Technological advances make it continually faster 

and cheaper to produce genomic sequence data than to store, manage, and analyse them 

[29], leading to a "data deluge" problem. For example “the compressed single-end 

sequencing data from one flow cell of an Illumina HiSeq 2500 might be 20 GB and twice 

as large once uncompressed to allow for processing and manipulation.” [4] 

3.2 NGS data processing 

Downstream data analysis of RNA sequencing data consists of quality control, 

trimming of sequencing adapters, and removal of reads with poor quality scores, followed 

by mapping reads, differential expression analysis, identification of novel transcripts, 

and pathway analysis [4]. 

In general, the NGS data processing workflow can be broken down into three main 

components: primary, secondary, and tertiary analyses [24]. 
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3.2.1 Primary analysis 

Primary analysis consists of the detection and analysis of raw data (signal analysis), 

targeting the generation of legible sequencing reads (base calling) and scoring base 

quality [24], resulting in, for example, FASTQ files. However, this whole process takes 

place primarily on board the NGS instrument [23]. Primary analysis also includes 

the pre-processing of NGS reads to ensure that only high-quality reads of the optimal 

length are used for downstream analysis. 

Pre-processing prepares sequences for read alignment and can include read filtering, 

demultiplexing, and trimming [4]:  

- Filtering is a process in which reads are filtered out of the data based on base call 

quality (Phred score) and the length of the read. Poor confidence-base calls can 

lead to the detection of false-positive variants, so they need to be removed. Reads 

that are too short are likely to align with multiple regions in the genome and cause 

poor mapping metrics. 

- Multiplexing in NGS refers to multiple samples being sequenced simultaneously 

on the same instrument. Thus, demultiplexing is needed and refers to 

the separation of sequencing reads into separate files according to the barcode 

index used for each sample. 

-  Trimming removes adaptor sequences ligated to the ends of libraries during 

the library preparation process, as they can interfere with mapping and assembly. 

The reads are also trimmed to remove poor quality bases from the ends of 

the reads. [30] 

3.2.2 Secondary analysis 

Making sense of RNAseq data is very dependent on the question of interest. 

However, the main steps are common for most applications: read mapping, quantifying 

the expression levels of genes, transcripts, and exons, and then differential analysis of 

gene expression. [31]  

After direct sequencing of the cDNA fragments, it is not known which reads came 

from which transcripts. Therefore, transcripts need to be reconstructed by mapping short 

RNAseq reads [32].  

There are two main strategies (see Figure 3.1):  

- The de novo assembly approach is used when working on an organism without 

a reference genome [33]. Reads are first assembled into longer contigs, and these 

contigs can then be considered as the expressed transcriptome to which reads are 

remapped for quantification [34]. 
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-  The second approach is aligning the reads to a reference genome or reference 

transcripts [33]. This approach allows the discovery of new, unannotated 

transcripts [34].  

 

Figure 3.1: Strategies for reconstructing transcripts from RNAseq reads [32] 

After read mapping, the following step is read counting and quantification of 

expression levels of genes, transcripts, and exons [31], where gene expression is 

measured by the number of reads mapped to a gene [35]. Obtaining the transcriptome 

expression profile requires genomic elements (i.e. genes, transcripts, or exons) to be 

defined in the context of the genome. There are many aspects that affect gene 

quantification, from the choice of genome annotation [36] to taking into account 

alternative RNA splicing [37] and isoforms [36]. Gene quantification algorithms can be 

divided into two categories: transcript‐based approaches and union‐exon‐based 

approaches [31]. 

The next important step is normalisation. The aim is to remove systematic technical 

effects that occur in the data [38]. The easiest way to normalise the difference in the sizes 

of the sequencing library is to rescale the total read counts, but this approach is too simple, 

because the RNA sequencing counts inherently represent the relative abundances of genes 
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in a sample. The number of reads mapped to a gene is not only dependent on 

the expression level and length of the gene, but also on the composition of the RNA 

population that is being sampled [31]. 

The main aim of most RNA‐seq studies is differential analysis to identify 

differentially expressed genes between distinct sample groups [31]. “Differential 

expression analysis means taking the normalised read count data and performing 

statistical analysis to discover quantitative changes in expression levels between 

experimental groups. For example, we use statistical testing to decide whether, for 

a given gene, an observed difference in read counts is significant, that is, whether it is 

greater than what would be expected just due to natural random variation.” [34] 

Methods for differential gene expression analysis can be grouped into two 

subsets [39]: 

1. Parametric methods capture all information about the data within 

the parameters. Each expression value for a given gene is mapped into 

a particular distribution, such as the Poisson or negative binomial. 

2. Non-parametric methods can capture more details about the data distribution, 

i.e., not imposing a rigid model to be fitted. It is possible because non-parametric 

models take into consideration that data distribution cannot be defined from 

a finite set of parameters, thus the amount of information about the data can 

increase with its volume. [39] 

There is no consensus about which methodology is most appropriate or which 

approach is better in terms of robustness, accuracy, and reproducibility. The results of 

differential gene expression analysis are influenced by many factors at almost every step 

of the RNAseq analysis, from library preparation and structure of the experiment [39], to 

normalisation [31]. 

Gene fusion detection, which is part of the secondary analysis, is described in more 

detail in Section 3.3 Fusion gene detection. 

3.2.3 Tertiary analysis 

Last but not least, the relevance of the data produced is evaluated from a biological 

context [39] as the final step of the entire bioinformatic analysis pipeline. To cite Sean 

Scott from QIAGEN in Tanya Samazan's article [40] “The core of tertiary analysis is 

what we refer to as ‘interpretation.’ Interpretation involves the biological classification 

of observed variants, determination of the clinical relevance of these variants, the deemed 

action-ability of these variants in terms of treatment options and extends to the ordering 

physician in terms of how clinically helpful the results or recommendations are.” 
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And he also continues “When a cancer patient has progressed to a late-stage cancer, 

they’ve moved through the initial steps of standard care practices and they’re looking for 

alternative treatment and/or investigational drug options. Interpretation can involve not 

just the molecular and genomic profiling of a patient, but the assessment of how 

the diagnostic, theranostic, resistance or prognostic data enables a medical oncologist 

to identify and select the right targeted therapies or combination of therapies for their 

patient, based upon the evidence indicating that the treatment(s) may be efficacious for 

a patient-specific cancer type and genomic molecular profile and likely improve 

the patient’s outcome.” 

3.3 Fusion gene detection 

A number of new software tools have quickly emerged to identify structural variants, 

as well as gene fusions resulting from these variants [27]. Implementations of the various 

prediction methods vary in the read alignment tools employed, the genome 

database and gene set resources used, and criteria for reporting candidate fusion 

transcripts and for filtering out likely false positives [3]. Available fusion predictors vary 

in prediction accuracy [19], installation complexity, execution time, robustness, 

and hardware requirements [3]. 

Fusion genes in cancer samples can be detected by finding novel transcripts in 

RNAseq data [41]. In RNAseq datasets (as well as in DNAseq), gene fusion detection is 

based on unmapped and discordant read fragments. In RNAseq, fusion detection is further 

complicated by intron–exon boundaries [19]. Based on computational strategies for 

fusion gene detection, the methods can be grouped into two categories [27, 42] 

(see Figure 3.2): 

1. Mapping-first approaches that align RNAseq reads to genes and genomes to 

identify discordantly mapping reads that are suggestive of rearrangements [3]. 

The mapping-first approach is faster and more commonly used, than 

the assembly-first approach [27] and therefore discussed in more detail below. 

2. Assembly-first approaches that directly assemble reads into longer transcript 

sequences followed by identification of chimeric transcripts consistent with 

chromosomal rearrangements. [3]. For an assembly algorithm, if it assembles 

short reads directly without mapping them to the references, then it is called 

de novo assembly. The exclusive advantage of de novo assembly is that it does 

not need a reference genome/transcriptome for fusion detection, however, it can 

be too time-consuming and too error prone. [27] 

The fusion gene detection methods overall follow the same three steps: mapping and 

filtering, fusion junction detection, and assembly and selection of the fusion gene. [27] 



 

 

 

 

 

25 

 

 

Figure 3.2: Methods for fusion transcript prediction and accuracy evaluation. [3] 

Evidence supporting predicted fusions is typically measured by the number of 

RNAseq fragments found as chimeric (split or junction) reads that directly overlap 

the fusion transcript chimeric junction, or as discordant read pairs (bridging read pairs or 

fusion spanning reads) where each pair of reads maps to opposite sides of the chimeric 

junction without directly overlapping the chimeric junction itself. [3] 

3.3.1 Mapping-first approach 

As illstrated in Figure 3.3, the initial step is mapping (among the known and widly 

used mapping tools are for example Bowtie, STAR or  BLAT) followed by evaluation of 

each aligned read (pair) [27, 42]. The reads unrelated to fusions are removed from further 
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consideration. The methods that are based primarily on ‘split reads’ filter out all mapped 

reads. However, for methods that exploit ‘spanning reads’, all discordantly mapped pairs 

are preserved. In addition to discordantly mapped reads, the unmapped reads (potentially 

‘split reads’) are also kept, in order to assist in the selection of fusion candidates [27], 

[43].  

To further discard reads that are less likely to harbor fusions, most fusion gene 

detection tools developed an additional filtering techniques [27, 44, 45]. An example of 

a commonly used filter relates to intra-chromosomal fusion. A fusion candidate is 

discarded if the distance between its fusion partner genes is smaller than D (a defined 

threshold), suggesting that it is a read-through transcription and not an intra-chromosomal 

fusion. [27, 44] 

Figure 3.3: A procedure to detect gene fusions through the mapping-first 

approach [27] 
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Next step is the detection of fusion junctions through either ‘split read’ or ‘spanning 

read’ mapping [27, 45]. Spanning reads contain one read located in different genes, while 

split reads indicates a single read overlapping on two different genes [45]. 

1. When leveraging the ‘split reads’, the unmapped reads are cut into multiple 

pieces. The first and last segments of each ‘split read’ are then mapped against 

the reference sequences independently. If the two end segments of a ‘split read’ 

are mapped to two different chromosomes or genes, then the read is potentially 

from a fusion gene. Once this alignment pattern is detected, the precise location 

of the fusion junction can then be found by adjusting the boundaries of 

the original fragments and performing realignment. [27] 

2. A different strategy to detect fusion junctions is to infer fusion breakpoints from 

‘spanning reads’ and then select those predictions that are likely to be real using 

‘split reads’ [27, 42]. Discordant alignments are first grouped into clusters, each 

consisting of a maximal set of reads that share the same pair of breakpoints. Then, 

the boundary region of each candidate fusion junction is identified from its 

cluster. Next, fusion junction loci are inferred and putative fusion transcripts are 

predicted. Finally, unmapped reads are aligned to the predicted fusion transcripts. 

The predictions, to which the highest number of unmapped reads is aligned, are 

nominated as candidate fusion genes. [27] 

After identifying fusion junctions, the sequence of each candidate fusion gene can be 

derived by joining the two partner genes together. Previously unmapped reads are then 

aligned to the candidate fusions. Reads mapped in this step (called ‘supporting reads’) 

provide an additional layer of confidence to the fusion candidates [42]. 

Many existing methods require the presence of supporting reads as a prerequisite to 

nominate a fusion. The requirement for more supporting reads removes more inauthentic 

candidates, however, by risking discarding true fusion genes of low transcription level or 

coverage. [27] 

To help distinguish true fusions from candidates expressed at low transcription 

levels, it is common to include  scoring functions to rank fusion candidates [42]. 

The candidates with the maximum likelihood to be real fusions are selected as final 

outputs. These scoring functions are mostly based on features including mapping quality 

[27, 43], number of supporting reads and read depths. [27] 

3.3.2 Fusion expression levels and fusion allelic ratios 

After predicting the fusion candidates, it is a good practise to provide a reasoning 

about the quality of evidence supporting the fusion genes, since they can be biologically 

relevant or derived from an experimental or bioinformatic artifact. Here we present two 



 

 

 

 

 

28 

 

characteristics of relevance, fusion fragment per million and fusion allelic ratios, as we 

include them in the output file. These values are used in a so called COSMIC like fusion 

prediction. [46] 

Fusion fragment per million (FFPM) is a normalized measure of the quantity of 

RNAseq fragments supporting the fusion event, in a sense it represents the fusion 

fragments per million total reads and can be used as an approximation for fusion 

expression level [46, 47]. 

Fusion allelic ratios (FAR) is computed as a pragmatic way of estimating 

the relative expression of the fusion transcript as compared to the alternative non-fused 

allele of the gene. FAR “is computed separately for each of the fused genes and reflects 

the proportion of evidence supporting the fused-allele as compared to the number of 

reads supporting the non-fused allele and overlapping the fusion transcript breakpoint. 

While this is not a highly accurate measurement of the ratio of fused vs. non-fused 

transcripts, it's a useful metric to serve as a proxy for this information.” [46] 
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4 Aims of thesis 

The aim of this thesis is to develop a bioinformatic pipeline that will process data 

from RNAseq analyses of leukemia patients with the objective of finding the fusion gene 

candidates. The input to this pipeline will be the raw sequencer data in FASTQ format 

and the output will be the analysis of fusion genes in individual patients preprepared for 

expert analysis.  

The sub-objectives are:  

- Describe the capabilities of the NextFlow tool for the execution of bioinformatic 

pipelines, including deployment.  

- Create a functional bioinformatic pipeline for processing fusion gene analysis of 

patient samples.  

- Creation of a summary output adapted for expert analysis.  

- Creation of documentation and user manuals for the installation and use of 

the pipeline. 
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5 Methods 

The aim of this thesis was to build a pipeline that would effectively detect fusion 

genes in the given samples. For the individual tasks, including data pre-processing, fusion 

genes detection, results validation, or visualisations, we chose open-source tools with 

available maintained repositories based on certain criteria. To keep reproducibility and 

maintenance simple, each tool was “dockerized” and the images were made available 

through the Docker hub.  

To connect these steps together and to create the pipeline itself, we leveraged 

Nextflow, a bioinformatics framework which not only makes integrating the processes 

very easy, but also simplifies the deployment on cloud or cluster and offers the resources 

management.  

Since the amount of data processed in such analysis is large as well as 

the computational resources required by the tools, it is not always possible to run 

the pipeline on commonly used personal devices. Therefore, we developed the pipeline 

leveraging the grid and cloud services offered by MetaCentrum, a virtual organisation 

which not only gives access to immense computational resources, but also supports 

Kubernetes deployment and Nextflow module. 

5.1 Nextflow 

NextFlow is free open-source software for bioinformatics workflow managing, 

which responds to the increasing need of analytical tools for big data, which are often 

inadequate or require knowledge of complex low-level tools. The framework is, in other 

words, pipeline orchestrator and a programming domain specific language, which utilises 

parallelisation and distributed computing to facilitate the writing of data-intensive 

computational pipelines.  

Among NextFlow features are enabling workflows portability and reproducibility, 

simplifying parallelization and large-scale deployment, and easing integration of existing 

tools, systems, and industry standards. 

NextFlow is JVM (Java Virtual Machine) application and can be used on any POSIX 

compatible system (e.g., Linux, OS X, Solaris), requiring BASH and Java 8 or higher to 

be installed. 

The NextFlow pipeline script is made by joining together different processes, where 

each process can be written in any scripting language that can be executed by the Linux 

platform (Bash, Perl, Ruby, Python, etc.) and is independent and isolated from another. 

NextFlow also makes it very easy to change the target system, where processes are 
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executed without any other modifications, thus providing an abstraction between 

the functional logic of the pipeline and the underlying execution system. [48] 

5.2 MetaCentrum 

The data analysis requires certain amount of computing and storage 

capacity – executing locally is very useful for development and testing, but for real world 

computational pipelines high performance computing or cloud is often required. 

This need is met by MetaCentrum VO, CESNET’s regional virtual organisation of 

the Czech National Grid Organisation MetaCentrum (NGI), which offers software and 

hardware infrastructure for academic and research purposes. Registered users get access 

to grid services including consistent and dependable computational resources (which 

exceed possibilities of individual supercomputing centres), along with various application 

software and qualified user support. In addition, they provide cloud services and an 

open-source framework for distributed storage and processing of large amounts of data 

[49]. All that is relevant in terms of RNAseq data analysis, since manipulating RNAseq 

data is computationally intensive and typically requires access to a powerful resource [4]. 

MetaCentrum is also used by many great Czech academic or research teams from 

a wide range of specialisations, from biochemistry, nuclear or medical research to 

bibliography or social research. 

Grid services 

Grid computing is a distributed computing model that provides a network of widely 

distributed computer resources working together to perform a task. Compared to other 

approaches, rather than achieving high performance computational needs by having large 

clusters of similar computing resources or a single high performance system, such as 

a supercomputer, grid computing  attempts  to  harness  the  computational  resources  of  

a  large  number  of dissimilar devices [50]. In addition, another difference between grids 

and cluster computing is that the resources are not limited to physical computing 

resources but may include application-specific resources such as files and databases [51]. 

For the end users or applications of the grid, the grid looks like a virtual machine 

with powerful capabilities with a single point of access for performing tasks [52, 53]. The 

essence of grid computing is to manage heterogeneous and loosely coupled resources in 

an efficient way in this distributed system and to coordinate these resources through a task 

scheduler so they can complete specific cooperative computing tasks. [52] 

Grid computing typically leverages the spare CPU cycles of devices that are not 

currently needed for a system’s own needs, and then focusses them on the particular goal 

of the grid computing resources [50]. 
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Cloud services 

Cloud computing is a method of sharing resources via the Internet. The main features 

of cloud computing are:  

- Virtualisation, where cloud computing platforms and applications are built based 

mostly on resource virtualisation technology, which plays an important role in 

improving resource efficiency and increasing service reliability and security. 

- Flexibility, where cloud resource platforms can dynamically expand or reduce in 

size depending on user needs, which reduces the investment risk for the user and 

meets the needs of different users.  

- Cloud computing offers on-demand service, meaning that services can be 

provided according to the actual needs of users. 

- Cloud computing platforms use dynamic network management systems to 

monitor the status and efficiency of each resource node, to dynamically migrate 

nodes that have low efficiency or failure, and to ensure that overall system 

performance is not affected, resulting in high reliability. 

- Cloud rental resources must be highly customisable. Infrastructure as a service 

allows users to deploy specialised and virtual appliances. [52] 

MetaCentrum Cloud is the Infrastructure as a Service cloud on top of open-source 

OpenStack project. Their most important cloud resources are virtual machines, virtual 

networking, private and/or public IP addresses, storage, and cloud load balancers. [54] 

5.3 Docker 

Docker is an open-source platform that runs applications and makes the process 

easier to develop and distribute. It allows developers to package their applications and all 

their dependencies into a standard called containers, where the applications are 

virtualized and executed. Containers provide a lightweight, isolated environment that 

ensures consistent behaviour across different operating systems and infrastructure, 

meaning that they provide an extra layer of abstraction. [55] 

Every Docker container is built on what is called an image, which includes all 

the necessary libraries, dependencies, and configuration files needed to run 

the application [56]. Images can be easily shared and deployed on any machine that has 

Docker installed. The foundation of every image is a base image, which can be 

an operating system image (e.g. Ubuntu) or any other accessible one. [55] 

One of multiple methods to build an image, which we use in this thesis, is to create 

a docker file. A Dockerfile is a text document in which the user defines the build steps 

for the application. The Dockerfile is written in a domain-specific language called 
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the Dockerfile syntax. When the command 'docker build' is run from the bash terminal, it 

follows all the instructions given in the docker file and builds an image. [55] 

One of Docker's features is the ability to find, download, and start container images 

that were created by other developers quickly. The place where images are stored is called 

a registry [57] (e.g. Docker Hub). 

5.4 Kubernetes 

Kubernetes is an open-source container orchestration system. It controls 

containerized applications across multiple hosts and handles deploying, monitoring, and 

scaling containers [58], reducing repetitive manual processes involved in container 

deployment and management [59].  

Kubernetes has at its core a shared persistent store, with components monitoring 

changes to relevant objects [60]. The smallest deployable unit in Kubernetes is a pod 

which consists of one or more containers. For performance isolation, Kubernetes offers 

the resource management technique for users to define the computing resources 

(e.g., CPU and memory) for the pods. [58] 

5.5 Data processing tools 

In the pipeline, we include multiple open-source tools, where each covers a different 

step of the analysis. For pre-processing we used Fastp, for alignment and indexing STAR 

and Samtools, for fusion genes detection then JAFFA, FusionCatcher, Arriba, 

STAR-Fusion, and Cicero and for validation FusionInspector. The following tables Table 

5.1.a and Table 5.1.b introduce each of them, their key role in this thesis, parameters, 

and requirements. 

We chose various fusion genes detection tools, since each can report a different set 

of fusions based on their algorithm. Therefore, our analysis can offer a wider range of 

results and a higher probability of finding the relevant gene fusions. For the selection of 

the tools, we used the following criteria: 

- The ability to detect gene fusions relevant for the leukemia diagnosis 

- Active maintenance and availability, preferably not more than 2 years from 

the last update 

- Support of the hg38/GRC38 reference 

- Preferably available Dockerfile  
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Table 5.1 a: Overview of the utilized bioinformatic tools 

Tool Role in the pipeline GitHub repository 
Sou

rce 

Minimal 

RAM (GB) 

Fastp Data pre-processing https://github.com/OpenGene/fastp [61] 4 

STAR Transcripts alignment to a 

reference 

https://github.com/alexdobin/STAR [62] 16 – 32 

Samtools BAM file sorting and 

indexing 

https://github.com/samtools/samtools [63] Unknown 

JAFFA (Direct 

mode) 

Fusion genes detection https://github.com/Oshlack/JAFFA [64] 10 – 75 

FusionCatcher Fusion genes detection https://github.com/ndaniel/fusioncatcher [65] 24 

Arriba Fusion genes detection https://arriba.readthedocs.io/en/latest/ [17] 10 

STAR-Fusion Fusion genes detection https://github.com/STAR-Fusion/STAR-

Fusion/wiki 

[3] < 16 

Cicero Fusion genes detection https://github.com/stjude/CICERO [66] 24 

FusionInspector Results validation https://github.com/FusionInspector/Fusion

Inspector 

[46] > 40 
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Table 5.1 b: Overview of the utilized fusion genes detection tools 

Tool 
Supported 

reference 

Source of 

reference files* Input files Approach  Aligner 

JAFFA (Direct 

mode) 

hg38, hg19, 

mm10 

Provided Reads as FASTQ files Mapping-first Bowtie2, 

BLAST, BLAT 

FusionCatcher hg38, hg19 Provided Reads as FASTQ files, Mapping-first Bowtie, BLAT, 

STAR, Bowtie2 

Arriba hg19, hg38, 

mm10 

Provided Aligned reads as BAM file 

or reads as FASTQ files 

Mapping-first STAR 

STAR-Fusion hg19, hg38 Provided JUNCTION file from 

STAR 

Mapping-first STAR 

Cicero hg19, hg38 Provided Reads as FASTQ files or 

aligned reads as BAM file 

with BAI index 

Assembly-first BLAT 

* The tools require additional files, which can, depending on the tool, include reference files, indexes, files built from Ensembl database, blacklists, etc. 



 

 

 

 

 

36 

 

The fusion callers that we did not include due to their unavailability are Comrad, 

FusionAnalyser, ShortFuse, and FusionQ. FusionMap officially announced the end of 

maintenance. We also did not include Bellerophones, BreakFusion, Chimerascan, nFuse, 

FusionHunter, FusionMap, MapSplice, TopHat Fusion, InFusion, FusionSeq, 

FusionScan, Ericscript, Gfusion and Pizzly due to their inactivity in maintenance, 

and FuSeq and SOAPfuse due to their lack of support of containerisation.  

5.5.1 Fastp 

Fastp is an open-source tool developed in C/C++ providing all the necessary 

pre-processing operations for FASTQ files. It can perform quality profiling, adapter 

trimming, read filtering, deduplication, and base correction with a single scan of the data. 

It supports both single-end and paired-end short read data and also provides basic support 

for long-read data. One of the advantages is the multi-threading support, which is useful 

for our pipeline. In addition to the pre-processed data, a report in both HTML and JSON 

format can be generated, which allows for direct comparison of quality statistics altered 

by pre-processing. [61] 

Method 

Among the steps computed by Fastp are: 

1. Trimming – Fastp includes two methods. First there is adapter trimming, which 

is based on computing k-mer and on a tree-based algorithm. The second method 

is polyG and polyX tail trimming, which focusses on fixing issues observed in 

Illumina NextSeq and NovaSeq series. 

2. Base correction – Fastp corrects mismatches in an overlap of pair reads, since if 

the reads are of high quality, they are usually completely reverse-complemented. 

However, the correction is performed only if the base pairs have an imbalanced 

quality score and the total mismatch is below a given threshold. 

3. Sliding window quality pruning – To improve read quality, the method marks 

the bases in the window as discarded if the average quality is lower than a given 

threshold. [61] 

4. Deduplication – Fastp removes duplicate reads, which reduces potential false 

positive results and bias in results affected by PCR duplicates in the subsequent 

analysis and reduces the size of the files. 

5.5.2 STAR 

STAR (Spliced Transcripts Alignment to a Reference) is a C++ tool for aligning 

RNA sequencing reads to a reference genome and detection of novel splice junctions [62]. 
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Method 

STAR was designed to align the non-contiguous sequences directly to the reference 

genome where the algorithm consists of two major steps: seed searching step and 

clustering/stitching/scoring step. 

1. For every read that STAR aligns, STAR will search for the longest sequence that 

exactly matches one or more locations on the reference genome. These longest 

matching sequences are called the Maximal Mappable Prefixes. The different 

parts of the read that are mapped separately are called 'seeds'. STAR will then 

search again for only the unmapped portion of the read to find the next longest 

sequence that exactly matches the reference genome. This sequential searching 

of only the unmapped portions of the reads underlies the efficiency of the STAR 

algorithm. STAR uses an uncompressed suffix array to efficiently search for 

the Maximal Mappable Prefixes, this allows for quick searching against even 

the largest reference genomes. 

If STAR does not find an exact matching sequence for each part of the read due 

to mismatches or indels, the previous Maximal Mappable Prefixes will be 

extended. If extension does not give a good alignment, then the poor-quality 

adapter sequence will be soft-clipped. 

2. Separate seeds are stitched together to create a complete read by first clustering 

the seeds together based on proximity to a set of ‘anchor’ seeds, or seeds that are 

not multi-mapping. Then the seeds are stitched together based on the best 

alignment for the read (scoring based on mismatches, indels, gaps, etc.). [62] 

5.5.3 Samtools 

SAMtools is a C or Java package providing utilities for post-processing alignments 

in the SAM/BAM format, including converting formats, indexing, sorting, or merging 

alignments. SAMtools was developed by the creators of the SAM format, and both 

together offer a generic and modular approach that separates the alignment step from 

downstream analyses. [63, 67] 

5.5.4 JAFFA 

JAFFA is a multi-step pipeline for gene fusions detection built using the Bpipe 

platform. They introduce a new method that can be applied to any read length (reads from 

100 bp up to full-length transcripts), single- or paired-end. 
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JAFFA can be run in three modes, depending on the reads length: 

- Direct mode is recommended for 100bp reads or longer and uses the mapping-

first approach. 

- Long mode is recommended for high-error long reads. 

- The hybrid mode is recommended for low error rate sequencing of 70-95bp and 

uses both mapping and assembly approach. 

- The assembly mode is recommended for low error rate short reads of <70bp and 

uses the assembly-first approach. 

Method 

Unlike the usual approach used by the majority of other tools, JAFFA compares 

a tumour transcriptome with the reference transcriptome instead of the reference genome. 

Such approach brings multiple advantages including the avoidance of error-prone splice 

site alignment and therefore simplified identification of fusion transcripts. Another 

advantage is that the reference transcriptome consists of less sequence than the reference 

genome, allowing slower, but more accurate alignment algorithms to be used. That allows 

JAFFA to analyse even longer reads.  

The pipeline consists of 6 steps.  

1. RNAseq reads are first filtered to remove intronic and intergenic reads. 50 bp 

reads would then be assembled into contigs using Oases. For longer reads, this 

step is not necessary.  

2. The resulting tumour sequences are then aligned to the reference transcriptome 

and those that align to multiple genes are selected. These contigs make up a set 

of initial candidate fusions.  

3. Next, the pipeline counts the number of reads and read pairs that span 

the breakpoint. 

4. The candidates are then aligned to the human genome. Genomic coordinates of 

the breakpoint are determined. 

5. Further selection and candidate classification is carried out using quantities such 

as genomic gap size, supporting reads, and alignment of breakpoints to exon-

exon boundaries. 

6. A final list of candidates is reported along with their sequence. [64] 
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5.5.5 FusionCatcher 

FusionCatcher is a software tool for finding fusion genes in paired-end RNAseq data.  

Method 

FusionCatcher includes both aligning the sequencing reads on transcript and mapping 

on genome. The method consists of multiple steps. First, preprocessing and filtering of 

RNA sequencing data are performed, including quality control. Second, FusionCatcher 

uses an ensemble approach consisting of four different methods and four different 

aligners for identifying the fusion junctions. Each method corresponds to one aligner 

where the aligners are Bowtie, BLAT, STAR, and Bowtie2. 

The Bowtie method uses information regarding the exon/intron positions (i.e. 

genome annotation). It serves as a filter: the unmapped reads, which are the reads which 

passed the quality filtering and do not map on the transcriptome and the genome, are kept 

for further analyses. Therefore, the number of unmapped reads given as input to the next 

three methods (which are more computationally demanding) is reduced. 

Reads mapping on the transcriptome are used further to build a preliminary list of 

candidate fusion genes by searching for pairs of genes. The pairs in the list are then 

filtered and removed, using known and novel criteria that make biological sense. 

The unmapped reads, which still remain unmapped after aligning during the Bowtie 

method, together with the reads, which support the candidate fusion genes, are further 

aligned using the BLAT aligner, the STAR aligner, and the Bowtie2 aligner. Only 

candidates who pass multiple criteria will make it to the final list of fusion genes. [65] 

5.5.6 Arriba 

Arriba is the winner of the DREAM SMC-RNA Challenge, an international 

competition organised by ICGC, TCGA, IBM and Sage Bionetworks in 2018. 

Their method builds on the output of STAR, which is by default included in the Arriba 

workflow but can be run separately. 

Arriba also provides an R script for visualisation of detected fusion genes, which is 

capable of taking output files from either Arriba or STAR-fusion/FusionInspector. 

Method 

Conceptually, Arriba is nothing more than a collection of filters. The generation of 

fusion candidates is entirely handled by STAR, which collects all evidence about 

potential gene fusions in the chimeric alignment file. Most of the candidates in these files 

are alignment artifacts, in vitro-generated artifacts, or transcript variants that are also 

observed in healthy tissue. Arriba applies a set of filters which try to detect artifacts based 
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on various features that are characteristic for artifacts. The filters are either read-level, 

which assess candidates based on information contained in a single read (pair), or event-

level, which integrate information from multiple reads. The complete list with 

descriptions can be found in the Arriba documentation. [17] 

5.5.7 STAR-Fusion 

STAR-Fusion is a component of the Trinity Cancer Transcriptome Analysis Toolkit 

(CTAT) implemented in Perl. As with Arriba, STAR-Fusion analyses the output of 

STAR. 

Method 

STAR-Fusion uses chimeric read alignments reported by STAR in its 

Chimeric.out.junction file to identify candidate fusions. It maps the reads to exons of 

reference gene structure annotations based on coordinate overlaps. STAR-Fusion 

primarily focuses on filtering the alignment evidence and preliminary fusion predictions 

to remove likely artifacts and likely false-positive predictions. 

The method involves multiple steps: 

1. Read alignments between pairs of genes that are localized to sequence similar 

regions between those genes are excluded. 

2. A database of all-vs-all blastn matches between all reference cDNA sequences is 

queried to identify regions of sequence similarity between candidate fusion 

genes.  

3. If chimeric read alignment evidence overlaps sequence similar regions, 

the alignment is discarded. Duplicate paired-end read alignments are removed, 

and the remaining alignments are assigned to preliminary fusion gene pair 

candidates.  

4. STAR-Fusion selects those candidate gene pairs for which the fusion-supporting 

evidence indicates a sense-sense orientation between the fusion pairs and 

scores them according to the number of split reads supporting the fusion 

breakpoint and the number of paired-end fragments that span the breakpoint. 

5. These preliminary fusion gene candidates are filtered in two stages: a basic 

filtering stage that requires mini- mum fusion evidence support and an advanced 

filtering stage that examines characteristics of the genes involved 

in the candidate fused gene pairs. [3] 
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5.5.8 Cicero 

Cicero is a local assembly-based algorithm for fusion gene detection written in Perl. 

It aims to overcome the limitations of existing RNAseq analysis methods, which compare 

gene fusions detected by RNAseq with structural variations discovered by whole-genome 

sequencing. The local assembly takes advantage of the longer RNAseq read length 

(≥ 75 bp) generated by NGS and therefore allowing the detection of non-canonical 

fusions and ITDs. 

Method 

Cicero integrates RNAseq read support with extensive annotation for candidate 

ranking. The algorithm is implemented through the three key steps.  

1. Fusion detection by de novo local assembly at candidate breakpoints (which 

consists of identification of candidate fusion breakpoints marked by soft-clipped 

reads, assembly of the fusion contig, and mapping of the fusion contig for 

discovery of the partner locus breakpoint) and analysis of splice junction reads 

(for fusion transcripts lacking soft-clipped reads). 

2. Fusion annotation including a reading frame check for the fusion partner genes.  

3. Ranking of candidate fusions based on the supporting evidence in RNAseq and 

matches to known fusions (the ranking is based on fusion allele frequency, 

matching length, repetitive mapping, and frame-check results with a quality 

status determined by matches to known fusion events or artifacts). [66] 

5.5.9 FusionInspector 

FusionInspector, which serves as a level of validation in our pipeline, is a component 

of the Trinity Cancer Transcriptome Analysis Toolkit (CTAT) and assists in fusion 

transcript discovery by performing a supervised analysis of fusion predictions, attempting 

to recover and re-score evidence for such predictions. Through reports, interactive 

visualisations, and classification, FusionInspector assists researchers in reasoning about 

the quantity and quality of the evidence supporting predicted fusions, to differentiate 

likely artifacts from fusions with characteristics similar to biologically relevant fusions 

known to occur in tumours and normal tissues. [46] 

FusionInspector uses the set of genomic resources in the genome library identical to 

that used with STAR-Fusion, including the human reference genome, annotations to 

the gene structure, and the STAR genome index. 
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Method 

As input, FusionInspector takes a list of candidate fusion genes found by fusion 

transcript prediction tools. Then “extracts the genomic regions for the fusion partners and 

constructs mini-fusion-contigs containing the pairs of genes in their proposed fused 

orientation. The original reads are aligned to these candidate fusion contigs; 

fusion-supporting reads that would normally align as discordant pairs or split reads 

should align as concordant 'normal' reads in this fusion-gene context. Those reads 

supporting each fusion (spanning fragments and fusion-breakpoint-containing reads) are 

identified, reported, and scored accordingly.” [68] An illustration of the method can be 

seen in Figure 5.1. 

The evidence for fusions as evaluated by FusionInspector is easily viewed and 

navigated via html-based fusion reports included as output.  

 

Figure 5.1: An overview of the FusionInspector process [68] 
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6 Design and implementation 

6.1 Workflow 

The main aim of the pipeline was to find gene fusions candidates in raw FASTQ data 

and return them in a table together with a visualisation of the results. As mentioned above, 

such an analysis can be complex, but there are four main steps (see Figure 6.1): 

1. Data pre-processing takes the input data in compressed FASTQ format and 

processes them as described in Section 3.2.1 Primary analysis. Some of the tools 

used in the subsequent steps also perform their own pre-processing, however, we 

aimed to ensure that each of them receives the data pre-processed in the same 

manner. 

2. Fusion genes detection takes the pre-processed data and returns a list of gene 

fusion candidates with their parameters. In this step we include multiple tools, 

where each comes with their own algorithm; nevertheless, they all perform 

alignment to the reference genome or transcriptome at some stage and these files 

need to be provided. 

3. Result validation provides a level of validation for the evidence of predictions. 

It takes a list of gene fusions predicted in the previous step and aims to discover 

them in the reference genome.  

4. Results post-processing collects the results and unites them into one table 

provided in the output. In addition, we utilise multiple tools that include 

functionality for visualisation. 

Figure 6.1: Simple workflow of the proposed solution 

Below, we illustrate the integration of each tool in the workflow (see Figure 6.2):  

1. The pre-processing step includes Fastp, which takes the input compressed 

FASTQ data and outputs them pre-processed to the subsequent processes in 

the same format.  Furthermore, it returns an HTML report with visualisation of 

the result. 

2. Fusion genes detection includes multiple tools: STAR-Fusion, Arriba, Cicero, 

FusionCatcher, and JAFFA, where each needs to be provided with its own 
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reference files. Some of them use the same aligner (STAR in this case) and also 

provide the option to skip the alignment stage and take already aligned data as 

input. We take advantage of that option and run STAR only once, instead of 

multiple times. Therefore: 

- STAR-Fusion and Arriba take output from STAR, skipping their in-built 

aligning phase, 

- Cicero offers to take already aligned data; however, it is required to be 

sorted and indexed, which is managed by Samtools, 

- FusionCatcher and JAFFA do not provide the option to separate 

the alignment, thus they take the pre-processed data directly from Fastp. 

Each fusion genes detection tool outputs a file in either TSV, CSV, or TXT 

format, containing a list of fusion genes candidates and their attributes. 

These files are collected and taken by both the validation and post-processing 

step. 

3. The validation stage incorporates FusionInspector, which requires predicted 

fusion gene names that are to be analysed, along with the FASTQ data (from 

Fastp) and its reference. Apart from a HTML report containing a visual 

representation of the result, it provides a TSV file with assessed fusion genes 

candidates in a similar format as previous fusion gene callers. This file is added 

to the collection from the previous step and passed to the post-processing step. 

4. The post-processing stage includes two steps. First, the outputs of all the tools 

from the fusion genes detection and the result of FusionInspector are collected 

and combined into one comprehensive table.  Second, the result of the validation 

step is passed to Arriba, which provides a useful script for visualising 

the predicted fusion genes and is customised to take a file formed by 

FusionInspector. 
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Figure 6.2: Bioinformatic tools and their integration in the workflow. The dashed boxes represent the steps from previous simple workflow, 

white boxes are tools, the functionality of which is utilised for the given processes (all the included tools were described in detail in Section 

5.5 Data processing tools), and blue boxes show the output generating processes. 
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6.2 Dockerization 

We created Docker images for all the tools mentioned above, including Fastp, STAR, 

Samtools, JAFFA, FusionCatcher, Arriba, STAR-Fusion, Cicero and FusionInspector. 

All the images were built based on the original Dockerfiles or Images provided by 

the developers, with few following exceptions: 

- The Dockerfile for Arriba was adjusted to replace the run_arriba.sh script with 

our modified one, which skips the STAR step and takes a BAM file on the input, 

instead of FASTQ files. The modified script can be found in the project under 

‘docker/arriba/run_arriba.sh’. 

- Fastp does not offer a Dockerfile, hence we created it ourselves. 

- The Cicero image was built from their official image with overwritten 

ENTRYPOINT as the only change. 

For Docker to be set to enable in the Nextflow configuration file, a Docker image 

is expected for every process of the Nextflow pipeline. Therefore, we also created other 

images for the rest of the processes which do not include mentioned tools - e.g. an image 

with Python and required packages to run a process containing only a Python script.  

Each of the used Dockerfiles is available in the project in the docker directory. 

The list of images made available through Docker Hub is shown in Table 6.1. 

Table 6.1: A list of Docker images available through the Docker Hub 

Docker image Content Nextflow process 

souckmi2/fastp:1.0 Fastp 0.23.2 fastp 

souckmi2/star:1.0 STAR 2.7.10b star 

souckmi2/samtools:1.0 Samtools 1.17 samtools 

souckmi2/jaffa:1.0 JAFFA 2.3 jaffa 

souckmi2/fusioncatcher:1.0 FusionCatcher v1.30 fusioncatcher 

souckmi2/arriba:1.0 Arriba v2.4.0 arriba, draw_fusions 

souckmi2/starfusion:1.0 STAR-Fusion 1.11.1 starfusion 

souckmi2/fusioninspector:1.0 FusionInspector 2.8.0 fusioninspector 

souckmi2/cicero:1.0 Cicero v1.9.5 cicero 

souckmi2/py-numpy-pandas:1.0 
Python 3.9 with numpy, 

pandas and xlsxwriter 

merge_input_files, 

fusion_tables, final_result_table 
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6.3 Input files 

To run the pipeline, a user needs to provide multiple files listed below: 

1. Reads files, containing the paired end sequencing data to be analysed, where 

the only supported extension is .fastq.gz. File naming is required to match one of 

the following patterns: 

- If there are only two files (read 1 and read 2) per sample, they need to 

match the pattern ‘*_R1,_R2.fastq.gz’, for example, ‘p1_R1.fastq.gz’. 

- In case there are multiple files from different lanes per one sample, 

the files are expected to have the typical Illumina naming convention 

matching the regular expression ‘^(.+_S[0-9]+)+(_.+)*_R([1-2])_’, for 

example ‘p4_S4_L001_R1_001.fastq.gz’ 

It is possible to provide reads for multiple samples and the analysis will be 

conducted on each of them parallelly, exporting results to separate directories for 

each sample. 

2. Reference files for each of the tools that request them. We provide an already 

prepared directory containing all the required files (available at 

https://owncloud.cesnet.cz/index.php/s/XVovHksT8m1hIMa), however, it is 

possible to provide a custom directory as long as it follows the same directory 

structure. 

6.4 Nextflow implementation 

In practise, a Nextflow pipeline script is made by joining together different 

processes. Each process can be written in any scripting language that can be executed by 

the Linux platform. Processes communicate with each other via queues called channels, 

where any process can define one or more channels as input and output. 

We developed the pipeline using DSL2, which provides a syntax extension that 

allows the definition of module libraries and sub-workflows. Module files are scripts 

that can be included and shared across workflow pipelines. 

The configuration file (nextflow.config) contains the settings that are read when 

the pipeline is launched. The file provides the ability to separate the workflow 

implementation from the configuration setting required by the underlying execution 

platform. This enables portable deployment without the need to modify the application 

code. 
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6.4.1 Input parameters 

There are several parameters, which the user is required to provide when running 

the pipeline: 

- readsdir (required) – A path to the directory containing the FASTQ files to be 

analysed, which need to file certain naming conventions as mentioned in 

Section 6.3 Input files. 

- mergeInputFiles (default False) – If the reads files are from different lines and 

need to be merged (as described in Section 6.2 Input files), this parameter must 

be set to True.  

- reference (required) – A path to the directory containing the reference files 

requested by the tools used in the pipeline. 

- outdir (required) – A path where the result output of the analysis should be stored. 

- runId (required) – A run id which will be added to the name of output files.  

If the ‘metacentrum’ profile is used (see Section 6.4.4 Configuration), additional 

configuration parameters need to be provided (for more details, see GitLab README): 

- k8s_namespace (required) – Kubernetes namespace. 

- k8s_storageclaimname (required) – Storage claim name. 

- k8s_storagemountpath (required) – Storage mount path. 

- k8s_launchdir (required) – Path to a launch directory. 

- k8s_workdir (required) – Path to a work directory.  

6.4.2 Nextflow workflows and modules 

We leverage the ability of Nextflow to create sub-workflows and modules, which 

makes the implementation of complex pipelines easier and clearer.  

There are two modules added to the implementation. The Fusions Module contains 

the processes and a sub-workflow specific to fusion gene detection. The Helpers Module 

then includes processes that are to be reused by any part of the pipeline in any stage 

(see Table 6.2). The main workflow in the main.nf script is then able to include 

the modules, and we can construct the complete workflow of the whole analysis. 

With this modular approach, we leave space for an eventual extension of the pipeline 

with other distinct steps of the analysis. For example, if the detection of fusion genes was 

not the only goal, but we wanted to add RNAseq differential expression analysis 

conducted on the same data, we could easily add another module, keeping the structure 

of the project intact. 

 

 



 

 

 

 

 

49 

 

Table 6.2: Nextflow modules 

Module Processes Workflow 

Fusions Module fastp, star, samtools, jaffa, 

fusioncatcher, arriba, starfusion, 

cicero, fusion_tables, fusioninspector, 

draw_fusions, final_result_table 

fusion_detection 

Helpers Module merge_input_files - 

 

6.4.3 Processes and channels 

Each step of the analysis is represented by a process, a basic processing primitive to 

execute a script. Each process includes a definition block for input, output, and a process 

script. The process script can be written in any language that can be executed on 

the Linux platform. We included scripts in Bash to run the bioinformatic tools and Python 

for managing the files content if needed. 

Figure 6.3 visualises a direct acyclic graph (DAG) of the out pipeline generated by 

Nextflow. The vertices of the graph represent the pipeline processes and operators, while 

the edges represent the data connections (i.e. channels) between them. Arrows pointing 

to small dots picture the files produced by the process that are copied to the output 

directory. 

There are 13 processes defined. Each of the 10 bioinformatic tools mentioned above 

has one process that handles only the task for which the tool is included in the analysis. 

In addition, there is a second process with Arriba, draw_fusions, which calls the R script 

provided by Arriba for fusion gene visualisation. The remaining three processes, 

described below, include Python scripts. 

Merge_input_files process 

Given a list of FASTQ files, it merges, for each sample, all files from different lanes, 

so that on the output there is only one R1 and R2 file per sample. The Python script is 

based on a script from the SciLifeLab GitHub repository [69]. This process is executed 

only if the ‘--mergeInputFiles’ parameter is set to true and the provided FASTQ files 

follow the naming convention described in Section 6.3 Input files. 

Fusions_table process 

FusionInspector expects the input to be a text file (or files) with a list of fusion 

candidates, with each formatted as geneA--geneB. Therefore, this process takes 

the results from the fusion callers and transforms them to suit the requirements.   
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Final_result_table process 

This process handles the generation of the final result table. It collects the results of 

the fusion gene detection tools along with the output of FusionInspector and unites them 

into one comprehensive table, which is exported as a CSV file and a formatted XLXS 

file. The table columns and formatting as well as the relations between the final table and 

callers results are described in Section 6.5.3 Final_result_table.xlsx. 

Figure 6.3: DAG visualisation of the pipeline generated by Nextflow 
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6.4.4 Configuration 

The configuration file allows to manage the settings of various scopes, from 

the pipeline input parameters to docker configurations or deployment settings.  

Profiles 

One of the Nextflow features is the config profile. A profile is a set of configuration 

attributes that can be selected during pipeline execution by using the ‘-profile’ command 

line option, providing an option to switch between executors and change deployment 

parameters without the need to edit any files. We provide two profiles (separated into two 

files in the config_profiles directory): 

1. The ‘standard’ profile is a default profile that is selected if no profile is defined 

by the user. The 'executor' is set to 'local', that is, it runs the pipeline processes on 

the computer where Nextflow is launched. 

2. The ‘metacentrum’ profile is designed to configure pipeline execution on a 

Metacentrum Kubernetes server. Unlike the standard profile, the ‘executor’ is set 

to ‘k8s’, and the configuration includes the k8s scope. If this profile is selected, 

the user needs to provide additional parameters (see Section 6.4.1 Input 

parameters). 

Resources Management  

Nextflow provides an option to set the resources (CPU and memory) to be 

reserved for each pipeline process. We set slightly different values for each profile, see 

Table 6.3. If the 'metacentrum' profile is selected, at least 20 CPU and 100 GB of RAM 

are expected, ideally around 40 CPU and 180 GB of RAM to allow processes to run 

parallel. For the 'standard' profile, 1 CPU and 45 GB of RAM are required, ideally then 

at least 65 GB of RAM. 

Table 6.3: Resources allocated for each process 

 Standard profile Metacentrum profile 

Process CPU RAM (GB) CPU RAM (GB) 

fastp 1 16  10 20 

star 1 45  10 80 

samtools 1 2 5 10 

jaffa  1 8 10 32 

fusioncatcher 1 10 20 100 

arriba 1 8 10 20 

starfusion 1 8 5 16 

cicero 1 8 20 70 

fusioninspector 1 45 20 80 
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6.5 Output files 

The main aim of our project was to build a pipeline which outputs a file with a table 

of detected fusion genes candidates, along with visualisation of the results. However, we 

also include most of the files produced by the bioinformatic tools.  

6.5.1 Naming convention 

Every file produced by a process is renamed so that it follows the pattern 

‘<sample_name>_<run_id>_<reference_version>_<caller>_<original_file_name>’. 

Therefore, for example, if the input FASTQ file carries the name 

‘p1_S4_L001_R1_001.fastq.gz’ and the run id provided by the user is ‘RUN1’, a file 

produced by Arriba originally named ‘fusions.tsv’ would be named 

‘p1_S4_RUN1_hg38_arriba_fusions.tsv’. 

Figure 6.4: Output directory tree with key result files 
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6.5.2 Directory tree 

The output directory with the path defined by the user has the following directory 

tree (Figure 6.4), showing the files that are the key result of the pipeline: final result table, 

visualisations, result tables for fusion callers, and processed data files for Fastp and 

STAR. There are three folders: 

- Sample folder – The folder is named after the name of the sample according to 

the input FASTQ files. There are two files, in CSV and XLSX format, that 

provide the final result of the analysis together with one directory for each 

bioinformatic tool. These directories contain all the files produced by the tools. 

- Merged_input_files folder – If the ‘--mergeInputFiles’ parameter is set to true, 

this folder contains the merged FASTQ files, otherwise it is not created. 

- Nextflow_reports folder – The folder contains the Nextflow generated reports 

describing the pipeline execution. 

6.5.3 Final_result_table.xlsx 

This file is the main result of the analysis. It contains a list of detected fusion genes 

candidates and is intended to be forwarded to a clinical expert. The excel table unites 

the results of all the fusion genes callers and FusionInspector, as shown in Table 6.7. 

The columns of the result table are briefly described below in Table 6.4 (we grouped 

the values that are comparable, but the exact definitions can differ depending on the 

caller, therefore, for more information, see the documentation of the callers output files). 

The cells are formatted according to the rules in Table 6.5, with the relevance to 

cancer specified in Table 6.6. 
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Table 6.4: Description of the columns of the final result table

Column Description 

caller The bioinformatic tool whose results are shown in the row 

gene1 Gene symbol of the 5' end 

gene2 Gene symbol of the 3' end 

chrom1/position1 Chromosomal position of the breakpoint in gene1 

chrom2/position2 Chromosomal position of the breakpoint in gene2 

spanning_reads The number of reads which cover the breakpoint 

spanning_pairs The number of read-pairs, where each read in the pair aligns entirely on either side of the breakpoint 

coverage1/coverage2 The coverage near the breakpoint in gene1 and gene2 

annotation A simplified annotation for fusion transcript, depending on the caller. It mostly contains database(s) in which 

the fusion was found 

confidence Suggests the credibility of predictions 

prediction_effect Provides information on the location of the breakpoints. It indicates whether the proposed breakpoint occurs at 

reference exon junctions 

anchor Indicates whether there are split reads that provide 'long' alignments on both sides of the putative breakpoint 

FAR_left Left fusion allelic ratio (only for FusionInspector) 

FAR_right Right fusion allelic ratio (only for FusionInspector) 

FFPM Normalised measure of the quantity of RNAseq fragments supporting the fusion event as: fusion fragments per 

total million RNAseq fragments (only for FusionInspector) 
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Table 6.5: Formatting rules of the final result table 

Rule Format 

The spanning reads value is less than 5 Red cell 

The coverage1 is greater than 50 Red cell 

The coverage2 is greater than 50 Red cell 

The value in column chrom1 and chrom2 are equal Both cells yellow 

The confidence column suggests low confidence (i.e. 

contains ‘LowConfidence’, ‘LQ’ or ‘low’) 

Red row 

The prediction effect contains ‘intragenic’, ‘intron’, ‘out-of-

frame’ or ‘INCL_NON_REF_SPLICE’ 

Red row 

The annotation column includes one of the sources that 

suggest that the fusion is relevant to cancer biology* 

Green row 

The annotation column includes one of the sources that 

suggest that the fusion pair may not be relevant to cancer, 

and be potential false positive* 

Red row 

* The sources are named in Table 6.6 

Table 6.6: Resources in annotation column of the final result table and their relevance. They 

were selected based on CTAT_HumanFusionLib [70]. 

Relevance to cancer Sources 

Relevant to cancer biology Mitelman, chimerdb_omim, chimerdb_pubmed, 

ChimerKB, ChimerPub, ChimerSeq, Cosmic, 

YOSHIHARA_TCGA, Klijn_CellLines, 

Larsson_TCGA, CCLE, HaasMedCancer, 

GUO2018CR_TCGA, TumorFusionsNAR2018, 

TCGA_StarF2019, CCLE_StarF2019, 

DEEPEST2019, ‘Yes’ (represents Mitelman 

database, according to Jaffa) 

May not be relevant to cancer, 

and be potential false positive 
GTEx_recurrent_StarF2019, BodyMap, 

DGD_PARALOGS, HGNC_GENEFAM, 

Greger_Normal, Babiceanu_Normal, ConjoinG 
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Table 6.7: The relation between the columns of the new final result table and the columns of callers output files 

Result table Arriba STAR-Fusion Jaffa FusionCatcher Cicero FusionInspector 

gene1 gene1 

FusionName fusion genes 

Gene_1_symbol 

(5end_fusion_partner) 
geneA 

FusionName 

gene2 gene2 
Gene_2_symbol 

(3end_fusion_partner) 
geneB 

chrom1 
breakpoint1 LeftBreakpoint 

chrom1 Fusion_point_for_gene_1 

(5end_fusion_partner) 

chrA 
LeftBreakpoint 

position1 base1 posA 

chrom2 
breakpoint2 RightBreakpoint 

chrom2 Fusion_point_for_gene_2 

(3end_fusion_partner) 

chrB 
RightBreakpoint 

position2 base2 posB 

spanning_reads 
split_reads1, 

split_reads2 
SpanningFragCount 

spanning 

reads 
 - 

readsA, 

readsB 
SpanningFragCount 

spanning_pairs discordant_mates JunctionReadCount 
spanning 

pairs 
Spanning_unique_reads 

matchA, 

matchB 
JunctionReadCount 

coverage1 coverage1  -  - -  coverageA  - 

coverage2 coverage2  - -   - coverageB -  

annotation tags annots known Fusion_description  - annots 

confidence confidence  - classification  - rating -  

prediction_effect site1, site2 SpliceType 
Inframe, 

aligns 
Predicted_effect 

featureA, 

featureB 
SpliceType 

anchor - LargeAnchorSupport - - - LargeAnchorSupport 

FAR_left - - - - - FAR_left 

FAR_right - - - - - FAR_right 

FFPM - - - - - FFPM 
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6.5.4 Visualisation 

In the output directory there are four files providing html or pdf-based reports – one 

summarising the pre-processing phase, two for fusion genes detection results and 

a Nextflow workflow execution report.  

Pre-processing report 

Fastp offers to visualise quality control and filtering results on a single HTML page. 

The file can be found in the output directory with path ‘<output path>/<sample 

name>/fastp/* fastp_report.html’. 

The report includes a summary table, the sequence distribution of trimmed adapters, 

insert size distribution plot, and plots displaying quality/base content/KMER counting 

before and after filtering for both reads separately. 

Fusion Genes Visualisation 

We offer two reports visualizing the results of FusionInspector. FusionInspector 

offers to generate an HTML summary file, which can be found at ‘<ouput path>/<sample 

name>/fusioninspector/*fusion_inspector_web.html’. In the initial view, it provides 

a table of fusions and attributes. After selecting a fusion, it creates a tab that shows 

the evidence for the visualisation in a web-based igv view. 

The second report is created by Arriba, which provides a script that renders 

visualisations of the transcripts involved in predicted fusions and is capable of taking 

the FusionInspector result file as input. It generates a PDF file with one page for each 

predicted fusion. Each page depicts the fusion partners, their orientation, the retained 

exons in the fusion transcript, and statistics about the number of supporting reads. The file 

is found at ‘<output path>/<sample name>/fusioninspector/visualization/*fusions.pdf’. 

Nextflow execution report 

Nextflow can create an HTML execution report, a single document that includes 

many metrics about a workflow execution. The report is organised into three main 

sections: summary, resources, and tasks. 

The summary section reports the execution status, the launch command, overall 

execution time, and other workflow metadata. The resources section plots the distribution 

of resource usage for each workflow process, including CPU, memory, job duration, and 

disk I/O. The Tasks section lists all executed tasks, reporting for each of them the status, 

the actual command script, and other metrics. 
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7 Results 

The Nextflow pipeline is available at GitLab as a public repository at 

https://gitlab.com/souckmi/gene-fusion-pipeline, thus it can be run on any device with the 

internet connection and Nextflow installed, as briefly described below or as explained in 

the GitLab repository README. 

To run the analysis, the reference files for each caller must be downloaded from 

https://owncloud.cesnet.cz/index.php/s/XVovHksT8m1hIMa. For testing purposes, we 

also included a small dataset provided by FusionCatcher, which is available in the GitLab 

repository in the test/data directory. In the next sections, we represent a real data running 

example.  

7.1 Testing data 

Our solution was tested with two anonymised datasets, which were provided by 

The Institute of Hematology and Blood Transfusion with the patients' written informed 

consent for research. Additionally, we include a smaller dataset provided by 

FusionCatcher, that can be found in GitLab repository. The dataset are described in Table 

7.1. 

Table 7.1: Real testing data 

Sample name Multiple lines Size Description 

p1_S4 Yes 1,49 GB A male patient diagnosed at 25 years of age, 

diagnostical sample, ph+ ALL, 0,1% 

BCR::ABL1 MR 

p2_S10 Yes 3,91 GB A male patient diagnosed with CML at 74 

years of age, sample taken 7 months after 

diagnoses, 4% BCR::ABL1 in IS 

test_data No 1,50 MB Minimalistic testing samples provided by 

FusionCatcher 

7.2 Real data running example 

As mentioned above, the pipeline can be run either locally or with Metacentrum. 

Here, we provide an example of running the analysis with the ‘metacentrum’ profile, 

i.e. with Kubernetes executor (more detailed documentation is available for both profiles 

in GitLab README). 

https://gitlab.com/souckmi/gene-fusion-pipeline
https://owncloud.cesnet.cz/index.php/s/XVovHksT8m1hIMa
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With Nextflow installed and reference files prepared, the pipeline is executed with 

an example command in Code7.1. It is possible to replace the double dashed parameters 

with a parameter “-params-file” and path to a JSON or YAML file that contains them. 

 

nextflow kuberun https://gitlab.com/souckmi/gene-fusion-pipeline \ 

 -r <revision> \ 

 -profile metacentrum 

 -pod-image 'cerit.io/nextflow/nextflow:22.06.1'\ 

 -v <storage claim name>:/mnt\ 

   --readsdir /path/to/data/directory \ 

   --runId <run id> 

   --mergeInputFiles true \ 

   --reference /path/to/reference/directory \ 

   --outdir /path/to/output/directory \ 

 --k8s_namespace <k8s name space> \ 

   --k8s_storageclaimname <storage claim name> \ 

   --k8s_storagemountpath /mnt \ 

   --k8s_launchdir /mnt/path/to/launchdir \ 

   --k8s_workdir /mnt/path/to/workDir \ 

 

Code 7.1: Example command line command to run the pipeline with MetaCentrum 

7.2.1 Execution time and resource management 

The duration of the execution is dependent on the size and content of the input data 

and the computational resources provided – if only the minimal required resources are 

available, the processes cannot run parallelly, and the analysis runs longer.  

Table 7.2: Time duration of execution for different input files 

 

 

 

 

Sample p1_S4 p2_S10 p3_S4 + p2_S10 

Duration 2h 2m 52s 3h 39m 52s 4h 24m 53s 

https://gitlab.com/souckmi/gene-fusion-pipeline
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We tested the pipeline with 252 GB of RAM and 48 CPUs available. Below we show 

the percentage of usage of allocated resources for samples p2_S10, see Figure 7.2. 

The Figure 7.1 illustrates the timeline and time duration for executing the pipeline for 

samples p1_S4 and p2_S10 separately, Figure 7.3 then with both samples p1_S4 and 

p2_S10 on the input. The comparison of execution duration for samples of varied sizes 

can be seen in Table 7.2. 

Figure 7.1: Execution timeline with wall time and memory usage for each process. a: 

Sample p1_S4. b: Sample p2_S10. 
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Figure 7.2: Percentage of requested RAM and CPU compared to the allocated values 
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Figure 7.3: Execution timeline for analysis with both testing samples on the input. A grey 

segment of a bar represents submitted state, colourful then running state of a process. 

7.2.2 Output files 

Below we present the four main output files, where all the following figures are 

results of the p1_S4 sample analysis.  As mentioned, the pipeline generates an XLSX file 

containing a formatted table of fusion gene candidates for each caller; an example can be 

seen in Figure 7.4, where the columns ‘anot’, ‘FAR_right’, ‘FAR_left’, and ‘FFPM’ are 

omitted.  

Figures 7.5 and 7.6 show the FusionInspector visualisation, 

fusion_inspector_web.htm, and Figure 7.7 shows an example of a FusionInspector gene 

fusion candidate visualised by Arriba in fusions.pdf. Two plots from the summary report 

generated by Fastp can be seen in Figure 7.8.
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Figure 7.4: The XLSX final result table with the detected BCR::ABL1 fusion gene (sample p1_S4) 
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Figure 7.5: The FusionInspector HTML summary visualisation (sample p1_S4). The initial view. 
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Figure 7.6: The FusionInspector HTML summary visualisation (sample p1_S4). IGV view of the BCR::ABL1 fusion gene. 
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Figure 7.7: The Arriba PDF visualisation of the BCR::ABL1 fusion gene detected by FusionInspector (sample p1_S4) 
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Figure 7.8: Example of Fastp HTML visualisation of quality control and filtering results (sample p1_S4). Reads quality before and after filtering. 
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7.2.3 Detected Fusion Gene Candidates 

 

As the result of our solution is intended to be a summary of predicted fusion 

candidates for expert analysis, here we provide merely an aggregation of the analysis 

outcome for the two of the testing datasets, see Table 7.3. 

Table 7.3: Summary of testing analysis results 

 Number of fusions reported Detected BCR::ABL1 

Caller Sample p1_S4 Sample p2_S10 Sample p1_S4 Sample p2_S10 

JAFFA  275 272 Yes Yes 

FusionCatcher 71 82 Yes Yes 

Arriba 7 13 Yes Yes 

STAR-Fusion 13 7 Yes Yes 

Cicero 120 172 Yes Yes 

FusionInspector 245 240 Yes Yes 
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8 Discussion 

The aim was to build a bioinformatics pipeline for RNAseq data analysis of leukemia 

patients with the emphasis on fusion gene detection. We mapped currently available 

fusion gene detection tools and their methodology and selected five callers, JAFFA, 

Arriba, STAR-Fusion, Cicero, and FusionCatcher, that matched our criteria.  

Since fusion callers generally vary in their approaches, they differ in sensitivity to 

different gene fusions. Thus, using multiple tools leads to a wider range of results and 

higher probability of reporting the relevant fusions for the given sample. Although we 

provide a level of validation by including FusionInspector, our solution serves as a tool 

that delivers a preprepared summary of fusion gene candidates and their visualisation that 

are intended to be further analysed by an expert. 

As one of the main motivations for this thesis was the need of a tool that overcomes 

the issues with portability and resource management that come with such a complex 

bioinformatics analysis, we followed current trends and leveraged Nextflow as the 

programming framework. 

The pipeline comes with prepared options to execute the processes locally or with 

Kubernetes executor without any need to modify the code. To provide enough flexibility, 

changing the target system for execution can be easily achieved through a configuration 

file.  

Testing the solution on two real datasets demonstrated that building a pipeline with 

Nextflow not only automated the analysis, but also provided efficient resource 

management and parallelization of distinct tasks of both single sample and multiple 

samples analysis. 

As far as we can interpret the detected fusion candidates in the testing datasets 

without an expert analysis, the fusion gene BCR::ABL1 was reported in both samples as 

expected based on the patients diagnosis. 

We provide a tool that was developed in a modular approach. It is structured in such 

a way that including another module for different analysis (e.g. RNAseq differential 

expression analysis) on the same data can be easily achieved in the future.
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9 Conclusions 

In this thesis we focused on leveraging the features of Nextflow to overcome 

the issues that come along with developing a complex bioinformatic pipeline for 

RNAseq analysis. The aim was to provide a tool for fusion gene detection that is 

portable, easily deployed and well documented. 

To reach that, we mapped current trends in methodology of RNAseq data 

processing and fusion gene detection and came with a workflow with a summary table 

of fusion candidates for subsequent expert analysis on the output. 

We provide our solution along with documentation in a form of GitLab project that 

can be run locally from any machine with Linux and Nextflow, without any additional 

installation steps required. 
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