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”
Automatic Determination of Size

and Shape of Nanoparticles for Biomedical Applications“ vypracovala samostatně
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ABSTRACT

Automatic Determination of Size and Shape of Nanoparticles

for Biomedical Applications:

Nanotechnology is widely used in biomedical research. For its usage it is impor-

tant to know sizes and shapes of particles. These parameters can be measured by

transmission electron microscopy (TEM), but analysis of images from transmission

electron microscope is complicated and tedious. It would be easier if method for

automatic evaluation of these parameters would exist. The goal of this project is to

create program for automatic determination of sizes and shape of nanoparticles and

nanorods from TEM images.

TEM samples of nanoparticles and nanorods of various sizes were used and TEM

images were acquired. Image analysis methods were used for image adjustement and

two image segmentation methods were used. First method is watershed transform

and second method is circle Hough transform.

Python program was created and tested on various images of nanoparticles

and nanorods. Sizes and shapes of nanoparticles and nanords were calculated and

histograms of sizes were plotted.

Key words

nanoparticles, transmission electron microscopy, image segmentation, watershed trans-

form, Hough transform
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List of symbols

Symbol Unit Meaning

cx, cy px Coordinates of center of circle in image

r px Circle radius in image

List of shortcuts

Shortcut Meaning

NP Nanoparticle

AuNP Gold nanoparticle

NR Nanorod

GNR Gold nanorod

TEM Transmission electron microscopy

HT Hougt transform

CHT circle hough transform
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LUT Look up table

GUI Graphical user interface
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1 Introduction

Nanoparticles and nanorods are widely used in biomedical research. For their usage,

it’s essential to know the size and shape of these particles in the solution. The most

used method for this estimation is transmission electron microscopy (TEM), which

is a very well-known method, but data evaluation is very complicated and includes

several image processing methods. The biggest part of image processing of TEM

images is image segmentation. There are plenty of segmentation algorithms, but

each set of data is unique and requires a totally different approach. Another huge

problem is that nanoparticles and nanorods are often overlapping, so the perfect

method should divide them well while also taking into account overlapping areas.

TEM images also contain a lot of noise, particles may have an in-homogeneous

background, and even particles may not be of homogeneous intensity. Simply there

are so many sizes and shapes of nanoparticles or nanorods, that it is challenging to

create an algorithm which can automatically analyze TEM images of nanoparticles.

In this work, we tackle this challenge by developing a program, which is able to

analyze different TEM images of gold nanoparticles. The program uses the watershed

transform algorithm, which is one of the segmentation methods, to separate particles.

We focus on the usage of TEM image scales for estimating parameters used in image

adjustment algorithms. We also test the hough transform segmentation algorithm

and its use for separating overlapping particles.
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2 State of the Art

2.1 Nanotechnology and Nanoparticles

Nanotechnology is a rapidly developing field, which is widely used in diagnostics,

therapeutics, and generally biomedical research. Innovations in this discipline of

science brings big opportunities not only for biomedicine but also for electronics,

photonics, or energetics. There are plenty of structures, sizes, and shapes of nano-

particles (NPs) and knowledge of their sizes and shapes is crucial for their usage [1,

2, 3].

Nano means 10−9, so nanotechnology works with structures with size in the order

of nanometers. For example, a hydrogen atom has a diameter of 0.1 nm. If one of the

dimension of the material lies between 1 to 100 nm then it has different physical and

chemical properties than bulk material. It is considered nanotechnology. It stands

on the border of the macroworld described by classical physics and the microworld

described by quantum physics. The properties of nanomaterials can be very different

than the same bulk material, it can change color, electrical conductivity, toxicity, and

others. For example solution of gold nanoparticles has red color. Another important

parameter is fact, that nanomaterial has a far greater surface and the mass is so

small, that electromagnetic force becomes more important for the behavior of the

particles. Inorganic nanomaterials are also able to interact with living systems, which

has huge use in medicine. Nanomaterials can be created by two methods. The first

method is called Top-down and starts with greater structures and ends with smaller

particles. The opposite method is called Bottom-up and creates nanoparticles from

single atoms. There are plenty of types of NPs, the most famous are carbon NPs -

for example carbon nanotubes, but gold or silver NPs are also very important due

to their properties [4, 5, 6, 7, 8, 9, 10, 11].

Nanotechnology is a quite new and developing field, first use of the word ’nano-

technology’ was in 1974 by N. Taniguchi. Since then nanotechnology is developing

rapidly. But ideas, that there would be some opportunities in the small world, were

even earlier. In 1931 TEM (transmission electron microscopy) was created and in

1959 Richard Freyman, a physicist who got the Nobel prize, said: ’There is plenty of

room at the bottom, an invitation to enter a new field of physics.’ Nanotechnology

was even used before people knew about it. Archeologists for example found cup

from the Roman empire changing color depending on the angle of view. The effect

was caused by nanoparticles [6, 7, 10, 11].
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Fig. 2.1: Principle of interaction plasmon with an electrical field [16].

2.1.1 Plasmon Resonance Nanoparticles

A special type of NPs with huge utilization in biomedicine includes surface plasmons,

which are a special type of electrons on the surface of NPs. These NPs can interact

with light or generally electromagnetic radiation of wavelength much bigger than the

size of the NPs and localized surface plasmons are consequence of this radiation. This

gives them outstanding optical and physical properties like strong absorption which

facilitates using them for various optical sensors and other diagnostic methods. Lo-

calized surface plasmon resonance (LSPR) is an oscillation of surface-free electrons

in spherical metal NPs and polarizing them. As a consequence of the induced dipole,

the electron cloud is oscillating. The principle is demonstrated by Fig. 2.1 Optical

responses of these phenomena can be calculated from Maxwell equations. Gold NPs

(AuNPs) belong to the group of plasmonic NPs and are used in medicine and bio-

logy due to their good chemical stability and biocompatibility. Noble metal NPs in

general are also easily bioconjugated (conjugation with at least one biomolecule).

Hence, they are a popular choice for biodetection, gene therapy for musculoskeletal

regeneration, cancer diagnostics and therapy or Covid Antigen test [12, 13, 14, 15].

This phenomenon is used for plasmonic biosensors. There are two types of these

biosensors, first one works on the principle of surface plasmon resonance and is made

from a thin film of noble metal. The second one uses nanoparticles which, are smaller

than the wavelength of light, and their property of LSPR. Due to LSPR, NPs are

able to absorb and scatter light with high intensity. It is possible to observe it using

dark-field microscopy. Thus these are highly applicable to biochemical sensors and

cellular imaging. NPs are also useful as transducers because the scattering spectra

depend on the local refractive index and the spectra are shifted even with small

changes in the refractive index. When the refractive index increases, the scattering

spectra shifts to red (bigger wavelength). It has also an advantage in comparison

with film biosensors, because NPs can be used for very small volumes and gives a

better spatial resolution. The spectra of these NPs depend among other things on

their size and shape. There are spherical NPs and nanorods which can be of various

aspect ratios (AR) [17, 18, 10, 11].
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NRs are able to give two LPSRs (2.2) in comparison with spherical NPs because

the electrons can oscillate in two paths. Oscillation of electrons inside the longer

paths (in the longitudinal dimension of the NR) is called longitudinal resonance

and produces light of longer wavelength, the other is called transversal resonance

and produces light of shorter wavelength. GNR solutions can have various colors

depending on their size and aspect ratio (2.3) [18, 19, 20, 21, 22]. For both NPs and

NRs, it is very important to know their sizes and shapes.

Fig. 2.2: Principle of LPSR in GNRs [23].

2.2 Transmition Electron Miscroscopy

One of the most common methods for the determination of the size and shape

of AuNPs and GNRs 2.4 is transmission electron microscopy (TEM) which is a

very accurate and well-known technique. It is just necessary to make the images

of the sample and use a computer to count the number and size of the NPs. But

there are some disadvantages. For example, there is the complicated and nontrivial

preparation of the sample, and the measurement itself can take a long time, as well

as the requirement of the actual microscope itself. On the other hand, it can be used

for every size and shape of AuNPs and even GNRs [25].

The TEM microscope 2.5 works on the principle of electrons passing through

the conductive sample and measuring the intensity of the beam that passes through.

It consists of an electron gun, a system of lenses, and a fluorescent screen or digital

detector [21].
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Fig. 2.3: GNR solutions of different colors [24].

The electron gun is made of a cathode which is heated and has a negative

potential. The potential is equal to the accelerating voltage. Then there is an anode

with positive potential. The electrons come from the cathode to the anode and pass

through an axial hole in the anode. Then there are condenser lenses which are used

for focusing the electron beam. In most cases, there are two lenses. The first lens

reduces the image and the second focuses it onto the specimen. The specimen is made

by a measured sample and TEM grid. It is situated in the specimen stage which can

be taken out of the microscope. Then there is an objective lens which produces a

real image and projects it onto the projector lens which produces an enlarged image.

There are more than one projector lens due to the fact that one lens can provide

just a magnification of 5:1 and every next lens increases the magnification range.

The last step is detecting the image. There are two options. The electron beam may

be absorbed on the fluorescent screen which produces visible light. Or it may be

detected by a camera and displayed on the monitor and saved [21].

2.3 Segmentation Methods

With TEM it is more complicated because the result can be obtained only after

image processing. It is necessary to use segmentation methods to get the number,

sizes, and shapes of NPs and NRs. Segmentation is an image processing technique,

which transforms the image into regions, each representing one object, and includes

dividing objects and background. Image processing can be divided into three layers,
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Fig. 2.4: TEM images of various shape and size GNRs [16].

segmentation belongs to the low layer, then there is image analysis which belongs

to the middle layer, and image understanding in the high layer. There are plenty of

methods of image segmentation but it is not easy to use them. Image segmentation

is widely used in many diagnostic systems. It is used for automatic evaluation and

quantitative analysis of microscopic and medical images. It is crucial that the seg-

mentation is precise because if it is not, the algorithm will not work. Segmentation

lies in finding boundaries of objects, it can be cells, anatomical structures, or na-

noparticles. But there are more steps than the segmentation, the result has to be

evaluated using other algorithms. There are more types of techniques, and some of

them are based on edge detection using discontinuities in pixel values. Other tech-

niques find similarities in regions, there are techniques like region growing, clustering

and thresholding. There are, clustering methods, connectivity-preserving techniques,

and region-based methods which collect regions with similar intensity, color, texture,

etc [17, 26, 27, 28].

2.3.1 Thresholding Methods

The most basic and even fast methods are region-based methods. This group inclu-

des for example threshold segmentation and regionally grown segmentation. The first
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Fig. 2.5: TEM instrument schematic [16].

mentioned technique is very simple and fast, it just divides pixels depending on their

value. Thresholding does not take into account the position of a pixel, it works just

with its intensity. There are two types of thresholds, the global threshold method

has the same threshold value for the whole image and the adaptive or local thre-

shold method calculates the value for each point using average region intensity. The

advantage of adaptive threshold is that it accommodates inhomogenous lightning of

image. There are various ways how to determine the threshold value. Thresholding

can be also divided according to how many thresholds there are. Bi-level threshol-

ding is based on one threshold and divides pixels into two groups and multilevel

thresholding selects multiple thresholds, thus there are several groups of pixels. One

of the most used methods is called Otsu threshold ( Fig. 2.6) and consists in finding

value, where weighted within-class variance is minimal. This method expects that

the histogram of the image is bimodal, which means there is sufficient difference

between the background and region of interest intensity [27, 29, 28, 30].

There are also entropy-based techniques. Entropy is originally used in thermody-

namics and it describes the level of disorder of a physical system. Shannon described

entropy in informatics as a unit for measuring the efficiency of information in a sys-
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Fig. 2.6: otsu threshold in bimodal histogram [16].

tem. Entropic thresholding works on the principle of finding a threshold where the

sum of the entropy of the background and the entropy of ROI is maximal. Ano-

ther method is called minimum error thresholding and it considers histogram as a

probability density function which includes a combination of two populations, the

intensity of ROI pixels and background pixels and it determines threshold as va-

lue, where the overlap of these two populations is minimal. It uses the estimation

of parameters of mean value, standard deviation, and probability. This algorithm

works with a 2-D histogram, which can show the relationship between two variables.

There is also a 2-D minimum error method which takes into account also position

of a pixel. Multilevel thresholding determines more than one threshold and divides

an image into more levels depending on intensity and color (in RGB images). It

is ideal for images with color inhomogeneous background. Thus it is possible for

example to assign both dark and bright pixels to zero and middle gray pixels to one.

A disadvantage of these algorithms is it is often not possible to detect the number

of thresholds automatically. There are methods which can determine it using seve-

ral times lowpass or highpass filters in image histogram to decrease or increase the

number of local maxima and minima. Another region-based type of image segmen-

tation algorithm is called regional growth segmentation. It assumes that pixels of

one region have similar values. The algorithm first selects the seed pixel and then

joins similar pixels in the neiborhood connected with this pixel into the region. It
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requires a threshold value which is used as the maximum difference between the seed

pixel and pixels assigned to the region. A disadvantage of these methods is that it

is slow and susceptible to noise [27, 29, 28, 30].

Another segmentation algorithm is called the watershed segmentation algorithm

( Fig. 2.7) and is also a region-based method. The name and even principle comes

from nature and it is applied to grayscale or binary images and binary mask. The

goal of this algorithm is to find all connections in the image. Connected pixels mean

pixels that create one object (for example nanoparticle). It is necessary to find small

connected regions, from which can watershed begin to fill the mask. Theese regions

are called seeds. There are more methods, how to find the seeds, one of them is

called distance map. The first step of distance map algorithm works on the principle

of distance from nonzero pixel which creates a distance map. Objects have to be of

value zero and background of zero one, if it is reversed, the image has to be negated

first. In the case of grayscale images, the distance is calculated from local minima.

So objects have to be of lower value than the background. When the distance map

is calculated, watershed transform can be applied, it starts filling pixels from the

highest value (local maxima) of distance and stops before two connected objects

join into one. According to [31] there is method called ultimate erosion, which works

on principle of morphological erosion. It can be applied on binary image, where

ROI has pixel value one and background zero. Algorithm uses erosion repeatedly

until each region has a convex shape. Theese convex shapes can be used as seeds

for watershed algorithm. Finding of theese seeds can be called decomposition into

catchment basins. Basins represent individual objects or regions. Every pixel of

an image is classified into one of the regions or the background, so noise can be

a problem because it creates a large number of small regions. It is called over-

segmentation. Thus image has to be filtered before applying watershed transform

[26, 32].

Fig. 2.7: Watershed principle [16].
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2.3.2 Edge Detection Methods

The edge detection technique works on the principle of finding local changes and

discontinuities in the image [33]. It works with spatial domain instead of histogram

in contrast with thresholding. Edge detection means detecting high frequencies in

an image, so it works like a high-pass filter. Spatial frequency is generally a number

of cycles per distance, it has two components, frequency on the x-axis and y-axis.

Spatial frequency has units pairs of lines per millimeter, which means how quickly

low-value pixels shift changes with high-value pixels. This spectrum can be obtained

using a discrete 2D Fourier transform, which is a function of x and y. Thus high-pass

filter extracts high frequencies and the low-pass filter low frequencies [34]. There are

four types of edges The step edge where the value changes from one pixel to another.

The ramp edge, where the change is more gradual. The line edge has a steep change

but then returns to its original value. The roof edge is made of slow change and in the

peak value it also slowly returns back to the original value. There are more steps in

the edge detection algorithm, first step is filtering, which is used for removing noise.

For example salt and pepper noise, which means random white and black pixels in

the image. It has to be very well balanced because filtering also reduces edge strange.

Then there is the enhancement phase which points up pixels with a greater change

of value. This step uses calculating gradient. The last step is called detection and

it removes pixels with nonzero gradients which are not edges [32]. Greater changes

in value can be detected using differential operators which can calculate derivatives.

There are several types of these discrete operators, Sobel and Laplacian operators

are of the most used. The Sobel operator (Fig. 2.8) calculates the first derivative in

each pixel. The algorithm uses two 3x3 matrices, a transverse matrix which founds

gradients in a horizontal direction and a longitudinal matrix which founds gradients

in a vertical direction [28, 33]. Then the size of the gradient is calculated using the

equation [33]:

G =
√

G2
x + G2

y (2.1)

And vector of the gradient can be calculated using the equation [33]:

Θ = arctan
Gx

Gy

(2.2)

Zero angle corresponds with a longitudinal edge, where the pixels on left have

a lower value than the ones in right.

Another type of differential operator is called the Laplacian operator (Fig. 2.9),

which is matrix, which calculates the second derivative and detects zero-crossing of

image intensity. It is more accurate than the Sobel operator, but it detects isolated
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−1 0 1
−2 0 2
−1 0 1

 1 2 1
0 0 0
−1 −2 −1


Fig. 2.8: Sobel operators, horizontal and vertical [33].

pixels better than edges, so it is not possible to use it for images with noise [33].

Thus before using the Laplacian operator, it is necessary to perform a low-pass filter,

which reduces noise. For example, the median filter can be used, because it reduces

noise while keeping sharp edges. It is also possible to combine it with an edge-

matching filter, which has minimal response to isolated pixels and good response to

merged edges [35]. It consists of only one symmetric matrix, thus it is used for both

directions. It can be also calculated using the equation [33]:

∇2f =
∂2f

∂x2
+

∂2f

∂y2
(2.3)

0 1 0
1 −4 1
0 1 0


Fig. 2.9: Laplacian operator [33].

2.3.3 Clustering Methods

Clustering techniques work on the principle of dividing pixels into various groups

(clusters) depending on their characteristics. A cluster can be defined as a group of

pixels with similar properties to each other in the same cluster and diverse with each

other clusters [36]. There are two types of clustering algorithms, hierarchical cluste-

ring is based on merging pixels with similar characteristics or splitting pixels with

opposite characteristics and finding all possible combinations. Partitional clustering

is an iteration method with successive optimization. Hierarchical clustering can be

divided into two groups, first is called the agglomerative or bottom-up method and

works on the principle of merging data based on their similarities, first, it defines

every pixel as one cluster and then in every iteration merges similar clusters into one,

until it reaches given number of clusters. The divisive or top-down method takes all

pixels into one cluster and then in every cycle divides the most diverse pixels and

from each cluster creates two [37, 36]. One of the most used clustering methods is

called k-means ( Fig. 2.10), which comes under partitional methods. The advantage

of this method is, that it is easy, fast and the results are of high quality. The algori-

thm first randomly selects a defined number (k) of cluster centers and assigns each

pixel to the nearest cluster. In every iteration, algorithm calculates new center for
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every cluster using the mean value of all pixels in this cluster and then reallocates

pixels depending on their new distances from centers. The algorithm finishes when

there is no significant change in centers [36]. A disadvantage of this method is that

it is difficult to estimate the k parameter.

Fig. 2.10: K-means principle [38].

Another iterative algorithm is called fuzzy C-means clustering. It is based on

fuzzy sets which do not assign each point just into one cluster. Instead of this,

it calculates the vector of memberships for each pixel, which is a measure of how

strongly it belongs to each cluster. It has to be numbers between 0 and 1, the sum

of all memberships of one pixel must be 1. It is an advantage in comparison with k-

means because it allows the overlapping of clusters. There is also a defined number

of clusters (c). The steps of C-means are similar to k-means, the algorithm first

randomly selects c centers, then calculates membership and updates cluster centers.

A disadvantage is the same as in k-means, it is necessary to specify C parameter

[36, 39, 40]. There are more clustering algorithms, for example, Gaussian clustering,

but it has a disadvantage, that is very complex. It is also an iterative method and

works on the principle of calculating probability [39].
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2.3.4 Machine Learning Methods

There are also image segmentation techniques which use deep learning, which is

a subset of machine learning using neural network architecture with many layers.

These systems require a large number of sample images and very good computation

power. In biomedicine, it is used for example for the automatic detection of cancer

cells. Each neural network is composed of an input layer, some amount of hidden

layers, and an output layer. Deep learning neural networks may contain about 150 or

more hidden layers, in comparison with traditional neural networks, which have 2-3.

It can also learn automatically just from large data sets. Neural networks are formed

from nodes, which are connected with other nodes, these nodes are called neurons (

Fig. 2.11). Each connection has weight, thus some of them are more important than

others [41]. The output of neuron can be calculated using the equation:

y = f(

p∑
i=0

wixi −Θ) (2.4)

where y is output, xi is i-th input, wi is weigth of i-th input, f is activation

function and Θ is threshold of neuron [41].

There are two types of operations, the output of a neuron can be a linear function

of the weighted sum of inputs which in each connection is multiplied by a weight,

the bigger is input, the bigger is output. Or there can be a threshold and if the

weighted sum of inputs reaches this value, the neuron becomes active and there is

a signal, which is multiplied in each connection with weight, other way there is no

signal [41].

Fig. 2.11: Neural networks layers [16].
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Artificial neural network (ANN) is a basic model of deep neural networks. It

is composed of perceptrons, which means that the signal moves just forward and

the input is connected to the output. it uses back-propagation (feedback) to reduce

errors while learning, during this it updates the weights of connections depending on

the error of NN results. The NN tries to reduce the error into required value. This

learning process is called adviser learning [42]. Convolutional neural networks (CNN)

are types of deep neural networks that are used for images because it contains 2D

layers. It learns directly from sample images [26]. In CNN signal moves just forward

through all the hidden layers and output is connected with input through these la-

yers. CNN has three types of hidden layers, the convolutional layer, which contains

the convolution of the kernel matrix (filtering), which includes learned parameters,

and the image, which creates a new matrix called the activation map. Each CNN

contains multiple of these filters. The pooling layer merges each region (a group of

pixel) into one value, there are more methods of this pooling function, it can be the

mean value, the weighted value depending on the distance from a center pixel of a

region, or the max value of the region. It reduces the size of output, thus computati-

onal complexity is decreased. Then there is a fully connected layer, which connects

all neurons from the previous layer with each neuron from the following layer. Fully

connected layer works as classical NN and does not include image shape. Then there

usually are also nonlinear layers placed after the convolutional layer, these layera

use non-linear operators to activation map. A prerequisite for this method is a large

number of relevant sample labeled images for training [42, 43]. A recurrent neural

network (RNN) is not a feed-forward neural network, it means the signal does not

move just forward like in ANN and CNN. There is a recurrent path which is able to

affect input. It is connected with feedback, which works like memory, which connects

a sequence of data. RNN works with previous data, so it can take it into account and

output depends on it. It can work well for time dependent data, but it is exploitable

also for images, where these sequences of data represent in image processing spatial

domain [42].
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3 Goals

The goal of the project is to create a program for the automatic determination of

sizes and shapes of nanoparticles and nanorods from TEM images. Particular goals

are:

• Prepare TEM samples of gold nanoparticles and nanorods.

• Acquire TEM images of nanoparticles and nanorods with assistance.

• Suggest proper segmentation algorithms for TEM images.

• Create program for segmentation of the images and automatical evaluation of

sizes and shapes of nanoparticles using Python programming language and its

libraries (OpenCV, Scikit-image, Numpy).

• Suggest and test the possibility of using the Hough transform for solving the

problem with overlapping particles.

• Perform image segmentation on real data with jagged background and mea-

surement artifacts.

• Automatically evaluate pixel size for a given scale.

• Evaluate the size and shape of nanoparticles on the sample images.

• Evaluate algorithm performance using proper methods.

• Discuss the limitation of the algorithm.

• Create a graphical user interface (GUI) for the Python program.
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4 Methods

4.1 Measurement

TEM measurement includes sample preparation. It is very important to have the

sample dry completely during the TEM measurement, so the preparation must start

a few hours before. The very first step is getting the copper grids (Fig. 4.1) with

carbon coating. The reason for using a copper grid is its conductivity, so the electrons

from the TEM can go through the grid easily and it also is not as expensive as gold or

platinum grids. In the second step, it is necessary to adsorb the solution that is to be

measured onto the grid. The volume of the pipetted solution has to be proportional

to the size of the grid. The samples are being prepared using drop-casting, pipette

with volume 1 µL was used. After that, the samples have to become dry. For this

reason it was prepared several hours before the measurement.

Fig. 4.1: Image of copper grid [44].

We made two measurements. We used AuNPs and GNRs NanoXact samples

purchased from nanoComposix San Diego, USA. For the first measurement, we used

samples shown in table 4.1 and for the second measurement we used samples shown

in table 4.2.

Tab 4.1: First measurement samples

catalog number size [nm] absorption peak [nm] type
TJC0090 - 660 GNRs
SAM0010 20 - AuNPs
DAG3774 50 - AuNPs
DAG3567 80 - AuNPs

The electron microscope measurement itself was done by a microscope tech-

nician. The measurement begins with putting the grid with the sample into the

microscope. Then it is necessary to focus on the place where the sample is. It is
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Tab 4.2: Second measurement samples

catalog number size [nm] absorption peak [nm] type
AUCN40-50M 40 - AuNPs
AUCN80-50M 80 - AuNPs

- - 800 GNRs

good to make more than one picture of each sample. It is also important to find pla-

ces where there are some particles but where these do not overlap too much. We used

UHR TEM (ultra high-resolution transmission electron microscope) JEM-2100Plus

with a maximum accelerating voltage of 200kV, guaranteed resolution of 0.14 nm,

and magnification x30 to x800 000. We used an acceleration voltage of 80kV [45].

4.2 Image Analysis

Another step is creating a program for image analysis. We chose to use Python pro-

gramming language. We used several Python libraries, predominantly Scikit-image

and OpenCV-2 Python libraries. Scipy ndimage was also used in some functions.

All these libraries are using Numpy, which is a library used for work with matrices.

We also used Matplotlib Pyplot library for plotting and saving images.

4.2.1 Image Adjustment

The first step after loading the TEM image is converting it into a grayscale, so it

could be filtered. TEM images can be of different scales, which has an impact on

evaluating the number and size of visualized nanoparticles on each image. We chose

to use the median filter for denoising images. Filtering works on the principle of

convolution and the size and appearance of the convolution mask determines the

type of the filter. The median filter belongs to nonlinear filters which means that

the output is not a linear function of the input. The median filter simply counts the

median value from the neighborhood of a certain pixel for every pixel in the image.

The advantage of this filter is that it preserves edges and removes noise. The size

of the convolutional kernel or pixel neighborhood depends on the scale of the input

image and also on the type of particles because nanorods are usually smaller than

nanoparticles so it has to be blurred less. The principle of the median filter can be

seen in Fig. 4.2.

Then grayscale image has to be transformed into a binary image. It is usually

done by finding the appropriate threshold. Pixels with a value below the threshold

are transformed to zero and pixels with a value above the threshold are transformed

into 1 or 255 (it depends if binary image values are of type boolean with just 0 and 1

or 8-bit unsigned integer with values from 0 to 255). In the case of this project binary
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Fig. 4.2: Principle of median filter [46].

image is also inverted. In TEM images particles are black on a white background so

in binary image particles pixels should have value zero and background pixels should

have value one and for this application, it is better to invert it. The final equation,

which consists of thresholding and inverting image can be seen on equation 4.1.

F (x) =

{
1 for x(i, j) < threshold

0 for x(i, j) <= threshold
(4.1)

Where F (t) is LUT (look up table) function and x(i, j) is the value of a pixel

with i, j coordinates.

Several types of thresholding techniques exist. These techniques use the histo-

gram for calculating the appropriate threshold. We used two different techniques

in this project - the minimum threshold method and the Otsu threshold method.

The minimum threshold method finds pixel value with minimum frequency in the

histogram and this value is determined as the threshold t.

t = min(histogram(I)) (4.2)

where I is a set of pixel values in an input image.

Another method is called Otsu thresholding and it is a bit more complicated

algorithm. It consists of calculating within-class variance, which is defined as the wei-

ghted sum of variances of background class and particle class. Within-class variance

can be calculated using equation 4.3 [47].

σ2(t) = nbg(t)/N · σ2
bg(t) + np(t)/N · σ2

p(t) (4.3)
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Where σ2(t) is within-class variance for current threshold, nbg(t) is number of

pixels below threshold t (in background class), N is number of all pixels in image,

σ2
bg(t) is inside-class variance for pixels below threshold t, np(t) is number of pixels

above threshold t (in particle class) and σp is variance for pixels above threshold t

[47].

The algorithm of Otsu thresholding can be seen in Alg. 1.

Algorithm 1: Otsu thresholding [47].

Input : bitmap [Ii,j], i = 0, 1, · · · , 255, j = 0, 1, · · · , 255
Output: threshold value t
n = length(width(I))
σ2 = inf
for t0 ← 0 to 255 do

B = [ ] /*Set of background pixels*/
F = [ ] /*Set of foreground pixels*/
for i← 0 to length(I) do

for j ← 0 to width(I) do
if Iij < t0 then

B.append(Iij)
else

F.append(Iij)
end

end

end
wB = length(B)/n /*Weight of background*/
wF = length(F )/n /*Weight of foreground*/
σ2within = σ2

B × wBt + σ2
F × wF t

if σ2
within < σ2 then
t = t0

end

end
return t

It is done iteratively for every pixel value. The background class consists of

pixel values below the current value and the particle class consists of values above

the current value [47]. Otsu thresholding is a more advanced method and would

work better, but in nanoparticle images with larger scales (there were just a few

dart particles in the center of the image) this method calculated too high threshold.

More than just particle pixels were determined as foreground. So it was chosen to use

the minimum thresholding method for nanoparticles with larger scale (scale larger

than 200 nm) and the Otsu thresholding method for remaining nanoparticles and

all nanorods. The principle of Ostu thresholding can be seen in Fig. 4.3.

After binarizing the image we use mathematical morphology operation to clean

up the image. Two basic operations of mathematical morphology are called erosion
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Fig. 4.3: Principle of Otsu thresholding [48].

and dilation. These methods work on the principle of interaction with the structuring

element, which determines the shape of the pixel neighborhood. Dilation is used for

filling holes and increases the size of objects. The algorithm changes pixel value to

one if there are enough white pixels in its neighborhood. Erosion is the opposite

of dilation, it is used for removing small objects and decreases the sizes of objects.

The algorithm changes the pixel value to zero if there are not enough white pixels

in its neighborhood. There are also two methods which consist of both erosion and

dilation. Opening first uses erosion and later dilation, it is used for removing small

objects. Closing first uses dilation and later erosion, it is used for removing small

holes. Opening and closing are better because it changes the sizes of objects less

than just erosion and dilation. The Scikit-image and OpenCV libraries also contains

functions designed perfectly for removing small objects or holes. We used these

scikit-image and OpenCV functions in this project for removing artifacts from the

background and fill holes in particles. The principle of these operations can be seen

in Fig. 4.4.

Fig. 4.4: Principle of mathematical morphology operations, red pixels are removed
and blue pixels are added [16].
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4.2.2 Image Segmentation

The main part of this project is image segmentation, which separates particles so

these could be analyzed. There are plenty of methods used for segmentation and it

is a quite difficult task to choose the best method and implement it. For this project

we have chosen watershed transformation as the main method. This algorithm starts

with seeds and binary mask. Seeds are points or small clusters of points. In a perfect

world, there should be only one seed per particle in the image. The algorithm takes

seeds and starts filling binary mask from these points. It is called a watershed because

seeds can be imagined as valleys (or local minima) and the algorithm fills every valley

with water of different value starting from local minima (these are represented using

the seeds). It ends when it reaches the edge of the binary mask or when it meets

water from another valley. A labeled image is created, each pixel in one label has

the same number, and the background has zero. The principle of a watershed can

be seen in Fig. 4.5 [26, 48].

Fig. 4.5: Waterhsed transform principle [49].

There are more methods how to find seeds, in this project we tried to use a

method called a distance map. It works on the principle of finding euclidean distance

(number of pixels) for each one pixel to the closest zero pixel. Distance map can be

created using several algorithms, the easiest but inefficient way can be implemented

using multiple morphological erosion operations. Each step removes one layer of

pixels. The value of each pixel is determined as a number of erosiosn needed to

remove this particular pixel [50, 48].

It was also decided to try method described in [31] called ultimate erosion. Due

to this reference it should be better way to find seeds for watershed segmentation. It

works on principle of repeating morphological erosion applied on the binary image.

In each step of the cycle algorithm evaluates the convexity of each connected region

in the image and if it is convex, the region is classified as seed and removed from
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set of regions for next erosion cycle, otherwise it stays in this set [31]. Principle of

this algorithm can be seen in Alg. 2.

Algorithm 2: Ultimate erosion algorithm [31].

Input : binary mask (set of connected regions) I
Output: Binary mask of seeds (set of connected regions) I
I(0) = I
while Ik−1 ̸= Ik do

for Ri in I(0) do
/*Where Ri is connected pixels in I*/
for Ak−1

i in Ri do
/*Where Ak−1

i is connected component in k-1 iteration in Ri

if Ai.isConvex() = False then

Ri = erode(A
(k−1)
i )

end

end

end

end
return I

Watershed perfectly divides non-overlapping particles. When dealing with over-

lapping particles, two cases may occur. Watershed divided particles well but did not

count with their parts, which overlap, or it does not divide particles well so it finds

one big label. Due to this problem, we decided to use also another segmentation me-

thod. First ROI (region of interest) is defined. ROI is defined for each overlapping

particle. Each ROI is cropped image which contains only these overlapping par-

ticles. Detection of overlapping particles is done by finding each connected region.

It is done by evaluating convexity of each label and if the region is not convex, it is

classified as overlapping particles, and the ROI of this object is created. We decided

to perform a Hough transform (HT) to detect circles in the image. HT transform

works on the principle of transforming image space into Hough space, which means

mathematical transformation from 2-D image spatial axis (x, y) into 3-D axis of ci-

rcle centers coordinates (cx, cy) and cirlce radii (r). Circle Hough transform (CHT)

takes every point in the binary edge image, considers it a circle edge, and finds every

potential center of this edge point for given set of radii (Fig. 4.6) [51].

A circle can be described by a circle equation (see eqn: 4.4).

(x− cx)2 + (y − cy)2 = r2 (4.4)

Where x, y are the axis, cx, cy are center coordinates and r is the radius of a

circle [52].
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Fig. 4.6: Principle of circle Hough transform, taken from [16].

(a)

−1 0 1
−2 0 2
−1 0 1

 (b)

 1 2 1
0 0 0
−1 −2 −1


Fig. 4.7: Horizontal (a) and vertical (b) Sobel kernel, [53].

It means for each x and y in the potential circle edge there is a function of cx,

cy, and r, which describes the coordinates of potential circle centers and potential

circle radius. For each radius, there is a circle in the Hough space for each point in

the image space and a point in the Hough space for each circle in the image space.

Limits of cx and cy are given by image size, but there is no limitation for radii. So

the limitation must be defined manually. Function in scikit image library calculates

cx, cy, r, and weight of each detected circle, which means how detected circle fits the

edges. The first step in Hough transform is performing Canny edge detection, which

is an algorithm containing high pass filtrating (marks-up edges) and binarizing, so

the result is a binary image with marked-up edges [48]. Edge detection uses the

Sobel operator (Fig. 4.7).

Then gradient image can be calculated using equation 4.5 [53].

|G| =
√
I2x + I2y (4.5)

Where Ix, Iy are images filtered by the vertical and horizontal kernel [53].

The next step is removing lines, which are too thick using Non-Max Suppres-

sion. It works on the principle of going through all pixels in a gradient image and

selecting maximum values in direction of the edge. The last step in this algorithm

27



is double thresholding. Two thresholds are defined, pixel values below the first thre-

shold are determined as non-relevant and pixel values above the second threshold are

determined as strong, pixel values between two thresholds are determined as weak.

Strong pixels are assigned as one, and non-relevant pixels are assigned as zero. Weak

pixels are divided using the hysteresis mechanism, which works on the principle of

assigning weak pixels into strong ones if at least one strong pixel lies in the neighbor-

hood of the current weak pixel, otherwise, it is assigned as a non-relevant pixel. This

process can be seen in Alg. 3 [53].

Algorithm 3: Canny edge detection, [53].

Input : bitmap [imgi,j], i = 0, 1, · · · , 255, j = 0, 1, · · · , 255
Output: Binary edge image B
I = gaussianFilter(I, sigma = 1)
MH ← Sobel Horizontal Operator 4.7 (a)
MV ← Sobel Vertical Operator 4.7 (b)
H = convolution(I,MH)
V = convolution(I,MV )
for i in I do

for j in I do

Gij =
√

H2
ij + V 2

ij

end

end
G = nonMaxSuppresion(G)
t1 = 0.05
t2 = 0.09
for i, j in image do

if Gij < t1 then
Iij = 0

else if Gij > t2 then
imgij = 255

end
for i in weak pixels (other than 0 and 255) do

for j in weak pixels do
if any strong pixel in neighborhood of wij then

/*Where wijisweakpixeli,j∗/
Iij = 255

else
Iij = 0

end

end

end
return I

These edges can be used in function for HT. CHT returns the weight called

accumulator, center coordinates, and radius for each detected circle. Then the result

has to be filtrated, it may contain more than one detected circle for just one circle in
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the image or it may detect wrong edges (too small or too big in comparison to other

circles). So it is defined minimum distance between two centers and the minimum

weight of the detected circle. Then circles smaller than half of the biggest circle are

removed [48, 51].

4.3 Statistics

Jaccard or Dice (F1 score) indices are usually used for the evaluation of segmentation

fruitfulness (and also for neural network results evaluation). These indices have both

the same use and gain values between zero and one, the bigger the value is, the better

performance segmentation provides. Jacccard index can be calculated using equation

4.6 and Dice index can be calculated using equation 4.7 [54, 55, 56].

JSC =
TP

TP + FP + FN
(4.6)

DSC =
2TP

2TP + FP + FN
(4.7)

Where TP (true positive) are pixels, which were classified well as ROI, FP (false

positive) are pixels, which were classified as ROI instead of background and FN (false

negative) are pixels, which were classified as background instead of ROI.

Dice and Jaccard indices can be also represented using set theory. First set

consists of pixels of ROI from segmentation result and second set consists of pixels

from true ROI. Jaccard index (Fig. 4.8) is defined as intersection over union, which

means number of pixels, which belong to both of the sets divided by pixels, which

belong only to one the sets (number of well detected pixels over number of badly

detected or not detected pixels) [55].

Fig. 4.8: Set representation of Jaccard index [54].
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Dice index (Fig. 4.9) can be represented as two times overlap over sum of car-

dinalities of both sets [56].

Fig. 4.9: Set representation of Dice index [54].

This method requires accurate mask of pixels, which remain into ROI and bac-

kground, for each image. Due to absence of these masks, we decided to use simplified

method, which just takes in account number of NPs. We classified well detected NPs

and NRs as TP, badly detected NPs and NRs as FP (oversegmented or underseg-

mented) and non-detected NPs and NRs (removed from the selection knowingly or

in error) as FN.

4.3.1 Summary of Methods

In summary, non-overlapping particles are detected by the watershed algorithm, and

overlapping particles are detected by Hough transform. There is also a Hough trans-

form for ellipse, which may be used for nanorods, but in this project, nanorods are

detected only by watershed. After it, it is important to calculate particle properties.

For nanoparticles area and diameter is calculated and for nanorods area and major

axis and minor axis length are calculated. As segmentation metric are usually used

Dice and Jaccard indices, in this project metrics inspired by these indices were used.
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5 Results

5.1 TEM Images

TEM samples were prepared and TEM images were acquired. Various shapes and

sizes of nanoparticles and nanorods were investigated. There were two samples of

nanorods with unknown sizes and four sizes of nanoparticles with diameters of 20

nm, 40 nm, 50 nm, and 80 nm. There are examples of 20 nm nanoparticles (Fig:

5.1), 40 nm nanoparticles (Fig: 5.2), and nanorods (Fig: 5.3) with absorption peak

on wavelength 800 nm. 20 nm nanoparticle image (Fig: 5.1) was chosen as sample

images for evaluating and for optimization and testing algorithm.

Fig. 5.1: Raw TEM image of 20nm NPs.

5.2 Python Program

Python program was created. The scheme of the program can be seen on Fig. 5.4

The program is able to process more images from the same dataset at once and it

can run from the command line with arguments, a user may define a folder with

images, specify, if the background should be suppressed or decide if results should

be plotted or not. The program requires metadata in JSON format, which includes

information about the type of particles (nanoparticles or nanorods) and the scale

of the TEM image. The program performs image segmentation and returns labeled

images, histograms of all sizes from the dataset and .txt file with mean value calcu-

lated using median, interquartile range and information about outliers and detection

of small particles called seeds.
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(a) (b)

Fig. 5.2: Raw TEM images of 40nm (a) and 5 nm (b) NPs.

(a) (b)

Fig. 5.3: Raw TEM images of NRs.

Fig. 5.4: Scheme of algorithm workflow.
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The program can be also run using GUI, this option needs no metadata, and

everything is set using GUI. It is also possible to run whole dataset, but it is necessary

to specify scale for each image. GUI contains four pages, a home page with options,

a page with plotted labeled images, a page with plotted histogram, and a page with

a description of the program. The home page can be seen in Fig 5.5.

Fig. 5.5: GUI main page look.

There are key functions of this project. One of the most important functions is

watershed transform, which can be seen in listing 1. This function takes binary mask

as an argument, then performs watershed transform, which consists of experimental

implementation of ultimate erosion and watershed transform itself, function returns

the labeled image.

1 def watershed_transform(binary , np_type , pixel_size):

2 """ Labeling image using watershed transform. Seeds for the

algorithm are determined using morphological erosion.

3

4 Args:

5 binary (numpy.ndarray): binary image

6

7 Returns:

8 numpy.ndarray: labeled image

9 """

33



10 if np_type == ’nanoparticles ’:

11 seeds = np.zeros(binary.shape , dtype=np.uint8)

12 mask = binary.copy()

13

14 while np.sum(mask) > 0:

15 regions = erosion(mask)

16 regions = label(regions)

17

18 for i in range(1, np.max(regions) + 1):

19 roi = regions == i

20 convex_hull = convex_hull_image(roi)

21 diff = convex_hull != roi

22 diff = np.sum(diff.astype(np.float32))

23 area = roi.astype(np.float32).sum()

24 convex = (diff == 0 or 10 * diff < area) and area >

5 / pixel_size

25 if convex:

26 seeds[roi] = 1

27 regions[regions == i] = 0

28 mask = regions > 0

29

30 seeds = dilation(seeds)

31

32 distance = ndi.distance_transform_edt(binary)

33 img = -distance

34

35 else:

36 distance = ndi.distance_transform_edt(binary)

37 img = -distance

38 mask = binary

39 for _ in range (10):

40 mask = remove_small_holes(mask)

41 mask = remove_small_objects(mask)

42 for _ in range (10):

43 mask = erosion(mask)

44 seeds = mask

45

46 markers , _ = ndi.label(seeds)

47 labels = watershed(img , markers , mask=binary)

48

49 return labels

Listing 1: Watershed function

Another important function is the function for CHT, which can be seen in

listing 2. The function takes arguments one-channel image, which is filtered by the

median filter, then performs CHT, which consists of Canny edge detection and CHT

itself, and returns circle parameters, which are coordinates of the center, radius, and
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accumulator for each circle in the image. This function is applied to ROIs, where

overlapping particles are detected.

1 def hough_segmentation(img , pixel_size , np_type):

2 """ Segmentation of given ROI using CHT.

3

4 Args:

5 img_filtered (numpy.ndarray): grayscale image

6

7 Returns:

8 numpy.ndarray , list: RGB image with plotted

9 circles/elipses , list of NP parameters

10 """

11 canny_edge = canny(img , sigma =4)

12

13 start = 10 / pixel_size

14 end = 100 / pixel_size

15 min_dist = 10/ pixel_size

16 hough_radii = np.arange(start , end , 1)

17 hough_res = hough_circle(canny_edge , hough_radii)

18

19 accums , x, y, r = hough_circle_peaks(

20 hough_res , hough_radii , min_xdistance=int(min_dist),

min_ydistance=int(min_dist)

21 )

22 x = np.uint16(np.around(x))

23 y = np.uint16(np.around(y))

24 r = np.uint16(np.around(r))

25

26 a = accums

27 l = len(x)

28 circles = [(x[i], y[i], r[i]) for i in range(l) if a[i] > 0.2]

29

30 return circles

Listing 2: CHT function

Another key function is function, which loads image, because it contains scale

bar detection and pixel size calculation. This function consists of loading the image

itself, then cropping the image, because only the right corner, which contains the

scale bar, is needed. The image is also binarized, small objects are removed and then

pixel size is calculated. This function can be seen in listing 3.

1 def loading_img(img_path , scale):

2 """ Loading image from given file and croping it. Also

calculating pixel size from image scale bar and given scale.

3

4 Args:

5 img_path (str): path to image file
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6 scale (int): scale from microscope

7

8 Returns:

9 numpy.ndarray: RGB image

10 flaot: size of pixel in raw image

11 """

12 try:

13 img_raw = imread(img_path)

14 except Exception as err:

15 print(err)

16 raise Exception("wrong input: image cannot be open")

17

18 width = img_raw.shape [1]

19

20 line = img_raw [-100:, int(width / 2) :, :]

21 line = cv2.cvtColor(line , cv2.COLOR_RGB2GRAY)

22

23 mask = line < 10

24 mask = remove_small_objects(mask)

25 indices = np.where(mask)

26 length = max(indices [1]) - min(indices [1])

27 global pixel_size

28 pixel_size = scale / length

29

30 img_raw = img_raw [0:-100, :]

31

32 return img_raw , pixel_size

Listing 3: CHT function

5.3 Program Outputs

The program was tested with various input data, examples of results can be seen in

Fig. 5.6, Fig. 5.7, and Fig. 5.8.

Calculated sizes were saved, average area and diameter were calculated for na-

noparticles, and average area, major axis length, minor axis length, and aspect ratio

were calculated for nanorods. Results of chosen data are presented in tables. For

nanoparticles see Tab. 5.1.

Tab 5.1: Example data outputs for NPs.

mean diameter [nm] interquartile range [nm] supposed diameter [nm] Dice index [-]
19.632 0.040 20 0.749
39.039 4.702 40 1.000
51.156 17.678 50 0.799
73.300 18.954 80 8.853
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Fig. 5.6: Result labeled image of 20nm NPs.

(a) (b)

Fig. 5.7: Result labeled images 40nm (a) and 50nm NPs (b).

NRa sample with absorption peak on 800 nm was chosen. Mean minor axis

length is 11.044 nm, interquartile range is 0.48 nm, mean major axis is 36.003 nm,

interquartile range is 1.566 nm and Dice index is 0.947.
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Fig. 5.8: Result labeled image on NRs with absorption peak on 800nm with in-
homogeneous background

Histograms of sizes were calculated and plotted, the histogram of nanoparticles

shows a layout of diameters in the input images (Fig: 5.9). A histogram of the 40 nm

NPs sample can be seen in Fig. 5.9. For comparison of images of the same sample

the boxplot was plotted. The boxplot shows differences in mean values and variance

between images of the same sample. An example boxplot can be seed in Fig 5.10.

Histograms of major and minor axis length in NRs sample can be seen in Fig. 5.11

and Fig. 5.12.

Fig. 5.9: Histogram of sizes of 40 nm NPs.
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Fig. 5.10: Boxplot comparing sizes of NPs from three different images of 40 nm NPs.

Fig. 5.11: Histogram of major axis lengths in NRs sample with absorption peak on
800 nm.

5.4 Statistical Evaluation of Segmentation Fruitfulness

Segmentation performance was evaluated using method inpired by Dice and Jaccard

index. Therse valuse were calculated for each sample and Dice index can be found
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Fig. 5.12: Histogram of minor axis lengths in NRs sample with absorption peak on
800 nm.

in Tab. 5.1. Mean value of Dice index for all the samples is 0.869 and mean Jaccard

index is 0.781. Particles were manually sorted into three groups - true positive,

where well detected particles were placed in, false positive, where oversegmented or

undersegmented particles were placed in and false negative, where particles, which

were removed from evaluation, where placed in.
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6 Discussion

6.1 Results Evaluation

The main result of this project is Python code for the automatic analysis of TEM

images of gold nanoparticles and nanorods. This code was optimized using various

input images (real data). During the measurement we found some errors in the data.

Evaluation of algorithm performance is described in 6.2 Algorithm Performance. The

errors are described in 6.3 Sample Preparation Errors and 6.4 TEM Measurment

Errors. The program has some limitations, these are described in 6.5 Limitations.

Two samples were taken out of the selection because of inconvenient quality.

First removed sample was sample TJC0090, which contains NRs with absorption

peak on 660 nm. Second removed sample was sample DAG3567, which contains 80

nm NPs from first measurement. Images on both samples were all too small because

of large scale and were overlapping too much.

6.2 Algorithm Performance

For the performance evaluation used methods inspired by Dice and Jaccard indices

were used. Whole nanoparticles were calculated instead of single pixels. The reason

is absence of masks of true ROI, which are required for calculation Dice and Jaccard

indices. Mean Dice index was 0.869 and Jaccard index 0.744, which are satisfactory

values. We treated badly detected particles as FP (false positive) and not detected

particles as FN (false negative). These values mean, that there were far more well

detected nanoparticles, than badly or not detected.

Algorithm performs with some error, which depends on quality of the data.

Values, which are far bigger than median value, were classified as outliers. These

outliers can be also seen in histogram. We have chosen to use median for value and

interquartile range, because these parameters are outliers resistant.

6.3 Sample Preparation Errors

The goals of the project were to prepare TEM samples on copper gird and acquire

TEM images. Samples of nanoparticles and nanorods were prepared, but during

TEM measurement there were found other small particles on some samples. These

small particles were probably caused by imperfect preparation of the NPs solution.

See fig. 6.1. The algorithm detects these seeds using k-mean clustering, inform the

user and removes the seeds in evaluation.
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Fig. 6.1: Detected small particles.

Another source of segmentation errors may be insufficiently dried samples. Sam-

ples of nanorods with an absorption peak of 800 nm can be seen in image 6.2, this

image has inhomogeneous background due to insufficiently dried TEM grids. This

is an error which may happen more frequently so it is treated in software, however,

it declines the quality of the image. A wet sample can be seen in figure 6.2.

Fig. 6.2: Inhomomogeneous background caused by wet sample.
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6.4 TEM Measurment Errors

Another source of potential errors can be the quality of TEM images. There are

several issues which affect the results of the image analysis program. The first issue is

resolution. Microscope computer saves images in very high resolution of 2044 x 2044

pixels and due to the computational complexity of most functions, image resolution

has to be reduced. For most images rescaling does not matter, but there are images

where particles are very tiny in comparison with image size. After rescaling, these

particles have a diameter for example 8 or 9 pixels, so the accuracy of measurement

extremely decreases. A solution for this problem could be manually cropping these

images before automatic analysis, but there is an issue. Images contain a scale bar,

which is located in corner of the image and is used to determine pixel size, so cropping

the image would remove this information.

Another issue with TEM image quality can be contrasted. The algorithm for

particle analysis works on the principle of subtracting particles from the background

based on pixel intensity. Particles in some images contain stains with a higher in-

tensity which is similar to or even higher than the background intensity. So the

algorithm assigns this pixel to the background and not to particles. This issue is

partly treated in code by using morphological operations for filling holes. This solu-

tion can solve smaller bright spots but it cannot do anything with cases where for

example half of the particle is bright. Some TEM images have low contrast overall

so thresholding methods may not be as accurate as they could be. An example of

low-contrast nanorods with even bright spots can be seen in figure 6.3 (a) in chapter

Results. In this image wet background is also a problem, so it decreases the quality

of the image even more. Bigger bright spots may cause over-segmentation of the

image. Oversegmented NRs had to be removed from the evaluation using erosion.

6.3.

The last issue which is related to image quality and occurred in sample images

are badly focused image. It is problem especially in images with a large number of

small particles because particles in samples are overlapping and in this case, it is

almost impossible to divide them well. An example of this case can be seen in figure

6.4.

When talking about overlapping particles there is also one issue with this, which

cannot be solved. Some samples contain places with a lot of particles laying on each

other. In some extreme cases, there is not even possible to see individual particles.

These images obviously cannot be used for analysis. The program detects these huge

clusters as one particle and it would bring enormous error in results so the program

has treated these cases by removing such huge areas which were detected as one

particle. An example of an image with this case can be seen in figure 6.5.
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Fig. 6.3: Removed nanorods due to the oversegmentation.

Fig. 6.4: TEM micrograph with insufficient resolution.

6.5 Limitations

First limitation is in type of NPs, for which the program can be used. Each type of

NPs are totally different and needs specific approach, so this program can be used

just for evaluating TEM images of AuNPs and GNRs, because the algorithm was

optimized using AuNPs and GNRs images and it means it is feasible only for this
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Fig. 6.5: Image with huge cluster of particles.

type of NPs. Due to this limitation it is in the pipeline to create modular program,

where parameters and chosen methods could be changed by user to fit the data.

Second limitation is in size of NPs and NRs and TEM image scale. The program

takes in account sizes found between 1 nm and 100 nm according to definition of

nanotechnology [6]. The TEM image scale is limited, because the algorithm was

optimized and tested on images with scale bar from 20 nm into 500 nm, so there is

no guarantee it would work for another scale bars. The 500 nm scale bar is frontier,

because with this scale NPs are yet too small, so the accuracy of evaluation can be

decreased in comparison with images with scale bar about 100 nm. This problem

was described better in 6.4 TEM Measurment Errors.

Other limitations are about quality of sample and TEM image. The algorithm

cannot be used for bad focused images or images, where individual particles cannot

be seen (it may occur, when NPs are overlapping too much). The limitation can

be also, that algorithm cannot detect particles, which contain bright spots in it, so

these are removed from the evaluation. These limitation were discussed in 6.4 TEM

Measurment Errors. The algorithm can handle with some of sample preparation

errors as wet sample or small exotic NPs, which are not part of the measured NPs.

These problems were discussed in 6.3 Sample Preparation Errors.
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7 Conclusion

Project included several goals. which were achieved, presented in the chapter Results

and discussed in the chapter Discussion.

• First goal was to prepare TEM samples. Five AuNPs samples and two GNRs

samples were prepared. NPs have sizes 20 nm, 40 nm, 50 nm and 80 nm and

NRs samples have absorption peaks on 660 nm and 800 nm.

• Second goal was to acquire TEM images. It was done by microscopy technician.

We obtained multiple images of each sample.

• Another goals were about image analysis and the program. Watershed trans-

form was suggested as main segmentation algorithm.

• Python program for automatic evaluation of sizes and shapes of nanoparticles

was created and the main functions are presented in the chapter Results.

• Using HT for segmentation of overlapping NPs was tested and used in the pro-

gram. The limitation of this method was discussed in the chapter Discussion.

• Segmentation was performed on various real data images, NRs images had ja-

gged background. Example of result images can be seen in the chapter Results.

• Pixel size is automatically evaluated in loading function in the program using

scale bar in the corner of the TEM image. This function can be seen in the

chapter Results.

• Sizes and shapes of the NPs and NRs were evaluated and are presented using

histogram of sizes and boxplot for comparison of particular images of the same

sample. Diameters for NPs and major and minor axis length and aspect ratio

for NRs were calculated. The mean value (using median) and interquartile

range were also determined.

• Metrics inspired by Dice and Jaccard indices were used as statistical parameter

for segmentation evaluation. Average Dice index inspired metric result was

0.869 and Average Jaccard index inspired metric result was 0.781.

• Limitation of the algorithm were discussed in the chapter Discussion. The

main limitations are, that the program can be used just for evaluation AuNRs

and GNRs with sizes between 1 and 100 nm on images with scale bars up to

500 nm.The quality of TEM images has also great impact on the results.

• GUI was created and is presented in the chapter Results.
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7, s. 2679–2724.

5. NOUAILHAT, Alain. An introduction to nanoscience and nanotechnology. Sv. 10.

John Wiley & Sons, 2010.
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32. PATIL, Dinesh D; DEORE, Sonal G. Medical image segmentation: a review.

International Journal of Computer Science and Mobile Computing. 2013, roč. 2,
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2020-08-26]. Dostupné z: https://towardsdatascience.com/convolutional-

neural-networks-explained-9cc5188c4939.

44. Science services.
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