
Simulation Environment for Validation of
Automated Lane-Keeping System

Jiri Vlasak∗†, Michal Sojka∗, Zdeněk Hanzálek∗
∗Czech Institute of Informatics, Robotics and Cybernetics, †Faculty of Electrical Engineering,

Czech Technical University in Prague
Jugoslávských partyzánů 1580/3, 160 00 Praha 6, Czech Republic

{jiri.vlasak.2,michal.sojka,zdenek.hanzalek}@cvut.cz

Abstract—Automated Driving Systems (ADS) need to be vali-
dated in a wide range of conditions to ensure the safety of their
operation. It is impossible to validate everything in a real environ-
ment, and simulation is the only viable alternative to cover testing
under all needed conditions. We present the architecture of a
simulation environment based on the CARLA simulator, aimed
at validating the Automated Lane-Keeping System (ALKS), the
first ADS with available legislation for its approval. We propose
to simplify the development and deployment of such a complex
software simulation environment through the use of the Nix
package manager. We also propose how the example scenarios
distributed with CARLA can be extended to make them suitable
for validation of ALKS.

Index Terms—Automated Driving System; CARLA simulator;
Robot Operating System; Automated Lane-Keeping System.

I. INTRODUCTION

The development of Automated Driving Systems (ADS)
requires a lot of validation and testing activities to ensure safe
operation. Automated Lane Keeping System (ALKS) is the
first ADS for which there is a legal document specifying the
requirements for its approval: United Nations (UN) Regulation
No. 157 [1]. Compared to similar regulations issued in the
past, this document contains only general requirements without
specific detailed instructions on what and how to test. It is up
to the approving organization to develop precise procedures
that will enable it to assess the safety of the ALKS imple-
mentation.

To this end, many approval bodies are preparing proce-
dures and technical equipment for the approval process, and
similarly, car makers are working on their internal validation
and testing procedures. This work is a first step toward the
same goal, but on a smaller scale. As an academic institution,
we are developing an ALKS-like function to drive a real car
under a set of limiting conditions. In particular, we limit the
functionality to a subset of weather conditions and omit some
required functionality like detection of approaching emergency
vehicles. At the same time as the ALKS function, we are
developing a simulation environment allowing to test out
the ALKS implementation in a virtual environment before
deploying it in the real vehicle. The goal is to close the
loop between development and validation, gain experience,
and provide feedback to other organizations working with real
ALKS implementations.

In this paper, we outline the architecture of our initial sim-
ulation environment, which is based on open-source software,
namely the CARLA simulator. Since the software environment
for simulation and validation integrates software components
from different sources, version conflicts between different
components often occur. We propose to solve these integration
problems using the Nix package manager. We publish our
initial implementation for use by others. Additionally, we
analyze which ALKS validation scenarios, as required by
current legislation, can be reused from CARLA and related
tools and how they need to be extended for ALKS validation.

This paper is structured as follows. We review related work
in Section II. Then, in Section III we describe the architecture
of our simulation environment followed by the analysis of
simulation scenarios in Section IV. We conclude in Section V.

II. RELATED WORK

Based on the definitions and taxonomy from SAE Inter-
national [2], this paper targets verification of ALKS, in the
scenario-based simulation environment.

Requirements for the ALKS are given by UN Regulation
No. 157 [1] (regulation in short). The regulation introduces
the required behavior of the ALKS (Dynamic Driving Task –
DDT) within predefined conditions (Operational Design Do-
main – ODD). However, the regulation lacks exact parameters
for the test scenarios.

To overcome the problem of missing parameters, Tenbrock
et al. [3] present a methodology for finding relevant scenarios
in real-world data and extracting the scenarios parameters.
They apply their methodology to the highD dataset [4] extract-
ing more than 340 scenarios into OpenSCENARIO format to
be later used in CARLA or esmini simulators. They named
the extracted dataset ConScenD.

In this work, we use CARLA [5] – an open-source simulator
for driving automation systems testing – along with the
ScenarioRunner [6] to execute the scenarios. The CARLA
simulator already includes basic scenarios like lane-keeping,
vehicle following, or cut-in and cut-out situations. We aim
at extending these scenarios to cover all parameters from the
regulation.

Riedmaier et al. [7] present a state of the art survey on
scenario-based approaches to safety assessments of driving
automation systems. They discuss two approaches for scenario



ROS 2

CARLA

ScenarioRunner
Python API

CARLA ROS bridge

 Python API

Sensors translator

ROS Bridge Sensor topics

Automated Driving System: ALKS

sensor_msgs: Image, PointCloud2

Actuation translator

Carla Ackermann Control topic

ackermann_msgs: AckermannDrive

(a) ALKS in simulation environment.

ROS 2

Test vehicle

FlexRay/Ethernet
bridge

 FlexRay

Sensors publishers

UDP/IP

Automated Driving System: ALKS

Actuation subscriber

ackermann_msgs: AckermannDrivesensor_msgs: Image, PointCloud2

UDP/IP

(b) ALKS in test vehicle.

Fig. 1. Interfacing of Automated Driving System into simulated and real environments.

generation: knowledge-based scenario generation and data-
driven scenario extraction. By this distinction, basic scenarios
included in CARLA area knowledge-based, and ConScenD
scenarios are data-driven. The authors also discuss the differ-
ence between testing- and falsification-based scenario selec-
tion. The former approach aims at a subset of scenarios and
generalize the results. The latter aims at finding a violation
of the safety requirements. Furthermore, the authors identify
formal verification as an alternative to scenario-based testing.
They propose formal verification for the planning module and
the scenario-based testing for the whole system.

Weissensteiner et al. [8] introduce a simulation framework
for scenario-based virtual validation of ALKS with its neces-
sary subsystems, including the interfaces between these sub-
systems. They test the simulation framework on ALKS in two
Operational Design Domains using AVL Model.CONNECT,
CarMaker, and CARLA.

III. SIMULATION ENVIRONMENT

In this section, we describe the architecture of our simula-
tion environment (Figure 1a). It is based on an open source
simulator CARLA [5] and the goal is to test the unmodified
implementation of ALKS software developed for a real vehicle
(Figure 1b).

A. Architecture

The simulation environment depicted in Figure 1a uses
the CARLA simulator as the main simulation engine and its
module ScenarioRunner. ScenarioRunner is a CARLA client
application written in Python and we use it to initialize the
scenario and to control the vehicles (other than the ego vehicle)
in the scenario.

We develop the ALKS in the Robot Operating System
(ROS) [9] so we also use CARLA ROS bridge [10] as an
interface between ROS and CARLA. CARLA ROS bridge is
a ROS package providing the so called ROS node that acts as
a CARLA client and translates data from CARLA to ROS and
vice versa. In the ROS terminology, it acts as a ROS publisher
for data from CARLA and as a ROS subscriber for data that
go in the other direction. CARLA ROS bridge is accompanied
by related ROS packages as CARLA Ackermann control and
CARLA spawn objects. CARLA Ackermann control allows
controlling the ego vehicle in the simulation via well known
AckermannDrive ROS messages. CARLA spawn objects is
used to manage vehicles simulated in CARLA from ROS.
Particularly, we use it to spawn the ego vehicle.

The CARLA ROS bridge publishes data from simulated
sensors in CARLA-specific messages. To use them with the
ALKS implementation for the test vehicle, we convert them
to the format expected by the implementation. This is imple-
mented in the Sensors translator ROS node. Similarly, the
messages in the other direction are converted from vehicle-
specific to CARLA-specific format by the Actuation translator
ROS node.

The Automated Driving System node in Figure 1a imple-
ments the Automated Lane-Keeping System (ALKS). It is a
collection of multiple cooperating ROS nodes with specific
purposes such as perception, maneuver decision, trajectory
planning, and trajectory execution. The internal architecture
of the Automated Driving System block is out of the scope of
this paper.



User ScenarioRunner CARLA ROS bridge CARLA

Start
ScenarioRunner

Load scenario and wait for ego vehicle

Start prepared ROS launch file
Start ROS nodes

(including ego vehicle)
Ego vehicle spawned

Control scenario actors
ADS controls
ego vehicle

Finish simulation, return scenario results

Terminate ROS nodes

Start simulation

Fig. 2. Sequence diagram of running scenarios in the simulation
environment.

B. Execution

To execute the simulations, we run the individual compo-
nents as shown in the sequence diagram in Figure 2. Currently,
we run them manually. Automation is planned for the future.

First, we start the ScenarioRunner with arguments telling
it how to connect to the CARLA simulator, which scenario
to load, and that the ScenarioRunner should not control the
ego vehicle. After the ScenarioRunner prepares the scenario
and waits for the ego vehicle, we start all ROS nodes from
Figure 1a via a ROS launch file. This step includes spawing
the ego vehicle itself. After all required ROS nodes are running
and the ego vehicle is spawned, the simulation starts automat-
ically. Individual simulation time-steps are triggered by the
ScenarioRunner. ScenarioRunner also controls the movement
of simulation vehicles except the ego vehicle, which is con-
trolled by the ALKS ROS node, as shown in Figure 1a. When
end conditions of the scenario are satisfied, the simulation
ends, and the ScenarioRunner finishes. Then, we manually stop
the remaining ROS nodes.

C. Reproducible development environment

The testing environment presented above allows to simulate
selected scenarios for ALKS validation. However, setting up
the environment on one’s computer requires significant effort.
For Linux, which we target for our development, CARLA is
officially supported only on Ubuntu 18.04. Using it with newer
Ubuntu versions works with a few undocumented tweaks.
Using it with non-Ubuntu distribution is more difficult. For
advanced use of CARLA, such as adding new maps or vehicle
models, building CARLA from source is required. This is even
more complex, as it needs installing packages from unofficial
sources, easily leading to broken systems. At least, this is our
experience with students trying to build CARLA themselves.
Building CARLA from its source code requires about 130 GB
of disk space and hours of compilation time. Any error during
the build process multiplies the needed time.

Some of the problems related to building and installing
CARLA can be mitigated by using Docker and pre-built
CARLA images. However, using Docker brings other chal-
lenges that need to be overcome such as making the GPU
(Graphics Processing Unit) available inside the Docker con-
tainers.

While the above mentioned problems can be resolved with
some effort, we argue that the effort is better spent elsewhere
than repeatedly trying to reproduce commands from CARLA
documentation. Therefore, we propose to use the Nix package
manager [11] to manage the software stack for ADS testing
and validation. Nix revolutionizes the software building and
deployment process by providing strictly controlled envi-
ronment for software builds, which makes it easy to build
complex software stacks reproducibly, i.e., results are bit-by-
bit equivalent, in a way that works the same on any Linux
distribution. This is achieved by the following features of
Nix: (1) Every build command can access only explicitly
specified dependencies, the rest of the system is “invisible”
to it and (2) any piece of software, called store object in Nix
terminology, is identified by a hash of all inputs (dependencies)
and the commands used to build it. Going into details is out of
scope of this paper, but an interested reader can refer to [12],
which describes similar problems that we experienced with
CARLA, explains how Nix helps to solve them, and why is the
Nix solution better than using Docker. The main problem of
building CARLA “the Nix way” is the fact that CARLA, and
the Unreal Engine, which CARLA is based on, try to achieve
reproducible build by its own imperfect way, i.e., by using a
custom build system and by downloading prebuilt versions of
some, but not all dependencies.

The result of our work-in-progress effort is available in
a GitHub repository [13]. Currently, it provides two main
functionalities:

• An environment for building CARLA from source. Such
an environment contains all the needed dependencies like
libraries and compilers in correct versions.

• CARLA client libraries and Python bindings packaged
as Nix expressions, allowing their compilation and use
on any Linux distribution. This can be used to develop
CARLA clients even if binary CARLA packages are
unavailable, for example due to the fact that your dis-
tribution provides only newer Python versions than those
required by CARLA binary packages.

The instructions for how to use the repository are provided in
its README file.

IV. VALIDATION SCENARIOS

The UN Regulation No. 157 [1] defines in Annex 5 so called
test scenarios, which should be used to validate ALKS imple-
mentations. We are interested in simulating those scenarios
during ALKS development before testing them in real world.

The ScenarioRunner for CARLA comes with several ex-
ample scenarios. Here, we analyze which of those example
scenarios can be used for validation of ALKS and how they
need to be modified or extended for ALKS testing. The



TABLE I. ALKS TEST SCENARIOS AND HOW THEY MAP TO CARLA SCENARIORUNNER EXAMPLES.

ALKS Test Scenario Similar ScenarioRunner Examples Extensions Notes
1. Lane Keeping FollowLeadingVehicle{5,7} § 1 to 5 § 10
2. Avoiding a collision with a road user or object blocking the lane StationaryObjectCrossing5, DynamicObjectCrossing5 § 3 and 6
3. Following a lead vehicle FollowLeadingVehicle{5,7} § 1 to 5
4. Lane change of another vehicle into lane CutInFrom left Lane, CutInFrom right Lane § 7
5. Stationary obstacles after lane change of the lead vehicle ChangeLane1 § 3 and 6
6. Field of View test N/A § 8 § 11
7. Lane changing OtherLeadingVehicle{1,2,4,5,6} § 9 § 12
8. Avoiding emergency manoeuvre before a passable object in the lane FollowLeadingVehicle{5,7} § 1
(§1) Use different vehicle types of other vehicles, i.e., leading, cutting-in, in the scenario. Namely use: passenger car, powered two-wheeler (PTW), and
other vehicle. (§2) Test for different the lead vehicle speeds of (constant, realistic speed profile, braking) and different steering (still, swerving, different
lateral positions in lane). (§3) Test different roads segments (straight, various curvatures). (§4) Make scenario timeout longer (5 minutes) and update end
conditions. (§5) Extend these scenarios with another vehicle driving close but in an adjacent lane. (§6) Test multiple stationary objects (passenger car,
PTW, pedestrian, partially or fully blocked lane, multiple obstacles). (§7) Parameterize scenario with different Times to Collision (TTC), distances, and
relative velocities to test scenarios where collision can be avoided as well as scenarios where collision is unavoidable. This includes different longitudinal
speed (constant, accelerating, decelerating) and different lateral velocity (constant, accelerating, decelerating) of cutting-in vehicle. Examples of simulations
when ALKS should avoid the collision for cut-in, cut-out, and deceleration scenarios are depicted in Appendix 1 of Annex 5 of the UN Regulation No.
157 [1]. (§8) New test scenarios will need to be created. These should contain stationary objects (pedestrian, PTW) on the outer edge of adjacent lanes
and within the ego lane and PTW approaching from different directions to the ego vehicle.
(§9) Test different situations when Lane Change Maneuver (LCM) is either possible or impossible due to other vehicles (passenger car, PTW) approaching
from different sides of the ego vehicle. (§10) To test the functionality of cruise control without a leading vehicle, we need to create a new scenario because
the ScenarioRunner cruise control examples are not positioned on the highway. (§11) These tests target real vehicle sensors. In simulations, properties
of simulated sensors can be configured to be arbitrarily good or bad. (§12) Only for ALKS implementations capable of lane change procedure (LCP).

results are summarized in Table I, where each line represents
one ALKS test scenario and which of the ScenarioRunner
examples are most suitable for simulating it (if any). Each
ScenarioRunner example has a name, e.g., FollowLeadingVe-
hicle and can be parameterized by several parameters. The
particular set of parameters is identified by the number after
the scenario name; the values of the parameters are specified
in the XML file of the example. If multiple parameter sets are
suitable, we denote it with their numbers in curly braces, e.g.,
FollowLeadingVehicle{5,7}.

In addition to ALKS test scenarios from the UN Regulation
157, many other scenarios will need to be created to test full
functionality of the ALKS implementation. These include, e.g.,
scenarios for testing the implementation of the minimum risk
maneuver, which should stops the vehicle in a safe way if the
driver is not responding to the request to take over vehicle
control.

V. CONCLUSION

In this paper, we present an initial version of the simulation
environment to validate an implementation of the Automated
Lane-Keeping System developed for a real vehicle using the
Robot Operating System. The simulation environment is based
on the CARLA simulator.

Building the CARLA simulator from source code to add
custom vehicles or sensors is a time-consuming task. To avoid
this effort, we propose to use the Nix package manager and
publicly share the repository with our ongoing work.

Furthermore, we analyzed which CARLA example scenar-
ios are suitable for implementing tests specified in Annex 5
of UN Regulation No. 157 [1].

The goal of our future work is to complete Nix packaging
of the CARLA simulator with related tools and develop ALKS
validation scenarios in it. The result should be an easy-to-use
simulation environment in which it is possible to automatically

test the Automated Lane-Keeping System provided as a Robot
Operating System packages.

ACKNOWLEDGMENT

This work was supported by the Technology Agency of the
Czech Republic under the project Certicar CK03000033.

REFERENCES

[1] ECE/TRANS/WP.29/GRVA, Proposal for the 01 series of amend-
ments to UN Regulation No. 157 (Automated Lane Keeping Systems),
https://unece.org/sites/default/files/2022-05/ECE-TRANS-WP.29-
2022-59r1e.pdf, May 2022.

[2] SAE International, J3016 202104: Taxonomy and Definitions for
Terms Related to Driving Automation Systems for On-Road Motor
Vehicles - SAE International, Apr. 2021. [Online]. Available: https:
/ / www . sae . org / standards / content / j3016 202104/ (visited on
08/02/2022).

[3] A. Tenbrock, A. König, T. Keutgens, and H. Weber, “The ConScenD
Dataset: Concrete Scenarios from the highD Dataset According to
ALKS Regulation UNECE R157 in OpenX,” in 2021 IEEE Intelligent
Vehicles Symposium Workshops (IV Workshops), Jul. 2021, pp. 174–
181. DOI: 10.1109/IVWorkshops54471.2021.9669219.

[4] R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein, “The highD
Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on Ger-
man Highways for Validation of Highly Automated Driving Systems,”
in 2018 21st International Conference on Intelligent Transportation
Systems (ITSC), ISSN: 2153-0017, Nov. 2018, pp. 2118–2125. DOI:
10.1109/ITSC.2018.8569552.

[5] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An Open Urban Driving Simulator,” in Proceedings of the
1st Annual Conference on Robot Learning, ISSN: 2640-3498, PMLR,
Oct. 2017, pp. 1–16. [Online]. Available: https : / / proceedings .mlr.
press/v78/dosovitskiy17a.html (visited on 08/04/2022).

[6] “CARLA ScenarioRunner.” (2023), [Online]. Available: https://carla-
scenariorunner.readthedocs.io/ (visited on 02/17/2023).

[7] S. Riedmaier, T. Ponn, D. Ludwig, B. Schick, and F. Diermeyer,
“Survey on Scenario-Based Safety Assessment of Automated Ve-
hicles,” IEEE Access, vol. 8, pp. 87 456–87 477, 2020, Conference
Name: IEEE Access, ISSN: 2169-3536. DOI: 10.1109/ACCESS.2020.
2993730.



[8] P. Weissensteiner, G. Stettinger, J. Rumetshofer, and D. Watzenig,
“Virtual Validation of an Automated Lane-Keeping System with an
Extended Operational Design Domain,” Electronics, vol. 11, no. 1,
p. 72, Jan. 2022, Number: 1 Publisher: Multidisciplinary Digital Pub-
lishing Institute, ISSN: 2079-9292. DOI: 10.3390/electronics11010072.
[Online]. Available: https : / / www. mdpi . com / 2079 - 9292 / 11 / 1 / 72
(visited on 08/04/2022).

[9] “Robot Operating System.” (2023), [Online]. Available: https://www.
ros.org/ (visited on 02/17/2023).

[10] “CARLA ROS Bridge.” (2023), [Online]. Available: https : / / carla .
readthedocs.io/projects/ros-bridge/ (visited on 02/17/2023).

[11] “Nix package manager.” (2023), [Online]. Available: https://nixos.org/
(visited on 02/17/2023).

[12] A. Brooks. “Taking off with Nix at FlightAware.” (Nov. 2022),
[Online]. Available: https://flightaware.engineering/taking-off-with-
nix-at-flightaware/ (visited on 12/09/2022).

[13] “Carla simulator Nix packaging.” (2023), [Online]. Available: https:
//github.com/CTU-IIG/carla-simulator.nix (visited on 02/17/2023).


