Czech Technical University in Prague
Faculty of Transportation Sciences

Department of Applied Mathematics

-

Modeling of Extensive Files of Discrete Data

DOCTORAL THESIS

Ing. Sarka Jozova

Supervisor: doc. Ing. Ivan Nagy, CSc.
Study Programme: Engineering Informatics

Field of Study: Engineering Informatics in Transportation and Telecommunications

Prague 2023

Acknowledgment

I would like to thank my supervisor doc. Ing. Ivan Nagy, CSc., who has supported me throughout my
doctoral studies and whose cooperation and expertise in mathematical modeling helped me to write
this thesis. His tolerant and caring attitude made it possible for me to complete this thesis even during
my parenthood, so it was an honor to work with such a brilliant personality.

I would also like to thank my whole family and especially my partner for his helpfulness and
patience. And also to my parents for their support during my studies and for taking care of my son
during the writing of this thesis. Additional thanks to Miroslav Vanis, for his valuable advice during

my doctoral studies.

Declaration

I hereby declare that this doctoral thesis Modeling of Extensive Files of Discrete Data was written
solely by me under the professional guidance of my supervisor and with the use of literature and other

sources of information, all of which are cited in the text and listed at the end of the thesis.

In Prague, June 30, 2023

Ing. Séarka Jozova

Abstract

Data analysis is an important method for many decision-making processes that are used to extract
information from data. Common data sources are questionnaires, which provide primarily discrete
data. The analysis of discrete data often fails due to the high dimension and the large number of
parameters. Therefore, finding solutions to these problems is essential and useful.

The thesis deals with the prediction of discrete data from questionnaires in the field of transporta-
tion and medicine. The proposed solution is based on modeling of the explanatory variables using
marginal mixtures (models of individual variables under the assumption of their independence) and
the construction of categorical prediction models locally on found clusters. This approach reduces the
number of parameters and the overall dimension of the model by assuming the independence of the
mixtures and using the binomial distribution in the components of these mixtures.

To verify the accuracy of the constructed prediction model, experiments are performed using real
data. The results are then compared with existing prediction methods, specifically k-nearest neighbor,

decision tree, neural networks, logistic regression, naive Bayes, and fuzzy rules.

Keywords

Accident data, binomial model, discrete data, extensive files, marginal mixtures, mixture of binomial

distributions, multimodal data, prediction.

Contents

1 Introduction

1.1 Stateof the art e
1.2 Summary of the presented problem L o
1.3 The dissertation structure

2 Preliminaries

2.1 Chainrule e
2.2 Bayesrule
2.3 Bayesian model
2.4 Discrete models L e
2.5 Estimation and classification L oL oL

3 Single models

3.1 Categorical model e
3.1.1 Descriptive categorical model Lo
3.1.2 Explanatory categorical model oL

3.2 Binomial model

4 Mixtures
4.1 Initialization of mixture estimation

4.2 Mixture applied to real problem

5 Marginal mixtures
5.1 Creating clusters in data space

5.2 Construction of local models for classification

11
13
14

15
15
16
17
17
18

20
20
22
23
24

26
29
30

5.3 Classification using naive Bayes Lo oo

5.4 Algorithm for estimation and classification with marginal mixtures

6 Experiments
6.1 Basic experiments L e
6.1.1 Estimation of the categorical model
6.1.2 Estimation of the binomial model
6.1.3 Estimation of the mixture f (x1,z2|c) with binomial z
6.2 Experiments on simulated data o Lo oo
6.3 Experimentsonreal data L
6.3.1 Data for experiments
6.3.2 Results of experiments with other methods
6.3.3 Comparison of results L L
7 Conclusion
Bibliography

List of Figures

List of Tables

Appendices

A

Full derivation of mixture estimation

Theoretical description of each initialization point

Generation of discrete data in Scilab

Functions for executing Scilab codes

Description of accident data values

Experiment with real data in Scilab

Publications

41
41
41
46
48
53
65
65
68
71

73

75

80

81

82

83

87

93

97

109

111

116

List of notations

Notations in the theoretical part

Notations in the Scilab code

Meaning of the notations

t t discrete time
T nd number of data
Tt x(t) explanatory variable at time ¢
i y(t) target variable at time ¢
ct c(t) pointer at time ¢
pairs of target and
dy = {ye, 2.} ()

explanatory variables at time ¢

d(t) ={do,d1," - ,d:}

sequence of all data

measured data

& (*)
(] yp prediction of target y
C(@)-
O,p Ei)) P model parameters
®k|im - multiindex (2.2)
C()-S
Sy R statistics
X(i).c(j).S
K X(i).ka counter
C(j).pE
p 0) p point estimate of parameter p
X(i).c(j).pE
w X(i).w weight
« — stationary probability weight

(*) basic notations modified according to specific situation.

The thesis deals with variables in the form of random sequences, i.e. random variables indexed by

discrete time ¢t = 0,1,2,---

where t = 0 relates to prior data (or generally prior information). E.g.

x¢, Yy are explanatory and target variables monitored at time ¢ (and at the same time their values

measured at time t), respectively. f (y:|x:) is a model of the target y depending on the explanatory

variable z, all at time ¢. In the following text, if the variables occur all in the same time (expressions

without the time evolution), the index t will be omitted for clarity. Thus, f (y:|z:) and f (y|z) have

the same meaning if ¢ is just a time index without any relation to previous and next indexes.

List of models

Models in the theoretical part Explanation of the models

f(y,z) joint model
f(x) marginal model
f (ylx) conditional model
parameter model dependent
f(©eld(t))

on data

model of j-th component

f (Iilcjap) = fj (177|P)

in ¢-th variable

F(aslenp) = f; (@15) proximity of j-th component
ST I in i-th variable

f(zily, ¢;,©) = fj (xi]y, ©) local model

For clarity i € {1,2,--- ,n} denotes the variables, where n (nv in Scilab) is the number of variables,

and j € {1,2,--- ,m} denotes the components, where m (nc in Scilab) is the number of components.

Chapter 1

Introduction

The motivation for this thesis was the task of accident analysis in the Prague area with the aim of
classifying traffic accidents according to their severity depending on the circumstances of the accident.
The circumstances were e.g. weather conditions, time of day, presence of alcohol, etc. The data were
obtained from the records of the Czech Police in the form of a questionnaire (as a set of answers to
questions from one type of questionnaire). The questions are prescribed and specific answers are given
according to the accident in a question, so it is almost entirely discrete data - the number of possible
answers for each question is finite and the answer is simply marked. For a good set of discrete data
from a questionnaire, it is important to have appropriately chosen questions that match what we want
to find out. It is also necessary to have a large number of records and the most accurate information
(answering all questions). This results in extensive files of discrete data with a high dimension. While
solving this particular task of traffic accident classification, it became clear how few suitable methods
are available for analyzing discrete (survey) data. The same problem arose later in the analysis of the
medical data obtained again from the questionnaire survey.

The basis of this thesis is the elaboration of the marginal mixtures method for the analysis of
extensive files of discrete data. This means that the range of values of these data is countable and
the model takes on enormous dimensions. Data analysis using descriptive statistics is simple, but the
aim of this thesis is to look for relationships between variables. In practice, much attention is paid
to continuous models, especially linear regression, so that continuous data are explored more than
discrete data. The most common description of discrete data is through categorical models that can

be written in the form of a table. Each table entry corresponds to a configuration of the values of the

CHAPTER 1. INTRODUCTION 10

variables that appear in the model, and the model assigns a probability to each configuration. A great
advantage of such models is their general form - each situation that can occur in a modeled system
is described separately. However, the big disadvantage of the categorical models is their size, which
means a high dimension of the table expressing this distribution for more variables and values and
their overparameterization. For example, a model with say 10 variables, each with 8 different values
on average, has dimension 8!°. This is called the curse of dimensionality [1]. This makes common
categorical models almost unusable in larger practical tasks. Therefore, it is necessary to create a new
discrete prediction model that reduces the number of parameters and thus the dimension of the model.
Correct choice of the model and estimation of its parameters is the basic presumption for successful
solution of the target task. If the model is designed with the wrong structure (selection of variables
that affect the modeled variable) or the model is misspecified (insufficient or inappropriate data), the
result is likely to be incorrect. Therefore, the design of the model and the collection of sufficient valid
data for correct estimation are essential.

The basic assumption that in general allows for a reduction of the model dimension is the inde-
pendence of the variables from each other. For the aforementioned case of 10 variables with 8 possible
values, the assumption of independence reduces the dimension from 8'° to 8 * 10. However, the inde-
pendence has to be justified somehow. In our approach, we assume that the variables are multimodal.
This means that the generation process works in several different modes, and we assume independence
within these working models. Then we estimate the variable models in the form of mixtures. Each
component of the mixture reflects the data of individual working modes - so called data clusters.
A mixture models not only the data clusters by its components but also a pointer variable that de-
scribes the transitions between the components (working modes). And while the data in the clusters
are assumed to be independent, the dependency of the pointers of individual variables is left. The
assumption is that the behavior of the variables is projected into these pointers, and through them the
important connection between the variables is preserved.

In addition to independence assumptions, another way to reduce model dimensionality is to replace
the categorical distribution with another discrete distribution with a smaller number of parameters
while maintaining model quality. The binomial distribution was chosen as a suitable one because it is
determined by only one parameter and this allows to shape the probability function of the binomial
distribution well.

The presented research is based on the construction of a model that estimates (predicts) the value of

CHAPTER 1. INTRODUCTION 11

the target variable on the basis of measured explanatory variables (circumstances of the phenomenon),
based on the above mentioned simplifications (independence assumptions, distribution replacement).
This value determines the class to which the measured vector of values of explanatory variables will
be classified. Thus, the prediction of a discrete target variable is understood here as a classification in
the data space of explanatory variables.

The process is as follows: We observe a certain phenomenon that is described by a target variable.
The values of the target variable are influenced by explanatory variables. All variables (target and
explanatory) are discrete. The goal of the problem is to construct a model that classifies a given vector
of measured explanatory variables into a class given by the values of the target variable. For example,
in the task of analyzing traffic accidents, it will be: Target variable - traffic severity (e.g. with values:
light, heavy, with injury, with death). Explanatory variables - road surface, lighting conditions, time
of day, accident speed, etc. Each variable has multiple values and continuous variables are discretized
- e.g. speed: by regulation, exceeded. Classes correspond to the values of the target variable. For
example, the vector “smooth road surface”, “dusk”, “evening”, “speed exceeded” is likely to be classified
as “light”. However, this is only a guess. The data will reveal the real classification.

The principle of the proposed method is already described, but it is necessary to show how useful
this method can be in practice: We plan a new route of a traffic road. At any (suspicious) location,
we can enter the corresponding values of the explanatory variables and find out whether this location
will be safe or what degree of danger is associated with it. At the same time, we can experimentally
determine which values of the explanatory variables need to be changed to make the location safer.

Data from other fields such as medicine, aviation, sociological research, and many others can be
used in a similar way. This means that the proposed method can be used in the other fields where data
are collected from questionnaires. Therefore, not only accident data but also car data and medical

data were used for the experiments in this thesis.

1.1 State of the art

The thesis is based on the modeling of discrete questionnaire data using marginal mixtures, especially
in the area of traffic accidents. The following sources [2, 3, 4, 5, 6] deal with the analysis of discrete
accident data. The first of these studies [2] investigates the relationship between real-time traffic data
and crash risk of reduced visibility related (VR) crashes. The measured data are collected from (i)

the Automatic Vehicle Identification (AVI) sensors and (ii) loop/radar detectors (LDs). The study

CHAPTER 1. INTRODUCTION 12

also solves the problem of of data suitability for predicting VR crashes. The next study [3] describes
the conceptual and mathematical development of an accident occurrence model that incorporates ac-
cident and exposure data in a mathematically consistent level of disaggregation using principles of
survival theory. The model predicts the probability of being involved in an accident at a specific time,
given that a vehicle has survived to that time. Several alternative functional forms are discussed,
including additive, proportional hazards, and accelerated failure time models. Study [4] is devoted
to the development of methods for analyzing highway accident data. It provides guidance in defining
these challenges and opportunities by first reviewing the evolution of methodological applications and
available data in highway accident research. Based on this review, directions for future methodological
developments are identified and that new data sources will play the role in defining these directions.
The same author published another study [5], also dealing with highway accidents. It presents a de-
tailed discussion of the problem typically referred to an unobserved heterogeneity of traffic accidents
in the context of accident data and analysis. Various statistical approaches available to deal with this
unobserved heterogeneity are presented along with their strengths and weaknesses. The paper con-
cludes with a summary of fundamental issues and directions for future methodological work dealing
with this topic. The aim of the latter study [6] is to investigate the severity of incidents as a function
of different accident circumstances. The description of these circumstances leads to the use of a large
number of different variables (about 50 variables) and most of them are discrete. The majority of sta-
tistical methods that deal with discrete variables use a frequency table. This approach is not suitable
for traffic data due to its high dimension. This paper offers several methods are proposed to solve the
problem with high-dimensional traffic data.

In general, the analysis of questionnaire data is affected by the uncertainty of responses obtained
without direct interaction with respondents. This uncertainty leads to a limited number of response
options that may not be appropriate for all of these respondents [7]. The analysis is also affected by
missing data [8], measurement error [9], unrepresentative samples [10], unfavorable data heterogeneity
[5], etc. As mentioned in the introduction, the huge amount of traffic accident questionnaire data
with many values leads to a high dimension of the whole model, which is a common problem in this
field [11]. A similar problem is posed by a large number of discrete explanatory variables, resulting in
a low probability of several levels of the accident severity in the predictive model [12]. Since we want
to reduce the dimension of the model while preserving the information in unreduced tables, it is not

appropriate to use categorical models. Therefore, we use conditional probability functions and mixture

CHAPTER 1. INTRODUCTION 13

models, which reduce the dimension but do not lead to loss of information from the questionnaires [13].
A mixture model can be created from any distribution. A commonly used distribution for modeling
discrete data with mixtures is the Poisson distribution. This is addressed in the study [14], which uses
Poisson mixture estimation with the goal of prediction. The estimation can also be based on a mixture
of gamma distributions [15], as well as others. Therefore, we have previously conducted a study [16]
that selected the binomial distribution as suitable for modeling and estimation. Subsequently, it was
verified that the binomial mixture distribution is ideal for constructing a predictive model for large
discrete data sets while maintaining its tolerable dimension, since the chosen distribution uses only
one parameter [17].

Approaches to the analysis of discrete questionnaire data vary widely. In the literature, there are
simple solutions such as the use of hypothesis testing or proportion estimation to advanced classification
methods that depend on the specific task. In this book [18], the proposed model is based on the
analysis of discrete data using the Bayesian approach and general mixture theory, as well as on mixtures
specifically focused on discrete data [19]. The theory of Bayesian mixture estimation is also developed in
[20, 21]. The approach for estimating recursive dynamic mixtures for different types of distributions was
then generalized and derived for binomial mixtures [22]. Recursion allows algorithms to continuously
use the available explanatory variables used for prediction.

In the field of discrete data analysis, it is also possible to use classification methods, specifically
data mining methods such as k-nearest neighbors [23], decision tree [24], neural networks [25], logistic
regression [26], naive Bayes classifier [23], fuzzy rules [27], and others. However, for modeling and esti-
mation of these mixtures, studies are based on prediction using the iterative expectation-maximization
(EM) algorithm [28, 29, 30, 31] or the Bayesian approach [14, 15, 32, 33]. The EM algorithm works
offline, i.e. it requires a complete data set for evaluation, and the results cannot be obtained sequen-
tially because the convergence time is not guaranteed. However, we also want to obtain results in real
time, so it is appropriate to use only a Bayesian approach, which is iteration free, data can be added

sequentially, and results can be obtained at any time.

1.2 Summary of the presented problem

The objective of this thesis is to develop a method for modeling and estimating of extensive files
of discrete data with the goal of classifying the target variable (e.g., accident severity). Existing

categorical models are not suitable for this reason due to their high dimension, commonly known as

CHAPTER 1. INTRODUCTION 14

the curse of dimensionality. The proposed solution basically consists of two main parts. The first,
which is crucial, is the modeling of the explanatory data by a model of independent mixtures, where
each variable is described by a scalar mixture of binomial components. The second part deals with
the construction of local predictive models based on data from individual clusters and corresponding

target variables. The proposed solution is tested on both simulated and real data.

1.3 The dissertation structure

In order to successfully meet the goals of the thesis, this section determines the general procedure to
achieve them. The chosen approach is based on processing data consisting of explanatory variables z

and target variable y.
1. Construction of an algorithm for estimation and classification of discrete data:

(a) creation of the joint model of independent explanatory variables and system output in the

factorized form

fy,z) = f(x) f(ylx),

(b) analysis of the data space z,
(c) creation of the local models f (z]y),

(d) construction of predictive model f (y|x) using the naive Bayes principle.
2. Simulation testing of the algorithm:

(a) verification of the theoretical part and development (debugging) of the program,

(b) the simulation is an imitation of the real situation (e.g. 2 or 3 modes).
3. Verification of correctness of the proposed model - whether the data meet the assumptions.
4. Testing programs on real data.

5. Comparison of results with known classification methods.

Chapter 2

Preliminaries

This chapter describes important terms needed to understand the problem presented in Section 1.2.
These terms include chain and Bayes rule, Bayesian and discrete models. Another important term
is the classification, which is understood here as the estimation of the values of the discrete target

variable y. These estimates classify the explanatory variables x.

2.1 Chain rule

Chain rule performs factorization of a joint probability density function f (z1, 9, - ,2,) to the prod-

uct of conditional ones

f(l‘l,l'Q,"' 7xn) :f($1‘$2,$37"' ,mn)f($2|$3,$4,"' ,xn>f($n)

It can be obtained by recursively using the definition of the conditional probability density function

fAB)=f(A,B)/f(B)— f(A,B) = f(A|B) f (B). Let 1 be A and {2, 23, -+ ,2,} be B, then
f(l‘l,l‘g,"' ’wn) :f(AlB)f(B) :f($1|$2,I3,"' ,xn)f(l‘z,l‘g,"' ?mn)

and again let 9 = Ay and {z3,24, -+ ,2,} = B; and we can continue

f(x17x27"' 7xn) :f(fEl‘.’L'27.’E37"' 7xn)f(m27x37"' ,.’En) :f(.’E1|{L'2,(E3,"' 7xn)f(A1|Bl>f(B1> =
= f(x1|$27$3,"‘ ,xn)f(x2|$3,x4,"' 7xn)f(w3vx47"' 7xn)

and if we continue for z3, x4, - ,x, we obtain the chain rule [34].

15

CHAPTER 2. PRELIMINARIES 16

2.2 Bayes rule

The standard Bayes rule performs the reversal of causality. Normally, we have a cause and an effect,
but with this rule, we estimate the cause when we know the effect. From our point of view, the cause
is the parameters and the effect is the output data. Using Bayes rule, we reverse this statement and
use the data to determine the parameters that induced the data. Thus, in this thesis, we use Bayes

rule to estimate the parameters of models that are described by the probability density function

I (welze,©),

where y; is the target variable at time ¢, x; is the regression vector containing the explanatory variables
at time ¢ on which the target variable depends, and © is a collection of model parameters. The prior
and posterior probability density functions f (©]d(t — 1)) — f(©]d(t)) are also essential [22], where
d(t) = {do,d1,- - ,d;} is the sequence of all data, with dy denoting prior information and d; = {y:, z+}
describing pairs of target and explanatory variables at time ¢. The formula of the Bayes rule has the

form

f(Old(t) o« f (yelze,©) f(Old(t —1)). (2.1)
posterior model prior

This formula includes a normalization constant corresponding to the predictive probability den-
sity function of the data f (d¢|d (¢t — 1)), which describes the conditional probability of the current
data given the knowledge of previously measured data. This term is omitted and replaced by the

proportional sign .

Naive Bayes rule
For data prediction, we need the prediction distribution f (y|z) = f (y|x1,x2, - ,z,), where y is the
variable to be predicted and z; are explanatory variables that influence the variable y. If the variables

x; are independent, we can use the Naive Bayes principle as follows [35]
f <y|$1,3;‘2, U amn) o f (xlvx?v T axn‘y) f (y) =f (y) Hf (ml|y) .

i=1

The dimension of the used distributions is significantly reduced by this principle.

CHAPTER 2. PRELIMINARIES 17

2.3 Bayesian model

The model in Bayesian statistics has a form of conditional probability density function f (y:|z,©).
The model describes the output as a random variable in the form of a conditional probability (density)
function. The model generally contains two indeterminate elements - noise and unknown parameters.
Bayesian statistics treats these two elements as random variables described by their probability density
functions. We use a prior knowledge and measured data for estimation [22].

The model can be static or dynamic, but for the analysis of discrete questionnaire data, a dynamic
model does not make sense because we are not interested in the evolution of variables (we do not
observe the dependence of a person’s answers on previous answers). Therefore, only the static model

is used in this thesis, which takes two different forms that are important and need to be defined:

e descriptive - description of the space of x
f @)= f(z1, 22, 2n),
e explanatory - connection between x and y
fle) = f(yley, e, o).

Formulas are written for known model parameters. Models in practice will still contain unknown

parameters in the state that need to be estimated.

2.4 Discrete models

Due to the input data, only a discrete model is used in this thesis. Discrete model can be used if all
the variables entering the model are discrete. Then there is a finite number of value configurations of

the data vector [y, x¢].

Categorical model
The categorical model allows us to assign a probability to each configuration separately, and the

model is

fly=klz=1,0)= 0Oy, (2.2)

where k|l is the multiindex with k denoting the value of the target variable y and [is the vector of the

values of the explanatory variable z = [z1, 22, -+ , %], and © is the model parameter.

CHAPTER 2. PRELIMINARIES 18

The discrete model can also be used for a discretized continuous variable.

There are several distributions to describe the discrete model, but the categorical distribution is
the most commonly used. The categorical model assigns a probability to each combination of values
of the variables involved. If there are too many combinations, the model has a high dimension and
a large number of parameters. There is always an effort to avoid this. Therefore, in our case, we choose
another discrete distribution with less parameters.Based on the previous research and the study [16],

we decided to use the binomial distribution due to its best estimation results.

Binomial model

The probability function of the binomial distribution is

Flal) = (3)or -,

where N is the number of Bernoulli trials in the binomial experiment, x is the total number of positive

trails, and p is the probability of a positive trail in each performed Bernoulli trial [36].

2.5 Estimation and classification

Model parameters are generally unknown and must be estimated from the measured data. Recursive
parameter estimation is based on recomputing distributions describing unknown parameters according
to the Bayes rule. The goal of modeling is often to achieve an optimal prediction of the output, which
requires estimation of unknown model parameters.

The Bayes rule (2.1) is based on two types of distributions. The first is a distribution of the output,

called the system model

f (yt|$t; @)
and the second is a distribution of the parameter (prior and posterior)
f©Old(t—1)), f(©ld(),

where f (©|d(t — 1)) is the description of the parameter © based on the old data with respect to the
current time ¢t and f (©|d (t)) uses information from all available data, including those measured at

time ¢. The estimation follows the Bayes rule. It explains how to obtain a new (posterior) parameter

CHAPTER 2. PRELIMINARIES 19

distribution f (©|d (7)) from the old (prior) one f (O|d (7 — 1)) using the system model f (y,|z,,O)
for € {1,2,--- ,t}
f(Old(r)) < f (y-|z-,©) f (Old (T —1)).

It shows the evolution of the parameter probability density function over time as new measured

data are supplied

fO) o O e o feld)
di={y1,z1} do={yz,z2} de={yr,a:}
with the initial (prior) probability density function f (©]|d (0)) constructed from prior data or specified
by an expert and d; = {y:, x+} describing pairs of target and explanatory variables at time ¢ [37].
There are two imaginary levels in creating algorithms for estimation and classification. The first
level is based on probability densities and this way is only general. The second level makes these
densities more specific and takes into account the special distribution and its statistics.

The estimation algorithms for single models are presented in the following chapter.

Chapter 3

Single models

In this chapter, the single models are described in detail with explanations based on simple examples.
The examples are demonstrated in Scilab (www.scilab.org), where parameters and prior information
can be changed in the codes to show the principle of these models. The basic discrete categorical

model is introduced first, followed by the binomial model.

3.1 Categorical model

The discrete categorical model can describe target and explanatory variables

fly,z)=f(z)f(ylz).

The decomposition of this model produces the descriptive model f (z) and the explanatory model
f (ylx). The descriptive model f (z) for two-valued variables = [x1, 2] can be described by the

following Table 3.1.

Table 3.1: Descriptive part of the categorical model

1 1 1 2 2
To 1 2 1 2
© | ©11 B2 Oy Oy

The explanatory model f (y|x) for two-valued variables 2 = [z1,22] and y has parameters O,,.

The model can be given in the form of a Table 3.2.

20

CHAPTER 3. SINGLE MODELS 21

Table 3.2: Explanatory part of the categorical model

x1 1 1 2 2
T2 1 2 1 2
y=1 @1|11 61|12 @1\21 @1|22
Yy=2| Og11 Oz Ogp1 Oz

The entries of the table denote all configurations of the data vector, each of them is assigned its own
parameter ©;;; with multiindex i|jk, where the target variables y with values i € {1,2} are separated
from the explanatory variable = [z1, 2], where j € {1,2} and k € {1,2} [22].

The practical use of the categorical model can be demonstrated by an example involving a T-

junction.

The experiment with the T-junction is described by a binary categorical variable x with the
values 1 (turn to the left) and 2 (turn to the right). If we generally admit that only left or right turns

are possible at a junction, then

P(y=1)=p; and P(y=2) =po

where, indeed, it holds: p; > 0, p2 > 0 and p; + py = 1.

The categorical model f (y) = p, with y € {1,2} is given in Table 3.3.

Table 3.3: Categorical model in the form of a table

This experiment is well known, and according to the statistical definition of probability, we can
experimentally determine the estimates of the parameters p; and ps : After performing a sufficient the
number M of experiments, we count number M; of results with y = 1 and M5 as the number of results

with y = 2. Then it holds

pr= My + My’ P2 = My + Ms
or
My, M,
[p1.pa) = 21202 (3.1)

M

CHAPTER 3. SINGLE MODELS 22

which is a normalization to a sum equal to one [38].

The estimation can also be performed recursively. To do this, we define initial statistics

MI;O =0 and Mg;o =0.

During the online measurement of data for ¢t € {1,2,--- , T}, the statistics are updated

My =My +1, ify, =1,

Moy = Moy 1+ 1, ify; = 2.

The current update of the parameter estimates (or for ¢ = T it is the last update) is performed by
normalization (3.1).

The T-junction example with simulated data is described in detail in the experiments in Subsection
6.1.1.

Note: In experiments, there are sometimes situations where it is appropriate to introduce prior
information, e.g., 20% of the cars turned left and 80% turned right. This corresponds to the probabilities
p=1[0,2 0,8]. If the same information comes from 10 data records, it means that 2 cars turn left and
8 turn right. Then the value of the variable ka = 10 (used in Scilab) and this variable determines
the strength of the prior information (number of a prior steps). The probability p is then multiplied
by the variable ka to produce the initial summary statistic S = p *x ka. Conversely, if we divide the
prior knowledge (2 cars turned left and 8 turned right) by the variable ka, we get the value of the point

estimates p that we want. This principle can be implemented similarly for other models.

3.1.1 Descriptive categorical model

The general form of the model is

f) =py

for y defined integers. This model is very general because it assigns a probability to each situation
that occurs. This has advantages (mainly accuracy), but also disadvantages (high dimensionality and
overparameterization).

This is a similar example to the T-junction experiment, except that y takes on more values, e.g., 5

instead of 2. The probability density for this descriptive categorical model with 5 values is shown in

CHAPTER 3. SINGLE MODELS 23

Table 3.4, which has the same form as Table 3.1 (which is for 2 variables).

Table 3.4: Categorical model with five values

y \ 1 2 3 4 5
f(y)‘0710 0,27 0,18 0,41 0,04

It should be noted that the values of p, are probabilities, i.e. they are non-negative, and their sum
is equal to 1. The number of values y in Table 3.4 corresponds to the the 5 arm roundabout example

in Subsection 6.1.1.

3.1.2 Explanatory categorical model
The general form of the explanatory categorical model is
f(ylr) = pyla -
An example is a model with the following parameters y € {1,2} and z = [z1,22]; z1 € {1,2,3} and

x9 € {1,2}. The model parameters can be seen in Table 3.5.

Table 3.5: Example of explanatory categorical model

1 1 1 2 2 3 3
Ta 1 2 1 2 1 2

y=1 Pijir Pijiz P11 Pij22 P1i3s1 P1j32

y=2 P2j11 P2112 D221 P2j22 P2|31 P2|32

The descriptive model describes how often particular combinations of variables occur, while the
explanatory model determines what the relationship between x and y is. Given a certain combination
of explanatory variables x, we search for the probability of the target variable y. The explanatory
categorical model is therefore very important because it allows us to observe behavior. The probabilities

Pylo Of this model may look like this:
P1)z = 0,34 0,17 0,65 0,49 0,02 0,22],
P2z = [0,66 0,83 0,35 0,51 0,98 0,78].

In contrast to the descriptive model, the probabilities in the columns are normalized, and the sum

of the values of y for a given a combination of x must be equal to one.

CHAPTER 3. SINGLE MODELS 24

3.2 Binomial model

The binomial model describes an experiment consisting of a serial of N independent Bernoulli trials

where the outcome is a number of successes. It has the probability function

f(@lp) = (?:)pm (1-p)" ",

Here, we assume that the number of experiments is known and the only model parameter is p. The
mean value is F [z] = Np, the variance is D [z] = p (1 — p).

For fixed N, the binomial distribution belongs to the exponential family. The statistic for estimating
the parameter p is S - sum of realizations of x and - number of these realizations. Its recursive update

is (index t denotes discrete time of data measurement)

Sy = Si—1+x¢

kg = kg1 + 1

with initial values Sy and kg. In these initial values, it is possible to express a prior knowledge of the
parameter p.

The point estimate of parameter p, estimated from data up to time ¢, is

5,
ptthN'

The main advantage of the binomial distribution is a fixed N and a low dimension of the model.
For a known number of trails, this distribution is defined by only one scalar parameter p, which ensures
the flexibility of the shape of the probability function. It is also important to note that the binomial
distribution does not exist for a vector variable and therefore the conditional probability function
cannot be written. Figure 3.1 shows the flexibility of the binomial distribution for different values of

the parameter p [39, 40].

CHAPTER 3. SINGLE MODELS

0.2

Probability function

0184 o8
0.16 o
0144 o
0.12 -
0.1 >*
008+ ® .

0.06
0.04

0.02 4 .

fregencies
L]

*p1=0,05
*p2=0,2
*p3=0,4
*p4=0,7
*p5=0,92

T
30 40 50 60 70

values

25

Figure 3.1: Histogram of the probability function of a binomial distribution with different parameters

Chapter 4

Mixtures

Modeling of single models with uncertainty from the exponential family of distributions in Bayesian
statistics is quite simple, because the model is in the form of a conditional probability function that
defines only one mode. However, real applications involve data with a multimodal character, so it is
necessary to use mixtures of distributions that model all modes of the data file. Therefore, mixtures are
generally used to describe these multimodal systems that switch between a finite number of different
working modes. A mixture is composed of a set of ordinary models (here binomial) and a pointer model

[22]. The histogram in Figure 4.1 represents a mixture of a binomial distribution with two components.

Mixture with two binomial components

0187 I 1st component
0.16 I 2nd component

0.14 4

0.12 4

0.14

0.08 4

probability function

0.06 o

0.04

0.02 4

values

Figure 4.1: Histogram of a mixture of a binomial distributions

In Figure 4.1, the first binomial component has the parameter p; = 0,15, the second has the

26

CHAPTER 4. MIXTURES 27

parameter po = 0,6. In addition, a stationary probability weights (based only on old data) are
assigned to each component by using the parameter . The parameter is set to ay = 0,6 for the first
component and oy = 0,4 for the second component. Each component describes one working mode
of the system, and the pointer indicates the active component at any given time. The estimation of
the pointer can be used for data classification. However, we are interested in estimating the mixture
parameters in the space of explanatory variables x to form the clusters that we will work with in later
phases of the thesis.

In general, a mixture of binomial components is defined in the form of probability functions

i (l‘|pj) = (Z)p? (1 —pj)N_””7 re{0,1,---,N}

for j € {1,2,--- ,;m}, where m is the number of components, N is the maximum of x, which is fixed
and known (so it does not appear in the model conditions).

The pointer model has the following form
f(C:]|OZ) = Qy,

where c is the aforementioned pointer indicating the active component and «; for j € {1,2,---,m} is
a stationary probability weight.

The model of the unknown variables is
f (@, e=jlpj,a) = f(zlc=j,p;) f (c = jla) = f; (2|p;) o

and it is decomposed into component and pointer models. Some objects in conditions disappear due
to the assumed independence.

Consequently, the mixture model has the form
m
f(@lp,a) =" a;f; (x[p))
i=j

for j € {1,2,--- ,m}, where m is the number of components.

Mixtures can be modeled and estimated in several ways, but the thesis focuses on a Bayesian model-
ing approach, specifically quasi-Bayesian [41]. Mixture estimation consists of classifying the measured
data records with respect to the individual components and then the updating of the statistics with

weights

w; = fj (x¢|p;)

CHAPTER 4. MIXTURES 28

for j € {1,2,--- ,m}.

Note: If there was no weighted classification, the data would be dragged around (the first component
would pull the record from the first component, as well as the second and third components), and all the
data would cluster in the middle and nothing would come of it. Thus, estimation without classification
of the active component would not work.

If the switching of the components, i.e. the current values of the pointer, is known, the situation is
easy. We would simply use the data records to update the active component and leave the rest of them
unchanged. In practice, we do not know, which working regime generated the data record. So we have
to estimate it. Uncertainty causes, that there is no one hundred percent active component, but we
assign probabilities (weights) of activity to each component and with these probabilities (in the sense
of a part from the whole measured data) we use the data element for updating all components. The
weights are equal to proximities normalized so that their sum is equal to one and these weights are
used in the update of the component statistics. The proximity is defined as a value of the component
with inserted the actual data record and the current point estimate of its parameter [33, 42, 43].

In this thesis, we are interested in the estimation of the mixture with the mentioned binomial
components. The estimation of these components is based on the standard estimation of the single
(binomial) model (described in Section 3.2) with weighted data. The full derivation of the mixture
estimate is given in Appendix A, but the abbreviated estimation algorithm for binomial components

is as follows:

fort € {1,2,---,T} do:
e measure I,

o substitute x; into all components with current estimates of parameters p; for j € {1,2,--- ,m}

qj = fi (e|pj) Ge—1 = fi (24lBy)

where & has practically no influence and it can be ignored,

« the component values ¢; are normalized to the unit sum and denoted by wy = [wy1, w2, -+, wp],
i
Wyt = m,j

Zk:l dk ’

CHAPTER 4. MIXTURES 29

o with these weights we recalculate the statistics of all components for j € {1,2,--- ,m}

Sjit = Sjip—1 + wjexe

Kjt = Kjie—1 + Wyt

« finally, we compute point estimates of the parameters of all components for j € {1,2,--- ,m}
}3 - Sj§t
& KN

An experiment for estimation of the mixture f (z1,2|c) with binomial z is shown in Subsection 6.1.3.

4.1 Initialization of mixture estimation

Mixture estimation consists of estimating parameters of individual components and the pointer model.
It is assumed that the measured data come sequentially from different working modes of the system
and thus belong to different components of the mixture model. The farther the data record is from
the center of a component, the smaller the proximity value will be; which means the smaller is the
probability that the data record belongs to that component. The weights of the components are
normalized proximities. If the data are far from the initial components, the weights will be virtually

zero and no estimation will occur. Therefore, there is a need to:
1. set the initial distributions of the components to be in the region where the data occur,

2. prevent any component from moving away or overlapping with the components at the beginning

of the estimate.

This is done by initializing the mixture estimation [21, 44, 45] - i.e., positioning the initial components
appropriately and partially fixing them (forcing them to change more slowly) at the beginning of the
estimation. In doing so, we assume that we have a prior sample of data (i.e., data obtained in the past
that are available prior to the start of the estimation from continuously measured data).

The general principles of initialization are as follows:

1. Find a region where the measured data occur. For example, find out the minima and maxima

for each variable, or better, look at their histograms.

CHAPTER 4. MIXTURES 30

2. Set the initial values of the parameter estimates as well as possible (using prior data and expert

information).

3. Hold the prior estimates of the component centers at the beginning of the estimation so that

they do not run too far or overlap.

4. Keep small covariances fixed for the components (if we care about the shape of the clusters, we

start estimating them later, when the component centers are more or less correctly determined).

5. Run the estimation repeatedly on the same data sample. In this case, it is necessary to specify
the previous estimates instead of the prior parameters, and to reset the statistics to their prior

values (so that they are not tight).

6. Determine artificial data vectors and use them for initialization. Artificial data vectors are not

measured, but determined by an expert.

7. Perform expert classification on several prior or artificially generated data and use them for
initialization.
Each point is shown theoretically under the same number in Appendix B.

An example with simulated data to illustrate the initialization properties is described in the exper-

iments in Subsection 6.1.1.

4.2 Mixture applied to real problem

Some of the terms may be difficult to understand, so here is an example from practice that explains
the important terms of mixtures and their estimation.

We monitor the level of traffic in the city. During the day, there are two different periods, namely
rush hour and off-peak hour, where the situation changes significantly. The rush hour is a period of
time when the intensity of the traffic flow is greater than the average of the observed intensities during
the entire monitoring interval. The off-peak hour is the opposite of the rush hour, between which
the intensity of traffic flow is lower than the average of the observed period [46]. The morning and
afternoon rush hours usually alternate with the off-peak hours during the day.

The traffic level is divided into five groups according to the average speed of vehicles, the compo-
sition of the traffic flow, the density and intensity of the traffic, etc. The groups represent continuous

traffic (1), thickening traffic (2), heavy traffic (3), convoy formation (4) and traffic collapse (5) [47].

CHAPTER 4. MIXTURES 31

It is assumed that during off-peak hours the city traffic level is 1. When the rush hour comes, the
traffic starts to thicken and usually occurs in levels 3-5. It may seem, that the switching of components
(working points: rush hour and off-peak hours) is known. However, an exceptional off-peak evening
may behave like a rush hour if there is a football match in the monitored area. Another example is an
off-peak car accident that causes rush hour traffic. This means that we do not know the actual level of
traffic, so we have to estimate it based on the circumstances. In this example, the circumstances are
discretized speed (maximum permitted, reduced, low, and almost zero speed) and discretized intensity
(large, medium, and small intensity). These circumstances are variables from which we estimate the
level of traffic. If the circumstances change a little within a working regime, we still stay in the same
data cluster (described by one component). The predicted period depends only on the level of traffic,
not on the specific value of the circumstances.

Assignment of terms:

o the level of traffic is modeled (clustered) variable,

 circumstances (discretized speed of vehicles and intensity of traffic) are discrete explanatory

variables,
o the data groups are clusters,
o the description of clusters is done by components,

o the switching of the regimes is indicated by the values of the pointer (which are estimated =

classification).

Experts will use speeds and intensities in specific areas of the city to determine the overall level of
traffic in Prague. Based on this, we will create a model that will be able to predict the level of traffic
depending on the explanatory variables. The result of this model can be seen as clustering. During the
prediction, we find out to which cluster the relevant circumstances belong and then we determine the
level of traffic. It is also important that the circumstances within one working mode can be assumed
to have a noise character - the changes are caused only by random events, such as a slow vehicle
on some street or irregular driving caused by less experienced driver. It does not cause significant
and synchronized changes of the explanatory variables. In clusters, we assume the independence of
measured variables within individual circumstances. This means that random minor changes do not
affect the level of traffic. A switch to another cluster is caused by a significant change. Only this

switch gives information about the change in traffic level.

CHAPTER 4. MIXTURES 32

For example, we consider a driving school car to be a discrete noise in a cluster. This car is slightly
slower than other cars, but it will not cause a change of cluster, and the traffic level will remain the
same. Only a significant change, such as a traffic accident, will cause a change to another cluster, even

if a cluster with traffic level 1 is assumed.

Chapter 5

Marginal mixtures

This chapter deals with the core of the thesis, which aims to analyze and model extensive files of
discrete data based on the newly developed method called estimation of marginal mixtures, or marginal
mixtures for short. It is now necessary to state the basic formulas on which the estimation is based.

The data set is denoted by
T
{ytv xt}t:l ’

where T is the number of measured data, y; is a discrete scalar target variable, and x; is a vector of

n explanatory variables (circumstances)
T = [$17x27.” 7$n}7

where z;,; are discrete or discretized continuous variables.

The mutual description of these variables is

[y,) = f(2) f(ylz).

This model with joint probability function can be divided into the circumstances model f (x) and
the prediction model f (y|x). After the learning phase (when both z and y are measured), only the
vector of variables x is known, and we are interested in predicting the discrete target variable g based on
the measured values of Z. The predicted value § classifies the actual data record into the corresponding

component. This is achieved by estimating marginal mixtures, which are divided into three parts:

33

CHAPTER 5. MARGINAL MIXTURES 34
o creating clusters in data space =,
¢ construction of local models for classification,
o classification using naive Bayes.

This method is mainly based on dimension reduction, and the individual parts are described in detail

in the following sections.

5.1 Creating clusters in data space =z

The circumstance model f (z) aims at clustering the data space z under the assumption of indepen-
dence of the explanatory variables in the individual clusters (the experiment in Subsection 6.1.3 showed
that the independence assumption may not be fully satisfied and yet the results are very good, so this
procedure can be used in all cases).

The description of modeling with independent (marginal) mixtures is as follows. We have n explana-
tory variables x = [x1, X2, - ,x,]. We assume that these variables come from a strongly multimodal
system. By this we understand that the system has several working points (modes) and works rela-
tively easily in each of them, but when all modes are mixed together, everything is lost. Therefore, we
want to use clustering to find local models where we expect simpler links between the explanatory and
target variables. For such a system, it holds that its variables are independent under the condition of
a fixed mode.

The independence of variables in clusters reduces the dimension by reducing the huge table describ-
ing the data set (Section 3.1) to vectors. Therefore, only one variable z;, i € {1,2,--- ,n} is always
modeled separately.

The corresponding local model is
fi (@ilpij) ,

where j is the component and i is the variable.

The creation of clusters in the data space x is based on Bayesian mixture estimation, which is
described in detail in Chapter 4. Specifically, it is a mixture of binomial distributions. This estimation
requires initialization, and the proposed approach with independence has a great advantage in this
respect. Each variable and each of its components has its own scalar model, which can be easily ini-

tialized using a histogram. The probability functions of individual variables are then one-dimensional

CHAPTER 5. MARGINAL MIXTURES 35

normalized histograms of the frequencies of the values for each variable separately. In the histograms,
we can easily see the individual modes and their corresponding tops, from which we can determine
the parameters p;; for each variable and component of the binomial mixture. This procedure is per-
formed separately for each variable, so that the entire data space x is divided into clusters, where each

variable can have a different number of clusters. The principle of cluster creation is shown in Figure 5.1.

Variable 1 Variable 2

L1 L2
Histogram of variable 1 1 4 Histogram of variable 2
3 2
3 1
6 5
[] 3 2
123456789 7 8 123456789
8 5
7 8
LN 8 aa
2 6 £ N
Mode 1 Mode 2 Mode 1 Mode 2 Mode 3

Variable 1 Variable 2

I)
Cluster 1

Cluster 1 -
L Cluster 2
Cluster 2 Cluster 3

Figure 5.1: Clustering of data space z

In practice, the files of discrete data are very extensive, but only a small sample of these data is
used in Figure 5.1 to describe the clustering principle of the data space z. Therefore, the example
contains only two explanatory variables x; and x2, and each of these variables has only ten records,
as shown at the top of this figure. The first histogram to the left of the data is now created from the
values of the first variable ;. The second histogram to the right of the data is generated from the
values of the second variable z5. Both of these variables are generated from a mixture of binomial

distributions, which are defined by a vector of binomial parameters p;;. The parameter vector is

CHAPTER 5. MARGINAL MIXTURES 36

obtained by mixture estimation (see Chapter 4). With these parameters it is now possible to read
directly from the histogram where the modes are located and where their tops are (the marking of
the modes under the histograms is only for illustration). This information read from the data can be
used to locate the components. The histogram of the first variable on the left side of the figure shows
that this variable z1 has two modes (i.e., it is a mixture with two binomial components). The second
variable xo, whose histogram is shown on the right, has even three modes (i.e. it is a mixture with
three binomial components). The individual components (modes) symbolically describe the clusters
indicated at the bottom of the figure, i.e. the first cluster is described by the first component in the
first variable x; with the values 1,2, 3,4 and the second cluster is described by the second component
of this variable with the values 6, 7,8. The same applies to the second variable x5, where three clusters
are symbolically denoted in the lower part of the figure. The examined data space z is now divided

into initial clusters and also described by an initial binomial mixture for individual variables.

5.2 Construction of local models for classification

The classification we aim at is based on the model f (y|x). To take advantage of the independence of
x;, we use the Naive Bayes principle, which is based on the product of the models f (x;|y). Therefore,
the basis for classification is now established by constructing all local categorical models f; (z;|y) in
each cluster ¢; = j for all variables x;. In the first step, we take the first cluster ¢; = 1 of the first
variable 1 and see which values of x; belong to this cluster. Then we select the corresponding values
of the discrete target scalar variable y that belong to the selected values of x1. These data are used to
construct the model f; (x1|y), which has the form of a normalized frequency table similar to Table 3.5.
This procedure is performed for all clusters ¢; = j € {1,2,--- ,m;} in all variables z;, i € {1,2,--- ,n}.
For the subsequent classification, it is also necessary to create the model f (y), which is formed simply
by a normalized histogram of all y values.

The described principle of constructing local categorical models is shown graphically in Figure 5.2,
which follows the previous Figure 5.1, describing two explanatory variables 1 and x4 with ten records.
Each record of the variable x; is assigned a corresponding cluster. For x1, there are only two options,
c1 = 1 or ¢; = 2, which are shown to the left of the data. The first cluster ¢; = 1 and its associated
values of y are marked in black. Then the model created from this set has the form f; (z1]y). The
same is done for the rest of the records of the variable z; that belong to the second cluster ¢; = 2.

This second cluster, together with the associated values y, is marked in red, and the resulting model

CHAPTER 5. MARGINAL MIXTURES 37

has the following form f5 (z1]y). This procedure is also performed for the second variable x5, which
has three clusters ¢ € {1, 2,3} marked to the right of the records of this variable. Records belonging to
the first cluster ¢ = 1 and their associated y are marked in black. The model has the form fi (x2y).
The second cluster ¢ = 2 and its corresponding y are marked in red and the third cluster co = 3 and
its corresponding y are marked in green. In this way, all local categorical models are determined. On
the right side of the figure there are the numbers of records, where each record has the corresponding

y. Furthermore, the model f (y) is constructed from the set of all values of y.

Variable 1 Variable 2

Models for clusters Models for clusters
1 Z2 Record
[y]e—cy 1 4 cowly] — fema(m2]y) 1
fc:l ($1|y) -— | Y |- (] 3 2 C1 > Y 2
Yle—c1 3 L a > y| > feo1(22]y) 3
< ¢ 6 5 Co—»| Y 4
Y |- C1 3 2 C1 =£ 5
f(’:2 (TJ ‘y) - - Co 7 8 C3 =7 6
- c 8 5 Co—»| Y 7
= 7 8 > Y| > fe=z (72]y) 8
Y| C1 4 9 C3 > Y 9
Y |1 2 6 Co—| Y| o 10
Model for all y f(y)

(of ten records)

Figure 5.2: Creation of local models

Categorical models f; (z;|y) are determined for each cluster in each variable, and the model f (y)
is defined for each record in the entire data set. These models do not have a large dimension because

they are created for individual variables z;, which are scalars.

5.3 Classification using naive Bayes

The last part of the marginal mixtures method is based on the use of the naive Bayes principle with
the independence assumption on x;, which is used to achieve the desired prediction model f (y|z) =
f (ylx1,xa, -+ ,xy,) in order to subsequently estimate the values of the target variable y. The procedure
of classification is as follows. In the learning phase, we assume that we have a data sample of both
paired variables, i.e. y and the corresponding ;. In the testing phase, we assume that only the vector

x =& = [#,%9, - ,4n] is measured and the corresponding y is estimated. The ultimate goal is

prediction, i.e. estimation of the value of y based on the value of the measured Z.

CHAPTER 5. MARGINAL MIXTURES 38

In the testing phase, the value of Z; is inserted into all components of the first variable, creating
proximities of x1 to all components of the first variable. These proximities are created according to the
principle described in Appendix A. In the same way, the value of &5 is inserted into all the components
of the second variable, creating proximities for the second variable x5. This is done for all the mea-
sured variables of the measured sample & and their corresponding components. After normalizing the
proximities for each variable ¢, we obtain the weights w; = w1y, wayi, - -+, Wp,] for i € {1,2,--- ,n}.
With the weights and the local models constructed in the previous section, it is now possible to create

the model f (z;|y) for each variable (not just for clusters within the variable) using the formula

F@ily) = wjaf; (@ily).
j=1

The prediction model f (y|z) is a model of the target variable y depending on 2. The naive Bayes

formula (described in Section 2.2) is used to determine this model

n

Fld) o< f () [£ (ily) -

i=1
The measured z is substituted into the formula to obtain a prediction of the values y and their
probabilities. In the last step, the most probable value g is calculated for the measured Z, and this
point prediction can be determined as the index of the maximum value of the predictive probability

function f (y|Z)

§ = argmax f (y13)

The classification procedure is shown in Figure 5.3. The right part of the figure illustrates again the
two already known explanatory variables x; and zo together with their clusters. The weights for each
variable are now determined by inserting the first measured value of Z; into the first cluster ¢; = 1 of
the first variable z1 in the following form f; (#1). This gives the proximity of the value &; to the first
component f (7). The same measured value 2 is then inserted into the second component ¢; = 2 of
the first variable 1 in the form f5 (21), and it creates the second proximity. If we now normalize these
proximities so that their sum is equal to 1, we obtain the weights wy; and wo of the components in
the first variable x;. In the same way, the weights of the second component x5 are determined using
the measured value Z5, which is inserted into all three components to obtain the proximities in the

form of f; (Z2) and then the weights w2, wee and wss.

CHAPTER 5. MARGINAL MIXTURES 39

The measured & = [#1, ©3] Variable 1 Variable 2
is inserted into the models 1 Z2
fi (fQ) — Wi2
w T —
Weights n= fild)]

[wlj le); L fg (fg) —» W92
wa 1| ws) I

Wy +—— fo (21) f3 (2) — w3y

Model for the variable 1 and 22
The prediction model f (y|x)

fylz) = f(@1ly) f(22]y) f(y)

/ (T]‘y) = Zle We fe (Z1ly)
f(aly) = Sy wea fe (42]y)

Figure 5.3: Construction of the prediction model

5.4 Algorithm for estimation and classification with marginal
mixtures

The individual steps of the developed algorithm of point estimation and classification with marginal
mixtures are described in detail and illustrated graphically in this Chapter 5. For clarity, the entire

proposed algorithm is summarized below.
For each time instant ¢ perform:
1. clustering data in each independent variable x; of the data space x:
(a) independence reduces the dimension and allows each variable x;, ¢ € {1,2,--- ,ng,} to be
modeled separately,
(b) in the individual variables x;, the components are searched for using a mixture of binomial
distributions,
(c) a set of components is created in each variable,

(d) components describe the clusters.

CHAPTER 5. MARGINAL MIXTURES 40
2. preparation of the local models f; (z;|y) and f (y):

(a) fj (x;]y) is constructed using data from individual clusters ¢; = j and variables z;,

(b) probability functions f (y) are constructed for all individual record,
3. testing using prediction:

(a) & = & is measured,

(b) the weights w;; are determined by substitution &; into the models f; (Z;) of individual

components with actually estimated parameters,

(c) the model f (z;]y) of individual variables is determined as follows
f(&ily) = ij;ifj (Zily)
j=1

(d) the prediction model f (y|x) is calculated according to the principle of naive Bayes
Fl) o< f) [£ @ily)

i=1

(e) the point prediction § can be determined as the index of the maximum value of f (y|Z)
§ = argmax f (y|2).

The developed algorithm was first tested on simulated data and the output in the form of Scilab code
is presented in Section 6.2. The algorithm was then applied to real data and the complete code is

presented in Appendix F.

Chapter 6

Experiments

Experiments are first performed on simulated data to verify the correctness of the proposed procedure.
The final algorithm is then applied to real data. Scilab is used for this purpose, and all the codes

below can be easily run by copying and pasting them into this program.

6.1 Basic experiments

Basic experiments are used to demonstrate the theory described in Chapter 3 and 4.

6.1.1 Estimation of the categorical model

For the categorical model, we have already chosen the T-junction experiment in Section 3.1. We
will now discuss this experiment in detail in Scilab and show everything that is important about it.
The T-junction model in the code below can be divided into two parts. In the first part, on lines
//1 to //6, we have the actual right and left turns that represent the generation of the discrete data
y € {1, 2}, which is described in Appendix C. The second part of the model (lines //7 to //14) focuses
on determining the point estimate of the parameter p. To estimate the parameters, we need to define
a statistic, and it must be consistent with the prior parameters. So first we define the parameters pE
and then we define the strength ka, which we will use to give a prior information to the estimation.
Then the statistic has the following form S = pE * ka (line //9) and its construction is based on the
theory described in the note in Section 3.1. Next, the statistics in lines //11 and //12 are updated to

include the newly measured data. Then an estimate of the parameter pFE is constructed in line //13.

41

CHAPTER 6. EXPERIMENTS 42

The estimate is usually computed either continuously or at the end, in our case continuously.

// Model of T—junction + init + estim

/1l

clear , cle, mode(0);

nd=100; // number of data //1
p=[.8 .2]; // parameters of model of y //2
y=1; // initial condition for y //3
for t=2:nd //4

y (t)=sum (cumsum (p)<rand (1,1,’u’))+1;

// generation of discrete data //5
end //6
pE=[.5 .5]; // initial parameters of model /7
ka=.01; // initial counter statistics //8
S=pExka ; // initial summation statistics //9
for t=2:nd //10

S(y(t))=S(y(t))+1; // update of summation statistics //11
ka=ka+1; // update of counter statistics //12
pE(t,:)=S/ka; // point estimates //13
end //14

We can change some parameters in the code. First, we show the influence of the initial strength of
the information, which is affected by the coefficient ka (initial counter statistics). If we set the value
of the coefficient (line //8) to a very small ka = 0,01, i.e. we have almost no a prior information,
then there are large jumps at the beginning of the estimation, and it can completely miss the mark in
more complex cases. Subsequently, we can guess the mean value from the prior information ka = 10,
where the estimation caught the right direction. On the contrary, we chose a very strong value of
the a prior information ka = 100 and the estimation did not reach the specified parameters, because
the estimation froze and only slowly converged to the desired parameter values. The freezing can

be resolved by letting the estimation run, forgetting the statistics, but keeping the estimated initial

CHAPTER 6. EXPERIMENTS 43

parameters and running the original data again. This procedure is repeated until the desired parameter
values are reached.

To demonstrate the effect of a prior information, we plotted Figure 6.1 from the Scilab code,
showing the generated data and the evolution of the parameter estimation for different initial strengths
of information ka. For such a simple demonstration example, the best result was finally obtained for
the lowest prior information ka = 0,01, where we obtained the parameter estimate pFE = [0, 78 0, 22].
These values were very close to the initial parameters p = [0,8 0,2] set in line //2. Note that we
estimate pE as complementary probabilities and the sum is always 1, so the graphs are symmetric.
The last figure nicely shows that with strong prior information, the estimation did not actually reach
the desired parameters, but only got a little closer to them. The change in the coefficient ka shows

that the prior information has a large effect on the parameter estimation.

Generated data Y Evolution of parameter estimates ka=0.01
8
g
2

by n

Kol i a

= o

g T

2 15 € pE =[078; 022]

s 3

8 2

2 z

[<]
3

T T T T T T T T T 2 T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100 £ 0 10 20 30 40 50 60 70 80 90 100
time time

Y Evolution of parameter estimates ka=10 Y Evolution of parameter estimates ka=100

2 8

[[

£ 1 £

g g

e e

2 2

© ©

E 05 pE =[075; 0.25] E 05 pE = [0.64; 0.36]

2 2

) ()

[[

£ £

5 o] S 4

3 3

=} =}

-~ T T T T T T T T T b T T T T T T T T T

2 0 10 20 30 40 50 60 70 80 90 100 e 0 10 20 30 40 50 60 70 80 90 100

time time

Figure 6.1: The effect of the initial strength of information ka

Next, we show how initialization works using a simple example (for the mixture, it is described in
detail in Section 4.1 and Appendix B). The principle of initialization is based on finding and setting the
ideal initial parameters of the model pE with which the estimation will start. For the demonstration,
3 options for setting the initial parameters pFE (line //7) were chosen. They are shown separately in
Figure 6.2. In the Scilab code, the number of data is halved, i.e. nd = 50, because we are primarily

interested in the beginning of the estimation, and the strength of the prior information is set to ka = 1.

CHAPTER 6. EXPERIMENTS 44

First, the ideal option pE = [0,8 0,2] was chosen, which corresponds to the actual model parameters
p that were set in the simulation on line //2 to generate the discrete data y. As a second option,
the values of the parameter pE = [0,5 0, 5] were chosen. These values were used in the previous part
of the example (influence of prior information). As a last option, the values of pE = [0,1 0,9] were
chosen, which are very far from the set parameters p. The graphs in Figure 6.2 show that the setting
of the parameters pF has the greatest effect on the start of the estimation. It is also evident from the
graphs that the first variant performs best, when the ideal initial parameters are set and the estimation
is stabilized at pE = [0,78 0,22]. The second and third variants have a worse start of estimation and

a greater deviation from the true values p = [0,8 0,2].

Generated data Y Evolution of parameter estimates pE=[0.8 0.2]
g
> . . E 14
: : N
2 E 0.5 - pE =[0.78 ; 022]
5 i 2
5 beed & 5 o]
S
0 5I 1:) 1I5 2‘0 2‘5 3‘0 3‘5 4‘0 4‘5 50 E 0 5 10 15 20 25 30 35 40 45 50
time time
Evolution of parameter estimates pE=[0.5 0.5] Evolution of parameter estimates pE=[0.1 0.9]

0.5 pE = [0.77; 0.23]

pE =[0.76; 0.24]

values of the estimated parameters
values of the estimated parameters

Figure 6.2: The effect of the initial parameters of the model pE

Correctly setting the initial parameters of the model is especially important when estimating mix-
tures.

As an example of a categorical model with multiple values (namely 5), the example of a 5 arm
roundabout was chosen in subsection 3.1.1. We will show and describe this example in more detail
using the Scilab code shown below. This is a similar example to the T-junction, but there is a change
on the line //2 where we set the model parameters. Here we have not only dealing with two turn
options as in the previous example, but now we have 5 of them, so we set 5 values for the parameter

p. This allows us to generate the values of the variable y € {1,2,--- ,5}. Furthermore, there is an

CHAPTER 6. EXPERIMENTS 45

additional line //7 which creates an auxiliary variable ky and it determines the maximum value of the
variable y in case we do not know the simulation and we need to know the number of values to set the

initial parameters of the model pE on line //8. The rest of the code remains unchanged.

// Model of 5 arm roundabout + init 4 estim

//

clear , cle, mode(0);

nd=100; // number of data //1
p=[.2 .1 .3 .2 .2]; // parameters of model of y //2
y=1; // initial condition for y //3
for t=2:nd //4

y (t)=sum (cumsum (p)<rand (1,1,’u’))+1;

// generation of discrete data)
end //6
ky=max(y); // maximum value of variable y /7
pE=.2xomnes (1,ky); // initial parameters of model //8
ka=.01; // initial counter statistics //9
S=pExka ; // initial summation statistics //10
for t=2:nd //11

S(y(t))=S(y(t))+1; // update of summation statistics //12
ka=ka+1; // update of counter statistics //13
pE(t,:)=S/ka; // point estimates //14
end //15

For clarity, Figure 6.3 shows the generated data y and the evolution of the model parameter
estimates with initial model parameters pE = [0,2 0,2 0,2 0,2 0,2] and initial counter statistics
ka = 0,01. It can be seen in the graph that the resulting point estimate values pE slowly converged

and stabilized around the true values p = [0,2 0,1 0,3 0,2 0,2].

CHAPTER 6. EXPERIMENTS 46

Generated data

values of the variable y

50

time

Evolution of parameter estimates

pE = [0.17 ;009 ;028 ;022 ;023]

values of the estimated parameters

Figure 6.3: Estimation of the categorical model

6.1.2 Estimation of the binomial model

The estimation of the binomial model, which is described in detail in Section 3.2, is based on the
same principle as the estimation of the categorical model. This can be seen in the Scilab code below.
The first part (lines //1 to //7) is again dedicated to data generation, but here it is the generation
of binomial data, where we first use the function on line //4 to determine the probability function
of the binomial distribution for the selected parameter pb = 0,1. Then, data from the binomial
distribution are generated on line //6 according to the principle described in Appendix C. The second
part (lines //8 to //15) is devoted to determining the point estimates of the binomial distribution. In
this experiment, we have already disregarded any prior knowledge and its strength, hence the value of

the initial counter statistic ka = 0.

// Binomial model + estim

//

clear , cle, mode(0);

CHAPTER 6. EXPERIMENTS

nd=500;
pb=.1;
n=3;

pc=binomial (pb,n);

for t=1:nd

y (t)=sum (cumsum (pc)<rand (1,1,’u’));

end

S=0;

ka=0;

for t=1:nd
S=S+y (t);
ka=ka+1;
pE=S/(kax*n);
pt (t)=pE;

end

/!
/!
/!
/!

/!

/!
/!

//
//

number of data
probability of success p
number of Bernoulli trials

probability function

generation of binomial data

initial summation statistics

initial counter statistics

update of summation statistics

update of counter statistics

// point estimates

// evolution of point estimate

47

/1
/12
/13
//4
//5

//6
/7

//8
/19
//10
//11
//12
//13
//14
//15

From the Scilab code, we have plotted Figure 6.4, which first shows the generated data from a

binomial distribution with parameter p = 0,1. The second part of the figure shows the evolution of

the parameter pE estimate over time. With the zero knowledge of the prior information, it took a

while for the estimate to stabilize close to the true value p =0, 1.

CHAPTER 6. EXPERIMENTS 48

Generated data
3.5

2.5

values of the variable y

0.5 T T T T T T T T T T T T T T
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

time

Evolution of parameter estimates
0.2

pE =[0.12]

o
@
1

values of the estimated parameter
g o
& =
1 1

0 T T T T T T T T T T T T T T
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

time

Figure 6.4: Estimation of the binomial model

6.1.3 Estimation of the mixture f (x,zs|c) with binomial x

At the core of the thesis are marginal mixtures, which aim to reduce the high dimensionality of discrete
categorical models. The main element contributing to the dimension reduction is the assumption of
independence of the explanatory variables x. The presented algorithms are also applied to real data
where the independence assumption is not always fully satisfied. Therefore, it is important to know
how sensitive the mixture estimation algorithms, performed under the independence assumption, are
to violations of this assumption. The following program investigates just this phenomenon. First, we
simulate (with the assumption of independence of) data with independent . We get the theoretically
correct result (which we verify by simulation). We then simulate the data with dependent z in the
same way and observe how the point estimates deteriorate. This will determine how much the violation

of the independence assumption affects the result.

CHAPTER 6. EXPERIMENTS 49

This example is based on the estimation of a mixture with binomial components, which is described
in detail in Chapter 4. The estimation of these components is performed by estimating a standard bi-
nomial model with weighted data. For mixture estimation, we observe the same parts as for categorical
and binomial model estimation, i.e., simulation including initial parameter settings, initialization, and
parameter estimation, but the individual parts are partially different. The differences are mainly in
the initialization, where several models have to be initialized. In addition, proximities and weights are
also computed in the estimation. There is also a difference in the parameter update, which is weighted
and computed for all components. Below is the code from Scilab, where we will show and describe
each part in detail. To run the code in the program, you must copy the functions from Appendix D
and paste them into the appropriate line.

In the first part (lines //1 to //25), where we set the parameters for the simulation, we also show
the impact of violated independence. On the line //2 we set 3 components and then we define the
corresponding parameters for them. If we want to simulate data from a binomial distribution, we
can compute the probabilities of the individual values for a given parameter p, and then generate the
entire distribution as a categorical distribution with binomial parameters. These parameters for the
variable x; are on the lines //3 to //5. Next, we set the parameters for 25 to be totally independent
(lines //7 to //12), almost independent (lines //13 to //18), and very dependent (lines //19 to //24)
with respect to x1. We create completely independent variables by setting ps exactly the same and
the change of z; values is not reflected. Almost independent variables have p, almost the same and
their values have little respond to changes in z;. Conversely, highly dependent variables have ps much
different, so the values of z; have a large effect on 5. Lines //26 to //31 show the simulation where
we generate the pointer values, the variable x; and the variable zo|z;. The variable x5 is conditional
because we want to determine the relationship (dependence or independence) between the variables
1 and xo. If we know the parameters of the simulation model, we can easily test the effect of the
dependence and independence of the variable x in the binomial distribution by comparing the results
of the point estimates of all 3 parameter choices in the simulation.

In the next part of the code (lines //32 to //40) there is the initialization, which is done separately
for each component and is crucial for mixtures. If some initial peak of the distribution is far from the
data, big problems can occur because the proximity can be zero and the peak of the distribution does
not approach the data. Therefore, we need to set the initial peak of the distribution to the real data

region by finding the minimum and maximum of the data. Another way to initialize for independent

CHAPTER 6. EXPERIMENTS 50

data is to plot histograms of the data and find clusters (locations with the highest frequency of data)
where the initial peaks of the distribution are then placed. However, in the following program, we use
the exact simulated parameters (the hardest initialization), because the question is not how well the
estimation performs, but how much error is introduced by violating the independence assumptions.
If we set the wrong value of the initial parameter, we would not find the effect of dependence, so we
need the ideal estimation case for all simulations. Then, the initial probability (lines //36 and //37)
and the initial summation statistics (lines //38 and //39) for each component are set using known
parameters.

In the last part of the code, on lines //41 to //56, we perform the point parameter estimation,
where we first generate the proximity ¢; for variable x; and ¢ for variable zo in cycle j (lines //43 and
//44). The product of these two values ¢l * ¢2 on line //45 gives the proximity ¢ for each component
under the independence assumption. After normalizing the values of ¢ to the sum of 1, we obtain the
weights. These weights are then used to update the counter ka (line //50), to update the summary

statistics (lines //51 and //52), and to calculate the point estimates of the parameters (lines //53 and

//54).

// Estimation of the mixture f(x1,x2|c) with binomial x
// — x1,x2 dependent or independent
// — estimated as for independent x

/!

clear , cle, mode(0);

// copy the functions from the Appendix D here and run the code

nd=1000; // number of data //1
pa=[.3 .4 .3]; // pointer model parameters //2
C(1).pl=binomial (.1,3); // parameters of model for x1 //3
C(2).pl=binomial (.3 ,3); // parameters of model for xl1 //4
C(3).pl=binomial (.8 ,3); // parameters of model for xl1 //5
select 3 /] <= select the dependency of x1 and x2 //6
case 1 // TOTALLY INDEPENDENT /7

C(1).p2=.2%omnes (1,4); // parameters of model for x2 //8

C(2).p2=.2xones (1,4); // parameters of model for x2 //9

CHAPTER 6. EXPERIMENTS

C(3).p2=.2xomnes (1,4); // parameters of model for x2
pl=[.1 .2 .5]; // initial parameters for x1 indep.
p2=[.3 .1 .2]; // initial parameters for x2 indep.
case 2 // ALMOST INDEPENDENT
C(1).p2=[.05 .1 .15 .2]; // parameters of model for x2
C(2).p2=[.85 .9 .95 .98]; // parameters of model for x2
C(3).p2=[.4 .45 .5 .55]; // parameters of model for x2
pl=[.2 .1 .6]; // initial parameters for x1 indep.
p2=[.7 .1 .5]; // initial parameters for x2 indep.
case 3 // VERY DEPENDENT
C(1).p2=[.1 .3 .6 .9]; // parameters of model for x2
C(2).p2=[.1 .2 .5 .2]; // parameters of model for x2
C(3).p2=[.9 .1 .3 .5]; // parameters of model for x2
pl=[.4 .1 .5]; // initial parameters for x1 dep.
p2=[.4 .1 .3]; // initial parameters for x2 dep.
end

// SIMULATION
for t=1:nd

¢ (t)=sum (cumsum (pa)<randu ()

pp=binomial (C(c(t)).p2(x1(t)),5);

// generation of pointer

// parameters of x2|x1

)+
x1(t)=sum(cumsum(C(c(t)).pl)<randu())+1; // generation of x1

)

)

x2 (t)=sum (cumsum (pp)<randu())+

end

// INITIALIZATION

// generation of x2

b=[max(x1) max(x2)]; // maximum of x1 and x2
ne=max(c); // number of component
ka=ones (1,nc); // initial counter statistics

for j=l:nc

C(j).-pEl=pl(j); // initial probability of j—th compon.

51

//10
//11
//12
//13
//14
//15
//16
//17
//18
//19
//20
//21
//22
//23
//24
//25

//26
//27
//28
//29
//30
//31

//32
//33
//34
//35
//36

CHAPTER 6. EXPERIMENTS 52

C(j).pE2=p2(j); // initial probability of j—th compon. //37
C(j).S1=C(j).pElxka(j)*(b(1)—1); // initial summation statistics //38
C(j).S2=C(j).pE2xka(j)*(b(2)—1); // initial summation statistics //39
end //40

// ESTIMATION

for t=1:nd //41
for j=1l:nc / /42
ql=binpdf(x1(t)—1,C(j).pEl,(b(1)—1)); // proximity for x1 //43
q2=binpdf(x2(t)—1,C(j).pE2,(b(2)—1)); // proximity for x2 / /44
q(j)=qlxq2; // proximity of j—th compon. //45
end //46
w=fnorm (q); // weights //47
wt(:,t)=w; // weights for all records //48
for j=Il:nc //49
ka(j)=ka(j)+w(j); // update of counter stat. //50
C(j).S1=C(j).S14w(j)*(x1(t)—1); // update of summation stat. //51
C(j).S2=C(j).S24w(j)*(x2(t)—1); // update of summation stat. //52
C(j).pE1=C(j).S1/(ka(j)*(b(1)—1)); // point estimates //53
C(j).pE2=C(j).S2/(ka(j)*(b(2)—1)); // point estimates //54
end //55
end //56
// RESULTS
Corrx1x2=cord (x1,x2) // discrete correlation //57
cp=amax (wt,1); // argument of maximum weight //58
h=c2c (c,cp); // renaming of components in case of rotation //59
Acc=acc(c,h(cp)) // accuracy of estimated components //60

To verify the relationship (independence versus dependence) between the variables z; and x5, we

used the function to determine the correlation coefficient in the code on line //57. The values of this

CHAPTER 6. EXPERIMENTS 53

coefficient for all 3 simulation variants are given in Table 6.1. In the first case (totally independent),
the value of the correlation coefficient was close to zero, so there is indeed complete independence
between the variables. In the latter case (almost independent), the value of the correlation coefficient
is much closer to 0 than to 1, so the variables are almost independent. The last case (very dependent)
has a correlation coefficient value higher and close to 1, so the variables are dependent. We then
generated the accuracy on line //60, which determines the ratio of correctly estimated components.
This step was preceded by determining the actual estimation of the components using the argument
of the maximum weights on line //58 and then renaming the components in case of rotation during
estimation on line //59. We determined this accuracy again for all 3 variants (totally independent,

almost independent and very dependent variables z; and x5) and the results are shown in Table 6.1.

Table 6.1: Correlation coefficient of variables 1 and s and accuracy of the result

Variables x1 and x4 ‘ Totally independent ‘ Almost independent | Very dependent

Correlation coefficient [-] -0,01 0,24 0,61
Accuracy (%] 0,69 0,93 0,59

The accuracy results show that the dependence of the variables has almost no effect on the estima-
tion results, so we can work with this assumption even in the case of data dependence, which we model
as independent. This effect is also known from the use of naive Bayes, which has a wide application
and the same assumption. Naive Bayes works even when the assumption is not well followed, and this

is consistent with our findings.

6.2 Experiments on simulated data

This experiment in Scilab demonstrates the theory described in Chapter 5. Specifically, it involves the

estimation of the marginal mixture f (x1,x2|c) with binomial variables x1, zo.

Algorithm development and testing (for 2 and 2 components)

The algorithm needs to be developed and modified gradually to get everything working as it should.
Therefore, only two explanatory variables x; € {1,2,--- ,4} and 25 € {1,2,--- ,6} are used for testing
so far, and each of these variables has two components.

The first part of the algorithm deals with pointer estimation, i.e. clustering, based on the previous

example of mixture estimation described in Subsection 6.1.3. The investigation verifies (i) the func-

CHAPTER 6. EXPERIMENTS 54

tionality of the algorithm without approximation (easily distinguishable components, purely binomial
distribution and really independent variables x) followed by a slight overlap of components (ii) the

effect of slightly dependent variables z (iii) the effect of violated binomial distribution.

(i) When the parameters p of the variables x, which determine the location of the modes of the
binomial mixture, are set to edge values, the estimation result is excellent. However, if the
components are moved closer together by adjusting the values of the parameters p, the point
estimation results of the pointer will deteriorate slightly, depending on how much the components
have been moved closer together and how much they overlap. Figure 6.5 on the left shows the
variable x1, which represents a mixture with two binomial components at the edges, using the set
parameters p; = [0,1 0,9]. This favorable variant has a clustering with accuracy = 0,97. Then
the value of the parameter p; = [0,3 0,7] was set so that the components are closer together
and therefore overlap more, as shown on the right in Figure 6.5. Although the conditions for

estimating the pointer have deteriorated, the accuracy is still 0, 79.

Variable x1 with two binomial components Variable x1 with two binomial components

0.8 0.45

4

probability function

probability function

values values

Figure 6.5: Probability functions of the variable 27 with two binomial components

(ii) The influence of the independence or dependence between the variables x has already been dis-
cussed in Subsection 6.1.3. However, it is necessary to examine the impact this has on the clus-
tering accuracy, which in turn affects the classification of the target variable y. The relationship
(independence or dependence) between the variables 27 and x5 is determined by the parameter
po for the variable zo, which is then influenced by the value of z; from the binomial mixture.
The result is a binomial model simulated as a categorical model. The independence between the

variables is then determined only by this parameter ps, which must be set to the same values,

CHAPTER 6. EXPERIMENTS 55

e.g. p2(1) =10,99 0,99 0,99 0,99] for the first cluster and ps (2) = [0,01 0,01 0,01 0,01] for
the second cluster, so that the change in the values of x; does not affect the generation of values
for the variable x3. Under these conditions, the clustering of the variable x5 is obtained with
accuracy = 1. Conversely, the dependent variables are set so that ps is very different. Thus,
the values of x; have a large effect on x3. The experiment uses the values of the parameter
p2(1) = [0,1 0,2 0,3 0,4] for the first cluster and py (2) = [0,9 0,8 0,7 0,6] for the second
cluster to estimate the pointer of the variable zo with accuracy = 0,87. The results are very good
in both cases, which looks promising for using the algorithm on real data where it is not possible

to influence the relationship between the variables x.

(iii) A non-binomial mixture, which can occur in real data, was then tested. This mixture is created
using the parameter a, which affects the values of the probability function of each component
of the binomial mixture. However, even in the case of a non-binomial mixture (e.g. a = 1), it
is found that the deterioration of the conditions does not rapidly affect the clustering results,
even though we estimate this mixture to be binomial (a = 0). Figure 6.6 shows a mixture with
two binomial components with p; = [0,1 0,9] that are influenced by the parameter a = 1. This
slightly transforms the mixture into a non-binomial one, and the result of the clustering of the
variable z; came out with an accuracy = 0,77, even though we use a small number of components
for the experiment and also a small number of values in the variables. This indicates that the

binomial distribution is very general and is a suitable choice for the algorithm under development.

Variable x1 with non-binomial components

0.6

05 = 1=0.1
B p2-0.9

0.4 4

0.3 4

0.2 4

probability function

0.14

values

Figure 6.6: Probability function of the variable x; with two non-binomial components

The second part of the algorithm deals with local models, where the behavior of these models f (z|y)

CHAPTER 6. EXPERIMENTS 56

in each component is tested. In this part, the accuracy of the classification of the target variable y,
which describes the relationship of the variable y to x, is examined by changing the parameter py.
This describes the parameters of the model of y, from which the probabilities for y = 0 and y = 1
are subsequently generated, depending on all combinations of values of the explanatory variables
x. Therefore, we will first test an almost deterministic case where the parameter values are set to
py = [0,0001 0,9999] and the result accuracy = 1 shows that the classification of y is perfect. The
deterministic nature of this parameter is then reduced (i.e., moved away from the values 0 and 1) with
the values py = [0,2 0, 8], where it begins to depend on the clusters as the perfect — y coupling
deteriorates. In this case, the accuracy is 0,81, which indicates a deterioration of the classification,

but still a very good result.

Algorithm development and testing (for 3 and 4 components)

The algorithm was then modified so that the first variable 1 has 3 components and the second
variable x5 has 4 components, leaving the number of possible values of these variables unchanged.
The change in the number of components caused an increase in the number of set parameters, and
this induced a strong coupling of the variable 1 to y. Although the clustering accuracy was severely
degraded by overlapping components in the binomial mixture, as can be seen nicely in Figure 6.7, the
classification of y remained almost error free, because the binding of the variable z; to y is still the
same. The clustering is obtained with accuracy = 0,80 for x1, then accuracy = 0,63 for x5 and yet

the classification of y using the parameters py = [0,0001 0,9999] is perfect, i.e. with accuracy = 1.

Variable x1 with three binomial components

probability function

o
N
I

0.1 4

values

Figure 6.7: Probability function of the variable x; with three binomial components

Experiments show that it is still useful to use the algorithm even under less favorable conditions.

CHAPTER 6. EXPERIMENTS 57

Final form of the developed algorithm

The marginal mixtures algorithm was the target of this thesis, and its Scilab code is given below.
For clarity, all ¢ cycles are for variables and all j cycles are for components. To run the code, copy and
paste the functions from Appendix D into the appropriate line. The individual steps of the algorithm
will now be discussed in detail.

The first part of the code sets the parameters (lines //1 to //18) for the subsequent simulation
(lines //19 to //33), which generates the required data. The initial parameters are set to the exact
values used in the simulation. This is to ensure that the algorithm works correctly. We then change
the settings of these parameters and observe how the classification accuracy of the target variable y
copes with this change and tune the parameter values.

Lines //1 to //3 specify the number of data used in the algorithm. Part of the simulated data is used
for learning, i.e. initialization, estimation and determination of local models. The remaining data are
used for testing in the form of the classification itself. Line //4 is used to set the parameter a discussed
above, which allows the generated binomial parameters to be distorted to more closely approximate
the uniform distribution. Now a = 0, which does not affect the generation of the binomial parameters,
but increasing this value will change them. Lines //5 and //6 set the parameters of the pointer models
that determine the number of components in each variable. The parameter pa; is set so that the
first variable x; has a total of 3 components and the parameter pas produces a total of 4 components
in the variable z5. In the next steps, parameters are set to generate explanatory variables x, which
are assumed to be independent according to our assumption. For the previous example in Subsection
6.1.3, which deals with mixture estimation, it is tested that violating this assumption does not have a
large effect on the results, so in the following code only one of the options is used, namely an almost
independent relationship between the variables x7; and x5. This variant of the relationship may be
the closest to real data. First, lines //7 to //9 generate categorical parameters from the probability
function of the binomial distribution for all 3 components of the first variable 1, defining the mixture
model of the binomial distributions. For example, line //7 sets the value of the binomial parameter
p = 0,1 to generate a probability function, and the elements of this probability function are taken
as probabilities or parameters of the categorical distribution. This procedure is chosen in order to be
able to subsequently establish a relationship (almost independence) between the variables x, since the
binomial distribution does not have a conditional probability, whereas the categorical distribution does.

Lines //10 to //13 set the parameters for the 4 components of the variable z3 so that for each value

CHAPTER 6. EXPERIMENTS 58

of the variable x; these parameters are binomial and always different. The dependency is projected
so that for each value of z1, x5 has a different binomial distribution, so it is a mixture of binomial
distributions controlled by x1. Finally, lines //14 to //18 set the binomial parameter Py for the target
variable y, which consists of 24 different values, because each combination of z; (4 values) and z2 (6
values) is assigned a probability for y = 0 and also for y = 1.

After setting all the parameters, the simulation can be started in lines //19 to //33, where we first
set the number of values in the variables z; and z2 (lines //19 and //20). This is followed by the
generation of pointer models for the two variables mentioned (lines //22 and //23), then the generation
of values for the variable z; on line //24 using the appropriate pointer model. On line //25, the pp
parameters for the variable xo are created by using both the pointer model of the variable x5 and
the generated value of the variable z; itself to create the desired relationship between these variables
x (almost independence). Then, using the created parameters pp, the values of the variable x5 are
generated on line //26. Now the generated values of both variables x are encoded in z on line //27,
and the values of y are generated on line //28 using this auxiliary variable z and the parameters Py
(the pointer model must not be present here, as it would affect both variables equally, and we want to
know the effect of the variable z on y). The matrix of variables x is created in line //30, from which
the maximum of the values in each of the variables x is determined in line //31. The next step is to
determine the number of values in y and the number of variables z (i.e. z; and z3) in lines //32 and
//33. A part of the simulated data is then selected for learning on line //34 and stored in the variables
x and y, respectively xL and yL.

It is now possible to start the initialization on lines //35 to //45, which is described theoretically
in Section 4.1 and used practically in the mixture estimation experiment in Subsection 6.1.3. First of
all, a prior virtual data are set in the form of the strength of the initial parameter k0 (line //35), and
then the initial counter statistic ka is set using this parameter (line //40), from which the statistic
is generated (line //43). Lines //36 and //37 set the initial parameters for all components of both
variables . Next, on lines //39 and //40, the number of components in the variable z; and the
aforementioned counter ka for x; are determined. The initialization is completed by a cycle on lines
//41 to //44, where the parameter estimates of the models for the variable x; and the summation
statistic of the variable x; are determined for each component.

The next part of the code on lines //46 to //65 is devoted to mixture estimation, which is described

in Chapter 4 and can be divided into two parts in the code: determining the weights and updating the

CHAPTER 6. EXPERIMENTS 59

statistics (which includes the parameter estimation itself). In the first part, ¢ is defined in line //48,
then the proximities are then stored in the cycle for all the components in lines //49 to //51. The
following line //52 creates the weights and there is also a solution if there is only one component in the
experiment. These weights are remembered in line //53. The second part, which focuses on updating
the statistics, is in lines //54 to //59, where the counter is updated in the cycle for each variable, then
the statistics are updated, and finally the parameter estimation is performed and then remembered.
On line //62, the evolution of the estimated parameters is then saved in a table and finally, on line
//64, the point estimate of the pointers is determined using the argument of the maximum of the
determined weights.

The following part on lines //66 to //82 deals with the creation of local categorical models, which
is described in detail in Section 5.2. On line //68, the variables belonging to the j-th cluster of the
i-th variable are collected so that each component in each variable has data belonging to its cluster on
line //73. The next cycle on lines //76 to //81 generates the desired local models f; (x;|y), which are
created by normalizing the local frequency table Tj (x;|y) so that for a given y the sum of x is equal
to 1. A part of the construction of local models is the model f (y) on line //82, which is created by
normalizing the frequencies of the values of y to the sum of 1 and is necessary for the next part of the
algorithm, i.e. classification.

Now the learning phase is over and the testing phase begins, which is preceded by deleting all
existing data (variables z1, z2 and y) and loading new data for testing. This last part of the algorithm
(lines //85 to //105) is the classification mentioned above, the detailed procedure of which is described
in Section 5.3. In the code, the classification can be divided into two parts, as in the estimation, namely
the determination of the weights for the prediction (lines //86 to //93) and the prediction itself (lines
//94 to //103). The determination of the weights in this phase of the algorithm is the same as in
the mixture estimation. The first step is the definition of ¢, where the proximities are then inserted
and, after their normalization, the weights are obtained and stored for later use. The next step is to
predict the target variable y by first determining the probability of fy from the model f (y). Line
//96 defines fj, which is then used on line //98 to determine the model f (x;|y) using a weighted
sum of components. This is followed on line //100 by the construction of the prediction model f (y|z)
using the Naive Bayes principle as the product of f (y) and f (z;|y) over all variables. The prediction
of the target variable yp itself is determined on line //102 as the argument of the maximum of the

prediction model f (y|x), i.e. the y with the highest probability is selected. Finally, line //104 renames

CHAPTER 6. EXPERIMENTS 60

the predicted target variables yp in the case of rotation in prediction, and line //105 determines the
accuracy of this prediction by comparing the predicted and actual values of y, which is also known as

the classification y.

// Estimation of the marginal mixture f(x1,x2|c) with binomial x

// — different components
// — x1,x2 more or less dependent
// — estimated as for independent x

// — learning and testing data

n "

// — simBin — corrupted binomial (for "a" large we get categorical)

//

clear , clc, mode(0);

// copy the functions from the Appendix D here and run the code

nd=800; // number of data //1
nL=500; // number of learning data //2
nT=nd-nL; // number of testing data //3
a=.0; // corruption of binomial distibution (see the function) //4
pal=[.3 .4 .3]; // pointer model parameters for x1 //5
pa2=[.2 .3 .3 .2]; // pointer model parameters for x2 //6

// categorical parameters for the 3 components of the binomial x1

C(1).pl=simBin (.01,3,a); /7
C(2).pl=simBin (.98,3 ,a); //8
C(3).pl=simBin (.5,3,a); //9
// parameters for the 4 components of x2 — almost independent

C(1).p2=[.05 .1 .15 .2]; //10
C(2).p2=[.85 .9 .95 .98]; //11

(2)
(3).p2=[.45 .5 .55 .6]; //12
(4).p2=[.75 .77 .8 .82]; //13

CHAPTER 6. EXPERIMENTS 61

py=[.0001%ones(1,12) .9999xones(1,12)]; // parameters of y //14
for k=1:24 //15
p=binomial (py(k) ,1); // binomial parameters y for all x //16
Py(:,k)=p’; // parameters y for all combinations of x //17
end //18

// SIMULATION

nxl=length (C(1).pl); // number of values x1 //19
nx2=~6; // number of values x2 //20
for t=1:nd //21

¢(1,t)=sum(cumsum (pal)<randu())+ // pointer model for x1 //22

(
¢ (2, t)=sum (cumsum (pa2)<randu ())+ // pointer model for x2 //23
x1A1l (t)=sum (cumsum (C(c(1,t)).pl)<randu())+1; // generation of x1 //24
pp=simBin (C(c(2,t)).p2(x1All(t)),nx2—1,a); // parameters for x2 //25
x2A11 (t)=sum (cumsum (pp)<randu ())+ // generation of x2 //26
z(t)=xt2col ([x1All(t) x2All(t)],[nxl nx2]); // encoding x1 and x2 //27

yAll (t)=sum (cumsum (Py (: ,z(t)))<randu())+1; // generation of y //28

end //29
xAll=[x1All x2All]; // matrix of variables x //30
b=max(xAll,’r’); // maximum of values in each x //31
ny=max(yAll); // maximum of values in y //32
nv=length (b); // number of variables x (x1,x2) //33

// selection of data for learning

x=xAll(1:nL,:); y=yAll(1:nL); xL=x; ylL=y; //34

// INITIALIZATION

k0=5; // strength of initial parameters //35
X(1).pI=[.1 .5 .9]; // parameters for 3 components of x1 //36
X(2).pI=[.1 .3 4 .9]; // parameters for 4 components of x2 //37

CHAPTER 6. EXPERIMENTS 62

for i=l:nv //38
nc(i)=length (X(i).pl); // number of components in variable xi //39
X(i).ka=k0xones(1,nc(i)); // counter for xi //40
for j=l:nc(i) //41

X(i).c(j).pE=X(i).pI(j); // parameters estimates of variable xi //42
X(i).c(j).S=X(i).c(j).pE«X(i).ka(j)*(b(i)—1);

// summation statistics of variable xi //43

end / /44

end //45

// ESTIMATION
for t=1:nL //46
for i=l:nv // cycle for weights and updates //47
// — WEIGHTS

g=zeros (1,nc(i)); // definition of q //48
for j=l:nc(i) //49

q(1l,j)=binpdf(x(t,i)—1,X(i).c(j).pE,(b(i)—1)); // proximities //50
end //51

if length(q)==1, X(i).w=1; else X(i).w=fnorm(q); end
// creation of weights and solution for only one component //52
X(i).wt(:,t)=X(i).w’; // remember the weights //53

// — ESTIMATION

for j=linc(i) //54
X(i).ka(j)=X(i).ka(j)+X(i).w(j); /] counter update //55
X(i).c(j).9=X(i).c(j).SHX(i).w(j)*(x(t,i)—1); // stat. update //56
X(i).c(j).pE=X(i).c(j).S/(X(i).ka(j)*(b(i)—1)); // estimation //57
X(i).c(j).pt(t)=X(i).c(j).pB; // remember — evolution of param.//58

end //59

end //60
end //61

for i=l:nv, for j=linc(i), P(i,j)=X(i).c(j).pE; end, end

CHAPTER 6. EXPERIMENTS 63

// save the evolution of parameters into a table //62

for i=1l:nv //63
cp(i,:)=amax(X(i).wt,1); // point estimates of pointers //64
end //65

/] LOCAL MODELS

for i=l:nv //66
for j=1l:nc(i) //67
X(i).c(j).dt=]]; // definition of variables for data in clusters //68
end /769
end //70
for i=l:nv /)71
for t=1:mL /72
X(i).c(ep(i,t)). db=[X(i).c(ep(i,t)).dt; [y(t) x(t,i)]];
// creation of data in clusters //73
end /] 74
end /75
for i=1l:nv //76
for j=1l:nc(i) /)77
T=table (X(i).c(j).dt(:,1),X(i).c(j).dt(:,2),l:ny,1:b(i));
// local tables Tj(xil|y) //78
X(i).c(j).fy=fmorm(T,1); // local models fj(xi|y) //79
end //80
end //81
fY=fnorm (vals2(y)); // model f(y) //82
clear x1 x2 y // deletion of variables xl, x2 and y //83

// selection of data for testing

x=xAll(nL+1:nd,:); y=yAll(nL+1:nd); //84

// CLASSIFICATION

CHAPTER 6. EXPERIMENTS

for t=1:nT
// — WEIGHTS for prediction (same as for estimation)
for i=l:nv
g=zeros (1,nc(i)); // definition of ¢
for j=l:nc(i)
q(l,j)=binpdf(x(t,i)—1,X(i).c(j).pE,(b(i)—1)); // proximities

end

X(i).w=fnorm(q); // weights

X(i) . Wt(:,t)=X(i).w’; // remember the weights
end

// — PREDICTION
fy=fY; // probability of fy
for i=1l:nv
fj=0; // definition of fj
for j=l:nc(i)
B =E5X (i) w(j)X (i) c (). By (2, (t,1));

// weighted sum of components

end
fy=fy .x fj; // product over variables
end
yp (t)=amax (fy); // argument of the maximum f(y|x) = prediction
end
u=c2c (y,yp); // renaming of variables yp in case of rotation

64

//85

//86
/187
/188
//89
//90
//91
//92
//93

//94
//95
//96
/797

//98
//99
/7100
//101
//102

//103
//104

Accuracy=acc(y,u(yp)) // accuracy of prediction y = classification y //105

Results of the final algorithm

First of all, the parameters are set so that the algorithm works perfectly and the result of the code

gives the accuracy = 1, i.e. 100%. This tested that the algorithm is fully functional and now we need

to try other parameter settings and observe the deterioration of the results, because the real data will

never be as nice as this simulated data. So the parameters py for the generation of the target variable

y on line //14 were changed to use the new less deterministic parameters py = [0,3 0, 7] instead of the

CHAPTER 6. EXPERIMENTS 65

original parameters py = [0,0001 0,9999]. The result, which is around accuracy = 0,70, shows that
the accuracy has deteriorated and the reason is the not so accurate generation of the target variable
y in the simulation (which was the goal).

In the following Section 6.3, the tested marginal mixtures algorithm is used for experiments on real

data.

6.3 Experiments on real data

In this phase, the marginal mixtures experiment is performed on three types of real data. These are
accident data, car data and medical data. All these data are discreet and it meets the requirements of

multimodality.

6.3.1 Data for experiments
The real data used for the experiments and the results of their classification using marginal mixtures

are described below.

Accident data
Accident data for the Czech Republic are obtained from Czech Police records. The data come from
the cooperation of the Faculty of Transportation Sciences with the Prague City Hall on the analysis
of traffic accidents in Prague. The data set consists of several parts (accidents, vehicles, consequences,
pedestrians and GPS), and the records of accidents involving pedestrians from 2019 are used for this
experiment.
The data set used has a total of 3219 records and these data are determined by the following

attributes (explanatory variables):
o pedestrian category (5 values),
o pedestrian status (7 values),
o pedestrian behavior (7 values),
o situation at the accident site (6 values),
o gender of the pedestrian (4 values),

« provision of first aid (6 values).

CHAPTER 6. EXPERIMENTS 66

The individual values of the described attributes are given in Appendix E.

The consequences for the life and health of pedestrians in the event of an accident is the target
variable, which has 4 values, namely death, serious injury, minor injury and no injury.

To determine the results, i.e. the accuracy of prediction of the target variable, the code from section
6.2 is used. Since we are now using real data and not simulated data, it is necessary to remove the first
part of this code (parameter setting and data simulation). Next, we need to modify the initialization
parameters, which are based on the histograms of the loaded explanatory variables x. The complete
code is shown in Appendix F, where the first part is replaced by loading the real accident data
involving pedestrians, and then the initialization parameters mentioned above are modified according
to the histograms of the variables x. The rest of the code remains the same and corresponds to the
marginal mixtures method. Of the 3219 records, 1500 are used for the learning part and the rest, 1719
records, are used for testing. The accuracy of the prediction using marginal mixtures is 84,52% for the

accident data.

Car data
Car Evaluation Data are publicly available on the website [48]. This data set relates to the condition
of used cars and is suitable for this experiment due to its multivariate discrete data. The total number

of data samples is 1728 and the attributes (explanatory variables) are:
e buying (4 values) - buying price (vhigh, high, med, low),
e maint (4 values) - price of the maintenance (vhigh, high, med, low),
o doors (4 values) - number of doors (2, 3, 4, 5 or more),
 persons (3 values) - capacity in terms of persons to carry (2, 4, more),
e lug boot (3 values) - the size of luggage boot (small, med, big),
« safety (3 values) - estimated safety of the car (low, med, high).

For the car data, we chose car acceptability as the target variable. This variable has 4 values -
unacceptable, acceptable, good and very good.

The algorithm of the marginal mixtures with car data determined the classification with an accuracy

of 86,09%.

CHAPTER 6. EXPERIMENTS 67

Medical data
In addition to transportation, it is possible to test the algorithm on real medical data. The Breast
Cancer Data set used is publicly available on the website [48]. This data set contains 286 instances

and the attributes (explanatory variables) are:
o age (9 values) - 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90-99,
o menopause (3 values) - 1840, ged0, premeno,

o tumor-size (12 values) - 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54,
55-59,

o inv-nodes (13 values) - 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26, 27-29, 30-32, 33-35,
36-39,

o mnode-caps (2 values) - yes, no,

o deg-malig (3 values) - 1, 2, 3,

o breast (2 values) - left, right,

o breast-quad (5 values) - left-up, left-low, right-up, right-low, central,
o irradiat (2 values) - yes, no.

The target variable for the breast cancer data is a class with two values - no recurrence events and
recurrence events.
The data set contains missing values, so 274 data from the sample are used in the experiment. The

accuracy of the classification using marginal mixtures with medical data is 75,67%.

Results of experiments with marginal mixtures
Table 6.2 summarizes the classification accuracy results for real data using the marginal mixtures

method.

Table 6.2: Classification accuracy using marginal mixtures method

’ Data ‘ Accident ‘ Car ‘ Medical ‘
| Accuracy (%] | 8452 | 86,00 [7567 |

CHAPTER 6. EXPERIMENTS 68

6.3.2 Results of experiments with other methods

Data mining searches for useful information in large data sets generated by advanced data collection
technologies in transportation, medicine, and all sciences. Data mining methods consist of traditional
data analysis methods and algorithms for processing extensive data files. These methods are used to
obtain information through data analysis as well as classification [49]. However, they cannot always
be applied to all data sets. The goal is to explore large databases and find new patents that would
otherwise not be discovered. To compare the classification results of the marginal mixtures method,

six well known data mining methods were selected:
¢ k-nearest neighbor,
e decision tree,
e neural networks,
o logistic regression,
¢ naive Bayes,
o fuzzy rules.

All of these methods are described below. The data mining system KNIME (www.knime.com) is used

to determine the classification results, and Figure 6.8 shows how the program looks with accident data.

Accident data

Learning data Decision
Tree Learner
o= Decision Tree
File Reader Predictor Scorer (deprecated)
» ..
D. i Node 9 n > & > Decision Tree
Node 1 Node 10 Node 11

Logistic

Testing data Regression Learner

> |ﬁ : Logistic Regression
File Reader » Predictor Scorer (deprecated)

I3 >
D’ i Node 17 m " l} »

Node 5 Node 18 Node 19

Logistic Regression

Figure 6.8: Hlustration of the KNIME program with accident data

CHAPTER 6. EXPERIMENTS 69

The KNIME system is one of the most renowned in its field, so its results are considered optimal.
Our goal is to at least to approach them, as our algorithm is built in an approximate way, avoiding

the theoretically correct way that leads to an extremely high dimension of the solution.

K-nearest neighbor

The k-nearest neighbor algorithm is commonly used for classification, estimation and classification.
This method is based on instance learning and it uses a training data set. Thus, a new unclassified
record can be classified by comparing it to the most similar records in the training data set. The
condition is that the training set must contain only data that will not be used for classification [50].
Table 6.3 shows the classification accuracy results using the k-nearest neighbor method for all 3 types
of real data, using the same conditions as for the marginal mixtures (e.g., 200 accident data for testing

and the rest for learning).

Table 6.3: Classification accuracy using k-nearest neighbor method

’ Data ‘ Accident ‘ Car ‘ Medical ‘
| Accuracy [%] | 8441 | 9430 | 7027 |

Decision tree

Decision tree is an attractive classification method. It involves the construction of a decision tree, a
set of decision nodes connected by branches. These branches go down from the root node to the leaf
nodes. The initial root node is located at the top of the decision tree diagram. Attributes are tested
in decision nodes, and each possible outcome creates a new branch. Each branch then goes either to a
final leaf node or to another decision node [50]. The accuracy of predicting transportation and medical

data using the decision tree method is shown in Table 6.4.

Table 6.4: Classification accuracy using decision tree method

’ Data ‘ Accident ‘ Car ‘ Medical ‘
| Accuracy [%] | 84,87 | 9781 7297 |

Neural networks
The neural network method is inspired by the complex learning systems of the animal brain, which
consist of interconnected sets of neurons. The structure of a single neuron can be relatively simple,

but a dense network of interconnected neurons can create complex recognition or classification tasks.

CHAPTER 6. EXPERIMENTS 70

Neural networks attempt to mimic the basic level of nonlinear learning that occurs in networks in
nature.

The inputs are grouped from the data set and then combined using the combination function. One
of the most commonly used functions is summation, which is an input to a function to create an output
response. This response is then sent to other neurons [50]. Table 6.5 shows the classification accuracy

results of the neural network for all real data.

Table 6.5: Classification accuracy using neural networks method

’ Data ‘ Accident ‘ Car ‘ Medical ‘
| Accuracy [%] | 8453 | 77,63 | 7162 |

Logistic regression
Logistic regression method describes the relationship between one or more explanatory variables and
a response variable. The resulting variable is discrete and often has only two possible values. The
basis is an appropriate model, which is also necessary for other methods. In contrast to the linear
regression, which is used for the modeling of continuous data, the output of the logistic regression
is discrete. To deal with this, the logistic regression model uses the logit function, which shrinks
the general continuous variable to a probabilistic interval (0,1). Then, instead of the output, the
probability that the output is equal to one is modeled.
This method considers a sample of independent pairs of variables (x;,y;), i € {1,2,--- ,n}, where
x; is an independent variable of the i-th attribute and y; is a binary outcome variable. This outcome
variable is coded as 0 and 1, indicating the presence or absence of the characteristic. To apply the
logistics model to a data set, it is necessary to estimate unknown parameters. These parameters are
estimated using the maximum likelihood method [51]. Table 6.6 shows the accuracy of the classification

of the real data when the logistic regression method is used.

Table 6.6: Classification accuracy using logistic regression method

’ Data ‘ Accident ‘ Car ‘ Medical ‘
| Accuracy [%] | 84,18 | 7807 | 7027 |

Naive Bayes

Conventional statistics considers parameters as unknown but fixed numbers. The Bayesian approach

CHAPTER 6. EXPERIMENTS 71

to statistics uses parameters as random variables, and these parameters are estimated from measured
data according to the well known Bayes formula described in Section 2.2 [52].

The naive Bayes method estimates a conditional probability based on attributes that are condition-
ally independent. Assuming conditional independence, it is not necessary to determine the probability
for each combination of = [x1,x9, - ,z,], where n is the number of attributes. However, it is nec-
essary to estimate the conditional probability of each z; relative to y. This method is very practical
because it does not require a large training set [49]. The classification accuracy results using the naive

Bayes method for real data are shown in Table 6.7.

Table 6.7: Classification accuracy using naive Bayes method

’ Data ‘ Accident ‘ Car ‘ Medical ‘
| Accuracy [%] | 81,68 | 7588 | 7297 |

Fuzzy rules

Fuzzy logic, and in particular fuzzy rule technology, is a very effective method for solving complex
systems. In addition to fuzzy rules, fuzzy modeling and fuzzy control are often part of the output.
In fuzzy rules, fuzzy inference is used to determine the result from the specified input information.
The input variable is assigned to the known information, then the result for the output variable is
calculated using the consequent rules [53]. The resulting classification accuracy for real data using

fuzzy rules is shown in Table 6.8.

Table 6.8: Classification accuracy using Fuzzy rules method

’ Data ‘ Accident ‘ Car ‘ Medical ‘
| Accuracy [%] | 82,66 | 94,04 | 71,64 |

6.3.3 Comparison of results

This chapter compares the results of data classification using all the methods presented in this thesis
with the newly developed marginal mixtures method. The goal of marginal mixtures is to show
that sufficient results can also be obtained using the approximation method (reducing the dimension
of the model). For the sake of completeness, naive Bayes, the other approximation method, was
also considered. The difference between the marginal mixtures approach and naive Bayes is that

the marginal mixtures uses local modeling, which is described in Section 5.2. The summary of this

CHAPTER 6. EXPERIMENTS 72

comparison in terms of accuracy results is shown in Table 6.9, and the best results for each data set

are always marked in bold.

Table 6.9: Comparison of the classification accuracy

Method Accident data | Car data | Medical data

K-nearest neighbor 84,41 94,30 70,27
Decision tree 84,87 97,81 72,97
Neural networks 84,53 77,63 71,62
Logistic regression 84,18 78,07 70,27
Naive Bayes 81,68 75,88 72,97
Fuzzy rules 82,66 94,04 71,64
Marginal mixtures 84,52 86,09 75,67

The first column of the table shows the classification accuracy results for accident data involving
pedestrians. The best result for the accident data set was achieved by the decision tree method with
a value of 84,87%. It was followed by neural networks with the result of 84,53%. The proposed method
of marginal mixtures reached the third position with an accuracy of 84,52%, which is very close to
the methods that have better results. On the other hand, the proposed method of marginal mixtures
works with a smaller model dimension.

The second column of Table 6.9 shows the accuracy of the classification for car data. The best
classification is obtained by the decision tree method with a value of 97,81%. Although the results
of the decision tree method are very good, the complexity of the model can be a problem because all
combinations of explanatory variables are examined. The marginal mixtures method uses only the
reduced model and ranks fourth with an acceptable difference. It is interesting to note that neural
networks (second best for accident data) rank only sixth out of seven for car data, which may be due
to the insufficient representative amount of training data.

The methods were also applied to the medical data set. The results are shown in the last column
of Table 6.9. The best classification method for this data set is the newly developed marginal mixtures
method with a classification accuracy of 75,67%.

Moreover, for all three data sets, the marginal mixtures method achieves a better result than the
similarly approximated naive Bayes method, which was the main objective of this newly developed

method.

Chapter 7

Conclusion

The main objective of this research was to propose a model for data classification with dimension
reduction based on clustering and local model construction. In the introduction of the thesis, two
main goals were set, namely, to develop a method for modeling and predicting large discrete data sets
using a low-dimensional model, and to compare this method with existing methods for prediction.

The first goal is achieved through the development of the marginal mixtures method, whose algo-
rithm is not only described in detail in Chapter 5, but also verified experimentally first on simulated
data (Section 6.2), and then on real data (Subsection 6.3.1). The main contribution of this method is
the actual reduction of the model dimension while maintaining sufficient accuracy, which was achieved
by modeling the explanatory variables as independent mixtures with binomial components (with the
possibility of easy initialization from a prior data) and then constructing local categorical models for
individual clusters. This is done by finding clusters and then building local models on top of them,
which have a better chance of describing even complex situations. The subsequent prediction is then
constructed by a weighted combination of predictions from the local models.

The second goal, i.e., to compare the marginal mixtures method with other methods, specifically
the six selected prediction methods, is met in Subsection 6.3.3. This subsection provides an overview
of the prediction accuracy results of the target variable for three different real discrete transportation
and medical data sets. The results show that the marginal mixtures method is competitive with other
methods as its prediction accuracy results are very good. Based on the evaluation results, it can be
concluded that a different method is appropriate for each specific data set.

The advantage of our method is that it keeps the dimension of the model small and gets closer

73

CHAPTER 7. CONCLUSION 74

to reality by using binomial mixtures. For example, a discrete categorical model with 10 variables
of 7 values each has a dimension of 7' and our method reduces the size of this dimension to only
7 % 10. Other methods (mainly neural networks and decision trees) do not consider the size of the
dimension, and this can cause problems for really extensive discrete data sets. The first issue is related
to overparameterization of the model, which in the worst case can lead to a failure to achieve the
result. Another problem is time consumption. Due to the smaller dimension of the model, one of the
benefits of marginal mixtures is increased speed. However, on real data sets, the results are almost
the same for all methods compared, but the discrete model (which uses marginal mixtures) is much
simpler and therefore faster.

Another great advantage of the presented method of data analysis is its easy initialization, which
should bring the estimated model closer to reality. When there are more explanatory variables in the
data set (which is always the case when dealing with questionnaires), we are working in a multidimen-
sional space that is difficult to inspect. However, this thesis treats individual variables separately, and
the locations of increased data density can be found simply from the histograms of the variables, so
we avoid working in high-dimensional spaces.

Although marginal mixtures are a useful tool for data analysis, there are several issues that need
to be addressed in future research. Discrete data are typical in their diversity and the frequency of
the variable values (e.g., one value is more frequent and another one is much less frequent) and this
leads to inaccuracies in the classification. Therefore, the goal is to find an appropriate approach to
managing the data, since the predicted value will always be the value with the highest frequency.

In conclusion, the doctoral thesis fulfilled its purpose because the method was developed according
to the requirements. It has been shown that the marginal mixture method is suitable in practice for
classifying questionnaire data from different fields with sufficient results, and all the objectives of the

thesis can be considered achieved.

Bibliography

Verleysen, M. and Francois, D. (2005). The curse of dimensionality in data mining and time
series prediction. In Computational Intelligence and Bioinspired Systems: 8th International Work-
Conference on Artificial Neural Networks, IWANN 2005, Vilanova i la Geltrd, Barcelona, Spain.

Springer Berlin Heidelberg, 8, pp. 758-770.

Abdel-Aty, M. A., Hassan, H. M., Ahmed, M. and Al-Ghamdi, A. S. (2012). Real-time prediction
of visibility related crashes. Transportation research part C: emerging technologies, 24, pp. 288-

298.

Jovanis, P. P. and Chang, H. L. (1989). Disaggregate model of highway accident occurrence using

survival theory. Accident Analysis & Prevention, 21(5), pp. 445-458.

Mannering, F. L. and Bhat, C. R. (2014). Analytic methods in accident research: Methodological

frontier and future directions. Analytic methods in accident research, 1, pp. 1-22.

Mannering, F. L., Shankar, V., and Bhat, C. R. (2016). Unobserved heterogeneity and the statis-

tical analysis of highway accident data. Analytic Methods in Accident Research, 11, pp. 1-16.

Pecherkovd, P. and Nagy, I. (2017). Analysis of discrete data from traffic accidents. In: 2017 Smart
City Symposium Prague (SCSP). IEEE, pp. 1-4.

Kaplan, R. M. and Saccuzzo, D. P. (2017). Psychological testing: Principles, applications, and
issues. Cengage Learning. ISBN: 978-1337098137.

Heymans, M. W. and Eekhout, I. (2019). Applied missing data analysis with SPSS and (R) Studio.
Heymans and Eekhout: Amsterdam. Available online: https://bookdown. org/mwheymans/book-

mi/.

(0]

BIBLIOGRAPHY 76

[9]

[19]

[20]

Alwin, D. F. (2007). Margins of error: A study of reliability in survey measurement. John Wiley
& Sons. ISBN: 978-0-470-08148-8.

Saris, W. E. and Gallhofer, I. N. (2014). Design, evaluation, and analysis of questionnaires for

survey research. 2nd Edition, John Wiley & Sons. ISBN: 978-1118634615.

Shanthi, S. and Ramani, R. G. (2012). Feature Relevance Analysis and Classification of Road
Traffic Accident Data through Data Mining Techniques. In: Proceedings of the World Congress

on Engineering and Computer Science, vol. 1, pp. 24-26.

Peng, Y., Li, C., Wang, K., Gao, Z. and Yu, R. (2020). Examining imbalanced classification

algorithms in predicting real-time traffic crash risk. Accident Analysis & Prevention, 144: 105610.

Jozova, S., Uglickich, E., Nagy, I. and Likhonina, R. (2022). Modeling of discrete questionnaire

data with dimension reduction. Neural Network World, 32(1), pp. 15-41.

Perrakis, K., Karlis, D., Cools, M. and Janssens, D. (2015). Bayesian inference for transportation
origin-destination matrices: the Poisson-inverse Gaussian and other Poisson mixtures. Journal of

the Royal Statistical Society: Series A (Statistics in Society), 178(1), pp. 271-296.

Wiper, M., Insua, D. and Ruggeri, F. (2001). Mixtures of Gamma Distributions with Applications.

Journal of Computational and Graphical Statistics, 10(3), pp. 440-454.
Jozova, S. and Nagy, I. (2020). Modelovani a odhad méfengch veli¢in. Automa. 26(1), pp. 26-31.

Jozova, S., and Nagy, 1. (2020, June). Estimation of Discrete Data using Binomial Mixture. In

2020 Smart City Symposium Prague (SCSP). IEEE, pp. 1-5.

Kéarny, M., Béhm, J., Guy, T. V., Jirsa, L., Nagy, 1., Nedoma, P., and Tesa¥, L. (2006). Op-
timized Bayesian Dynamic Advising: Theory and Algorithms. Springer-Verlag, London. ISBN:
978-1852339289.

Nagy, 1., Suzdaleva, E., Karny, M., and Mlynérova, T. (2011). Bayesian Estimation of Dynamic
Finite Mixtures. International Journal of Adaptive Control and Signal Processing, 25(9), pp.
765-787.

Suzdaleva, E. and Nagy, 1. (2018). An online estimation of driving style using data-dependent

pointer model. Transportation Research Part C: emerging technologies, 86, pp. 23-36.

BIBLIOGRAPHY 7

[21]

22]

23]

[24]

[25]

[26]

Suzdaleva, E., Nagy, I. and Mlynafovd, T. (2016). Expert-based initialization of recursive mixture
estimation. In: 8th IEEE International Conference on Intelligent Systems, 2016, September 4-6,
Sofia, Bulgaria, pp. 308-315.

Nagy, I. and Suzdaleva, E. (2017). Algorithms and Programs of Dynamic Mixture Estimation.
Unified Approach to Different Types of Components. SpringerBriefs in Statistics. Springer Inter-
national Publishing. ISBN: 978-3-319-64670-1.

Safri, Y. F., Arifudin, R. and Muslim, M. A. (2018). K-nearest neighbor and naive Bayes classifier
algorithm in determining the classification of healthy card Indonesia giving to the poor. Sci. J.

Informatics, 5(1), pp. 9-18.

Sharma, H. and Kumar, S. (2016). A survey on decision tree algorithms of classification in data

mining. International Journal of Science and Research (IJSR), 5(4), pp. 2094-2097.

Zhang, G. P. (2000). Neural networks for classification: a survey. IEEE Transactions on Systems,

Man, and Cybernetics, Part C (Applications and Reviews), 30(4), pp. 451-462.

Komarek, P. (2004). Logistic regression for data mining and high-dimensional classification. Tech-

nical report, PhD Thesis, Carnegie Mellon University.

Ishibuchi, H., Nozaki, K. and Tanaka, H. (1992). Distributed representation of fuzzy rules and its

application to pattern classification. Fuzzy sets and systems, 52(1), pp. 21-32.

Gupta, M. R. and Chen, Y. (2011). Theory and use of the EM algorithm. Foundations and

Trends® in Signal Processing, 4(3), pp. 223-296.

Bohning, D. (2003). The EM algorithm with gradient function update for discrete mixtures with

known (fixed) number of components. Statistics and Computing, 13, pp. 257-265.

Karlis, D. (2005). EM algorithm for mixed Poisson and other discrete distributions. ASTIN Bul-
letin: The Journal of the TAA, 35(1), pp. 3-24.

Train, K. E. (2008). EM algorithms for nonparametric estimation of mixing distributions. Journal

of Choice Modelling, 1(1), pp. 40-69.

Ishwaran, H., James, L. F. and Sun, J. (2001). Bayesian Model selection in finite mixtures by
marginal density decompositions. Journal of the American Statistical Association, 96(456), pp.

1316-1332.

BIBLIOGRAPHY 78

[33]

[40]

[41]

[42]

Jozova, S., Uglickich, E. and Nagy, I. (2021). Bayesian Mixture Estimation without Tears. In:
18th International Conference on Informatics in Control, Automation and Robotics (ICINCO),

pp. 641-648.

Simmons, G. F. (1995). Calculus With Analytic Geometry. 2nd Edition, McGraw-Hill Education.
ISBN: 978-0070576421.

Lewis, D. D. (1998). Naive (Bayes) at forty: The independence assumption in information re-
trieval. In Machine Learning: ECML-98: 10th European Conference on Machine Learning Chem-

nitz, Germany, pp. 4-15.

Johnson, N. L., Kemp, A. W. and Kotz, S. (2005). Univariate discrete distributions (Vol. 444).
3rd Edition, John Wiley & Sons. ISBN: 978-0-471-27246-5.

Nagy, 1. (2003). Zéklady bayesovského odhadovani a Fizeni. CTU, Prague. ISBN: 80-01-02748-1.

Bolck, A., Croon, M. and Hagenaars, J. (2004). Estimating latent structure models with categor-

ical variables: One-step versus three-step estimators. Political analysis, 12(1), pp. 3-27.

Krishnamoorthy, K. (2006). Handbook of Statistical Distributions with Applications. 1st Edition,
Chapman and Hall/CRC, New York. ISBN: 1-58488-635-8.

Chew, V. (1971). Point estimation of the parameter of the binomial distribution. The American

Statistician, 25(5), pp. 47-50.

Karny, M., Kadlec, J., Sutanto, E. L., Roji¢ek, J., Valeckovd, M. and Warwick, K. (1998). Quasi-
Bayes estimation applied to normal mixture. In Preprints of the 3rd European IEEE Workshop

on Computer-Intensive Methods in Control and Data Processing, Praha, Vol. 98, No. 3, pp. 77-82.

Nagy, 1., Suzdaleva, E. and Mlynéfovd, T. (2016). Mixture-based clustering non-gaussian data
with fixed bounds. In 2016 IEEE 8th International Conference on Intelligent Systems (IS), IEEE,
pp. 265-271.

Nagy, L., Suzdaleva, E. and Pecherkovd, P. (2016). Comparison of Various Definitions of Proximity
in Mixture Estimation. In: 13th International Conference on Informatics in Control, Automation

and Robotics (ICINCO), pp. 527-534.

BIBLIOGRAPHY 79

[44]

[45]

[47]

[48]

[49]

Suzdaleva, E. and Nagy, I. (2020). Practical Initialization of Recursive Mixture-Based Cluster-
ing for Non-negative Data. In: Gusikhin, O., Madani, K. (eds) 14th International Conference
Informatics in Control, Automation and Robotics (ICINCO 2017), pp. 679-698. Lecture Notes in

Electrical Engineering, vol 495. Springer, Cham.

Suzdaleva, E., Nagy, 1., Pecherkovd, P. and Likhonina, R. (2017). Initialization of Recursive
Mixture-based Clustering with Uniform Components. In: 14th International Conference Infor-

matics in Control, Automation and Robotics (ICINCO), pp. 449-458.

Kfivda, V., Richtaf, M. and Olivkova, I. (2007). 2. Silni¢ni doprava. VSB — Technical university
of Ostrava. ISBN: 978-80-248-1521-3.

Reditelstvi silnic a dalnic CR (2009) [online]. Séitani dopravy, stupné provozu a detekce kolon.

[Cit. 13.1.2021]. Available from: https://portal.dopravniinfo.cz/.

Dua, D. and Graff, C. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml].

Irvine, CA: University of California, School of Information and Computer Science.

Tan, P. N., Steinbach, M. and Kumar, V. (2006). Introduction to Data Mining. Pearson Education.

ISBN: 978-0-321-42052-7.

Larose, D. T. (2005). Discovering Knowledge in Data: An Introduction to Data Mining. John
Wiley & Sons, Inc., New York. ISBN: 0-471-66657-2.

Hosmer, D. W. and Lemeshow, S. (2000). Applied logistic regression. 2nd Edition, John Wiley &
Sons, Inc., New York. ISBN: 0-471-35632-8.

Larose, D. T. (2006) Data Mining Methods and Models. John Wiley & Sons, Inc., New York.
ISBN: 978-0-471-66656-1.

Huaguang, Z. and Derong, L. (2006). Fuzzy Modeling and Fuzzy Control. Birkhauser, Boston.
ISBN: 978-0-8176-4539-7.

List of Figures

3.1

4.1

5.1
5.2
5.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

B.1

C1
C.2

Histogram of the probability function of a binomial distribution with different parame-

L1753 25
Histogram of a mixture of a binomial distributions 26
Clustering of data space & e 35
Creation of local models 37
Construction of the prediction model oo 39
The effect of the initial strength of information ka 43
The effect of the initial parameters of the model pE 44
Estimation of the categorical model 46
Estimation of the binomial model, 48
Probability functions of the variable x; with two binomial components 54
Probability function of the variable x; with two non-binomial components 55
Probability function of the variable x; with three binomial components 56
Tllustration of the KNIME program with accident data 68
Cluster centers for static components 89
The probability function f (z) and the distribution function F'(z) 94
Generation of discrete data 96

80

List of Tables

3.1
3.2
3.3
3.4
3.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Descriptive part of the categorical model L. 20
Explanatory part of the categorical model, ... 21
Categorical model in the form of a table 21
Categorical model with five values 23
Example of explanatory categorical model oL 23
Correlation coefficient of variables x; and x5 and accuracy of the result 53
Classification accuracy using marginal mixtures method 67
Classification accuracy using k-nearest neighbor method 69
Classification accuracy using decision tree method 69
Classification accuracy using neural networks method 70
Classification accuracy using logistic regression method 70
Classification accuracy using naive Bayes method 71
Classification accuracy using Fuzzy rules method 71
Comparison of the classification accuracy 72

81

Appendices

82

Appendix A

Full derivation of mixture

estimation

A mixture model consists of n. components

f] (I|p)3]€ {1727 7nC}7

where j denotes the component and p is a vector of parameters (for a binomial component it is a vector

of probabilities p;), and the corresponding categorical pointer model
f(C:j|O[) =y,

where c is the pointer variable and « is the probabilistic vector of the parameters.
To derive an algorithm for the estimation of the parameters p and «, we express the probability of
all unknown objects conditional on all data z (t) measured up to the current time point ¢ and factorize

it using the chain rule

f(ct = j,p,a\x (t)) & f(xtact = j,p,a|a? (t - 1)) =

Bayes rule
= [(@iler = 4, p5) [(o = jla) f (plz (E = 1)) f (|2 (t = 1)), (A1)

where we used the following assumed independencies:

83

APPENDIX A. FULL DERIVATION OF MIXTURE ESTIMATION 84

e the component models do not depend on the parameters «, and the pointer model is independent

on p,
o the parameters p of the components do not depend on the switching parameter «,
e the components are independent.

Equation (A.1) can be divided into several parts, which will be discussed now. The first part of the

equation can be rewritten in the form of a component of the mixture model
f(xiler = j.pj) = fj (@elpy) -
The second one is the pointer model
flee=jla) =a;
and the rest are prior distributions of parameters p and «
flz(t—=1))), flalz(t—-1)).

A typical application of Bayes rule is shown in Equation (A.1). However, the main problem lies
in the variable ¢; - its elimination leads to the sum form of a Bayes rule and it causes the growing
complexity when updating the statistics. Therefore, the classification of the measured data z; with
respect to the individual components must be performed at the beginning. In other words, we need to

construct the probability function f (¢; = jla (t)), V4. This can be done with the formula (A.2)

f(ct:j‘x(t)’p’a)oc/o/Of(ct:jal%am(t))dpda:
11
:/O /o f(ziler = 4,p5) f (e = jla) f (plz (t — 1)) f (a]z (t — 1)) dpda =

1 1
= /0 [(xiler = j,p;) f (ple (£ —1))) dp x /O fler=jle) f(alz (t — 1)) dev, (A.2)
= f(pla(®)) = f(alz(t))

where the first term in the product is the prediction from the j-th component and the second one is

the prediction from the pointer model.

APPENDIX A. FULL DERIVATION OF MIXTURE ESTIMATION 85

Using the most recent point estimates of the parameters p,_1 and &;—_1, we can write the weights
wj = f(Zpjie—1) -1 -

The weights are the product of the component model proximity and the pointer model proximity
with the actual point estimates of the parameters and the measured value of x; = & inserted.

Using the Bayes rule and the product form of the models

fer (x¢|pe,) Hf ‘J 8(ee.d) and f (¢i]ae,) = Hf (j|aj)6(ct’j) ’

J

1 fora=b
where 0 (+) is the Kronecker function, ¢ (a,b) = and we can derive the following algo-

0 elsewhere

rithm for the estimation:

Algorithm
Initial part

o Construct the prior statistics S and x (for binomial components) and v for the pointer model

and construct the prior point parameter estimates.
Recursive part (fort=1,2,---,T)
e Measure the current data x;.

+ Evaluate the weights wy,; for j € {1,2,--- ,n.}
wje = f (e = jlo (t), pr—1, Gr—1)

using the formula (A.2) with the current parameter estimates p;—q and Gy—1.

e Perform a weighted update of the statistics
Sjst = Sji—1 + Wi

Kt = Kjt—1 + Wyt

APPENDIX A. FULL DERIVATION OF MIXTURE ESTIMATION 86
Vit = Viit—1 T Wit »

where the data are added to a component only with the ratio corresponding to the probability

that it belongs to a particular component.

¢ Construct the point estimate of the parameters

S

~ it ~

Pyt = —— and &y = R (vj,),
Rjst

where R (-) means normalization to the sum equal to one.

Appendix B

Theoretical description of each

initialization point

1. Data area

Suppose we have 3 variables x1,z2 and 3 arranged in a data matrix x with three columns ¢’ and as

many rows as the number of measurements. Then

mi = min (z,'c’), ma = max (z,')

gives the 3-element vectors of the minimum and maximum values of the variables. We can place the
coordinates of the initial components in this space with the command
for i=1:nc
thI(:,i)=(mi+ma)/2+.2*(ma-mi).*rand(3,1,’n’)
end
where (mi 4+ ma) /2 is the center of the region, (ma — mi) is the width of the region, and nc is the

number of components.

87

APPENDIX B. THEORETICAL DESCRIPTION OF EACH INITIALIZATION POINT 88

2. Initial parameter estimates

Great emphasis is placed on the initial location of the parameters (cluster centers for static compo-
nents). The centers should definitely lie in the region where the data occur, and ideally, the individual
centers should lie near the peaks of the data, i.e., at the locations where the density maxima of the
expected clusters (working modes of the system) occur.

If we do not have prior data, we follow the previous point (we scale the data and decide the centers
around the origin).

If prior data are available (and it should be, because the process has been running somehow - even
just a trial - and usually all we need to do is put some effort into it and the data will be found), we
definitely want to use it. First of all, we determine the region where the data occur (see previous
point) and then we look for density peaks - either in histograms of individual variables or in pairs of
variables. The histograms are clear. We show the procedure for pairs:

We have 3 variables x1, 2 and z3. We plot xy-graphs for the pairs 1 — x2 and z2 — x3.
plot(x1,x2,’:’) and plot(x2,x3,’.°)

On the z-axis of the first plot we find the coordinates corresponding to the centers of visible
clusters and on the y-axis the corresponding y-coordinates. There may be multiple y-coordinates to
one z-coordinate - then we record all of them, with the z-coordinates repeated.

The second figure shows all the y-coordinates from the first figure on its x-axis. To these, we assign
the y-coordinates from the second figure and add them as a third number to the existing coordinates.
We can continue in this way for more coordinates. We use the resulting coordinates as the component
centers, i.e. the prior parameters of the static components.

The procedure is illustrated in the Figure B.1:

APPENDIX B. THEORETICAL DESCRIPTION OF EACH INITIALIZATION POINT 89
y-coordinate y-coordinate

A A

IoON e =
4 O n D

a b x1 c d e T2

x-coordinate x-coordinate

Figure B.1: Cluster centers for static components

The centers from the first figure will be:

Cl=1la,c,C2=]a,e],C3=1bd].

From the second figure, add

Cl=la,cyg],C2=]a,e, f],C3=1b,d,h].

These are not necessarily the true centers of the multivariate components, but at least we know
that something is going on here and the initial centers somehow belong to the density vertices. The

fine-tuning should happen in the actual estimation.

3. Holding of prior centers

This is a very important method, used more or less in every estimation.

At the beginning of the estimation, information about the parameters can only be derived from a
small amount of data. If the parameters were left completely free, they would "rush" meaninglessly
after each measured data vector and could easily stray somewhere from which there would be no return.
That is why we need to start with statistics that already have some information in them - either from
the data or from an expert.

We will demonstrate the situation for normal distribution of components. In other cases, the

situation is similar.

APPENDIX B. THEORETICAL DESCRIPTION OF EACH INITIALIZATION POINT 90

The evolution of the statistics to estimate the regression coefficients is done as follows
Vi=Vi1 + 9V,

where V' is the information matrix, ¥ = [y, 1]/ is the extended regression vector with the new data.
This shows that the matrix V grows gradually as data are loaded into it.

It is important to note that if the matrix V is zero at the beginning, immediately the first data
will change it a lot.

The point estimates of the regression coefficients follow the formula
i -1
0=Vy Vyy,

where V,,V,y and V,, are the submatrices of V' divided by the regression vector (in general, ¥ =

[y¢, ¥4]'; here, for static components, 1, = 1). If we multiply the matrix V by ¢, then
. = 3
0=(cVy) " (cVyy) = Vy lvyd))

then the estimates will not change - only (for large ¢) ¢V will be larger, and hence more robust to
changes due to newly coming data.

So the conclusion is quite simple: The large information matrix is used to hold the initial component
centers.

Note: If we have some initial parameters in mind 0o and we want to construct an information

matriz for them, we proceed as follows

Then the first guess

APPENDIX B. THEORETICAL DESCRIPTION OF EACH INITIALIZATION POINT 91

4. Fixed noise covariance

The noise covariance determines the shape of the clusters. If we are primarily concerned with finding
the cluster centers, we can keep the covariances small and fixed (not estimating them). We specify
them as a unit matrix multiplied by a tenth to a hundredth of the range (radius) of the expected data
region.

If we care about the shape of the clusters, e.g. in classification when we divide the data into
individual components, it is recommended to turn on their estimation only during the estimation
process (e.g. in the middle), when the centers will be essentially found. However, there is still a danger

that the covariances will run away or that one component will overlap the others.

5. Repeated estimation on the same data

The component centers start at their initial centers and gradually travel to the density peaks. Each
data record is shifted a little according to which component it belongs to (according to the weights
w). If the data sample is not fully sufficient, it can and does happen that the estimation ends before
the centers have arrived to their proper places. Then it is reasonable to continue the estimation with
the same data again, but to start not from the initial centers, but from those that have arrived so far.

There is one problem, however. At the end of the estimation, the information matrices are large
(we say that the estimation is tight) and the centers would have moved either no more or very little.
Therefore, between individual runs of the estimation, the statistics need to be suitably oblivious
(divided by a number approximately equal to the length of the previous estimation).

This can be done repeatedly. In doing so, it is a good idea to follow the evolution of the centers,

for example in a graph, and continue until the center estimates move.

6. Artificial regression vectors

A good way to convert often abstract expert knowledge into data that are suitable for initialization
is the creation of artificial data vectors. Each data vector consists of a regression vector and its
corresponding output value. We will illustrate the situation with the following example:

We observe the length of a queue in just one leg of a controlled intersection that collects traffic from

APPENDIX B. THEORETICAL DESCRIPTION OF EACH INITIALIZATION POINT 92

a certain area. There are 5 critical points in this area, which may be at different traffic levels depending
on the situation. Thus, the regression vector will contain 5 variables (traffic levels in the area) and the
output is the length of the queue at the intersection. The expert can convert his knowledge into an
output of the most important combinations of loads for each location in the area and assign (according
to his belief) the corresponding value of the length of the queue at the intersection.

Note: If prior data are available, it is of course possible to use them and select some important
data vectors that are critical for the situation and carry a lot of information. The selection can again
be according to the expert’s recommendation.

The constructed data vectors are then treated normally as measured data vectors in the initializa-

tion.

7. Expert classification

This method follows the previous procedure, but instead of assigning an output value to a regression
vector, the selected data are expertly assigned to the class (component) to which it belongs.

Again, there are several ways to perform this pre-classification.
1. Expertly create the entire data vector and classify it into a class.
2. Take some prior measured data vector and expertly assign a class to it.

3. Use some superior tools (let a human observe the situation or rent some expensive measuring
instrument) to measure not only the data records but also the corresponding classification classes

for prior measurement.

We use what we get for initialization, where we perform learning with the teacher (i.e., knowing the

correct classification).

Appendix C

Generation of discrete data in

Scilab

Let X is a random variable with distribution given by distribution function F'. Then it holds

where U is uniform on the interval (0,1).

So, mapping uniform distribution on interval (0, 1) gives values of random variable with distribution
function F' ().

It holds for a continuous random variable. For the discrete one, the distribution function is given
as a cumulative sum (cumsum () of the probability function, which is a vector of probabilities of its

individual values

x‘123~~n

f(x) ‘ S I O
The probability function f (x) and the distribution function F' (x) for n = 3 are shown in Figure

C.1.

93

APPENDIX C. GENERATION OF DISCRETE DATA IN SCILAB 94

f(x)

D2

v

D2

b1

0 1 2 3

Figure C.1: The probability function f (z) and the distribution function F' (z)

Now, we generate values on the vertical axis uniformly from (0, 1) . Discrete distribution function is
a piecewise continuous function that has a finite number of jumps (intervals) in its values. The jumps
at a specific value is equal to the probability of this value. The probabilities that we are going to hit a
specific vertical interval, say i-th is p;. Let us generate U = ug so that ug lies in the interval with the

probability pa, then (F (z) < U) = [1,0,0] (where 1 denotes “true” and 0 “false”). Then

> (F(x) <ug) = [1,0,0]=1.

Then Y (F (x) < ug) + 1 = 2 and we generate the value 2. As the probability that ug is from that
interval is po, the probability of generating 2 is ps. This corresponds to the probability function whose
values we generate.

This example can be easily generated to the interval with probability p;. Then

D (F(2) <ug)+1=i

with probability p;.

The whole function for generating discrete data in Scilab is as follows

y (t) = sum (cumsum (p) < rand (1,1, u’)) + 1

APPENDIX C. GENERATION OF DISCRETE DATA IN SCILAB 95

and we use it in the for loop. The procedure for generating discrete data y € {1,2, 3} is described in

the steps below:

1. create the cumulative sum of the probability function, if p; = 0,31, po = 0,52 and p3 = 0, 17,

then the cumulative sum gives the value

P =0,31, P, =0,83, P, =1,

2. use the rand function to generate a random variable in the interval (0,1). E.g.

UO:0,45,

3. compare all values of the cumulative sum with the variable ug as follows cumsum (p) < ug with
1 denotes “true” and 0 “false”

0,31 < 0,45 true — 1,
0,83 < 0,45 false — 0,

0,1<0,45 false — 0,

4. determine the sum of the values 1 (“true”) and 0 (“false”)

> [1,0,00=1,

5. now we get the output value y € {0,1,2}, but we want discrete data y € {1,2,3}, so add 1 in

this way > (cumsum (p) < ug) + 1 and the result is

y=1+1=2.

The result shows that if a random variable from the interval p, is generated, the output will be y = 2.
Consequently, y = 1 is obtained for the interval p; and y = 3 for the interval p3. This is shown in

Figure C.2.

APPENDIX C. GENERATION OF DISCRETE DATA IN SCILAB

F(z)
,,, p3 .
D2
UQ [rrmmrrr e [
P1
0 1 2 3

Figure C.2: Generation of discrete data

96

Appendix D

Functions for executing Scilab codes

For the sake of clarity of the codes in the thesis, both mixture estimation algorithms are given without
functions. These functions are necessary for the operation of the code after execution in Scilab, but
they are not essential for the core of the thesis. Therefore, both sets of functions are listed below, and
once copied to the appropriate place in the code, the algorithms are fully functional. The first set of
functions belongs to the algorithm for estimating the mixture f (1, x2|c) with binomial x, presented in
Subsection 6.1.3. The second set of functions belongs to the experiment on simulated data in Section
6.2, which describes the estimation of the marginal mixture f (x1,x2|c) with binomial 2 and also uses

many functions that are not part of Scilab.

Set of functions for the estimation of the mixture f (z1,22|c) with binomial

function y=randu(m,n)
// uniform distribution (0,1)
if argn(2)<1, m=1; n=1; end
if argn(2)<2, n=1; end
y=grand (m,n, ’unf’,0,1);

endfunction

function [pr,Lp]=binpdf(k,p,n)

// probability of binomial pf for the value k

97

APPENDIX D. FUNCTIONS FOR EXECUTING SCILAB CODES

m=length (k);

num=factLn (n);

den=factLn (k)+factLn (n—k);
Lp=num—den+kx*log (p)+(n—k)*log(l—p);
pr=exp (Lp);

endfunction

function Lf=factLn (n)
// logarithm of factorial
m=length (n)
for i=1m
Lf(i)=sum(log(1:n(i)));
end

endfunction

function fn=fnorm(f,i)
// fn=fnorm(f,1i) normalization of probabilistic table
// fn normalized table
/]t table
// i direction i=1 norm colunms, i=2 norm rows
// Rem: f can have zero rows or columns
if argn(2)==1,
[m,n]=size (f);
if n>m, f=f’; end
sf=sum(f);
if sf==
fn=ones (f)/length (f);
else
fn=f/sf;
end

else

98

APPENDIX D. FUNCTIONS FOR EXECUTING SCILAB CODES

[m n]=size (f);

if i==1
fl=sum(f,1);
s=find ({1==0);
f1(s)=m;
f(:,s)=ones(m,length(s));
fn=f./(ones(m,1)=*f1l);

else
f2=sum(f,2);
s=find ({2==0);
£2 (s)=n;
f(s,:)=ones(length(s),n);
fn=f./(f2%ones(1,n));

end

end

endfunction

function [a,m]=amax(x,tx)
// arg of max
[nl,n2]=size(x);
if (nl==1) | (n2==1)
[m, a]=max (x)
else
if tx==1, tx="r’; end
if tx==2, tx="c’; end
[m, a]=max(x, tx);
if tx=="r’ // if uniform denote it by %nan
for i=1l:size(x,2)
if variance(x(:,i))==0

a(i)=0

99

APPENDIX D. FUNCTIONS FOR EXECUTING SCILAB CODES

end
else
for i=1l:size(x,1)

if variance(x(i,:))==0

end

endfunction

function [q,T]=c2c(ct,Ect)

/] cc=c2c(ct,Ect) permutation of pointer values for plot
// ct simulated pointer

// Ect estimated pointer

// a order vector for Ect

/] T transf. matrix

// USSAGE: ct=q(Ect)

// set: [q T]=c2c(ct,Ect); simul and estim pointer
// plot(1l:nd,ct,l:nd,q(Ect)) plotting

n=min ([length (ct),length (Ect)]);

if max(ct(1l:n))~=max(Ect(1l:n))

disp 'WARNING from c2c.sci: Different numbers of components’

end
nc=max(ct);
T=zeros (nc,nc);

for t=1:n

T(ct(t),Ect(t))=T(ct(t),Ect(t))+1; // transformation matrix

end
for i=1:nc

[xxx,q(1)]=max(T(:,1)); // order vector

100

APPENDIX D. FUNCTIONS FOR EXECUTING SCILAB CODES

end

endfunction

function [ac,z]=acc(y,yp,n)
// accuracy
if argn(2)<3, n=0; end
e=abs(y(:)—yp(:)) <=n;
ac=sum(e)/length(y);
z.all=length(y);
z.wrong=sum(y (:)~=yp(:));
z.good=sum(y(:)==yp(:));

endfunction

function c=cord(x1,x2)
// Spearman correlation coefficient
c=correl (ranks(x1),ranks(x2));

endfunction

function j=ranks(a)
// ranks of a discrete random variable
// j ranks, i.e. for a=[3 5 2 2] we get j=[3 4 1.5 1.5]
// for equal values in a, we set average rank
// a vector of discrete (and maybe also real) values
[u,i]=gsort(a,’g’,’i);
[, §]=gsort (1,787, i °);
av=u(1);
for i=2:length(a)
if abs(u(i—1)—u(i))>1le—8
av=[av u(i)];
end

end

101

APPENDIX D. FUNCTIONS FOR EXECUTING SCILAB CODES 102

for i=1:length (av)
ia=find (abs(a—av(i))<le—8)
if length(ia)>1
k=j (ia);
j(ia)=mean(k);
end
end

endfunction

Set of functions for the estimation of the marginal mixture f (z1,z2|c) with binomial z

function f=simBin(p,N,a)
// binomial distribution corrupted by noise
if argn(2)<3, a=0; end
fp=binomial (p,N)+a*rand (1,N+1,’u’);
f=fp /sum (fp);

endfunction

function y=randu(m,n)
// uniform distribution (0,1)
if argn(2)<1, m=1; n=1; end
if argn(2)<2, n=1; end
y=grand (m,n, ’unf’ 0 ,1);

endfunction

function i=xt2col(x,b)
// i=xt2col(x,b) i is the column number of a model table with
// the regression vector xt with the base b;
// elements of x(i) are 1,2,...,nb(i)

// it is based on the relation

APPENDIX D. FUNCTIONS FOR EXECUTING SCILAB CODES 103

// i=b(n—1)b(n—2)...b(1)(x(n)—1)+...4b(1)(x(2)—1)+x(1)

n=length (x);

b=b (1) 7

bb=b (2:1n);

bb=bb (:) ’;

b=[bb 1];

i=0;

for j=lmn
i=(i+x(j)—=1)*b(j);

end

i=i+1;

endfunction

function [pr,Lp]=binpdf(k,p,n)
// probability of binomial pf for the value k
m=length (k);
num=factLn (n);
den=factLn (k)+factLn(n—k);
Lp=num—den+k=log (p)+(n—k)*log(1—p);
pr=exp (Lp);

endfunction

function Lf=factLn (n)
// logarithm of factorial
m=length (n)
for i=1m
Lf(i)=sum(log (1:n(i)));
end

endfunction

function fn=fnorm(f, i)

APPENDIX D. FUNCTIONS FOR EXECUTING SCILAB CODES 104

// fn=fnorm(f,i) normalization of probabilistic table
// fn normalized table
/] 1 table
// i direction i=1 norm colunms, i=2 norm rows
// Rem: f can have zero rows or columns
if argn(2)==1,
[m,n]=size (f);
if n>m, f=f’; end
sf=sum(f);
if sf==
fn=ones (f)/length (f);
else
fn=f/sf;
end
else
[m n]=size (f);
if i==1
fl=sum(f,1);
s=find ({1==0);
f1(s)=m;
f(:,s)=ones(m,length(s));
fn=f./(ones(m,1)*f1);
else
f2=sum(f,2);
s=find (f2==0);
f2 (s)=n;
f(s,:)=ones(length(s),n);
fn=f./(f2xones(1,n));
end
end

endfunction

APPENDIX D. FUNCTIONS FOR EXECUTING SCILAB CODES

function [a,m|=amax(x,tx)
// arg of max
[nl,n2]=size(x);
if (nl==1) | (n2==1)
[m, a]=max(x);
else
if tx==1, tx="r’; end
if tx==2, tx="c’; end
[m, a]=max(x,tx);
if tx=="r’ // if uniform denote it by %nan
for i=l:size(x,2)

if variance(x(:,i))==0

else
for i=1l:size(x,1)

if variance(x(i,:))==0

end

endfunction

function [T,kx,ky]=table(x,y,kx,ky)
// T=table(x,y) contingency table T(nx,ny)
/] X,y data
/] kx,ky values of x,y

xv=vals (x);

105

APPENDIX D. FUNCTIONS FOR EXECUTING SCILAB CODES 106

yv=vals (y);

if argn(2)<3
kx=xv (1 ,:); // if mnot given, read from data
ky=yv (1,:);

end

ix=min (kx):max(kx); // values by one

iy=min (ky):max(ky);

dx=min (xv(1,:)) —min (kx); // shift of data 1,2,3

dy=min (yv(1,:)) —min(ky); // .. form given values e.g. 0,1,2

x=x—min (x)+1; // data

y=y—min (y)+1; // .. startingwith 1

mx = length (ix); // dimensions of the

my = length (iy); // .. final data

T = zeros (mx, my);

for t = 1:length(x)
T(x(t)+dx,y(t)+dy) = T(x(t)+dx,y(t)+dy) + 1;
end

endfunction

function [h,f]=vals(a)

// [h f]=vals(a) find different values of a and their frequencies

// h values and frequencies [vals;abs_freq]
/] 1 relative frequencies
a=a(:);

bgsort (a, g’ , 1)
[v,m|=unique(b);
dm=diff (m);
nl=length (b)+1;
n=[dm nl-m(3)];
f=n/sum(n);

h=[v(:) 7;n];

APPENDIX D. FUNCTIONS FOR EXECUTING SCILAB CODES 107

if sum(n)~=max(size (a))
disp (’Error: in vals.sci’)
return

end

endfunction

function [n,f]=vals2(a)

// [h f]=vals(a) find different values of a and their frequencies

// Show only the frequencies
// h values and frequencies [vals;abs_ freq]
/] £ relative frequencies

a=a (:) 7

b=gsort(a,’g’,’1);

[v,m]=unique (b);

dm=diff (m);

nl=length (b)+1;

n=fdm nl-m($)];

f=n/sum(n);

if sum(n)~=max(size(a))
disp ("Error: in vals.sci’)
return

end

endfunction

function [q,T]=c2c(ct,Ect)

// cc=c2c(ct,Ect) permutation of pointer values for plot
// ct simulated pointer

// Ect estimated pointer

/] a order vector for Ect

/] T transf. matrix

// USSAGE: ct=q(Ect)

APPENDIX D. FUNCTIONS FOR EXECUTING SCILAB CODES 108

/] set: [q T]=c2c(ct,Ect); simul and estim pointer
// plot(1l:nd,ct,l:nd,q(Ect)) plotting
n=min ([length (ct),length (Ect)]);
if max(ct(1l:n))~=max(Ect(1l:n))
disp WARNING from c2c.sci: Different numbers of components’
end
nc=max(ct);
T=zeros (nc,nc);
for t=I1:n
T(ct(t),Ect(t))=T(ct(t),Ect(t))+1; // transformation matrix
end
for i=1:nc
[xxx,q(1)]=max(T(:,1i)); // order vector
end

endfunction

function [ac,z]=acc(y,yp,n)
// accuracy
if argn(2)<3, n=0; end
e=abs (y(:) —yp(:)) <=n;
ac=sum (e)/length (y);
z.all=length(y);
z.wrong=sum (y (:)~=yp (:));
z . good=sum(y(:)==yp (:));

endfunction

Appendix E

Description of accident data values

Accidents involving pedestrians have the following attributes:
o pedestrian category (5 values),

— male,

female,

child (up to 15 years),

group of children,

— other group,
o pedestrian status (7 values),

— good (no adverse circumstances identified),

— inattention, distraction,

— under the influence of drugs, narcotics or alcohol,

— physical disability (illness, nausea, reduced mobility, disability, etc.),
— attempted suicide, suicide,

— other unlisted condition,

not identified,

o pedestrian behavior (7 values),

109

APPENDIX E. DESCRIPTION OF ACCIDENT DATA VALUES 110

correct, adequate,

poor judgement of distance and vehicle speed,

suddenly entering the carriageway from a pavement, verge, boarding or dividing island,
confused, rushed, indecisive behavior, sudden change of direction,

hitting a vehicle from the side,

children playing on the road,

none of the above,

o situation at the accident site (6 values),

pedestrian entering at the FREE or STOP signal,

crossing outside or near a crossing,

crossing at a marked crossing,

crossing immediately in front of or behind a stopped or parked vehicle,

walking or standing on the pavement, walking on the right or wrong side of the road,

other situations,

o gender of the pedestrian (4 values),

male,
female,
boy (up to 15 years),

girl (up to 15 years),

« provision of first aid (6 values),

there was no need for,

by the occupants of the vehicles involved in the accident,
by another person,

by the air ambulance,

by an ambulance,

not provided, but had to be provided.

Appendix F

Experiment with real data in Scilab

The code in Scilab for real accident data involving pedestrians is shown below.

// Marginal mixtures on real data

// — accident data involving pedestrians

//

clear , cle, mode(0);

xAll=csvRead ("xAllR.csv’,7;7); // loading data — variables x //1
yAll=csvRead ("yAllR.csv’,7;7); // loading data — variable y //2
[nd,nv]=size (xAll); // number of data and variables x //3
nL=1500; // number of learning data //4
nT=nd-nL; // number of testing data //5
b=max (xAll, 'r’); // maximum of values in each x //6
ny=max (yAll); // maximum of values in y /7
nv=length (b); // number of variables x (x1—x6) //8

// selection of data for learning

x=xAll (1:nL,:); y=yAll(1l:nL); xL=x; yL=y; //9

// INITIALIZATION

111

APPENDIX F. EXPERIMENT WITH REAL DATA IN SCILAB

k0=5; // strength of initial parameters
X(1).pI=[.15 .9]; // parameters for variable xl1
X(2).pl=[.2]; // parameter for variable x2
X(3).pI=[.2 .5]; // parameters for variable x3
X(4).pI=[.1 .6 .9]; // parameters for variable x4
X(5).pI=[.2]; // parameter for variable x5
X(6).pI=[.1 .4 .8]; // parameters for variable x6

for i=l:nv
nc(i)=length (X(i).pl); // number of components in variable xi
X(i).ka=kO*ones(1,nc(i)); // counter for xi
for j=l:nc(i)
X(i).c(j).pE=X(i).pI(j); // parameters estimates of variable xi
X(i).c(j).S=X(i).c(j).pE«X(i).ka(j)*(b(i)—1);
// summation statistics of variable xi
end

end

// ESTIMATION
for t=1:nL
for i=1l:nv // cycle for weights and updates
// — WEIGHTS
g=zeros (1,nc(i)); // definition of g
for j=l:nc(i)
q(1,j)=binpdf(x(t,i)—1,X(i).c(j).pE,(b(i)—1)); // proximities
end
if length(q)==1, X(i).w=1; else X(i).w=fnorm(q); end
// creation of weights and solution for only one component
X(i).wt(:,8)=X(i).w’; // remember the weights
/] — ESTIMATION
for j=l:nc(i)
X(i).ka(j)=X(i).ka(j)+X(i).w(j); // counter update

112

//10
//11
//12
//13
//14
//15
//16
//17
//18
//19
//20
//21

//22
//23
//24

//25
//26

//27
//28
//29
//30

//31
//32

//33
/ /34

APPENDIX F. EXPERIMENT WITH REAL DATA IN SCILAB

X(i).c(j).S=X(i).c(j) - SHX(i).w(j)*(x(t,i)—1); // stat. update
X(i).c(j).pE=X(i).c(j).S/(X(i).ka(j)*(b(i)—1)); // estimation

X(i).c(j).pt(t)=X(i).c(j).pE; // remember — evolution of param.

end
for i=l:nv, for j=linc(i), P(i,j)=X(i).c(j).pE; end, end
// save the evolution of parameters into a table
for i=l:nv
cp(i,:)=amax(X(i).wt,1); // point estimates of pointers

end

/] LOCAL MODELS
for i=1:nv
for j=1l:nc(i)
X(i).c(j).dt=]]; // definition of variables for data in clusters
end
end
for i=l:nv
for t=1:nL
X(i).c(ep(i,t)). dt=[X(i).c(ep(i,t)).dt; [y(t) x(t,i)]];
// creation of data in clusters
end
end
for i=l:nv
for j=1l:nc(i)
T=table (X(i).c(j).dt(:,1),X(i).c(j).dt(:,2),l:ny,1:b(i));
// local tables Tj(xil|y)
X(i).c(j).fy=fnorm(T,1); // local models fj(xil|y)
end

end

113

//35
//36
//37
//38
//39
//40

//41
/ /42
//43
//44

//45
/ /46
/ /47
//48
//49
//50
//51

//52
//53
//54
//55
//56

//57
//58
//59
//60

APPENDIX F. EXPERIMENT WITH REAL DATA IN SCILAB 114

fY=fnorm (vals2(y)); // model f(y) //61

clear x1 x2 y // deletion of variables x1, x2 and y //62
// selection of data for testing

x=xAll (nL+1:nd,:); y=yAll(nL+1:nd); //63

// CLASSIFICATION
for t=1:nT //64

// — WEIGHTS for prediction (same as for estimation)

for i=1l:nv //65
q=zeros (1,nc(i)); // definition of q //66
for j=1linc(i) /]67
q(1,j)=binpdf(x(t,i)—1,X(i).c(j).pE,(b(i)—1)); // proximities //68
end //69
X(i).w=fnorm (q); // weights //70
X(1).Wt(:,t)=X(i).w’; // remember the weights /71
end /72

// — PREDICTION

fy=fY ’; // probability of fy //73

for i=1l:nv /74

fj=0; // definition of fj //75

for j=l:nc(i) //76
B= X (1) w(i)*X(i) e (§). By (% (t,1));

// weighted sum of components /77
end //78
fy=fy .* fj; // product over variables //79

end //80
yp (t)=amax(fy); // argument of the maximum f(y|x) = prediction //81
end //82
u=c2c(y,yp); // renaming of variables yp in case of rotation //83

Acc_y=acc(y,u(yp)) // accuracy of prediction y = classification y //84

APPENDIX F. EXPERIMENT WITH REAL DATA IN SCILAB 115

The same code is used for experiments on car data and medical data. The only changes are in the
loading of the data (lines //1 and //2) and in the setting of the parameters in the initialization (lines
//11 to //16). These parameters are set according to the histograms of all variables x selected for the

experiment.

Appendix G

Publications

1. Jozova, S., Uglickich, E., Nagy, I. and Likhonina, R. (2022). Modeling of discrete questionnaire

data with dimension reduction. Neural Network World, 32(1), pp. 15-41.

2. Jozova, S., Matowicki, M., Ptibyl, O., Zachova, M., Opasanon, S. and Ziolkowski, R. (2021). On
the Analysis of Discrete Data — Finding Dependencies in Small Sample Sizes. Neural Network

World, 31(5), pp. 311-328.

3. Jozové, S., Tobiska, J. and Nagy, I. (2021). On-line Recognition of Critical Driving Situations.
Neural Network World, 31(3), pp. 227-238.

4. Jozova, S., Uglickich, E. and Nagy, I. (2021). Bayesian Mixture Estimation without Tears. In:
18th International Conference on Informatics in Control, Automation and Robotics (ICINCO),

pp. 641-648. ISBN: 978-989-758-522-7.

5. Jozova, S. and Nagy, I. (2021). Use of Linear Regression to Discrete Data. In 2021 Smart City
Symposium Prague (SCSP), pp. 1-6, New York: IEEE Press. ISBN: 978-1-6654-1524-8.

6. Jozova, S. and Nagy, I. (2020). Estimation of discrete data using binomial mixture. In 2020
Smart City Symposium Prague (SCSP), pp. 1-5, New York: IEEE Press. ISBN: 978-1-7281-
6821-0.

7. Jozova, S. and Nagy, 1. (2020). Modelovani a odhad méfenych veli¢in. Automa. 26(1), pp.
26-31. ISSN: 1210-9592.

116

APPENDIX G. PUBLICATIONS 117

8. Toman, P., Svoboda, J., Bouchner, P., Jozova, S., Hefmanova, J., Mashko, A. and Valek, J.
(2020). Motostudent Electric 2019/20 business project. [Technical Report] Praha: CTU FTS.

Department of Vehicle Technology.

9. Svoboda, J., Hefmanové, J., Toman, P., Jozova, S., Bouchner, P., First, J., Plomer, J., Mik,
J., Skarolek, P., Ira, L., Ruzicka, M., Vélek, J. and Rozhdestvenskiy, D. (2018). Motostudent
Electric 2017/2018 project. [Technical Report] Praha: CTU FTS. Department of Vehicle Tech-

nology.

10. Toman, P., Svoboda, J., Hefmanova, J., Jozova, S., Orlicky, A., First, J., Bouchner, P., Plomer,
J., Mik, J., Razicka, M., Papréka, O., Valek, J. and Rozhdestvenskiy, D. (2018). Motostu-
dent Petrol 2017/2018 project. [Technical Report] Praha: CTU FTS. Department of Vehicle

Technology.

11. Toman, P., Mik, J., First, J., Svoboda, J., Bouchner, P., Orlicky, A., Plomer, J., Rozhdestvenskiy,
D., Hefmanova, J., Jozovd, S., Skarolek, P., Ira, L., Vélek, J., Rizicka, M. and Paprécka, O. (2018).

Motostudent — Zavodni elektricky motocykl 2018. [Functional Sample].

12. First, J., Toman, P., Bouchner, P., Plomer, J., Svoboda, J., Mik, J., Orlicky, A., Valek, J.,
Hefmanova, J., Jozova, S., Ruzicka, M. and Rozhdestvenskiy, D. (2018). Motostudent — Zavodni

benzinovy motocykl 2018. [Functional Sample].

Publication references and citations

Citation of publications by Sarka Jozova (Author Identifier: 57218708304) according to the Scopus

database (h-index: 1):

o Jozova, S., Tobiska, J. and Nagy, I. (2021). On-line Recognition of Critical Driving Situations.
Neural Network World, 31(3), pp. 227-238.

1. Lehet, D. and Novotny, J. (2022). Assessing the feasibility of using eye-tracking technology
for assessment of external HMI. In 2022 Smart City Symposium Prague (SCSP), pp. 1-6,
New York: IEEE Press. ISBN: 978-166547923-3.

« Jozova, S., Uglickich, E. and Nagy, I. (2021). Bayesian Mixture Estimation without Tears. In:
18th International Conference on Informatics in Control, Automation and Robotics (ICINCO),

pp. 641-648. ISBN: 978-989-758-522-7.

APPENDIX G. PUBLICATIONS 118

1. Uglickich, E., Nagy, I. and Petrous, M. (2021). Prediction of Multimodal Poisson Variable
using Discretization of Gaussian Data. In: 18th International Conference on Informatics in

Control, Automation and Robotics (ICINCO), pp. 600-608. ISBN 978-989-758-522-7.

2. Jozova, S., Uglickich, E., Nagy, I. and Likhonina, R. (2022). Modeling of discrete question-

naire data with dimension reduction. Neural Network World, 32(1), pp. 15-41.

	Introduction
	State of the art
	Summary of the presented problem
	The dissertation structure

	Preliminaries
	Chain rule
	Bayes rule
	Bayesian model
	Discrete models
	Estimation and classification

	Single models
	Categorical model
	Descriptive categorical model
	Explanatory categorical model

	Binomial model

	Mixtures
	Initialization of mixture estimation
	Mixture applied to real problem

	Marginal mixtures
	Creating clusters in data space x
	Construction of local models for classification
	Classification using naive Bayes
	Algorithm for estimation and classification with marginal mixtures

	Experiments
	Basic experiments
	Estimation of the categorical model
	Estimation of the binomial model
	Estimation of the mixture f(x1,x2|c) with binomial x

	Experiments on simulated data
	Experiments on real data
	Data for experiments
	Results of experiments with other methods
	Comparison of results

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Appendices
	Full derivation of mixture estimation
	Theoretical description of each initialization point
	Generation of discrete data in Scilab
	Functions for executing Scilab codes
	Description of accident data values
	Experiment with real data in Scilab
	Publications

