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Abstract

Data analysis is an important method for many decision-making processes that are used to extract

information from data. Common data sources are questionnaires, which provide primarily discrete

data. The analysis of discrete data often fails due to the high dimension and the large number of

parameters. Therefore, finding solutions to these problems is essential and useful.

The thesis deals with the prediction of discrete data from questionnaires in the field of transporta-

tion and medicine. The proposed solution is based on modeling of the explanatory variables using

marginal mixtures (models of individual variables under the assumption of their independence) and

the construction of categorical prediction models locally on found clusters. This approach reduces the

number of parameters and the overall dimension of the model by assuming the independence of the

mixtures and using the binomial distribution in the components of these mixtures.

To verify the accuracy of the constructed prediction model, experiments are performed using real

data. The results are then compared with existing prediction methods, specifically k-nearest neighbor,

decision tree, neural networks, logistic regression, naive Bayes, and fuzzy rules.

Keywords

Accident data, binomial model, discrete data, extensive files, marginal mixtures, mixture of binomial

distributions, multimodal data, prediction.
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List of notations

Notations in the theoretical part Notations in the Scilab code Meaning of the notations

t t discrete time

T nd number of data

xt x(t) explanatory variable at time t

yt y(t) target variable at time t

ct c(t) pointer at time t

dt = {yt, xt} (*)
pairs of target and

explanatory variables at time t

d (t) = {d0, d1, · · · , dt} (*) sequence of all data

x̂ (*) measured data

ŷ yp prediction of target y

Θ, p
C(j).p

(*)
model parameters

•k|lm − multiindex (2.2)

St
C(j).S

X(i).c(j).S
statistics

κ X(i).ka counter

p̂
C(j).pE

X(i).c(j).pE
point estimate of parameter p

w X(i).w weight

α − stationary probability weight

(*) basic notations modified according to specific situation.

The thesis deals with variables in the form of random sequences, i.e. random variables indexed by

discrete time t = 0, 1, 2, · · · where t = 0 relates to prior data (or generally prior information). E.g.

xt, yt are explanatory and target variables monitored at time t (and at the same time their values

measured at time t), respectively. f (yt|xt) is a model of the target y depending on the explanatory

variable x, all at time t. In the following text, if the variables occur all in the same time (expressions

without the time evolution), the index t will be omitted for clarity. Thus, f (yt|xt) and f (y|x) have

the same meaning if t is just a time index without any relation to previous and next indexes.



List of models

Models in the theoretical part Explanation of the models

f (y, x) joint model

f (x) marginal model

f (y|x) conditional model

f (Θ|d (t))
parameter model dependent

on data

f (xi|cj , p) = fj (xi|p)
model of j-th component

in i-th variable

f (x̂i|cj , p̂) = fj (x̂i|p̂)
proximity of j-th component

in i-th variable

f (xi|y, cj ,Θ) = fj (xi|y,Θ) local model

For clarity i ∈ {1, 2, · · · , n} denotes the variables, where n (nv in Scilab) is the number of variables,

and j ∈ {1, 2, · · · ,m} denotes the components, where m (nc in Scilab) is the number of components.



Chapter 1

Introduction

The motivation for this thesis was the task of accident analysis in the Prague area with the aim of

classifying traffic accidents according to their severity depending on the circumstances of the accident.

The circumstances were e.g. weather conditions, time of day, presence of alcohol, etc. The data were

obtained from the records of the Czech Police in the form of a questionnaire (as a set of answers to

questions from one type of questionnaire). The questions are prescribed and specific answers are given

according to the accident in a question, so it is almost entirely discrete data - the number of possible

answers for each question is finite and the answer is simply marked. For a good set of discrete data

from a questionnaire, it is important to have appropriately chosen questions that match what we want

to find out. It is also necessary to have a large number of records and the most accurate information

(answering all questions). This results in extensive files of discrete data with a high dimension. While

solving this particular task of traffic accident classification, it became clear how few suitable methods

are available for analyzing discrete (survey) data. The same problem arose later in the analysis of the

medical data obtained again from the questionnaire survey.

The basis of this thesis is the elaboration of the marginal mixtures method for the analysis of

extensive files of discrete data. This means that the range of values of these data is countable and

the model takes on enormous dimensions. Data analysis using descriptive statistics is simple, but the

aim of this thesis is to look for relationships between variables. In practice, much attention is paid

to continuous models, especially linear regression, so that continuous data are explored more than

discrete data. The most common description of discrete data is through categorical models that can

be written in the form of a table. Each table entry corresponds to a configuration of the values of the

9



CHAPTER 1. INTRODUCTION 10

variables that appear in the model, and the model assigns a probability to each configuration. A great

advantage of such models is their general form - each situation that can occur in a modeled system

is described separately. However, the big disadvantage of the categorical models is their size, which

means a high dimension of the table expressing this distribution for more variables and values and

their overparameterization. For example, a model with say 10 variables, each with 8 different values

on average, has dimension 810. This is called the curse of dimensionality [1]. This makes common

categorical models almost unusable in larger practical tasks. Therefore, it is necessary to create a new

discrete prediction model that reduces the number of parameters and thus the dimension of the model.

Correct choice of the model and estimation of its parameters is the basic presumption for successful

solution of the target task. If the model is designed with the wrong structure (selection of variables

that affect the modeled variable) or the model is misspecified (insufficient or inappropriate data), the

result is likely to be incorrect. Therefore, the design of the model and the collection of sufficient valid

data for correct estimation are essential.

The basic assumption that in general allows for a reduction of the model dimension is the inde-

pendence of the variables from each other. For the aforementioned case of 10 variables with 8 possible

values, the assumption of independence reduces the dimension from 810 to 8 ∗ 10. However, the inde-

pendence has to be justified somehow. In our approach, we assume that the variables are multimodal.

This means that the generation process works in several different modes, and we assume independence

within these working models. Then we estimate the variable models in the form of mixtures. Each

component of the mixture reflects the data of individual working modes - so called data clusters.

A mixture models not only the data clusters by its components but also a pointer variable that de-

scribes the transitions between the components (working modes). And while the data in the clusters

are assumed to be independent, the dependency of the pointers of individual variables is left. The

assumption is that the behavior of the variables is projected into these pointers, and through them the

important connection between the variables is preserved.

In addition to independence assumptions, another way to reduce model dimensionality is to replace

the categorical distribution with another discrete distribution with a smaller number of parameters

while maintaining model quality. The binomial distribution was chosen as a suitable one because it is

determined by only one parameter and this allows to shape the probability function of the binomial

distribution well.

The presented research is based on the construction of a model that estimates (predicts) the value of
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the target variable on the basis of measured explanatory variables (circumstances of the phenomenon),

based on the above mentioned simplifications (independence assumptions, distribution replacement).

This value determines the class to which the measured vector of values of explanatory variables will

be classified. Thus, the prediction of a discrete target variable is understood here as a classification in

the data space of explanatory variables.

The process is as follows: We observe a certain phenomenon that is described by a target variable.

The values of the target variable are influenced by explanatory variables. All variables (target and

explanatory) are discrete. The goal of the problem is to construct a model that classifies a given vector

of measured explanatory variables into a class given by the values of the target variable. For example,

in the task of analyzing traffic accidents, it will be: Target variable - traffic severity (e.g. with values:

light, heavy, with injury, with death). Explanatory variables - road surface, lighting conditions, time

of day, accident speed, etc. Each variable has multiple values and continuous variables are discretized

- e.g. speed: by regulation, exceeded. Classes correspond to the values of the target variable. For

example, the vector “smooth road surface”, “dusk”, “evening”, “speed exceeded” is likely to be classified

as “light”. However, this is only a guess. The data will reveal the real classification.

The principle of the proposed method is already described, but it is necessary to show how useful

this method can be in practice: We plan a new route of a traffic road. At any (suspicious) location,

we can enter the corresponding values of the explanatory variables and find out whether this location

will be safe or what degree of danger is associated with it. At the same time, we can experimentally

determine which values of the explanatory variables need to be changed to make the location safer.

Data from other fields such as medicine, aviation, sociological research, and many others can be

used in a similar way. This means that the proposed method can be used in the other fields where data

are collected from questionnaires. Therefore, not only accident data but also car data and medical

data were used for the experiments in this thesis.

1.1 State of the art

The thesis is based on the modeling of discrete questionnaire data using marginal mixtures, especially

in the area of traffic accidents. The following sources [2, 3, 4, 5, 6] deal with the analysis of discrete

accident data. The first of these studies [2] investigates the relationship between real-time traffic data

and crash risk of reduced visibility related (VR) crashes. The measured data are collected from (i)

the Automatic Vehicle Identification (AVI) sensors and (ii) loop/radar detectors (LDs). The study
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also solves the problem of of data suitability for predicting VR crashes. The next study [3] describes

the conceptual and mathematical development of an accident occurrence model that incorporates ac-

cident and exposure data in a mathematically consistent level of disaggregation using principles of

survival theory. The model predicts the probability of being involved in an accident at a specific time,

given that a vehicle has survived to that time. Several alternative functional forms are discussed,

including additive, proportional hazards, and accelerated failure time models. Study [4] is devoted

to the development of methods for analyzing highway accident data. It provides guidance in defining

these challenges and opportunities by first reviewing the evolution of methodological applications and

available data in highway accident research. Based on this review, directions for future methodological

developments are identified and that new data sources will play the role in defining these directions.

The same author published another study [5], also dealing with highway accidents. It presents a de-

tailed discussion of the problem typically referred to an unobserved heterogeneity of traffic accidents

in the context of accident data and analysis. Various statistical approaches available to deal with this

unobserved heterogeneity are presented along with their strengths and weaknesses. The paper con-

cludes with a summary of fundamental issues and directions for future methodological work dealing

with this topic. The aim of the latter study [6] is to investigate the severity of incidents as a function

of different accident circumstances. The description of these circumstances leads to the use of a large

number of different variables (about 50 variables) and most of them are discrete. The majority of sta-

tistical methods that deal with discrete variables use a frequency table. This approach is not suitable

for traffic data due to its high dimension. This paper offers several methods are proposed to solve the

problem with high-dimensional traffic data.

In general, the analysis of questionnaire data is affected by the uncertainty of responses obtained

without direct interaction with respondents. This uncertainty leads to a limited number of response

options that may not be appropriate for all of these respondents [7]. The analysis is also affected by

missing data [8], measurement error [9], unrepresentative samples [10], unfavorable data heterogeneity

[5], etc. As mentioned in the introduction, the huge amount of traffic accident questionnaire data

with many values leads to a high dimension of the whole model, which is a common problem in this

field [11]. A similar problem is posed by a large number of discrete explanatory variables, resulting in

a low probability of several levels of the accident severity in the predictive model [12]. Since we want

to reduce the dimension of the model while preserving the information in unreduced tables, it is not

appropriate to use categorical models. Therefore, we use conditional probability functions and mixture
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models, which reduce the dimension but do not lead to loss of information from the questionnaires [13].

A mixture model can be created from any distribution. A commonly used distribution for modeling

discrete data with mixtures is the Poisson distribution. This is addressed in the study [14], which uses

Poisson mixture estimation with the goal of prediction. The estimation can also be based on a mixture

of gamma distributions [15], as well as others. Therefore, we have previously conducted a study [16]

that selected the binomial distribution as suitable for modeling and estimation. Subsequently, it was

verified that the binomial mixture distribution is ideal for constructing a predictive model for large

discrete data sets while maintaining its tolerable dimension, since the chosen distribution uses only

one parameter [17].

Approaches to the analysis of discrete questionnaire data vary widely. In the literature, there are

simple solutions such as the use of hypothesis testing or proportion estimation to advanced classification

methods that depend on the specific task. In this book [18], the proposed model is based on the

analysis of discrete data using the Bayesian approach and general mixture theory, as well as on mixtures

specifically focused on discrete data [19]. The theory of Bayesian mixture estimation is also developed in

[20, 21]. The approach for estimating recursive dynamic mixtures for different types of distributions was

then generalized and derived for binomial mixtures [22]. Recursion allows algorithms to continuously

use the available explanatory variables used for prediction.

In the field of discrete data analysis, it is also possible to use classification methods, specifically

data mining methods such as k-nearest neighbors [23], decision tree [24], neural networks [25], logistic

regression [26], naive Bayes classifier [23], fuzzy rules [27], and others. However, for modeling and esti-

mation of these mixtures, studies are based on prediction using the iterative expectation-maximization

(EM) algorithm [28, 29, 30, 31] or the Bayesian approach [14, 15, 32, 33]. The EM algorithm works

offline, i.e. it requires a complete data set for evaluation, and the results cannot be obtained sequen-

tially because the convergence time is not guaranteed. However, we also want to obtain results in real

time, so it is appropriate to use only a Bayesian approach, which is iteration free, data can be added

sequentially, and results can be obtained at any time.

1.2 Summary of the presented problem

The objective of this thesis is to develop a method for modeling and estimating of extensive files

of discrete data with the goal of classifying the target variable (e.g., accident severity). Existing

categorical models are not suitable for this reason due to their high dimension, commonly known as
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the curse of dimensionality. The proposed solution basically consists of two main parts. The first,

which is crucial, is the modeling of the explanatory data by a model of independent mixtures, where

each variable is described by a scalar mixture of binomial components. The second part deals with

the construction of local predictive models based on data from individual clusters and corresponding

target variables. The proposed solution is tested on both simulated and real data.

1.3 The dissertation structure

In order to successfully meet the goals of the thesis, this section determines the general procedure to

achieve them. The chosen approach is based on processing data consisting of explanatory variables x

and target variable y.

1. Construction of an algorithm for estimation and classification of discrete data:

(a) creation of the joint model of independent explanatory variables and system output in the

factorized form

f (y, x) = f (x) f (y|x) ,

(b) analysis of the data space x,

(c) creation of the local models f (x|y),

(d) construction of predictive model f (y|x) using the naive Bayes principle.

2. Simulation testing of the algorithm:

(a) verification of the theoretical part and development (debugging) of the program,

(b) the simulation is an imitation of the real situation (e.g. 2 or 3 modes).

3. Verification of correctness of the proposed model - whether the data meet the assumptions.

4. Testing programs on real data.

5. Comparison of results with known classification methods.



Chapter 2

Preliminaries

This chapter describes important terms needed to understand the problem presented in Section 1.2.

These terms include chain and Bayes rule, Bayesian and discrete models. Another important term

is the classification, which is understood here as the estimation of the values of the discrete target

variable y. These estimates classify the explanatory variables x.

2.1 Chain rule

Chain rule performs factorization of a joint probability density function f (x1, x2, · · · , xn) to the prod-

uct of conditional ones

f (x1, x2, · · · , xn) = f (x1|x2, x3, · · · , xn) f (x2|x3, x4, · · · , xn) · · · f (xn) .

It can be obtained by recursively using the definition of the conditional probability density function

f (A|B) = f (A,B) /f (B) → f (A,B) = f (A|B) f (B). Let x1 be A and {x2, x3, · · · , xn} be B, then

f (x1, x2, · · · , xn) = f (A|B) f (B) = f (x1|x2, x3, · · · , xn) f (x2, x3, · · · , xn)

and again let x2 = A1 and {x3, x4, · · · , xn} = B1 and we can continue

f (x1, x2, · · · , xn) = f (x1|x2, x3, · · · , xn) f (x2, x3, · · · , xn) = f (x1|x2, x3, · · · , xn) f (A1|B1) f (B1) =

= f (x1|x2, x3, · · · , xn) f (x2|x3, x4, · · · , xn) f (x3, x4, · · · , xn)

and if we continue for x3, x4, · · · , xn we obtain the chain rule [34].

15
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2.2 Bayes rule

The standard Bayes rule performs the reversal of causality. Normally, we have a cause and an effect,

but with this rule, we estimate the cause when we know the effect. From our point of view, the cause

is the parameters and the effect is the output data. Using Bayes rule, we reverse this statement and

use the data to determine the parameters that induced the data. Thus, in this thesis, we use Bayes

rule to estimate the parameters of models that are described by the probability density function

f (yt|xt,Θ) ,

where yt is the target variable at time t, xt is the regression vector containing the explanatory variables

at time t on which the target variable depends, and Θ is a collection of model parameters. The prior

and posterior probability density functions f (Θ|d (t− 1)) → f (Θ|d (t)) are also essential [22], where

d (t) = {d0, d1, · · · , dt} is the sequence of all data, with d0 denoting prior information and dt = {yt, xt}

describing pairs of target and explanatory variables at time t. The formula of the Bayes rule has the

form

f (Θ|d (t))︸ ︷︷ ︸
posterior

∝ f (yt|xt,Θ)︸ ︷︷ ︸
model

f (Θ|d (t− 1))︸ ︷︷ ︸
prior

. (2.1)

This formula includes a normalization constant corresponding to the predictive probability den-

sity function of the data f (dt|d (t− 1)), which describes the conditional probability of the current

data given the knowledge of previously measured data. This term is omitted and replaced by the

proportional sign ∝.

Naive Bayes rule

For data prediction, we need the prediction distribution f (y|x) = f (y|x1, x2, · · · , xn), where y is the

variable to be predicted and xi are explanatory variables that influence the variable y. If the variables

xi are independent, we can use the Naive Bayes principle as follows [35]

f (y|x1, x2, · · · , xn) ∝ f (x1, x2, · · · , xn|y) f (y) = f (y)

n∏
i=1

f (xi|y) .

The dimension of the used distributions is significantly reduced by this principle.



CHAPTER 2. PRELIMINARIES 17

2.3 Bayesian model

The model in Bayesian statistics has a form of conditional probability density function f (yt|xt,Θ).

The model describes the output as a random variable in the form of a conditional probability (density)

function. The model generally contains two indeterminate elements - noise and unknown parameters.

Bayesian statistics treats these two elements as random variables described by their probability density

functions. We use a prior knowledge and measured data for estimation [22].

The model can be static or dynamic, but for the analysis of discrete questionnaire data, a dynamic

model does not make sense because we are not interested in the evolution of variables (we do not

observe the dependence of a person’s answers on previous answers). Therefore, only the static model

is used in this thesis, which takes two different forms that are important and need to be defined:

• descriptive - description of the space of x

f (x) = f (x1, x2, · · · , xn) ,

• explanatory - connection between x and y

f (y|x) = f (y|x1, x2, · · · , xn) .

Formulas are written for known model parameters. Models in practice will still contain unknown

parameters in the state that need to be estimated.

2.4 Discrete models

Due to the input data, only a discrete model is used in this thesis. Discrete model can be used if all

the variables entering the model are discrete. Then there is a finite number of value configurations of

the data vector [yt, xt].

Categorical model

The categorical model allows us to assign a probability to each configuration separately, and the

model is

f (y = k|x = l,Θ) = Θk|l , (2.2)

where k|l is the multiindex with k denoting the value of the target variable y and l is the vector of the

values of the explanatory variable x = [x1, x2, · · · , xn], and Θ is the model parameter.
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The discrete model can also be used for a discretized continuous variable.

There are several distributions to describe the discrete model, but the categorical distribution is

the most commonly used. The categorical model assigns a probability to each combination of values

of the variables involved. If there are too many combinations, the model has a high dimension and

a large number of parameters. There is always an effort to avoid this. Therefore, in our case, we choose

another discrete distribution with less parameters.Based on the previous research and the study [16],

we decided to use the binomial distribution due to its best estimation results.

Binomial model

The probability function of the binomial distribution is

f (x|p) =
(
N

x

)
px (1− p)

N−x
,

where N is the number of Bernoulli trials in the binomial experiment, x is the total number of positive

trails, and p is the probability of a positive trail in each performed Bernoulli trial [36].

2.5 Estimation and classification

Model parameters are generally unknown and must be estimated from the measured data. Recursive

parameter estimation is based on recomputing distributions describing unknown parameters according

to the Bayes rule. The goal of modeling is often to achieve an optimal prediction of the output, which

requires estimation of unknown model parameters.

The Bayes rule (2.1) is based on two types of distributions. The first is a distribution of the output,

called the system model

f (yt|xt,Θ)

and the second is a distribution of the parameter (prior and posterior)

f (Θ|d (t− 1)) , f (Θ|d (t)) ,

where f (Θ|d (t− 1)) is the description of the parameter Θ based on the old data with respect to the

current time t and f (Θ|d (t)) uses information from all available data, including those measured at

time t. The estimation follows the Bayes rule. It explains how to obtain a new (posterior) parameter
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distribution f (Θ|d (τ)) from the old (prior) one f (Θ|d (τ − 1)) using the system model f (yτ |xτ ,Θ)

for τ ∈ {1, 2, · · · , t}

f (Θ|d (τ)) ∝ f (yτ |xτ ,Θ) f (Θ|d (τ − 1)) .

It shows the evolution of the parameter probability density function over time as new measured

data are supplied

f (Θ|d (0)) →︸︷︷︸
d1={y1,x1}

f (Θ|d (1)) →︸︷︷︸
d2={y2,x2}

· · · →︸︷︷︸
dt={yt,xt}

f (Θ|d (t))

with the initial (prior) probability density function f (Θ|d (0)) constructed from prior data or specified

by an expert and dt = {yt, xt} describing pairs of target and explanatory variables at time t [37].

There are two imaginary levels in creating algorithms for estimation and classification. The first

level is based on probability densities and this way is only general. The second level makes these

densities more specific and takes into account the special distribution and its statistics.

The estimation algorithms for single models are presented in the following chapter.



Chapter 3

Single models

In this chapter, the single models are described in detail with explanations based on simple examples.

The examples are demonstrated in Scilab (www.scilab.org), where parameters and prior information

can be changed in the codes to show the principle of these models. The basic discrete categorical

model is introduced first, followed by the binomial model.

3.1 Categorical model

The discrete categorical model can describe target and explanatory variables

f (y, x) = f (x) f (y|x) .

The decomposition of this model produces the descriptive model f (x) and the explanatory model

f (y|x). The descriptive model f (x) for two-valued variables x = [x1, x2] can be described by the

following Table 3.1.

Table 3.1: Descriptive part of the categorical model

x1 1 1 2 2

x2 1 2 1 2

Θ Θ11 Θ12 Θ21 Θ22

The explanatory model f (y|x) for two-valued variables x = [x1, x2] and y has parameters Θy|x.

The model can be given in the form of a Table 3.2.

20
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Table 3.2: Explanatory part of the categorical model

x1 1 1 2 2

x2 1 2 1 2

y = 1 Θ1|11 Θ1|12 Θ1|21 Θ1|22

y = 2 Θ2|11 Θ2|12 Θ2|21 Θ2|22

The entries of the table denote all configurations of the data vector, each of them is assigned its own

parameter Θi|jk with multiindex i|jk, where the target variables y with values i ∈ {1, 2} are separated

from the explanatory variable x = [x1, x2]t where j ∈ {1, 2} and k ∈ {1, 2} [22].

The practical use of the categorical model can be demonstrated by an example involving a T-

junction.

The experiment with the T-junction is described by a binary categorical variable x with the

values 1 (turn to the left) and 2 (turn to the right). If we generally admit that only left or right turns

are possible at a junction, then

P (y = 1) = p1 and P (y = 2) = p2

where, indeed, it holds: p1 ≥ 0, p2 ≥ 0 and p1 + p2 = 1.

The categorical model f (y) = py with y ∈ {1, 2} is given in Table 3.3.

Table 3.3: Categorical model in the form of a table

y 1 2

f (y) p1 p2

This experiment is well known, and according to the statistical definition of probability, we can

experimentally determine the estimates of the parameters p1 and p2 : After performing a sufficient the

number M of experiments, we count number M1 of results with y = 1 and M2 as the number of results

with y = 2. Then it holds

p1 =
M1

M1 +M2
, p2 =

M2

M1 +M2

or

[p1, p2] =
[M1,M2]

M
(3.1)
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which is a normalization to a sum equal to one [38].

The estimation can also be performed recursively. To do this, we define initial statistics

M1;0 = 0 and M2;0 = 0 .

During the online measurement of data for t ∈ {1, 2, · · · , T}, the statistics are updated

M1;t =M1;t−1 + 1, if yt = 1 ,

M2;t =M2;t−1 + 1, if yt = 2 .

The current update of the parameter estimates (or for t = T it is the last update) is performed by

normalization (3.1).

The T-junction example with simulated data is described in detail in the experiments in Subsection

6.1.1.

Note: In experiments, there are sometimes situations where it is appropriate to introduce prior

information, e.g., 20% of the cars turned left and 80% turned right. This corresponds to the probabilities

p = [0, 2 0, 8]. If the same information comes from 10 data records, it means that 2 cars turn left and

8 turn right. Then the value of the variable ka = 10 (used in Scilab) and this variable determines

the strength of the prior information (number of a prior steps). The probability p is then multiplied

by the variable ka to produce the initial summary statistic S = p ∗ ka. Conversely, if we divide the

prior knowledge (2 cars turned left and 8 turned right) by the variable ka, we get the value of the point

estimates p that we want. This principle can be implemented similarly for other models.

3.1.1 Descriptive categorical model

The general form of the model is

f (y) = py

for y defined integers. This model is very general because it assigns a probability to each situation

that occurs. This has advantages (mainly accuracy), but also disadvantages (high dimensionality and

overparameterization).

This is a similar example to the T-junction experiment, except that y takes on more values, e.g., 5

instead of 2. The probability density for this descriptive categorical model with 5 values is shown in



CHAPTER 3. SINGLE MODELS 23

Table 3.4, which has the same form as Table 3.1 (which is for 2 variables).

Table 3.4: Categorical model with five values

y 1 2 3 4 5

f (y) 0, 10 0, 27 0, 18 0, 41 0, 04

It should be noted that the values of py are probabilities, i.e. they are non-negative, and their sum

is equal to 1. The number of values y in Table 3.4 corresponds to the the 5 arm roundabout example

in Subsection 6.1.1.

3.1.2 Explanatory categorical model

The general form of the explanatory categorical model is

f (y|x) = py|x .

An example is a model with the following parameters y ∈ {1, 2} and x = [x1, x2]; x1 ∈ {1, 2, 3} and

x2 ∈ {1, 2} . The model parameters can be seen in Table 3.5.

Table 3.5: Example of explanatory categorical model

x1 1 1 2 2 3 3

x2 1 2 1 2 1 2

y = 1 p1|11 p1|12 p1|21 p1|22 p1|31 p1|32

y = 2 p2|11 p2|12 p2|21 p2|22 p2|31 p2|32

The descriptive model describes how often particular combinations of variables occur, while the

explanatory model determines what the relationship between x and y is. Given a certain combination

of explanatory variables x, we search for the probability of the target variable y. The explanatory

categorical model is therefore very important because it allows us to observe behavior. The probabilities

py|x of this model may look like this:

p1|x = [0, 34 0, 17 0, 65 0, 49 0, 02 0, 22] ,

p2|x = [0, 66 0, 83 0, 35 0, 51 0, 98 0, 78] .

In contrast to the descriptive model, the probabilities in the columns are normalized, and the sum

of the values of y for a given a combination of x must be equal to one.
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3.2 Binomial model

The binomial model describes an experiment consisting of a serial of N independent Bernoulli trials

where the outcome is a number of successes. It has the probability function

f (x|p) =
(
N

x

)
px (1− p)

N−x
.

Here, we assume that the number of experiments is known and the only model parameter is p. The

mean value is E [x] = Np, the variance is D [x] = p (1− p) .

For fixedN , the binomial distribution belongs to the exponential family. The statistic for estimating

the parameter p is S - sum of realizations of x and κ - number of these realizations. Its recursive update

is (index t denotes discrete time of data measurement)

St = St−1 + xt

κt = κt−1 + 1

with initial values S0 and κ0. In these initial values, it is possible to express a prior knowledge of the

parameter p.

The point estimate of parameter p, estimated from data up to time t, is

p̂t =
St
κtN

.

The main advantage of the binomial distribution is a fixed N and a low dimension of the model.

For a known number of trails, this distribution is defined by only one scalar parameter p, which ensures

the flexibility of the shape of the probability function. It is also important to note that the binomial

distribution does not exist for a vector variable and therefore the conditional probability function

cannot be written. Figure 3.1 shows the flexibility of the binomial distribution for different values of

the parameter p [39, 40].



CHAPTER 3. SINGLE MODELS 25

Figure 3.1: Histogram of the probability function of a binomial distribution with different parameters



Chapter 4

Mixtures

Modeling of single models with uncertainty from the exponential family of distributions in Bayesian

statistics is quite simple, because the model is in the form of a conditional probability function that

defines only one mode. However, real applications involve data with a multimodal character, so it is

necessary to use mixtures of distributions that model all modes of the data file. Therefore, mixtures are

generally used to describe these multimodal systems that switch between a finite number of different

working modes. A mixture is composed of a set of ordinary models (here binomial) and a pointer model

[22]. The histogram in Figure 4.1 represents a mixture of a binomial distribution with two components.

Figure 4.1: Histogram of a mixture of a binomial distributions

In Figure 4.1, the first binomial component has the parameter p1 = 0, 15, the second has the

26
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parameter p2 = 0, 6. In addition, a stationary probability weights (based only on old data) are

assigned to each component by using the parameter α. The parameter is set to α1 = 0, 6 for the first

component and α2 = 0, 4 for the second component. Each component describes one working mode

of the system, and the pointer indicates the active component at any given time. The estimation of

the pointer can be used for data classification. However, we are interested in estimating the mixture

parameters in the space of explanatory variables x to form the clusters that we will work with in later

phases of the thesis.

In general, a mixture of binomial components is defined in the form of probability functions

fj (x|pj) =
(
N

x

)
pxj (1− pj)

N−x
, x ∈ {0, 1, · · · , N}

for j ∈ {1, 2, · · · ,m}, where m is the number of components, N is the maximum of x, which is fixed

and known (so it does not appear in the model conditions).

The pointer model has the following form

f (c = j|α) = αj ,

where c is the aforementioned pointer indicating the active component and αj for j ∈ {1, 2, · · · ,m} is

a stationary probability weight.

The model of the unknown variables is

f (x, c = j|pj , α) = f (x|c = j, pj) f (c = j|α) = fj (x|pj)αj

and it is decomposed into component and pointer models. Some objects in conditions disappear due

to the assumed independence.

Consequently, the mixture model has the form

f (x|p, α) =
m∑
i=j

αjfj (x|pj)

for j ∈ {1, 2, · · · ,m}, where m is the number of components.

Mixtures can be modeled and estimated in several ways, but the thesis focuses on a Bayesian model-

ing approach, specifically quasi-Bayesian [41]. Mixture estimation consists of classifying the measured

data records with respect to the individual components and then the updating of the statistics with

weights

wj = fj (xt|p̂j)
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for j ∈ {1, 2, · · · ,m}.

Note: If there was no weighted classification, the data would be dragged around (the first component

would pull the record from the first component, as well as the second and third components), and all the

data would cluster in the middle and nothing would come of it. Thus, estimation without classification

of the active component would not work.

If the switching of the components, i.e. the current values of the pointer, is known, the situation is

easy. We would simply use the data records to update the active component and leave the rest of them

unchanged. In practice, we do not know, which working regime generated the data record. So we have

to estimate it. Uncertainty causes, that there is no one hundred percent active component, but we

assign probabilities (weights) of activity to each component and with these probabilities (in the sense

of a part from the whole measured data) we use the data element for updating all components. The

weights are equal to proximities normalized so that their sum is equal to one and these weights are

used in the update of the component statistics. The proximity is defined as a value of the component

with inserted the actual data record and the current point estimate of its parameter [33, 42, 43].

In this thesis, we are interested in the estimation of the mixture with the mentioned binomial

components. The estimation of these components is based on the standard estimation of the single

(binomial) model (described in Section 3.2) with weighted data. The full derivation of the mixture

estimate is given in Appendix A, but the abbreviated estimation algorithm for binomial components

is as follows:

for t ∈ {1, 2, · · · , T} do:

• measure xt,

• substitute xt into all components with current estimates of parameters p̂j for j ∈ {1, 2, · · · ,m}

qj = fj (xt|p̂j) α̂t−1
.
= fj (xt|p̂j) ,

where α̂ has practically no influence and it can be ignored,

• the component values qj are normalized to the unit sum and denoted by wt = [w1, w2, · · · , wm]t

wj;t =
qj∑m
k=1 qk

,
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• with these weights we recalculate the statistics of all components for j ∈ {1, 2, · · · ,m}

Sj;t = Sj;t−1 + wj;txt ,

κj;t = κj;t−1 + wj;t ,

• finally, we compute point estimates of the parameters of all components for j ∈ {1, 2, · · · ,m}

p̂j;t =
Sj;t
κj;tN

.

An experiment for estimation of the mixture f (x1, x2|c) with binomial x is shown in Subsection 6.1.3.

4.1 Initialization of mixture estimation

Mixture estimation consists of estimating parameters of individual components and the pointer model.

It is assumed that the measured data come sequentially from different working modes of the system

and thus belong to different components of the mixture model. The farther the data record is from

the center of a component, the smaller the proximity value will be; which means the smaller is the

probability that the data record belongs to that component. The weights of the components are

normalized proximities. If the data are far from the initial components, the weights will be virtually

zero and no estimation will occur. Therefore, there is a need to:

1. set the initial distributions of the components to be in the region where the data occur,

2. prevent any component from moving away or overlapping with the components at the beginning

of the estimate.

This is done by initializing the mixture estimation [21, 44, 45] - i.e., positioning the initial components

appropriately and partially fixing them (forcing them to change more slowly) at the beginning of the

estimation. In doing so, we assume that we have a prior sample of data (i.e., data obtained in the past

that are available prior to the start of the estimation from continuously measured data).

The general principles of initialization are as follows:

1. Find a region where the measured data occur. For example, find out the minima and maxima

for each variable, or better, look at their histograms.
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2. Set the initial values of the parameter estimates as well as possible (using prior data and expert

information).

3. Hold the prior estimates of the component centers at the beginning of the estimation so that

they do not run too far or overlap.

4. Keep small covariances fixed for the components (if we care about the shape of the clusters, we

start estimating them later, when the component centers are more or less correctly determined).

5. Run the estimation repeatedly on the same data sample. In this case, it is necessary to specify

the previous estimates instead of the prior parameters, and to reset the statistics to their prior

values (so that they are not tight).

6. Determine artificial data vectors and use them for initialization. Artificial data vectors are not

measured, but determined by an expert.

7. Perform expert classification on several prior or artificially generated data and use them for

initialization.

Each point is shown theoretically under the same number in Appendix B.

An example with simulated data to illustrate the initialization properties is described in the exper-

iments in Subsection 6.1.1.

4.2 Mixture applied to real problem

Some of the terms may be difficult to understand, so here is an example from practice that explains

the important terms of mixtures and their estimation.

We monitor the level of traffic in the city. During the day, there are two different periods, namely

rush hour and off-peak hour, where the situation changes significantly. The rush hour is a period of

time when the intensity of the traffic flow is greater than the average of the observed intensities during

the entire monitoring interval. The off-peak hour is the opposite of the rush hour, between which

the intensity of traffic flow is lower than the average of the observed period [46]. The morning and

afternoon rush hours usually alternate with the off-peak hours during the day.

The traffic level is divided into five groups according to the average speed of vehicles, the compo-

sition of the traffic flow, the density and intensity of the traffic, etc. The groups represent continuous

traffic (1), thickening traffic (2), heavy traffic (3), convoy formation (4) and traffic collapse (5) [47].



CHAPTER 4. MIXTURES 31

It is assumed that during off-peak hours the city traffic level is 1. When the rush hour comes, the

traffic starts to thicken and usually occurs in levels 3-5. It may seem, that the switching of components

(working points: rush hour and off-peak hours) is known. However, an exceptional off-peak evening

may behave like a rush hour if there is a football match in the monitored area. Another example is an

off-peak car accident that causes rush hour traffic. This means that we do not know the actual level of

traffic, so we have to estimate it based on the circumstances. In this example, the circumstances are

discretized speed (maximum permitted, reduced, low, and almost zero speed) and discretized intensity

(large, medium, and small intensity). These circumstances are variables from which we estimate the

level of traffic. If the circumstances change a little within a working regime, we still stay in the same

data cluster (described by one component). The predicted period depends only on the level of traffic,

not on the specific value of the circumstances.

Assignment of terms:

• the level of traffic is modeled (clustered) variable,

• circumstances (discretized speed of vehicles and intensity of traffic) are discrete explanatory

variables,

• the data groups are clusters,

• the description of clusters is done by components,

• the switching of the regimes is indicated by the values of the pointer (which are estimated =

classification).

Experts will use speeds and intensities in specific areas of the city to determine the overall level of

traffic in Prague. Based on this, we will create a model that will be able to predict the level of traffic

depending on the explanatory variables. The result of this model can be seen as clustering. During the

prediction, we find out to which cluster the relevant circumstances belong and then we determine the

level of traffic. It is also important that the circumstances within one working mode can be assumed

to have a noise character - the changes are caused only by random events, such as a slow vehicle

on some street or irregular driving caused by less experienced driver. It does not cause significant

and synchronized changes of the explanatory variables. In clusters, we assume the independence of

measured variables within individual circumstances. This means that random minor changes do not

affect the level of traffic. A switch to another cluster is caused by a significant change. Only this

switch gives information about the change in traffic level.
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For example, we consider a driving school car to be a discrete noise in a cluster. This car is slightly

slower than other cars, but it will not cause a change of cluster, and the traffic level will remain the

same. Only a significant change, such as a traffic accident, will cause a change to another cluster, even

if a cluster with traffic level 1 is assumed.



Chapter 5

Marginal mixtures

This chapter deals with the core of the thesis, which aims to analyze and model extensive files of

discrete data based on the newly developed method called estimation of marginal mixtures, or marginal

mixtures for short. It is now necessary to state the basic formulas on which the estimation is based.

The data set is denoted by

{yt, xt}Tt=1 ,

where T is the number of measured data, yt is a discrete scalar target variable, and xt is a vector of

n explanatory variables (circumstances)

x = [x1, x2, · · · , xn] ,

where xi;t are discrete or discretized continuous variables.

The mutual description of these variables is

f (y, x) = f (x) f (y|x) .

This model with joint probability function can be divided into the circumstances model f (x) and

the prediction model f (y|x). After the learning phase (when both x and y are measured), only the

vector of variables x is known, and we are interested in predicting the discrete target variable ŷ based on

the measured values of x̂. The predicted value ŷ classifies the actual data record into the corresponding

component. This is achieved by estimating marginal mixtures, which are divided into three parts:

33
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• creating clusters in data space x,

• construction of local models for classification,

• classification using naive Bayes.

This method is mainly based on dimension reduction, and the individual parts are described in detail

in the following sections.

5.1 Creating clusters in data space x

The circumstance model f (x) aims at clustering the data space x under the assumption of indepen-

dence of the explanatory variables in the individual clusters (the experiment in Subsection 6.1.3 showed

that the independence assumption may not be fully satisfied and yet the results are very good, so this

procedure can be used in all cases).

The description of modeling with independent (marginal) mixtures is as follows. We have n explana-

tory variables x = [x1, x2, · · · , xn]. We assume that these variables come from a strongly multimodal

system. By this we understand that the system has several working points (modes) and works rela-

tively easily in each of them, but when all modes are mixed together, everything is lost. Therefore, we

want to use clustering to find local models where we expect simpler links between the explanatory and

target variables. For such a system, it holds that its variables are independent under the condition of

a fixed mode.

The independence of variables in clusters reduces the dimension by reducing the huge table describ-

ing the data set (Section 3.1) to vectors. Therefore, only one variable xi, i ∈ {1, 2, · · · , n} is always

modeled separately.

The corresponding local model is

fj (xi|pij) ,

where j is the component and i is the variable.

The creation of clusters in the data space x is based on Bayesian mixture estimation, which is

described in detail in Chapter 4. Specifically, it is a mixture of binomial distributions. This estimation

requires initialization, and the proposed approach with independence has a great advantage in this

respect. Each variable and each of its components has its own scalar model, which can be easily ini-

tialized using a histogram. The probability functions of individual variables are then one-dimensional
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normalized histograms of the frequencies of the values for each variable separately. In the histograms,

we can easily see the individual modes and their corresponding tops, from which we can determine

the parameters pij for each variable and component of the binomial mixture. This procedure is per-

formed separately for each variable, so that the entire data space x is divided into clusters, where each

variable can have a different number of clusters. The principle of cluster creation is shown in Figure 5.1.
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Figure 5.1: Clustering of data space x

In practice, the files of discrete data are very extensive, but only a small sample of these data is

used in Figure 5.1 to describe the clustering principle of the data space x. Therefore, the example

contains only two explanatory variables x1 and x2, and each of these variables has only ten records,

as shown at the top of this figure. The first histogram to the left of the data is now created from the

values of the first variable x1. The second histogram to the right of the data is generated from the

values of the second variable x2. Both of these variables are generated from a mixture of binomial

distributions, which are defined by a vector of binomial parameters pij . The parameter vector is
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obtained by mixture estimation (see Chapter 4). With these parameters it is now possible to read

directly from the histogram where the modes are located and where their tops are (the marking of

the modes under the histograms is only for illustration). This information read from the data can be

used to locate the components. The histogram of the first variable on the left side of the figure shows

that this variable x1 has two modes (i.e., it is a mixture with two binomial components). The second

variable x2, whose histogram is shown on the right, has even three modes (i.e. it is a mixture with

three binomial components). The individual components (modes) symbolically describe the clusters

indicated at the bottom of the figure, i.e. the first cluster is described by the first component in the

first variable x1 with the values 1, 2, 3, 4 and the second cluster is described by the second component

of this variable with the values 6, 7, 8. The same applies to the second variable x2, where three clusters

are symbolically denoted in the lower part of the figure. The examined data space x is now divided

into initial clusters and also described by an initial binomial mixture for individual variables.

5.2 Construction of local models for classification

The classification we aim at is based on the model f (y|x). To take advantage of the independence of

xi, we use the Naive Bayes principle, which is based on the product of the models f (xi|y). Therefore,

the basis for classification is now established by constructing all local categorical models fj (xi|y) in

each cluster ci = j for all variables xi. In the first step, we take the first cluster c1 = 1 of the first

variable x1 and see which values of x1 belong to this cluster. Then we select the corresponding values

of the discrete target scalar variable y that belong to the selected values of x1. These data are used to

construct the model f1 (x1|y), which has the form of a normalized frequency table similar to Table 3.5.

This procedure is performed for all clusters ci = j ∈ {1, 2, · · · ,mi} in all variables xi, i ∈ {1, 2, · · · , n}.

For the subsequent classification, it is also necessary to create the model f (y), which is formed simply

by a normalized histogram of all y values.

The described principle of constructing local categorical models is shown graphically in Figure 5.2,

which follows the previous Figure 5.1, describing two explanatory variables x1 and x2 with ten records.

Each record of the variable x1 is assigned a corresponding cluster. For x1, there are only two options,

c1 = 1 or c1 = 2, which are shown to the left of the data. The first cluster c1 = 1 and its associated

values of y are marked in black. Then the model created from this set has the form f1 (x1|y). The

same is done for the rest of the records of the variable x1 that belong to the second cluster c1 = 2.

This second cluster, together with the associated values y, is marked in red, and the resulting model
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has the following form f2 (x1|y). This procedure is also performed for the second variable x2, which

has three clusters c ∈ {1, 2, 3} marked to the right of the records of this variable. Records belonging to

the first cluster c2 = 1 and their associated y are marked in black. The model has the form f1 (x2|y).

The second cluster c2 = 2 and its corresponding y are marked in red and the third cluster c2 = 3 and

its corresponding y are marked in green. In this way, all local categorical models are determined. On

the right side of the figure there are the numbers of records, where each record has the corresponding

y. Furthermore, the model f (y) is constructed from the set of all values of y.
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Figure 5.2: Creation of local models

Categorical models fj (xi|y) are determined for each cluster in each variable, and the model f (y)

is defined for each record in the entire data set. These models do not have a large dimension because

they are created for individual variables xi, which are scalars.

5.3 Classification using naive Bayes

The last part of the marginal mixtures method is based on the use of the naive Bayes principle with

the independence assumption on xi, which is used to achieve the desired prediction model f (y|x) =

f (y|x1, x2, · · · , xn) in order to subsequently estimate the values of the target variable y. The procedure

of classification is as follows. In the learning phase, we assume that we have a data sample of both

paired variables, i.e. y and the corresponding xi. In the testing phase, we assume that only the vector

x = x̂ = [x̂1, x̂2, · · · , x̂n] is measured and the corresponding y is estimated. The ultimate goal is

prediction, i.e. estimation of the value of y based on the value of the measured x̂.



CHAPTER 5. MARGINAL MIXTURES 38

In the testing phase, the value of x̂1 is inserted into all components of the first variable, creating

proximities of x1 to all components of the first variable. These proximities are created according to the

principle described in Appendix A. In the same way, the value of x̂2 is inserted into all the components

of the second variable, creating proximities for the second variable x2. This is done for all the mea-

sured variables of the measured sample x̂ and their corresponding components. After normalizing the

proximities for each variable i, we obtain the weights wi = [w1;i, w2;i, · · · , wmi;i] for i ∈ {1, 2, · · · , n}.

With the weights and the local models constructed in the previous section, it is now possible to create

the model f (xi|y) for each variable (not just for clusters within the variable) using the formula

f (x̂i|y) =
mi∑
j=1

wj;ifj (x̂i|y) .

The prediction model f (y|x) is a model of the target variable y depending on x. The naive Bayes

formula (described in Section 2.2) is used to determine this model

f (y|x̂) ∝ f (y)

n∏
i=1

f (x̂i|y) .

The measured x̂ is substituted into the formula to obtain a prediction of the values y and their

probabilities. In the last step, the most probable value ŷ is calculated for the measured x̂, and this

point prediction can be determined as the index of the maximum value of the predictive probability

function f (y|x̂)

ŷ = argmax f (y|x̂) .

The classification procedure is shown in Figure 5.3. The right part of the figure illustrates again the

two already known explanatory variables x1 and x2 together with their clusters. The weights for each

variable are now determined by inserting the first measured value of x̂1 into the first cluster c1 = 1 of

the first variable x1 in the following form f1 (x̂1). This gives the proximity of the value x̂1 to the first

component f1 (x1). The same measured value x̂1 is then inserted into the second component c1 = 2 of

the first variable x1 in the form f2 (x̂1), and it creates the second proximity. If we now normalize these

proximities so that their sum is equal to 1, we obtain the weights w11 and w12 of the components in

the first variable x1. In the same way, the weights of the second component x2 are determined using

the measured value x̂2, which is inserted into all three components to obtain the proximities in the

form of fj (x̂2) and then the weights w12, w22 and w32.
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Figure 5.3: Construction of the prediction model

5.4 Algorithm for estimation and classification with marginal

mixtures

The individual steps of the developed algorithm of point estimation and classification with marginal

mixtures are described in detail and illustrated graphically in this Chapter 5. For clarity, the entire

proposed algorithm is summarized below.

For each time instant t perform:

1. clustering data in each independent variable xi of the data space x:

(a) independence reduces the dimension and allows each variable xi, i ∈ {1, 2, · · · , nxi} to be

modeled separately,

(b) in the individual variables xi, the components are searched for using a mixture of binomial

distributions,

(c) a set of components is created in each variable,

(d) components describe the clusters.
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2. preparation of the local models fj (xi|y) and f (y):

(a) fj (xi|y) is constructed using data from individual clusters ci = j and variables xi,

(b) probability functions f (y) are constructed for all individual record,

3. testing using prediction:

(a) x = x̂ is measured,

(b) the weights wij are determined by substitution x̂i into the models fj (x̂i) of individual

components with actually estimated parameters,

(c) the model f (xi|y) of individual variables is determined as follows

f (x̂i|y) =
mi∑
j=1

wj;ifj (x̂i|y) ,

(d) the prediction model f (y|x) is calculated according to the principle of naive Bayes

f (y|x̂) ∝ f (y)

n∏
i=1

f (x̂i|y) ,

(e) the point prediction ŷ can be determined as the index of the maximum value of f (y|x̂)

ŷ = argmax f (y|x̂) .

The developed algorithm was first tested on simulated data and the output in the form of Scilab code

is presented in Section 6.2. The algorithm was then applied to real data and the complete code is

presented in Appendix F.



Chapter 6

Experiments

Experiments are first performed on simulated data to verify the correctness of the proposed procedure.

The final algorithm is then applied to real data. Scilab is used for this purpose, and all the codes

below can be easily run by copying and pasting them into this program.

6.1 Basic experiments

Basic experiments are used to demonstrate the theory described in Chapter 3 and 4.

6.1.1 Estimation of the categorical model

For the categorical model, we have already chosen the T-junction experiment in Section 3.1. We

will now discuss this experiment in detail in Scilab and show everything that is important about it.

The T-junction model in the code below can be divided into two parts. In the first part, on lines

//1 to //6, we have the actual right and left turns that represent the generation of the discrete data

y ∈ {1, 2}, which is described in Appendix C. The second part of the model (lines //7 to //14) focuses

on determining the point estimate of the parameter p. To estimate the parameters, we need to define

a statistic, and it must be consistent with the prior parameters. So first we define the parameters pE

and then we define the strength ka, which we will use to give a prior information to the estimation.

Then the statistic has the following form S = pE ∗ ka (line //9) and its construction is based on the

theory described in the note in Section 3.1. Next, the statistics in lines //11 and //12 are updated to

include the newly measured data. Then an estimate of the parameter pE is constructed in line //13.

41
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The estimate is usually computed either continuously or at the end, in our case continuously.

// Model o f T−j unc t i on + i n i t + est im

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

c l ea r , c l c , mode ( 0 ) ;

nd=100; // number o f data //1

p=[ .8 . 2 ] ; // parameters o f model o f y //2

y=1; // i n i t i a l c ond i t i on f o r y //3

f o r t =2:nd //4

y ( t)=sum(cumsum(p)<rand (1 , 1 , ’ u ’ ) ) + 1 ;

// gene ra t i on o f d i s c r e t e data //5

end //6

pE=[.5 . 5 ] ; // i n i t i a l parameters o f model //7

ka =.01; // i n i t i a l counter s t a t i s t i c s //8

S=pE∗ka ; // i n i t i a l summation s t a t i s t i c s //9

f o r t =2:nd //10

S( y ( t ))=S( y ( t ))+1; // update o f summation s t a t i s t i c s //11

ka=ka+1; // update o f counter s t a t i s t i c s //12

pE( t , : )= S/ka ; // po int e s t imate s //13

end //14

We can change some parameters in the code. First, we show the influence of the initial strength of

the information, which is affected by the coefficient ka (initial counter statistics). If we set the value

of the coefficient (line //8) to a very small ka = 0, 01, i.e. we have almost no a prior information,

then there are large jumps at the beginning of the estimation, and it can completely miss the mark in

more complex cases. Subsequently, we can guess the mean value from the prior information ka = 10,

where the estimation caught the right direction. On the contrary, we chose a very strong value of

the a prior information ka = 100 and the estimation did not reach the specified parameters, because

the estimation froze and only slowly converged to the desired parameter values. The freezing can

be resolved by letting the estimation run, forgetting the statistics, but keeping the estimated initial
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parameters and running the original data again. This procedure is repeated until the desired parameter

values are reached.

To demonstrate the effect of a prior information, we plotted Figure 6.1 from the Scilab code,

showing the generated data and the evolution of the parameter estimation for different initial strengths

of information ka. For such a simple demonstration example, the best result was finally obtained for

the lowest prior information ka = 0, 01, where we obtained the parameter estimate pE = [0, 78 0, 22].

These values were very close to the initial parameters p = [0, 8 0, 2] set in line //2. Note that we

estimate pE as complementary probabilities and the sum is always 1, so the graphs are symmetric.

The last figure nicely shows that with strong prior information, the estimation did not actually reach

the desired parameters, but only got a little closer to them. The change in the coefficient ka shows

that the prior information has a large effect on the parameter estimation.

Figure 6.1: The effect of the initial strength of information ka

Next, we show how initialization works using a simple example (for the mixture, it is described in

detail in Section 4.1 and Appendix B). The principle of initialization is based on finding and setting the

ideal initial parameters of the model pE with which the estimation will start. For the demonstration,

3 options for setting the initial parameters pE (line //7) were chosen. They are shown separately in

Figure 6.2. In the Scilab code, the number of data is halved, i.e. nd = 50, because we are primarily

interested in the beginning of the estimation, and the strength of the prior information is set to ka = 1.
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First, the ideal option pE = [0, 8 0, 2] was chosen, which corresponds to the actual model parameters

p that were set in the simulation on line //2 to generate the discrete data y. As a second option,

the values of the parameter pE = [0, 5 0, 5] were chosen. These values were used in the previous part

of the example (influence of prior information). As a last option, the values of pE = [0, 1 0, 9] were

chosen, which are very far from the set parameters p. The graphs in Figure 6.2 show that the setting

of the parameters pE has the greatest effect on the start of the estimation. It is also evident from the

graphs that the first variant performs best, when the ideal initial parameters are set and the estimation

is stabilized at pE = [0, 78 0, 22]. The second and third variants have a worse start of estimation and

a greater deviation from the true values p = [0, 8 0, 2].

Figure 6.2: The effect of the initial parameters of the model pE

Correctly setting the initial parameters of the model is especially important when estimating mix-

tures.

As an example of a categorical model with multiple values (namely 5), the example of a 5 arm

roundabout was chosen in subsection 3.1.1. We will show and describe this example in more detail

using the Scilab code shown below. This is a similar example to the T-junction, but there is a change

on the line //2 where we set the model parameters. Here we have not only dealing with two turn

options as in the previous example, but now we have 5 of them, so we set 5 values for the parameter

p. This allows us to generate the values of the variable y ∈ {1, 2, · · · , 5}. Furthermore, there is an
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additional line //7 which creates an auxiliary variable ky and it determines the maximum value of the

variable y in case we do not know the simulation and we need to know the number of values to set the

initial parameters of the model pE on line //8. The rest of the code remains unchanged.

// Model o f 5 arm roundabout + i n i t + est im

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

c l ea r , c l c , mode ( 0 ) ;

nd=100; // number o f data //1

p=[ .2 . 1 . 3 . 2 . 2 ] ; // parameters o f model o f y //2

y=1; // i n i t i a l c ond i t i on f o r y //3

f o r t =2:nd //4

y ( t)=sum(cumsum(p)<rand (1 , 1 , ’ u ’ ) ) + 1 ;

// gene ra t i on o f d i s c r e t e data //5

end //6

ky=max( y ) ; // maximum value o f v a r i a b l e y //7

pE=.2∗ ones (1 , ky ) ; // i n i t i a l parameters o f model //8

ka =.01; // i n i t i a l counter s t a t i s t i c s //9

S=pE∗ka ; // i n i t i a l summation s t a t i s t i c s //10

f o r t =2:nd //11

S( y ( t ))=S( y ( t ))+1; // update o f summation s t a t i s t i c s //12

ka=ka+1; // update o f counter s t a t i s t i c s //13

pE( t , : )= S/ka ; // po int e s t imate s //14

end //15

For clarity, Figure 6.3 shows the generated data y and the evolution of the model parameter

estimates with initial model parameters pE = [0, 2 0, 2 0, 2 0, 2 0, 2] and initial counter statistics

ka = 0, 01. It can be seen in the graph that the resulting point estimate values pE slowly converged

and stabilized around the true values p = [0, 2 0, 1 0, 3 0, 2 0, 2].
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Figure 6.3: Estimation of the categorical model

6.1.2 Estimation of the binomial model

The estimation of the binomial model, which is described in detail in Section 3.2, is based on the

same principle as the estimation of the categorical model. This can be seen in the Scilab code below.

The first part (lines //1 to //7) is again dedicated to data generation, but here it is the generation

of binomial data, where we first use the function on line //4 to determine the probability function

of the binomial distribution for the selected parameter pb = 0, 1. Then, data from the binomial

distribution are generated on line //6 according to the principle described in Appendix C. The second

part (lines //8 to //15) is devoted to determining the point estimates of the binomial distribution. In

this experiment, we have already disregarded any prior knowledge and its strength, hence the value of

the initial counter statistic ka = 0.

// Binomial model + est im

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

c l ea r , c l c , mode ( 0 ) ;
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nd=500; // number o f data //1

pb =.1; // p r o b a b i l i t y o f s u c c e s s p //2

n=3; // number o f B e r n o u l l i t r i a l s //3

pc=binomial (pb , n ) ; // p r o b a b i l i t y func t i on //4

f o r t =1:nd //5

y ( t)=sum(cumsum( pc)<rand (1 , 1 , ’ u ’ ) ) ;

// gene ra t i on o f binomial data //6

end //7

S=0; // i n i t i a l summation s t a t i s t i c s //8

ka=0; // i n i t i a l counter s t a t i s t i c s //9

f o r t =1:nd //10

S=S+y ( t ) ; // update o f summation s t a t i s t i c s //11

ka=ka+1; // update o f counter s t a t i s t i c s //12

pE=S/( ka∗n ) ; // po int e s t imate s //13

pt ( t)=pE ; // evo lu t i on o f po int e s t imate //14

end //15

From the Scilab code, we have plotted Figure 6.4, which first shows the generated data from a

binomial distribution with parameter p = 0, 1. The second part of the figure shows the evolution of

the parameter pE estimate over time. With the zero knowledge of the prior information, it took a

while for the estimate to stabilize close to the true value p = 0, 1.
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Figure 6.4: Estimation of the binomial model

6.1.3 Estimation of the mixture f (x1, x2|c) with binomial x

At the core of the thesis are marginal mixtures, which aim to reduce the high dimensionality of discrete

categorical models. The main element contributing to the dimension reduction is the assumption of

independence of the explanatory variables x. The presented algorithms are also applied to real data

where the independence assumption is not always fully satisfied. Therefore, it is important to know

how sensitive the mixture estimation algorithms, performed under the independence assumption, are

to violations of this assumption. The following program investigates just this phenomenon. First, we

simulate (with the assumption of independence of x) data with independent x. We get the theoretically

correct result (which we verify by simulation). We then simulate the data with dependent x in the

same way and observe how the point estimates deteriorate. This will determine how much the violation

of the independence assumption affects the result.
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This example is based on the estimation of a mixture with binomial components, which is described

in detail in Chapter 4. The estimation of these components is performed by estimating a standard bi-

nomial model with weighted data. For mixture estimation, we observe the same parts as for categorical

and binomial model estimation, i.e., simulation including initial parameter settings, initialization, and

parameter estimation, but the individual parts are partially different. The differences are mainly in

the initialization, where several models have to be initialized. In addition, proximities and weights are

also computed in the estimation. There is also a difference in the parameter update, which is weighted

and computed for all components. Below is the code from Scilab, where we will show and describe

each part in detail. To run the code in the program, you must copy the functions from Appendix D

and paste them into the appropriate line.

In the first part (lines //1 to //25), where we set the parameters for the simulation, we also show

the impact of violated independence. On the line //2 we set 3 components and then we define the

corresponding parameters for them. If we want to simulate data from a binomial distribution, we

can compute the probabilities of the individual values for a given parameter p, and then generate the

entire distribution as a categorical distribution with binomial parameters. These parameters for the

variable x1 are on the lines //3 to //5. Next, we set the parameters for x2 to be totally independent

(lines //7 to //12), almost independent (lines //13 to //18), and very dependent (lines //19 to //24)

with respect to x1. We create completely independent variables by setting p2 exactly the same and

the change of x1 values is not reflected. Almost independent variables have p2 almost the same and

their values have little respond to changes in x1. Conversely, highly dependent variables have p2 much

different, so the values of x1 have a large effect on x2. Lines //26 to //31 show the simulation where

we generate the pointer values, the variable x1 and the variable x2|x1. The variable x2 is conditional

because we want to determine the relationship (dependence or independence) between the variables

x1 and x2. If we know the parameters of the simulation model, we can easily test the effect of the

dependence and independence of the variable x in the binomial distribution by comparing the results

of the point estimates of all 3 parameter choices in the simulation.

In the next part of the code (lines //32 to //40) there is the initialization, which is done separately

for each component and is crucial for mixtures. If some initial peak of the distribution is far from the

data, big problems can occur because the proximity can be zero and the peak of the distribution does

not approach the data. Therefore, we need to set the initial peak of the distribution to the real data

region by finding the minimum and maximum of the data. Another way to initialize for independent
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data is to plot histograms of the data and find clusters (locations with the highest frequency of data)

where the initial peaks of the distribution are then placed. However, in the following program, we use

the exact simulated parameters (the hardest initialization), because the question is not how well the

estimation performs, but how much error is introduced by violating the independence assumptions.

If we set the wrong value of the initial parameter, we would not find the effect of dependence, so we

need the ideal estimation case for all simulations. Then, the initial probability (lines //36 and //37)

and the initial summation statistics (lines //38 and //39) for each component are set using known

parameters.

In the last part of the code, on lines //41 to //56, we perform the point parameter estimation,

where we first generate the proximity q1 for variable x1 and q2 for variable x2 in cycle j (lines //43 and

//44). The product of these two values q1 ∗ q2 on line //45 gives the proximity q for each component

under the independence assumption. After normalizing the values of q to the sum of 1, we obtain the

weights. These weights are then used to update the counter ka (line //50), to update the summary

statistics (lines //51 and //52), and to calculate the point estimates of the parameters (lines //53 and

//54).

// Est imation o f the mixture f ( x1 , x2 | c ) with binomial x

// − x1 , x2 dependent or independent

// − est imated as f o r independent x

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

c l ea r , c l c , mode ( 0 ) ;

// copy the f u n c t i o n s from the Appendix D here and run the code

nd=1000; // number o f data //1

pa =[ .3 . 4 . 3 ] ; // po in t e r model parameters //2

C( 1 ) . p1=binomial ( . 1 , 3 ) ; // parameters o f model f o r x1 //3

C( 2 ) . p1=binomial ( . 3 , 3 ) ; // parameters o f model f o r x1 //4

C( 3 ) . p1=binomial ( . 8 , 3 ) ; // parameters o f model f o r x1 //5

s e l e c t 3 // <== s e l e c t the dependency o f x1 and x2 //6

case 1 // TOTALLY INDEPENDENT //7

C( 1 ) . p2=.2∗ ones ( 1 , 4 ) ; // parameters o f model f o r x2 //8

C( 2 ) . p2=.2∗ ones ( 1 , 4 ) ; // parameters o f model f o r x2 //9
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C( 3 ) . p2=.2∗ ones ( 1 , 4 ) ; // parameters o f model f o r x2 //10

p1 =[ .1 . 2 . 5 ] ; // i n i t i a l parameters f o r x1 indep . //11

p2 =[ .3 . 1 . 2 ] ; // i n i t i a l parameters f o r x2 indep . //12

case 2 // ALMOST INDEPENDENT //13

C( 1 ) . p2 =[ .05 . 1 . 15 . 2 ] ; // parameters o f model f o r x2 //14

C( 2 ) . p2 =[ .85 . 9 . 95 . 9 8 ] ; // parameters o f model f o r x2 //15

C( 3 ) . p2 =[ .4 . 45 . 5 . 5 5 ] ; // parameters o f model f o r x2 //16

p1 =[ .2 . 1 . 6 ] ; // i n i t i a l parameters f o r x1 indep . //17

p2 =[ .7 . 1 . 5 ] ; // i n i t i a l parameters f o r x2 indep . //18

case 3 // VERY DEPENDENT //19

C( 1 ) . p2 =[ .1 . 3 . 6 . 9 ] ; // parameters o f model f o r x2 //20

C( 2 ) . p2 =[ .1 . 2 . 5 . 2 ] ; // parameters o f model f o r x2 //21

C( 3 ) . p2 =[ .9 . 1 . 3 . 5 ] ; // parameters o f model f o r x2 //22

p1 =[ .4 . 1 . 5 ] ; // i n i t i a l parameters f o r x1 dep . //23

p2 =[ .4 . 1 . 3 ] ; // i n i t i a l parameters f o r x2 dep . //24

end //25

// SIMULATION

f o r t =1:nd //26

c ( t)=sum(cumsum( pa)<randu () )+1 ; // gene ra t i on o f po in t e r //27

x1 ( t)=sum(cumsum(C( c ( t ) ) . p1)<randu () )+1 ; // gene ra t i on o f x1 //28

pp=binomial (C( c ( t ) ) . p2 ( x1 ( t ) ) , 5 ) ; // parameters o f x2 | x1 //29

x2 ( t)=sum(cumsum(pp)<randu () )+1 ; // gene ra t i on o f x2 //30

end //31

// INITIALIZATION

b=[max( x1 ) max( x2 ) ] ; // maximum of x1 and x2 //32

nc=max( c ) ; // number o f component //33

ka=ones (1 , nc ) ; // i n i t i a l counter s t a t i s t i c s //34

f o r j =1:nc //35

C( j ) . pE1=p1 ( j ) ; // i n i t i a l p r o b a b i l i t y o f j−th compon . //36
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C( j ) . pE2=p2 ( j ) ; // i n i t i a l p r o b a b i l i t y o f j−th compon . //37

C( j ) . S1=C( j ) . pE1∗ka ( j )∗ ( b (1) −1) ; // i n i t i a l summation s t a t i s t i c s //38

C( j ) . S2=C( j ) . pE2∗ka ( j )∗ ( b (2) −1) ; // i n i t i a l summation s t a t i s t i c s //39

end //40

// ESTIMATION

f o r t =1:nd //41

f o r j =1:nc //42

q1=binpdf ( x1 ( t )−1 ,C( j ) . pE1 , ( b (1) −1)) ; // proximity f o r x1 //43

q2=binpdf ( x2 ( t )−1 ,C( j ) . pE2 , ( b (2) −1)) ; // proximity f o r x2 //44

q ( j )=q1∗q2 ; // proximity o f j−th compon . //45

end //46

w=fnorm ( q ) ; // weights //47

wt ( : , t )=w; // weights f o r a l l r e co rd s //48

f o r j =1:nc //49

ka ( j )=ka ( j )+w( j ) ; // update o f counter s t a t . //50

C( j ) . S1=C( j ) . S1+w( j )∗ ( x1 ( t ) −1); // update o f summation s t a t . //51

C( j ) . S2=C( j ) . S2+w( j )∗ ( x2 ( t ) −1); // update o f summation s t a t . //52

C( j ) . pE1=C( j ) . S1 /( ka ( j )∗ ( b (1) −1)) ; // po int e s t imate s //53

C( j ) . pE2=C( j ) . S2 /( ka ( j )∗ ( b (2) −1)) ; // po int e s t imate s //54

end //55

end //56

// RESULTS

Corrx1x2=cord ( x1 , x2 ) // d i s c r e t e c o r r e l a t i o n //57

cp=amax(wt , 1 ) ; // argument o f maximum weight //58

h=c2c ( c , cp ) ; // renaming o f components in case o f r o t a t i o n //59

Acc=acc ( c , h ( cp ) ) // accuracy o f est imated components //60

To verify the relationship (independence versus dependence) between the variables x1 and x2, we

used the function to determine the correlation coefficient in the code on line //57. The values of this
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coefficient for all 3 simulation variants are given in Table 6.1. In the first case (totally independent),

the value of the correlation coefficient was close to zero, so there is indeed complete independence

between the variables. In the latter case (almost independent), the value of the correlation coefficient

is much closer to 0 than to 1, so the variables are almost independent. The last case (very dependent)

has a correlation coefficient value higher and close to 1, so the variables are dependent. We then

generated the accuracy on line //60, which determines the ratio of correctly estimated components.

This step was preceded by determining the actual estimation of the components using the argument

of the maximum weights on line //58 and then renaming the components in case of rotation during

estimation on line //59. We determined this accuracy again for all 3 variants (totally independent,

almost independent and very dependent variables x1 and x2) and the results are shown in Table 6.1.

Table 6.1: Correlation coefficient of variables x1 and x2 and accuracy of the result

Variables x1 and x2 Totally independent Almost independent Very dependent

Correlation coefficient [-] -0,01 0,24 0,61
Accuracy [%] 0,69 0,93 0,59

The accuracy results show that the dependence of the variables has almost no effect on the estima-

tion results, so we can work with this assumption even in the case of data dependence, which we model

as independent. This effect is also known from the use of naive Bayes, which has a wide application

and the same assumption. Naive Bayes works even when the assumption is not well followed, and this

is consistent with our findings.

6.2 Experiments on simulated data

This experiment in Scilab demonstrates the theory described in Chapter 5. Specifically, it involves the

estimation of the marginal mixture f (x1, x2|c) with binomial variables x1, x2.

Algorithm development and testing (for 2 and 2 components)

The algorithm needs to be developed and modified gradually to get everything working as it should.

Therefore, only two explanatory variables x1 ∈ {1, 2, · · · , 4} and x2 ∈ {1, 2, · · · , 6} are used for testing

so far, and each of these variables has two components.

The first part of the algorithm deals with pointer estimation, i.e. clustering, based on the previous

example of mixture estimation described in Subsection 6.1.3. The investigation verifies (i) the func-
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tionality of the algorithm without approximation (easily distinguishable components, purely binomial

distribution and really independent variables x) followed by a slight overlap of components (ii) the

effect of slightly dependent variables x (iii) the effect of violated binomial distribution.

(i) When the parameters p of the variables x, which determine the location of the modes of the

binomial mixture, are set to edge values, the estimation result is excellent. However, if the

components are moved closer together by adjusting the values of the parameters p, the point

estimation results of the pointer will deteriorate slightly, depending on how much the components

have been moved closer together and how much they overlap. Figure 6.5 on the left shows the

variable x1, which represents a mixture with two binomial components at the edges, using the set

parameters p1 = [0, 1 0, 9]. This favorable variant has a clustering with accuracy = 0, 97. Then

the value of the parameter p1 = [0, 3 0, 7] was set so that the components are closer together

and therefore overlap more, as shown on the right in Figure 6.5. Although the conditions for

estimating the pointer have deteriorated, the accuracy is still 0, 79.

Figure 6.5: Probability functions of the variable x1 with two binomial components

(ii) The influence of the independence or dependence between the variables x has already been dis-

cussed in Subsection 6.1.3. However, it is necessary to examine the impact this has on the clus-

tering accuracy, which in turn affects the classification of the target variable y. The relationship

(independence or dependence) between the variables x1 and x2 is determined by the parameter

p2 for the variable x2, which is then influenced by the value of x1 from the binomial mixture.

The result is a binomial model simulated as a categorical model. The independence between the

variables is then determined only by this parameter p2, which must be set to the same values,
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e.g. p2 (1) = [0, 99 0, 99 0, 99 0, 99] for the first cluster and p2 (2) = [0, 01 0, 01 0, 01 0, 01] for

the second cluster, so that the change in the values of x1 does not affect the generation of values

for the variable x2. Under these conditions, the clustering of the variable x2 is obtained with

accuracy = 1. Conversely, the dependent variables are set so that p2 is very different. Thus,

the values of x1 have a large effect on x2. The experiment uses the values of the parameter

p2 (1) = [0, 1 0, 2 0, 3 0, 4] for the first cluster and p2 (2) = [0, 9 0, 8 0, 7 0, 6] for the second

cluster to estimate the pointer of the variable x2 with accuracy = 0, 87. The results are very good

in both cases, which looks promising for using the algorithm on real data where it is not possible

to influence the relationship between the variables x.

(iii) A non-binomial mixture, which can occur in real data, was then tested. This mixture is created

using the parameter a, which affects the values of the probability function of each component

of the binomial mixture. However, even in the case of a non-binomial mixture (e.g. a = 1), it

is found that the deterioration of the conditions does not rapidly affect the clustering results,

even though we estimate this mixture to be binomial (a = 0). Figure 6.6 shows a mixture with

two binomial components with p1 = [0, 1 0, 9] that are influenced by the parameter a = 1. This

slightly transforms the mixture into a non-binomial one, and the result of the clustering of the

variable x1 came out with an accuracy = 0, 77, even though we use a small number of components

for the experiment and also a small number of values in the variables. This indicates that the

binomial distribution is very general and is a suitable choice for the algorithm under development.

Figure 6.6: Probability function of the variable x1 with two non-binomial components

The second part of the algorithm deals with local models, where the behavior of these models f (x|y)
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in each component is tested. In this part, the accuracy of the classification of the target variable y,

which describes the relationship of the variable y to x, is examined by changing the parameter py.

This describes the parameters of the model of y, from which the probabilities for y = 0 and y = 1

are subsequently generated, depending on all combinations of values of the explanatory variables

x. Therefore, we will first test an almost deterministic case where the parameter values are set to

py = [0, 0001 0, 9999] and the result accuracy = 1 shows that the classification of y is perfect. The

deterministic nature of this parameter is then reduced (i.e., moved away from the values 0 and 1) with

the values py = [0, 2 0, 8], where it begins to depend on the clusters as the perfect x − y coupling

deteriorates. In this case, the accuracy is 0, 81, which indicates a deterioration of the classification,

but still a very good result.

Algorithm development and testing (for 3 and 4 components)

The algorithm was then modified so that the first variable x1 has 3 components and the second

variable x2 has 4 components, leaving the number of possible values of these variables unchanged.

The change in the number of components caused an increase in the number of set parameters, and

this induced a strong coupling of the variable x1 to y. Although the clustering accuracy was severely

degraded by overlapping components in the binomial mixture, as can be seen nicely in Figure 6.7, the

classification of y remained almost error free, because the binding of the variable x1 to y is still the

same. The clustering is obtained with accuracy = 0, 80 for x1, then accuracy = 0, 63 for x2 and yet

the classification of y using the parameters py = [0, 0001 0, 9999] is perfect, i.e. with accuracy = 1.

Figure 6.7: Probability function of the variable x1 with three binomial components

Experiments show that it is still useful to use the algorithm even under less favorable conditions.
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Final form of the developed algorithm

The marginal mixtures algorithm was the target of this thesis, and its Scilab code is given below.

For clarity, all i cycles are for variables and all j cycles are for components. To run the code, copy and

paste the functions from Appendix D into the appropriate line. The individual steps of the algorithm

will now be discussed in detail.

The first part of the code sets the parameters (lines //1 to //18) for the subsequent simulation

(lines //19 to //33), which generates the required data. The initial parameters are set to the exact

values used in the simulation. This is to ensure that the algorithm works correctly. We then change

the settings of these parameters and observe how the classification accuracy of the target variable y

copes with this change and tune the parameter values.

Lines //1 to //3 specify the number of data used in the algorithm. Part of the simulated data is used

for learning, i.e. initialization, estimation and determination of local models. The remaining data are

used for testing in the form of the classification itself. Line //4 is used to set the parameter a discussed

above, which allows the generated binomial parameters to be distorted to more closely approximate

the uniform distribution. Now a = 0, which does not affect the generation of the binomial parameters,

but increasing this value will change them. Lines //5 and //6 set the parameters of the pointer models

that determine the number of components in each variable. The parameter pa1 is set so that the

first variable x1 has a total of 3 components and the parameter pa2 produces a total of 4 components

in the variable x2. In the next steps, parameters are set to generate explanatory variables x, which

are assumed to be independent according to our assumption. For the previous example in Subsection

6.1.3, which deals with mixture estimation, it is tested that violating this assumption does not have a

large effect on the results, so in the following code only one of the options is used, namely an almost

independent relationship between the variables x1 and x2. This variant of the relationship may be

the closest to real data. First, lines //7 to //9 generate categorical parameters from the probability

function of the binomial distribution for all 3 components of the first variable x1, defining the mixture

model of the binomial distributions. For example, line //7 sets the value of the binomial parameter

p = 0, 1 to generate a probability function, and the elements of this probability function are taken

as probabilities or parameters of the categorical distribution. This procedure is chosen in order to be

able to subsequently establish a relationship (almost independence) between the variables x, since the

binomial distribution does not have a conditional probability, whereas the categorical distribution does.

Lines //10 to //13 set the parameters for the 4 components of the variable x2 so that for each value
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of the variable x1 these parameters are binomial and always different. The dependency is projected

so that for each value of x1, x2 has a different binomial distribution, so it is a mixture of binomial

distributions controlled by x1. Finally, lines //14 to //18 set the binomial parameter Py for the target

variable y, which consists of 24 different values, because each combination of x1 (4 values) and x2 (6

values) is assigned a probability for y = 0 and also for y = 1.

After setting all the parameters, the simulation can be started in lines //19 to //33, where we first

set the number of values in the variables x1 and x2 (lines //19 and //20). This is followed by the

generation of pointer models for the two variables mentioned (lines //22 and //23), then the generation

of values for the variable x1 on line //24 using the appropriate pointer model. On line //25, the pp

parameters for the variable x2 are created by using both the pointer model of the variable x2 and

the generated value of the variable x1 itself to create the desired relationship between these variables

x (almost independence). Then, using the created parameters pp, the values of the variable x2 are

generated on line //26. Now the generated values of both variables x are encoded in z on line //27,

and the values of y are generated on line //28 using this auxiliary variable z and the parameters Py

(the pointer model must not be present here, as it would affect both variables equally, and we want to

know the effect of the variable x on y). The matrix of variables x is created in line //30, from which

the maximum of the values in each of the variables x is determined in line //31. The next step is to

determine the number of values in y and the number of variables x (i.e. x1 and x2) in lines //32 and

//33. A part of the simulated data is then selected for learning on line //34 and stored in the variables

x and y, respectively xL and yL.

It is now possible to start the initialization on lines //35 to //45, which is described theoretically

in Section 4.1 and used practically in the mixture estimation experiment in Subsection 6.1.3. First of

all, a prior virtual data are set in the form of the strength of the initial parameter k0 (line //35), and

then the initial counter statistic ka is set using this parameter (line //40), from which the statistic

is generated (line //43). Lines //36 and //37 set the initial parameters for all components of both

variables x. Next, on lines //39 and //40, the number of components in the variable xi and the

aforementioned counter ka for xi are determined. The initialization is completed by a cycle on lines

//41 to //44, where the parameter estimates of the models for the variable xi and the summation

statistic of the variable xi are determined for each component.

The next part of the code on lines //46 to //65 is devoted to mixture estimation, which is described

in Chapter 4 and can be divided into two parts in the code: determining the weights and updating the
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statistics (which includes the parameter estimation itself). In the first part, q is defined in line //48,

then the proximities are then stored in the cycle for all the components in lines //49 to //51. The

following line //52 creates the weights and there is also a solution if there is only one component in the

experiment. These weights are remembered in line //53. The second part, which focuses on updating

the statistics, is in lines //54 to //59, where the counter is updated in the cycle for each variable, then

the statistics are updated, and finally the parameter estimation is performed and then remembered.

On line //62, the evolution of the estimated parameters is then saved in a table and finally, on line

//64, the point estimate of the pointers is determined using the argument of the maximum of the

determined weights.

The following part on lines //66 to //82 deals with the creation of local categorical models, which

is described in detail in Section 5.2. On line //68, the variables belonging to the j-th cluster of the

i-th variable are collected so that each component in each variable has data belonging to its cluster on

line //73. The next cycle on lines //76 to //81 generates the desired local models fj (xi|y), which are

created by normalizing the local frequency table Tj (xi|y) so that for a given y the sum of x is equal

to 1. A part of the construction of local models is the model f (y) on line //82, which is created by

normalizing the frequencies of the values of y to the sum of 1 and is necessary for the next part of the

algorithm, i.e. classification.

Now the learning phase is over and the testing phase begins, which is preceded by deleting all

existing data (variables x1, x2 and y) and loading new data for testing. This last part of the algorithm

(lines //85 to //105) is the classification mentioned above, the detailed procedure of which is described

in Section 5.3. In the code, the classification can be divided into two parts, as in the estimation, namely

the determination of the weights for the prediction (lines //86 to //93) and the prediction itself (lines

//94 to //103). The determination of the weights in this phase of the algorithm is the same as in

the mixture estimation. The first step is the definition of q, where the proximities are then inserted

and, after their normalization, the weights are obtained and stored for later use. The next step is to

predict the target variable y by first determining the probability of fy from the model f (y). Line

//96 defines fj, which is then used on line //98 to determine the model f (xi|y) using a weighted

sum of components. This is followed on line //100 by the construction of the prediction model f (y|x)

using the Naive Bayes principle as the product of f (y) and f (xi|y) over all variables. The prediction

of the target variable yp itself is determined on line //102 as the argument of the maximum of the

prediction model f (y|x), i.e. the y with the highest probability is selected. Finally, line //104 renames
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the predicted target variables yp in the case of rotation in prediction, and line //105 determines the

accuracy of this prediction by comparing the predicted and actual values of y, which is also known as

the classification y.

// Est imation o f the marginal mixture f ( x1 , x2 | c ) with binomial x

// − d i f f e r e n t components

// − x1 , x2 more or l e s s dependent

// − est imated as f o r independent x

// − l e a r n i n g and t e s t i n g data

// − simBin − corrupted binomial ( f o r " a " l a r g e we get c a t e g o r i c a l )

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

c l ea r , c l c , mode ( 0 ) ;

// copy the f u n c t i o n s from the Appendix D here and run the code

nd=800; // number o f data //1

nL=500; // number o f l e a r n i n g data //2

nT=nd−nL ; // number o f t e s t i n g data //3

a =.0; // co r rupt i on o f b inomial d i s t i b u t i o n ( see the func t i on ) //4

pa1 =[ .3 . 4 . 3 ] ; // po in t e r model parameters f o r x1 //5

pa2 =[ .2 . 3 . 3 . 2 ] ; // po in t e r model parameters f o r x2 //6

// c a t e g o r i c a l parameters f o r the 3 components o f the binomial x1

C( 1 ) . p1=simBin ( . 0 1 , 3 , a ) ; //7

C( 2 ) . p1=simBin ( . 9 8 , 3 , a ) ; //8

C( 3 ) . p1=simBin ( . 5 , 3 , a ) ; //9

// parameters f o r the 4 components o f x2 − almost independent

C( 1 ) . p2 =[ .05 . 1 . 15 . 2 ] ; //10

C( 2 ) . p2 =[ .85 . 9 . 95 . 9 8 ] ; //11

C( 3 ) . p2 =[ .45 . 5 . 55 . 6 ] ; //12

C( 4 ) . p2 =[ .75 .77 . 8 . 8 2 ] ; //13
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py =[.0001∗ ones (1 , 12 ) .9999∗ ones ( 1 , 1 2 ) ] ; // parameters o f y //14

f o r k=1:24 //15

p=binomial ( py ( k ) , 1 ) ; // binomial parameters y f o r a l l x //16

Py ( : , k)=p ’ ; // parameters y f o r a l l combinat ions o f x //17

end //18

// SIMULATION

nx1=length (C( 1 ) . p1 ) ; // number o f va lue s x1 //19

nx2=6; // number o f va lue s x2 //20

f o r t =1:nd //21

c (1 , t )=sum(cumsum( pa1)<randu () )+1 ; // po in t e r model f o r x1 //22

c (2 , t )=sum(cumsum( pa2)<randu () )+1 ; // po in t e r model f o r x2 //23

x1Al l ( t )=sum(cumsum(C( c (1 , t ) ) . p1)<randu () )+1 ; // gene ra t i on o f x1 //24

pp=simBin (C( c (2 , t ) ) . p2 ( x1Al l ( t ) ) , nx2−1,a ) ; // parameters f o r x2 //25

x2Al l ( t )=sum(cumsum(pp)<randu () )+1 ; // gene ra t i on o f x2 //26

z ( t)= xt2co l ( [ x1Al l ( t ) x2Al l ( t ) ] , [ nx1 nx2 ] ) ; // encoding x1 and x2 //27

yAl l ( t )=sum(cumsum(Py ( : , z ( t ))) < randu () )+1 ; // gene ra t i on o f y //28

end //29

xAl l =[ x1Al l x2Al l ] ; // matrix o f v a r i a b l e s x //30

b=max( xAll , ’ r ’ ) ; // maximum of va lue s in each x //31

ny=max( yAl l ) ; // maximum of va lue s in y //32

nv=length (b ) ; // number o f v a r i a b l e s x ( x1 , x2 ) //33

// s e l e c t i o n o f data f o r l e a r n i n g

x=xAl l ( 1 : nL , : ) ; y=yAl l ( 1 : nL ) ; xL=x ; yL=y ; //34

// INITIALIZATION

k0=5; // s t r ength o f i n i t i a l parameters //35

X( 1 ) . pI =[ .1 . 5 . 9 ] ; // parameters f o r 3 components o f x1 //36

X( 2 ) . pI =[ .1 . 3 . 4 . 9 ] ; // parameters f o r 4 components o f x2 //37
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f o r i =1:nv //38

nc ( i )= length (X( i ) . pI ) ; // number o f components in v a r i a b l e x i //39

X( i ) . ka=k0∗ ones (1 , nc ( i ) ) ; // counter f o r x i //40

f o r j =1:nc ( i ) //41

X( i ) . c ( j ) . pE=X( i ) . pI ( j ) ; // parameters e s t imate s o f v a r i a b l e x i //42

X( i ) . c ( j ) . S=X( i ) . c ( j ) . pE∗X( i ) . ka ( j )∗ ( b( i ) −1);

// summation s t a t i s t i c s o f v a r i a b l e x i //43

end //44

end //45

// ESTIMATION

f o r t =1:nL //46

f o r i =1:nv // c y c l e f o r weights and updates //47

// −− WEIGHTS

q=ze ro s (1 , nc ( i ) ) ; // d e f i n i t i o n o f q //48

f o r j =1:nc ( i ) //49

q (1 , j )=binpdf ( x ( t , i )−1 ,X( i ) . c ( j ) . pE , ( b( i ) −1)) ; // p r o x i m i t i e s //50

end //51

i f l ength ( q)==1, X( i ) .w=1; e l s e X( i ) .w=fnorm ( q ) ; end

// c r e a t i o n o f weights and s o l u t i o n f o r only one component //52

X( i ) . wt ( : , t )=X( i ) .w ’ ; // remember the weights //53

// −− ESTIMATION

f o r j =1:nc ( i ) //54

X( i ) . ka ( j )=X( i ) . ka ( j )+X( i ) .w( j ) ; // counter update //55

X( i ) . c ( j ) . S=X( i ) . c ( j ) . S+X( i ) .w( j )∗ ( x ( t , i ) −1); // s t a t . update //56

X( i ) . c ( j ) . pE=X( i ) . c ( j ) . S/(X( i ) . ka ( j )∗ ( b( i ) −1)) ; // e s t imat i on //57

X( i ) . c ( j ) . pt ( t)=X( i ) . c ( j ) . pE ; // remember − evo lu t i on o f param .//58

end //59

end //60

end //61

f o r i =1:nv , f o r j =1:nc ( i ) , P( i , j )=X( i ) . c ( j ) . pE ; end , end
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// save the evo lu t i on o f parameters i n to a tab l e //62

f o r i =1:nv //63

cp ( i , : )= amax(X( i ) . wt , 1 ) ; // po int e s t imate s o f p o i n t e r s //64

end //65

// LOCAL MODELS

f o r i =1:nv //66

f o r j =1:nc ( i ) //67

X( i ) . c ( j ) . dt = [ ] ; // d e f i n i t i o n o f v a r i a b l e s f o r data in c l u s t e r s //68

end //69

end //70

f o r i =1:nv //71

f o r t =1:nL //72

X( i ) . c ( cp ( i , t ) ) . dt=[X( i ) . c ( cp ( i , t ) ) . dt ; [ y ( t ) x ( t , i ) ] ] ;

// c r e a t i o n o f data in c l u s t e r s //73

end //74

end //75

f o r i =1:nv //76

f o r j =1:nc ( i ) //77

T=tab l e (X( i ) . c ( j ) . dt ( : , 1 ) ,X( i ) . c ( j ) . dt ( : , 2 ) , 1 : ny , 1 : b ( i ) ) ;

// l o c a l t a b l e s Tj ( x i | y ) //78

X( i ) . c ( j ) . fy=fnorm (T, 1 ) ; // l o c a l models f j ( x i | y ) //79

end //80

end //81

fY=fnorm ( va l s2 ( y ) ) ; // model f ( y ) //82

c l e a r x1 x2 y // d e l e t i o n o f v a r i a b l e s x1 , x2 and y //83

// s e l e c t i o n o f data f o r t e s t i n g

x=xAl l (nL+1:nd , : ) ; y=yAl l (nL+1:nd ) ; //84

// CLASSIFICATION
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f o r t =1:nT //85

// −− WEIGHTS f o r p r e d i c t i o n ( same as f o r e s t imat i on )

f o r i =1:nv //86

q=ze ro s (1 , nc ( i ) ) ; // d e f i n i t i o n o f q //87

f o r j =1:nc ( i ) //88

q (1 , j )=binpdf ( x ( t , i )−1 ,X( i ) . c ( j ) . pE , ( b( i ) −1)) ; // p r o x i m i t i e s //89

end //90

X( i ) .w=fnorm ( q ) ; // weights //91

X( i ) .Wt( : , t )=X( i ) .w ’ ; // remember the weights //92

end //93

// −− PREDICTION

fy=fY ; // p r o b a b i l i t y o f fy //94

f o r i =1:nv //95

f j =0; // d e f i n i t i o n o f f j //96

f o r j =1:nc ( i ) //97

f j=f j+X( i ) .w( j )∗X( i ) . c ( j ) . fy ( : , x ( t , i ) ) ;

// weighted sum of components //98

end //99

fy=fy . ∗ f j ; // product over v a r i a b l e s //100

end //101

yp ( t)=amax( fy ) ; // argument o f the maximum f ( y | x ) = p r e d i c t i o n //102

end //103

u=c2c (y , yp ) ; // renaming o f v a r i a b l e s yp in case o f r o t a t i o n //104

Accuracy=acc (y , u( yp ) ) // accuracy o f p r e d i c t i o n y = c l a s s i f i c a t i o n y //105

Results of the final algorithm

First of all, the parameters are set so that the algorithm works perfectly and the result of the code

gives the accuracy = 1, i.e. 100%. This tested that the algorithm is fully functional and now we need

to try other parameter settings and observe the deterioration of the results, because the real data will

never be as nice as this simulated data. So the parameters py for the generation of the target variable

y on line //14 were changed to use the new less deterministic parameters py = [0, 3 0, 7] instead of the
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original parameters py = [0, 0001 0, 9999]. The result, which is around accuracy = 0, 70, shows that

the accuracy has deteriorated and the reason is the not so accurate generation of the target variable

y in the simulation (which was the goal).

In the following Section 6.3, the tested marginal mixtures algorithm is used for experiments on real

data.

6.3 Experiments on real data

In this phase, the marginal mixtures experiment is performed on three types of real data. These are

accident data, car data and medical data. All these data are discreet and it meets the requirements of

multimodality.

6.3.1 Data for experiments

The real data used for the experiments and the results of their classification using marginal mixtures

are described below.

Accident data

Accident data for the Czech Republic are obtained from Czech Police records. The data come from

the cooperation of the Faculty of Transportation Sciences with the Prague City Hall on the analysis

of traffic accidents in Prague. The data set consists of several parts (accidents, vehicles, consequences,

pedestrians and GPS), and the records of accidents involving pedestrians from 2019 are used for this

experiment.

The data set used has a total of 3219 records and these data are determined by the following

attributes (explanatory variables):

• pedestrian category (5 values),

• pedestrian status (7 values),

• pedestrian behavior (7 values),

• situation at the accident site (6 values),

• gender of the pedestrian (4 values),

• provision of first aid (6 values).
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The individual values of the described attributes are given in Appendix E.

The consequences for the life and health of pedestrians in the event of an accident is the target

variable, which has 4 values, namely death, serious injury, minor injury and no injury.

To determine the results, i.e. the accuracy of prediction of the target variable, the code from section

6.2 is used. Since we are now using real data and not simulated data, it is necessary to remove the first

part of this code (parameter setting and data simulation). Next, we need to modify the initialization

parameters, which are based on the histograms of the loaded explanatory variables x. The complete

code is shown in Appendix F, where the first part is replaced by loading the real accident data

involving pedestrians, and then the initialization parameters mentioned above are modified according

to the histograms of the variables x. The rest of the code remains the same and corresponds to the

marginal mixtures method. Of the 3219 records, 1500 are used for the learning part and the rest, 1719

records, are used for testing. The accuracy of the prediction using marginal mixtures is 84,52% for the

accident data.

Car data

Car Evaluation Data are publicly available on the website [48]. This data set relates to the condition

of used cars and is suitable for this experiment due to its multivariate discrete data. The total number

of data samples is 1728 and the attributes (explanatory variables) are:

• buying (4 values) - buying price (vhigh, high, med, low),

• maint (4 values) - price of the maintenance (vhigh, high, med, low),

• doors (4 values) - number of doors (2, 3, 4, 5 or more),

• persons (3 values) - capacity in terms of persons to carry (2, 4, more),

• lug_boot (3 values) - the size of luggage boot (small, med, big),

• safety (3 values) - estimated safety of the car (low, med, high).

For the car data, we chose car acceptability as the target variable. This variable has 4 values -

unacceptable, acceptable, good and very good.

The algorithm of the marginal mixtures with car data determined the classification with an accuracy

of 86,09%.
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Medical data

In addition to transportation, it is possible to test the algorithm on real medical data. The Breast

Cancer Data set used is publicly available on the website [48]. This data set contains 286 instances

and the attributes (explanatory variables) are:

• age (9 values) - 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90-99,

• menopause (3 values) - lt40, ge40, premeno,

• tumor-size (12 values) - 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54,

55-59,

• inv-nodes (13 values) - 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26, 27-29, 30-32, 33-35,

36-39,

• node-caps (2 values) - yes, no,

• deg-malig (3 values) - 1, 2, 3,

• breast (2 values) - left, right,

• breast-quad (5 values) - left-up, left-low, right-up, right-low, central,

• irradiat (2 values) - yes, no.

The target variable for the breast cancer data is a class with two values - no recurrence events and

recurrence events.

The data set contains missing values, so 274 data from the sample are used in the experiment. The

accuracy of the classification using marginal mixtures with medical data is 75,67%.

Results of experiments with marginal mixtures

Table 6.2 summarizes the classification accuracy results for real data using the marginal mixtures

method.

Table 6.2: Classification accuracy using marginal mixtures method

Data Accident Car Medical

Accuracy [%] 84,52 86,09 75,67
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6.3.2 Results of experiments with other methods

Data mining searches for useful information in large data sets generated by advanced data collection

technologies in transportation, medicine, and all sciences. Data mining methods consist of traditional

data analysis methods and algorithms for processing extensive data files. These methods are used to

obtain information through data analysis as well as classification [49]. However, they cannot always

be applied to all data sets. The goal is to explore large databases and find new patents that would

otherwise not be discovered. To compare the classification results of the marginal mixtures method,

six well known data mining methods were selected:

• k-nearest neighbor,

• decision tree,

• neural networks,

• logistic regression,

• naive Bayes,

• fuzzy rules.

All of these methods are described below. The data mining system KNIME (www.knime.com) is used

to determine the classification results, and Figure 6.8 shows how the program looks with accident data.

Figure 6.8: Illustration of the KNIME program with accident data
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The KNIME system is one of the most renowned in its field, so its results are considered optimal.

Our goal is to at least to approach them, as our algorithm is built in an approximate way, avoiding

the theoretically correct way that leads to an extremely high dimension of the solution.

K-nearest neighbor

The k-nearest neighbor algorithm is commonly used for classification, estimation and classification.

This method is based on instance learning and it uses a training data set. Thus, a new unclassified

record can be classified by comparing it to the most similar records in the training data set. The

condition is that the training set must contain only data that will not be used for classification [50].

Table 6.3 shows the classification accuracy results using the k-nearest neighbor method for all 3 types

of real data, using the same conditions as for the marginal mixtures (e.g., 200 accident data for testing

and the rest for learning).

Table 6.3: Classification accuracy using k-nearest neighbor method

Data Accident Car Medical

Accuracy [%] 84,41 94,30 70,27

Decision tree

Decision tree is an attractive classification method. It involves the construction of a decision tree, a

set of decision nodes connected by branches. These branches go down from the root node to the leaf

nodes. The initial root node is located at the top of the decision tree diagram. Attributes are tested

in decision nodes, and each possible outcome creates a new branch. Each branch then goes either to a

final leaf node or to another decision node [50]. The accuracy of predicting transportation and medical

data using the decision tree method is shown in Table 6.4.

Table 6.4: Classification accuracy using decision tree method

Data Accident Car Medical

Accuracy [%] 84,87 97,81 72,97

Neural networks

The neural network method is inspired by the complex learning systems of the animal brain, which

consist of interconnected sets of neurons. The structure of a single neuron can be relatively simple,

but a dense network of interconnected neurons can create complex recognition or classification tasks.
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Neural networks attempt to mimic the basic level of nonlinear learning that occurs in networks in

nature.

The inputs are grouped from the data set and then combined using the combination function. One

of the most commonly used functions is summation, which is an input to a function to create an output

response. This response is then sent to other neurons [50]. Table 6.5 shows the classification accuracy

results of the neural network for all real data.

Table 6.5: Classification accuracy using neural networks method

Data Accident Car Medical

Accuracy [%] 84,53 77,63 71,62

Logistic regression

Logistic regression method describes the relationship between one or more explanatory variables and

a response variable. The resulting variable is discrete and often has only two possible values. The

basis is an appropriate model, which is also necessary for other methods. In contrast to the linear

regression, which is used for the modeling of continuous data, the output of the logistic regression

is discrete. To deal with this„ the logistic regression model uses the logit function, which shrinks

the general continuous variable to a probabilistic interval (0, 1). Then, instead of the output, the

probability that the output is equal to one is modeled.

This method considers a sample of independent pairs of variables (xi, yi), i ∈ {1, 2, · · · , n}, where

xi is an independent variable of the i-th attribute and yi is a binary outcome variable. This outcome

variable is coded as 0 and 1, indicating the presence or absence of the characteristic. To apply the

logistics model to a data set, it is necessary to estimate unknown parameters. These parameters are

estimated using the maximum likelihood method [51]. Table 6.6 shows the accuracy of the classification

of the real data when the logistic regression method is used.

Table 6.6: Classification accuracy using logistic regression method

Data Accident Car Medical

Accuracy [%] 84,18 78,07 70,27

Naive Bayes

Conventional statistics considers parameters as unknown but fixed numbers. The Bayesian approach
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to statistics uses parameters as random variables, and these parameters are estimated from measured

data according to the well known Bayes formula described in Section 2.2 [52].

The naive Bayes method estimates a conditional probability based on attributes that are condition-

ally independent. Assuming conditional independence, it is not necessary to determine the probability

for each combination of x = [x1, x2, · · · , xn], where n is the number of attributes. However, it is nec-

essary to estimate the conditional probability of each xt relative to y. This method is very practical

because it does not require a large training set [49]. The classification accuracy results using the naive

Bayes method for real data are shown in Table 6.7.

Table 6.7: Classification accuracy using naive Bayes method

Data Accident Car Medical

Accuracy [%] 81,68 75,88 72,97

Fuzzy rules

Fuzzy logic, and in particular fuzzy rule technology, is a very effective method for solving complex

systems. In addition to fuzzy rules, fuzzy modeling and fuzzy control are often part of the output.

In fuzzy rules, fuzzy inference is used to determine the result from the specified input information.

The input variable is assigned to the known information, then the result for the output variable is

calculated using the consequent rules [53]. The resulting classification accuracy for real data using

fuzzy rules is shown in Table 6.8.

Table 6.8: Classification accuracy using Fuzzy rules method

Data Accident Car Medical

Accuracy [%] 82,66 94,04 71,64

6.3.3 Comparison of results

This chapter compares the results of data classification using all the methods presented in this thesis

with the newly developed marginal mixtures method. The goal of marginal mixtures is to show

that sufficient results can also be obtained using the approximation method (reducing the dimension

of the model). For the sake of completeness, naive Bayes, the other approximation method, was

also considered. The difference between the marginal mixtures approach and naive Bayes is that

the marginal mixtures uses local modeling, which is described in Section 5.2. The summary of this
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comparison in terms of accuracy results is shown in Table 6.9, and the best results for each data set

are always marked in bold.

Table 6.9: Comparison of the classification accuracy

Method Accident data Car data Medical data

K-nearest neighbor 84,41 94,30 70,27
Decision tree 84,87 97,81 72,97

Neural networks 84,53 77,63 71,62
Logistic regression 84,18 78,07 70,27

Naive Bayes 81,68 75,88 72,97
Fuzzy rules 82,66 94,04 71,64

Marginal mixtures 84,52 86,09 75,67

The first column of the table shows the classification accuracy results for accident data involving

pedestrians. The best result for the accident data set was achieved by the decision tree method with

a value of 84,87%. It was followed by neural networks with the result of 84,53%. The proposed method

of marginal mixtures reached the third position with an accuracy of 84,52%, which is very close to

the methods that have better results. On the other hand, the proposed method of marginal mixtures

works with a smaller model dimension.

The second column of Table 6.9 shows the accuracy of the classification for car data. The best

classification is obtained by the decision tree method with a value of 97,81%. Although the results

of the decision tree method are very good, the complexity of the model can be a problem because all

combinations of explanatory variables are examined. The marginal mixtures method uses only the

reduced model and ranks fourth with an acceptable difference. It is interesting to note that neural

networks (second best for accident data) rank only sixth out of seven for car data, which may be due

to the insufficient representative amount of training data.

The methods were also applied to the medical data set. The results are shown in the last column

of Table 6.9. The best classification method for this data set is the newly developed marginal mixtures

method with a classification accuracy of 75,67%.

Moreover, for all three data sets, the marginal mixtures method achieves a better result than the

similarly approximated naive Bayes method, which was the main objective of this newly developed

method.
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Conclusion

The main objective of this research was to propose a model for data classification with dimension

reduction based on clustering and local model construction. In the introduction of the thesis, two

main goals were set, namely, to develop a method for modeling and predicting large discrete data sets

using a low-dimensional model, and to compare this method with existing methods for prediction.

The first goal is achieved through the development of the marginal mixtures method, whose algo-

rithm is not only described in detail in Chapter 5, but also verified experimentally first on simulated

data (Section 6.2), and then on real data (Subsection 6.3.1). The main contribution of this method is

the actual reduction of the model dimension while maintaining sufficient accuracy, which was achieved

by modeling the explanatory variables as independent mixtures with binomial components (with the

possibility of easy initialization from a prior data) and then constructing local categorical models for

individual clusters. This is done by finding clusters and then building local models on top of them,

which have a better chance of describing even complex situations. The subsequent prediction is then

constructed by a weighted combination of predictions from the local models.

The second goal, i.e., to compare the marginal mixtures method with other methods, specifically

the six selected prediction methods, is met in Subsection 6.3.3. This subsection provides an overview

of the prediction accuracy results of the target variable for three different real discrete transportation

and medical data sets. The results show that the marginal mixtures method is competitive with other

methods as its prediction accuracy results are very good. Based on the evaluation results, it can be

concluded that a different method is appropriate for each specific data set.

The advantage of our method is that it keeps the dimension of the model small and gets closer
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to reality by using binomial mixtures. For example, a discrete categorical model with 10 variables

of 7 values each has a dimension of 710, and our method reduces the size of this dimension to only

7 ∗ 10. Other methods (mainly neural networks and decision trees) do not consider the size of the

dimension, and this can cause problems for really extensive discrete data sets. The first issue is related

to overparameterization of the model, which in the worst case can lead to a failure to achieve the

result. Another problem is time consumption. Due to the smaller dimension of the model, one of the

benefits of marginal mixtures is increased speed. However, on real data sets, the results are almost

the same for all methods compared, but the discrete model (which uses marginal mixtures) is much

simpler and therefore faster.

Another great advantage of the presented method of data analysis is its easy initialization, which

should bring the estimated model closer to reality. When there are more explanatory variables in the

data set (which is always the case when dealing with questionnaires), we are working in a multidimen-

sional space that is difficult to inspect. However, this thesis treats individual variables separately, and

the locations of increased data density can be found simply from the histograms of the variables, so

we avoid working in high-dimensional spaces.

Although marginal mixtures are a useful tool for data analysis, there are several issues that need

to be addressed in future research. Discrete data are typical in their diversity and the frequency of

the variable values (e.g., one value is more frequent and another one is much less frequent) and this

leads to inaccuracies in the classification. Therefore, the goal is to find an appropriate approach to

managing the data, since the predicted value will always be the value with the highest frequency.

In conclusion, the doctoral thesis fulfilled its purpose because the method was developed according

to the requirements. It has been shown that the marginal mixture method is suitable in practice for

classifying questionnaire data from different fields with sufficient results, and all the objectives of the

thesis can be considered achieved.
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Appendix A

Full derivation of mixture

estimation

A mixture model consists of nc components

fj (x|p) , j ∈ {1, 2, · · · , nc} ,

where j denotes the component and p is a vector of parameters (for a binomial component it is a vector

of probabilities pj), and the corresponding categorical pointer model

f (c = j|α) = αj ,

where c is the pointer variable and α is the probabilistic vector of the parameters.

To derive an algorithm for the estimation of the parameters p and α, we express the probability of

all unknown objects conditional on all data x (t) measured up to the current time point t and factorize

it using the chain rule

f (ct = j, p, α|x (t)) ∝︸︷︷︸
Bayes rule

f (xt, ct = j, p, α|x (t− 1)) =

= f (xt|ct = j, pj) f (ct = j|α) f (p|x (t− 1))) f (α|x (t− 1)) , (A.1)

where we used the following assumed independencies:
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• the component models do not depend on the parameters α, and the pointer model is independent

on p,

• the parameters p of the components do not depend on the switching parameter α,

• the components are independent.

Equation (A.1) can be divided into several parts, which will be discussed now. The first part of the

equation can be rewritten in the form of a component of the mixture model

f (xt|ct = j, pj) = fj (xt|pj) .

The second one is the pointer model

f (ct = j|α) = αj

and the rest are prior distributions of parameters p and α

f (p|x (t− 1))) , f (α|x (t− 1)) .

A typical application of Bayes rule is shown in Equation (A.1). However, the main problem lies

in the variable ct - its elimination leads to the sum form of a Bayes rule and it causes the growing

complexity when updating the statistics. Therefore, the classification of the measured data xt with

respect to the individual components must be performed at the beginning. In other words, we need to

construct the probability function f (ct = j|x (t)) , ∀j. This can be done with the formula (A.2)

f (ct = j|x (t) , p, α) ∝
∫ 1

0

∫ 1

0

f (ct = j, p, α|x (t)) dp dα =

=

∫ 1

0

∫ 1

0

f (xt|ct = j, pj) f (ct = j|α) f (p|x (t− 1))) f (α|x (t− 1)) dp dα =

=

∫ 1

0

f (xt|ct = j, pj) f (p|x (t− 1)))︸ ︷︷ ︸
→ f(p|x(t))

dp×
∫ 1

0

f (ct = j|α) f (α|x (t− 1))︸ ︷︷ ︸
→ f(α|x(t))

dα , (A.2)

where the first term in the product is the prediction from the j-th component and the second one is

the prediction from the pointer model.
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Using the most recent point estimates of the parameters p̂t−1 and α̂t−1, we can write the weights

wj = f (x̂|p̂j;t−1) α̂j;t−1 .

The weights are the product of the component model proximity and the pointer model proximity

with the actual point estimates of the parameters and the measured value of xt = x̂ inserted.

Using the Bayes rule and the product form of the models

fct (xt|pct) =
∏
j

fj (xt|j)δ(ct,j) and f (ct|αct) =
∏
j

f (j|αj)δ(ct,j) ,

where δ (·) is the Kronecker function, δ (a, b) =


1 for a = b

0 elsewhere
and we can derive the following algo-

rithm for the estimation:

Algorithm

Initial part

• Construct the prior statistics S and κ (for binomial components) and ν for the pointer model

and construct the prior point parameter estimates.

Recursive part (for t = 1, 2, · · · , T )

• Measure the current data xt.

• Evaluate the weights wt;j for j ∈ {1, 2, · · · , nc}

wj;t = f (ct = j|x (t) , p̂t−1, α̂t−1)

using the formula (A.2) with the current parameter estimates p̂t−1 and α̂t−1.

• Perform a weighted update of the statistics

Sj;t = Sj;t−1 + wj;txt ,

κj;t = κj;t−1 + wj;t ,
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νj;t = νj;t−1 + wj;t ,

where the data are added to a component only with the ratio corresponding to the probability

that it belongs to a particular component.

• Construct the point estimate of the parameters

p̂j;t =
Sj;t
κj;t

and α̂t = ℵ (νj;t) ,

where ℵ (·) means normalization to the sum equal to one.



Appendix B

Theoretical description of each

initialization point

1. Data area

Suppose we have 3 variables x1, x2 and x3 arranged in a data matrix x with three columns ′c′ and as

many rows as the number of measurements. Then

mi = min (x,′ c′) , ma = max (x,′ c′)

gives the 3-element vectors of the minimum and maximum values of the variables. We can place the

coordinates of the initial components in this space with the command

for i=1:nc

thI(:,i)=(mi+ma)/2+.2*(ma-mi).*rand(3,1,’n’)

end

where (mi+ma) /2 is the center of the region, (ma−mi) is the width of the region, and nc is the

number of components.
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2. Initial parameter estimates

Great emphasis is placed on the initial location of the parameters (cluster centers for static compo-

nents). The centers should definitely lie in the region where the data occur, and ideally, the individual

centers should lie near the peaks of the data, i.e., at the locations where the density maxima of the

expected clusters (working modes of the system) occur.

If we do not have prior data, we follow the previous point (we scale the data and decide the centers

around the origin).

If prior data are available (and it should be, because the process has been running somehow - even

just a trial - and usually all we need to do is put some effort into it and the data will be found), we

definitely want to use it. First of all, we determine the region where the data occur (see previous

point) and then we look for density peaks - either in histograms of individual variables or in pairs of

variables. The histograms are clear. We show the procedure for pairs:

We have 3 variables x1, x2 and x3. We plot xy-graphs for the pairs x1− x2 and x2− x3.

plot(x1,x2,’:’) and plot(x2,x3,’.’)

On the x-axis of the first plot we find the coordinates corresponding to the centers of visible

clusters and on the y-axis the corresponding y-coordinates. There may be multiple y-coordinates to

one x-coordinate - then we record all of them, with the x-coordinates repeated.

The second figure shows all the y-coordinates from the first figure on its x-axis. To these, we assign

the y-coordinates from the second figure and add them as a third number to the existing coordinates.

We can continue in this way for more coordinates. We use the resulting coordinates as the component

centers, i.e. the prior parameters of the static components.

The procedure is illustrated in the Figure B.1:
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a b x1

x2

c d e

f
g

h

x2

x3

c

d

e

x-coordinate x-coordinate

y-coordinate y-coordinate

Figure B.1: Cluster centers for static components

The centers from the first figure will be:

C1 = [a, c] , C2 = [a, e] , C3 = [b, d] .

From the second figure, add

C1 = [a, c, g] , C2 = [a, e, f ] , C3 = [b, d, h] .

These are not necessarily the true centers of the multivariate components, but at least we know

that something is going on here and the initial centers somehow belong to the density vertices. The

fine-tuning should happen in the actual estimation.

3. Holding of prior centers

This is a very important method, used more or less in every estimation.

At the beginning of the estimation, information about the parameters can only be derived from a

small amount of data. If the parameters were left completely free, they would "rush" meaninglessly

after each measured data vector and could easily stray somewhere from which there would be no return.

That is why we need to start with statistics that already have some information in them - either from

the data or from an expert.

We will demonstrate the situation for normal distribution of components. In other cases, the

situation is similar.
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The evolution of the statistics to estimate the regression coefficients is done as follows

Vt = Vt−1 +ΨΨ′ ,

where V is the information matrix, Ψ = [yt, 1]
′ is the extended regression vector with the new data.

This shows that the matrix V grows gradually as data are loaded into it.

It is important to note that if the matrix V is zero at the beginning, immediately the first data

will change it a lot.

The point estimates of the regression coefficients follow the formula

θ̂ = V −1
ψ Vyψ ,

where Vy, Vyψ and Vψ are the submatrices of V divided by the regression vector (in general, Ψ =

[yt, ψt]
′
; here, for static components, ψt = 1). If we multiply the matrix V by c, then

θ̂ = (cVψ)
−1

(cVyψ) = V −1
ψ Vyψ ,

then the estimates will not change - only (for large c) cV will be larger, and hence more robust to

changes due to newly coming data.

So the conclusion is quite simple: The large information matrix is used to hold the initial component

centers.

Note: If we have some initial parameters in mind θ̂0 and we want to construct an information

matrix for them, we proceed as follows

V =

 1 θ̂
′

0

θ̂0 1

 .
Then the first guess

θ̂ = V −1
ψ Vyψ = θ̂0.
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4. Fixed noise covariance

The noise covariance determines the shape of the clusters. If we are primarily concerned with finding

the cluster centers, we can keep the covariances small and fixed (not estimating them). We specify

them as a unit matrix multiplied by a tenth to a hundredth of the range (radius) of the expected data

region.

If we care about the shape of the clusters, e.g. in classification when we divide the data into

individual components, it is recommended to turn on their estimation only during the estimation

process (e.g. in the middle), when the centers will be essentially found. However, there is still a danger

that the covariances will run away or that one component will overlap the others.

5. Repeated estimation on the same data

The component centers start at their initial centers and gradually travel to the density peaks. Each

data record is shifted a little according to which component it belongs to (according to the weights

w). If the data sample is not fully sufficient, it can and does happen that the estimation ends before

the centers have arrived to their proper places. Then it is reasonable to continue the estimation with

the same data again, but to start not from the initial centers, but from those that have arrived so far.

There is one problem, however. At the end of the estimation, the information matrices are large

(we say that the estimation is tight) and the centers would have moved either no more or very little.

Therefore, between individual runs of the estimation, the statistics need to be suitably oblivious

(divided by a number approximately equal to the length of the previous estimation).

This can be done repeatedly. In doing so, it is a good idea to follow the evolution of the centers,

for example in a graph, and continue until the center estimates move.

6. Artificial regression vectors

A good way to convert often abstract expert knowledge into data that are suitable for initialization

is the creation of artificial data vectors. Each data vector consists of a regression vector and its

corresponding output value. We will illustrate the situation with the following example:

We observe the length of a queue in just one leg of a controlled intersection that collects traffic from
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a certain area. There are 5 critical points in this area, which may be at different traffic levels depending

on the situation. Thus, the regression vector will contain 5 variables (traffic levels in the area) and the

output is the length of the queue at the intersection. The expert can convert his knowledge into an

output of the most important combinations of loads for each location in the area and assign (according

to his belief) the corresponding value of the length of the queue at the intersection.

Note: If prior data are available, it is of course possible to use them and select some important

data vectors that are critical for the situation and carry a lot of information. The selection can again

be according to the expert’s recommendation.

The constructed data vectors are then treated normally as measured data vectors in the initializa-

tion.

7. Expert classification

This method follows the previous procedure, but instead of assigning an output value to a regression

vector, the selected data are expertly assigned to the class (component) to which it belongs.

Again, there are several ways to perform this pre-classification.

1. Expertly create the entire data vector and classify it into a class.

2. Take some prior measured data vector and expertly assign a class to it.

3. Use some superior tools (let a human observe the situation or rent some expensive measuring

instrument) to measure not only the data records but also the corresponding classification classes

for prior measurement.

We use what we get for initialization, where we perform learning with the teacher (i.e., knowing the

correct classification).



Appendix C

Generation of discrete data in

Scilab

Let X is a random variable with distribution given by distribution function F . Then it holds

F (X) = U ,

where U is uniform on the interval (0, 1) .

So, mapping uniform distribution on interval (0, 1) gives values of random variable with distribution

function F (·) .

It holds for a continuous random variable. For the discrete one, the distribution function is given

as a cumulative sum (cumsum () of the probability function, which is a vector of probabilities of its

individual values

x 1 2 3 · · · n

f (x) p1 p2 p3 · · · pn

The probability function f (x) and the distribution function F (x) for n = 3 are shown in Figure

C.1.
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f(x)

F (x)

0 1 2 3

0 1 2 3

1

p1

p2

p3

p1

p2

p3

Figure C.1: The probability function f (x) and the distribution function F (x)

Now, we generate values on the vertical axis uniformly from (0, 1) . Discrete distribution function is

a piecewise continuous function that has a finite number of jumps (intervals) in its values. The jumps

at a specific value is equal to the probability of this value. The probabilities that we are going to hit a

specific vertical interval, say i-th is pi. Let us generate U = u0 so that u0 lies in the interval with the

probability p2, then (F (x) < U) = [1, 0, 0] (where 1 denotes “true” and 0 “false”). Then

∑
(F (x) < u0) =

∑
[1, 0, 0] = 1 .

Then
∑

(F (x) < u0) + 1 = 2 and we generate the value 2. As the probability that u0 is from that

interval is p2, the probability of generating 2 is p2. This corresponds to the probability function whose

values we generate.

This example can be easily generated to the interval with probability pi. Then

∑
(F (x) < u0) + 1 = i

with probability pi.

The whole function for generating discrete data in Scilab is as follows

y (t) = sum (cumsum (p) < rand (1, 1,′ u′)) + 1
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and we use it in the for loop. The procedure for generating discrete data y ∈ {1, 2, 3} is described in

the steps below:

1. create the cumulative sum of the probability function, if p1 = 0, 31, p2 = 0, 52 and p3 = 0, 17,

then the cumulative sum gives the value

P1 = 0, 31, P2 = 0, 83, P3 = 1 ,

2. use the rand function to generate a random variable in the interval (0, 1). E.g.

u0 = 0, 45 ,

3. compare all values of the cumulative sum with the variable u0 as follows cumsum (p) < u0 with

1 denotes “true” and 0 “false”

0, 31 < 0, 45 true→ 1 ,

0, 83 < 0, 45 false→ 0 ,

0, 1 < 0, 45 false→ 0 ,

4. determine the sum of the values 1 (“true”) and 0 (“false”)

∑
[1, 0, 0] = 1 ,

5. now we get the output value y ∈ {0, 1, 2}, but we want discrete data y ∈ {1, 2, 3}, so add 1 in

this way
∑

(cumsum (p) < u0) + 1 and the result is

y = 1 + 1 = 2 .

The result shows that if a random variable from the interval p2 is generated, the output will be y = 2.

Consequently, y = 1 is obtained for the interval p1 and y = 3 for the interval p3. This is shown in

Figure C.2.
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Figure C.2: Generation of discrete data



Appendix D

Functions for executing Scilab codes

For the sake of clarity of the codes in the thesis, both mixture estimation algorithms are given without

functions. These functions are necessary for the operation of the code after execution in Scilab, but

they are not essential for the core of the thesis. Therefore, both sets of functions are listed below, and

once copied to the appropriate place in the code, the algorithms are fully functional. The first set of

functions belongs to the algorithm for estimating the mixture f (x1, x2|c) with binomial x, presented in

Subsection 6.1.3. The second set of functions belongs to the experiment on simulated data in Section

6.2, which describes the estimation of the marginal mixture f (x1, x2|c) with binomial x and also uses

many functions that are not part of Scilab.

Set of functions for the estimation of the mixture f (x1, x2|c) with binomial x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

f unc t i on y=randu (m, n)

// uniform d i s t r i b u t i o n (0 , 1 )

i f argn (2) <1 , m=1; n=1; end

i f argn (2) <2 , n=1; end

y=grand (m, n , ’ unf ’ , 0 , 1 ) ;

endfunct ion

func t i on [ pr , Lp]= binpdf (k , p , n)

// p r o b a b i l i t y o f b inomial pf f o r the value k
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m=length ( k ) ;

num=factLn (n ) ;

den=factLn ( k)+factLn (n−k ) ;

Lp=num−den+k∗ l og (p)+(n−k )∗ l og (1−p ) ;

pr=exp (Lp ) ;

endfunct ion

func t i on Lf=factLn (n)

// logar i thm o f f a c t o r i a l

m=length (n)

f o r i =1:m

Lf ( i )=sum( log ( 1 : n( i ) ) ) ;

end

endfunct ion

func t i on fn=fnorm ( f , i )

// fn=fnorm ( f , i ) norma l i za t i on o f p r o b a b i l i s t i c t ab l e

// fn normal ized tab l e

// f t ab l e

// i d i r e c t i o n i=1 norm colunms , i=2 norm rows

// Rem: f can have zero rows or columns

i f argn (2)==1,

[m, n]= s i z e ( f ) ;

i f n>m, f=f ’ ; end

s f=sum( f ) ;

i f s f==0

fn=ones ( f )/ l ength ( f ) ;

e l s e

fn=f / s f ;

end

e l s e
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[m n]= s i z e ( f ) ;

i f i==1

f1=sum( f , 1 ) ;

s=f i n d ( f1 ==0);

f 1 ( s)=m;

f ( : , s )=ones (m, l ength ( s ) ) ;

fn=f . / ( ones (m, 1 ) ∗ f 1 ) ;

e l s e

f 2=sum( f , 2 ) ;

s=f i n d ( f2 ==0);

f 2 ( s)=n ;

f ( s , : )= ones ( l ength ( s ) , n ) ;

fn=f . / ( f 2 ∗ ones (1 , n ) ) ;

end

end

endfunct ion

func t i on [ a ,m]=amax(x , tx )

// arg o f max

[ n1 , n2]= s i z e ( x ) ;

i f ( n1==1) | ( n2==1)

[m, a]=max( x ) ;

e l s e

i f tx==1, tx=’r ’ ; end

i f tx==2, tx=’c ’ ; end

[m, a]=max(x , tx ) ;

i f tx==’r ’ // i f uniform denote i t by %nan

f o r i =1: s i z e (x , 2 )

i f va r i ance ( x ( : , i ))==0

a ( i )=0

end
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end

e l s e

f o r i =1: s i z e (x , 1 )

i f va r i ance ( x ( i , :))==0

a ( i )=0

end

end

end

end

endfunct ion

func t i on [ q ,T]= c2c ( ct , Ect )

// cc=c2c ( ct , Ect ) permutation o f po in t e r va lue s f o r p l o t

// ct s imulated po in t e r

// Ect est imated po in t e r

// q order vec to r f o r Ect

// T t r a n s f . matrix

// USSAGE: ct=q ( Ect )

// s e t : [ q T]= c2c ( ct , Ect ) ; s imul and est im po in t e r

// p l o t ( 1 : nd , ct , 1 : nd , q ( Ect ) ) p l o t t i n g

n=min ( [ l ength ( ct ) , l ength ( Ect ) ] ) ;

i f max( ct ( 1 : n))~=max( Ect ( 1 : n ) )

d i sp ’WARNING from c2c . s c i : D i f f e r e n t numbers o f components ’

end

nc=max( ct ) ;

T=ze ro s ( nc , nc ) ;

f o r t =1:n

T( ct ( t ) , Ect ( t ))=T( ct ( t ) , Ect ( t ))+1; // t rans fo rmat ion matrix

end

f o r i =1:nc

[ xxx , q ( i )]=max(T( : , i ) ) ; // order vec to r
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end

endfunct ion

func t i on [ ac , z ]= acc (y , yp , n)

// accuracy

i f argn (2) <3 , n=0; end

e=abs ( y(:) −yp(:)) <=n ;

ac=sum( e )/ l ength ( y ) ;

z . a l l=length ( y ) ;

z . wrong=sum( y(:)~=yp ( : ) ) ;

z . good=sum( y(:)==yp ( : ) ) ;

endfunct ion

func t i on c=cord ( x1 , x2 )

// Spearman c o r r e l a t i o n c o e f f i c i e n t

c=c o r r e l ( ranks ( x1 ) , ranks ( x2 ) ) ;

endfunct ion

func t i on j=ranks ( a )

// ranks o f a d i s c r e t e random v a r i a b l e

// j ranks , i . e . f o r a=[3 5 2 2 ] we get j =[3 4 1 .5 1 . 5 ]

// f o r equal va lue s in a , we s e t average rank

// a vec to r o f d i s c r e t e ( and maybe a l s o r e a l ) va lue s

[ u , i ]= g so r t ( a , ’ g ’ , ’ i ’ ) ;

[ xx , j ]= gso r t ( i , ’ g ’ , ’ i ’ ) ;

av=u ( 1 ) ;

f o r i =2: l ength ( a )

i f abs (u( i −1)−u( i ))>1e−8

av=[av u( i ) ] ;

end

end
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f o r i =1: l ength ( av )

i a=f i n d ( abs ( a−av ( i ))<1e−8)

i f l ength ( i a )>1

k=j ( i a ) ;

j ( i a )=mean( k ) ;

end

end

endfunct ion

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Set of functions for the estimation of the marginal mixture f (x1, x2|c) with binomial x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

f unc t i on f=simBin (p ,N, a )

// binomial d i s t r i b u t i o n corrupted by no i s e

i f argn (2) <3 , a=0; end

fp=binomial (p ,N)+a∗ rand (1 ,N+1 , ’u ’ ) ;

f=fp /sum( fp ) ;

endfunct ion

func t i on y=randu (m, n)

// uniform d i s t r i b u t i o n (0 , 1 )

i f argn (2) <1 , m=1; n=1; end

i f argn (2) <2 , n=1; end

y=grand (m, n , ’ unf ’ , 0 , 1 ) ;

endfunct ion

func t i on i=xt2co l (x , b )

// i=xt2co l (x , b ) i i s the column number o f a model t ab l e with

// the r e g r e s s i o n vec to r xt with the base b ;

// e lements o f x ( i ) are 1 , 2 , . . . , nb ( i )

// i t i s based on the r e l a t i o n
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// i=b(n−1)b(n − 2 ) . . . b ( 1 ) ( x (n) −1)+...+b ( 1 ) ( x(2)−1)+x (1)

n=length ( x ) ;

b=b ( : ) ’ ;

bb=b ( 2 : n ) ;

bb=bb ( : ) ’ ;

b=[bb 1 ] ;

i =0;

f o r j =1:n

i =( i+x ( j )−1)∗b( j ) ;

end

i=i +1;

endfunct ion

func t i on [ pr , Lp]= binpdf (k , p , n)

// p r o b a b i l i t y o f b inomial pf f o r the value k

m=length ( k ) ;

num=factLn (n ) ;

den=factLn ( k)+factLn (n−k ) ;

Lp=num−den+k∗ l og (p)+(n−k )∗ l og (1−p ) ;

pr=exp (Lp ) ;

endfunct ion

func t i on Lf=factLn (n)

// logar i thm o f f a c t o r i a l

m=length (n)

f o r i =1:m

Lf ( i )=sum( log ( 1 : n( i ) ) ) ;

end

endfunct ion

func t i on fn=fnorm ( f , i )
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// fn=fnorm ( f , i ) norma l i za t i on o f p r o b a b i l i s t i c t ab l e

// fn normal ized tab l e

// f t ab l e

// i d i r e c t i o n i=1 norm colunms , i=2 norm rows

// Rem: f can have zero rows or columns

i f argn (2)==1,

[m, n]= s i z e ( f ) ;

i f n>m, f=f ’ ; end

s f=sum( f ) ;

i f s f==0

fn=ones ( f )/ l ength ( f ) ;

e l s e

fn=f / s f ;

end

e l s e

[m n]= s i z e ( f ) ;

i f i==1

f1=sum( f , 1 ) ;

s=f i n d ( f1 ==0);

f 1 ( s)=m;

f ( : , s )=ones (m, l ength ( s ) ) ;

fn=f . / ( ones (m, 1 ) ∗ f 1 ) ;

e l s e

f 2=sum( f , 2 ) ;

s=f i n d ( f2 ==0);

f 2 ( s)=n ;

f ( s , : )= ones ( l ength ( s ) , n ) ;

fn=f . / ( f 2 ∗ ones (1 , n ) ) ;

end

end

endfunct ion
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func t i on [ a ,m]=amax(x , tx )

// arg o f max

[ n1 , n2]= s i z e ( x ) ;

i f ( n1==1) | ( n2==1)

[m, a]=max( x ) ;

e l s e

i f tx==1, tx=’r ’ ; end

i f tx==2, tx=’c ’ ; end

[m, a]=max(x , tx ) ;

i f tx==’r ’ // i f uniform denote i t by %nan

f o r i =1: s i z e (x , 2 )

i f va r i ance ( x ( : , i ))==0

a ( i )=0

end

end

e l s e

f o r i =1: s i z e (x , 1 )

i f va r i ance ( x ( i , :))==0

a ( i )=0

end

end

end

end

endfunct ion

func t i on [T, kx , ky]= tab l e (x , y , kx , ky )

// T=tab l e (x , y ) cont ingency tab l e T(nx , ny )

// x , y data

// kx , ky va lues o f x , y

xv=va l s ( x ) ;
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yv=va l s ( y ) ;

i f argn (2)<3

kx=xv ( 1 , : ) ; // i f not given , read from data

ky=yv ( 1 , : ) ;

end

ix=min ( kx ) : max( kx ) ; // va lue s by one

iy=min ( ky ) : max( ky ) ;

dx=min ( xv (1 , : ) ) − min( kx ) ; // s h i f t o f data 1 ,2 ,3

dy=min ( yv (1 , : ) ) − min( ky ) ; // . . form given va lues e . g . 0 ,1 ,2

x=x−min( x)+1; // data

y=y−min( y)+1; // . . s t a r t i n g w i t h 1

mx = length ( ix ) ; // dimensions o f the

my = length ( iy ) ; // . . f i n a l data

T = ze ro s (mx, my) ;

f o r t = 1 : l ength ( x )

T( x ( t)+dx , y ( t)+dy ) = T( x ( t)+dx , y ( t)+dy ) + 1 ;

end

endfunct ion

func t i on [ h , f ]= va l s ( a )

// [ h f ]= va l s ( a ) f i n d d i f f e r e n t va lue s o f a and t h e i r f r e q u e n c i e s

// h va lue s and f r e q u e n c i e s [ va l s ; abs_freq ]

// f r e l a t i v e f r e q u e n c i e s

a=a ( : ) ’ ;

b=gso r t ( a , ’ g ’ , ’ i ’ ) ;

[ v ,m]= unique (b ) ;

dm=d i f f (m) ;

n1=length (b)+1;

n=[dm n1−m( $ ) ] ;

f=n/sum(n ) ;

h=[v ( : ) ’ ; n ] ;
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i f sum(n)~=max( s i z e ( a ) )

d i sp ( ’ Error : in va l s . s c i ’ )

r e turn

end

endfunct ion

func t i on [ n , f ]= va l s2 ( a )

// [ h f ]= va l s ( a ) f i n d d i f f e r e n t va lue s o f a and t h e i r f r e q u e n c i e s

// Show only the f r e q u e n c i e s

// h va lue s and f r e q u e n c i e s [ va l s ; abs_freq ]

// f r e l a t i v e f r e q u e n c i e s

a=a ( : ) ’ ;

b=gso r t ( a , ’ g ’ , ’ i ’ ) ;

[ v ,m]= unique (b ) ;

dm=d i f f (m) ;

n1=length (b)+1;

n=[dm n1−m( $ ) ] ;

f=n/sum(n ) ;

i f sum(n)~=max( s i z e ( a ) )

d i sp ( ’ Error : in va l s . s c i ’ )

r e turn

end

endfunct ion

func t i on [ q ,T]= c2c ( ct , Ect )

// cc=c2c ( ct , Ect ) permutation o f po in t e r va lue s f o r p l o t

// ct s imulated po in t e r

// Ect est imated po in t e r

// q order vec to r f o r Ect

// T t r a n s f . matrix

// USSAGE: ct=q ( Ect )
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// s e t : [ q T]= c2c ( ct , Ect ) ; s imul and est im po in t e r

// p l o t ( 1 : nd , ct , 1 : nd , q ( Ect ) ) p l o t t i n g

n=min ( [ l ength ( ct ) , l ength ( Ect ) ] ) ;

i f max( ct ( 1 : n))~=max( Ect ( 1 : n ) )

d i sp ’WARNING from c2c . s c i : D i f f e r e n t numbers o f components ’

end

nc=max( ct ) ;

T=ze ro s ( nc , nc ) ;

f o r t =1:n

T( ct ( t ) , Ect ( t ))=T( ct ( t ) , Ect ( t ))+1; // t rans fo rmat ion matrix

end

f o r i =1:nc

[ xxx , q ( i )]=max(T( : , i ) ) ; // order vec to r

end

endfunct ion

func t i on [ ac , z ]= acc (y , yp , n)

// accuracy

i f argn (2) <3 , n=0; end

e=abs ( y(:) −yp(:)) <=n ;

ac=sum( e )/ l ength ( y ) ;

z . a l l=length ( y ) ;

z . wrong=sum( y(:)~=yp ( : ) ) ;

z . good=sum( y(:)==yp ( : ) ) ;

endfunct ion

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Description of accident data values

Accidents involving pedestrians have the following attributes:

• pedestrian category (5 values),

– male,

– female,

– child (up to 15 years),

– group of children,

– other group,

• pedestrian status (7 values),

– good (no adverse circumstances identified),

– inattention, distraction,

– under the influence of drugs, narcotics or alcohol,

– physical disability (illness, nausea, reduced mobility, disability, etc.),

– attempted suicide, suicide,

– other unlisted condition,

– not identified,

• pedestrian behavior (7 values),

109
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– correct, adequate,

– poor judgement of distance and vehicle speed,

– suddenly entering the carriageway from a pavement, verge, boarding or dividing island,

– confused, rushed, indecisive behavior, sudden change of direction,

– hitting a vehicle from the side,

– children playing on the road,

– none of the above,

• situation at the accident site (6 values),

– pedestrian entering at the FREE or STOP signal,

– crossing outside or near a crossing,

– crossing at a marked crossing,

– crossing immediately in front of or behind a stopped or parked vehicle,

– walking or standing on the pavement, walking on the right or wrong side of the road,

– other situations,

• gender of the pedestrian (4 values),

– male,

– female,

– boy (up to 15 years),

– girl (up to 15 years),

• provision of first aid (6 values),

– there was no need for,

– by the occupants of the vehicles involved in the accident,

– by another person,

– by the air ambulance,

– by an ambulance,

– not provided, but had to be provided.
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Experiment with real data in Scilab

The code in Scilab for real accident data involving pedestrians is shown below.

// Marginal mixtures on r e a l data

// − acc ident data i nvo l v i ng p e d e s t r i a n s

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

c l ea r , c l c , mode ( 0 ) ;

xAl l=csvRead ( ’ xAllR . csv ’ , ’ ; ’ ) ; // load ing data − v a r i a b l e s x //1

yAl l=csvRead ( ’ yAllR . csv ’ , ’ ; ’ ) ; // load ing data − v a r i a b l e y //2

[ nd , nv]= s i z e ( xAl l ) ; // number o f data and v a r i a b l e s x //3

nL=1500; // number o f l e a r n i n g data //4

nT=nd−nL ; // number o f t e s t i n g data //5

b=max( xAll , ’ r ’ ) ; // maximum of va lue s in each x //6

ny=max( yAl l ) ; // maximum of va lue s in y //7

nv=length (b ) ; // number o f v a r i a b l e s x ( x1−x6 ) //8

// s e l e c t i o n o f data f o r l e a r n i n g

x=xAl l ( 1 : nL , : ) ; y=yAl l ( 1 : nL ) ; xL=x ; yL=y ; //9

// INITIALIZATION

111
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k0=5; // s t r ength o f i n i t i a l parameters //10

X( 1 ) . pI =[ .15 . 9 ] ; // parameters f o r v a r i a b l e x1 //11

X( 2 ) . pI = [ . 2 ] ; // parameter f o r v a r i a b l e x2 //12

X( 3 ) . pI =[ .2 . 5 ] ; // parameters f o r v a r i a b l e x3 //13

X( 4 ) . pI =[ .1 . 6 . 9 ] ; // parameters f o r v a r i a b l e x4 //14

X( 5 ) . pI = [ . 2 ] ; // parameter f o r v a r i a b l e x5 //15

X( 6 ) . pI =[ .1 . 4 . 8 ] ; // parameters f o r v a r i a b l e x6 //16

f o r i =1:nv //17

nc ( i )= length (X( i ) . pI ) ; // number o f components in v a r i a b l e x i //18

X( i ) . ka=k0∗ ones (1 , nc ( i ) ) ; // counter f o r x i //19

f o r j =1:nc ( i ) //20

X( i ) . c ( j ) . pE=X( i ) . pI ( j ) ; // parameters e s t imate s o f v a r i a b l e x i //21

X( i ) . c ( j ) . S=X( i ) . c ( j ) . pE∗X( i ) . ka ( j )∗ ( b( i ) −1);

// summation s t a t i s t i c s o f v a r i a b l e x i //22

end //23

end //24

// ESTIMATION

f o r t =1:nL //25

f o r i =1:nv // c y c l e f o r weights and updates //26

// −− WEIGHTS

q=ze ro s (1 , nc ( i ) ) ; // d e f i n i t i o n o f q //27

f o r j =1:nc ( i ) //28

q (1 , j )=binpdf ( x ( t , i )−1 ,X( i ) . c ( j ) . pE , ( b( i ) −1)) ; // p r o x i m i t i e s //29

end //30

i f l ength ( q)==1, X( i ) .w=1; e l s e X( i ) .w=fnorm ( q ) ; end

// c r e a t i o n o f weights and s o l u t i o n f o r only one component //31

X( i ) . wt ( : , t )=X( i ) .w ’ ; // remember the weights //32

// −− ESTIMATION

f o r j =1:nc ( i ) //33

X( i ) . ka ( j )=X( i ) . ka ( j )+X( i ) .w( j ) ; // counter update //34
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X( i ) . c ( j ) . S=X( i ) . c ( j ) . S+X( i ) .w( j )∗ ( x ( t , i ) −1); // s t a t . update //35

X( i ) . c ( j ) . pE=X( i ) . c ( j ) . S/(X( i ) . ka ( j )∗ ( b( i ) −1)) ; // e s t imat i on //36

X( i ) . c ( j ) . pt ( t)=X( i ) . c ( j ) . pE ; // remember − evo lu t i on o f param . //37

end //38

end //39

end //40

f o r i =1:nv , f o r j =1:nc ( i ) , P( i , j )=X( i ) . c ( j ) . pE ; end , end

// save the evo lu t i on o f parameters i n to a tab l e //41

f o r i =1:nv //42

cp ( i , : )= amax(X( i ) . wt , 1 ) ; // po int e s t imate s o f p o i n t e r s //43

end //44

// LOCAL MODELS

f o r i =1:nv //45

f o r j =1:nc ( i ) //46

X( i ) . c ( j ) . dt = [ ] ; // d e f i n i t i o n o f v a r i a b l e s f o r data in c l u s t e r s //47

end //48

end //49

f o r i =1:nv //50

f o r t =1:nL //51

X( i ) . c ( cp ( i , t ) ) . dt=[X( i ) . c ( cp ( i , t ) ) . dt ; [ y ( t ) x ( t , i ) ] ] ;

// c r e a t i o n o f data in c l u s t e r s //52

end //53

end //54

f o r i =1:nv //55

f o r j =1:nc ( i ) //56

T=tab l e (X( i ) . c ( j ) . dt ( : , 1 ) ,X( i ) . c ( j ) . dt ( : , 2 ) , 1 : ny , 1 : b ( i ) ) ;

// l o c a l t a b l e s Tj ( x i | y ) //57

X( i ) . c ( j ) . fy=fnorm (T, 1 ) ; // l o c a l models f j ( x i | y ) //58

end //59

end //60
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fY=fnorm ( va l s2 ( y ) ) ; // model f ( y ) //61

c l e a r x1 x2 y // d e l e t i o n o f v a r i a b l e s x1 , x2 and y //62

// s e l e c t i o n o f data f o r t e s t i n g

x=xAl l (nL+1:nd , : ) ; y=yAl l (nL+1:nd ) ; //63

// CLASSIFICATION

f o r t =1:nT //64

// −− WEIGHTS f o r p r e d i c t i o n ( same as f o r e s t imat i on )

f o r i =1:nv //65

q=ze ro s (1 , nc ( i ) ) ; // d e f i n i t i o n o f q //66

f o r j =1:nc ( i ) //67

q (1 , j )=binpdf ( x ( t , i )−1 ,X( i ) . c ( j ) . pE , ( b( i ) −1)) ; // p r o x i m i t i e s //68

end //69

X( i ) .w=fnorm ( q ) ; // weights //70

X( i ) .Wt( : , t )=X( i ) .w ’ ; // remember the weights //71

end //72

// −− PREDICTION

fy=fY ’ ; // p r o b a b i l i t y o f fy //73

f o r i =1:nv //74

f j =0; // d e f i n i t i o n o f f j //75

f o r j =1:nc ( i ) //76

f j=f j+X( i ) .w( j )∗X( i ) . c ( j ) . fy ( : , x ( t , i ) ) ;

// weighted sum of components //77

end //78

fy=fy . ∗ f j ; // product over v a r i a b l e s //79

end //80

yp ( t)=amax( fy ) ; // argument o f the maximum f ( y | x ) = p r e d i c t i o n //81

end //82

u=c2c (y , yp ) ; // renaming o f v a r i a b l e s yp in case o f r o t a t i o n //83

Acc_y=acc (y , u( yp ) ) // accuracy o f p r e d i c t i o n y = c l a s s i f i c a t i o n y //84
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The same code is used for experiments on car data and medical data. The only changes are in the

loading of the data (lines //1 and //2) and in the setting of the parameters in the initialization (lines

//11 to //16). These parameters are set according to the histograms of all variables x selected for the

experiment.
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